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A B S T R A C T   

Based on the global maritime accident data from 2010 to 2019, density analysis and clustering analysis have 
been used to analyse the spatial patterns of maritime accidents in terms of accident frequency and severity. The 
North Sea, the Baltic Sea and the Mediterranean Sea form low severity accident clustering. More than 60% 
accidents are found within the sea areas less than 30 nm to the coastline. As to the spatial characteristics of 
maritime accident severity, the coastal waters surrounding China, Japan, South Korea, Vietnam and the 
Philippines, the Singapore-Malacca Strait and the Bay of Biscay form high severity accident clustering. The North 
Sea, the Baltic Sea and the Mediterranean Sea form low severity accident clustering in the clustering analysis 
although they have medium and high densities of accident severity in the density analysis. Almost 60% of serious 
accidents and very serious accidents are found within 30 nm to the coastline. The comparison of the results of 
density analysis and clustering analysis indicate that the latter can provide more abundant spatial characteristic 
information, while the former is superior in terms of simplicity and computational efficiency. This study provides 
useful information to assist the relevant maritime authorities in improving maritime traffic management.   

1. Introduction 

According to the statistics of the United Nations Conference on Trade 
and Development (UNCTAD, 2019), the global seaborne trade volume in 
2018 was 11 billion tons, accounting for 80%–90% of the world’s total 
merchandize trade. However, with the increasing prosperity of the 
shipping industry, the number of maritime accidents remains high 
(Hassel et al., 2011; Jiang, 2020; Zhang et al., 2019). According to 
Allianz Global Corporate & Specialty’s Safety and Shipping Review 2020 
(AGCS, 2020), 2,815 shipping casualties or incidents were reported in 
2019, up 5% year-on-year. The Annual Overview of Marine Casualties and 
Incidents published by European Maritime Safety Agency EMSA (2019) 
also indicates an average of 3,239 marine casualties or incidents per year 
during the 2011–2018 period. The influences of maritime accidents, 
such as the sinking of M.V. Grande America (Ivorra et al., 2019) and the 
explosion and sinking of M.T. Sanchi (MSA, 2018), could be high in 
terms of loss of life and property and damage to the marine environ-
ment. Therefore, much research has been conducted on the analysis of 
maritime accidents, which can provide effective and reliable 

information for decision makers to take effective measures to reduce the 
probability of maritime accidents. 

In general, most of the research on maritime accidents focuses on the 
number (Bye and Almklov, 2019; Hassel et al., 2011; Psarros et al., 
2010), the consequences (Park et al., 2019; Weng et al., 2018), or the 
risk assessment (Antão and Soares, 2019; Fan et al., 2020; Goerlandt and 
Montewka, 2015) of accidents, while the research on the spatial distri-
bution of maritime accidents is relatively rare. An in-depth study of the 
spatial distribution of maritime accidents will help maritime authorities 
to more intuitively understand the traffic safety conditions of ships 
within their jurisdiction and take targeted measures to improve navi-
gational safety. The research methods of the spatial distribution char-
acteristics of maritime accidents mainly include the traditional data 
statistical analysis and the spatial analysis based on Geographic Infor-
mation System (GIS). The former determines the sea areas where 
maritime accidents occur frequently by statistical analysis according to 
the accident locations in the collected accident information, while the 
latter presents accidents visually on the map through GIS technology 
and analyses their spatial distribution characteristics (e.g. spatial 
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relationships among different accidents) by means of spatial analysis 
from different perspectives. 

This study utilizes 3,484 accident records from the Global Integrated 
Shipping Information System (GISIS) to analyse the spatial patterns of 
maritime accidents by a new framework of combining density analysis 
and clustering analysis in terms of accident frequency and severity. The 
remainder of the study is structured as follows. Section 2 provides a brief 
review of the past research and analyses the research gaps. Section 3 
introduces the spatial analysis methods proposed to use in this study. 
Section 4 introduces the data sources and makes necessary pre- 
processing of the data. The results of the spatial analysis of the world-
wide maritime accidents are presented in Section 5 with brief discus-
sions. Section 6, finally, summarizes the conclusions with 
recommendations for further research. 

2. Literature review 

GIS is an emerging spatial data processing and analysis technology, 
which is based on geographic information and adopts the method of 
geographic model analysis to provide the spatial relationship between 
objects, and serves for geographic research and geographic decision- 
making (Maguire, 1991). GIS has been widely used in resource explo-
ration (Ahmad et al., 2020; Nguyen et al., 2020), environment assess-
ment (Parlato et al., 2020; Singh, 2019), transportation (Goralski and 
Gold, 2007; Hu et al., 2020), agricultural land availability assessment 
(Ahmad et al., 2020; Pilehforooshha et al., 2014), urban planning 
(Badach et al., 2020; Terh and Cao, 2018) and many other fields 
(Valiente et al., 2020; Wang et al., 2019). 

In the field of maritime affairs, GIS was first applied to maritime 
spatial planning and management (Castro-Santos et al., 2020; Stelzen-
müller et al., 2010; Van Zuidam et al., 1998) and oil spill monitoring and 
management (Fustes et al., 2014; Kulawiak et al., 2010; Martin et al., 
2004). Some studies (Jiang et al., 2012; Martin et al., 2004) were also 
carried out on the development of a GIS-based decision support system 
for chemical pollutant emissions generated by maritime traffic. More-
over, GIS is also widely used for the monitoring of marine ecosystems 
(Furlan et al., 2020; Guzman et al., 2020; Mazaris, 2017) and fishing 
activities (Perzia et al., 2016; Stelzenmüller et al., 2008). 

In the maritime traffic sector, the application of GIS in the support of 
maritime surveillance can provide the typical trajectory information of 
ships along the main traffic routes, thus some studies were carried out to 
identify ship behaviours by visualizing ship trajectory by GIS. Tsou 
(2010) explored the visualization of ship trajectory and density maps in 
ArcGIS by integrating GIS and datamining in the analysis of AIS data. 
Vettor and Guedes Soares (2017) studied the coastal maritime traffic 
patterns in the main European coastal traffic routes and identified the 
sea areas with high traffic density. Wu et al. (2015) analysed the 
effectiveness of maritime safety control along the Yangtze River by 
incorporating spatial sequential frontiers and grey relational analysis. In 
the study of Rong et al. (2020), a data mining approach was developed 
to determine shipping route characteristics and detect anomalies of 
ships. Applying the GIS technology to identify past shipping route pat-
terns and their changes was also conducted in many studies (Giguère 
et al., 2017; Gustas and Supernant, 2017; Leidwanger, 2013). 

Many studies were conducted to evaluate and map maritime trans-
portation risk by using GIS technology. Zhou et al. (2020) developed a 
spatial fuzzy multi-criteria evaluation method and applied it to maritime 
transportation risk assessment and mapping in the South China Sea. In 
the study of Zhen et al. (2017), encountering vessels were grouped by 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
and the real-time multi-vessel collision risk assessment and ranking were 
conducted based on AIS data analysis. Wang et al. (2014) analysed the 
spatial variation of shipping route risk using a fuzzy analytic hierarchy 
process method. Zhang et al. (2019) produced shipping risk maps using 
the navigation risk assessment method based on grey relational theory. 
The encountering probabilities of ships in the Strait of Istanbul were 

calculated and mapped in the study of Altan and Otay (2018). Wang 
et al. (2013) and Liu et al. (2020) conducted spatial-temporal forensic 
analysis for ship collisions in different waterways. Zhang et al. (2016) 
and Hoque et al. (2019) also developed different models that can be used 
to map shipping risks through spatial analysis. 

Since GIS is an appropriate tool for portraying accident data and 
analysing hot spots, it has also been used for maritime accident analysis. 
Compared with the research on the application of GIS in road accident 
analysis (Erdogan, 2009; Hu et al., 2020; Ouni and Belloumi, 2018), the 
research on the application of GIS in maritime accident analysis is 
relatively limited. Dobbins and Abkowitz (2002) used GIS technology to 
identify the locations of inland river ship accidents in the United States, 
and analysed the causes and consequences of the accidents based on the 
information of satellite images. Huang et al. (2013) established a 
GIS-based framework for the analysis of marine traffic accidents, and 
analysed the hot spots of marine accidents by clustering analysis and 
buffer analysis. Uddin et al. (2017) identified the most vulnerable lo-
cations and waterway routes for waterway accidents in the inland wa-
terways of Bangladesh by GIS technology on the basis of accident 
frequencies. Mao et al. (2011) explored the application of GIS in the 
identification and visualization of hazardous locations along middle 
reach area of the Yangtze River, and analysed the relationship between 
the spatial patterns and severity of accidents. Uğurlu et al. (2013) 
applied GIS to calculate the marine accident concentrations and deter-
mine the highest risk sea areas. Mou et al. (2019) demonstrated the 
spatial patterns of accidents that happened in western Shenzhen port 
from 2003 to 2015 and proposed a framework for risk evaluation of busy 
waterways. 

Though the above studies on GIS-based spatial analysis of maritime 
accidents have made beneficial exploration in the processing methods of 
accident data, there are still research gaps to be filled. First, most of the 
above studies were confined to the spatial analysis of accidents in the 
inland waterways or in a specific port area; the spatial analysis of 
maritime accidents from a global perspective were particularly rare 
Huang et al. (2013). Second, these studies only made a preliminary 
analysis of the spatial distribution of maritime accidents in terms of the 
number and location of maritime accidents, without taking into account 
the factors of ship traffic density and the severity of maritime accidents. 
Actually, accidents that cause serious casualties or severe maritime 
pollution often become the focus of attention of maritime authorities 
and society. Last but not least, few studies were conducted to cluster the 
maritime accidents on the global scale and compare the spatial patterns 
of maritime accidents that occurred in different sea areas, nor was the 
comparative study on density analysis and clustering analysis conducted 
in the spatial analysis of maritime accidents. 

3. Objectives and contributions 

The objective of this study is to propose a new framework of 
combining density analysis and clustering analysis to analyse the spatial 
patterns of maritime accidents in terms of accident frequency and 
severity. The contributions of this study are two-fold. First, the proposed 
framework could provide a rational and applicable approach to the 
spatial analysis of maritime accidents, which provides a clear demon-
stration on the efficiency of spatial analysis techniques in discovering 
spatial patterns in maritime accident datasets. In addition, the results of 
the clustering analysis can provide more abundant spatial characteristic 
information of maritime accidents, such as the accident severity spatial 
patterns, which the traditional data statistical analysis cannot achieve. 
Another contribution of this study is that the spatial patterns of global 
maritime accidents could be intuitively presented with a good accuracy, 
and a number of maritime-accident-prone regions and sea areas with 
higher accident severity, as well as the accident rates in coastal areas, 
could be identified, which will support effective maritime management 
by international and regional authorities and ultimately improves the 
global maritime traffic safety. 
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4. Methodology and data 

This study collects and pre-processes the global maritime accident 
records from GISIS, and imports them into ArcGIS for spatial pattern 
analysis; identifies the accident-prone sea areas in the world utilizing the 
point density analysis method with and without considering ship traffic 
density; identifies the sea areas with higher accident severity by density 
analysis and two clustering methods, hot spot analysis and outlier 
analysis respectively, and subsequently analyses and compares the re-
sults obtained. The structure of the proposed framework is illustrated in 
Fig. 1. 

4.1. Density analysis 

4.1.1. Point density analysis 
The principle of point density analysis is to calculate the number of 

data points within a unit area range (Huang et al., 2013). The neigh-
bourhood method is one of the most widely used density calculation 
methods in GIS software. A neighbourhood is defined as a circular, 
rectangular, or other shapes around the centre of each grid. The density 
of the point element is obtained by adding the number of points in the 
neighbourhood and then dividing it by the area of the neighbourhood. In 
this study, the world is divided into a number of small square cells with 
side length d, the density of maritime accidents of cell k is Daccident

k , and 
Dship

k represents for the ship traffic density. Setting the neighbourhood 
radius as ρ, Nk(ρ) is the number of accidents within the scope of a circle 
whose centre is the centre of cell k and whose neighbourhood radius is ρ. 
The accident density of cell k can be calculated by the following formula: 

Daccidentk =Nk(ρ)
/ (
πρ2) (1) 

The density of each cell can be calculated and the accident density 
distribution obtained. Considering the influence of ship traffic density, 
the density of maritime accidents per unit sea area within a certain 
period of time cannot fully reflect the frequency of accidents in the sea 
area. Therefore, it is necessary to calculate the relative accident density, 
which is defined as the ratio between the accident density Daccident

k and 
the ship traffic density Dship

k . The relative accident density Drelative
k can be 

calculated as follows: 

Drelativek =Daccidentk

/
Dshipk (2) 

Considering that accident severity is one of the important aspects of 
accident analysis, the accident severity is taken as the weight of each 
accident in this study in order to obtain more abundant density infor-
mation. Then, the spatial characteristics of the severity of maritime 
accidents can be obtained by density analysis. If the severity of the l-th 
accident within the neighbourhood of cell k (detailed definition of ac-
cident severity is given in Section 4.3.1 of this study) is xl, l = 1,2,⋯,

Nk(ρ), then the accident severity density, Dseverity
k of cell k is: 

Dseverityk =
∑Nk(ρ)

l=1

xl
πρ2 (3)  

4.1.2. Buffer analysis 
Buffer analysis (Huang et al., 2013) is used for identifying 

geographic features of surrounding areas. A buffer zone is first generated 
around existing geographic features and specific features are identified 
or selected based on whether they fall inside or outside the boundary of 
the buffer zone. In this study, the maritime accident distribution and the 
coastline are considered as two spatial sets, and the buffer zone is the 
neighbourhood of the coastline set. The buffer zone can be defined as: 

Buffer={x|d(x,O)≤ r} (4)  

where, O is a given object, x represents any point in the inner boundary 
of the buffer zone, and d(x,O) is the shortest distance between object O 
and point x. r is the neighbourhood radius, which is a specified distance 
to the coastline. If there exists a point x whose distance with object O is 
equal or less than r, then the object O is within the buffer zone. With the 
coastline as the boundary, the size of the buffer zone is determined by 
the neighbourhood radius r. By buffer analysis, the proportion of acci-
dents along the coast can be determined, which is useful for coastal 
management. 

4.2. Clustering analysis 

Clustering analysis (Pilehforooshha et al., 2014) refers to the process 
of grouping a given set of unknown distributed data into different groups 
with as much similarity as possible within a group and as little similarity 

Fig. 1. The structure of the proposed framework.  
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between groups through certain rules in an unsupervised state. In this 
study, the spatial distribution of the severity of maritime accidents is 
studied by two disaggregated spatial clustering models, outlier analysis 
and hot spot analysis. The term “disaggregated” here means that all 
calculations are based on the attributes of a single incident sample, 
rather than the overall attributes after spatial aggregation. Therefore, 
the original data samples’ attributes can be retained to the maximum 
extent, which is conducive to the in-depth study of accident data. 
Compared to the traditional clustering methods which can only deter-
mine whether the samples belong to a certain category, outlier analysis 
and hot spot analysis can identify the outliers that do not belong to any 
cluster or give the confidence that the samples belong to a certain 
category. 

4.2.1. Outlier analysis 
Outlier analysis is to determine the correlation between a data point 

and its adjacent spatial points by calculating the Local Moran’s statistic 
value, I (Moran, 1948), which is a statistical tool that measures the 
spatial dependence of the accident location. The calculation of Local 
Moran’s statistical value, I is given as follows: 

Ii =
(n − 1)(xi − X)

∑n

j=1,j∕=i

(
wi,j
(
xj − X

))

∑n

j=1,j∕=i

(
xj − X

)2
(5)  

where Ii represents the Local Moran’s statistical value I of data point i, n 
is the total number of data points, xi andxj are the attribute values 
(namely, the severity of the accident) of data points (or accident posi-
tions) i and j, X is the mean of the attribute values. wi,j is the spatial 
weight between data points i and j, which is the reciprocal of the dis-
tance between these data points. ZIi is the z-score of data point i and its 
absolute value indicates the distance between the original value within 
the standard deviation and the population mean. When the original 
value is below average, ZIi is negative, otherwise positive. ZIi can be 
calculated by the following formula: 

ZIi =
Ii − E[Ii]
̅̅̅̅̅̅̅̅̅
V[Ii]

√ (6)  

where, 

E[Ii] = −

(
∑

j=1,j∕=i
wi,j

)/

(n − 1) (7)  

V[Ii] =E
[
I2
i

]
− E2[Ii] (8) 

The confidence of statistical significance is generally 95%, that is, 
when the p-value is less than 0.05, it can be considered as statistically 
significant (Lu et al., 2019). According to the law of normal distribution, 
the corresponding threshold of ZIi is ±1.96 if statistical significance 
exists (Lu et al., 2019). Under the condition of statistical significance, if 
the value I is positive, the difference between the attribute values of the 
data point and its adjacent points is small, that is, the point is part of the 
high-high-value clustering or low-low-value clustering. The relationship 
between the attribute value of a data point and the mean value of all 
data points is the key to determine whether the data point belongs to 
high-high-value clustering or low-low-value clustering. If the value I is 
negative, it means that the attribute value of the data point is signifi-
cantly different from that of its adjacent points, that is, the point is an 
outlier. 

4.2.2. Hot spot analysis 
The Getis-Ord statistic is used in hot spot analysis to determine 

whether a point belongs to the same category with its adjacent points 
(Getis and Ord, 1992). A high value of the Getis-Ord statistic represents a 
group of high index values (hot spots), while a low value represents a 

group of low index values (cold spots). Getis-Ord statistic G*
i can be 

calculated using Eq. (9): 

G*
i =

[
∑n

j=1

(
wi,jxj

)
− X

∑n

j=1
wi,j

]

⋅

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1
x2
j

n
− X2

√
√
√
√
√

⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n
∑n

j=1
w2
i,j −

(
∑n

j=1
wi,j

)2

n − 1

√
√
√
√
√
√

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

(9) 

In this study, G*
i calculated by Eq. (9) is actually the z-score. Under 

the condition of statistical significance (i.e., z-score is greater than 1.96 
or less than − 1.96), the higher the z-score is, the more intense the 
clustering of high values (hot spots) will be. The lower the z-score is, the 
more intense the clustering of low values (cold spot) will be (Ord and 
Getis, 1995). 

4.3. Data description 

4.3.1. Global maritime accident data 
GISIS is a global maritime information system managed by the In-

ternational Maritime Organization (IMO) and consists of 30 modules, 
such as ballast water management, Global Maritime Distress and Safety 
System (GMDSS), marine casualties and incidents. The casualty module, 
which is only accessible to member state accounts, provides both factual 
data collected from various sources and detailed information extracted 
from accident investigation reports submitted to the IMO by member 
states. For the purpose of collecting information on ship casualties to 
populate the GISIS casualty module, ship casualties in GISIS are selected 
according to the following classification: “very serious casualties”, 
“serious casualties”, “less serious casualties” and “marine incidents” 
(IMO, 2008). In this study, maritime accidents are categorized into “very 
serious accidents”, “serious accidents” and “less serious accidents” ac-
cording to the severity of accidents, among which “less serious acci-
dents” include “less serious casualties” and “marine incidents”. 

From searching GISIS from January 1, 2010 to December 31, 2019, a 
total of 3,484 accident records are obtained. Because complete and ac-
curate longitude and latitude coordinates of accident locations are 
required for spatial analysis in GIS software, this study filters the ob-
tained accident records by eliminating those without complete longitude 
and latitude coordinates. Eventually, 2,513 accidents with complete 
coordinates are obtained. The number of accidents of each severity level 
is shown in Table 1. 

4.3.2. Ship traffic density 
The ship traffic density is obtained from the National Water Traffic 

Information Service Platform of China. In this study, the world is divided 
into 30 × 60 grids (that is, the side length of each grid is 6◦ in the latitude 
and longitude directions) by using the uniform sampling method, and 
the ship traffic density in each grid is counted. As ships are always in the 
process of dynamic change, the ship traffic density of each grid is always 
changing. Considering the huge amount of data of ship traffic density in 
the global waters from 2010 to 2019, in this research, the daily ship 
traffic density of each grid is replaced by the ship traffic density of the 

Table 1 
The number of accidents of each severity level.  

Severity Classification Description Number 

1 Less serious 
accidents 

Accidents which do not qualify as 
serious accidents and very serious 
accidents. 

276 

2 Serious 
accidents 

Accidents involving ship damage that 
rending the ship unfit to proceed, 
injury, or pollution. 

804 

3 Very serious 
accidents 

Accidents involving total loss of the 
ship, loss of life, or severe pollution. 

1433  
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grid at 12.00 that day. Then the average ship traffic density of each grid 
is obtained by averaging its daily ship traffic densities from 2010 to 
2019. 

4.4. Data pre-processing 

Before the spatial analysis of accidents using GIS software, it is 
necessary to locate the accidents according to their latitude and longi-
tude coordinates. The data format of latitude and longitude coordinates 
of the accidents in GISIS is degrees and minutes, such as 30◦ 36.93′N and 
122◦ 50.93′E. But ArcGIS only recognizes coordinate data in decimal 
form, such as 125.16 and − 11.32. Therefore, the format of longitude and 
latitude coordinates of the accidents in GISIS needs to be converted first. 
The conversion rules are shown in Table 2. 

5. Results and discussions 

5.1. Accident spatial patterns 

The distribution of global maritime accidents is obtained by posi-
tioning accidents in the map layer according to their longitude and 
latitude coordinates, as shown in Fig. 2. 

According to Eq. (1), the accident density of each grid is calculated. 
Because the units and dimensions of different indicators are different, 
the indicators cannot be directly calculated or compared. In order to 
avoid dimensional differences between the data and for the convenience 
of comparison, the maximum normalization method is used to transform 
the obtained density values to the dimensionless form. The dimension-
less value can be converted to a range of [0,1], and the greater the value, 
the greater the density value. The maximum normalization is given 
below: 

yi=
xi − xmin

j

xmax
j − xmin

j
(10)  

where, xi is the initial value of the i-th indicator, while yi is the 
normalized value of the i-th indicator, 1 ≤ i ≤ n. xmax

j and xmin
j are the 

maximum value and minimum value of the indicators respectively, 
1 ≤ j ≤ n. 

The density distribution of global maritime accidents is obtained, as 
shown in Fig. 3(a). The darker the sea area, the greater the accident 
density. As can be intuitively seen from Fig. 3(a), the coast of China, the 
Singapore-Malacca Strait, the east coast of Malaysia, the seas around the 
United Kingdom, the northern part of the Mediterranean Sea, and the 
west coast of Europe are the sea areas with high accident density, 
indicating that they are accident-prone sea areas. The result is consistent 
with the findings of previous studies (Huang et al., 2013) that the sea 
areas around the United Kingdom, the coastal area of East Asian coun-
tries (i.e., China, Japan and South Korea) and the Mediterranean Sea 
have the largest number of accidents. Uğurlu et al. (2013) also found 
that high risk marine areas are the Strait of Dover, the North Europe, the 
Baltic Sea and the coasts of Japan and China. The above spatial distri-
bution characteristics of global maritime accidents are mainly due to the 
high traffic density in the above sea areas, which are prone to maritime 
traffic accidents. For example, Singapore is a prime transit node on 
multiple routes connecting Asia, and thus has a heavy traffic flow. In 
addition, the large number of small vessels such as fishing boats and 
sailing vessels in the coastal waters of China, the west coast of Europe 
and the Mediterranean Sea is also an important reason for the frequent 
occurrence of accidents. 

In order to exclude the influence of ship traffic density, the relative 
accident density is calculated according to Eq. (2). The results are pre-
sented in Fig. 3(b). By comparing Fig. 3(a) and (b), it can be found that 
the density distributions of global maritime accidents in these two 
graphs are different. The most obvious difference is that the Singapore- 
Malacca Strait and the Mediterranean Sea are no longer the sea areas of 
high relative accident density, while the northern part of the Gulf of 
Mexico and the west coast of Canada become the sea areas of high 
relative accident density. The above changes indicate that although 
many maritime accidents occurred in the Singapore and Malacca Strait 
and the Mediterranean Sea, but the proportion of ships involved in ac-
cidents is relatively small. In the northern part of the Gulf of Mexico and 
the west coast of Canada, the opposite is true. After the above 

Table 2 
Coordinate data format transforming rules.   

GISIS data format ArcGIS data format 

Transforming rules AAA◦BB.CC’ AAA + BB.CC/60 
E +

W – 
S – 
N +

Example 119◦15.83′W − 119.26  

Fig. 2. Distribution of global maritime accidents.  
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comparison, it can be concluded that the Bohai Sea, the Yellow Sea and 
the waters around the United Kingdom not only have large amounts of 
accidents but also have high accident frequencies considering the ship 
traffic density. 

In this study, two buffer zones are set 30 nautical miles (nm) and 60 
nm to the coastline respectively, as shown in Fig. 4. The accidents within 
30 nm to the coastline are selected and marked with the green spots in 
Fig. 4(a). 1,527 accidents are found within 30 nm to the coastline, ac-
counting for 60.8% of the total accidents. Similarly, the green spots in 
Fig. 4(b) represent the accidents within 60 nm to the coastline. 1,761 
accidents are found within 60 nm to the coastline, accounting for 70.1% 
of the total accidents. The result is broadly in line with the previous 
research finding (Huang et al., 2013) that 51.1% of the total accidents 
occurred within 25 miles to the coastline and 62.2% of the total acci-
dents occurred within 50 miles to the coastline. 

The above results demonstrate that maritime accidents may not 

frequently occur in the open seas. However, there exists a high proba-
bility for them to happen at ports, coastal areas, or narrow waterways. 
Such results are rather useful for maritime safety management of coastal 
states. 

5.2. Accident severity spatial patterns 

5.2.1. Accident severity spatial patterns based on density analysis 
Although the frequency of maritime accidents can reflect the traffic 

safety level of a certain sea area, the accident severity is also an 
important index that cannot be ignored. A sea area that occasionally has 
a very serious maritime accident is usually more important than one that 
frequently has maritime incidents of less serious severity. As explained 
in Section 4.3.1, the accident severity in this study is classified into 3 
levels. The spatial distribution of the severity of global maritime acci-
dents is obtained by using the spatial classification method of GIS, as 

Fig. 3. Density distribution of global maritime accidents.  
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shown in Fig. 5. 
Taking the accident severity as the weight, accidents with low, me-

dium and high severity levels are weighted with 1, 2 and 3, respectively. 
The corresponding weighted number of accidents is calculated and the 
density distribution of accident severity is obtained according to Eq. (3), 
as shown in Fig. 6. The darker the colour of the sea area, the higher the 
density of accident severity. 

Fig. 6 demonstrates that the sea areas of medium and high severity 
densities are mainly concentrated in the coastal areas of China, Japan 
and South Korea, the Singapore-Malacca Strait, the surrounding waters 
of the United Kingdom, the west coast of Europe, the Mediterranean Sea 
and the Black Sea, indicating that the overall consequences of the ac-
cidents in these waters are relatively serious. According to the analysis, 
the main reasons for the above results probably include the high ship 
traffic density, the dangerous navigable water area conditions and the 
bad weather conditions. The English Channel and the Channel of Dover 

around Britain are among the busiest shipping channels in the world, 
with 200,000 ships passing through the channels every year. China, 
Japan and South Korea are large trading countries having busy shipping 
routes and a large number of ships. The Mediterranean Sea is an 
important water area connecting Europe and Asia, Europe and Africa. 
The Turkish Straits is a key passage between Europe and Asia, and also 
connect the Aegean and Mediterranean to the Black Sea. 

By comparing Figs. 3(a) and Fig. 6, it can be found that the density 
distribution centres of the two graphs are almost the same, indicating 
that most of the maritime accidents that occurred in these sea areas are 
serious or very serious. Therefore, the above sea areas should be given 
due attention from the maritime authorities concerned. However, slight 
differences also exist in the East Sea between Japan and South Korea 
(Sea of Japan), the Black Sea and the Mediterranean Sea. The medium 
and high density range in the above sea areas is larger in Fig. 6 than that 
in Fig. 3(a), indicating that the percentage of serious accidents and very 

Fig. 4. The distribution of accidents in buffer zones.  
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serious accidents is higher in these sea areas than that in other sea areas. 
Therefore, specific attention should be paid to these sea areas to ensure 
maritime safety. 

The number of accidents of each severity level within the buffer 
zones is also calculated, as shown in Table 3. The spatial distribution of 
accidents of each severity level in the buffer zones is then determined 
using Eq. (1) and the results are presented in Fig. 7. It can be seen that 
853 very serious accidents and 503 serious accidents are found within 
30 nm to the coastline, accounting for 59.5% and 62.6% of the total 
accidents of the corresponding severity levels. Similarly, 1,000 very 

serious accidents and 563 serious accidents are found within 60 nm to 
the coastline, accounting for 69.8% and 70% of the total accidents of the 
corresponding severity levels. The above results indicate that more than 
half of serious accidents and very serious accidents occurred within the 
sea areas less than 30 nm to the coastline. Therefore, safety management 
of sea areas within 30 nm to the coastline should have priority for risk 
reduction. 

5.2.2. Accident severity spatial patterns based on clustering analysis 
In order to further analyse the spatial distribution patterns of mari-

time accident severity, hot spot analysis and outlier analysis are con-
ducted respectively in this section.  

(1) Hot spot analysis 

Hot spot analysis focuses on the aggregated form of samples ac-
cording to the high and low target eigenvalues, and the results can show 
more regional distribution characteristics. In this study, hot spot anal-
ysis is conducted on the data of accident severity according to Eq. (9) 

Fig. 5. The spatial distribution of global maritime accident severity.  

Fig. 6. Density graph of the severity of global maritime accidents.  

Table 3 
The number of accidents of each severity level within buffer zones.  

Distance to 
the 
coastline 

Severity level 1 
(Less serious 
accidents) 

Severity level 
2 (Serious 
accidents) 

Severity level 3 
(Very serious 
accidents) 

The total 
number 

30 nm 171 503 853 1,527 
60 nm 198 563 1,000 1,761  

H. Wang et al.                                                                                                                                                                                                                                   



Ocean Engineering 245 (2022) 110569

9

and the results are shown in Fig. 8. The red dots are called “hot spots”, 
which represent high-severity accidents. The blue spots, known as “cold 
spots”, represent low-severity accidents. The yellow dots are the ones 
that are not distinctive. For “hot spots” and “cold spots”, the shade of the 
colour represents different confidence levels. The darker the colour the 
sea area, the higher confidence level the point belongs to the corre-
sponding category. 

It can be seen from Fig. 8 that, under the 95% confidence level, there 
is a clustering trend for the maritime accidents in the South China Sea, 
the waters around Japan, South Korea and Vietnam, the Singapore- 
Malacca Strait and the Bay of Biscay, on the feature of high severity. 
In other words, the above sea areas belong to high severity accident 
zones, namely the “hot spots”. In contrast, the North Sea, the Baltic Sea, 
the seas around Italy, and the coast of Ecuador and Peru show a distinct 
low-severity clustering pattern. This difference is probably related to the 
types of ships in the above sea areas. There are many merchant ships and 
fishing vessels in the South China Sea, the surrounding waters of Japan 

and South Korea, and the Singapore-Malacca Strait, thus the probability 
of occurrence of accidents causing casualties or ship sinking is relatively 
high. The North Sea, the Baltic Sea and the waters around Italy, where 
there are many sailboats and yachts, have a relatively low probability of 
occurrence of accidents of high severity.  

(2) Outlier analysis 

As a comparison, outlier analysis is carried out according to Eqs. (5)– 
(8) and the clustering results are shown in Fig. 9. The selected feature 
field is accident severity. In Fig. 9, the black dots represent the high 
severity accident class (High - High Cluster); the blue dots represent the 
low severity accident classes (Low - Low Cluster); the yellow dots 
represent the High - Low Outlier, that is, the class of a small number of 
high severity accidents contained in the space occupied by low severity 
accidents; the white dots represent the Low - High Outlier, that is, the 
class of a small number of low severity accidents contained in the space 

Fig. 7. The spatial distribution of accidents of each severity level within the buffer zones.  
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occupied by high severity accidents; grey points represent accidents 
without obvious clustering characteristics. 

As can be seen from Fig. 9, in the seas around China, Japan and South 
Korea, the coast of Vietnam, the Philippines islands and the northwest 
waters of Spain, maritime accidents show a trend of clustering distri-
bution in terms of high accident severity. In contrast, maritime accidents 
in the North Sea, the Baltic Sea and the Mediterranean Sea, which also 
cause casualties and ship sinking, are geographically scattered and thus 
show the characteristics of a high-low outlier. This difference is likely to 
be related to the factors such as a high proportion of sailing boats and 
yachts, and the strong maritime salvage ability in such sea areas. 

5.2.3. Comparison of density analysis and clustering analysis 
In order to analyse the advantages and disadvantages of density 

analysis and clustering analysis and to identify the applicability of the 
two methods under different scenarios, the two methods are compared 
from two perspectives: the consistency of the results obtained by the two 
methods and the computational efficiency of the two methods. In terms 

of computational efficiency, the average calculation time of each 
method for a single analysis was obtained by massive repeated calcu-
lations of the calculation time required by density analysis and clus-
tering analysis for simulating data volumes of different complexities. 
The average calculation time required by density analysis and clustering 
analysis (hot spot analysis and outlier analysis) under different data 
complexities is shown in Fig. 10. It can be seen that under different 
complexities, the time required by hot spot analysis is similar to that of 
density analysis, while the time required by outlier analysis is not only 
larger than density analysis, but also significantly greater than hot spot 
analysis, which is conducted using a clustering algorithm. The difference 
of calculation times between outlier analysis and hot spot analysis may 
be related to the fact that outlier analysis has one more step to calculate 
the z value than hot spot analysis. 

In terms of the consistency of analysis results, cosine similarity is 
used to calculate the similarity between the results obtained by density 
analysis and the ones by hot spot analysis. The formula of cosine simi-
larity is given in Eq. (11). The cosine value of the angle between two 

Fig. 8. Results of hot spot analysis on the severity of global maritime traffic accidents.  

Fig. 9. Results of outlier analysis on the severity of global maritime accidents.  
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vectors in a vector space is used to measure the difference between two 
individuals in cosine similarity analysis. The closer the cosine is to 1, the 
more similar the two vectors are, and the closer the cosine gets to 0, the 
less similar the two vectors are. The result of the cosine similarity 
analysis is shown in Fig. 11. As shown in the figure, the cosine between 
the results obtained by density analysis and the ones by hot spot analysis 
is greater than 0.8, which indicates that the results of the two methods 
have good consistency. 

cos(θ) =

∑ n
i = 1 ( xi × yi )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ n

i = 1 (xi)
2

√

×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ n

i = 1 (yi)
2

√ (11) 

The above comparison results indicate that the analysis results of 
density analysis and clustering analysis have a good consistency, but the 
two methods have their own advantages and disadvantages. Generally 
speaking, the advantage of density analysis is that it is easy to 

understand and general information about the spatial distribution of 
maritime accidents can be obtained without complex algorithms, while 
the disadvantage is that the analysis results can only reflect the distri-
bution of accidents under a severity level and cannot accurately present 
the proportion and distribution of accidents of various severity levels in 
specific sea areas. The results of clustering analysis, however, can pro-
vide more abundant spatial characteristic information of maritime ac-
cidents. Based on the location of accident points, clustering analysis can 
identify the outliers of maritime accident severity and the reliability of 
the clustering results of accident points from point to point. The above 
characteristics of the two methods lead to different levels of applicability 
in different scenarios. Density analysis can help maritime authorities to 
have an intuitive and rapid understanding of the spatial characteristics 
of the distribution of maritime accidents, while clustering analysis can 
provide refined information support for maritime authorities with high 
demand. 

Fig. 10. The average calculation time required by density analysis, hot spot analysis and outlier analysis under different data complexities.  

Fig. 11. Results of cosine similarity analysis of density analysis and clustering analysis.  
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6. Conclusions 

Two spatial analysis methods, density analysis and clustering anal-
ysis, are used in this study to conduct the spatial analysis of worldwide 
maritime accidents from 2010 to 2019 based on the GISIS database. The 
findings are concluded as follows: 

(1) Hot spots of maritime accidents are identified. The results indi-
cate that the coast of China, the Singapore-Malacca Strait, the 
east coast of Malaysia, the seas around the United Kingdom, the 
northern part of the Mediterranean Sea, and the west coast of 
Europe are accident-prone sea areas. However, considering the 
ship traffic density, the Singapore-Malacca Strait and the Medi-
terranean Sea are no longer the sea areas of high relative accident 
density, while the northern part of the Gulf of Mexico and the 
west coast of Canada become the sea areas of high relative acci-
dent density.  

(2) As to the spatial distribution of accident severity, the results of 
density analysis and clustering analysis both demonstrate that the 
coastal waters surrounding China, Japan, South Korea, Vietnam 
and the Philippines, the Singapore-Malacca Strait and the Bay of 
Biscay form high severity accident clustering. The North Sea, the 
Baltic Sea and the Mediterranean Sea form low severity accident 
clustering in the clustering analysis, but show medium and high 
density of accident severity in the density analysis. 

(3) The results of buffer analysis indicate that more than 60% acci-
dents occurred within the sea areas less than 30 nm from the 
coastline, among which the proportion of serious accidents and 
very serious accidents is almost 60% for the total number of ac-
cidents of the corresponding severity level.  

(4) The comparison of the results of density analysis and clustering 
analysis demonstrates that the spatial distribution patterns of 
maritime accident severity obtained by the two methods are 
generally consistent. However, clustering analysis can provide 
more abundant spatial characteristic information, while density 
analysis is superior in terms of simplicity and computational 
efficiency. 

In terms of the limitations of this study, the following aspects are 
worth being conducted in the future. First, further work on the data 
collection should be done to ensure the completeness of maritime ac-
cident data for analysis. Commercial databases, such as the Lloyd’s List 
Intelligence, may be used to complement the accident data collection. 
Second, in-depth research on the causes of various maritime accidents in 
different sea areas should be conducted combining multi-source data so 
as to improve maritime safety management more specifically. Last but 
not least, future studies may also find it worthwhile to combine different 
spatial analysis techniques such as Kernel Density Estimation, K-means 
clustering and DBSCAN in the spatial analysis of maritime accidents, 
with the aim to further improve the accuracy of spatial information 
analysis and extract more abundant maritime accident information. 
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Ivorra, B., Ramos, A., Gómez, S., 2019. Current Situation, Forecast and Risk Analysis for 
the Grande America Oil Spill Started on March 12, 2019 in the Bay of Biscay. 

Jiang, J., Wang, P., Lung, W.-s., Guo, L., Li, M., 2012. A GIS-based generic real-time risk 
assessment framework and decision tools for chemical spills in the river basin. 
J. Hazard Mater. 227–228, 280–291. 

Jiang, M., 2020. Maritime accident risk estimation for sea lanes based on a dynamic 
Bayesian network. Marit. Pol. Manag. 1–16. 

Kulawiak, M., Prospathopoulos, A., Perivoliotis, L., łuba, M., Kioroglou, S., 
Stepnowski, A., 2010. Interactive visualization of marine pollution monitoring and 
forecasting data via a Web-based GIS. Comput. Geosci. 36 (8), 1069–1080. 

Leidwanger, J., 2013. Modeling distance with time in ancient Mediterranean seafaring: a 
GIS application for the interpretation of maritime connectivity. J. Archaeol. Sci. 40 
(8), 3302–3308. 

Liu, Z., Li, Y., Zhang, Z., Yu, W., 2020. Spatial topological analysis model of ship 
encounter space. Ocean Eng. 202, 107171. 

Lu, P., Bai, S., Tofani, V., Casagli, N., 2019. Landslides detection through optimized hot 
spot analysis on persistent scatterers and distributed scatterers. ISPRS J. 
Photogrammetry Remote Sens. 156, 147–159. 

Maguire, D.J., 1991. An overview and definition of GIS. principles Geogr. Inf. syst. 1, 
9–20. 

Mao, Z., Yan, X., Chen, H., Chu, X., Yuan, X., 2011. Use of GIS for Marine Accident Data 
Analysis Visualization. 

Martin, P.H., LeBoeuf, E.J., Daniel, E.B., Dobbins, J.P., Abkowitz, M.D., 2004. 
Development of a GIS-based spill management information system. J. Hazard Mater. 
112 (3), 239–252. 

Mazaris, A.D., 2017. Manifestation of maritime piracy as an additional challenge for 
global conservation. Mar. Pol. 77, 171–175. 

Moran, P.A.P., 1948. The interpretation of statistical maps. J. Roy. Stat. Soc. B 10 (2), 
243–251. 

Mou, J.M., Chen, P.F., He, Y.X., Yip, T.L., Li, W.H., Tang, J., Zhang, H.Z., 2019. Vessel 
traffic safety in busy waterways: a case study of accidents in western shenzhen port. 
Accid. Anal. Prev. 123, 461–468. 

MSA, 2018. Report on the Investigation of the Collision between M.T. SANCHI and M. V. 
CF CRYSTAL in East China Sea on 6 January 2018. Maritime Safety Administration 
of P. R. China, Beijing.  

Nguyen, T.T., Ngo, H.H., Guo, W., Nguyen, H.Q., Luu, C., Dang, K.B., Liu, Y., Zhang, X., 
2020. New approach of water quantity vulnerability assessment using satellite 
images and GIS-based model: an application to a case study in Vietnam. Sci. Total 
Environ. 737, 139784. 

Ord, J.K., Getis, A., 1995. Local spatial autocorrelation statistics: distributional issues 
and an application. Geogr. Anal. 27 (4), 286–306. 

Ouni, F., Belloumi, M., 2018. Spatio-temporal pattern of vulnerable road user’s collisions 
hot spots and related risk factors for injury severity in Tunisia. Transport. Res. F 
Traffic Psychol. Behav. 56, 477–495. 

Park, Y.A., Yip, T.L., Park, H.G., 2019. An analysis of pilotage marine accidents in Korea. 
Asian J. Shipp. Logist. 35 (1), 49–54. 

Parlato, M.C.M., Valenti, F., Porto, S.M.C., 2020. Covering plastic films in greenhouses 
system: a GIS-based model to improve post use suistainable management. J. Environ. 
Manag. 263, 110389. 

Perzia, P., Battaglia, P., Consoli, P., Andaloro, F., Romeo, T., 2016. Swordfish monitoring 
by a GIS-based spatial and temporal distribution analysis on harpoon fishery data: a 
case of study in the central Mediterranean Sea. Fish. Res. 183, 424–434. 

Pilehforooshha, P., Karimi, M., Taleai, M., 2014. A GIS-based agricultural land-use 
allocation model coupling increase and decrease in land demand. Agric. Syst. 130, 
116–125. 

Psarros, G., Skjong, R., Eide, M.S., 2010. Under-reporting of maritime accidents. Accid. 
Anal. Prev. 42 (2), 619–625. 

Rong, H., Teixeira, A.P., Guedes Soares, C., 2020. Data mining approach to shipping 
route characterization and anomaly detection based on AIS data. Ocean Eng. 198, 
106936. 

Singh, A., 2019. Remote sensing and GIS applications for municipal waste management. 
J. Environ. Manag. 243, 22–29. 

Stelzenmüller, V., Lee, J., Garnacho, E., Rogers, S.I., 2010. Assessment of a Bayesian 
Belief Network–GIS framework as a practical tool to support marine planning. Mar. 
Pollut. Bull. 60 (10), 1743–1754. 

Stelzenmüller, V., Maynou, F., Bernard, G., Cadiou, G., Camilleri, M., Crec’hriou, R., 
Criquet, G., Dimech, M., Esparza, O., Higgins, R., Lenfant, P., Pérez-Ruzafa, Á., 2008. 
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