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ABSTRACT 

 This study investigates whether variants in dental morphology and nuclear DNA provide 

similar patterns of intergroup affinity among regional populations using biological distance 

(biodistance) estimates. Many biodistance studies of archaeological populations use skeletal 

variants in lieu of ancient DNA, based on the widely accepted assumption of a strong correlation 

between phenetic- and genetic-based affinities. Within studies of dental morphology, this 

assumption has been well supported by research on a global scale but remains unconfirmed at a 

more geographically restricted scale.  

Paired genetic (42 microsatellite loci) and dental (nine crown morphology traits) data 

were collected from 295 individuals among four contemporary Kenyan populations, two of 

which are known ethnically as “Swahili” and two as “Taita;” all have well-documented 

population histories. The results indicate that biodistances based on genetic data are correlated 

with those obtained from dental morphology.  Specifically, both distance matrices indicate that 

the closest affinities are between population samples within each ethnic group. Both also identify 

greater divergence among samples from the different ethnic groups. However, for this particular 

study the genetic data may provide finer resolution at detecting overall among-population 

relationships.  
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INTRODUCTION 

For more than two centuries, biological anthropologists have used biodistance analysis to 

evaluate biological affinity among past human populations (Konigsberg, 2006). A cursory 

review of the current literature suggests that, while some biodistance studies use both skeletal 

and ancient DNA data (e.g., Corruccini et al., 2002), a proportionally higher number rely on 

skeletal variants alone (for a review see Buikstra et al., 1990). In recent years, variants in dental 

morphology have become a favored dataset because (Scott and Turner, 1997): 1) crown 

morphology is not altered, except by wear or pathology, after the period of crown formation, 2) 

dental variants are highly heritable (60 to 80%), and 3) dental variants vary widely in frequency 

across populations.  

This study had two goals. The first was to determine the strength of the correlation 

between biodistance estimates based on dental morphology and those based on genetic, i.e., 

nuclear microsatellite, variants. As reviewed below, biodistance studies based on dental 

morphology have long been used effectively to differentiate among populations on a global 

scale. However, more specific (i.e., regional comparisons) are also common in bioarchaeological 

research based on dental morphology (e.g., Willermet et al., 2013; Ragsdale and Edgar, 2014; 

Irish et al., 2014). It is at this level that the present study provides a direct test of consistency 

between dental morphological and genetic data in estimating biodistance using paired biological 

data. The second goal was to determine how closely biodistance estimates from these two 

datasets match population histories established through historic, linguistic, and archaeological 

research within coastal Kenya. To accomplish the second goal, paired genetic and dental 

morphology data were collected from living populations whose histories have been widely 

studied (as detailed below).  
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Previous studies comparing dental and genetic biodistance estimates 

Biodistance studies use dental morphology to examine patterns of population history at a 

variety of geographic scales. Scott and Turner (1997) identify six geographic scales that, from 

specific to general, are: 1) individual, 2) family, 3) local (i.e., subsets of a single population), 4) 

regional (i.e., multiple populations spatially proximate to one another), 5) continental (i.e., 

among populations widely distributed across a particular continent), and 6) global (i.e., where 

populations across continents are compared to one another). It has long been assumed among 

dental morphologists studying biodistance that phenotypic variation reflects genetic variation 

(and vice versa), so that either dataset can be used to reconstruct a similar overall pattern of 

population history at all geographic scales (Scott and Turner, 1997). To a large extent this 

assumption has been supported at a global scale; Scott and Turner (1997) comprehensively 

reviewed studies from populations on nearly every continent showing a general agreement 

between biodistance measures based on genetic data and dental morphology. Their review built 

on the work of various researchers who defined many of the major dental complexes (e.g., 

Sundadont vs. Sinodont), cementing the notion that dental morphology or genetic variants, can 

be used to differentiate among global populations (e.g., Hanihara, 1968; Mayhall et al., 1982; 

Turner, 1983, 1986, 1990; Townsend et al., 1990; Irish, 1993, 2013; Hawkey 2004; Scott et al. 

2013).  

However, bioarchaeologists are more often interested in investigating relationships 

among past groups at more geographically limited scales than continental and global. Many 

regional studies examine populations within a single country (e.g., Guatelli-Steinberg et al., 

2001), region of a country (e.g., Hubbard, 2012), or bordering countries (e.g., Ullinger et al., 

2005). As noted by Buikstra et al. (1990), this more refined focus is common in the 
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bioarchaeological literature and is reflected in an array of more recent publications (e.g., see 

Blom et al., 1998; Irish, 2006; Coppa et al., 2007; Sołtysiak and Bialon., 2013; Willermet et al., 

2013; Irish et al., 2014). Such regional studies often focus on understanding mobility patterns 

(e.g., McIlvaine et al., 2014), trading networks (Ragsdale and Edgar, 2014), and other social 

phenomena (e.g., see Knudson and Stojanowski, 2008). Though not systematically tested, it is 

has long-been assumed that there is also a general agreement between biodistance measures 

based on genetic data and dental morphology when examining these regional scale networks 

(Scott and Turner, 1997). 

Three early studies that examined the degree of concordance between biodistance 

estimates based on both genetic and dental morphology data produced conflicting results. Sofaer 

et al. (1972) and Brewer-Carias et al. (1976) found a generally strong agreement, while Harris 

(1977) found that genetic and dental distances produced fundamentally different patterns of 

relationships among regional populations. Several patterns appear when the study design and 

sample composition of these three projects are compared; these differences could account for the 

disagreement between results. 

First, the types of data used across the three studies differ. As noted by Sofaer et al., 

(1972) and Brewer-Carias et al. (1976) each dental trait exhibits a wide range of phenotypic 

expression, leaving the interpretation of each stage up to the observer; as such, these early 

interpretations were partially subjective based on the observers’ selection of traits and rankings 

of trait expression. Subsequently, Turner et al. (1991) established a standard set of descriptions 

and scoring plaques that both specify which traits are most appropriate for studies of biological 

affinity and a standardized method for scoring varied trait expressions (known today as the 

ASUDAS). Further, it is not clear which types of DNA were compared (e.g., uniparental versus 
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biparental) in each study, which could account for the differences in results1. 

Second, while all three studies compare genetic and dental data from the same 

populations they do not appear to compare paired data from the same individuals; that is, the 

dental samples came from partially or completely different individuals than the genetic samples.1 

Harris (1977) explicitly states that some samples were paired while others were not, given that 

much of his dataset was pieced together from existing, published datasets. Neither Sofaer et al. 

(1972) nor Brewer-Carias et al. (1976) specify whether data were paired or unpaired; however, 

the two studies used genetic and dental morphology data collected during different field seasons, 

increasing the likelihood that not all participants were included for both datasets. It is still 

common and practical for bioarchaeologists to collect unpaired data, usually in the form of a 

larger sample of morphological markers and smaller subset of genetic data. However, given that 

genetic variation between human groups is low relative to within-group variation (e.g., see a 

review in Witherspoon et al., 2007), it is possible that such practices could result in sampling 

biases. Specifically, when comparing populations with the express purpose of assessing 

consistency between genetic and dental biodistance estimates, genetic and dental data should be 

derived from the same individuals. Otherwise, any differences in the biodistance estimates 

derived from genetic and dental morphology will at least partly reflect the different segments of 

the populations used for each dataset.  

The present study is the only one known of regional-scale populations that: 1) uses 

standardized data collection techniques for dental morphology; 2) examines differences using 

genetic data spaced across the human genome (one to two loci from each autosomal 

chromosome); and 3) compares dental morphology and genetic data from the same individuals in 

a very localized region (southeastern, coastal Kenya). Based on the design of this study, we 
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initially hypothesized that there would be a strong correlation between the biodistance matrices 

based on genetic and dental morphology data.  

Reconstructing coastal Kenyan population history 

As noted, the second goal of this study was to further test whether obtained biodistance 

estimates were consistent with predicted relationships based on established population histories. 

The setting, Kenya’s Coastal Province, covers 30,767 square miles (79,686 km) including the 

littoral coast and areas roughly 150 km inland (Kenya National Bureau of Statistics, Wundanyi 

Office). Participants for the study were recruited from four communities: Lamu (Northeast), 

Mombasa (East Central), Dawida (Southwest), and Kasigau (Southwest) (Fig. 1). A unique 

component of the project was the use of living,as opposed to archaeological samples, with 

documented population histories based on archaeological, linguistic, and historical datasets. This 

information, therefore, could provide an opportunity to develop predictions about the 

relationships among the four populations that, in turn, comprise two ethnic groups. One caveat is 

that these samples represent modern peoples whose population histories may reflect more 

modern gene flow, which is not fully considered in these hypothesized relationships.  

The inhabitants of Lamu and Mombasa are known ethnically as “Swahili” or “Swahili-

Arab,” and represent communities within a larger urban mercantile population that has strong 

roots in Africa despite ongoing connections to coastal Arab groups (Nurse et al., 1985; 

Middleton, 1992, 2003; Chami, 1994; Chami and Msemwa, 1997; Abungu, 1998; Kusimba, 

1999; Horton and Middleton, 2000; Kusimba and Kusimba, 2000; Spear, 2000). The inhabitants 

of Dawida and Kasigau are known ethnically as the “Taita,” and are a rural agrarian population 

with few genetic contributions from outside East Africa (Merritt, 1975; Bravman, 1998; Batai et 

al., 2013). The Swahili and Taita are thought to have been part of a larger migration of Bantu-
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speaking populations out of western Africa as early as 800 BC (Nurse and Spear 1985; Ehret 

1998, 2001; Salas et al., 2002). The Swahili arrived on the littoral coast as early as 100 BC (de 

Vere Allen, 1993; Chami, 1994; Abungu, 1998; Kusimba, 1999; Salas et al., 2002), eventually 

developing complex intraregional trading networks with hinterland coastal peoples such as the 

Oromo, Kamba, Taita, and Mijikenda (as these groups arrived in the area) and hundreds of years 

before the arrival of non-African traders (Chami, 1994; Chami and Msemwa, 1997; Abungu, 

1998; Kusimba, 1999; Kusimba and Kusimba, 2000). Oral traditions and linguistic analyses 

suggest that the Taita arrived in the Tsavo region (where they reside today), around AD 1400 

(~600 yrs BP) (Merritt, 1975; Spear, 1981; de Vere Allen, 1993; Bravman, 1998), though 

Bravman (1992) suggests an arrival as early as 1000 years BP.   

A set of specific expected relationships among the four populations were proposed (as 

summarized in Table 1) based on a large collection of archaeological, linguistic, and 

ethnohistorical evidence as well as Wright’s (1943) concept of isolation by distance.2 These 

predicted relationships rely primarily on the caveat that both datasets reflect long-term 

interactions among populations in the region, not a recent snapshot of interaction among the four 

groups. 

First, we expected that populations from the same ethnic group (e.g., Dawida and 

Kasigau) would be more similar to each other (and hence, produce a smaller biodistance) than 

populations from different ethnic groups (e.g., Mombasa and Dawida). Though the Taita and 

Swahili may only have “diverged” 2000 years ago, Kasigau and Dawida (also known as the 

“Taita Hills”) are far from Lamu (~ 450 km) and Mombasa (~ 150 km) and separated by a fairly 

harsh, dry environment (Wright, 2005). However, it is unclear whether Dawida and Kasigau 

would be more similar than Mombasa and Lamu. Lamu and Mombasa are a greater distance 
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apart than Kasigau and Dawida, though the Taita Hills have been described as “islands” dotting 

the plains (Merritt, 1975; Bravman, 1998) with most participants living in the same villages since 

birth. In contrast, participants from Mombasa frequently reported being born in Lamu (and vice 

versa), suggesting more mobility between these coastal locations despite their greater distance. 

Based on isolation by distance alone, it was therefore predicted that Dawida and Kasigau would 

be more similar. 

Second, we anticipated that the two Taita populations (Dawida and Kasigau) would be 

more similar biologically to the sample from Mombasa than from Lamu, with Mombasa more 

akin to Kasigau than Dawida. This expectation is based on archaeological evidence indicating 

that between AD 1000 and 1500, trade between the interior and coast thrived – with Mombasa 

operating as the major port out of which caravans ventured into areas such as the Taita Hills 

(Kusimba et al., 2007). Archaeologists believe that Swahili caravans developed extensive 

“fictive kin” networks with neighboring coastal communities (“undugu wa chale”), such as the 

Taita; struggling communities would thus have had places to go and people to rely on during 

times of famine, drought, and/or conflict (Kusimba and Kusimba, 2001, 2005; Wright, 2005), 

something prevalent between AD 1600 and 1800 (Merritt, 1975; Kusimba and Kusimba, 2000). 

Further, according to missionaries’ journals and oral histories, the primary stopping point for 

water, food, and trade items was situated in and around “Mount Kasigau” (Kusimba and 

Kusimba, 2000), suggesting that Kasigau might have had closer ties to Mombasa than Dawida. 

Third, we expected to observe the largest biodistances between Lamu and the two Taita 

locations, with a small probability that Lamu would be more like Kasigau than Dawida. These 

last two predictions are based solely on Wright’s (1943) concept of isolation by distance and a 

lack of evidence that Lamu and Taita populations came into direct contact. Due to direct contact 
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between Mombasa and Kasigau traders (and ongoing contact between Mombasa and Lamu), it 

was further predicted that there might be a slightly higher chance of the Kasigau sample sharing 

greater similarities with Lamu, though again, the level of recent genetic contact among all groups 

has not been taken into consideration. 

MATERIALS 

Sample composition and characteristics 

Impressions of permanent dental crowns and saliva samples were collected from 400 

unrelated adults (18+ years of age). Willing participants were given an oral exam prior to sample 

collection, and individuals exhibiting poor oral and dental health, including infection and/ or 

missing, worn (to the point that a particular morphological feature was obscured or missing), or 

broken teeth, were excluded from the study. These steps were taken to ensure a high quality 

dental sample as well as to protect participants from pain and discomfort. Of the original 400 

participants, only 295 paired dental and genetic samples were analyzed. Three individuals did 

not complete both sample collections, 12 were later found to be related (sharing a grandparent or 

closer), and the remaining 92 were excluded, either due to poor setting of the dental impressions 

or absence of discernible DNA (mostly due to contaminants that inhibited the PCR process).  

A questionnaire was used to collect information on place of birth, current residence, and 

ethnicity of participants and family members including siblings, parents, and grandparents, 

ethnic identity (Taita or Swahili/Swahili-Arab) of participants and their parents, and the sex and 

age of participants. Roughly equal numbers of male and female participants were selected to 

reduce potential effects of sexual dimorphism, though age was not controlled because the only 

age-related impact on morphology is the level of dental attrition, which was evaluated during the 

oral exam. Ethnicity, though more difficult to account for, was determined based on the ethnicity 
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of the participant and the ethnicity of the participant’s father. Table 2 presents the sample 

composition by location, ethnicity, and sex.  

METHODS 

Sample collection and preparation 

Participants were recruited through the assistance of local community leaders over a five-

month period and included healthy adults with a fully erupted, permanent dentition. Roughly 

equal numbers of males and females were recruited to limit potential sex bias in the sample. 

Consenting participants were first interviewed using a genealogical survey to evaluate whether 

two or more relatives (defined as people sharing a grandparent, aunt/uncle, cousin, parent, or 

sibling) were enrolled in the study. Next, an oral examination was completed to assess whether 

sufficient teeth were present, dental attrition was low, and participants had good oral health. 

Participants passing the inspection had a dental impression taken using a two-part polyvinyl 

siloxane (PVS) system (Coltène-Whaledent “AFFINIS” super soft putty and regular body wash), 

though it was later determined that the PVS putty, alone, was sufficient to obtain a high 

resolution, dimensionally stable impression. Lastly, participants were asked to spit into a 

collection tube (DNA Genotek 2 mL “Oragene” system) to obtain a buccal tissue sample. Saliva 

collection kits were used because the materials are stable at room temperature (a 

buffer/preservative is used), easy to transport, and the collection method is non-invasive 

(Rylander-Rudqvist et al., 2006; Hansen et al., 2007). On average, each 2 mL sample can 

produce around 100 µg of DNA (Birnboim, 2004). 

A total of 400 dental casts were made from impressions using a gypsum-based dental 

casting material (Modern Materials “Denstone” Type II, golden color). A detailed dental casting 

protocol is provided in Appendix A of Hubbard (2012). DNA was purified and extracted from 
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500 mL saliva samples using standard protocols, suspended in 100 µL of distilled water, and 

frozen for transport. A detailed extraction and purification protocol is provided in Appendix B of 

Hubbard (2012). 

Genetic data collection and analysis 

 A total of 351 DNA samples were sent to a commercial genetics lab (Prevention 

Genetics) for PCR amplification and microsatellite genotyping (49 of the original 400 samples 

did not yield sufficient quantities of DNA). Fifty microsatellite loci from the Marshfield Panel, a 

subset of the Human Genome Diversity Cell Line, were sampled. The Marshfield Panel is a 

selection of 377 microsatellite loci that have been identified as useful in ascertaining population 

differences (Rosenberg, 2002). Because the panel does not specify standard African-focused 

microsatellite marker sets or number of required markers, 50 loci were selected at random across 

equally-spaced intervals of the human genome to both minimize selection bias and maximize 

coverage of the genome. Genetic frequency data, heterozygosity, pairwise and global FST values, 

and STRUCTURE estimates for the sampled loci can be found in Hubbard (2012). These data 

show that sufficient diversity was present to warrant the use of these genetic loci in 

differentiating population history among the four sampled populations. Genetic samples from 

researchers working in the lab were sent to Prevention Genetics to control for contamination - 

none was found.  

Goldstein et al.’s (1995) delta-mu squared (Ddm) distance was used to calculate genetic 

distance because the statistic is designed for use with microsatellite data following a stepwise 

mutation model and can account for the effects of genetic drift. Ddm was calculated using 

MSAT version 2.0 (with a bootstrapped model), an executable program designed by Dieringer 

and Schlotterer (2003) to calculate various genetic distance measures. Following standard data 

Page 12 of 35

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13"
"

editing procedures, genetic loci with more than 10% missing data, loci in Hardy-Weinberg 

disequilibrium within a single population, loci that did not properly amplify during the PCR 

process, and loci or individuals that had high numbers of PCR dropouts were excluded from the 

study. Only 42 of the original 50 sampled loci were retained (Table 3). 

Dental data collection and analysis 

The first author recorded 30 permanent dental crown traits outlined in the Arizona State 

University Dental Anthropology System (ASUDAS) using the 351 dental casts for which there 

were paired genetic data. This widely adopted, standardized data collection system uses a set of 

reference plaques with written descriptions (Turner et al., 1991) to record variation in the dental 

traits most commonly observed in human populations worldwide. Each trait is recorded for a 

focal tooth using a ranked system designed to capture the range of variation (e.g., pit, furrow, 

cusp). Dental traits vary in a quasicontinuous manner, meaning that they can vary in expression 

while also having a threshold at which that trait is considered “present.” Breakpoints established 

by Turner (1987) and Irish (2005) were used to transform the ranked data into dichotomized 

presence (i.e., 1) and absence (0) scores. Before collecting the final dataset, an intra-observer 

error test was conducted on 30 dentitions (maxillary and mandibular casts) for both the ranked 

and dichotomized data using gamma and kappa tests, respectively.  

Editing dental morphology datasets differs depending on the biodistance statistic being 

used. Within anthropology a number of biodistance measures have been developed for analyzing 

morphological variation in the dentition including Pearson’s (1926) Coefficient of Racial 

Likeness, Penrose’s (1954) shape distance, Gower’s (1971) distance, the Mean Measure of 

Divergence (MMD) (Grewal, 1962), and Konigsberg’s (1990) pseudo-Mahalanobis D2 (pseudo- 
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D2). Though there has great debate over the efficacy of various measures, a study by Irish (2010) 

documents that most measures provide comparable estimates.  

The pseudo-D2 statistic was used in the present study and calculated using an executable 

program by Konigsberg (1990). A benefit of the pseudo-D2 statistic is that it accounts for trait 

intercorrelation and weights correlated traits (rather than removing them from the sample). 

Correlations are determined using a tetrachoric correlation matrix, which cannot be calculated 

when individuals or traits have large numbers of missing values. Though no standards exist for 

how best to identify the number or specific traits to remove, the present study employed the 

following method. The 30 dental traits were run through the program and those with the largest 

number of missing values were removed until a tetrachoric correlation matrix was produced. 

After editing the dental dataset, only nine traits remained (Table 4), which provides a good 

indication of the general state of individual dental completeness in these four groups.  

Comparison of biodistance matrices 

 Two approaches were used to determine the agreement between distance matrices based 

on these different data types. First, the correlation between the genetic and dental distance 

matrices were assessed using both Pearson’s and Mantel’s “r” tests (Dutilleul et al., 2000). 

Associated p-values were used to determine whether the correlation was significant at the 0.05 

level. Second, principal coordinate values were calculated and plotted. Distance values within a 

single matrix must be compared, given that they are unitless. In general, a smaller biodistance 

between two samples reflects close biological affinity, while a larger biodistance reflects 

dissimilarity. Because it is not possible to compare differences in the raw values between two 

distance matrices, principal coordinate analysis is often used to visualize the relationship. 
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RESULTS 

  Table 5 presents the biodistance values for each of the sample comparisons, ordered 

from largest expected values (top) to smallest expected values (bottom). Both the Mantel and 

Pearson tests produced a correlation of 0.50, though neither value was significant at a 0.05 level 

(Pearson’s p=0.31; Mantel’s p=0.21). Further, we predicted that distance values between sample 

pairs would exhibit the following pattern from largest to smallest: Dawida-Lamu, Kasigau-

Lamu, Dawida-Mombasa, Kasigau-Mombasa, Mombasa-Lamu, and Dawida-Kasigau. The two 

smallest pseudo-D2 distances were observed between Dawida and Kasigau (0.332) and between 

Mombasa and Lamu (0.362). Likewise, the smallest Ddm distances were observed between the 

two Taita (0.139) and two Swahili (0.186) samples. Thus, both the genetic and dental data 

identified close affinities between sampled populations from the same ethnic group.  

Similarly, both data sets yielded greater distances among samples from the different 

ethnic groups. However, the biodistance values based on genetic data suggest a closer affinity 

between the sample from Mombasa and the two Taita samples (0.541 and 0.365) than between 

Lamu and the same two Taita samples (1.265 and 0.900); those based on dental data suggest an 

overall closer relationship between Dawida and the two Swahili samples (0.615 and 0.557) than 

between Kasigau and the same Swahili samples (0.779 and 0.836). As such, the calculated 

pairwise genetic distances for samples from different ethnic groups matched the predictions 

exactly, while those obtained from dental morphology data did not. 

 Figure 2 is a plot of sample scores obtained from the principal coordinate analysis (PCO) 

for the genetic distances overlaid by the scores based on dental morphology. The first principal 

coordinate (x-axis) explains around 65 percent of the variation in the sample for both genetic and 

dental distances; both plots clearly distinguish between the Swahili and Taita samples along this 
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axis. The second principal coordinate (y-axis) explains the remaining variation (plus or minus a 

few percentage points) and reflects the differences between samples from different ethnic 

groups. The genetic PCO plot shows a closer biological affinity between Kasigau and Mombasa 

and between Dawida and Lamu; the plot based on dental morphology (pseudo-D2) places 

Kasigau as an outlier. Still, the same general pattern is produced from both datasets; though there 

are variations regarding location within the clusters on the extreme left and right sides, the two 

Taita samples appear nearest one another, and distinct from the Swahili, and vice versa. 

DISCUSSION 

The results of this study provide a complex yet informative view into the relationship 

between biological distance estimates based on genetic data and those based on dental 

morphology data. The first goal of this study was to determine whether these two datasets 

provided analogous representations of population histories among the four regional populations 

sampled. A moderate to strong positive, though non-significant, correlation between genetic and 

dental biodistance matrices was observed (see Cohen, 1988 for correlation strength measures). 

Since the number of variables (in this case, six pairwise distance values) can affect p-values, a 

second method for analyzing similarities between these matrices was to plot principal coordinate 

scores from genetic and dental data to visualize the relative positions (and by proxy, 

relationships) among samples (Figure 2). This plot indicates that the genetic and dental distances 

produce a similar overall pattern, but give somewhat different pictures of detailed relationships 

among the four samples. Within the plot, the two Swahili samples cluster together and are 

distinct from the Taita. The major difference appears to be that the genetic data identify a greater 

affinity between Mombasa and the two Taita samples, while the dental data identify a closer 

affinity between Dawida and the two Swahili samples. Thus, we conclude that both genetic and 
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dental morphology data are sensitive to differences between the Taita and Swahili samples 

(between ethnic groups), but provide a different overall picture of the relationships among 

samples from different ethnic groups.   

A second goal of the project was to determine if either dataset (Table 5) provided a 

representative picture of expected relationships among the four samples (Table 1). When ordered 

from largest to smallest, the genetic distances follow the predicted pattern based on known 

population history (i.e., samples from the same ethnic group were more similar, those from 

different ethnic groups were least similar, and Mombasa shared an overall closer affinity to the 

Taita samples). While the dental distances show samples from the same ethnic group as most 

similar, a stronger affinity between Dawida and the two Swahili samples is also observed. 

Therefore, the genetic data best reflect the long-term history of the four populations. These 

findings do not contradict observations by Scott and Turner (1997) that dental morphological 

data are most effective at higher geographic scales of study, particularly global and continental.  

However, the present study compares samples at a regional, or even local scale (i.e., ethnic 

groups), given the very geographically restricted region in which the four populations live. This 

is not to say that dental comparisons at regional (e.g., Willermet et al., 2013; Ragsdale and 

Edgar, 2014; Irish et al., 2014) and local (Stojanowski and Schillaci 2006; Pilloud and Larsen 

2011; Stojanowski, Johnson and Duncan 2013) geographic scales cannot successfully reconstruct 

documented population relationships elsewhere; rather, the findings presented here provide a 

cautionary tale and suggest that comprehensive tests among regional populations are needed. 

Overall, this study provides a glimpse into the impacts and challenges of determining 

appropriate datasets to investigate population history at these more specific scales. However, 

there are some methodological limitations that, when taken into account, further enrich this 
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picture. First, this study utilized nuclear microsatellite data paired with dental crown morphology 

data to ensure that differences in biodistance matrices reflected variation among populations, not 

differences between the collected genetic and dental samples. While this strategy allowed for the 

comparison of variation among the same individuals in each sample, it is still possible that these 

individuals do not fully represent population variation. Second, only nine of 30 dental traits 

remained after data editing, while 42 of 50 microsatellite loci were retained. The differences in 

biodistances could be explained by the many loci versus few dental traits, in that the latter may 

not capture adequate variation. Berry (1976) was among the first to propose that dental traits 

were polygenic, suggesting that each trait might be controlled by a minimum of 10 genetic loci 

(though the last postulate has not been validated). At present, specific genes controlling the 

varied expressions of all ASUDAS dental traits are unknown, and the potential for overlap in 

genes controlling for (or affecting) different traits is likely (Jernvall and Jung, 2000). Third, the 

positive match between the ranked genetic distance values and predicted biodistance rankings 

does not confirm that genetic data of all types are better suited than dental morphology data for 

biodistance studies. Among aDNA studies of past populations, mitochondrial markers are often 

favored because of a higher repeat number (see Pääbo et al., 2004 for full review). However, 

Williams et al. (2002) found that nuclear DNA produced a pattern of biodistances consistent with 

known Yanomamo population history, while mitochondrial DNA did not. Furthermore, 

Relethford (2007) warned that degradation in aDNA often can lead to studies examining a single 

locus, giving a potentially skewed view of affinity among samples. Finally, it is possible that one 

or more of our predicted relationships are faulty, though all are consistent with archaeological, 

linguistic, and historical data. Likewise, it is currently not possible to determine what temporal 
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scale is captured by each dataset. For example, could dental distances reflect short-term, recent 

population history differences while the genetic distances reflect long-term history?  

While this study examines living groups, it provides important applications to the 

bioarchaeological study of past populations. Two recent publications also examine the agreement 

between paired genetic and morphological data using archaeological samples. First, Ricaut et al. 

(2010) examined mixed cranial and dental morphology samples to estimate kinship within a 

single site, while Herrera et al. (2014) examined cranial metric and morphological variation to 

understand population history at a regional level. Both acknowledge the value of skeletal variants 

in bioarchaeological studies at these geographic scales. Ricaut et al. (2010) found that combined 

morphological data provided good resolution in identifying pairs of kin within a Mongolian 

necropolis, although genetic findings detected double the number. In the second study, Herrera et 

al. (2014) compared Y-chromosome, mtDNA, cranial metric, and cranial morphology data in 

samples from the Bering Strait region; they found that craniometric distances were correlated 

with mtDNA, while distances based on cranial morphology were correlated with those from Y-

chromosome variants. Viewed as a whole, two lessons can be learned from the present and 

previous studies: 1) additional work needs to be undertaken to determine which skeletal and 

genetic data are best suited to answer particular research questions (Herrera et al., 2014; present 

study); and 2) care should be taken when formulating very fine scale interpretations of 

population history from skeletal data (Ricaut et al., 2010; present study; also Scott and Turner, 

1997).  

 

 

 

Page 19 of 35

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



20"
"

CONCLUSIONS 

This study examined the ability of nuclear microsatellite and dental morphology data to 

detect biologically informative differences among recent, geographically constrained regional 

and local Kenyan populations using biological distance analysis. Of existing studies comparing 

dental morphology with genetic variants, the present study is the first to use genetic and dental 

data from the same individuals, thus making it possible to directly assess the agreement between 

these two data sources in biodistance estimates. What is considered a moderate to strong 

positive, though non-significant correlation was found between genetic and dental distance 

matrices. Furthermore, comparisons of ranked distance values and principal coordinate plots of 

overall relationships among the four populations suggest that both genetic and dental 

morphology datasets are capable of identifying known ethnic differences. Overall, these findings 

suggest that nuclear microsatellite data should provide good resolution in other studies exploring 

fine scale population histories among regional and local groups. Dental morphology data may (or 

may not) do so among very proximate groups; however, additional testing using a full suite of 

dental traits and larger samples is necessary to resolve this latter issue. Future research will focus 

on incorporating additional dental traits as well as biodistance estimates based on mtDNA from 

the same populations to determine if these data provide a population history comparable to that 

produced by nuclear microsatellites.  
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FOOTNOTES 
 

1 Brewer-Carias et al. (1976) note that 11 genetic markers were analyzed from an unpublished 
work, while Sofaer et al. (1972) and Harris (1977) note that serological data were used but do not 
describe the number of or specific variants examined. As such, the genetic data used are not 
clearly specified. 
 
2 Wright’s concept of isolation by distance postulates that populations in close proximity are 
expected to share greater biological similarity than those at a great distance. 
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FIGURE LEGENDS 
 
Figure 1: Map of Kenya’s coastal province noting locations of the study populations.  
 
Figure 2: Principal coordinate plot of Ddm (circle) and pseudo-D2 (triangle) distances. 
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Figure 2: Principal coordinate plot of Ddm (circle) and pseudo-D2 (triangle) distances.  
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Table 1: Predicted relationships among pairs of populations, ranked from largest to 
smallest biodistance 

 
 
 
 

 

 

 

 

 

 

 

a Populations in CAPS are ethnically Swahili, populations in lowercase are ethnically Taita; 
comparisons are ordered according to predicted relationships among the four populations. 
!
!
!
!

Table 2: Sample composition 
 
Location Ethnicity Females Males Combined 
Mombasa Swahili 39 23 62 
Lamu Swahili 29 29 58 
Dawida Taita 39 39 78 
Kasigau Taita 45 52 97 
 TOTAL 152 143 295 

 
  

Predicted  
distances 

Population  
comparisonsa 

Largest dawida -  LAMU 
----- kasigau -  LAMU 
---- MOMBASA -  dawida 
--- MOMBASA -  kasigau 
-- MOMBASA – LAMU 

Smallest dawida - kasigau 
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Table 3: List of the 42 microsatellite loci used in the present study  
 

  Marker Name Locus Name Chromosome Repeat Type 
1 D1S3669 GATA29A05P 1 Tetra 
2 D1S1627 ATA25E07M 1 Tri 
3 D1S3462 ATA29C07L 1 Tri 
4 D2S1400 GGAA20G10M 2 Tetra 
5 D2S1328 GATA27A12 2 Tetra 
6 D2S2968 GATA178G09M 2 Tetra 
7 D3S3038 GATA73D01 3 Tetra 
8 D3S4523 ATA34G06 3 Tri 
9 D3S2398 GATA6G12 3 Tetra 

10 D4S2397 ATA27C07P 4 Tri 
11 D4S2368 GATA27G03 4 Tetra 
12 D5S2845 GATA134B03 5 Tetra 
13 D6S1277 GATA81B01 6 Tetra 
14 D7S2846 GATA31A10 7 Tetra 
15 D7S1799 GATA23F05 7 Tetra 
16 D8S1048 UT7129L 8 Tetra 
17 D8S1108 GATA50D10 8 Tetra 
18 D9S1121 GATA87E02N 9 Tetra 
19 D9S2157 ATA59H06Z 9 Tri 
20 D10S1426 GATA73E11 10 Tetra 
21 D10S1230 ATA29C03 10 Tri 
22 D11S1993 ATA1B07 11 Tri 
23 D11S1998 GATA23E06L 11 Tetra 
24 D12S297 UT5029 12 Tetra 
25 D12S2078 GATA32F05 12 Tetra 
26 D13S787 GATA23C03P 13 Tetra 
27 D13S779 ATA26D07 13 Tri 
28 D14S599 ATA29G03Z 14 Tri 
29 D14S1434 GATA168F06 14 Tetra 
30 D15S659 GATA63A03N 15 Tetra 
31 D16S2624 GATA81D12M 16 Tetra 
32 D17S974 GATA8C04 17 Tetra 
33 D17S1290 GATA49C09N 17 Tetra 
34 D18S542 GATA11A06 18 Tetra 
35 D18S1357 ATA7D07 18 Tri 
36 D19S586 GATA23B01N 19 Tetra 
37 D19S246 Mfd232 19 Tetra 
38 D20S1143 GATA129B03N 20 Tetra 
39 D20S164 UT1772 20 Tetra 
40 D21S1437 GGAA3C07 21 Tetra 
41 D21S1446 GATA70B08 21 Tetra 
42 D22S689 GATA21F03 22 Tetra 
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Table 4: List of the nine dental traits used in the present study 
 

Dental traits Focal tooth Breakpoint 
Tuberculum dentale Maxillary lateral incisor + =ASU 2-6 

Distal accessory ridge Maxillary canine + = ASU 2-5 
Accessory cusps Maxillary first premolar + = ASU + 
Accessory cusps Maxillary second premolar + = ASU + 
Carabelli’s cusp Maxillary first molar + = ASU 2-7 

Lingual cusp number Mandibular second premolar + = ASU 2-9 
Anterior fovea Mandibular first molar + = ASU 2-4 

Protostylid Mandibular first molar + = ASU 1-6 
Cusp number Mandibular second molar + = ASU 5 

 
!
!
!

Table 5: Biological distances based on nuclear microsatellite (Ddm) and dental 
morphology (pseudo-D2). 

 
 

 

 

 

 

 

 

 

 

 

a Populations in CAPS are ethnically Swahili, populations in lowercase are ethnically Taita; 
comparisons are ordered according to predicted relationships among the four populations. 
 
!
!

Population  
comparisonsa 

Genetic 
(Ddm) 

Dental 
(pseudo-D2) 

dawida -  LAMU 1.265 0.615 
kasigau -  LAMU 0.900  0.779 

MOMBASA -  dawida 0.541  0.557 
MOMBASA -  kasigau 0.365 0.836 
MOMBASA - LAMU 0.186  0.362 

dawida - kasigau 0.139  0.332 

Page 35 of 35

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


