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Abstract—Accurate truck arrival prediction is complex but 

critical for container terminals. A deep learning model combining 

Gated Recurrent Unit (GRU) and Fully Connected Neural 

Network (FCNN), is proposed to predict daily truck arrivals using 

fusion technology. The model can efficiently analyze sequence and 

cross-section data sets. The new feature in the new model lies in 

that it, for the first time, incorporates the new parameters 

influencing traffic volumes such as the vessel-related information, 

arrival weekdays, and weather conditions into the long-time series 

of truck arrivals. Furthermore, truck arrivals are predicted in 

three groups based on their movement purposes: pick-up, 

delivery, and dual. it also contributes to the literature in a sense 

that the performance of the model is tested using real big data 

from a world-leading container port in Southern China. The 

results generate insightful managerial implications for guiding 

port traffic management in a generic manner. It reveals the 

relation of export container arrivals with the Container Yard (CY) 

closing time of a specific vessel. It is demonstrated the proposed 

model outperforms the currently available methods with an 

improved accuracy rate of prediction by 23.44% (dual), 32.09% 

(pick-up), and 26.99% (delivery), respectively. As a result, the 

model can better reflect reality compared to the existing ones in 

the literature. It is also evident that the 3-categorized prediction 

model can significantly help increase prediction accuracy in 

comparison with the 2-categorized methods used in practice.  

 
Index Terms—Container terminal; Truck arrival; Prediction; 

Gated Recurrent Unit- Fully Connected Neural Network; Big 

data. 

 

I. INTRODUCTION 

HE truck arrivals at terminals fluctuate significantly on 

various days. As the size of the largest container ships went 

up continuously in recent years, container handling becomes 

more concentrated in certain major ports [1]. Gains from the 

economies of scale resulting from the deployment of larger 

vessels do not necessarily benefit ports and inland transport 

service providers [2]. On the landside thousands of containers 

that need to be picked up and/or delivered often cause traffic 

management difficulties for container terminals. For example, 

the daily truck arrival number at a container terminal in Sothern 
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China reached 19,000 on average and 23,000 at the max in 

2019. 

    Within the context of container truck arrivals, previous 

studies in the literature reveal various methods from a control 

perspective such as an appointment system [3-5], time-varying 

tolls [6], and time windows [7]. They, aiming to smooth the 

peak arrivals to match the capacity of the equipment, are all 

base on a certain distribution of arrival rates and use operational 

research methods to realize mathematical modeling and 

optimization. 

    Different from controlling truck arrivals, an alternative way 

is to forecast them in accuracy. An effective truck arrival 

prediction system represents an important decision basis for the 

yard operation plan at a terminal. Furthermore, it would 

improve the overall operational efficiency of a terminal and 

reduce truck turnover time, queueing, and exhaust emissions for 

better air quality. Drayage companies want to estimate the turn 

time based on the number of truck arrivals. They might choose 

a period with fewer truck arrivals to save time at a terminal. 

With the new opportunities emerging from the current wave of 

digitalization, truck arrival prediction also needs to be revisited 

by taking a data-driven perspective [8].  

    In the past decade, due to the disruptions such as climate 

change risks (e.g. flooding and storms) and COVID-19, the 

maritime industry is encountering more and more port 

congestion, serious delay of pick-ups, and shortage of empty 

containers, etc. One of the main contributors is the ineffective 

use of trucks at container terminals. The disruptions such as 

COVID-19 have made the prediction of yard workloads even 

worse. Resources at terminals are either idling or overloaded. 

Terminal operators are eager for an accurate forecast of truck 

arrivals in order to deploy the equipment and labor at the 

terminal rationally. 

    Accurate truck flow prediction will benefit drayage dispatch 

decisions and help the terminal operators schedule the 

equipment and labor rationally [9]. Hence, the external trucks' 

efficiency could be improved and the impact of disruptions such 

as COVID-19 could be reduced. New methods become crucial 

and beneficial not only for addressing the drayage but also for 

mitigating its further impact on the supply chains.  
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In recent years, deep learning techniques (e.g. neural 

networks) have been widely used in various fields. Rumelhart, 

et al. [10] propose a multi-layer perceptron based on 

backpropagation, also known as the "BP neural network". 

Lecun and Bottou [11] develop a Convolutional Neural 

Network (CNN) to break through the limitations of the accuracy 

of image recognition. Hinton, et al. [12] construct the Deep 

Belief Nets (DBN), which form the basis for deep learning 

discipline identification. Yang and Mehmed [13] use two 

different dynamic Fully Connected Neural Network (FCNN) 

models to improve the accuracy of forecasting shipping freight 

rates. Current existing prediction methods are inadequate to 

deal with emerging challenges of disruptive events of low 

likelihood and high consequence (e.g., COVID).  

Variants of Recurrent Neural Network (RNN) named Long 

Short-Term Memory (LSTM) [14] and Gated Recurrent Unit 

(GRU) networks were often employed for sequential data with 

relatively large time steps. GRU models have fewer parameters 

and less complicated structures compared to LSTM models, and 

it performs equally well as LSTM models. GRU may be the 

preferred method in short-term predictions since it requires less 

time for model training [15-17]. The FCNN model is good at 

prediction with cross-sectional data. Therefore, the GRU 

models deal with sequential truck arrival data, while the FCNN 

models cope with non-operational data. The merged GRU-

FCNN models could perform well with both the sequential data 

and cross-section data. 

    The novelty of this study includes 1) the precise prediction 

of truck arrivals towards container terminal using the proposed 

GRU-FCNN model for big data applications; 2) the merging of 

characteristics of drayage service into the prediction models, 

including three categories of service types (i.e. pickup, delivery, 

and dual), weekdays and weather, which is proven to be able to 

significantly improve prediction accuracy; and 3) involvement 

of container yard closing time to help predict the outbound 

arrivals, which shows the relationship between vessel and 

trucks arrivals.   

    The following paper is organized as follows. The literature 

review is presented in Section II. Section III describes the 

problem statement. Section IV outlines the new GRU-FCNN 

model. Section V presents the descriptive statistics of the data 

used and the parameter calibration. Section VI analyzes the 

results, detailing the one-step and multi-step prediction, 

sensitivity analysis, advantages of prediction based on three 

categories, and prediction of truck arrivals from vessel 

information. Finally, Section VII concludes the paper. 

II. LITERATURE REVIEW 

    Deep learning techniques are widely used in the prediction of 

traffic flows and passenger demand. For road traffic flow, Li, et 

al. [18] propose a gradient boosting procedure in combination 

with hierarchical reconciliation for short-term forecasting of 

traffic flow. Lv, et al. [19] apply a deep architecture model 

using autoencoders as building blocks to represent traffic flow 

features for its prediction. Zheng, et al. [20] propose a deep 

learning-based model which uses hybrid and multiple-layer 

architectures to automatically extract inherent features of traffic 

flow data. Wang, et al. [21] propose a novel hierarchical traffic 

flow prediction protocol based on a spatial-temporal graph 

convolutional network (ST-GCN), to achieve a more accurate 

traffic flow prediction. Arguedas, et al. [22] propose an 

unsupervised system that has a two-layer network, to monitor 

maritime vessel flows. For the prediction of passenger flow 

demand, Yang, et al. [23] develop an improved spatiotemporal 

long short-term memory model (Sp-LSTM) to forecast short-

term outbound passenger volume at urban rail stations. Taxi 

passenger demand has also aroused lots of attention. Zhang, et 

al. [24] propose an end-to-end multi-task learning temporal 

convolutional neural network (MTL-TCNN) to predict the 

short-term passenger demand at a multi-zone level. Cheng, et 

al. [25] employ the vector autoregression (VAR) model and the 

CNN-LSTM hybrid neural network model to predict a short-

term traffic flow.  Truck arrival volume prediction at a container 

terminal is inherently different from the traffic flow of the urban 

highway or railway. Trucks towards a container terminal are 

affected by many external factors, including arrival and 

departure of vessels [26], service types, weekdays, as well as 

weather conditions.  

    The prediction of truck arrivals towards a container terminal 

has attracted lots of attention from both academics and practice. 

The existing daily truck arrival prediction research can be 

classified into two categories: parameter and non-parametric 

models. Parameter models require manual input of parameters. 

Yang, et al. [26] obtain the parameter value of the 

BETA distribution by the least square method, which improves 

the prediction accuracy of the truck traffic volume towards a 

container terminal. Guo, et al. [27] establish a simulation model 

based on the random time-varying characteristics of a container 

port area and discuss the varying rules of truck arrivals.  

    The non-parametric models have the potential to learn a 

nonlinear model structure and are not necessary to rely on 

empirical parameters. Al-Deek, et al. [28] and Al-Deek and 

Haitham [29] compare a neural network model and multiple 

regression, using the traffic flow and the week factor in Port of 

Miami. The forecasting of the arrivals of import and export 

container trucks in the Port of Miami was improved. Al-Deek 

and Haitham [30] use time series models to successfully predict 

the arrival of the container trucks and pick-up trucks in the port. 

Pradeep, et al. [31] compare the performance between Back 

Propagation Neural Network and Recurrent Neural Network 

(RNN) in the Florida port and prove that RNN has shown better 

robustness. Xie and Huynh [32] establish GPs (Gaussian 

processes) and ε-SVMs (ε-support vector machines, based on a 

Sigmoid kernel function to predict the daily arrival volume of 

pick-up and delivery trucks at Bayport and Barbours Cut 

container terminals at the Port of Houston. Zhang, et al. [33] 

use a neural network to predict the traffic flow according to the 

schedule of the liner seasonality. Kourounioti, et al. [34] use a 

Fully Connected Neural Network(FCNN) with the auxiliary 

factor (container and yard information) to improve the fitting 

performance for the distribution of container dwell time at the 

port and analyze the influence of each information. Gao, et al. 

[35] use LSTM to predict the daily volumes of containers that 

will enter their investigated storage yard. Nadi, et al. [36] 
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develop a short-term prediction model for outbound truck flows 

around major container seaports. In the paper, they use 

scheduled pick-ups to predict the truck flows. The related 

literature is summarized in Table I. 

    Although showing some attractiveness, previous studies still 

reveal various practical challenges in their applications, 

including  

1) The condition of weather as an important variable 

influencing truck arrivals is often overlooked. The weather 

influence on yard operation is not the same as normal road 

traffic. In bad weather, e.g., fog or storm, the yard crane will 

not be able to load/discharge containers due to low visibility 

and stability. Contrarily, heavy rain and temperature will 

generate less impact on truck service at the yard.  

2) In practice, dual transactions involving both pickups and 

deliveries are increasingly used by terminal operators and 

drayage companies for cost-saving. It therefore should be 

taken into account in the truck arrival prediction for 

improving its accuracy and effectiveness for yard planning. 

3) Big data analysis based on deep learning techniques has 

attracted numerous attempts in city traffic or railway 

demand studies. With trajectory data accumulated in 

container terminals, a deep learning model could be 

proposed to capture the inherent correlations between vessel 

and drayage but also occupy a high training efficiency.  

4) The big difference between city traffic prediction and truck 

forecasting arriving at the terminal is the influence of vessel 

schedules. Trucks arrive to deliver containers before the 

Container Yard (CY) closing time of a specific vessel, and 

trucks come to pick up containers after the vessel has been 

unloaded. Mining the relation between vessel schedule and 

truck arrivals with a non-parametric method remains 

unexplored fully. 

    As the pioneering work to address the above challenges, this 

paper has made contributions as follows: (1) this paper 

establishes a GRU-FCNN model based on the trajectory 

datasets of truck arrivals, which for the first time takes into 

account weekday and weather data; (2) based on the prevailing 

practice in container terminals, this paper innovatively predicts 

truck arrivals in the three categories of pickup, delivery and 

dual; (3) it indicates the influence of a specific vessel’s yard 

closing datetime on the arrival of outbound container trucks.

 

TABLE I 

LITERATURE REVIEW SUMMARY 

No. Author (Year) 
Datasets Service types Methodologies 

D1 D2 D3 S1 S2 S3 S4 M1 M2 M3 

1 Al-Deek et al. (2000)  √ √ √ √    √  

2 Al-Deek & Haitham (2001)  √ √ √ √    √  

3 Al-Deek & Haitham (2002) √  √ √ √    √  

4 Pradeep et al. (2005) √  √ √ √    √  

5 Yang et al. (2010)  √     √ √   

6 Xie & Huynh (2010) √   √ √   √   

7 Zhang et al. (2014) √      √  √  

8 Kourounioti et al. (2016) √  √ √    √   

9 Guo et al. (2017)  √  √        √ 

10  Gao et al. (2019)  √     √  √  

11  Nadi, et al. (2021)  √   √    √  

 This paper √ √ √ √ √ √   √  

Note: Dataset：D1-liner schedules, D2- port traffic flow dataset, D3- Auxiliary Information；  

Classifications of result: S1- pick-up truck, S2- delivery truck, S3- dual truck, S4- Unclassified； 

Methodology: M1- parametric models, M2- nonparametric models, M3-others. 

III. AN EMPIRICAL INVESTIGATION ON THE NON-LINEAR 

CHARACTERISTICS  

    The data of truck arrival flows are collected from the 

Terminal Operation System (TOS) at a container terminal in 

Southern China. The data are indexed by container Identity (ID). 

For each container, the serving time point including the gate-in 

time, the confirmation time of loading or unloading, gate-out 

time, as well as truck ID, etc. are recorded in the system.  We 

collected two sets of data. The first set covers 12 months from 

September 1, 2018, to August 31, 2019.  The other set covers 

six consecutive months (186 days) from January 1 to June 30, 

2020, which was during the COVID pandemic period. Besides, 

the second set contains the corresponding vessel code, berthing 

time, container yard closing time, etc.  

 
Fig.1. The weekly fluctuation of daily truck arrivals 
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    The real data in Fig.1 shows a significant difference among 

the three categories of truck arrivals. Here we symbolize three 

services Pick-up task (P), Delivery task (D), and Dual tasks (H). 

The dual tasks, dominating more than half of truck arrivals, are 

often substituted by outbound or inbound tasks respectively in 

the literature. Usually, the outbound tasks need to match other 

inbound tasks to have dual transactions. The inbound and 

outbound ones are not quite independent of each other. If more 

dual transactions are deployed, the number of total truck 

arrivals would be reduced. There are some transformations 

among the three categories. Therefore, it makes sense to have 

three categories of tasks.  Figure 2 illustrates the three service 

types, including 1) picking up an inbound container at a 

terminal; 2) delivering an outbound container to a terminal; 3) 

dual transactions that a truck delivers a container and then picks 

up another one in a single trip. From Fig.3, we can find the 

distributions of three categories of truck arrivals. In most cases, 

the number of dual trucks is around 5,000 to 10,000 per day. In 

contrast, the number of pick-ups is around 2,000 to 3,000, while 

the number of deliveries is between 4,000 and 5,000. It reveals 

the fact that the terminal is mainly an export port. Further, some 

import empty containers would not be picked up but stored in 

the yard under some special contracts with shipping lines. 

Liner

Receiver

Shipper

Container terminal

1.Pick-up

2.Delivery

3.Dual 

Arrival

Shipper

Receiver

 
Fig.2.  Three types of truck arrivals 

 

    Table II shows that in the dual process, 99.01% of the first 

operations (deliveries) are full (loaded) containers, and 84.00% 

of the second operations (pick-ups) are empty containers. In 

single pick-up tasks, the empty container accounts for 96.38%.  

 
TABLE II 

THE RELATIVE OCCUPANCY OF TWO ASSIGNMENTS OF DUAL TRUCKS 

Pick-ups 

Deliveries 

Empty import 

container 

Full import 

container 
SUM 

Empty export 

container 
74.10% 25.90% 0.99% 

Full export 

container 
84.09% 15.91% 99.01% 

SUM 84.00% 16.00% 100% 

 

 

      
(a)                                                            (b) 

 
     (c) 

Fig.3. Daily arrival distribution of trucks of (a) dual; (b) pick-up; (c) delivery 

 

The big difference between city traffic and trucks arriving at 

the terminal is the influence of vessel schedules. Trucks arrive 

before the Container Yard (CY) closing time to catch up with 

the schedule of vessels. Inbound containers are picked up after 

they are unloaded from the vessel. From the 1645 voyages in the 

first half-year of 2020, outbound truck arrivals of the first 100 

ones are illustrated in Fig.4. Each subgraph represents the 

outbound truck arrivals during the time window for receiving 

containers. The red dotted line in each subgraph is the CY 

closing date. In most cases, there would be a peak number some 

day before the deadline. Export container arrivals are related to 

historical arrivals over the past few periods. At the same time, 

on each weekday there is a similar pattern of truck arrivals. It is 

consistent with the weekly schedules of vessels.  

However, for inbound containers, the relation with vessel 

berth time is not significant as illustrated in the figure in 

Appendix B. It is owing to the feature of the export terminal in 

Southern China. Some inbound empty containers are not going 

to be picked up, but just for transshipment or storage in the 

terminal. It would be contrary if the terminal is an import one. 
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Fig.4. Outbound truck arrivals of each voyage 

Note: Each subgraph is a ship's export arrivals sequence. the red dashed line is CY closing time. The subplot title is the voyage number_arrival order. 

  

    Fig.5 describes the correlation between meteorology and the 

average arrival of dual trucks. When it is sunny or overcast, the 

influence of weather is the least. However, if it involves a 

rainstorm or shower, truckers tend to change their schedule to a 

different day. It is interesting to find that a thundershower has 

less influence than a shower. Because it often has a 

thundershower in Southern China. Several minutes after the 

thunder, it will turn sunny again. On a thundershower day, it 

often means a long sunny period for terminal operations. 

Although it is not determinant, the effect of weather conditions 

on truck arrivals is clearly seen in Fig.5.  

 
Fig.5.  Illustrated correlation between meteorology and average arrival of 

dual trucks  

Note: the mean line represents the average daily arrivals of dual trucks 

IV. METHODOLOGY 

The GRU model can efficiently deal with series data. 

Contrarily the FCNN is broadly applied in the prediction of 

cross-section data. For the advantages of the GRU model with 

sequential data, as well as that of the FCNN model with cross-

sectional data, we design and train a GRU-FCNN model to 

predict the three categories of truck arrivals, considering the 

vessel information, as well as weekdays and weather. 

A. The formulation and data preprocessing 

    In this paper, the prediction value of the s  type of truck 

arrivals at t  day is ,
ˆ

s ty . For the prediction of truck arrivals for 

pick-ups at t+Q days ahead, it is denoted by ,
ˆ

P t Qy +  (Q>1). 

Notations for trucks with Delivery task (D) and Dual tasks (H) 

are similarly denoted as ,
ˆ

D t Qy +  and ,
ˆ

H t Qy + . The predicted 

number of truck arrivals with export containers on day t  is 'ˆ
t

D

. The following notations are defined as input features. 

1) Time series of daily truck volumes: 

,s tY  a vector representing the ground truth of the s  type of 

truck arrivals at t  day, {k,..., }t N= , { , , }s P D H , N  is 

the number of sample size. 

The time series of daily arrivals of the Pick-up task (P), 

Delivery task (D), and Dual tasks (H), are denoted by ,P tY ,  

,D tY , ,H tY .  

2) Weather-related parameters: 
1

tS   a vector representing the first weather condition of t  

day， {k,..., }t N  

2

tS   a vector representing the second weather condition at 

t  day， {k,..., }t N  
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All the 9 weather conditions in Fig.5 are the value of 
1

tS  or 

2

tS . For example, it is “cloudy to light rain” during the t  day. 

Then 
1

tS is cloudy and 
2

tS  is light rain.  

1

tV a vector representing the maximum temperature at t  

day， {k,..., }t N  

    
2

tV a vector representing the minimum temperature at t  day

， {k,..., }t N  

    For example, the temperature is 15℃~20℃, then the 
1

tV  is 

20, and 
2

tV  is 15. 

3) Weekday parameters: 

    tW a vector representing the weekday at t day, 

{k,..., }t N  

4) Vessel-related variables: 

    c,tA  a vector representing the observed value of outbound 

truck arrivals on the t  day with closing time c , 

, , 1 , k[ ,..., ]c t c t c tA  − −= , {1,..., }c C , { 15,..., 2}t c c − + , 

k  is the sequence length; 

    cW   the weekday of the cut-off period c ; 

,c tL  length of time from the t  day till the closing time c ; 

,c t
  the ratio of truck arrivals with outbound containers on 

the t  day with closing time c ;  

 

Question 1: The learning function
(N-k) N-k( ) Ff  →g ¡ ¡：  

maps input data features to the arrivals of the next time interval, 

where F  is the dimension of the input features. Formula (1) is 

the prediction problem. 
1 2 1 2

, ,
ˆ[ , , , , , ] f

s t t t t t t s tY S S V V W y⎯⎯→             (1) 

Before training the model, pre-processed data techniques are 

used to model the defined six factors. It includes the following 

tasks:  

    i) Independent Factors are converted into one row and 𝑚-

column array with only one bit being 1 and the rest being 0 

using the One-Hot encode method. 𝑚 is the number of different 

values in the feature set. Take weekdays for an example. tW  

has seven variable forms from "Monday" to "Sunday". Using 

the One-Hot encoding, "Monday" is transformed into a vector

[1,0,0,0,0,0,0] , "Tuesday"[0,1,0,0,0,0,0] , etc. 

    ii) Factors with obvious size relationships (e.g.
1

tS and
2

tS ) 

are converted into an integer using the method of label 

encoding.  

    iii) To improve the prediction accuracy and convergence 

speed of the model normalization is used. All factors are 

transformed between [0,1]. 

In the proposed model GRU-FCNN, the FCNN1 

component is fed with non-operational factors which contain 

11 dimensions including tW  (seven), 
1

tS  (one), 
2

tS  (one), 
1

tV  (one), 
2

tV  (one), and then the GRU component is fed 

with the truck arrival records , 1s tY −   (one) but K sequence 

length. 

After transforming every K   consecutive truck arrival 

record as groups, the data are split into two data sets: (a) The 

first 70% of the data is used for model training, which 

includes ( )365 70%K−    days of H   type, ( )365 70%K− 

days of P  type, and ( )365 70%K−  days of D  type; (b) the 

remaining 30% of the data is used for model testing, which 

includes  ( )365 30%K−   days of H   type, ( )365 30%K−   

days of P  type and ( )365 30%K−  days of D  type [32]. 

 

Question 2: Where F is the dimension of the input features, 
M M( ) Fg  →g ¡ ¡： is the learning function that describes 

the input data features to export container arrivals in the next 

time interval of CY closing time. 

, , ,
ˆ[ , , ] g

c t c c t c tA W L ⎯⎯→                    (2) 

Specifically, the raw data are categorized according to the 

remaining time till the CY closing date 15,..., 2t c c= − + . A 

small portion of the export containers can get later than the CY 

closing date in less than 2 days due to uncertain factors. The 

containers with the same CY closing date are treated as the 

same category. The arrival number c,t
  is summed in the same 

sub-figure. Totally there are 182 sub-figures for the 182 CY 

closing date in Appendix A, which includes 3348 samples.  

Inbound containers can only be picked up after the vessel’s 

berthing time. Basically, they do not have any relationship with 

the CY closing date. However, the data shows that the relation 

with berthing time is not significant either as in Appendix B. It 

is owing to the fact that the terminal in Southern China is an 

export port, and most of the inbound containers are empty. 

Under some special contracts between shipping lines and the 

terminal, some empty containers can be stored in the yard for 

future use. It is normal for a container to stay in the yard for half 

a month. As a result, the trend of pick-up arrivals is not as 

obvious as delivery arrivals. 

In practice, the total number of export containers to be loaded 

on the ship is known. We can predict the ratio of truck arrivals 

,c t
  instead of c,t , in which , , /c t c t cE = . cE is the total 

number of export containers with the CY closing time c . The 

learning function can be transformed into equation (3) and the 

export container arrivals volume 'ˆ
t

D on day t  is calculated by 

equation (4). 

, , ,
ˆ[ , , ] g

c t c c t c tB W L ⎯⎯→               (3) 

'

c,
ˆˆ *t t c

c

D E=                  (4) 

file:///D:/Software/坚果云/备份/修改稿20220330bySHT.docx%23fig4
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 To reduce the impact of outliers on the training model, we 

delete some 
c , t

 with a small total number cE . As illustrated in 

Fig 6, in which the blue points are original ones and the orange 

points are those filtered. If cE >2000, then 
c , t

  is kept; 

otherwise, the data is deleted. Furthermore, some deleted data 

are relating to the season of the Chinese Spring Festival, with a 

trough in export container volume for 18 days before and after 

the holiday. Employees of the factories, trucking companies, 

and the terminal were on vacation during the holiday season. 

Because lack of previous data with both vessel and holiday 

information to train the model, 
c , t

  on those days are deleted to 

reduce the caused bias. The other cases include the dates 2020-

01-02, 2020-06-29, and 2020-06-30, which have missing data. 

Fig.6 shows a comparison of data before and after screening. 

 

Fig.6.Outbound arrivals rate before and after screening 

 

Data preprocessing techniques are applied to the input 

features. cW  and ,c tL  are converted using the One-Hot encode 

technology. Because they are discrete integers that have no 

direct impact on the total number of export containers, e.g., 

"The volume of export containers on Tuesday must be smaller 

than Wednesday's" is incorrect. Except for outliers, data1 (2790 

records) is divided into a training set (1953 records) and a test 

set (837 records) in a 70:30 ratio to ensure data integrity. 

Varying sequence length is adopted to improve the fitting 

effect of sequence models, including RNN, LSTM, and GRU-

FCNN. It is noted that k is the sequence length in the input data

, , 1 , k[ ,..., ]c t c t c tA  − −= . However, the number of possible 

values t  is restricted. The traditional fixed sequence length 

input will have the following two effects if k  is set to a large 

value: a) The amount of data available will be reduced, which 

will have a significant impact on the training effect and lead to 

underfitting. b) The predictable range is limited to the arrival 

volume of export containers on previous days. For example, if 

3k = , the arrival volume of export containers must be 

collected for at least 3 days to meet the demand. However, the 

ratios before the 3 days, e.g., 
, 15 , 14 , 13

ˆ ˆ ˆ, , ,
c c c c c c

  
− − −

L  will not 

be contained. We abandon fixed sequence lengths in favor of 

informative sequences of varying lengths, inspired by the 

widespread success of variable-length deep learning models in 

the field of semantic recognition. The sequence model currently 

only accepts inputs of equal length, and the missing points in 

the export container arrival sequence must be filled in. The 

arrivals with export containers before the deadline gradually 

approach 0, as shown in Fig. 4. Therefore, we fill in the missing 

value of the unequal length export container sequence 

, , , 1 , 1
[ , , ..., ]

c t c t k c t k c t
B   

− − + −
=  with the value of 0, as shown 

in Fig.7. 

 

Fig.7.Filling process of unequal length sequences 

 

B. The GRU-FCNN Model 

    We propose a novel hybrid deep learning method fusing 

GRU and FCNN components. It consists of two FCNN 

components and one GRU component. The inputs of FCNN 

components are cross-sectional data sets, including non-

operational factors (weather-related variables and weekday 

variables) at 1t +  day. The inputs of the GRU component are 

sequences, w.r.t., the consecutive truck arrival records at k  

pre-steps. For Question 2, there is no information exchanged 

between ,c tB , cW , and ,c tL . It is inefficient to put them all into 

the sequence model. Therefore, cross-sectional data cW  and 

,c tL  are fed into the FCNN component 1; and time series data 

, , , 1 , 1[ , ,..., ]c t c t k c t k c tB   − − + −=  are fed into the GRU component. 

    The FCNN component is constructed from the multi-layer 

network, each of which has the same number of neutrals and 

uses the ReLU activation function. FCNN is the most basic 

neural network model. Each layer is fully connected, and the 

data flow passes through the input layer and the hidden layer 

before reaching the output layer[37]. The GRU component 

contains multi-layer GRU units to increase the accuracy of 

learning. The GRU model is similar to the LSTM model and is 

often proposed to solve problems like long-term memory and 

backpropagation gradients. The reset and update gates in the 

internal structure of the former improved learning efficiency 

significantly, and the computational complexity is lower than 

that of the latter. The GRU can achieve the same accuracy as 

the LSTM with the same number of layers and neurons, and the 

calculation time will be shorter[16]. The hidden state th of the 

GRU at time step t  is obtained based on the current input tx  

and the information 1th −  retained from the previous step, 

assuming that the sequence 1( , ,..., )t k t k tX x x x− − +=  is 
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sequentially passed into the GRU. As a result, the GRU can 

remember the previous element's effect on the next element. 

Formulas (5)-(8) are used to express the above process: 

1( )t ir t ir hr t hrr W x b W h b −= + + +                                     (5) 

1( )t iz t iz hz t hzz W x b W h b −= + + +                             (6) 

1( ( ))t in t in t hn t hnn W x b r W h b −= + + +e                   (7) 

1(1 )t t t t th z n z h −= − +e e                                        (8) 

    Where e  is the Hadamard product of two matrices, and 

( )x  is a GRU unit activation function that converts the 

variable between 0 and 1, indicating how much information is 

remembered. (x) can reduce the occurrence of gradient 

disappearance and gradient explosion. In the model proposed in 

this paper, the FCNN uses the activation function ReLU as 

formula (11) to map the nonlinear relationship between 

historical data and non-operational factors. 

1
( ) sigmoid( ) , ( , )

1 x
x x x

e


−
= =  − 

+
             (9) 

2

2

1
(x) = tahn( ) , ( , )

1

x

x

e
x x

e


−

−

−
=  − 

+
                  (10) 

,

,

0

0 0
ReLU( ) =  , ( , )

x x
x x

x






 − 


                   (11) 

    Fig.8 illustrates the overall architecture of the proposed 

model.  It is proposed to include the FCNN1 component to 

capture NOF; and the GRU component in the model to reflect 

the influence of the truck's historical data. The former captures 

the influence of NOF, and the latter learns the long-term and 

short-term influences hidden in the sequence. To describe the 

correlation between NOF and historical truck arrivals, we use a 

fusion technique to connect the output tensors of FCNN 

component 1 and the GRU component. Then we pass them into 

FCNN component 2. It means that the input dimension of the 

FCNN component 2 is 
FCNN1 LSTMN +N . The final output of 

FCNN component 2 predicts the number of truck arrivals. The 

loss function, which compares the predicted and observed 

values to calculate the loss, measures the model's prediction 

accuracy. A backpropagation algorithm is then used to update 

the model's weights and biases. 

 

 
Fig.8. The structure of the GRU-FCNN model 

 

V. MODEL TRAINING 

The GRU-FCNN model has many variables and model 

parameters, which can be determined through calibration and 

evaluation to achieve the best performance for a specific 

domain problem. In this section, the parameters of GRU-FCNN 

are proved through experiments. For the sake of brevity, this 

section only takes the dual truck arrival forecast model as an 

illustrative example. Similar steps can be repeated for the 

predictions of pick-up and delivery tasks. 

Before the model is built, the number of hidden layers and 

the number of neurons in each layer should be determined first 

which depends on each other. Generally, we first manually 

input the number of neurons in each layer and then find the 

corresponding optimal number of hidden layers [38, 39]. 

Considering the number of non-operational factors (Eleven) 

and historical data of truck arrivals (One), 64 units are manually 

set in each layer at FCNN component1 and 16 units are 

manually set in each GRU layer, and the output layer has the 

same neurons as the hidden layer. The number of FCNN2 input 

layer units is the sum of FCNN1 and GRU outputs, which is 80. 
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Each hidden layer has been assigned the same number of units 

as the input layer. 

To discover the best-hidden layers in FCNN1 and FCNN2, 

we firstly train the model of hidden layers 1. Then we gradually 

increase the hidden layers until the error is no longer reduced. 

As shown in Fig.9, the error gradually decreases as the number 

of hidden layers increases. As it achieves 3, the loss doesn’t 

decrease any longer but needs more training time. The 

performance of the GRU component is affected by the number 

of hidden layers and k sequence length. Then we gradually 

increase the number of hidden layers and k sequence length 

until the loss error stops decreasing. Fig.10 shows the effect the 

number of hidden layers, as well as the value k , has on RMSE 

(root mean square error). The best parameters of other types of 

trucks are also summarized in Table III. 

 
(a) 

 
(b) 

Fig. 9. Model performance (RMSE) vs. the number of hidden layers at (a)FCNN 

component1 and (b) FCNN component2. 

 

The performance of the neural network model is also affected 

by the application of technology. To improve the efficiency of 

training, Adam (Adaptive moment estimation) [40] is used. 

Adam is more efficient than the gradient descent algorithm. 

ReduceLROnPlateau technology allows setting a larger 

learning rate manually to help the parameters fall quickly in the 

high-dimensional space and save time. If the loss value does not 

change within 10 steps, the learning rate will be reduced to 10% 

of the original [41]. L2 regularization[42] and drop-out 

technology[43] are commonly used methods to prevent 

overfitting in deep l 

earning.  

    To evaluate the prediction accuracy, RMSE  and MAPE are 

used as in Equations (12-13). Both of them are the commonly 

used cost functions in the study of prediction, which can 

accurately show the current fitting level. 

2

, ,

1

RMSE ( ( ) ) /
N

s t s t

t

y y N
=

= − $                                              (12) 

,,

1 ,

| |1
MAPE *100%

N
s ts t

t s t

y y

N y=

−
= 

$
                          (13) 

Among them, N is the amount of data, ,s ty  is the observed 

number of truck arrivals, ,s ty$ is the predicted one,

{ , , }s P D H . 

 
Fig. 10. The heatmap of RMSE of combinations of k  and hidden layer size  

 

TABLE III  

STRUCTURE AND PARAMETERS OF GRU-FCNN 

 Dual truck Pick-up truck Delivery truck 

Model architecture FCNN component 1: 3 hidden 

layers, each with 64 neurons; 

FCNN component 2: 2 hidden 
layers, each with 80 units. 

LSTM component: 4 hidden layers, 

each with 16 units and 6 sequences; 

FCNN component 1: 3 hidden layers, each 

with 64 neurons; 

FCNN component 2: 1 hidden layer, each 
with 80 units. 

LSTM component: 3 hidden layers, each 

with 16 units and 7 sequences; 

FCNN component 1: 4 hidden layers, 

each with 64 neurons; 

FCNN component 2: 2 hidden layers, 
each with 80 units. 

LSTM component: 3 hidden layers, 

each with 16 units and 7 sequences; 
Optimizer Adam 

Initial learning rate 0.001 0.001 0.001 
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Techniques to avoid over-fitting ReduceLROnPlateau; Ridge Regression; Dropout. 

Regularization coefficient 0.00001 0.00005 0.00003 

Epochs 500 600 600 

VI. EXPERIMENTS AND PERFORMANCE ANALYSIS 

A.  Benchmarks 

    To evaluate the performance of the proposed model, six 

commonly used models for truck arrival prediction are 

compared, namely Linear Process model (LP), Support 

Vector Regression (SVR), Random Forest (RF), Fully 

Connected Neural Network (FCNN), Recurrent Neural 

Network (RNN) and Long Short-Term Memory (LSTM). The 

basic principles and parameters of these models are as 

follows. 

1) Linear Process model (LP) has become one of the 

most popular models in the field of machine learning and is 

often used for prediction and classification problems. The 

basic principle is to assume that the data obey the 

multivariate linear function distribution, and then use the 

least square method or gradient descent method to find the 

parameters [44]. The commonly used kernel functions in 

linear regression are Poly (Polynomial) and RBF (Radial 

Basis Function). The model requires the target value and the 

feature to have a linear relation and the RBF kernel function 

can ensure the linear regression model fits the data that 

follows a Gaussian distribution. Because the distribution of 

the dual trucks (Fig.3(a)) is not a Gaussian process, we use 

the polynomial linear process instead. The model is 

implemented using the Scikit-learn package [45].  

2) Support Vector Regression (SVR) is a powerful 

supervised machine learning model that can realize 

classification and regression. It is a linear classifier with the 

largest interval defined in the feature space [46]. This model 

has been used to predict the arrival of trucks [32]. Parameters 

can affect the performance of the SVR model, so the Scikit-

learn package is used [45], and it can optimize the kernel 

function, penalty factor, loss function, and regularization. 

The commonly used kernel functions in SVR are linear, 

polynomial, sigmoid, and RBF. The penalty factor can be 

selected from 0.01, 0.1, 0.5, 1, 2, 5, 10, 100. The loss 

function can be either a hinge loss function or a square hinge 

loss function. More details are documented in Swami and 

Jain [45]. On the prediction of dual truck arrivals, the kernel 

of the SVR was a polynomial kernel function, the penalty 

function coefficient was 2 and the degree was 3. However, 

the RBF kernel function is used in the prediction of pick-up 

and delivery. 

3) Random Forest (RF) is a simple and powerful 

machine learning technique that uses ensemble learning to 

merge several decision trees. From an intuitive standpoint, if 

each decision tree conducts an individual regression 

operation (assuming that it is a regression problem), then N 

trees will have N results for an input sample. The random 

forest incorporates all of the regression voting results, and 

the category with the most votes is assigned as the final 

output. This model is widely used in various fields, including 

the problem of truck flow prediction[47-49]. The model is 

established using the Scikit-learn package [45]. The amount 

of decision trees on the forecast dual trucks is manually set 

at 70. 

4) Fully Connected Neural Network(FCNN) is a type of 

fully connected front-end neural network with multiple 

layers, multiple neurons, and adjacent hidden layers. In the 

model training, the data passes from the input layer through 

the hidden layer to the output layer, and the gradient descent 

algorithm and backpropagation algorithm optimize the 

weight and bias [37]. This model is widely used in various 

fields, including the problem of truck arrival prediction [29-

31, 33, 34]. The FCNN model can be established by using 

PyTorch which can optimize the hidden layer, the number of 

neurons, and the activation function [41]. Finally, the FCNN 

used in this study was optimized with three hidden layers, 

each of which had 35 neurons. The activation function was 

chosen from identity, logistic, tanh, and relu. Finally, we 

used the relu activation function. 

5) Recurrent Neural Network (RNN) is a type of 

recurrent neural network that takes sequence data as input, 

recursively in the evolution direction of the sequence, and all 

recurrent units are connected in a chain. RNN has short-term 

memory capabilities. Its neurons cannot only receive 

information from other neurons but also receive their 

information, forming a network structure with loops. At the 

same time, the network will memorize the previous 

information and apply it to the calculation for the current 

output, which means, the nodes between the hidden layers 

are no longer unconnected but connected, and the input of 

the hidden layer includes not only the output of the input 

layer but also the output of the last hidden layer. At present, 

RNN has been widely used in natural language processing 

[50]. The RNN model can be established by using PyTorch, 

and the optimization of the hidden layer, the number of 

neurons, and the activation function can be realized [41]. The 

RNN used in this study was optimized with three hidden 

layers, each of which had 64 neurons, and with the 3 

sequences. 

6) Long Short-Term Memory (LSTM) is a sort of 

recurrent neural network that is used to handle the problem 

of vanishing and exploding gradients. The most important 

part is the memory cell that performs information addition 

and removal operations through the gate structure (including 
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the ‘forget’ gate, input gate, and output gate). This model is 

widely used to process long-length datasets, including traffic 

flow[18], train delay[51] and stock price movement[52], etc. 

Using PyTorch, the LSTM model can be created, and the 

hidden layer, number of neurons, and activation function can 

all be optimized[41]. The LSTM used in this study was 

optimized with 5 hidden layers, each of which had 64 

neurons, and with the 3 sequences for dual truck arrival. 

B.  Model Performance on One-step Prediction 

    First of all, we make single-step predictions for dual trucks, 

delivery trucks, and pick-up trucks. The results of the GRU-

FCNN model and baseline models are shown in Table IV. The 

training time is also recorded and shown in the last column of 

Table IV. Based on the test data-sets from May 19, 2019, to 

August 31, 2019, it presents an average improvement(Gap1) of 

23.44%, 32.09%, and 26.99%, compared to the mean values of 

other models, concerning dual, pick-up, and delivery trucks 

respectively. GRU-FCNN shows a distinctive advantage over 

other models in prediction accuracy. Moreover, the gap in the 

estimation can also be seen in Fig.11, where the prediction data 

by GRU-FCNN is the closest to the real data. The inaccuracy 

during the period from July 31, 2019, to August 3, 2019 (within 

the red square in the dual of Fig.11(a)) may be due to human 

factors. 

RMSE(Baseline model)-RMSE(GRU-FCNN)

RMSE(GRU-FCNN)
Gap1= 100%  

                                                                               (14) 

MAPE(Baseline model)-MAPE(GRU-FCNN)

MAPE(GRU-FCNN)
Gap2= 100%  

                                                                                       (15) 

 

TABLE IV  

THE OVERALL PERFORMANCE OF MODELS ON TEST-DATASET 

Truck type Model RMSE MAPE (%) Gap1(%) Gap2(%) Time Cost(s) 

Dual 

GRU-FCNN 837.38 11.75 - - 26.115 

Linear process(poly) 1162.34 17.47 27.96 32.74 0.761 

SVR(poly) 1123.92 18.25 25.49 35.62 0.250 

RF 1227.21 16.11 31.77 27.06 0.065 

FCNN 1133.74 16.26 26.14 27.74 51.72 

RNN 1138.20 18.49 26.43 36.45 5.63 

LSTM 862.28 13.19 2.89 10.92 140.98 

Pick-up 

GRU-FCNN 228.33 8.53 - - 20.411 

Linear process(RBF) 285.91 10.82 20.14 21.16 0.23 

SVR(RBF) 407.34 14.37 43.95 40.64 0.21 

RF 452.08 15.65 49.49 45.50 0.063 

FCNN 331.54 11.73 31.13 27.28 24.6 

RNN 328.01 11.62 30.39 26.59 23.00 

LSTM 276.47 9.84 17.41 13.31 152.59 

Delivery 

GRU-FCNN 365.10 10.23 - - 23.00 

Linear process(RBF) 555.22 15.80 34.24 35.25 0.23 

SVR(RBF) 563.57 16.59 35.22 38.34 0.20 

RF 566.39 15.25 35.54 32.92 0.046 

FCNN 439.35 13.00 16.90 21.31 15.40 

RNN 459.46 12.77 20.54 19.89 6.70 

LSTM 453.64 12.95 19.52 21.00 138.22 
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(a) 

 
(b)  

  
(c)  

Fig.11. Truck arrivals prediction of each model on test datasets. (a) Dual. (b) Pick-up. (c) Delivery. 

 

C.  Model Performance on Q-step Prediction 

    The models are also used to make Q-step predictions (Q>=2). 

The model performance is investigated using three categories 

of the dual(H), pick-up(P), and delivery(D) trucks respectively 

in a container terminal in Southern China. 

    Take the variance of RMSE of dual trucks (H) as an example. 

As illustrated in box plots in Fig.12, the median of RMSE 

gradually increases with the lengthening of prediction steps. At 

the same time, the fluctuation of prediction is enlarged. It is 

consistent with the common applications of the GRU-FCNN 

model for short-term prediction [23, 53]. It is explained that the 

past information becomes less valuable to facilitate the 

prediction in a further future, which causes the reduction of the 

prediction accuracy [54]. 
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(b) 

 
(c) 

Fig.12. The multi-step prediction for GRU-FCNN. (a) Dual. (b) Pick-up. 

(c) Delivery. 

 

D.  Sensitivity Analysis of Input Factors 

    To determine the influence of different factors, the input is 

decomposed and analyzed. In detail, in this section, we 

investigate the extent to which the meteorological factors 

(temperature and weather conditions), and weekly data affect 

the accuracy of prediction. The following four types of 

experiments with different input factors are therefore set up. 

Their results are compared with the control group.  

Test 1: GRU-FCNN is fed with the data sets without "weekday" 

( t
W  ) information ; 

Test 2: GRU-FCNN  is fed with the data sets without “weather-

related” (
1 2 1 2,S , ,t t t tS V V  ) information; 

Test 3: GRU-FCNN  is fed with daily volumes of truck arrivals 

only. The FCNN component1 is removed and all the non-

operational factors (NOF) 
1 2 1 2(S ,S , , , )t t t t tV V W  are not 

included. 

Control group: GRU-FCNN is fed with all the input data sets. 

 
Fig.13. The comparison results with different input data and structure 

 

    Fig.13 shows the RMSE of the experiments with dual, pick-

up, and delivery trucks as an illustrative example. Firstly, the 

difference between Test 1 (without “weekday”) and the control 

group is the most significant, which is 531.40(H), 345.75(P), 

and 422.52(D). It demonstrates the importance of the weekday 

factor in the prediction. The weekday factor reflects the arrival 

pattern of liner vessels. Experimental results prove the close 

relationship between truck arrivals and vessel schedules. 

Secondly, the results of Test 2 (without “weather-related”) 

show that the weather-related factors contribute to the improved 

accuracy of prediction. It means truck arrivals are affected by 

weather conditions. There was no extreme condition during the 

period from May to August 2019 in Southern China. If there 

was extreme weather, like hurricanes or typhoons, the influence 

would be more serious. Lastly, a comparison between Test 3 

(without all the NOF) and the control group once more proves 

the importance of weekday and weather-related information, as 

well as the advantages of the proposed method. In tests 1 and 3, 

it can be found that the prediction results with the weather 

feature only (in Test 1) are even worse than those obtained 

without any NOF. However, the week feature (in Test 2) 

enhances prediction accuracy compared with Test 3. 

Interestingly, the control group performs best with the least 

divergence from the real value, since the interaction between 

the weather and weekday features enhances prediction accuracy 

further. 

E. Advantages of Prediction with Three Categories 

    In the literature [28-30, 32], the truck is usually classified into 

two categories: pick-up trucks and delivery trucks. However, 

from a practical view, dual transactions are used in a growing 

manner and could not be overlooked anymore [55]. To show the 

advantages of the three categories, data is preprocessed with 

only two categories. Because each truck delivers a container and 

then picks up another one in dual transactions. The number of 

pick-ups (P) adds by the number of the dual (H). So does the 

number of deliveries (D). It is noted that 
t

P  and
t

D  represent the 

number of transactions of pickup and delivery truck arrivals 

respectively in this context. 
t

P
$

 and  
t

D $ represent the estimated 

number of transactions. Equations (16) and (17) are the 

calculation of mean values of errors. Using one-step prediction, 
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the comparison results are shown in Table V. It is remarkable to 

find that the errors of three-category of the truck reduce by at 

least 38.49% across all six models. In Fig.14, the illustration 

results of GRU-FCNN demonstrate that the three-category 

datasets have lower prediction errors on almost days. 

µ ¶

1

Errors of two-catego y
1

)r ( ) (
N

t t t t

t

P D P D
N =

   = + − +         (16) 

µ ¶ ¶

1

Errors of three-categor
1

)y ( ) (
N

t t t t t t

t

P D H P D H
N =

= + + − + +    (17) 

where 
tP , 

tD , 
tH  are ground truth of trucks with a pick-up, a 

delivery, or dual tasks.  

 
TABLE V  

THE ERRORS FOR TWO OR THREE CATEGORIES DATA-SETS 
Models two-category(a) three-category(b) |(a)-(b)|/(a)(%) 

GRU-FCNN 1880.77 997.44 46.97 

LSTM 2057.85 1083.04 47.37 

Linear process 2360.01 1189.16 49.61 

SVR 3038.84 1295.29 57.37 

RF 2626.26 1449.80 38.49 

FCNN 2460.52 1253.24 49.07 

RNN 5691.30 1018.11 82.11 

 

 
Fig.14. The advantages of predictions based on three categories of GRU-FCNN 

results 

F. The prediction with vessel information

    Following Question 2, experiments are undertaken to reveal 

the effects of vessel information, e.g., the CY closing date of 

each vessel. The prediction errors of different models are shown 

in Table Ⅵ. The prediction without vessel information has been 

conducted by using the same data set based on the method in 

Section VI. It demonstrates that vessel information would 

significantly help in accuracy improvement. Except for the 

model of SVR, the other six models have improved the 

performance variously with vessel information. Among the 

models, the GRU-FCNN has the best results, which reflects its 

advantages in dealing with both time series and cross-sectional 

data. The RMSEs of ,
ˆ

c t  and 'ˆ
tD  vary proportionally, which 

proves the reasonability of the experiment with vessel 

information. 

    According to the experimental results, the daily arriving 

number of outbound trucks is illustrated in Fig. 15. We can find 

the prediction curve of GRU-FCNN in red almost overlap with 

that of the ground truth. 

    In Fig.16, for each CY closing date, the prediction curves of 

different models are shown. Although they have various 

features on different days, the GRU-FCNN does best in most 

cases, owing to the vessel information and weekday as 

important input factors. 

 

Fig. 15 The prediction contrasts of outbound containers

 
TABLE Ⅵ  

THE CONTRASTS OF THE CURACY OF VARIOUS MODELS 

   Linear SVR  RF FCNN RNN LSTM GRU-FCNN 

With vessel 

information 

,
ˆ

c t  
RMSE 0.0153 0.0698  0.0107 0.0148 0.0115 0.0130 0.0091 

MAPE 90.61% 4079.30%  51.65% 254.94% 192.23% 253.90% 183.70% 

'ˆ
tD  

RMSE 1256.74 6058.22  495.78 1014.90 590.03 760.90 461.44 

MAPE 29.84% 3509.25%  19.56% 273.73% 24.28% 20.36% 15.67% 

Without vessel 

information 
'ˆ
tD  

RMSE 1262.16 2666.64  1306.04 1175.79 1125.76 892.12 807.99 

MAPE 74.82% 53.21%  60.43% 81.21% 77.49% 224.40% 95.59% 
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Fig.16. The prediction of outbound trucks with a specific CY closing date 

VII. CONCLUSIONS 

    Container terminals serve as important transfer hubs for 

international trades and goods flows. An accurate prediction of 

daily truck arrivals would benefit the yard plan as well as 

equipment allocations to solve the associated bottleneck 

problems. This paper proposes a new GRU-FCNN model that 

enables the terminals to predict the accurate number of pick-up, 

delivery, and dual trucks coming in the future days. The model 

illustrates the close relationship between the non-operational 

factors (weekday and weather), CY closing time, and the daily 

truck arrivals. It outperforms the other widely-used models by 

23.44%, 32.09%, and 26.99%, concerning dual, pick-up, and 

delivery trucks respectively. The comparison between the 

GRU-FCNN model and the six commonly used truck arrival 

prediction models in the existing literature discloses the new 

model's advantages in predictive performance, generalizability, 

and computational requirement. With the 3 categories of trucks 

(i.e. P, D, and H), as well as vessel information, the prediction 

accuracy is significantly improved within each model. The 

main findings and the associated contributions from these 

experiments are summarized as follows. 

1) It is beneficial to consider the influence of weather-related 

and weekday data to improve the prediction accuracy of 

daily volumes of truck arrivals in a container terminal.  

2) The proposed model GRU-FCNN considerably outperforms 

other widely used truck arrival prediction models. 

3) The prediction with three categories of trucks is 

demonstrated to be more accurate than the one with two 

categories.  

4) Adding vessel information as input data, e.g., the CY 

closing date of a vessel enhances the accuracy of export 

container arrival predictions greatly. 

    Multi-stakeholders including terminal managers, hauler 

companies, and shipping lines would therefore benefit from the 

improved effectiveness of our truck arrival prediction model for 

reasons beyond the generally expected basic planning rationale.  

    Terminal operators could undertake a better allocation of 

yard equipment and infrastructure according to the number of 

dual, pick-up, and delivery trucks. Yard cranes or front-end 

loaders could work more efficiently. The yard plan on where 

and how to store the containers could better perform by 

following the number of pick-ups and deliveries. Idling 

emission is more concerned compared to the pollution of trucks 

at other operations. Based on our findings, idling time could be 

cut down through a better allocation of equipment and more 

efficient loading/discharging operations. Container supply and 

demand could strike a balance by an accurate prediction of truck 

arrivals. 

    Drayage companies could also save time and personal cost 

with the rational matching of truck supply and demand. As a 

result, terminals could better schedule their infrastructure and 

equipment, and congestion around the terminal could be 

released and hence emissions from trucks.   

    Finally, our work is to be further developed to conduct the 

hourly prediction of truck arrivals or during any specified 

period of the day upon the research need and significance. The 

target is to establish a truck arrival prediction framework as a 

reference for the stakeholders (e.g. terminal operator) for better 

traffic management involving truck arrivals at a container 

terminal. 
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Appendix A 

 

Fig.A. Outbound truck arrivals rate towards each closing time 

Note: Each subgraph is an export arrival sequence at a closing time. The red dashed line is CY closing time.  

 

Appendix B 

 

Fig.B. Inbound truck arrivals towards each closing time 

Note: Each subgraph is an export arrival sequence at a berthing time 
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