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A B S T R A C T 

Wide-field time domain facilities detect transient events in large numbers through difference imaging. For example, Zwicky 

Transient Facility produces alerts for hundreds of thousands of transient events per night, a rate set to be dwarfed by the upcoming 

Vera C. Rubin Observatory. The automation provided by machine learning (ML) is therefore necessary to classify these events 
and select the most interesting sources for follo w-up observ ations. Cataclysmic v ariables (CVs) are a transient class that are 
numerous, bright, and nearby, pro viding e xcellent laboratories for the study of accretion and binary evolution. Here we focus 
on our use of ML to identify CVs from photometric data of transient sources published by the Gaia Science Alerts (GSA) 
program – a large, easily accessible resource, not fully explored with ML. Use of light-curve feature extraction techniques and 

source metadata from the Gaia surv e y resulted in a random forest model capable of distinguishing CVs from supernov ae, acti ve 
galactic nuclei, and young stellar objects with a 92 per cent precision score and an 85 per cent hit rate. Of 13 280 sources within 

GSA without an assigned transient classification our model predicts the CV class for ∼2800. Spectroscopic observations are 
underway to classify a statistically significant sample of these targets to validate the performance of the model. This work puts 
us on a path towards the classification of rare CV subtypes from future wide-field surv e ys such as the Le gac y Surv e y of Space 
and Time. 

K ey words: cataclysmic v ariables – surv e ys – methods: data analysis – techniques: photometric, spectroscopic. 
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 I N T RO D U C T I O N  

ver the last few decades, the increasing depth and breadth of
maging produced by wide-field surv e y facilities has brought forth
 revolution in time domain astronomy. Their ability to rapidly and
epeatedly image huge areas of the sky combined with the technique
f difference imaging, in which the new sky image is subtracted
rom a reference image, has greatly increased the disco v ery potential
f time varying sources (Kulkarni 2020 ). Surveys include the
atalina Real-time Transient Surv e y (CRTS; Drake et al. 2009 ),
alomar Transient Factory (PTF; Law et al. 2009 ), Panoramic Survey
elescope and Rapid Response System (Pan-STARRS; Morgan et al.
012 ), Zwick y Transient F acility (ZTF; Bellm et al. 2019 ), and All-
ky Automated Survey for SuperNovae (ASAS-SN; Kochanek et al.
017 ). In addition, the space-based Gaia mission (Gaia Collaboration
t al. 2016b ), primarily purposed for astrometry, has been recognized
s a powerful tool for time domain astronomy. 

Difference imaging can reveal genuine astrophysical sources that
ave changed in brightness or position and artefacts posing as such.
rtefacts can make up a significant proportion of events found

rom difference imaging, these consist of poorly subtracted galaxies,
osmic rays, point spread function (PSF) haloes, defective pixels,
nd CCD edge effects (Goldstein et al. 2015 ). The vetting of such
rtefacts is no longer solely performed by human inspection, but
 E-mail: d.mistry@2018.ljmu.ac.uk 

(  

e  
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Pub
s now reliant in large part on automated pipelines (e.g., Cao,
ugent & Kasliwal 2016 ; Mahabal et al. 2019 ). The classification
f astrophysical sources has historically been performed by human
nspection (e.g., Zwicky 1964 ; Strolger et al. 2004 ; Rest et al. 2014 ),
o we ver, technological adv ancements in the design of telescopes,
etectors, and computing o v er recent decades hav e led to a rapid rise
n transient events to classify, thus fuelling the desire for ever more
fficient classification methods. 

Currently ZTF produces up to 10 6 alerts (individual photometric
ata points of time variable sources) per night, and in a few years’
ime the Vera C. Rubin Observatory Le gac y Surv e y of Space and
ime (LSST; Ivezic et al. 2019 ) will be generating up to 10 7 alerts
er night (Matheson et al. 2021 ). Only a small fraction of associated
ransient sources can benefit from follow-up observations due to
he limited availability of dedicated facilities and the associated
elescope time constraints. As a consequence, one must be selective
bout the sources that are followed up, these will be those which
rovide the greatest potential in furthering our understanding of the
ransient classes to which they belong. Finding these sources requires
ome level of initial source classification to distil the incoming alert
tream to a list of such targets. An additional requirement is the
eed for prompt classification as early time follow-up can be highly
nformativ e, for e xample, spectroscopy obtained within a few days of
 superno va (SN) e xplosion can inform different progenitor models
Khazov et al. 2016 ). To address these challenges, real time transient
vent processing must be accommodated into surv e y architecture.
he level of automation needed can be achieved by integration of
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achine learning (ML). Implementation of ML requires little or no 
uman intervention beyond the training of the associated algorithms 
ith labelled data. The resultant models are capable of rapidly 

lassifying unseen examples, requiring only a few seconds at most 
o complete each task. 

Surv e y facilities such as ZTF have adopted ML to perform tasks
uch as separating out real transient events from artefacts (bogus or
alse positives; Cao et al. 2016 ); and to separate spatially extended
argets (such as galaxies) from stars (Tachibana & Miller 2018 ). This
se of ML helps to pare down the large influx of alerts generated
y difference imaging. Alerts brokers have been used by ZTF to 
ngest and characterize the nature of their alerts, serving them to the
stronomical community. One such broker is the Automatic Learning 
or the Rapid Classification of Events (ALeRCE; F ̈orster et al. 2021 ).
he AleRCE pipeline makes use of science, reference and difference 

mages for rapid classification of events (Carrasco-Davis et al. 2021 ), 
nd multiband light curves for longer term characterization (S ́anchez- 
 ́aez et al. 2021 ). The pipeline uses these inputs to group events

nto several transient classes, such as cataclysmic variables (CVs), 
Ne, active galactic nuclei (AGN), variable stars, and young stellar 
bjects (YSOs). Aside from use within brokers, ML has been used 
or classification of SN subclasses (Gabruse v a, Zlobin & Wang 
020 ; Fremling et al. 2021 ) and galaxy morphology classification 
Dieleman, Willett & Dambre 2015 ). 

An area of time domain where ML classification will be of key
mportance is that of CVs (e xtensiv ely co v ered in Warner 1995 ;
ellier 2001 ), systems that are used to develop our understanding 
f binary evolution (e.g. Kato & Hachisu 2012 ; Pala et al. 2022 ;
an Roestel et al. 2022 ). These are semi-detached binary systems
omposed of a white dwarf (WD) and a late-type main-sequence 
ompanion. The companion (or donor) is Roche lobe filling, leading 
o a transfer of mass to the WD via the inner Lagrangian point. In
he majority of cases this results in the formation of an accretion
isc. Ho we ver, where the WD is strongly magnetic the accretion
echanism changes. In polars (or AM Her stars; Cropper 1990 ) the

trong magnetic field ( ∼10 ≤ B ≤ 80 MG) causes the accretion flow
rom the donor to be funnelled by field lines on to one or both of
he WD magnetic poles. In intermediate polars (Patterson 1994 ) ( ∼1

B ≤ 10 MG) a partial accretion disc may form where only the
nner regions of the disc are magnetically disrupted. CVs give rise
o a plethora of observable phenomena. Examples include the highly 
nergetic eruptions of classical novae (CNe), caused by the violent 
xpulsion of the accreted shell of matter from the surface of the

D driven by runaway thermonuclear reactions (Starrfield, Iliadis & 

ix 2016 ); the less energetic but much more frequent outbursts of
warf novae (DNe) modelled by thermal/viscous instabilities in the 
ccretion disc (Osaki 1996 ); and the recently identified micronovae, 
lso believed to be thermonuclear runaway events, though localized 
o magnetically confined regions on the WD surface (Scaringi et al. 
022a , b ). Large area time domain surv e ys are more likely to catch
hese events in action by monitoring larger numbers of sources. 

These systems aid our understanding of the currently uncertain 
rogenitor scenarios of Type Ia SNe (Jha, Maguire & Sulli v an 2019 ),
here both single and double degenerate pathways e xist. No vae such

s M31N 2008-12a (Darnley & Henze 2020 ) are the most promising
ingle degenerate pathway, these comprise a near Chandrasekhar 
ass WD accreting at high rates. A double degenerate pathway 
ay be provided by the ultrashort period (5–65 min) helium-rich 
Vs that make up the AM CVn subclass (Solheim 2010 ). CVs with
nown orbital periods are also important for such binary evolution 
tudies, these enable the masses and radii of the individual stars to be
etermined. The orbital period can be deduced in the SU UMa DN
ubtypes from an eruption-induced periodic ‘superhump’ variation 
n the light curv e (P atterson et al. 2005 ); from radial velocity
ariations in spectral lines (Inight et al. 2022 ); or in eclipsing systems
ia the periodic occultation of the WD and accretion disc by the
onor (Copperwheat et al. 2010 ). The exploration of wide-field 
urv e y photometry with ML techniques provides an avenue for the
isco v ery of man y more of these transients. This is an active area
f research, where examples include work by Neira et al. ( 2020 ) to
istinguish between CVs, SNe, and several other classes from a data
et constructed from CRTS light curves; and the classification of 
lerts from the ZTF stream within the AleRCE alerts broker pipeline
S ́anchez-S ́aez et al. 2021 ). 

In this work, we describe our exploration of data generated by
he Gaia spacecraft (Gaia Collaboration et al. 2016a ) to identify
ew members of the CV population. Gaia is now recognized as a
owerful tool for transient detection, with Gaia Science Alerts (GSA; 
odgkin et al. 2021 ) providing alerts of newly disco v ered transient

ources at a current rate of ∼12 d −1 by repeatedly scanning the
hole sky. The cadence of associated light curves is dictated by the

 Gaia scanning law’ (Gaia Collaboration et al. 2016a ) – typically, a
air of observations separated by 106.5 min is separated by another
air 2–4 weeks later. The photometry is precise to 1 per cent at
 = 13, and 3 per cent at G = 19. This resource therefore provides
 stable platform from which to e v aluate ML-based classification. In
ection 2 , we describe the classified transients of GSA, the methods
sed to extract rele v ant descripti ve characteristics from their light
urves, and the additional metadata gathered from the surv e y for each
ource. In Section 3 , we describe how the resultant data set was used
o train several ML algorithms to perform a set of classification tasks,
long with a description of how the resultant models can be e v aluated.
n Section 4 , we detail the performance of each algorithm. Finally,
e discuss the outcomes of our exploration of GSA along with a
escription of a pilot study involving spectroscopic classification to 
alidate predictions made by our best performing model (Section 5 ).

 DATA  SET  

.1 Gaia alerts and EDR3 

s of 2021 June, close to 18 000 transient sources had been listed
ithin the Gaia transient alerts stream; 1 just o v er 4700 of which
ad been assigned class labels. The classifications are based upon 
uman inspection of Gaia data in combination with the results of
ositional cross-matching with the SIMBAD (Wenger et al. 2000 ), 
he NASA/IPAC Extragalactic Database (NED), and the International 
ariable Star Index (VSX) data bases, and YSO catalogues (see 
ection 2.7.7 of Hodgkin et al. 2021 ) to identify already-confirmed
ransient or variable objects. This information is aided by the hourly
arsing of 27 major transient surv e y websites for reported disco v eries
hat also contain classification information, these include Transient 
ame Server (TNS), 2 CRTS, ASAS-SN, and Astronomer’s Tele- 
rams. 3 Further details regarding the alerts filtering and classification 
rocess are contained in Hodgkin et al. ( 2021 ). 
The process of training and validating ML models requires 

ccurate class labels. Whilst we believe the aforementioned process 
f class assignment can reliably provide this accuracy, an inspection 
f class labels for a sample of these sources was performed for a
MNRAS 517, 3362–3376 (2022) 
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Table 1. Features extracted from light curves (without FEETS package). 

Feature Description 

mean mag Mean of magnitudes 
median mag Median of magnitudes 
std mag Standard deviation of magnitudes 
mad mag Median absolute deviation of magnitudes 
min mag Minimum magnitude (maximum brightness) 
max mag Maximum magnitude (minimum brightness) 
n obs Number of observations 
diff min mean Difference between min mag and mean mag 
diff min median Difference between min mag and median mag 
detected time diff Time span of observations 
n peaks rm x y Number of observations within a rolling window 

of y observations that are brighter than x 
magnitudes of the median magnitude of that 
window ( x = 1, 2, 3, 4, or 5 , y = 7 ). 

kurtosis Kurtosis of the magnitudes 
skew Skewness of the magnitudes 
pwr max Largest power value in the Lomb–Scargle 

periodogram 

freq pwr max Frequency corresponding to pwr max 
FalseAlarm prob Estimate of the false alarm probability given the 

height of the largest peak in the periodogram (see 
ht tps://docs.ast ropy.org/en/st able/api/ast ropy.t im 

eser ies.LombScar gle.ht ml#ast ropy.t imeseries.Lo 
mbScargle.false alarm probability ) 
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ev el of v erification. Of the 2713 SNe, 2530 are spectroscopically
onfirmed according to TNS, Astronomer’s Telegrams contain de-
ails of spectroscopic classification for the remainder. Of the 613
aia labelled CVs, 471 are associated with known/confirmed CVs

ccording to the comments associated with the Gaia classifications.
omparison with VSX confirms this along with either a confirmation
f CV status or candidate status for the remainder through references
o rele v ant research papers and Astronomer’ s Telegrams. Gaia ’ s
omments associated with sources labelled as AGN and YSO show
29 of the 940 transients labelled as AGN, and 184 of the 190
ransients labelled as YSOs are associated with known/confirmed
GN and YSOs, respectively. This was verified for a sample of

hese sources by examining records within TNS and associated links
e.g. SIMBAD). The remaining candidate AGN and YSOs were not
urther considered for this work. 

Our data set is composed of features extracted from light curves
f these classified targets within Gaia ’s alert stream along with their
ssociated class labels. Supplementary data for these targets may
e available within the data base of Gaia Early Data Release 3
EDR3; Lindegren et al. 2021 ; Riello et al. 2021 ) in the form of
strometric and further photometric data such as parallax, proper
otion, and photometric colour provided by the low-resolution

hotometry ( R = 100) of blue and red photometers onboard Gaia .
 coordinate cross-match with EDR3 provides this metadata for
45 per cent of sources within our data set. This metadata has also

een incorporated as a set of supplementary features. 
Of the 4697 classified targets incorporated into our data set, SNe

ccount for 58 per cent of classified targets, AGN make up 21 per cent,
Vs and YSOs constitute 13 per cent and 3 per cent, respectively,
hile microlensing, tidal disruption events, and various other classes

ccount for the remainder. 
The majority of GSA classifications come from dedicated spec-

roscopic follow-up programs such as Public ESO Spectroscopic
urv e y of Transient Objects (PESSTO; Smartt et al. 2015 ) and
pectral Energy Distribution Machine (SEDM; Blagorodnova et al.
018 ) that are heavily biased towards SN classification. The class
ractions of classified targets are generally dictated by what has been
hosen to be classified, with unusual or ambiguous examples often
 v erlooked, and therefore it must be noted that these fractions may
ot be representative of the entire sample of GSA targets. 

.2 Light-cur v e feature extraction 

rom source light curves we extracted quantitative characteristics
or features) that describe their variability. These composed of
imple statistical and periodicity-based features in Table 1 along
ith features obtainable from the Feature Extractor for Time Series

 FEETS ) package (Cabral et al. 2018 ) based on the light-curve data
vailable (magnitude and time, no error measurements), a selection
f which are shown in Table 2 . They consist of statistical, periodicity,
nd percentile-based features. 

.3 Supplementary features 

upplementary data (or metadata) from Gaia EDR3 relating to
osition, photometry, and astrometry are incorporated as data set
eatures. Positional features consist of: right ascension, declination,
alactic (and ecliptic) longitude and latitude, along with associated

rrors. Photometric features encompass the mean flux from the red
nd blue photometers (BP and RP) and that from G -band photometry,
he associated mean magnitudes, colours (BP − RP, BP − G , G

RP), and associated errors. Proper motion and parallax (along
NRAS 517, 3362–3376 (2022) 
ith their errors) are included as astrometric features. A full list is
isplayed in Table 3 , while further details are available within the
aia EDR3 documentation. 4 

 M E T H O D  

.1 Machine learning algorithms 

he data set described abo v e can be used to e v aluate the ability
f machine learning (ML) algorithms to identify CVs within GSA.
he algorithms whose performance we e v aluated are scikit-learn’s

Pedregosa et al. 2011 ) PYTHON implementation of random forest
RF; Breiman 2001 ), AdaBoost (ADB; Freund & Schapire 1997 ),
-nearest neighbours (KNNs; Zhang 2016 ), and support vector
achines (SVMs; Cortes & Vapnik 1995 ). Also used are the extreme

radient boosting (XGBoost) algorithm (Chen & Guestrin 2016 ) and
eras (Chollet et al. 2015 ) implementation of an artificial neural
etwork (ANN) in the form of a multilayer perceptron (MLP) – a
ully connected multilayer ANN (Kruse et al. 2022 ). 

RF, ADB, and XGBoost are implementations of an ensemble of
ecision trees (Rokach & Maimon 2008 ). Based on the features
rovided, decision trees perform successive binary splits of the
raining data set in a way that resultant groups are as different from
ne another as possible, and closer to a homogeneity of class. The
esultant model uses this tree structure to classify unseen examples.
F classifies based on a voting system using the predictions of a

andom collection of decision trees, the class with the most votes is
ur model’s prediction. Each tree is trained on a modified version
f the original training set (bootstrap aggregation) and a random
ubset of features to introduce uncorrelated trees. ADB (Freund &
chapire 1997 ) combines decision trees sequentially, weights are

https://docs.astropy.org/en/stable/api/astropy.timeseries.LombScargle.html#astropy.timeseries.LombScargle.false_alarm_probability
https://gea.esac.esa.int/archive/documentation/GEDR3/Gaia_archive/chap_datamodel/sec_dm_main_tables/ssec_dm_gaia_source.html
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Table 2. A small selection of features available from the FEETS package. The 
full list is available at ht tps://feet s.readthedocs.io/en/latest /t ut orial.ht ml along 
with detailed explanations. Of the full list, only those requiring a magnitude 
and time, or just magnitude data, were implemented here. 

Feature Description 

Amplitude Half of the difference between the 
median of the maximum 5 per cent 
and the median of the minimum 

5 per cent magnitudes 
AndersonDarling The Anderson–Darling test is a 

statistical test of whether a given 
sample of data is drawn from a given 
probability distribution (normal 
distribution) 

Autocor length Cross-correlation of a signal with 
itself 

Eta e ( ηe ) Variability index η is the ratio of the 
mean of the square of successive 
differences to the variance of data 
points 

FluxPercentileRatioMid X Ratio of centred flux percentile 
ranges. If F 5, 95 is the difference 
between the 95th and 5th percentile 
of ordered magnitudes, then 
FluxPercentileRatioMid X 

= F 40, 60 / F 5, 95 , F 32.5, 67.5 / F 5, 95 , 
F 25, 75 / F 5, 95 , F 17.5, 82.5 / F 5, 95 , and 
F 10, 90 / F 5, 95 , for X = 20, 35, 50, 65, 
and 80, respectively 

Freq i harmonics amplitude j Amplitude of the j th harmonic of the 
i th frequency component of the 
Lomb–Scargle periodogram 

Gskew Median-of-magnitudes-based 
measure of the skew 

LinearTrend Slope of a linear fit to the light curve 
MaxSlope Maximum absolute magnitude slope 

between two consecutive 
observations 

Meanvariance Ratio of the standard deviation to the 
mean magnitude 

PairSlopeTrend Considering the last 30 (time sorted) 
measurements of source magnitude, 
the fraction of increasing first 
differences minus the fraction of 
decreasing first differences 

PeriodLS Period corresponding to frequency of 
maximum power in the 
Lomb–Scargle periodogram 

PercentAmplitude Largest percentage difference 
between either the max or min 
magnitude and the median 

Psi eta ηe index calculated from the 
phase-folded light curve 

SmallKurtosis Small sample kurtosis of the 
magnitudes 

a
g
p
t
e
w  

f
t

Table 3. Supplementary data from Gaia EDR3 incorporated as data set 
features (see Section 2.3 ). 

Feature Description 

ra, dec, ra error, dec error Right ascension, declination, and 
associated standard errors 

l, b Galactic longitude and Galactic 
latitude 

ecl lon, ’ecl lat Ecliptic longitude and ecliptic 
latitude 

bp rp, bp g, g rp BP − RP, BP − G , and G − RP 
colours 

phot X mean flux Mean flux in the G , integrated BP, or 
integrated RP bands – corresponding 
to X = g, bp, or rp , respectively 

phot X mean flux error Error on the mean flux in the X band 
phot X mean flux over error Mean flux in the X band divided by 

its error 
phot X mean mag Mean magnitude in the G , integrated 

BP, or integrated RP bands –
corresponding to X = g, bp, or rp , 
respectively 

pseudocolour, pseudocolour error The astrometrically estimated 
ef fecti v e wav enumber of the photon 
flux distribution in the astrometric G 

band, measured in μ−1 m, and 
standard error of pseudo-colour 

par allax, par allax error Gaia parallax in milliarcseconds 
(mas) and standard error 

parallax over error Parallax divided by its standard error 
pm, pmra, pmdec Total proper motion, and proper 

motion in the right ascension and 
declination directions (mas yr −1 ) 

pmra error, pmdec error Standard error of the proper motion 
in right ascension and declination 
directions (mas yr −1 ) 

ruwe Renormalized unit weight error: 
expected to be around 1.0 for sources 
where the single-star model provides 
a good fit to the astrometric 
observations. A value significantly 
greater than 1.0 (say, > 1.4) could 
indicate that the source is non-single 
or otherwise problematic for the 
astrometric solution 
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ssigned to examples such that incorrect predictions of the tree are 
iven higher weights than those correctly predicted. This iterative 
rocess of modifying weights before training means that difficult- 
o-predict examples are given more influence. XGBoost is another 
xample of sequentially combining decision trees. Where ADB uses 
eights to impro v e performance, XGBoost aims to reduce some error

unction that describes the classification performance of successive 
rees (Chen & Guestrin 2016 ). 
SVMs (Cortes & Vapnik 1995 ) find the ideal hyperplane that
est distinguishes between two classes in feature space. For non- 
inear class separation, SVM uses the kernel trick , transforming 
ower dimension input feature space into a higher dimensional 
pace allowing for linear separation. KNN (Zhang 2016 ) stores the
osition vectors of training set class examples in feature space. 
lass predictions on new examples are made by assigning the 
ode of the classes of the KNN from the training set to the new

xample. ANN (LeCun, Bengio & Hinton 2015 ) consists of layers
f interconnected nodes (or neurons) – an input layer, consisting 
f feature values; an output layer, which delivers the predictions 
e.g. class probabilities); and, in between, one or more hidden 
ayers of neurons, which sequentially transform the feature values 
nto the predictions by applying typically non-linear functions to 
inear combinations of prior inputs. The algorithm learns through 
 process of loss minimization whereby the model parameters are 
djusted to reach convergence to loss minimum (known as back 
ropagation). 
MNRAS 517, 3362–3376 (2022) 

https://feets.readthedocs.io/en/latest/tutorial.html


3366 D. Mistry et al. 

M

Table 4. The hyperparameters explored for each ML algorithm. 

RF hyperparameters Description 

n estimators Number of decision trees 
max features Maximum number of features provided to each tree 
max depth Maximum number of binary split levels in each tree 

ADB hyperparameters 

n estimators Same as for RF 
learning rate Weight assigned to each classifier at each boosting iteration. This determines the impact of each tree on the final outcome 
max depth Same as for RF 

XGBoost hyperparameters 

n estimators Same as for RF 
min child weight Minimum sum of weights of all observations in a child node 
gamma Nodes are split only when there is a reduction in the error defined by a loss function. Gamma specifies the minimum loss 

reduction required to make a split 
Subsample Fraction of examples to be randomly sampled for each tree 
colsample bytree Similar to max features in RF 
max depth Same as for RF 

SVMs hyperparameters 

Kernel See text: ‘radial basis function (RBF)’ 
Kernel coefficient ( γ ) Defines how far the influence of a single training example reaches, where the values can be seen as the inverse of the radius 

of influence 
Error penalty (C) Controls the cost of misclassification on the training data. Small C = soft margin, large C = hard margin 

KNNs hyperparameters 

n neighbours Number of nearest neighbours to use 

MLP hyperparameters 

learning rate Controls how much to change the model in response to the error each time the model weights are updated 
Number of hidden layers Number of hidden layers 
Number of neurons Number of units (neurons) within a given hidden layer 
Activation function Converts the output of a neuron into a form that serves as input for the next. Used to introduce non-linearity to a network 
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.2 Fine-tuning 

ontrolling how the algorithms learn from the data set to generate
redictive models is done by tuning their hyperparameters. They are
lgorithm settings that are set prior to the learning process. The aim
ith hyperparameter tuning is to impro v e model performance whilst

he risk of o v erfitting (i.e. learning the noise in the data) is reduced.
he hyperparameters explored for each of the algorithms tested are
s given in Table 4 . 

.3 Classification tasks 

he classes assigned by the Gaia team are not mutually e xclusiv e. F or
xample, quasi-stellar objects (QSOs) are extremely luminous AGN.
rom the Gaia assigned classes, many variations of class grouping
ould be put forward for ML classification algorithms to distinguish.
wo such groupings are defined by the following classification tasks,

isted as transient class followed by the number of data set samples
n brackets. 

(i) Binary classification – CV (613) or not CV (4084). 
(ii) Four-class classification – this comprises of the most populous

ransient types in the data set: AGN (which includes QSOs and
L Lac) as a single class (929), CVs (613), all different SNe (2713),
nd YSOs (184). 

The tasks are assigned to the ML algorithms and their performance
s e v aluated. The classification tasks were first performed with
oth the light-curve extracted features and supplementary features.
o we ver, between 58 per cent and 90 per cent of data are missing for

upplementary features. This was either due to unsuccessful cross-
NRAS 517, 3362–3376 (2022) 
atching of targets with EDR3 – cross-matching was unsuccessful
or 90 per cent of SNe, 23 per cent of CVs, and < 1 per cent of AGN
nd YSOs, respectively – or certain metadata not being available
here cross-matching was successful. For example, parallax mea-

urements may not be available if the target is too faint or distant
or an accurate measurement. Therefore we felt it necessary to also
erform classification tasks with light-curve extracted features alone.
hese implementations can then be compared with other works
here classification has been performed using light-curv e-deriv ed

eatures alone. 

.4 Data pr e-pr ocessing 

rior to ingestion into ML algorithms, the associated data sets require
ome level of preparation. Examples within each task specific data set
ontain missing data for several features. The strategy employed here
s to replace missing values with the mean value of the feature column
mean imputation; Khan, Khan & Singh 2018 ). Feature scaling is
mployed for all except the ensemble learning algorithms (i.e. RF,
DB, and XGBoost) so that features with a larger range of values do
ot impart more influence on the model during training and for faster
onvergence to error minimum for gradient descent algorithms. We
tandardized the data to achieve zero mean and unit variance (or
qui v alently, standard deviation; Muhammad Ali & Faraj 2014 ). 

.5 Train–test split 

raining and e v aluation of a ML model require a separate training
nd test set. The algorithms are trained on the training set to generate



A machine learning search for CVs in Gaia 3367 

a  

s  

s  

a
(  

t  

y

3

M
p
c
d
2
c
s
m  

C
i  

f  

i  

p
s  

(
m
w
a
w  

t

3

T  

(  

m
r  

(  

c

3

I  

a  

t
t  

u  

m
t

3

T
p  

t  

t  

f
p
a
c  

o  

t  

(
p  

r

3

T
p  

T  

n  

o  

p
t  

m  

c  

s  

c
a  

a

3

T
t
t  

t
p  

v  

i
a  

t
t  

e  

i  

p
t  

l
T  

t  

c  

A  

c
w  

w  

e

4

T  

f
b
m
t
m
b  

r  

t  

b  

o  

F

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/517/3/3362/6747149 by Liverpool John M
oores U

niversity user on 07 N
ovem

ber 2022
 model to be e v aluated on the test set. The task specific data sets are
plit 50/50 into a training set and test set in a stratified manner – the
ame proportion of each class is represented in each of the training
nd testing sets. The split is performed before the pre-processing 
imputation and feature scaling) stages to a v oid information from
he test set being present within the training set (data leakage) and
ielding extremely biased results on model performance. 

.6 Optimal hyperparameter search 

odel performance depends significantly on the selection of hy- 
erparameters. Testing all combinations manually for the optimal 
ombination is unfeasible. Therefore the GridSearchCV and Ran- 
omisedSearchCV functions from scikit-learn’s (Pedregosa et al. 
011 ) model selection PYTHON package were used to loop through 
ombinations of predefined hyperparameters to identify an optimal 
et of hyperparameters for a given model. The cross-validation 
ethod is used to e v aluate the performance of each combination.
ross-validation involves randomly dividing a set of observations 

nto k groups, or folds, of approximately equal size. For each unique
old, the algorithm is trained and a model built on k-1 folds, this model
s then e v aluated on the remaining fold (v alidation set) with a chosen
erformance metric. This is repeated until each of the k-folds has 
erved as a validation set. The average of the k recorded accuracies
or other chosen metric) is the cross-validation score serving as the 
odel performance metric. For this work a 10-fold cross-validation 
as implemented. The training set was entered into these functions 

nd the best combination of hyperparameters for a given algorithm 

as found. The model with this combination was then e v aluated on
he test set. 

.7 Classifier performance 

he number of true positives (TP), true ne gativ es (TN), false positives
FP), and false ne gativ es (FN) serv es as the basis for performance
etrics used to assess model performance. These quantities first 

equire the definition of the positive class, this is the class of interest
CV in this case); and the ne gativ e class, non-CVs in the binary
lassification task, and all other classes in the multiclass case. 

.7.1 Confusion matrix 

t is common to present the redTP, TN, FP, and FN quantities in
n N × N table known as a confusion matrix (where N represents
he number of classes). This construct allows us to easily identify 
he number of TPs, TNs, FPs, and FNs. These values may then be
sed to e v aluate the performance of our binary and multiclass ML
odels using the class specific precision, recall, and F1-score; and 

he o v erall model accurac y and balanced accurac y. 

.7.2 Pr ecision, r ecall, and F1-scor e 

he precision is defined as the fraction of examples our model 
redicted as belonging to the positive class that do actually belong to
his class: TP/(TP + FP). In other words, it tells us how much we can
rust our models predictions of the positive class. The recall is the
raction of examples of the positive class that our model correctly 
redicted as belonging to this class: TP/(TP + FN). This metric 
ssesses the model’s ability to identify all members of the positive 
lass. The F1-score is the harmonic mean of precision and recall for
ur positive class, and is useful in finding the best trade-off between
hese quantities. The highest possible value of the F1-score is 1
100 per cent), indicating perfect precision and recall, the lowest 
ossible value (0) relates to a score of 0 for either precision or
ecall. 

.7.3 Accuracy and balanced accuracy 

he accuracy is the fraction of all examples whose class was correctly 
redicted by the model. For binary classification this is (TP +
N)/(TP + TN + FP + FN), for a multiclass situation we sum the
umber of true positives for each class and divide by the total number
f examples. The accuracy returns an overall measure of the model’s
redictive capability. Should we only be concerned with assigning 
he most number of examples to their correct class, accuracy is a good

etric. Ho we ver, under this metric, strong classification errors for
lasses with few examples to their name will be hidden. Therefore,
hould we be concerned with finding a model that has a strong
lassification performance across all classes, we may use ‘balanced 
ccuracy’ that can account for this class imbalance. This is the
rithmetic mean of the recalls for each class. 

.7.4 Area under the curve of the receiver operating characteristic 

he receiver operating characteristic (ROC) curve allows us to see 
he trade-off between sample purity and completeness plotted as 
he true positive rate (TPR; also called recall) as a function of
he false positive rate (FPR; the fraction of examples incorrectly 
redicted as belonging to the positive class: FP/(TN + FP)) for all
alues of a threshold probability abo v e which a positiv e classification
s made. More specifically, for each example, algorithms return 
 probability of belonging to a certain class. The probability is
hresholded such that examples with probabilities equal or greater 
han the threshold are mapped to the positive class and remaining
xamples are mapped to the negative class. Therefore the ROC curve
s an e v aluation of TPR and FPR as we continuously vary this
robability threshold. This can be used to determine the appropriate 
hreshold for a given study such that we can adjust for our desired
evel of purity and completeness depending on our science case. 
he goal of classification is to maximize the TPR while minimizing

he FPR. For the binary classification tasks, the area under the
urve (AUC) of the ROC can be used to assess model performance.
 value of 1 for the AUC indicates a perfect model, capable of

orrectly assigning the correct class prediction to all examples, 
hen AUC = 0.5, the model is no better than a random guess,
hile AUC = 0 corresponds to incorrectly predicting classes of all

xamples. 

 RESULTS  

ables 5 and 6 show the model evaluation scores for the binary and
our-class classification tasks. The scores for models trained with 
oth light-curv e e xtracted and supplementary features (full feature 
odels) are shown without brackets, while the scores for models 

rained with light-curve extracted features alone (light-curve only 
odels) are within brackets. The scores shown are the accuracy, 

alanced accuracy, and with respect to the CV subclass, the precision,
ecall, and F1-score. The choice of best performing model is based on
he F1-score for the CV class. This metric was chosen as it considers
oth the need to minimize FPs, which is important for the efficient use
f telescope time for target follow-up, and a requirement to minimize
Ns. 
MNRAS 517, 3362–3376 (2022) 
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Table 5. Binary task classification scores for ML models as measured on the 
test set. Scores without brackets relate to models using both light curve and 
supplementary features, while those in brackets are for models that used only 
light-curv e e xtracted features. Random forest (RF) was implemented with 
100, 250, 750, and 1000 trees denoted by RF then the number of trees; other 
abbreviation are ADA – AdaBoost, MLP – multilayer perceptron, KNN –
k-nearest neighbour, and SVM – support vector machine. 

Model Accuracy Balanced CV CV CV 

accuracy precision recall F1-score 

RF100 0.955 0.870 0.88 0.76 0.81 
(0.938) (0.824) (0.82) (0.67) (0.74) 

RF250 0.955 0.870 0.89 0.75 0.81 
(0.939) (0.829) (0.82) (0.68) (0.74) 

RF500 0.955 0.868 0.89 0.85 0.81 
(0.937) (0.827) (0.81) (0.68) (0.74) 

RF750 0.955 0.867 0.89 0.75 0.81 
(0.937) (0.826) (0.81) (0.67) (0.74) 

RF1000 0.956 0.870 0.90 0.75 0.82 
(0.938) (0.826) (0.82) (0.67) (0.74) 

ADA 0.959 0.874 0.91 0.76 0.83 
(0.932) (0.840) (0.75) (0.72) (0.73) 

XGBoost 0.962 0.883 0.92 0.78 0.84 
(0.943) (0.823) (0.86) (0.67) (0.76) 

MLP 0.932 0.824 0.78 0.68 0.72 
(0.932) (0.822) (0.78) (0.67) (0.72) 

KNN 0.909 0.812 0.65 0.68 0.66 
(0.900) (0.812) (0.60) (0.69) (0.64) 

SVM 0.817 0.787 0.39 0.75 0.52 
(0.871) (0.802) (0.51) (0.71) (0.59) 

Table 6. Four-class classification scores. Score with and without brackets, 
and abbreviations are as described in Table 5 . 

Model Accuracy Balanced CV CV CV 

accuracy precision recall F1-score 

RF100 0.964 0.941 0.92 0.85 0.88 
(0.922) (0.835) (0.80) (0.79) (0.80) 

RF250 0.964 0.936 0.92 0.85 0.88 
(0.924) (0.835) (0.81) (0.79) (0.80) 

RF500 0.965 0.941 0.92 0.85 0.88 
(0.923) (0.830) (0.80) (0.80) (0.80) 

RF750 0.965 0.942 0.92 0.86 0.89 
(0.923) (0.833) (0.80) (0.80) (0.80) 

RF1000 0.965 0.942 0.92 0.86 0.89 
(0.923) (0.833) (0.80) (0.80) (0.80) 

ADA 0.959 0.925 0.90 0.82 0.86 
(0.897) (0.798) (0.75) (0.75) (0.75) 

XGBoost 0.962 0.928 0.91 0.84 0.87 
(0.922) (0.820) (0.83) (0.77) (0.80) 

MLP 0.926 0.873 0.80 0.76 0.78 
(0.910) (0.793) (0.73) (0.71) (0.76) 

KNN 0.895 0.795 0.90 0.48 0.63 
(0.898) (0.730) (0.86) (0.67) (0.75) 

SVM 0.891 0.798 0.62 0.70 0.66 
(0.874) (0.758) (0.76) (0.61) (0.68) 
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.1 Binary classification 

.1.1 Full feature model 

he best performing binary task full feature model was XGBoost,
rained with 150 decision trees at a learning rate of 0.1 and maximum
ree depth of 6. The model outperformed each of the others with an
1-score of 84 per cent, the AdaBoost and RF implementations
NRAS 517, 3362–3376 (2022) 
ollow closely behind (81–83 per cent). There is though little
ifference between the top two models; use of the McNemar’s test to
ompare the XGBoost and AdaBoost models show both classifiers
ake errors in much the same proportion (for α = 0.05; p = 0.175).
he confusion matrix (left-hand panel of Fig. 1 ) indicates 69 of the
07 CVs in the test set were misclassified by the XGBoost model,
hile of the 258 examples predicted as CVs only 20 were not. The

orresponding ROC curve is plotted in the left-hand panel of Fig. 2 ,
ith AUC score of 0.975. The importance of each feature for a given
odel can be given by the feature importance scores. The 20 features
ith the largest effect on the model’s predictive accuracy are plotted

n the left-hand panel of Fig. 3 . The number of observations greater
han 2 mag brighter than the median of a rolling window has by far
he greatest influence in discriminating between the classes. 

.1.2 Light curve only model 

he best performing binary task light curve only model was XGBoost
CV F1-score of 76 per cent). The implementation was performed
ith 150 decision trees at a learning rate of 0.2 and maximum tree
epth of 6. The RF models follow closely behind (CV F1-score
f 74 per cent); use of McNemar’s test again showing XGBoost
akes errors in the same proportions (0.766 ≤ p ≤ 0.88). The CV
1-score performance for this XGBoost model drops compared to

he full feature model by 8 percentage points due to an increase in
he number of FN from 69 to 93 and an increase in the number of
P to 36 from 20. Out of the 307 test set CVs, 214 were correctly

dentified (see right-hand panel of Fig. 1 ). The model AUC score
lso drops from 0.975 to 0.9622 (see right-hand panel of Fig. 2 ). The
umber of observations greater than 2 mag brighter than the median
f a rolling window remains the feature that has by far greatest
nfluence in discriminating between the classes (right-hand panel of
ig. 3 ). 

.2 Four-class classification 

.2.1 Full feature model 

 750-tree RF model performs equally well or better than its
ompetitors in each of the performance metrics e v aluated for this
our-class full feature task. The F1-score for CV classification stands
t 89 per cent though the remaining ensemble learning models follow
losely behind. The model was trained such that only 25 per cent of
eatures (selected at random) could be used within each tree, with a
aximum tree depth of 25. The confusion matrix (left-hand panel

f Fig. 4 ) displays the strong performance in distinguishing CVs
rom other classes. Those CVs that were misclassified were mostly
redicted to be of the SNe class (39/44). The left-hand panel of Fig. 5
resents histograms of the probabilities of class assignment for this
odel. The vast majority of test set examples, 274 out of the 285

redicted CVs, were predicted as such with probabilities greater than
0 per cent. 79 of the 285 were predicted as CVs with a probability
f 95 per cent or abo v e. All but three examples predicted as YSOs
re classified with probability of 50 per cent or higher. 

According to the feature importances (left-hand panel of Fig. 6 )
he temporal baseline of observations ( detected time diff ) has the
reatest influence in discriminating between classes. In addition to
aia ’s observing strategy and their pre v alence in the data set, this

an be partially explained by the properties of the majority class, SN
they are too distant for their progenitors to be observable by Gaia ,

fter several months they become too faint to be observable abo v e the
ight from their host galaxy. Of the supplementary features, parallax
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Figure 1. Confusion matrices (CMs) for the best performing binary task full feature (left) and light curve only (right) models. In each case this was an XGBoost 
model – achieved the highest F1-score. The CMs show the numbers corresponding to precision, recall, and accuracy scores in Table 5 . There are o v er six and a 
half times more non-CVs in our test set than CVs, raising the o v erall accurac y score, the balanced accurac y score is more able to account for this class imbalance. 

Figure 2. ROC curves for the full feature and light curve only binary task models achieving the highest CV F1-scores. On the left is the curve for the full 
feature model, while on the right is that for the light curve only model. The full feature model area under the curve is 0.975, for the light curve only model this 
is 0.9622, indicate a strong performance in each case. 

Figure 3. Feature importance scores for the 20 most influential features within the best performing full feature and light curve only binary task models. Feature 
importance refers to a class of techniques for assigning scores to input features to a predictive model, in this case XGBoost, that indicates the relative importance 
of each feature when making a prediction. The most important feature for each of the full feature (left) and light curve only (right) models is n peaks rm 2 7 –
number of instances of data points at least 2 mag brighter than the median of a rolling window of seven epochs. Feature definitions are contained in Tables 1 –3 . 
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nd proper motion are expected to provide the greatest ability in class
istinction, with the ability to distinguish extragalactic sources from 

hose nearby. They both appear high in feature importances, as do 
he right ascension and declination error features. These errors are 
oticeably higher for SNe ( ∼12.8 mas) than for remaining classes
 ∼0.08–0.17 mas) attributed to the ability to measure these properties
eing affected by crowding (including contamination of light from 

he host galaxy). 
MNRAS 517, 3362–3376 (2022) 
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Figure 4. Confusion matrices for the best performing full feature and light curve only models in the four-class classification task. On the left is the 750-tree RF 
model trained with full complement of features. 262 of the 306 CVs in the test set were successfully classified (true positives), the majority of those misclassified, 
39 of 44, were predicted to be SNe. On the right is the 1000-tree RF model trained with light curve derived features only. Less true positives (247) compared to 
the full feature model. Also an increase in the number of false positives from 23 to 56, of which the majority were AGN and SNe. 

Figure 5. The number of test set examples predicted as CV (orange), AGN (blue), SNe (green), and YSO (red) separated in bins of probability of class 
association calculated for the full feature and light curve only four-class models with the highest F1-scores. Each tree in the RF model predicts class probabilities 
for each example – these are the fraction of samples of the same class in the associated leaf e v aluated during training. These probabilities are averaged for the 
forest prediction. Class probabilities for the full feature RF model (left) show nearly all examples are assigned classes with greater than 50 per cent probability, 
the majority which are in the 95–100 per cent bins. For the light curve only feature four-class model (right), we can say like wise, ho we ver the YSO class 
assignment probabilities are more uncertain. 

Figure 6. The top 20 features based on feature importance scores for the four-class full feature and light curve only models with the highest F1-scores. The full fea- 
ture model best performing feature (left) was the time between the first and last observation of the target, followed by the error in the right ascension, proper motion, 
and the error in the declination. The same best performing feature is present for the light curve only model (right). Feature definitions are contained in Tables 1 –3 . 
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.2.2 Light curve only model 

 1000-tree RF model performed the best, achieving the highest
V F1-score (81 per cent) for the four-class light curve feature
nly task, though the remaining ensemble learning models follow
NRAS 517, 3362–3376 (2022) 
losely behind. The model was implemented with a maximum
ree depth of 30 and 75 per cent of randomly selected features
vailable for each tree. While 247 of the 306 CVs have been
orrectly classified (right-hand panel of Fig. 4 ), the contamination
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f other classes into those targets predicted as CV increases from
 to 18 per cent compared to the full feature model. Like the full
eature model, misclassified CVs are mostly assigned the SNe label. 
he histograms of class assignment probability (right-hand panel 
f Fig. 5 ) show the majority of CVs are predicted as such with
reater than 50 per cent probability, though more examples are 
ow present in the tail of the distribution. According to the feature
mportances (right-hand panel of Fig. 6 ) the temporal baseline of ob-
ervations ( detected time diff ) also has the greatest influence in class
istinction. 

 DISCUSSION  

.1 Semi-regular, short-duration outbursts 

he light-curve feature that logs the number of epochs that are at least
 mag brighter than the median of a rolling window of seven epochs,
 peak rm 2 7 , outperforms all others in feature importances for
he best performing full feature and light curve only binary models. 
he semi-regular, short-duration outbursts of DNe are ef fecti vely 
icked out using this feature as found during its development. Such 
haracteristics are more likely to be identified within Gaia ’s transient 
lerts pipeline than the less frequent alert triggering features of 
ther CV subtypes, so the high ranking of the feature may be
xpected. Indeed, a coordinate cross-match with ‘The Catalogue and 
tlas of Cataclysmic Variables’ 5 (Downes & Shara 1993 ; Downes, 
ebbink & Shara 1997 ) reveals 77 per cent of successfully cross-
atched data set CVs are of listed as being DNe. Exploration of the

rue positives for each of the best performing binary models reveals 
he majority display the expected DNe morphology (78 per cent 
nd 73 per cent for the full feature and light curve only models,
espectively). 

.2 Limited epoch photometry 

 significant fraction of our data set is constructed from target 
ight curves with few epochs of observation, 36 per cent of targets
ontain five or fewer data points in their light curves. This is due
o the combination of Gaia ’s sampling frequency and systems too 
aint to be observed by Gaia until a brightening event propels them
nto visibility. Transient phenomena more likely to display this trait 
ill be those exhibiting a rapid and large amplitude brightening, 

or example SNe and the CV subclasses of classical and DNe. 
onsidering SNe comprise the majority (58 per cent) of our data 

et, this may provide an explanation for the strong performance 
f detected time diff (temporal baseline of observations) in class 
istinction (see Fig. 6 ). It may also explain the difficulty that the
est performing four-class models have in distinguishing CVs from 

Ne. Of the CVs misclassified by the best performing full feature 
our-class model, 87 per cent (39 of 45) are predicted to belong to
he SN class, while for the corresponding light curve only model, 
8 per cent (40 of 59) are predicted as SNe. Similarly, the majority
f misclassified SNe in each of those models are predicted to be of
he CV class. Inspection of the CVs misclassified as SNe reveals 
he majority possess light-curve morphologies that are present for 
he SNe samples – those with few data points (2–10 observations) 
nd those exhibiting an approximately exponential decline with no 
re-explosion data. 
 ht tps://archive.st sci.edu/prepds/cvcat /index.html 

X  

6  

8  

f

.3 Metadata and high imputation 

 McNemar’s test suggests the use of metadata has an impact
n model performance when comparing the full feature and light 
urve only XGBoost models ( p = 10 −7 ). Ho we ver, the small
ifference in classification accuracy between these two binary models 
1.9 per cent) indicates that the addition of surv e y metadata pro vides
inimal benefit in distinguishing CVs from non-CVs. This is also 

hown by the small difference in the AUC (1.3 per cent) between these
odels, with both performing strongly by this measure (0.975 and 

.962 for the full feature and light curve only models, respectively).
he feature importances for both binary models further illustrate this 
oint – the influence of supplementary features in class distinction 
s dwarfed by the light-curv e-deriv ed n peaks rm 2 7 feature. Either
he metadata is unimportant or mean imputation has diluted the influ-
nce this data has on class distinction. The latter seems more likely
hen presented with pair plots of Fig. 7 that show transient classes in
etadata feature space. This plot is of particular use in interpreting

he performance of algorithms that rely on class separation within fea- 
ure space (e.g. KNNs and SVMs). Evident is the distinction between
SOs from CVs, SNe, and AGN in colour space (bp − rp, bp − g , g
rp); and CVs and YSOs from SNe and AGN when proper motion is

onsidered. 
Use of mean imputation has its drawbacks, it ignores relationships 

etween features, the correlation for example, and reduces the 
ariance of the variable, thereby introducing bias to our model. Fur-
hermore, the strategy may not be suitable for several supplementary 
eatures. F or e xample, the parallax may not be measurable because
he object is too far away (too small to measure); and a missing value
or proper motion can either be due to the object having no proper
otion to measure or be due to it being too distant to be measured.
 more appropriate strategy could be to replace these with a value of

ero – a more accurate quantity for the parallax and proper motion
f the most distant sources – though this does not account for the
navailability of these features due to an unsuccessful cross-match 
ith EDR3. While alternative methods of handling missing data 

ould be employed (such as those summarized in Soley-Bori 2013 ),
 large amount of data is missing for the supplementary features
58–90 per cent), this can limit the ef fecti v eness of an y such strate gy
J ̈ager, Allhorn & Bießmann 2021 ). Fig. 7 shows how photometric
olour information can be an important property for class distinction, 
his is readily available in multiband surv e ys such as ZTF and can be
sed to help alleviate the issue. 

.4 Comparison with other work 

he results of our investigation compare fa v ourably with similar
lassification attempts where CVs are included as class. Neira 
t al. ( 2020 ) experiments with CRTS light curves in their eight-
lass classification model yielded an F1-score of 75 per cent for
he CV class, while this work exceeds this in both the binary
76 per cent) and four-class (80 per cent) tasks where only light-
urve features are used. S ́anchez-S ́aez et al. ( 2021 ) e v aluated
hree different algorithms in their tiered classification attempts 
o distinguish between CVs, SNe subclasses, AGN, YSOs, and 
ariable star subclasses from a data set constructed from ZTF light
urves and colours from AllWISE. Their CV recall scores for their
mplementation of the balanced RF (Chen, Liaw & Breiman 2004 ),
GBoost, and MLP classifiers are 68 per cent, 72 per cent, and
1 per cent, respectively. This compares with 67 per cent and
0 per cent for our light curve only best performing binary and
our-class models, respectively. These comparisons do not however 
MNRAS 517, 3362–3376 (2022) 
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Figure 7. The pairplot allows us to see both the distribution of the single variables (plots shown diagonally from top left to bottom right) and relationships 
between two variables (off diagonal plots). This is shown for the bp − rp, bp − g , and g − rp colours, and proper motion. YSOs are redder in colour compared to 
SNe, CVs, and AGN, observed in both the single variable distribution and relationship plots, thus allowing for a significant level of class separation. Introduction 
of proper motion allows for separation of the more distant (extragalactic) SNe and AGN from the closer (Galactic) CV and YSO population. 
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ake into account differences in the instruments used to collect
he data, which translates to the nature of photometric data (e.g.
bserving cadence, waveband). Furthermore comparisons do not
onsider differences in transient classes to classify and ML methods
mployed. 

.5 Gaia unknowns 

.5.1 Model predictions on unknown sample 

he model that produced the highest CV F1-score o v erall – full
eature four-class model (RF with 750 trees) – is used to make
lass predictions of targets labelled as ‘unknown’ (unclassified)
ithin the Gaia alerts stream. As of 2021 December, 13 241 targets
ere of ‘unknown’ class. Of these, the model predicted 2833

21 per cent) to be of the CV class, 1928, 6611, and 1869 were
lassified as AGN/QSO, SNe, and YSOs, respectively . As mentioned
NRAS 517, 3362–3376 (2022) 
n Section 2 , the unknown sample will contain several minority
lasses (e.g. microlensing and tidal disruption events) not included
n the test set used to e v aluate model performance. We aim to
ssess the impact this has on our model’s ability to generalize
o the unknown sample, and new transient alerts in general. This
ill require spectroscopic observations for a statistically significant

raction of our 2833 predicted CVs to identify their true transient
lassification. 

.5.2 Spectroscopic follow-up 

e are therefore undertaking a pilot study to assess the performance
f our model and the methods used by obtaining spectroscopic
bservations to classify those targets that can be observed with
he Spectrograph for the Rapid Acquisition of Transients (SPRAT)
ow-resolution spectrograph (Piascik et al. 2014 ) mounted on the
iverpool Telescope (LT; Steele et al. 2004 ). These spectra co v er

art/stac2760_f7.eps
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Table 7. Classifications based on the Liverpool Telescope (LT)/Spectrograph for the Rapid Acquisition of Transients (SPRAT) spectroscopy of several targets 
labelled as ‘unknown’ (without a transient class assignment) within Gaia Science Alerts (GSA) and predicted as CV by the RF750 model. 

Target Classification Comment 

Gaia 16cfn CV (DN) Clear Balmer and He I emission. He I λ4922 blended with Fe II λ4924. Characteristic of DNe 
subtype 

Gaia 17ccv CV (decline from DN outburst) CV on decline from outburst, faint H α and H β emission, He II λ4686 in emission. Double peaked 
lines – indicative of high inclination system 

Gaia 17dfn CV Balmer and He I λ4471 lines in emission 
Gaia 18auz CV Clear Balmer emission with several faint He I lines in emission 
Gaia 18dgt CV (DN) Broad Balmer emission with lines of He I . He I λ4922 blended with Fe II λ4924. Characteristic of 

DNe subtype. Double peaked emission, possible high inclination system 

Gaia 18dhv CV Balmer, He I and He II in emission 
Gaia 19bzn CV Clear Balmer emission; faint lines of He I and He II 
Gaia 19cln CV Clear Balmer emission; lines of He I and He II also present; He I λ4922 blended with Fe II λ4924 
Gaia 20air CV Clear Balmer emission; lines of He I and He II also present; He I λ4922 blended with Fe II λ4924 
Gaia 20bjd CV Clear Balmer emission; lines of He I also present; He I λ4922 blended with Fe II λ4924 
Gaia 20cpq CV (DN) Clear Balmer emission; lines of He I and He II also present; He I λ4922 blended with Fe II 
Gaia 21beh CV Outburst spectrum. Possible very faint H α absorption, clear absorption in remaining Balmer lines 

and He I λ4471, He II λ4686 in emission (faint) 
Gaia 21cgv CV Balmer and He I emission lines, faint Fe II λ5169 
Gaia 21cul CV Clear Balmer and He I emission lines 
Gaia 21eyb CV Balmer, He I , He II , and Fe II emission lines, He I λ4922 blended with Fe II λ4924 

Table 8. List of sources list as being of ‘unknown’ type by GSA that our 
four-class full feature RF model predicted as belonging to the CV class. The 
full table of 2833 sources is available as supplementary material online. 

Gaia object name Right ascension Declination 

Gaia 17avy 343 .52368 65 .09345 
Gaia 18cdn 263 .44916 − 30 .53935 
Gaia 20cjd 223 .95987 − 64 .73914 
Gaia 20eno 271 .03934 − 76 .22711 
Gaia 21bnn 50 .13837 6 .71808 
Gaia 20fax 338 .65765 58 .42598 
Gaia 20efe 120 .77764 − 17 .40920 
Gaia 19dal 312 .73430 31 .95018 
Gaia 21bqw 120 .07837 − 38 .82770 
Gaia 21bby 291 .18503 − 34 .15307 
... ... ... 
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 wavelength range of 4000–8000 Å with a resolution of 18 Å, 
orresponding to a resolving power R = 350 at the centre of this
ange. A limit on telescope time and the need for high-quality 
pectra require of an efficient observation strategy . Accordingly , 
bservations are limited to targets with a median brightness no fainter 
han 18th mag. Furthermore, only those targets that rise highest in the
ky – visible for longer at a lower airmass – are considered. Therefore 
e limit our sample to those with a declination corresponding to 

n altitude no lower than 50 ◦ when at transit altitude. These cuts
eave a sample of 220 targets, 7.8 per cent of the total catalogue,
epresenting a statistically significant fraction with which we can 
alidate the performance of our model. We have spectroscopically 
lassified 15 of this sample, all of which we can confirm are of
he CV class. Details of these targets are given in Table 7 , while
he associated SPRAT spectra are shown in Fig. 8 . Classification
s a CV is based on the presence of Balmer and/or He I /He II lines.

here the signal-to-noise ratio of the spectrum permits, subtype 
lassification is performed. Full details of the spectral features we 
sed for classification are given in Szkody ( 1998 ) and Hou et al.
 2020 ). 
 C O N C L U S I O N S  A N D  F U T U R E  WO R K  

he advent of wide-field synoptic surveys has revolutionized time 
omain astronomy with their ability to detect millions of transient 
vent per night. The use of ML is recognized as the best method
f source classification for this deluge of transient sources. ML 

lgorithms have been applied widely to data from several surveys 
ncluding CRTS and ZTF photometry. In this work we applied ML
echniques to the transient stream of GSA, a resource not fully
xplored with ML. Our focus lies in the identification of CV stars,
 class of transients providing ideal laboratories for the study of
ccretion and binary evolution. Using features extracted from light 
urves of classified sources and associated metadata as input, we 
 v aluated the use of RF, Adaboost, XGBoost, KNNs, SVMs, and an
LP in performing several tasks. These are the identification of CVs

n the context of binary classification (CV or non-CV) and a four-class
ask (CV, AGN, SNe, and YSOs). Each of these tasks was performed
ith and without metadata (e.g. Gaia parallaxes and colour) during 

raining. By comparison of the F1-score of all models across both
asks, the four-class RF model trained with both light curve and
etadata-based features performed the best with an F1-score of 

9 per cent when e v aluated on the test set. We applied this model to
he list of unclassified targets within GSA. The model predicted 2833
f these ‘unknowns’ to be of the CV class. We are now undertaking
 spectroscopic observing campaign to spectroscopically classify a 
tatistically significant sample of these targets to validate our models 
erformance. So far we have been able to spectroscopically confirm 

5 targets to be of the CV class. 
The use of data beyond light curve features seems necessary in

rder to achieve classification performance close to F1 = 90 per cent.
o we v er, with light-curv e features alone the performance of the
odel compared well with other works, despite more sparsely 

ampled light curves. The lessons learnt during this exploration of 
he GSA resource and the classified targets from our spectroscopic 
atabase of targets will be useful in the next phase of our research.
his will be the application of ML to the multiband high-cadence 

ight curves of the ZTF survey. 
The next phase will be an opportunity to explore methods of

andling class imbalance and missing data. Class imbalance, present 
MNRAS 517, 3362–3376 (2022) 
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Figure 8. Spectrograph for the Rapid Acquisition of Transients (SPRAT) spectra of targets in Table 7 . Spectral lines indicated in plots, labelled in the legend 
for each. 

w  

r  

A  

g  

o  

(  

2  

b  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/517/3/3362/6747149 by Liverpool John M
oores U

niversity user on 07 N
ovem

ber 2022
ithin our data set (see Section 2.1 ), tends to bias classifiers to
ecognize the o v ersampled class more than the undersampled class.
lgorithm-specific solutions exist, for example, within RF one may
row each tree with the same number of targets per class by
NRAS 517, 3362–3376 (2022) 
 v ersampling or undersampling using the bootstrap sampling process
Fern ́andez et al. 2018 ). Data augmentation methods (e.g. Wen et al.
020 ) to generate new examples based on existing examples will also
e explored. Our use of mean imputation for handling missing data

art/stac2760_f8a.eps
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Figure 8. continued. 
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s simple and parameter free. Whilst this method can cause biases
see Section 5.3 ), we deemed the exploration of several imputation 
ethods beyond the scope of this work, though it is something 
e will explore in work with ZTF data. The reliability of class

abels will also be important for the next research phase and once
SST becomes operational. Whilst there is confidence in the methods 
mployed in the labelling of examples used here (see Section 2.1 ), we
cknowledge that labelling errors do occur. This can add noise to the
ata set, deteriorating classifier performance (Frenay & Verleysen 
014 ) and reducing the ef fecti veness of performance optimization 
echniques such as hyperparameter tuning. 

The methods employed in this work are transferable to the data 
vailable from the ZTF surv e y. This data should provide the necessary 
nformation to identify subclasses within the CV population and pick 
ut rare varieties that further our understanding of binary evolution. 
 or e xample, the ∼2 d cadence provides the sampling necessary

o recognize the defining characteristics of DNe subtypes, such as 
he superoutbursts of SU UMa systems (e.g. Szegedi et al. 2022 )
nd the standstills of Z Cam systems (Simonsen et al. 2014 ); and
dentify characteristics present in outbursting AM CVns, such as the 
hort-duration rebrightenings on the fading tail of a superoutburst 
Kato & Kojiguchi 2021 ). Our ability to automatically distinguish 
etween the different CV subtypes will depend upon several factors, 
ne of which is the quality of features. Several features used in
his work have so far shown their ef fecti veness at class distinction,
thers may become more significant once computed with the higher 
adence data, while the development of features geared towards the 
N
dentification of specific subtypes should provide further benefit. The 
re v alence of a given subtype within the data set is another factor
hat we expect to impact classifier performance. The sensitivity of a
urv e y to certain CV subtypes results in the under-representation of
ovae, AM CVns and nova-likes compared to DNe due to the rarity
f eruptions, faintness, and photometric stability , respectively . This 
s where the methods of handling class imbalance described in the
revious paragraph will become invaluable. The methods used here 
nd the lessons learnt will aid in our goal to separate the rare CV
ystems from those more common and hopefully lead to a greater
nderstanding of binary evolution. 
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ATA  AVA ILA BILITY  

he full list of unclassified GSA sources that our four-class full
eature RF model predicted as belonging to the CV class is provided
s supplementary material online. A shortened version is shown in
able 8 . The LT spectroscopic data for the sources in Table 7 can be
cquired from https:// telescope.livjm.ac.uk/ cgi-bin/ lt search . Both
aw and calibrated data files can be obtained by entering the object
ame in the appropriate field. 
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