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Abstract

There has been some improvement in the treatment of preterm infants, which has helped to increase their chance of
survival. However, the rate of premature births is still globally increasing. As a result, this group of infants are most at risk of
developing severe medical conditions that can affect the respiratory, gastrointestinal, immune, central nervous, auditory
and visual systems. In extreme cases, this can also lead to long-term conditions, such as cerebral palsy, mental retardation,
learning difficulties, including poor health and growth. In the US alone, the societal and economic cost of preterm births, in
2005, was estimated to be $26.2 billion, per annum. In the UK, this value was close to £2.95 billion, in 2009. Many believe
that a better understanding of why preterm births occur, and a strategic focus on prevention, will help to improve the health
of children and reduce healthcare costs. At present, most methods of preterm birth prediction are subjective. However, a
strong body of evidence suggests the analysis of uterine electrical signals (Electrohysterography), could provide a viable
way of diagnosing true labour and predict preterm deliveries. Most Electrohysterography studies focus on true labour
detection during the final seven days, before labour. The challenge is to utilise Electrohysterography techniques to predict
preterm delivery earlier in the pregnancy. This paper explores this idea further and presents a supervised machine learning
approach that classifies term and preterm records, using an open source dataset containing 300 records (38 preterm and 262
term). The synthetic minority oversampling technique is used to oversample the minority preterm class, and cross validation
techniques, are used to evaluate the dataset against other similar studies. Our approach shows an improvement on existing
studies with 96% sensitivity, 90% specificity, and a 95% area under the curve value with 8% global error using the polynomial
classifier.
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Introduction

Preterm birth, also known as premature birth or delivery, is

described by the World Health Organisation (WHO) as the

delivery of babies who are born, alive, before 37 weeks of gestation

[1]. In contrast, term births are the live delivery of babies after

37 weeks, and before 42 weeks. According to the WHO,

worldwide in 2010, preterm deliveries accounted for 1 in 10 births

[1]. In 2009, in England and Wales, 7% of live births were also

preterm (http://ons.gov.uk). Preterm birth has a significant adverse

effect on the new born, including an increased risk of death and

health defects. The severity of these effects increases the more

premature the delivery is. Approximately, 50% of all perinatal

deaths are caused by preterm delivery [2], with those surviving often

suffering from afflictions, caused by the birth. These include

impairments to hearing, vision, the lungs, the cardiovascular

system and non-communicable diseases; up to, 40% of survivors of

extreme preterm delivery can also develop chronic lung disease [3].

In other cases, survivors suffer with neuro-developmental or

behavioural defects, including cerebral palsy, motor, learning and

cognitive impairments. In addition, preterm births also have a

detrimental effect on families, the economy, and society. In 2009,

the overall cost to the public sector, in England and Wales, was

estimated to be nearly £2.95 billion [4]. However, developing a

better understanding of preterm deliveries can help to create

preventative strategies and thus positively mitigate, or even

eradicate, the effects that preterm deliveries have on babies, families,

and society and healthcare services.

Preterm births can occur for three different reasons. According to

[2], roughly one-third are medically indicated or induced; delivery

is brought forward for the best interest of the mother or baby.

Another third occurs because the membranes rupture, prior to

labour, called Preterm Premature Rupture of Membranes

(PPROM). Lastly, spontaneous contractions (termed preterm labour

or PTL) can develop. However, there is still a great deal of

uncertainty about the level of risk each factor presents, and

whether they are causes or effects. Nevertheless, in [2] some of the

causes of preterm labour, which may or may not end in preterm birth,

have been discussed. These include infection, over-distension,

burst blood vessels, surgical procedures, illnesses and congenital

defects of the mother’s uterus and cervical weakness. Further

studies have also found other risk factors for PTL/PPROM [5,6].

These include a previous preterm delivery (20%); last two births

have been preterm (40%), and multiple births (twin pregnancy

carries a 50% risk). Other health and lifestyle factors also include

cervical and uterine abnormalities, recurrent antepartum haem-
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orrhage, illnesses and infections, any invasive procedure or

surgery, underweight or obese mothers, ethnicity, and social

deprivation, long working hours/late nights, alcohol and drug use,

and folic acid deficiency.

As well as investigating preterm deliveries, several studies have

also explored preterm labour (the stage that directly precedes the

delivery). However, in spite of these studies, there is no

internationally agreed definition of preterm labour. Nonetheless,

in practice, women who experience regular contractions, increased

vaginal discharge, pelvic pressure and lower backache tend to

show threatening preterm labour (TPL). While this is a good

measure, Mangham et al., suggest that clinical methods for

diagnosing preterm labour are insufficient [4]. Following a medical

diagnosis of TPL, only 50% of all women with TPL actually

deliver, within seven days [2]. In support of this, McPheeters et al.,

carried out a similar study that showed 144 out of 234 (61.5%)

women diagnosed with preterm labour went on to deliver at term [7].

This can potentially add significant costs, and unnecessary

interventions, to prenatal care. In contrast, false-negative results

mean that patients requiring admittance are turned away, but

actually go on to deliver prematurely [8].

Predicting preterm birth and diagnosing preterm labour clearly

have important consequences, for both health and the economy.

However, most efforts have concentrated on mitigating the effects

of preterm birth. Nevertheless, since this approach remains costly

[1], it has been suggested that prevention could yield better results

[9]. Effective prediction of preterm births could contribute to

improving prevention, through appropriate medical and lifestyle

interventions. One promising method is the use of Electrohyster-

ography (EHG). EHG measures electrical activity in the uterus, and

is a specific form of electromyography (EMG), the measurement of

such activity in muscular tissue. Several studies have shown that

the EHG record may vary from woman to woman, depending on

whether she is in true labour or false labour and whether she will

deliver term or preterm. EHG provides a strong basis for objective

predication and diagnosis of preterm birth.

Many research studies have used EHG for prediction or

detection of true labour. In contrast, this paper focuses on using

EHG classification to determine whether delivery will be preterm or

term. This is achieved by comparing various machine-learning

classifiers against an open dataset, containing 300 records (38

preterm and 262 term) [10], using a signal filter and pre-selected

features, which are suited to classifying term and preterm records.

The results indicate that the selected classifiers outperform a

number of approaches, used in many other studies.

The structure, of the remainder, of this paper is as follows.

Section 2 describes the underlying principles of Electrohysterog-

raphy. Section 3 describes how features are extracted from

Electrohysterography signals. Section 4 discusses machine learning

and its use in term and preterm classification, while section 5 presents

the approach taken in this paper. Section 6 describes the

evaluation, and Section 7 discusses the results. Section 8 then

concludes the paper.

Analysis and Methods

Electrohysterography
Electrohysterography (EHG) is the term given for the recording

of electrical activity of the uterus, in the time domain. In order to

retrieve EHG signals, bipolar electrodes are adhered to the

abdominal surface. These are spaced at a horizontal, or vertical,

distance of 2.5 cm to 7 cm apart. Most studies, including [10], use

four electrodes, although one study utilizes two [11]. In a series of

other studies, sixteen electrodes were used [12–17], and a high-

density grid of 64 small electrodes were used in [18]. The results

show that EHG may vary from woman to woman. This is

dependent on whether she is in true or false labour, and whether

she will deliver at term, or prematurely.

A raw EHG signal results from the propagation of electrical

activity, between cells in the myometrium (the muscular wall of the

uterus). This signal measures the potential difference between the

electrodes, in a time domain. The electrical signals are not

propagated by nerve endings; however, the propagation mecha-

nism is not clear [19]. Since the late 70s, one theory suggests that

gap junctions are the mechanisms responsible. Nevertheless, more

recently it has been suggested that interstitial cells, or stretch

receptors may be the cause of propagation [20]. Gap junctions are

groups of proteins that provide channels of low electrical resistance

between cells. In most pregnancies, the connections between gap

junctions are sparse, although gradually increasing, until the last

few days before labour. A specific pacemaker site has not been

conclusively identified, although, due to obvious physiological

reasons, there may be a generalised propagation direction, from

the top to the bottom of the uterus [21].

The electrical signals, in the uterus, are ‘commands’ to contract.

During labour, the position of the bursts, in an EHG signal,

corresponds roughly with the bursts shown in a tocodynamometer

or intrauterine pressure catheter (IUPC). Clinical practises use

these devices to measure contractions. More surprisingly, distinct

contraction-related, electrical uterine activity is present early on in

pregnancy, even when a woman is not in true labour. Gondry et al.

identified spontaneous contractions from EHG records as early as

19 weeks of gestation [22]. The level of activity is said to increase,

as the time to deliver nears, but shoots up especially so, in the last

three to four days, before delivery [23]. As the gestational period

increases, the gradual increase in electrical activity is a manifes-

tation of the body’s preparation for the final act of labour and

parturition. In preparation for full contractions, which are needed

Table 1. Numbers of Patients in each group.

Terms:
Term
Deliveries

Term
Deliveries

Preterm
Deliveries

Preterm
Deliveries

All
Deliveries All Deliveries

Recording
Time

Number of
records

Mean/Median
Recording weeks

Number of
records

Median/Median
Recording Weeks

Number of
records

Mean/Median
Recording Weeks

Early 143 22.7/22.86 19 23.0/23.43 162 22.73/23.0

Later 119 30.8/31.14 19 30.2/30.86 138 30.71/31.14

All Recording
Time

262 26.75/24.36 38 27.0/25.86 300 26.78/24.43

doi:10.1371/journal.pone.0077154.t001

Prediction of Preterm Deliveries
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Figure 1. Distribution of deliveries in TPEHG dataset.
doi:10.1371/journal.pone.0077154.g001

Figure 2. PCA for features extracted from the Channel 3 0.34–1 Hz filtered signal.
doi:10.1371/journal.pone.0077154.g002

Prediction of Preterm Deliveries

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e77154



to create the force and synchronicity required for a sustained

period of true labour, the body gradually increases the number of

electrical connections (gap junctions), between cells. In turn, this

produces contractions in training.

Before analysis or classification occurs, EHG signals, in their raw

form, need pre-processing. Pre-processing can include filtering, de-

noising, wavelet shrinkage or transformation and automatic

detection of bursts. Recently, studies have typically focused on

Figure 3. Distribution of deliveries in TPEHG dataset after the SMOTE technique is applied.
doi:10.1371/journal.pone.0077154.g003

Table 2. Summary of Classifiers, Features, Validation Techniques and Sample Sizes used in this study.

Classifiers Features Validation Sample Sizes

Density-Based Root Mean Squares Holdout Cross Validation Original (38 preterm/262 term)

Linear Discriminant Classifier (LDC) Peak Frequency k-fold Cross Validation SMOTE (262 preterm/262 term)

Quadratic Discriminant Classifier (QDC) Median Frequency Sensitivity/Specificity SMOTE Clinical (150 preterm/150 term)

Uncorrelated Normal Density Classifier (UDC) Sample Entropy Receiver Operator Curve Clinical (38 preterm/262 term)

Linear and Polynomial-Based Area Under the Curve

Polynomial Classifier (POLYC)

Logistic Classifier (LOGLC)

Nonlinear-Based

K Nearest Neighbour Classifier (KNNC)

Decision Tree Classifier (TREEC)

Parzen Classifier (PARZENC)

Support Vector Classifier (SVC)

doi:10.1371/journal.pone.0077154.t002
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filtering the EHG signals to allow a bandpass between 0.05 Hz and

16 Hz [24–28]. However, there are some that have filtered EHG

recordings as high as 50 Hz [19]. Nevertheless, using EHG with

such a wide range of frequencies is not the recommended method,

since more interference affects the signal.

Feature Extraction from Elecrohysterography
The collection of raw EHG signals is always temporal. However,

for analysis and feature extraction purposes, translation, into other

domains, is possible and often required. These include frequency

representation, via Fourier Transform, [15], [28–30] and wavelet

transform [24,27], [30–33]. The advantage of frequency-related

parameters is that they are less susceptible to signal quality

variations, due to electrode placement or the physical character-

istics of the subjects [26]. In order to calculate these parameters, a

transform from the time domain is required, i.e., using a Fourier

transform of the signal. In several of the studies reviewed, in order

to obtain frequency parameters, Power Spectral Density (PSD) is

used. Peak frequency is one of the features provided within the Term-

Preterm ElectroHysteroGram (TPEHG) dataset, used within this

paper. It describes the frequency of the highest peak in the PSD.

Most studies focus on the peak frequency of the burst, in both human

and animal studies, and is said to be one of the most useful

parameters for predicting true labour [34]. On the other hand, the

study by [10] found medium frequency to be more helpful in

determining whether delivery was going to be term or preterm.

Several studies have shown that peak frequency increases, as the

time to delivery decreases; generally, this occurs within 1–7 days of

delivery [11,19,24,26,30,35]. In particular, the results in [28] show

that there are, statistically, significant differences in the mean values

of peak frequency and the standard deviations in EHG recordings taken

during term labour (TL) and term non-labour (TN) and also between

preterm labour (PTL) and preterm non-labour (PTN).

In comparison to peak frequency, the TPEHG study [10] found

that median frequency displayed a more significant difference,

between term and preterm records. When considering all 300

records, the statistical significance was p = 0.012 and p = 0.013, for

Channel 3, on the 0.3–3 Hz and 0.3–4 Hz filter, respectively.

Furthermore, this significance (p = 0.03) was also apparent when

only considering early records (before 26 weeks of gestation), with

the same 0.3–3 Hz filter, on Channel 3. The TPEHG study [10]

concluded that this might have been due to the enlargement of the

uterus, during pregnancy, which would affect the position of

electrodes. The placement of the Channel 3 electrode was,

approximately, always 3.5cm below the navel. However, as

pregnancy progressed, this would mean that the electrode would

move further away from the bottom of the uterus (cervico-isthmic

section). If a generalised pacemaker area actually exists, and it is at

the cervico-isthmic section, then, as pregnancy progresses, its

position would move further and further away from the electrode,

resulting in a diminished record of the signal. Whether this

explanation is true or not, the results of [10] show that, the

discriminating capability of median frequency is somehow diminished,

after the 26th week.

Amplitude-related EMG parameters represent the uterine EMG

signal power, or signal energy. However, a major limitation is that

the differences in patients can easily affect these parameters.

Patients may differ in the amount of fatty tissue they have, and the

conductivity of the skin–electrode interface, which leads to

differences in the attenuation of uterine signals [8,26,34].

Examples of amplitude-related parameters include root mean square,

peak amplitude and median amplitude.

Using the Student’s t-test, [10] found that root mean square might be

useful in distinguishing between whether the information was

recorded early (before 26 weeks of gestation) or late (after

26 weeks). The results obtained are in agreement with [19,30]

and [36], who found that the amplitude of the power spectrum

increased, just prior to delivery. This was despite only analysing

the root mean square values, per burst, rather than the whole signal.

On the other hand, other studies did not find that amplitude-

related parameters displayed a significant relationship to gesta-

tional age or indicate a transition to delivery (within seven days)

[23,25,28]. Some of these discrepancies may be due to the

differences between the characteristics in the studies: [10]

compared records before and after 26 weeks, whereas [25] only

examined records after the 25th week; [29] and [35] studied rat

pregnancy, in contrast to human pregnancy. The frequency band

used in [30] and [19] was also a much broader band than in other

studies (0.3–50 Hz; no bandwidth given for [36]), and the studies

by [29] and [35] measured per burst, whilst [25] measured the

whole signal.

Meanwhile, the TPEHG study [10] could not find any

significant difference in root mean squares between preterm and term

records. However, [25] did find that the root mean squares, in preterm

contractions, were higher (17.5 mv 67.78), compared to term

contractions (12.2 mV 66.25; p,0.05). The results, from [25],

could not find a correlation between root mean squares and the weeks

left to delivery. Nevertheless, they do suggest that a greater root

Table 3. Classifier Performance Results for the 0.34–1 Hz Filter.

Sensitivity Specificity AUC

Classifier Channel 3 0.34–1Hz Filter Channel 3 0.34–1Hz Filter Channel 3 0.34–1Hz Filter

LDC 0.0000 0.9807 53%

QDC 0.0000 0.9807 53%

UDC 0.0000 1.0000 52%

POLYC 0.0000 0.9807 61%

LOGLC 0.0000 0.9807 60%

KNNC 0.0000 0.9230 53%

TREEC 0.2857 0.8653 60%

PARZENC 0.0000 1.0000 50%

SVC 0.0000 1.0000 61%

doi:10.1371/journal.pone.0077154.t003

Prediction of Preterm Deliveries
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mean square value was, for the most part, a static symptom that

indicated a woman’s dispensation to give birth prematurely. They

also found that the root mean square values, within each pregnancy,

did increase within a few days of birth.

Overall, the results suggest that there is no significant difference

in the amplitude-related parameters between term and preterm

deliveries, when taken during labour, or close to it. However, there

may be considerable differences earlier on in the pregnancy. This

suggests that by the time of delivery, any differences have

equalised themselves.

Sample entropy measures the irregularity of a time series, of finite

lengths. This method was introduced by [37] to measure

complexity in cardiovascular and biological signals. The more

unpredictable the time series is, within a signal recording, the

higher its sample entropy. The process is based on calculating the

number of matches of a sequence, which lasts for m points, within

a given margin r. The disadvantage of this technique is the

requirement to select two parameters, m and r. However, sample

entropy did show a statistical difference between term and preterm

delivery information, recorded either before or after the 26th week

of gestation, when using any of the filters, but only using the signal

from Channel 3 [10].

Term and Preterm Classification
Computer algorithms, and visualization techniques, are funda-

mental in supporting the analysis of datasets. More recently, the

medical domain has been using such techniques, extensively.

Artificial Neural Networks (ANN) have been used in a large

number of studies to classify term and preterm deliveries, [11,38].

They have also been useful for distinguishing between non-labour

and labour events [11,38], irrespective of whether they were term or

preterm. Moslem et al. [14] argue that they have been particularly

useful in helping to identify important risk factors associated with

Table 4. Cross Validation Results for the 0.34–1 Hz Filter.

80% Holdout: 100 Repetitions Cross Val, 5 Folds, 1 Repetitions Cross Val, 5 Folds, 100 Repetitions

Classifiers Mean Err SD Mean Err Mean Err SD

LDC 0.1342 0.0127 0.1333 0.1349 0.0045

QDC 0.1355 0.0166 0.1366 0.1421 0.0088

UDC 0.1324 0.0142 0.1366 0.1383 0.0080

POLYC 0.1300 0.0072 0.1300 0.1300 0.0000

LOGLC 0.1324 0.0112 0.1333 0.1322 0.0034

KNNC 0.1707 0.0270 0.1267 0.1312 0.0081

TREEC 0.2135 0.0443 0.1995 0.2183 0.0210

PARZENC 0.1267 0.0000 0.1267 0.1267 0.0000

SVC 0.1267 0.0000 0.1267 0.1267 0.0000

doi:10.1371/journal.pone.0077154.t004

Figure 4. Received Operator Curve for the 0.34–1 Hz Filter.
doi:10.1371/journal.pone.0077154.g004
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preterm birth. The global accuracy of these studies varied from

between 73% and 97%.

Baghamoradi et al. [39] used the TPEHG database [10] to

compare sample entropy with thirty and three cepstral coefficients

extracted from each signal recording through sequential forward

selection and Fisher’s discriminant. A multi-layer perceptron

(MLP) neural network classified the feature vectors into term and

preterm records. The results indicate that the three cepstral

coefficients produced the best classification accuracy, with

72.73% (613.5), while using all thirty coefficients showed only

53.11% (610.5) accuracy. Sample entropy performed the worst with

an accuracy of 51.67% (614.6). The results indicate that the

sequential forward selection and Fisher’s discriminant had the

most effect on the accuracy because the thirty coefficients set only

presenting a small improvement, in classification accuracy.

Support Vector Machines (SVM) have featured in several

studies, which include [12,13,14]. Many of them classify contrac-

tions into labour or non-labour, using different locations on the

abdomen. Majority voting (WMV) decision fusion rules, including

a Gaussian radial basis function (RBF), form the basis for

classification. The feature vectors include the power of the EMG

signal, and the median frequency. The highest accuracy for a single

SVM classifier, at one particular location on the abdomen, was

78.4% [12,13], whilst the overall classification accuracy, for the

combined SVM, was 88.4% [14]. Finding the coefficients, for the

decision boundary, occurs by solving a quadratic optimisation

problem.

The k-NN algorithm has been used by Diab et al. [40] with an

emphasis on Autoregressive (AR) modelling and wavelet transform

pre-processing techniques. The study focused on classifying

contractions into three types using data obtained from 16 women.

Group 1 (G1), were women who had their contractions recorded

at 29 weeks, and then delivered at 33 weeks; Group 2 (G2) were

also recorded at 29 weeks, but delivered at 31 weeks, and Group 3

(G3) were recorded at 27 weeks and delivered at 31 weeks.

Classification occurred against G1 and G2 and against G2 and G3

using, the k-NN algorithm combined with the pre-processing

method of AR. As well as this, an Unsupervised Statistical

Classification Method (USCM), combined with the pre-processing

method of Wavelet Transform, was also used. The USCM adopted

the Fisher Test and k-Means methods. The wavelet transform,

combined with USCM, provided a classification error of 9.5%,

when discerning G1 against G2, and 13.8% when classifying G2

against G3. Using AR, the k-NN provided a classification error of

2.4% for G1 against G2 and 8.3% for G2 against G3. In both

classifications, the AR and k-NN methods performed better than

the USCM. Furthermore, the classification accuracy for G1 and

G2 was always lower than the equivalent G2 and G3 classifica-

tions. This suggests that it is easier to distinguish between

Table 5. Classifier Performance Table for Oversampled 0.34–1 Hz Signal.

Sensitivity Specificity AUC

Classifier Channel 3 0.34–1Hz Filter Channel 3 0.34–1Hz Filter Channel 3 0.34–1Hz Filter

LDC 0.8653 0.8076 66%

QDC 0.9230 0.8461 72%

UDC 0.8269 0.8076 72%

POLYC 0.8653 0.8076 86%

LOGLC 0.8653 0.8269 86%

KNNC 0.8653 0.8269 84%

TREEC 0.9038 0.8269 89%

PARZENC 0.5961 0.9615 72%

SVC 0.8076 0.7692 78%

doi:10.1371/journal.pone.0077154.t005

Table 6. Cross Validation Results for Oversampled 0.34–1 Hz Signal.

80% Holdout: 100 Repetitions Cross Val, 5 Folds, 1 Repetitions Cross Val, 5 Folds, 100 Repetitions

Classifiers Mean Err SD Mean Err Mean Err SD

LDC 0.2132 0.0325 0.2116 0.2064 0.0023

QDC 0.1770 0.0347 0.1811 0.1806 0.0040

UDC 0.2035 0.0328 0.1981 0.2001 0.0018

POLYC 0.2132 0.0325 0.2116 0.2064 0.0023

LOGLC 0.2037 0.0315 0.2118 0.1972 0.0059

KNNC 0.2249 0.0386 0.2594 0.2340 0.0088

TREEC 0.1995 0.0387 0.1944 0.1994 0.0069

PARZENC 0.2499 0.0392 0.2423 0.2461 0.0124

SVC 0.2851 0.0383 0.2899 0.2901 0.0042

doi:10.1371/journal.pone.0077154.t006
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pregnancies recorded at different stages of gestation than it is to

distinguish between the time of delivery.

Methodology
Despite the advances, within the last twenty years, in the EHG

diagnosis and prediction field, knowledge of the uterus, and its

mechanisms, remains relatively poor. This is especially evident

when compared to other organs, such as the heart, and to a lesser

extent, the gastro-intestinal system [20]. Given this inadequate

knowledge, it may be easier to utilise an empirical backward

looking, ‘data mining’ or ‘brute force’ approach. This is opposed

to a forward-looking, conceptual model approach, in order to find

features that best describe pregnancy.

The aim of most studies, in EHG prediction or detection, has

been to detect true labour, rather than predicting, in advance,

whether delivery will be preterm or term. Furthermore, many of the

studies concentrated on a late state in gestation. Even when earlier

stages are incorporated, they always only included those with

threatened preterm labour. However, the TPEHG dataset is

different, as it involves the general population of pregnant women.

Therefore, this collection includes fewer records for women who

delivered preterm than term.

For term deliveries, true labour only starts within 24 hours. For

preterm deliveries, it may start within 7 to 10 days. The change in

EHG activity, from non-labour to labour, is dramatic; throughout

the rest of the pregnancy, any change in EHG is more gradual.

Therefore, classification of records, into preterm and term, is

particularly challenging. For this reason, and due to the

configuration of the dataset, the study attempts to classify records

from an earlier stage, according to whether they will eventually

result in term or preterm deliveries.

Fele-Zorz et al. conducted a comprehensive study that com-

pared linear and non-linear signal processing techniques to

separate uterine EMG records of term and preterm delivery groups

[10]. The EHG records are from a general population of pregnant

patients at the Department of Obstetrics and Gynaecology

Medical Centre in Ljubljana, gathered between 1997 and 2006.

These records are publicly available, via the TPEHG dataset, in

Physionet.

The TPEHG dataset contains 300 records (one record per

pregnancy). Each recording is approximately 30 minutes long.

Records are either recorded early, ,26 weeks (at around 23 weeks

of gestation) or later, = .26 weeks (at around 31 weeks). It is not

clear why the 26th week is used as the dividing line for early and

late records, however, this is possibly because of significant

changes that occur in the 3rd trimester of pregnancy. Table 1,

below, shows the classification of records in the TPEHG dataset.

The recording time relates to the gestational age of the foetus, at

the time of the recoding. The classifications of these recordings, as

term and preterm deliveries, was made retrospectively, after giving

birth, and following the widely used definition of preterm being

under a fully completed 37 weeks. Therefore, the four categories

of recordings are as follows:

1. Early-Term: Recordings made early, which resulted in a term

delivery.

2. Early-Preterm: Recordings made early, which resulted in a

preterm delivery.

3. Late-Term: Recordings made late, which resulted in a term

delivery.

4. Late-Preterm: Recordings made late, which resulted in a

preterm delivery.

Figure 1 shows the distributions of term and preterm records in the

TPEHG dataset, which clearly indicates that the majority of the

data are term.

In summary, this paper uses 300 records that consist of ‘38’

preterm and ‘262’ term records.

Data Pre-processing
In the TPEHG dataset, the records have a sample frequency of

20 Hz, and 16-bit resolution, with an amplitude range of

Figure 5. Received Operator Curve for Oversampled 0.34–1 Hz Signal.
doi:10.1371/journal.pone.0077154.g005
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62.5 mV. Before sampling took place, an analogue, three-pole,

Butterworth filter, filtered the signal within the range of 1–5 Hz.

Signals were recorded simultaneously through three different

channels (Channel1, Channel2, and Channel3), via four electrodes

attached to the abdominal surface, with the navel at the

symmetrical centre.

Fele-Zorz et al. showed that the 0.3–3 Hz filtered signals on

Channel 3 is the best filter for discriminating between preterm and

term delivery records [10]. The results show that sensitivities (true

positives – in this instance preterm records), produced by several of

the classifiers, was higher than those produced when other filters

were used [10]. However, there was no appropriate filter to

remove unwanted artefacts, such as maternal heart rate. Uterine

activity has been found to comprise both ‘fast’ and ‘slow’ signals of

high and low frequency signals. The fast waves represent the

individual electrical signals firing, whilst the slow waves corre-

spond to the resulting mechanical contractions. Slow waves exist

between 0.03 and 0.3 Hz, and the fast waves exist between 0.3 and

3.0 Hz. Reference [36] found in a study of 99 pregnant patients,

that 98% of uterine electrical activity occurred in frequencies less

than 1 Hz, and that the maternal heart rate (ECG) was always

higher than 1 Hz. Furthermore, 95% of the patients, measured

had respiration rates of 0.33 Hz or less. Therefore, the authors

considered that a 0.34–1 Hz bandpass filter removed most of the

unwanted artefacts. Several other studies have adopted the same

filtering scheme [53–54], and [12]. Therefore, in this paper, the

raw Channel 3 signal was chosen and filtered using a 0.34–1 Hz

filter. This is to coincide with the findings in [10] and [36].

Features Selection
The feature vectors in this paper are generated using four

features – root mean squares, peak frequency, median frequency, and sample

entropy. The literature reports that Mean frequency and sample entropy

have the most potential to discriminate between term and preterm

records. However, root mean squares and peak frequencies have had

conflicting results. Nonetheless, several studies report that these

features are useful for discriminating between term and preterm

records. To validate these findings, the discriminant capabilities of

each feature are determined using principal component analysis

(PCA). Figure 2 shows the PCA for the features extracted from

Channel 3 0.34–1 Hz filter signal.

As indicated in Figure 2, the horizontal axis shows that the peak

frequency is the principal component and has the most

discriminant capabilities of the four features considered. This is

consistent with the findings in [11,19,24,26,28,30,35]. The vertical

axis shows median frequency as the second component with very

good discriminant capabilities. This is consistent with the findings

in [10]. Sample entropy is the third component and hence considered

useful. These findings are broadly consistent with [10], which

found a statistical difference between term and preterm records, using

Table 7. Classifier Performance for Oversampled 0.34–1 Hz Signal with additional Features.

Sensitivity Specificity AUC

Classifier Channel 3 0.34–1Hz Filter Channel 3 0.34–1Hz Filter Channel 3 0.34–1Hz Filter

LDC 0.9666 0.9000 70%

QDC 0.9666 0.1666 83%

UDC 0.9666 0.1333 78%

POLYC 0.9666 0.9000 95%

LOGLC 0.9666 0.9000 94%

KNNC 0.9333 0.8000 90%

TREEC 0.9666 0.9000 93%

PARZENC 0.9666 0.5666 59%

SVC 0.9666 0.7000 92%

doi:10.1371/journal.pone.0077154.t007

Table 8. Cross Validation Results for Oversampled 0.34–1 Hz Signal with additional Features.

80% Holdout: 100 Repetitions Cross Val, 5 Folds, 1 Repetitions Cross Val, 5 Folds, 100 Repetitions

Classifiers Mean Err SD Mean Err Mean Err SD

LDC 0.0858 0.0289 0.00800 0.0867 0.0060

QDC 0.3260 0.0780 0.0780 0.3344 0.0216

UDC 0.4162 0.0471 0.0471 0.4289 0.0124

POLYC 0.0858 0.0289 0.0289 0.0867 0.0060

LOGLC 0.0932 0.0301 0.0301 0.0983 0.0062

KNNC 0.1458 0.411 0.0411 0.1522 0.0131

TREEC 0.1127 0.0436 0.0436 0.1178 00.0149

PARZENC 0.2130 0.044 0.0444 0.2067 0.0056

SVC 0.1338 0.0419 0.0419 0.1233 0.0070

doi:10.1371/journal.pone.0077154.t008
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sample entropy. Finally, the root mean squares feature resides

towards the cross-section of the first and second components, as

indicated in Figure 2. This feature has the least discriminative

capabilities and again the findings are consistent with [10].

Nevertheless, [25] suggested that the root mean square is a useful

feature because, in preterm contractions, it is higher.

In summary PCA, in conjunction with various studies reported

in the literature, make a very strong case for the use of peak

frequency, median frequency, root mean squares and sample entropy in

discriminating between term and preterm records.

Synthetic minority over-sampling
In a two class balanced dataset the prior probabilities will be

equal for each. This is not the case for the TPEHG dataset

because it is not balanced. There are 262 true negatives (majority

class) and 38 true positive values (minority class). Classifiers are

more sensitive to detecting the majority class and less sensitive to

the minority class and this leads to biased classification [1].

Therefore, given a random sample taken from the dataset, the

probability of a classifier classifying a pregnant woman as term will

be much higher (87.3%–262/300) than the probability of it

classifying a pregnant woman as preterm (12.6%–38/300). This

imposes a higher cost for misclassifying the minority (predicting

that a pregnant woman is likely to deliver full term only to go

home and deliver prematurely) than the majority class, (predicting

a pregnant woman will deliver preterm only to go deliver at term).

In order to address this problem, it is necessary to resample the

dataset. Various resampling techniques are available, and these

include under sampling and over sampling [3]. Under sampling

reduces the number of records from the majority class to make it

equal to the minor class – in this instance it would mean removing

224 records leaving us with a small dataset. Data in the minority

class is generated using oversampling. In this study, the synthetic

Figure 6. Received Operator Curve for Oversampled 0.34–1 Hz Signal with additional features.
doi:10.1371/journal.pone.0077154.g006

Table 9. Classifier Performance for Clinical Data Only.

Sensitivity Specificity AUC

Classifier Channel 3 0.34–1Hz Filter Channel 3 0.34–1Hz Filter Channel 3 0.34–1Hz Filter

LDC 0.0000 1.0000 51%

QDC 1.0000 0.0384 51%

UDC 0.0000 0.9038 52%

POLYC 0.000 1.0000 55%

LOGLC 0.0000 1.0000 55%

KNNC 0.0000 0.9230 50%

TREEC 0.1428 0.8461 52%

PARZENC 0.0000 1.0000 49%

SVC 0.0000 1.0000 53%

doi:10.1371/journal.pone.0077154.t009
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minority over-sampling technique (SMOTE) is used rather than

reducing the dataset further [41].

Several studies have shown that the SMOTE technique

effectively solves the class skew problem [42–47]. Using SMOTE,

the minority class (preterm) is oversampled using each minority class

records, in order to generate new synthetic records along line

segments joining the k minority class nearest neighbours. This

forces the decision region of the minority class to become more

general and ensures that the classifier creates larger and less

specific decision regions, rather than smaller specific regions. In

[41] the authors indicated that this approach is an accepted

technique for solving the problems related to unbalanced datasets.

Figure 3 shows the distribution of term and preterm records, using

the SMOTE technique.

Figure 3 clearly shows that using the SMOTE technique allows

the term and preterm dataset to be more balanced, compared to the

original TPEHG dataset.

Classification
Following an analysis of the literature, the study in this paper

uses simple, yet powerful algorithms, as shown in Table 2.

The classifiers considered in this study include the linear

discriminant classifier (LDC), quadratic discriminant classifier

(QDC), uncorrelated normal density based classifier (UDC),

polynomial classifier (POLYC), logistic classifier (LOGLC), 3-NN

(KNNC), decision tree (TREEC), parzen classifier (PARZENC) and

the support vector classifier (SVC) [48]. The linear, quadratic and

uncorrelated normal density-based classifiers are all density-based

classifiers. The LDC is particularly useful when two classes are not

normally distributed, and where monotonic transformations, of

posterior probabilities, helps to generate discriminant functions.

The QDC assumes that the classes are normally distributed with

class specific covariance matrices, thus allowing a set of optimal

discriminant functions to be obtained. The UDC works in a similar

way to the QDC classifier but computation of a quadratic classifier

Table 10. Cross Validation Results for Clinical Data Only.

80% Holdout: 30 Repetitions Cross Val, 5 Folds, 1 Repetitions Cross Val, 5 Folds, 6 Repetitions

Classifiers Mean Err SD Mean Err Mean Err SD

LDC 0.1354 0.0146 0.1399 0.1355 0.0053

QDC 0.8443 0.0338 0.8532 0.8559 0.0073

UDC 0.1953 0.0364 0.1930 0.1939 0.0062

POLYC 0.1278 0.0049 0.1300 0.1272 0.0013

LOGLC 0.1334 0.0139 0.1300 0.1322 0.0053

KNNC 0.1652 0.0289 0.1267 0.1283 0.0028

TREEC 0.2231 0.493 0.2126 0.2362 0.0227

PARZENC 0.1267 0.000 0.1267 0.1267 0.0000

SVC 0.1267 0.000 0.1267 0.1267 0.0000

doi:10.1371/journal.pone.0077154.t010

Figure 7. Received Operator Curve for Clinical Data Only.
doi:10.1371/journal.pone.0077154.g007
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between the classes by assume normal densities with uncorrelated

features. The QDC takes decisions by assuming different normal

distribution of data that leads to quadratic decision boundaries.

The polynomial and logistic classifiers are linear-based classi-

fiers, which predict class labels based on weighted, linear

combination of features or the variables of the objects. The

LOGLC computes the classification of a dataset by maximizing the

likelihood criterion, using the logistic (sigmoid) function. The

POLYC adds polynomial features to the datasets in order to run the

untrained classifier. It is possible to construct second order terms,

using this classifier. The parzen, decision tree, support vector, and

k-nearest neighbour classifiers are nonlinear classifiers. Nonlinear

classifiers compute the optimum smoothing parameter between

classes in the datasets. Using smoothing parameters without any

learning process, produces discrimination. Smoothing parameters

may be a scalar, a vector or a matrix with objects and their

features. The TREEC classifier uses binary splitting and classes are

decided upon the basis of a sequence of decision rules. Quadratic

programming optimises the SVC, and non-linearity is determined

by the kernel. If an SVM model, uses the sigmoid kernel then it

behaves more or less like a two-layer, perceptron neural network.

There are four basic kernels, linear, polynomial, radial basis

function and sigmoid. In this type of classification, functions map

training sets into a higher dimensional space in this type of

classifier. It finds a linear separating hyperplane with the

maximum margin in the higher dimensional space. The KNNC

and PARZENC are similar in the sense that their build-up

classifiers still use the training dataset and their parameters, while

KNNC classifies the object in a feature space with the nearest

training parameters.

Validation Methods
The Holdout Cross-Validation technique is used in this

study [49], in which, 80% of the whole dataset is designated for

training and the remaining 20% for testing. To maintain

generalisation, the training and test sets comprise randomly

selected instances from the TPEHG dataset. Since the exact

selection of instances, for the training, is random, it is necessary to

repeat the learning and testing stage. The average performance

obtained from 100 simulations is utilised. This number is

considered, by statisticians, to be an adequate number of iterations

to obtain an average [50]. After each repetition, the error rate for

each classifier is stored and the learning experience of the

algorithm wiped so that it does not influence the next test.

Producing several repetitions provides average error rates,

standard deviations and performance values for each classifier.

The k-fold cross-validation is a validation technique used to

estimate the accuracy of the classifiers. In this paper, the results

obtained for k-fold validation uses 5 folds and 1 and 100 repetitions

respectively. The results are then compared with those from the

80/20 holdout cross-validation approach. Sensitivity (true

positives) and specificity (true negatives) measure the predictive

capabilities of classifiers in binary classification tests. Sensitivities

refer to the true positive rate or recall rate (preterm records).

Specificities measure the proportion of true negatives (term records).

Sensitivities are considered a higher priority than specificities, in this

study. It is important to predict a preterm delivery rather than miss

classifying a term pregnancy.

The Receiver Operator Curve (ROC) is a standard

technique used to summarise classifier performance based on

trade-offs between true positive and true negative error rates [51].

The Area Under the Curve (AUC) is an accepted performance

metric that provides a value equal to the probability that a

classifier will rank a randomly chosen positive instance higher than

a randomly chosen negative one (this obviously assumes that

positive ranges higher than negative) [51]. These have been

chosen since they are suitable evaluation methods for classifiers,

which produce binary output (term or preterm) [52].

The pattern recognition toolbox (PRTools) has been used to

implement all of the techniques used in this study.

Results

This section presents the classification results for term and preterm

delivery records using the TPEHG dataset. The 0.34–1 Hz filter

on Channel 3 is used with 80% holdout technique and k-fold cross-

validation. The initial evaluation provides a base line for

comparison against all subsequent evaluations, considered in this

section.

Results for 0.34–1 Hz TPEHG Filter on Channel 3
This evaluation uses the 0.34–1 Hz filtered signals on Channel

3 with nine classifiers. The performance for each classifier is

evaluated, using the sensitivity, specificity, mean error, standard deviation

Table 11. Summary of Classifier Performance for Original TPEHG Dataset and Oversampled Dataset Using SMOTE.

Original TPEHG dataset Oversampled using SMOTE

Sensitivity Specificity AUC Sensitivity Specificity AUC

Classifier
Channel 3 0.34–1
Hz Filter

Channel 3 0.34–1
Hz Filter

Channel 3 0.34–1
Hz Filter

Channel 3 0.34–1
Hz Filter

Channel 3 0.34–1
Hz Filter

Channel 3 0.34–1
Hz Filter

LDC 0.0000 0.9807 53% 0.8653 0.8076 66%

QDC 0.0000 0.9807 53% 0.9230 0.8461 72%

UDC 0.0000 1.0000 52% 0.8269 0.8076 72%

POLYC 0.0000 0.9807 61% 0.8653 0.8076 86%

LOGLC 0.0000 0.9807 60% 0.8653 0.8269 86%

KNNC 0.0000 0.9230 53% 0.8653 0.8269 84%

TREEC 0.2857 0.8653 60% 0.9038 0.8269 89%

PARZENC 0.0000 1.0000 50% 0.5961 0.9615 72%

SVC 0.0000 1.0000 61% 0.8076 0.7692 78%

doi:10.1371/journal.pone.0077154.t011
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and AUC values with 100 simulations and randomly selected

training and testing sets for each simulation.

Classifier Performance
The first evaluation uses the original TPEHG dataset (38 preterm

and 262 term). Table 3, illustrates the mean averages obtained over

100 simulations for the sensitivity, specificity, and AUC.

As shown in Table 3, the sensitivities (preterm), in this initial test,

are low for all classifiers. This is expected because there are a

limited number of preterm records from which the classifiers can

learn. Consequently, specificities are higher than sensitivities. More

specifically, there are 31 preterm records in the 80% holdout training

set. This is a limited number of records for one class. Furthermore,

the AUC indicated that all classifiers failed to generate results

higher than 61%. This indicates that the classifiers classified most

of the instances into the major class, which caused very low

sensitivities. Table 4 illustrates the results from a k-fold cross-

validation technique, used to improve the results obtained from

the holdout method. The results showed that it was not possible to

achieve a classification error, lower than the base-rate error of

12.67%.

The k-fold cross-validation results, using five folds and both one

and one hundred repetitions shows that the k-fold cross-validation

approach improved the error rates, for some classifiers. However,

these results are not considered statistically significant. Further-

more, the lowest error rates could not be improved below the

minimum error rate expected, which is 12.67% (38 preterm/300

deliveries).

Model Selection
The receiver operator characteristic (ROC) curve shows the cut-

off values for the false negative and false positive rates. It has been used

for each of the classifiers, using the original TPEHG dataset 0.34–

1 Hz filter. Figure 4 indicates that, none of the classifiers

performed particularly well. The AUC values in Table 1 support

these findings with very low accuracy values.

The poor results indicate that the classification algorithms do

not have enough preterm records to learn from, in comparison to

term records. Consequently, sensitivities are low while specificities are

high, which in this study are of lower importance. The main issue,

in terms of machine learning, is that the dataset is skewed.

Although this problem has not been widely reported, in many

recent EHG studies, imbalanced data is a common machine-

learning problem. As such, re-sampling the classes (with the

minority class – in this instance, preterm records) is a conventional

way to balance the dataset [53].

Results for 0.34–1 Hz TPEHG Filter on Channel 3 –
Oversampled using SMOTE

The 38 preterm records are re-sampled using the SMOTE

technique [41]. The SMOTE algorithm allows a new dataset to be

generated that contains an even split between term and preterm

records (262 each) oversampled using the original preterm records.

Classifier Performance
Table 5 indicates that the sensitivities, for all the algorithms,

improved at the expense of lower specificities. In addition, the AUC

results showed significant improvements with a value of 89%

achieved by the TREEC classifier. The results also show that the

AUC values, for all the algorithms, increased. This is encouraging

given that sensitivities are more important in this research than

specificities. Balancing the dataset increased the classification

algorithms ability to predict preterm records. From the previous

set of results, we find a 60% increase in sensitivities, a 17% drop in

specificities, and a 30% increase in the performance of the TREEC

classifier.

Again, the k-fold cross-validation results are better than the

holdout method. This is indicated in Table 6.

The results show that, using the 80% holdout method, several

classifiers produce better results. Overall, the mean errors

produced, using all of the validation techniques, were significantly

lower than the expected error, which is 262/524, i.e. 50%.

Model Selection
Again, the ROC curve shows the cut-off values for the false

negative and false positive rates. Figure 5, below, shows a significant

improvement.

The results present a strong case for oversampling and indicate

that better predictive models are possible for predicting term and

preterm records.

Table 12. Summary of Classifier Performance for Oversampling with Additional Features and Clinical Data Only.

Oversampling with Additional Features Clinical Data Only

Sensitivity Specificity AUC Sensitivity Specificity AUC

Classifier
Channel 3 0.34–1
Hz Filter

Channel 3 0.34–1
Hz Filter

Channel 3 0.34–1
Hz Filter

Channel 3 0.34–1
Hz Filter

Channel 3 0.34–1
Hz Filter

Channel 3 0.34–1
Hz Filter

LDC 0.9666 0.9000 70% 0.0000 1.0000 51%

QDC 0.9666 0.1666 83% 1.0000 0.0384 51%

UDC 0.9666 0.1333 78% 0.0000 0.9038 52%

POLYC 0.9666 0.9000 95% 0.0000 1.0000 55%

LOGLC 0.9666 0.9000 94% 0.0000 1.0000 55%

KNNC 0.9333 0.8000 90% 0.0000 0.9230 50%

TREEC 0.9666 0.9000 93% 0.1428 0.8461 52%

PARZENC 0.9666 0.5666 59% 0.0000 1.0000 49%

SVC 0.9666 0.7000 92% 0.0000 1.0000 53%

doi:10.1371/journal.pone.0077154.t012
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Results for 0.34–1 Hz TPEHG Filter on Channel 3 –
Oversampling with additional features

In December 2012, Fele-Zorz et al. made additional features

available. These features are age, parity (number of previous births),

abortions, weight, hypertension, diabetes, placental position, first and second

trimester bleeding, funnelling and smoking. Incorporation of the new

features, into the original dataset, resulted in the filtration of the

dataset. The purpose of this was to remove any noisy data that

may have been contained in the additional features. This resulted

in a new dataset containing 19 preterm records and 150 term records.

The SMOTE algorithm has balanced the dataset, and the

classifiers have been re-run.

Classifier Performance (Oversampling with additional
features)

Table 7 shows the sensitivity, specificity, and AUC results.

These results show that there is a significant increase in sensitivity,

specificity and AUC values, due to the utilisation of the additional

features. The best classification algorithm is the POLYC classifier.

This achieved 97% sensitivity, 90% specificity, and 95% AUC

value with 8% global error. From the previous set of results, this

shows a 6% increase in sensitivities, 7% increase in specificities, and a

6% increase in the AUC value, while maintaining an 8% global

error. Other classifiers also produced very good results, particu-

larly, the LOGLC, KNNC and the TREEC classifiers. All these

classifiers produced improvements on the classifications performed

on the original TPEHG dataset.

The performance of k-fold cross-validation was compared with

the results obtained from both the 80% holdout method and cross-

validation. Table 8 shows that minor improvements are made, using

k-fold cross-validation.

The results show that the additional features significantly

improve the performance of several classifiers. In particular, the

POLYC, LOGLC, KNNC and the TREEC classifiers perform very

well. The best classifier is the POLYC with 97% for sensitivity, 90%

for specificity, and an AUC value of 95%, with a global mean error

of 8%.

Model Selection
Figure 6 below, shows that there is a significant improvement,

compared to the ROC curve illustrated in Figure 5.

Results for Clinical Data Only
In this section, the clinical data by itself is used to classify the

term and preterm records. As before, the dataset is balanced using the

SMOTE algorithm. The same classification algorithms have also

been re-run, on the new 300 record clinical dataset.

Classifier Performance (Clinical Data Only)
Table 9 shows the sensitivity, specificity, and AUC results when

using the clinical data only. As it can be seen, the AUC has reduced

significantly when using the clinical data by itself. This is an

indication that the EHG signals play significant roles in the

classification process. The simulation results indicated that the

AUC dropped noticeably with a best value achieved by the POLYC

and LOGLC classifiers producing a value of 55% only.

The performance of k-fold cross-validation is compared with the

results obtained from both the 80% holdout methods. Table 10

shows that the mean errors when using the clinical data only.

Using the clinical data only, the mean errors and k-fold values are

as expected and they are not considered statistically significant.

Model Selection
Figure 7 shows that, when only using the clinical data, all

classifiers have performed significantly worse than previous

evaluations.

Summary of Results
Table 11 and 12 illustrates a summary of the results for all four

approaches. As it can be seen, the oversampled dataset, which

utilized additional features, provided the best results with a

significant increase in sensitivity, specificity and AUC values. In

particular, using this method, POLYC has improved significantly.

The results illustrate that using machine learning techniques are

encouraging. Within a wider context, this approach might be able

to utilise real-life pregnancy data to predict, with high confidence,

whether an expectant mother is likely to have a premature birth or

proceed to full term.

Discussion

Most studies, in the field of EHG classification, have focused on

the diagnosis of true labour. This occurs at the stage when a woman

believes, or suspects, she is in actual labour. This study has

evaluated the use of a machine learning approach, using records

from earlier stages of gestation, to predict term or preterm deliveries.

The initial classifications on the dataset (unbalanced) achieved a

high specificity. However, this was at the cost of very poor sensitivity,

below 20%. The k-fold cross-validation function was evaluated as a

dataset splitting method to determine whether the sensitivities could

be improved. However, the small improvements, in the mean error,

were not statistically significant. The main problem occurred due

to the disproportionate number of term records to preterm records.

This causes bias in favour of true negatives or the majority class, as

reported in [42–47]. The minimum error rate displayed across

several of the classifiers, was 12.67%. This initially appeared to be

a good error rate. However, the classifiers were simply classifying

by minimising the probability of error, in the absence of sufficient

evidence to help them to classify otherwise. It appeared as though

most of the classifiers were classifying according to the prior

probabilities of the classes, in order to minimise the error.

Using the SMOTE technique significantly improved the

sensitivity and specificity rates, while maintaining high accuracy in

the AUC values. The best classification algorithm was the TREEC

classifier, which achieved 90% sensitivity, 83% specificity, and an

AUC value of 89% with a 20% global error.

Using the oversampled clinical data the initial publication of the

TPEHG dataset was in November 2010. However, in December

2012, clinical data became publically available. The final set of

results shows that the overall performance of classifiers is improved

further by including the information from the clinical dataset.

Nonetheless, more recordings are needed, particularly more

clinical information about the patients themselves. This would

allow more reliable models to be constructed using the clinical and

the EHG signals, which the findings in this paper support.

As it can be shown from Table 7, the Binary Decision Tree

produced promising results of 93% accuracy, for the area under

the curve, when the extra features are utilised in addition to the

EHG signals. This is due to the feature of Binary decision trees,

which use the engineering concept of divide and conquer. In this

case, the binary decision tree will break down the complex

decision-making problem into a collection of simpler decisions,

thus providing a solution, which is often easier to interpret and

understand. As indicated in Table 7, the best results have been

achieved using the polynomial classifier. This is because the

polynomial classifier adds polynomial features that can expand the
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input space, into higher dimensional space where linear seper-

ability is possible.

While the results were very good, several issues were evident in

the clinical data. Firstly, while the weight of the patient was

provided, there was no information to say how tall they were, thus

making it impossible to calculate their body mass index. Other

features, such as bleeding, failed to show how often the bleeding

occurred, or the amount of bleeding. In another example, the fact

that someone smoked would be more informative if the number of

cigarettes per day was provided. Nonetheless, while the data was

vague, it was decided that the information might still be useful.

The results suggest that the additional features further enhance the

algorithms capability to separate term and preterm records.

From all the experiments performed, on the oversampled

TPEHG dataset, with combined additional features, the POLYC

classifier obtained the best result, as can be seen in Table 7. This

classifier obtained 97% sensitivity, 90% specificity, a 95% AUC value

and a global error of 8%. The LOGLC, and TREEC classifiers

produced similar results, with overall AUC values of 94% and 93%

respectively.

Generally, this paper produced significantly better results than

those in [25], who report a sensitivity of 47%, specificity of 90%, and

an overall error rate of 25%. Furthermore, the results have also

been an improvement than those reported in [12–16], [54–58].

However, the findings in [31] produced a much lower error rate of

3.33%61.3, a sensitivity rate of 100% and a specificity rate of 94%.

Diab et al. have used several alternative techniques, including

artificial neural networks and autoregressive models. However, it

should be noted that the sample size is much smaller than the

sample size in this paper (15 preterm and 15 term). The study in [31]

also used a different data source, for their 30 records, compared to

the TPEHG. Therefore, it is difficult, to make a direct comparison

between that study and the study in this paper. Consequently, it is

impossible to determine if the higher results are, in fact, better.

Conclusions and Future Work

The rate of premature births has increased globally, which can

lead to severe medical conditions and an increase in societal and

economical costs. However, a better understanding of preterm

births, and a strategic focus on prevention, is likely to improve

health outcomes and reduce national healthcare service costs. A

strong body of evidence has suggested that the analysis of uterine

electrical signals from the abdominal surface (EHG) could provide

a viable way of diagnosing true labour, and even predict preterm

deliveries.

This paper utilises such EHG signals, within a supervised

machine-learning paradigm, to classify term and preterm records.

The focus of the paper has been to improve sensitivity rates, as it is

more important to predict preterm delivery, as opposed to miss

classifying a term pregnancy. As such, using the original TPEHG

dataset, the number of preterm records (minority class) was

considerably lower than the number of term records (majority

class). Since the classifiers do not have enough preterm records to

learn from, this led to the original results being quite poor. AUC

values were no higher than 61% and, for the majority of the

classifiers sensitivity was at 0%. In this instance, using the SMOTE

technique, it has been necessary to oversample the preterm records.

Oversampling the minority class enables the distribution between

the two classes (term and preterm) to be more balanced. This

technique significantly improved the results, with a maximum

AUC value of 89% and sensitivity rate of 92%. Along with the

SMOTE technique, as additional features became available this

further improved the results. In this instance, a maximum AUC

value of 95% and sensitivities of 97% were achieved. However,

using only the clinical data produced significantly poorer results,

with a maximum AUC value of 55% and the majority of sensitivities

at 0%. As discussed, this could be due to the ambiguity of the

clinical data. Nevertheless, these results are encouraging, and the

approach shows an improvement on existing studies.

Despite these encouraging results, more in-depth research is still

required. For example, regression analysis, using a larger number

of classes, would be interesting. This would help to predict the

expected delivery, in terms of the number of days or weeks, not

just whether a woman is likely to deliver term or preterm.

Future work will evaluate different parameter adjustment

settings. In addition, more advanced classification algorithms,

and techniques, will be considered, including advanced Artificial

Neural Network architectures, such as higher order and spiking

neural networks. The investigation, and comparison, of features,

such as fractal dimension and cepstrum analysis, autocorrelation

zero crossing and correlation dimension, has also not been

performed. Future work will investigate these techniques in a

head-to-head comparison, with linear methods.

It would also be interesting to run a study in which the

classification accuracy of features extracted, per-burst of EMG, are

compared against those extracted from the whole record. In such a

study, the same signals would be used. However, pre-processing

would occur differently. According to the literature review, no

such evaluation has been carried out. Future work will also

combine signals from the various channels.

Overall, the study demonstrates that classification algorithms

provide an interesting line of enquiry, when separating term and

preterm delivery records.
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