John, A, Paraskevadakis, D, Bury, A, Yang, Z, Riahi, R and Wang, J
An integrated fuzzy risk assessment for seaport operations
http://researchonline.ljmu.ac.uk/1787/

Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work)
An integrated fuzzy risk assessment for seaport operations. SAFETY SCIENCE, 68. pp. 180-194. ISSN 0925-7535

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk
Figure Captions:

Figure 1: Sea-Land Interface of Maritime Transportation Systems

Figure 2: Framework for Risk Assessment of Seaport Operations

Figure 3: Generic Model for Disruption of Seaport Operations

Figure 4: Fuzzy Triangular Membership Function

Figure 5: Example of Converting Fuzzy Ratings to 5 Non-normalized grades

Figure 6: A Specific Model for Disruption Risks of a Seaport Operation

Figure 7: Sensitivity Analysis of the Model Output to the Variation of Each Sub-Criterion
FIGURE 1

Open Sea --- Water --- Land

Navigable waterways

Intermodal connection, Road, rail, pipelines, bridges

Public infrastructure, Highway, rail, pipelines system

Terminal operations

Port environment

FIGURE 2
Define a scaling system for likelihood and severity using fuzzy numbers

Estimate weight of each attribute in the hierarchy

Check the consistency of the matrices

CR≤0.10

No

Yes

Construct fuzzy pairwise comparison matrices using FAHP

Calculate risk of disruption based on the likelihood and severity of the identified factors

Implement ER to synthesise the risk results

Obtain a crisp number for the risk synthesis

Perform sensitivity analysis

Decision making

Are results logical?

Yes

No

Identify risk attributes and present them in a hierarchical structure
Disruption Risks of Seaport Operations

Operational Risk Factors
- Port Equipment/Machinery Failure
- Vessel Accident/Grounding
- Cargo Spillage
- Human Related Error

Security Risk Factors
- Sabotage
- Terrorism Attacks
- Surveillance System Failures
- Arson

Technical Risk Factors
- Lack of Equipment Maintenance
- Lack of Navigational Aid Maintenance
- Lack of IT System Maintenance
- Lack of Dredging Maintenance

Organisational Risk Factors
- Labour Unrest
- Dispute with Regulatory Body
- Berth Congestion
- Gate Congestion
- Storage Area Congestion

Natural Risk Factors
- Geologic/Seismic
- Hydrologic
- Atmospheric

Cranes
- Straddle Carriers
- RTGs
- Forklifts
- Terminal Tractors and Trailers

General Cargo
- Containerships
- Bulk Carriers
- Short-sea/RoRo Vessel
- Oil Field Supply Vessel

General Cargoes
- Bulk Cargoes
- Hazardous Cargoes
- Petroleum Products

Seafarers
- Stevedores
- Pilotage
- Port/Terminal

IT System
- Equipment
- Control System

Attack on Port Facilities
- Sinking of a large Vessel in a Port Channel

Earthquake
- Tsunami

Heavy Rainfall
- Flooding
- Snow

Hurricane
- Cyclone

FIGURE 4
FIGURE 5
FIGURE 6

Disruption Risks of a Seaport Operation

- **Operational Risk Factors**
 - Port Equipment/Machinery Failure
 - Vessel Accident/Grounding
 - Cargo Spillage
 - Human Related Error

- **Security Risk Factors**
 - Sabotage
 - Terrorism Attacks
 - Surveillance System Failures
 - Arson

- **Technical Risk Factors**
 - Lack of Equipment Maintenance
 - Lack of Navigational Aid Maintenance
 - Lack of IT System Maintenance
 - Lack of Dredging Maintenance

- **Organisational Risk Factors**
 - Labour Unrest
 - Dispute with Regulatory Body
 - Berth Congestion
 - Gate Congestion
 - Storage Area Congestion

- **Natural Risk Factors**
 - Geologic/Seismic
 - Hydrologic
 - Atmospheric
FIGURE 7

Utility Values

10% Decrement 20% Decrement 30% Decrement