
Tang, SOT, Hanneghan, M and Carter, C

 A Platform Independent Game Technology Model for Model Driven Serious
Games Development

http://researchonline.ljmu.ac.uk/id/eprint/184/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Tang, SOT, Hanneghan, M and Carter, C (2013) A Platform Independent
Game Technology Model for Model Driven Serious Games Development.
Electronic Journal of e-Learning, 11 (1). pp. 61-79. ISSN 1479-4403

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

ISSN 1479-4403 61 ©Academic Publishing International Ltd

Reference this paper as: Tang, S, Hanneghan, M and Carter, C. “A Platform Independent Game Technology
Model for Model Driven Serious Games Development” The Electronic Journal of e-Learning Volume 11 Issue 1
2013, (pp61-79), available online at www.ejel.org

A Platform Independent Game Technology Model for Model
Driven Serious Games Development

Stephen Tang1, Martin Hanneghan2 and Christopher Carter3
Liverpool John Moores University, Liverpool, UK
o.t.tang@ljmu.ac.uk
m.b.hanneghan@ljmu.ac.uk
c.j.carter@ljmu.ac.uk

Abstract: Game-based learning (GBL) combines pedagogy and interactive entertainment to create a virtual

learning environment in an effort to motivate and regain the interest of a new generation of ‘digital native’
learners. However, this approach is impeded by the limited availability of suitable ‘serious’ games and high-level
design tools to enable domain experts to develop or customise serious games. Model Driven Engineering (MDE)
goes some way to provide the techniques required to generate a wide variety of interoperable serious games
software solutions whilst encapsulating and shielding the technicality of the full software development process. In
this paper, we present our Game Technology Model (GTM) which models serious game software in a manner
independent of any hardware or operating platform specifications for use in our Model Driven Serious Game
Development Framework.

Keywords: game technology model, platform independent game technology model, serious games engineering,

model driven engineering, games based learning, model driven serious games development

1. Introduction

Game-based learning (GBL) refers to both the innovative learning approach derived from the use of
computer games that possess educational value and other software applications that use games for
learning and education purposes (e.g. learning support; teaching enhancement; assessment and
evaluation of learners etc.) (Tang, Hanneghan, & El-Rhalibi, 2009). These computer games, designed
for non-entertainment purposes, are also widely known as serious games. The preliminary results
(Jenkins, Klopfer, Squire, & Tan, 2003) of GBL are demonstrating great educational promise. As
computer gaming becomes a digital culture deeply rooted amongst the new generation of learners,
many researchers and practitioners agree it is now appropriate to exploit gaming technologies in
order to create a new generation of educational technology tools to equip learners of all ages with
necessary skills via GBL (FAS, 2006).

However, the absence of high-level authoring environments and support for non-technical domain
experts (or teachers) to create custom serious games are impeding many who wish to adopt this
innovative learning approach (Tang & Hanneghan, 2010). Despite efforts to create serious games
through bespoke in-house development, using open source or royalty-free game engines in
collaboration with a team of developers and ‘modding’ (or modifying) commercial-off-the-shelfgames
by utilising a game editor application, the adoption rate of GBL in the mainstream is still low. Many of
these tools and technology platforms for producing serious games are readily available but most of
these tools require substantial knowledge in games development which hinders non-technical domain
experts from adopting games-based learning.

Advancements in software engineering are making the creation of high-level serious games authoring
environments for non-technical domain expert more accessible. The MDE (Model Driven Engineering)
approach allows aspects of serious game software to be represented formally as an abstract model
which can be automatically transformed into more refined software artefacts and subsequently into
serious game software applications. This approach enables non-technical domain experts to produce
serious games for the use of GBL easily and quickly (and possibly at a lower cost) through Domain
Specific Modelling Languages (DSML) and therefore lowers the barriers that hinder the production of
these applications. We believe that MDE can help to facilitate the adoption of GBL.

In this paper, we present our platform independent Game Technology Model for use in our Model-
Driven Serious Game Development Framework. Aspects of serious games represented in our Game
Content Model (Tang & Hanneghan, 2011) will be translated into the Game Technology Model where
additional computational information are added into this refined model. In the next section, we
describe MDE and how this approach can benefit serious game development for game-based

mailto:o.t.tang@ljmu.ac.uk
mailto:m.b.hanneghan@ljmu.ac.uk
mailto:c.j.carter@ljmu.ac.uk

Electronic Journal of e-Learning Volume 11 Issue 1 2013

www.ejel.org 62 ©Academic Publishing International Ltd

learning. We then revisit our Model-Driven Serious Games Development Framework before we review
in Section 3 and analyse a selection of relevant game engines or game software frameworks in
Section 4. Consequently, we identify core technologies used in the creation of game software in
Section 5. In Section 6, we detail our Game Technology Model and describe this model in relation to
our existing Game Content Model. In addition, we explain the application of Game Technology Model
in our model-driven serious games development approach. Finally, we conclude the paper with a brief
discussion on Game Technology Model in Section 7 and outline future work in this exciting and
promising research area in Section 8.

2. Model driven engineering and serious games development for game-based
learning

Model-Driven Engineering (MDE) refers to a software development approach that relies extensively
on the use of graphical or logical models to represent aspects of software and automates the
transformation of models into more refined software artefacts. Models are primary artefacts in the
development process expressed using a Domain Specific Modelling Language (DSML) to formally
represent the structure, behaviour and requirements of a particular domain. Aspects of models are
analysed and translated through transformation engines and generators to synthesize software
artefacts consistent with these models. This approach can help in alleviating the platform complexity
and expressing domain concepts effectively (Schmidt, 2006).

MDE is generally domain specific and only suitable for developing software specific to a targeted
platform with the aim to automate manual coding. Expertise of programmers is embedded into the
underlying framework and code generators allowing domain experts to provide complete
specifications of the problem domain without worrying about the technical aspects of software
development (Kelly & Tolvanen, 2008).

At the core of MDE is the model. A model is defined as “a simplification of a system built with an
intended goal in mind [that] should be able to answer questions in place of the actual system” (Bézivin
& Gerbé, 2001). Technically a model is described as a set of statements that effectively describes a
system-under-study (SUS) (Seidewitz, 2003). Effectively, a model is a graphical or logical
representation of a SUS (Favre & Nguyen, 2005). In a software context, models are used as a form of
conceptual representation of a software system to facilitate the production of concrete software
(Bézivin, 2004). In a model-driven approach, the model is used to assist the system modeller to more
accurately describe the SUS. The model is expressed by the system modeller through statements,
which are expressions that hold truths about the SUS. The validity of the model of the SUS is
dependent on the correctness and completeness of statements describing it. Statements can be
expressed informally through natural language, but are best constructed using formal notations which
adhere to the grammar of the formal language. Such formal languages are generally termed as
modelling languages or Domain-Specific Modelling Language (DSML). In the context of game-based
learning, MDE can provide the environment for domain experts to produce a serious game via
modelling (either using language or visual tools) without worrying about the intricacy of game
development. We believe that this approach can help to simplify the route to serious games
production and therefore ease the adoption of game-based learning in mainstream education and
training.

MDE notably promises great benefits to its practitioners. From a software development context, MDE
offers an increase in productivity, promotion of interoperability and portability among different
technology platforms, support for generation of documentation, and easier software maintenance
(Kleppe, Warmer, & Bast, 2003). In addition, it can also lead to production of better code quality and
reliability due to integration of domain rules into the DSML which minimises modelling error and
increases the reliability of mapping from model to code (Kelly & Tolvanen, 2008). From the
perspective of the non-technical domain experts’ who wish to produce serious games, the MDE’s
ability to encapsulate technical aspects of development via a DSML massively lowers the barriers that
hinder the production of serious games for use in game-based learning.

3. A model driven serious games development framework

Our Model-Driven Serious Game Framework (featured in Figure 1) consists of nine parts namely: (1)
User Interfaces (UI), (2) Models, (3) MDE Tools, (4) Components Library, (5) Code Templates, (6)
Artefacts, (7) Technology Platform, (8) Operating Platform and (9) Software. The loosely coupled
configuration allows framework developers to flexibly substitute modules whilst maintaining the

Stephen Tang, Martin Hanneghan and Christopher Carter

www.ejel org 63 ISSN 1479-4403

integrity of relationships among the modules via well-defined interfaces. It also clearly divides the
views of entities whilst promoting a structured and systematic workflow (Tang & Hanneghan, 2010).

Figure 1: Model-driven serious games framework (Tang & Hanneghan, 2010).

At the core of this framework is a three-layer model abstraction that offers a higher level of
encapsulation and greater interoperability support for serious games. These models are: Game
Content Model (GCM), Game Technology Model (GTM) and Game Software Model (GSM)
respectively. The Game Content Model represents the logical design specification of a serious game
whilst the Game Technology Model is a computationally dependent model of the serious game but
one which remains independent of technology or language platform. The Game Software Model, by
definition, represents the transformed model of the serious game specific to a chosen technology
platform. These models are then transformed into more refined artefacts using specific MDE tools (3)
before generating the appropriate software artefacts. Transformation of models from one viewpoint to
another is triggered automatically.

In our framework, the Game Technology Model transformation engine reads the Game Content Model
and represents the game as a software model. The Game Technology Model is read by the Game
Software Model transformation engine which reorganises the game as a software model compatible
with a specific game software framework such as Unity, Unreal and XNA (or a proprietary built game
software framework) by replacing game logical software constructs with the corresponding physical
game software constructs. Finally, the Game Software Model is interpreted by a generator to
compose software code (6) from predefined code templates (5) through mapping techniques. Game
software framework constructs and code templates are defined by framework developer with
reference to the specification of Game Software Model (see Figure 2).

Electronic Journal of e-Learning Volume 11 Issue 1 2013

www.ejel.org 64 ©Academic Publishing International Ltd

Figure 2: Transformation pipeline.

3.1 Game content model

The Game Content Model represents a game ontology from an interactive content viewpoint. It is
used to document the design specification of a computer game and will be utilised as the master
model for building other game models in our model-driven serious games development framework.
Since we focus mainly on serious games, we have limited the current scope of our game ontology
covers the game concepts used in the documentation of role-playing and simulation game genres
because we believe they are the most suitable for utilisation within the context of education and
training compared to other game genres but the nature of this ontology is that is can support further
concepts in the future with ease.

Our Game Content Model improves upon on the existing work of the Game Ontology Project (GOP)
(Zagal, Mateas, Fernández-Vara, Hochhalter, & Lichti, 2005), Rapid Analysis Method (RAM)
(Järvinen, 2007) and the Narrative, Entertainment, Simulation and Interaction (NESI) model (Sarinho
& Apolinário, 2008). Whilst there is a degree of commonality with these models in definition aspects of
games with these models, they lack the formalism required for model translation and are devoid of the
concepts that are essential in describing characteristics of a game from a software engineering
perspective. We have selectively combined these with our study on game design, game development
and serious games in order to introduce additional concepts required to represent the game,
organising these concepts into a meaningful object-oriented structure which helps us during the
translation process using MDE tools later. The topmost level of our game content model consist of ten
interrelated key concepts that best represent the rules, play and aesthetic information of a computer
game and they are Game Structure, Game Presentation, Game Simulation, Game Rules, Game
Scenario, Game Event, Game Objective, Game Object, Game Player and Game Theme (Tang &
Hanneghan, 2011).

The game structure provides the form and organises the game into segments of linked game
presentations and game simulations. In our framework, we refer game presentation as a medium for
presenting game information which is composed of media and Graphical User Interface (GUI)
components. Whereas game simulation is defined as an environment which simulates a game
scenario in accordance to the definition of game rules and game physics. The interactions between
game objects and the results of an interaction in a game simulation are defined using game rules. A
game simulation can be used to host multiple game scenarios aligned with the storyline. Each game
scenario is setup using a selection of game objects to create an environment, a sequence of game
events and a set of game objectives that challenges both player skills and knowledge of the game.
The game player can control game object(s) and interact via hardware or graphical user interface
controls. And finally, the game theme describes the “look and feel” of the game. The relationships
between these key concepts are illustrated in Figure 3.

In our model driven approach, the formal description of a serious game, compliant to our Game
Content Model, is subsequently translated into a computational representation independent of
operating platform: the Game Technology Model. The remainder of this paper details the workings of
our Game Technology Model for use in our Model-Driven Serious Games Development Framework.

Stephen Tang, Martin Hanneghan and Christopher Carter

www.ejel org 65 ISSN 1479-4403

Figure 3: Overview of the game content model (Tang & Hanneghan, 2011)

4. Game engine analysis

In the past, games software were written as singular entities in assembly languages that were tightly
coupled with the underlying hardware platform to utilise hardware resources efficiently and hence
provide a seamless gaming experience (Bishop, Eberly, Whitted, Finch, & Shantz, 1998). However,
this approach permits little code reuse and low code scalability which results in complex games being
both costly and timely to develop. Coding these games is also a highly specialised skill.

A game engine or game software framework is the technical and economic solution for writing
modern, complex games. It consists of subsystems or software components that perform a number of
distinct tasks (such as graphic rendering (2D or 3D); game physics computation such as collision
detection; collision reaction and locomotion; programmed intelligence; user input; game data
management and other supporting technologies) to operate the game software. These software

Electronic Journal of e-Learning Volume 11 Issue 1 2013

www.ejel.org 66 ©Academic Publishing International Ltd

components are built to manage, accept, compute and communicate data with other software
components without fail. Not all game engines support the entire feature set required for all game
genres, since integrating these technological components under a single framework would be a
prohibitive task. Furthermore, not all computer games software will require the entire collection of
software components to function.

The early streamlined approach to game engine architecture (illustrated in Figure 4) were composed
of the software components that handles input, audio, graphic representation and the dynamics
(game mechanics) (Bishop, et al., 1998).

Figure 4: Aspects of game software illustrated in shaded rectangles are elements of a game engine

while game logic and level data are regarded as content that defines a game (Bishop, et
al., 1998)

Modern day game engines are capable of computing complex 3D scenes with dynamic objects;
rendering realistic graphics; planning and deciding actions for non-player characters (NPC); and
supporting multiple players concurrently over a network. The architecture of the Delta3D engine
documented by Draken, McDowell & Johnson (2005) in Figure 5 exhibits the addition of software
components such as character animation, scene graph and networking to assist the development of
modern 3D games with multi-player support.

Figure 5: Architecture of the Delta3D game engine (Darken, et al., 2005).

Current generation commercial game engines such as Unreal Engine, CryEngine and EgoEngine are
packed with grander features and sophisticated tools that enable creation of high quality game
software. The game engine architecture explained by Gregory (2009) (see Figure 6) illustrates the
typical logical architecture of a modern 3D game engine. It consists of layers abstract to game specific
software components which are wired for maximum reusability (software components are shown
shaded) and interoperability across different platforms (through the Platform Independence Layer).
The Game-Specific Subsystems and Gameplay Foundations are components that can be re-written to
adapt other components for other game genres with minimal changes to the remaining software
components (some changes are still necessary as these components may be written specifically for
the chosen game genre for optimal performance and reliability).

Stephen Tang, Martin Hanneghan and Christopher Carter

www.ejel org 67 ISSN 1479-4403

Figure 6: Overview of commercial grade game engine architecture (Gregory, 2009).

In this study, we are interested in the fundamental game engine technologies abstracted from any
particular game genre. We raise the following questions: What are the core technologies needed to
run a serious game? How can we best represent these game technologies in a model for use in a
model-driven approach? In the remainder of this paper, we address these research questions.

5. Core technologies for game software

Computer games are typically structured to consist of user interface components such as menus for
game configuration and selection of game scenarios, and the simulation of a scenario (game level)
which demands the game player’s interaction with the system. It is common at the start of a scenario
to have cut-scenes to present the story that drives the game as a precursor for immersion and
motivation building. Within the simulation of a scenario, the game software cyclically performs a series
of tasks successively using a time step of typically 30-60 iterations (frames) per second. These tasks
typically include handling input from processing network data from other clients (in multiplayer
games), human interface devices and Graphical User Interface (GUI), simulating motion and artificial
behaviour, checking for collisions, updating the internal state of game objects, rendering visuals on
the screen and processing other tasks such as audio and sending out data packets (Llopis, 2005).

Figure 7: Tasks in game software (Main Game Loop)

Components of game engines vary depending on technology features and are often constrained by
particular game genres, technology platforms (hardware) and visual dimension of the game world (2D
or 3D), but there are some common technology components across all game engines. These are the
core technologies that enable the creation of a variety of game software solutions, each featuring
creative and compelling content. The core technologies we identified are graphics (renderer),
animation, audio, input, game physics, user interfaces, networking and game resources management.
In the following subsections we describe these core technologies in brief.

Electronic Journal of e-Learning Volume 11 Issue 1 2013

www.ejel.org 68 ©Academic Publishing International Ltd

5.1 Renderer

The renderer is key component to any 2D or 3D graphic engine that is responsible for graphics-
related computations and rasterised screen output. The 2D renderer provides the interface for graphic
hardware and draws 2D graphics, whilst the 3D renderer provides additional functionalities such as
loading 3D models, rendering and managing textures, applying different type of materials and blends
to the texture, rendering static and dynamic lighting in the scene, displaying viewports and virtual
screens, and providing control to the virtual camera. Other features which are found in a renderer also
include particle systems and post-processing used for visual effects. In recent years, 3D graphic
engines have gained significant popularity over 2D graphic engines due to the consumer demand for
3D games, whilst most 3D engines also support creation of 2D games through some clever
exploitation of the technology, such as orthographic projection (Gregory, 2009). However, 2D graphic
engines are still relevant, particularly on lightweight platforms such as the mobile and web platforms.

5.2 Animation

The animation component is responsible for determining the next pose of a 3D model or the next
frame of a sprite, independent of its spatial position within the world. A 2D animation component
would extend the functionality of a 2D graphic engine to include management of animation state
which is why many would regard the animation subsystem to be part of the renderer. However, the
animation data is different from graphic data and therefore it should be processed separately by the
animation component. The 3D animation component for 3D is conceptually similar to the 2D setup,
retrieving animation data from a file in order to modify the skeleton or vertex mesh of a 3D model (i.e.
Skeletal vs. Morph Target animation (Gregory, 2009)). Advanced facilities such as blending
(transitioning from one animation state to another), inverse kinematics (IK), decompression of
animation data, animation playback and procedurally animating free-form body movement are also
packaged within this component.

5.3 Audio

The audio component offers facilities to interface with the audio hardware and manage the playback
of audio. In a 3D game engine, the audio subsystem is extended to include 3D audio model which
allow game players to perceive sound originating from a positional source.

5.4 Input

The input component handles all the input events triggered by game players either via traditional
human interface devices (HID) such as keyboard, mouse, joystick or newer gestural devices such as
the PlayStation® Move and Microsoft® Kinect. Each input event is managed by the input subsystem
to trigger specific instructions including GUI events and in-game commands.

5.5 Game physics

Game physics is the component that applies the law of physics making the game world to behave
realistically. Motion, collision detection and collision reaction are the generic forms of computation
performed by the game physics component. The complexity and scope of game physics are
dependent on game genre and type of game. For example, games such as Gran Turismo
(http://www.gran-turismo.com/) would expect the physics computation to be very realistic whereas the
game physics in Need for Speed (http://www.needforspeed.com) is more forgiving and tuned to
accommodate the game-play.

5.6 User interfaces (UI): graphical user interface (GUI), media and heads-up display
(HUD)

Game software uses GUIs both in-game and out-of-game as a graphical means for accessing
functions or commands within the system. Buttons, list-boxes, checkboxs, radio-buttons, textboxs,
tabs and scrollbars are each examples of commonly used GUI components. For critical game
information that affects game-play, HUD elements such as a digital counters, analogue gauges, mini
maps and horizontal graphical bars are also often used to notify game players about the changes of
game state and so aid in the game-playing process.

Stephen Tang, Martin Hanneghan and Christopher Carter

www.ejel org 69 ISSN 1479-4403

5.7 Video player

Media such as text, graphics, sound and video are also widely used in games for presenting game
related information. The intricate process of video playback is carried out by the video player
component. Video playback is often used in game to show cinematic cut-scenes and perform the
majority of the storytelling (some games may opt to use scripted animation using the animation
component to provide seamless continuity from cinematic to game-play).

5.8 Game resources management

Game resources or game assets are usually produced using Digital Content Creation (DCC) tools.
These can include 3D models, textures, materials, fonts, 2D sprite sheets, collision data, animation
data, sound files, level data and others. The game resource management is the component that
provides the facilities for loading and unloading these resources into the game system.

5.9 Artificial intelligence (AI)

AI provides Non-Player Character (NPC) abilities to decide, plan and act in a game scenario.
Commonly used AI techniques in games include goal-driven decision making, path finding and
perception traces which are adjusted to provide a challenging and yet balanced form of game-play.
Again, these techniques can vary depending on games genre. Real-time strategy games such as
Command and Conquer (http://www.commandandconquer.com/) use a wide range of AI techniques
such as chasing and evading, flocking, path-finding and case-based reasoning, whereas games such
as Need for Speed would rely heavily on waypoint navigation.

5.10 Networking

The networking component is used in games software to facilitate multi-players. It handles all the
aspects of communication between client and server. Elements of networking component include
authorisation, authentication, structuring and filtration of game messages, low level communications,
task interface, protocols, network introspection, and data interpolation and extrapolation (Chris Carter,
Rhalibi, Merabti, & Bendiab, 2010). This component is excluded from use when game software is
developed solely for single player on local machine.

6. Game technology model (GTM)

Game technologies used to be closely coupled with a given hardware platform. As practice in
software engineering advances towards the trend of interoperable software code, the game industry is
adopting this approach to allow rapid release of game titles on multiple platforms through the
introduction of a platform independence layer, as seen in the game engine architecture diagram in
Figure 6. The responsibility of platform independence layer is to ensure that all components in the
game engine behave consistently across different hardware platforms. This is similar to the
functionality of a platform independent model from a model viewpoint.

Figure 8: Overview of game technology model

The Game Technology Model in our model-driven framework represents serious games in a manner
that is computationally independent of any operating platform. This is responsible for ensuring all
components in the game engine behave consistently across different hardware platforms. Our
proposed Game Technology Model in Figure 8 features two primary layers: the Game Specific
Systems layer and the Core Components layer. The Game Specific Systems layer consists primarily
of the Game Context System, which sets up the game and manages dynamic switching between the
presentation context and simulation context, and the Game Simulation System, which populates the

Electronic Journal of e-Learning Volume 11 Issue 1 2013

www.ejel.org 70 ©Academic Publishing International Ltd

world with game objects (both static and dynamic) and triggers the game events that form part of the
game-play within a particular game scenario. It uses facilities provided by the core components layer
to enable smooth running of both the Game Context System and Game Simulation System. Our
analysis of game engines in Section 4 and the study into game processes and its key components
have influenced the selection of core components in our GTM. We have selected User Interface,
Video Player, Game Physics, Animation, Graphic, Audio, Artificial Intelligence, Input, Networking and
Game Resource Management as core technologies in our Game Technology Model’s core
components layer. In addition to the core components, other components which are commonly used
and deemed useful in game software includes the math library, random number generator and unique
object identifier management. We have chosen to set aside networking as a service component
instead of being a core component which developers can choose to use when developing multiplayer
games. In our Game Technology Model, all the network data are treated as streams of input and this
is handled by the message handler which is described in the networking component. In addition to the
core components, other components which are commonly used and deem useful in game software
includes the math library, random number generator and unique object identifier management.
Although some of these components are readily built-in into certain technology platforms, this must be
included in the Game Technology Model in order to achieve platform independence.

6.1 Game context system

Looking deeper into our Game Technology Model (see Figure 9), the responsibilities of Game Context
System are to set up the application by initialising the input hardware, graphic hardware and audio
hardware, specifying access paths for resources, switching between different contexts and freeing up
hardware resources prior to shutting down the game application. In our Game Content Model, we
break down a game into sections known as game context. A game context describes the type of
game content to be presented to game players which can be either in the form of a game presentation
or a game simulation (Tang & Hanneghan, 2011). We regard game scenarios as content to a game
simulation. Separating game scenario from game simulation enables us to use the same game
scenario in a different yet compatible game simulation setup. These contexts are loaded into the
Game Context System’s Active Contexts Stack based on the flow of the game defined. This stack-
based approach allows multiple contexts to be rendered in the correct order, producing a layered
effect as described in (C. Carter, El Rhalibi, Merabti, & Price, 2009).

Each context has its own methods for: initialising the data or components required; an update method
which updates state of the context; and a render method which presents the visuals on the screen.
Update and render routines are invoked at 30-60 time steps per second. The updates can also be
multithreaded using fork-join parallelism (Kim & Agrawala, 1989). The clean-up method is invoked
when a context is popped out from the active contexts stack to free off resources. Game contexts
which are frequently used can be placed in a resource pool to avoid constant loading and unloading
which could result to performance slowdown.

Figure 9: Game context system

Stephen Tang, Martin Hanneghan and Christopher Carter

www.ejel org 71 ISSN 1479-4403

The transition from one context to another is triggered by the event trigger. An event trigger monitors
a defined event which can be an application event (a range of game application related of events
such media event (such as “onMediaEnd”) and simulation events (such as simulation event
“onSimulationEnd”, “onSimulationPause” and “onObjectiveUpdate”)), an input event (user input
detected via hardware interface or graphical user interface (GUI)) or a time-based event. When the
condition of the event is met, it notifies the Context Manager to push out the expired context and pop
in the next context into the Active Context stack. Each event trigger is synchronised with the main
update method which can be monitored by a manager such as the Game Mechanic Trigger and the
Input Trigger whereas Time Trigger and proximity trigger are monitored in the respective update
methods (which are also synced with the main update method) of the class it composed of.

At the top-most level of the game software is the serious game application itself which uses the game
context system and provides the necessary interfaces for the game player to interact with the game.
The game player component as described in the Game Content Model is composed of a reference to
a game object which acts as an avatar, a set of attributes that determines the game player’s vitality or
performance, a set of control maps which wires input events to the associated action of the avatar, a
structure to store virtual items that player can own in the game and a statistical log of the player’s
performance which are integrated into the game.

A game can be dependent on a fixed time step or variable time step. In our Game Technology Model,
we favour for simplicity over complexity and hence has opted for fixed time step implementation.
Within the game update method it checks for any input and application events and synchronises with
the update method for each context.

6.2 Game simulation system

When an instance of a simulation context is made active, the Game Simulation System loads in the
associated description of game scenario. A game scenario, in our model, is represented by a game
environment (that is composed of a collection of game objects), a set of game events, a set of virtual
cameras, a difficulty indicator and a set of game rules (which dictates the outcome of the interaction
from two game objects) (Tang & Hanneghan, 2011). Game objects required for construction of the
game environment are created and organised in a scene graph allowing the rendering of graphic
components in the correct order. Data associated to game objects are stored in a collection which can
be fetched and updated directly rather than having to traverse through the scene graph.

The Game Simulation System maintains two scene graphs; a scene graph for media, GUI and HUD
(2DGraph scene graph); and a scene graph for proximity triggers and game objects which make up
the game environment. The scene graph that stores the game environment will be rendered to the
image buffer before the 2D scene graph to allow final construction of the render frame which has the
media, GUI and HUD overlaid on top of the game environment.

Figure 10: Game simulation system

At each update routine of the Game Simulation System, all game objects have their transform and
animation updated. Object state, game data and other computationally demanding process such as
collision check of the game objects are updated at different time intervals to avoid performance
slowdown. Dynamic objects which no longer exist are removed from scene graph and data associated

Electronic Journal of e-Learning Volume 11 Issue 1 2013

www.ejel.org 72 ©Academic Publishing International Ltd

are destroyed during runtime. The events defined in the game scenario are also triggered in the
update routine of the Game Simulation System. All update and render routines are in synchronization
with the main game loop.

6.2.1 Game scenario

A game scenario holds all the relevant data and data structures that represent a level in a game. Most
of the description of a game scenario can be represented as data but descriptions such as game
interaction rule and game scoring rule are automatically embedded in the respective game object
Update() method whereas events are encoded in the game scenario Update() method for optimal
performance using our MDE tool. In addition to triggering game events, the Update() method in a
game scenario checks if all game objectives are met and updates the game objects within the game
environment scene graph.

6.2.2 Game object

A game object is the primary data structure which will be processed in the Game Simulation System
using the facilities provided by the game component. Game objects consist of attributes that hold
value of existence such as objects attributes, position, mass, solidity state and size of inventory
(which defines the amount of objects associated to itself), and behavioural characteristics which are
represented in the form of motion, action, attribute updates, sound and intelligence. These can be
represented into three distinct classes namely Actor, DynamicObject and StaticObjects.

In terms of mapping the game object from Game Content Model to Game Technology Model, the
object attributes and animation sequences are easily mapped from the definition in Game Content
Model into the structure. Action definitions of the game object such as animation, sound, motion can
be invoked from the Update() method. These are grouped into the relevant action state of the game
object as defined in the Game Content Model. This approach allows easy pairing with input event or
decision making in AI. The input or AI components will only need to change the activeState of the
object to trigger the paired action. Each action is marked in a conditional statement using a unique
identifier as illustrated in Figure 11. At each game object update call, it checks the activeState which
is changed when certain input event is triggered or AI decisions are called. Input events are updated
at the main game loop whereas AI routine is done right before the invocation of the actions.

Figure 11: Example of action definition in a game object

Within each action, further query can be invoked to determine the actual state of an object. This could
be in the form of collision checking to determine if a game object is within the boundary of another
game object (which is defined by a game interaction rule in Game Content Model) or checking an
attribute’s value or inventory of the game object as illustrated in the pseudo-code in Figure 11. An
action, as described in the Game Content Model, consists of method calls to the relevant components
such as physics and animation to update and transform the game object which is automatically
transformed from specification of game design in our framework. It also consists of commands to
invoke playback of audio files and relevant data updates to vital and inventory. The main update call
will traverse the game environment scene graph and update all the states, data and transforms before
executing the render routine.

Stephen Tang, Martin Hanneghan and Christopher Carter

www.ejel org 73 ISSN 1479-4403

The Render() method of a game object processes and displays the object appearance on the screen
using facilities in the renderer component. In conventional approaches, all transforms are computed
prior to the actual rendering process. In our data-driven approach, all the transform and rendering is
computed by the renderer through an overloaded Render() method. This approach separates game
logic from component computation simplifying transformation and generation of code.

6.3 Representing the game technology model in a model driven framework

In our framework, we favour the use of open data format such as eXtensible Markup Language
(XML). XML is a specification for defining how information is stored (Bray, Paoli, Sperberg-McQueen,
Maler, & Yergeau, 2008) like any other earlier form of initiatives such as the CASE Data Interchange
Format (CDIF) (Flatscher, 2002) and Portable Common Tool Environment (PCTE) (ECMA, 1997)
introduced for use to store software engineering data. It offers great flexibility for defining the data
format for representing models. In addition, XML can easily accept additional information from the
automated transformation process between the models for MDE. Furthermore it is also well supported
by MDE technologies such as Eclipse Modelling Framework (EMF) and Generic Modelling
Environment (GME) (Ledeczi et al., 2001) making it the ideal choice for representing data-model. This
makes XML is a viable option for defining data-model in our model driven framework.

6.4 Transforming the game content model into the game technology model

In our model driven serious game development framework, the Game Content Model is generated by
our software tool, SeGMEnt (Serious Games Modelling Environment) (see Figure 12 and Figure 13
for screenshots of SeGMEnt). SeGMEnt is a web-based serious games modelling environment
implemented using Adobe Flash. It is designed to allow non-technical domain experts to document
serious games components either by entering required data through a data entry dialogue or via a
visualisation environment for those aspects that involves positioning of in-game components in the
virtual world, construction of an environment and layout of GUI components on-screen. It
encapsulates the concepts of Game Content Model into the different design viewpoints namely
structure, object, simulation, presentation, environment and player using the appropriate UI model.
The Game Content Model generated from SeGMEnt is represented in XML format.

The Game Content Model then undergoes a transformation to be translated into the Game
Technology Model, a computational model independent of platform, using a MDE tool. The MDE tool
can be developed using existing MDE technologies such as EMF and GME as described in (Tang &
Hanneghan, 2012) or implemented using any programming languages with XML parser facility. In our
model-driven serious games development framework, we have developed a custom transformation
tool in PHP. The transformation of Game Content Model to Game Technology is mainly a process of
refining data and reformatting it into a computation independent model by reorganisation of data into
programmatic structures. This also involves the addition of programmatic statement calls to the
relevant Game Technology Model component’s function to process the relevant data. There are two
approaches to have a Game Content Model translated to a Game Technology Model. The first
approach is to interpret the source model (Game Content Model) and then weave the additional
information into the source model in order to produce the target model (Game Content Model). This
approach would require the source model to be well structured and the translation process is just
merely locating the token of information and weaving in the additional information into the source
model to create the target model. The second approach is to traverse through the entire source model
to locate the required token of information and a new target model is composed by structurally
reformatting data in the source model and adding in the additional information. In our case, we opted
for second approach because it does not constraint us to the structure of the source model.

The process of model translation from Game Content Model to Game Technology Model as described
earlier requires (1) traversing the XML document structure in search for the marked elements which
will be (2) reformatted and may include more information to construct the new model or artefacts. In
PHP, there are various approaches for traversing XML document structure and this includes the
Simple XML (core library in PHP 5.0), XML Expat parser and XML DOM (Document Object Model). In
our prototype, we decided to use the Simple XML approach mainly because it is a simpler approach
to traverse a document structure. This validates the notion that creation of a proprietary model
translator and a code generator can be simple. In our approach, we specify the path of the XML
structure to locate the marked data. Once marked data has been located, data can be accessed and

Electronic Journal of e-Learning Volume 11 Issue 1 2013

www.ejel.org 74 ©Academic Publishing International Ltd

re-marked with additional information. Whenever there is more than one child node in the structure,

the foreach() construct is used to iterate over the tree structure as shown in Figure 14.

Figure 12: Modelling game structure in structure designer within SeGMEnt

Figure 13: Modelling game object in object designer within SeGMEnt.

Stephen Tang, Martin Hanneghan and Christopher Carter

www.ejel org 75 ISSN 1479-4403

Figure 14: Snippet of code from the game technology model translator to locate a marked data and
iterating through the tree structure

The new model or artefact is created by transforming data into a refined new format of data through
the process of string concatenation. By using the string object, we can easily add in additional
information and format data to the desired format. An example of Game Content Model generated
from SeGMEnt is shown in Figure 15 and the Game Technology Model which is transformed using
our proprietary tool is shown in Figure 16. The Game Technology Model will later be transformed into
Game Software Model before it is used for generation of artefacts which can either be software code
or a compiled software artefact. The transformation of Game Technology Model to Game Software
Model is described briefly in Section 3 and will not be covered in depth because it is outside the scope
of this paper.

7. Discussion

Our Game Technology Model is based on a data-driven architecture and includes the essential game
specific systems and core components of software which facilitates the operation of serious games
defined using Game Content Model. This data-driven architecture exhibits loose coupling allowing
core technologies to be swapped and giving developers the flexibility to select the preferred
components in order to support a particular genre of serious game. Although our Game Technology
Model is currently designed to accommodate only simulation and role-playing genres of serious
games, our Game Technology Model can also to be extended easily to support a wide range of
genres by simply swapping the relevant core technologies with more specialised technologies.

The architecture of our Game Technology Model can be used by developers to create their own
proprietary game software framework. Alternatively, the Game Technology Model can be regarded as
a generic virtual wrapper for existing game software frameworks. The functionality of each component
defined in the Game Technology Model act as interfaces that wrap a different implementation of a
game technology. This allows serious games software to be produced on different technology
platforms through code generation which reads the Game Technology Model and translates it into
software artefacts.

Electronic Journal of e-Learning Volume 11 Issue 1 2013

www.ejel.org 76 ©Academic Publishing International Ltd

In our model driven framework, the Game Technology Model is represented in XML to make marking
and locating of marked information easier, and therefore simplifying the task of model transformation.
Framework developers will need to have a deep understanding of the Game Content Model and
Game Technology Model before they can transform the Game Content Model to the Game
Technology Model. In our framework, we choose not to be constrained by the structure of Game
Content Model and have opted to implement our MDE tool that locates the marked information in the
Game Content Model and rebuilds the Game Technology Model from scratch. Development of the
MDE transformation tool is proven to be much simpler and straight forward especially with modern
XML programming interfaces such as Simple XML in PHP.

Figure 15: XML describing the fireman game object generated from SeGMEnt

Stephen Tang, Martin Hanneghan and Christopher Carter

www.ejel org 77 ISSN 1479-4403

Figure 16: XML definition of the game object in game technology model. elements in bold are
translated token of information from game content model which has been reorganised
into programmable format

Although we have gone through a lot of detail describing the technical aspects of the implementation
it should be born in mind that the model driven engineering approach hides all of these from the
actual domain experts and we include this only for completeness. From the model-driven serious

Electronic Journal of e-Learning Volume 11 Issue 1 2013

www.ejel.org 78 ©Academic Publishing International Ltd

games development viewpoint, our Game Technology Model plays a significant role in the generation
of interoperable software artefacts. In the context of GBL, our Game Technology Model (as well as
Game Content Model and Game Software Model) and our model-driven serious game development
framework is a point of reference for developers who wish to implement high-level authoring tools
such as SeGMEnt for non-technical domain experts to produce a range of serious games for use in
game-based learning.

8. Conclusion

In this paper, we have analysed the architecture of game engines, identifying the core components
and presented our Game Technology Model based on our Game Content Model for use in our model
driven approach in an attempt to address the lack of high-level authoring tools for serious games
targeted at non-domain experts. Our Game Technology Model is a computational representation of
game software that is independent of implementation platform and hardware platform. The
introduction of the core components layer provides flexibility for specifying the preferred components
and hence promoting a higher level independence over the choice of game technologies. This
architecture may appear bureaucratic, but it is unlikely to raise many performance concerns for
demanding real-time computation since models are used primarily to represent content and logic for
use in the generation of software artefacts using MDE tools through different levels of refinement.
Availability of a Game Technology Model and high-level authoring tools such as SeGMEnt provides
the opportunity for domain experts to prototype-play-test-evaluate and make further improvement on
the designs of serious games without having to face the technical barriers that exist in development of
serious games for GBL.

References

Bézivin, J. (2004). In Search of a Basic Principle for Model Driven Engineering. UPGRADE, V(2), 21-24.
Bézivin, J., & Gerbé, O. (2001). Towards a Precise Definition of the OMG/MDA Framework. Paper presented at

the 16th IEEE international conference on Automated software engineering, Coronado Island, San Diego,
CA, USA.

Bishop, L., Eberly, D., Whitted, T., Finch, M., & Shantz, M. (1998). Designing a PC Game Engine. IEEE
Computer Graphics and Applications, 18(1), 46-53. doi: 10.1109/38.637270

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F. (2008, 5th December 2009). Extensible
Markup Language (XML) 1.0 (Fifth Edition), from http://www.w3.org/TR/2008/REC-xml-20081126/

Carter, C., El Rhalibi, A., Merabti, M., & Price, M. (2009, 12-14 Oct. 2009). Homura and Net-Homura: The
creation and web-based deployment of cross-platform 3D games. Paper presented at the Ultra Modern
Telecommunications & Workshops, 2009. ICUMT '09. International Conference on.

Carter, C., Rhalibi, A. E., Merabti, M., & Bendiab, A. T. (2010). Hybrid Client-Server, Peer-to-Peer Framework for
MMOG. Paper presented at the IEEE International Conference on Multimedia and Expo (ICME), Suntec

City.
Darken, R., McDowell, P., & Johnson, E. (2005). Projects in VR: the Delta3D open source game engine.

Computer Graphics and Applications, IEEE, 25(3), 10-12.
ECMA. (1997). Portable Common Tool Environment (PCTE) - C Programming Language Binding.
FAS. (2006). Harnessing the power of video games for learning, Summit on Educational Games 2006.
Favre, J.-M., & Nguyen, T. (2005). Towards a Megamodel to Model Software Evolution Through Transformations.

Electronic Notes in Theoretical Computer Science, 127(3), 59-74.
Flatscher, R. G. (2002). Metamodeling in EIA/CDIF---meta-metamodel and metamodels. ACM Trans. Model.

Comput. Simul., 12(4), 322-342. doi: http://doi.acm.org/10.1145/643120.643124
Gregory, J. (2009). Game Engine Architecture. Natick, Massachusetts: A K Peters, Ltd.
Järvinen, A. (2007). Introducing Applied Ludology: Hands-on Methods for Game Studies. Paper presented at the

Digra 2007 Situated Play: International Conference of the Digital Games Research Association, Tokyo,
Japan.

Jenkins, H., Klopfer, E., Squire, K., & Tan, P. (2003, October 2003). Entering The Education Arcade. Computers
in Entertainment (CIE), 1, 17-17.

Kelly, S., & Tolvanen, J.-P. (2008). Domain-Specific Modeling: Enabling Full Code Generation. Hoboken, New

Jersey: Wiley-IEEE Computer Society Press.
Kim, C., & Agrawala, A. K. (1989). Analysis of the Fork-Join Queue. IEEE Trans. Comput., 38(2), 250-255. doi:

10.1109/12.16501
Kleppe, A. G., Warmer, J. B., & Bast, W. (2003). MDA Explained: The Model driven Architecture: practice and

promises: Addison-Wesley.
Ledeczi, A., Maroti, M., Bakay, A., Karsa, G., Garrett, J., Thomason, C., . . . Volgyesi, P. (2001). The Generic

Modeling Environment. Paper presented at the Workshop on Intelligent Signal Processing, Budapest,
Hungary.

Llopis, N. (2005). Game Architecture. In S. Rabin (Ed.), Introduction to Game Development (pp. 267-296).

Hingham, Massachusetts: Charles River Media.

http://www.w3.org/TR/2008/REC-xml-20081126/
http://doi.acm.org/10.1145/643120.643124

Stephen Tang, Martin Hanneghan and Christopher Carter

www.ejel org 79 ISSN 1479-4403

Sarinho, V., & Apolinário, A. (2008). A Feature Model Proposal for Computer Games Design. Paper presented at
the VII Brazilian Symposium on Computer Games and Digital Entertainment, Belo Horizonte.

Schmidt, D. C. (2006). Guest Editor's Introduction: Model-Driven Engineering. Computer, 39(2), 25-21.
Seidewitz, E. (2003). What models mean? Software IEEE, 20(5), 26-32.
Tang, S., & Hanneghan, M. (2010). A Model-Driven Framework to Support Development of Serious Games for

Game-based Learning. Paper presented at the 3rd International Conference on Developments in e-Systems
Engineering (DESE2010), London, UK.

Tang, S., & Hanneghan, M. (2011, 6-8 December). Game Content Model: An Ontology for Documenting Serious
Game Design. Paper presented at the Proceedings of 4th International Conference on Developments in e-
Systems Engineering (DESE2011), Dubai, UAE.

Tang, S., & Hanneghan, M. (2012). State-of-the-Art Model Driven Game Development: A Survey of
Technological Solutions for Game-Based Learning. Journal of Interactive Learning Research, 22(4), 551-
605.

Tang, S., Hanneghan, M., & El-Rhalibi, A. (2009). Introduction to Games-Based Learning. In T. M. Connolly, M.
H. Stansfield & L. Boyle (Eds.), Games-Based Learning Advancements for Multi-Sensory Human Computer
Interfaces: Techniques and Effective Practices (pp. 1-17). Hershey: Idea-Group Publishing.

Zagal, J. P., Mateas, M., Fernández-Vara, C., Hochhalter, B., & Lichti, N. (2005). Towards an Ontological
Language for Game Analysis. Paper presented at the DiGRA 2005 - the Digital Games Research
Association’s 2nd International Conference, Selected Papers, Simon Fraser University, Burnaby, BC,
Canada.

