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The performance of immune-based neural  
network with financial time series prediction
Dhiya Al-Jumeily1* and Abir J. Hussain1

Abstract: This paper presents the use of immune-based neural networks that 
include multilayer perceptron (MLP) and functional neural network for the prediction 
of financial time series signals. Extensive simulations for the prediction of one-and 
five-steps-ahead of stationary and non-stationary time series were performed 
which indicate that immune-based neural networks in most cases demonstrated 
advantages in capturing chaotic movement in the financial signals with an 
improvement in the profit return and rapid convergence over MLPs.
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1. Introduction
Neural networks have been shown to be a promising tool for forecasting financial times series. 
Numerous research and application of neural networks for business applications have proven their 
advantage in relation to classical methods that do not include artificial intelligence. What makes 
this particular use of neural networks so attractive to financial analysts and traders is the fact that 
government sectors and companies have used this technique to make decisions on investment and 
trading. However, when the number of inputs to the model and the number of training examples 
becomes extremely large, the training procedure for ordinary neural network architectures becomes 
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tremendously slow and unduly tedious. To overcome such time-consuming operations, this research 
work proposes the use of immune-based neural network to improve the recognition and 
generalisation capability of the backpropagation neural networks.

The efficient market hypothesis states that a stock price, at any given time, reflects the state of 
the environment for that stock at that time. That is, the stock price is dependent on different 
variables, such as news events, other stock prices and exchange rates. The hypothesis suggests  
that future trends are completely unpredictable and subject to random occurrences. Thus making it 
infeasible, to use historical data or financial information, to produce above average returns. However, 
in reality, market responses are not always instantaneous. Markets may be slow to react due to poor 
human reaction time or other psychological factors associated with the human actors in the system. 
Therefore, in these circumstances, it is possible to predict financial data, based on previous results 
(Jensen, 1978). There is a significant body of evidence showing that markets do not work in a totally 
efficient manner. Much of the research shows that stock market returns are predictable by various 
methods such as; time series data analysis on financial and economic variables (Fama & French, 
1989; Fama & Schwert, 1977; Ferson, 1989).

Various studies have been carried out on the use of neural networks for financial time series 
prediction; these include the forecasting behaviour of the financial market using neural networks. 
Multiple decisions, each of which affects the performance of the neural networks forecasting model, 
must be made, including; which data to use, the size and the architecture of the neural network 
systems (Zhang, 2003). The following are some of the difficulties of using neural networks in financial 
time series applications:

• � There are infinitely many models which fit the training data well, but few of them generalise 
well. Supplementary degrees of freedom may lead to a better fitting of the model during  
the training of the network, but to worse generalisation ability on the out-of-sample data 
(Lendasse, de Bodt, Wertz, & Verleysen, 2000).

• � In order to form a more accurate model, it is desirable to use as large training set as possible. 
However, for the case of highly non-stationary data, increasing the size of training set results in 
more data with statistics that are less relevant to the task at hand being used in the creation of 
the model.

• � The high noise and too many parameters (compared to the number of data available) make the 
models prone to overfitting (Dorffner, 1996; Lendasse et al., 2000).

• � The requirement of large number of sample data, due to their large number of free parameters 
(Dorffner, 1996). The limitation exists for the fact that some new founded companies do not 
have much of the previous data.

To improve the recognition and generalisation capability of the backpropagation neural networks, 
Widyanto, Nobuhara, Kawamoto, Hirota, and Kusumoputro (2005) used a hidden layer inspired by 
immune algorithm (SMIA) for the prediction of sinusoidal signal and time temperature-based quality 
food data. Their simulations indicated that the prediction of sinusoidal signal showed an improvement 
of 1/17 in the approximation error in comparison to the backpropagation and 18% improvement in 
the recognition capability for the prediction of time temperature-based quality food data.

In this paper, we propose the use of a multilayer perceptron (MLP), the functional link networks 
and the self-organised neural network inspired by the SMIA for single and multi-step ahead 
prediction of financial time series. Furthermore, a novel application of the regularisation technique 
is used with the self-organised MLPs network that is inspired by the immune algorithm (R_SMIA). The 
aim is to increase the generalisation ability of the SMIA network for financial time series prediction 
and to avoid the problem of overfitting for the purpose of improving the prediction ability of the self-
organised multilayer neural network which is inspired by SMIA.
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Ten financial time series are used to test the performance of the various networks such as the 
exchange rates time series and the oil price. In these extensive experiments, our primary interest is 
to concentrate on the profitable value contained in the predictions for all neural network models and 
hence during generalisation. The work focuses more on how the network generates the profits. For 
this reason, the neural networks structure, which provides the highest percentage of annualised 
return (AR) on out-of-sample data, is considered to be the best. A new training algorithm was utilised 
with the self-organised neural network that is inspired by the SMIA using weight decay; the simulation 
results indicated significant improvement of the proposed training algorithm over the standard 
network.

2. Financial time series forecasting
Time series forecasting is the process of predicting future values using current values. Forecasting 
the behaviour of the financial market is a non-trivial task due to its non-linear and non-stationary 
behaviour, furthermore it has been suggested that some financial time series are not predictable 
(Thimm, 1995).

Dunis and Wiliams (2002) implemented Neural Network Regression to forecast foreign exchange 
rates on UER/USD time series data. The study was benchmarked against several traditional forecasting 
techniques including Naïve Strategy, MACD Strategy, ARMA Methodology and Logit Estimation. Their 
observations have confirmed the applicability of neural network for financial forecasting.

Yao and Tan (2000) examined the forecasting performance of neural network on the exchange 
rates between American Dollar and five other major currencies; Japanese Yen, Deutsch Mark, British 
Pound, Swiss Franc and Australian Dollar. The results showed that without the use of extensive 
market data or knowledge, useful prediction can be made and significant paper profits can be 
achieved for out-of-sample data. They also concluded that a backpropagation network used in their 
study has proved to be adequate for forecasting and simple technical indicators such as moving 
average (MA) are enough.

Another approach for time series forecasting can be found in (Lawrence & Giles, 2000) which 
analysed the predictability of major world stock markets such as Canada, France, Germany, Japan, 
United Kingdom (UK) the United States (US), and the world excluding US (World) using MLP models. 
They found that MLP models with logistic activation functions predict daily stock returns better than 
the traditional ordinary least squares and general linear regression models. Neural networks are 
promising tool for forecasting financial times series. They have been widely used to model the 
behaviour of financial time series and to forecast future values (Yao & Tan, 2000).

3. Traditional approaches to time series prediction
The standard method for time series prediction is the statistical linear approach. In this approach, 
the signal Sn is considered the output of a system with unknown input un and its value is determined 
by the linear combinations of previous outputs and inputs according to the following equation 
(Makhoul, 1975):

where ak, bm and G are the model parameters. Usually, the input un is modelled by a zero mean 
Gaussian noise source. The above equation can be specified in the frequency domain by taking the Z 
transform of both sides of the equation. Let H(Z) represent the transfer function of the system in the 
Z domain, then:

(1)Sn=

P∑
k=1

akSn−k+G

q∑
m=0

bmun−m, b
0
=1

(2)
H(Z)=

S(Z)

U(Z)
=G

1+
∑q

m=1
bmz

m

1+
∑p

k=1
akz

k
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And the Z transform of the signal is:

In this case, the roots of the numerator and the denominator of the transfer function H(Z) are the 
zeros and the poles of the model, respectively. When ak = 0, the model is considered as all zeros and 
called the Moving Average (MA) model, when bm = 0, the model is considered as all poles and known 
as Autoregressive (AR) model, while a model that has pole sand zeros values is referred to as an 
autoregressive moving average (ARMA) model.

For the non-linear model, we have:

 

In this case, un is a zero mean white noise. The function g is a highly non-linear and very complicated. 
Non-linear prediction can be determined using either the Volterra or the bilinear models, where the 
process is assumed to be inevitable, i.e. un can be approximated using a finite number of terms 
(Manikopoulos, 1992) and in which:

 

Using the discrete Volterra series expansion. Where {ui}, {uij}, {uijk} are Gaussian random variables and 
{ai}, {aij}, {aijk} are sets of constant coefficients.

Using the bilinear model, we can determine Sn as follows:

 

where c0=0, and un is a white noise process.

To solve the non-linear model, it is required to determine the unknown parameters, which are 
usually very difficult to determine using traditional methods. Neural networks can be used to  
solve this problem in which the parameters (weights and biases) are determined implicitly using 
suitable training algorithms.

4. The networks
Although most neural network models share a common goal in performing functional mapping, 
different network architectures may vary significantly in their ability to handle different types of 
problems. For some tasks, higher order combinations of some of the inputs or activations may be 
appropriate to help form good representation for solving the problems.

This section is concerned with introducing Functional link neural network, and the Immune-based 
neural networks.

4.1. Functional link neural network (FLNN)
FLNN was first introduced by Giles and Maxwell (1987). It naturally extends the family of theoretical 
feedforward network structure by introducing non-linearities in inputs patterns enhancements 
(Durbin & Rumelhart, 1989). These enhancement nodes act as supplementary inputs to the network. 
FLNN calculates the product of the network inputs at the input layer, while at the output layer the 
summations of the weighted inputs are calculated.

(3)S(Z)=

∞∑
n=∞

snz
n

(4)g(Sn, Sn−1, Sn−2,…)=un

(5)
Sn=

∑
i

aiun+
∑
i

∑
j

aijuniunj+
∑
i

∑
j

∑
k

aijkuniunjunk+…

(6)
Sn=

P∑
i=1

aiSni+

q∑
j=1

ajunj+

P∑
l=1

q∑
m=1

blmSnlunm
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FLNN can use higher order correlations of the input components to perform non-linear mappings 
using only a single layer of units. Since the architecture is simpler, it is suppose to reduce 
computational cost in the training stage, whilst maintaining good approximation performance 
(Mirea & Marcu, 2002). A single node in FLNN model could receive information from more than  
one node by one weighted link. The higher order weights, which connect the high order terms of the 
input products to the upper nodes, have simulated the interaction among several weighted links. For 
that reason, FLNN could greatly enhance the information capacity and complex data could be learnt 
(Cass & Radl, 1996; Giles & Maxwell, 1987; Mirea & Marcu, 2002).

Fei and Yu (1994) showed that FLNN has a powerful approximation capability than conventional 
Backpropagation network, and it is a good model for system identification (Mirea & Marcu, 2002). 
Cass and Radl (1996) used FLNN in the optimisation process and found that FLNN can be trained 
much faster than MLP network without scarifying computational capability. FLNN has the properties 
of invariant under geometric transformations (Durbin & Rumelhart, 1989). The model has the 
advantage of inherent invariance, and only learns the desired signal. Figure 1 shows an example of 
third-order FLNN with three external inputs X1, X2 and X3, and four high order inputs which act as 
supplementary inputs to the network.

The output of FLNN is determined as follows:

 

where σ is a non-linear transfer function, and W0 is the adjustable threshold. Unfortunately, FLNN 
suffers from the explosion of weights which increase exponentially with the number of inputs. As a 
result, second- or third-order functional link networks are considered in practice (Kaita, Tomita, & 
Yamanaka, 2002; Thimm, 1995).

4.2. The self-organised network inspired by the SMIA
The SMIA which was first introduced by Timmis (2001) has attracted many interests. Widyanto  
et al. (2005) introduced a method to improve recognition as well as generalisation capability of the 
backpropagation by suggesting a self-organisation hidden layer inspired by SMIA network. The 
input vector and hidden layer of SMIA network are considered as antigen and recognition ball, 
respectively. The recognition ball which is the generation of the immune system is used for hidden 
unit creation.

In time series prediction, the recognition balls are used to solve overfitting problem. In the immune 
system, the recognition ball has a single epitope and many paratopes. In which, the epitope is 
attached to B cell and paratopes are attached to antigen, where there is a single B cell that represents 
several antigens.

(7)Y =�

(
W

0
+
∑
j

WjXj+
∑
j,k

WjkXjXk+
∑
j,k,l

WjklXjXkXl+…

)

Figure 1. Functional link neural 
network.
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For SMIA network, each hidden unit has a centre that represents the number of connections of the 
input vectors that are attached to it. To avoid the overfitting problem, each centre has a value which 
represents the strength of the connections between input units and their corresponding hidden 
units. The SMIA network consists of three layers which are input, self-organised and output layers as 
shown in Figure 2.

In what follows the dynamic equations of SMIA network are considered. The ith input unit receives 
normalised external input Si where i = 1, …, NI and NI represents the number of inputs. The output of 
the hidden units is determined by the Euclidean distance between the outputs of input units and the 
connection strength of input units and the jth hidden unit. The use of the Euclidian distance enables 
the SMIA network to exploit locality information of input data. This can lead to improve the 
recognition capability. The output of the jth hidden unit is determined as follows:

where WHij represents the strength of the connection from the ith input unit to the jth hidden unit, 
and f is a non-linear transfer function.

The outputs of the hidden units represent the inputs to the output layer. The network output can 
be determined as follows:

where Wojk represents the strength of the connection from the jth hidden unit to the kth output unit 
and bok is the bias associated with the kth output unit, while g is the non-linear transfer function.

(8)
XHj = f

⎛
⎜⎜⎝

�
NI∑
i=1

�
WHij−XIi

�2⎞⎟⎟⎠
j=1,… ,NH

(9)

yk=g

�
NH∑
j=1

WojkXHj+bok

�

k=1,… ,No

Figure 2. The structure of the 
SMIA network (Widyanto et al., 
2005).
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4.3. Training the SMIA network
In this subsection, the training algorithm of the SMIA network will be shown. Furthermore, a B cell 
construction-based hidden unit creation will be described.

For the SMIA, inside the recognition ball, there is a single B cell which represents several antigens. 
In this case, the hidden unit is considered as the recognition ball of SMIA. Let d(t + 1) represents the 
desired response of the network at time t + 1. The error of the network at time t + 1 is defined as:

 

The cost function of the network is the squared error between the original and the predicted value, 
that is:

 

The aim of the learning algorithm is to minimise the squared error by a gradient descent procedure. 
Therefore, the change for any specified element Woij of the weights matrix is determined according 
to the following equation:

 

where (i = 1, …, NH, j = 1, …, No) and η is a positive real number representing the learning rate.

The change for any specified element bok of the bias matrix can is determined as follows:

 

where (j = 1, …, No). The initial values of Woij are set to zero and the initial values of boj are given 
randomly.

4.4. Regularised SMIA network (R_SMIA)
In this section, the regularisation technique has been introduced in order to improve the performance 
of the SMIA network. Regularisation is the technique of adding a penalty term Ω to the error function 
which can help obtaining a smoother network mappings. It is given by:
 

where E represents one of the standard error functions such as the sum-of-squares error and the 
parameter λ controls the range of the penalty term Ω in which it can influence the form of the 
solution.

The network training should be implemented by minimising the total error function ̃A (Bishop, 
1995). One form of regularisation is called weight decay. This form is based on the sum of the squares 
of the adaptive parameter in the network.

 

Although the use of weight decay in some cases leads to degraded performance of the network, it 
has been proven in most cases that it can avoid the overfitting problem and as a result enhance the 
network performance (Duda, Hart, & Stork, 2000).

The reason behind the popularity of weight decay approach is the simplicity of using this method. 
The idea is that every weight once updated, is simply decayed or shrunk as follows:

 

(10)e(t+1)=d(t+1)−y(t+1)

(11)J(t+1)=
1

2
[e(t+1)]2

(12)
ΔWoij(t+1)=−�

�J(t+1)

�Woij

(13)Δboj(t+1)=−�
�J(t+1)

�boj

(14)̃A=E+𝜆Ω

(15)Ω=
1

2

∑
i

W2

i

(16)Wnew=Wold(1−�)
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where 0  <  λ  <  1. The weight decay is performed by adding a bias term to the original objective  
function E, thus the weight decay cost function is determined as follows (Bishop, 1995):

 

where λ is the weight decay rate, B represents the penalty term.

The simplest form of calculating the penalty term B is:

where Wij is the weight connections between the ith units and jth nodes in the next layer. In R_SMIA 
network, the weight decay was used to adjust the weights between the hidden nodes and output 
units. The change of weights using weight decay method could be calculated as follows:

 

 

where ∆Wojk is the updated weights between hidden units and output unit. The R_SMIA network is 
used to examine the effect of the regularisation technique and to enhance the performance of the 
SMIA network in the prediction.

5. Prediction of financial signals
Ten noisy financial time series signals are considered as shown in Table 1. All the signals were  
obtained from a historical database provided by Datastream®, forepart from the IBM common stock 
closing price time series, which was taken from the Time Series Data Library (Datastream, 2005). The 
networks are tested for the prediction of one- and five-steps-ahead predictions of financial  
time series in which two methods are utilised; in the first method, the data are passed directly to the 
neural network as non-stationary signals; while in the second method, the financial data are  
transformed into stationary signals.

For non-stationary signals, the data are presented to the networks directly without any 
transformation. The data are scaled between the upper and lower bounds of the transfer function. 
On the other hand, the stationary version of the signals needs some series of transformations before 
passing them to the networks. For the stationary signals, we systematically investigate a method of 
pre-processing the financial signals in order to reduce the influence of their trends. To smooth out 

(17)Ewd=E+(�∕2)B

(18)B=
∑

W2

ij

(19)ΔWojk=−�
�E

�Wojk

=−�
�

�Wojk

(
E
std

+
�

2

∑
W2

ojk

)

(20)ΔWojk= 𝜂

(∑
e ̀fotfot−𝜆

∑
Wojk

)

Table 1. Financial time series data used
No Time series data Total
1 US Dollar to EURO exchange rate (USD/EUR) 01/07/2002–13/11/2008 1607

2 US Dollar to UK Pound exchange rate (USD/UKP) 01/07/2002–13/11/2008 1607

3 Japanese Yen to US Dollar exchange rate (JPY/USD) 01/07/2002–13/11/2008 1607

4 Dow Jones Ind. Average stock opening price (DJIAO) 01/07/2000–11/11/2008 1605

5 Dow Jones Industrial Average stock closing price (DJIAC) 01/07/2000–11/11/2008 1605

6 Dow Jones Utility Average stock opening price (DJUAO) 01/07/2000−11/11/2008 1605

7 Dow Jones Utility Average stock closing price (DJUAC) 01/07/2000−11/11/2008 1605

8 NASDAQ composite stock opening price (NASDAQO) 01/07/2000−12/11/2008 1606

9 NASDAQ composite stock closing price (NASDAQC) 01/07/2000–12/11/2008 1606

10 Oil price of West Texas Intermediate crude (OIL) 01/01/1985−01/11/2008 389
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the noise and to reduce the trend, the original raw data was pre-processed into a stationary series 
by transforming them into measurements of relative difference in percentage of price (RDP) 
(Thomason, 1999). The calculations for the transformation of input and output variables are 
presented in Table 2. Subsequent to transformation, all the input and output variables in Table 2 
were scaled between the upper and lower bounds of the transfer function in order to avoid 
computational problems and to meet algorithm requirements.

6. Training the networks
The performances of the SMIA and the R_SMIA are benchmarked against the performance of MLP, 
the regularised MLP (R_MLP) and the FLNN network. Early stopping was utilised and each signal was 
divided into three data-sets which are the training, validation and the out-of-sample data which 
represent 25, 25 and 50% of the entire data-set, respectively. For FLNN, the higher order terms were 
empirically selected between two and five. The MLP were trained with hidden units varies from three 
to eight. The prediction performance of all networks was evaluated using three financial metric 
(Dunis & Wiliams, 2002), where the objective was to use the networks predictions for profit purpose, 
and three statistical metrics (Cao & Tay, 2003) which provide accurate tracking of the signals, as 
shown in Table 3.

7. Simulation results
As we are concerned with financial time series prediction, in these extensive experiments, our 
primary interest is to concentrate on the profitable value contained in the predictions for all neural 
network models. For this reason, the neural networks structure, which provides the highest percentage 
of the AR on out-of-sample data, is considered to be the best model. Tables 4–7 summarise the 
average results of 50 simulations obtained on out-of-sample data for the prediction of both stationary 
and non-stationary signal, when used to predict one- and five-steps-ahead predictions.

7.1. One-step-ahead prediction (stationary)
For the AR, the simulation results indicated that the R_SMIA network has outperformed the MLP and 
R_MLP prediction for all the ten stationary signals. Conversely, the R_SMIA set of results shows lowest 
profits when compared with FLNN. While the R_SMIA network outperformed the SMIA network for 
forecasting all the signals apart from the JPY/USD exchange rate and the DJIAO stock opining.

Although using the regularisation technique with the standard MLP network results in an 
improvement in the performance of the R_MLP, the SMIA network has shown the highest profit in all 
10 series data than the R_MLP network except for the USD/EUR.

It could be observed that the results of the maximum drawdown demonstrate higher values were 
obtained using the R_SMIA network when used to predict the USD/UKP, NASDAQO, NASDAQC and 
OIL time series. The FLNN produced better results in comparison to multilayer networks for the 
remaining time series.

Table 2. Calculations for input and output variables
Indicator Calculations

Input variables EMA15 P(i)−EMA15(i)

RDP-5 (p(i)−p(i−5))∕p(i−5)×100

RDP-10 (p(i)−p(i−10))∕p(i−10)×100

RDP-15 (p(i)−p(i−15))∕p(i−15)×100

RDP-20 (p(i)−p(i−20))∕p(i−20)×100

Output variables RDP+5 (p(i+5)−p(i))∕p(i)×100

p(i)=EMA3(i)

Notes: EMAn(i) is the n-day exponential moving average of the ith day.
p(i) is the closing price of the ith day.
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Nevertheless, the R_SMIA networks outperformed all multilayer networks in most of the time 
series. For the volatility, the comparison between the multilayer networks clearly represents that the 
R_SMIA has the lower values than the other networks except for the prediction of the JPY/USD and 
DJIAO time series as the values slightly rising. However, the FLNN produces lower volatility than all 
other networks for predicting all the 10 signals.

When evaluating the Sharpe Ratio (SR) measure, it can be noticed that higher value is preferable. 
Table 5 indicated that the FLNN provides the best SR.

Figure 3 shows the value of the AR which has been forecasted by all networks used in this 
research.

In order to compare the rate of the weight decay (decay rate), that were utilised in the prediction 
of the R_MLP and R_SMIA networks, Figure 4 represents the best decay rate used in this experimen-
tal work.

7.2. Five-step-ahead prediction (stationary)
The simulation results indicated that using eight hidden nodes in the MLP and R_MLP network can 
produce the best average of profits. While four order FLNN model can obtain the highest profits. The 
simulation results for the prediction of the exchange rate time series using the percentage of AR 
indicated that the SMIA network outperforms the MLP and the FLNN models by 0.38–10.47%, 
respectively. These results show that the SMIA network made the best profits on average for all 
exchange rate data signals when compared to MLP and FLNN networks.

Table 3. Performance metrics and their calculations
Annualised return (%AR) Normalised mean squared error (NMSE)

AR= Profit

All profit
×100

Profit= 252

n
×CR, CR=

n∑
i=1

Ri

Ri =

�
+ ��yi�� if (yi)(ŷi)≥0,

− ��yi�� otherwise

All profit= 252

n
×

n∑
i=1

abs(Ri)

NMSE= 1

𝜎
2
n

n∑
i=1

�
yi− ŷi

�2

𝜎
2=

1

n−1

n∑
i=1

(yi−ȳ)
2

ȳ=
n∑
i=1

yi

Maximum drawdown (MD) Signal to noise ratio (SNR)

MD=min

�
n∑
t=1

�
CRt−max

�
CR1,… , CRt

���

CRt =
t∑
i=1

Ri , t=1,… ,n

Ri =

�
+ ��yi�� if (yi)

�
ŷi
�
≥0,

− ��yi�� otherwise

SNR=10× log10 (𝜎)

𝜎=
m
2
×n

SSE

SSE=
n∑
i=1

(yi− ŷi)
2

m=max(yi)

Annualised volatility (VOL) Correct directional change (CDC)

VOL=
√
252×

�
1

n−1

n∑
i=1

(Ri−R)
2 CDC= 1

n

n∑
i=1

di

di =

�
1 if (yi−yi−1)

�
ŷi− ŷi−1

�
≥0,

0 otherwise

Notes: n is the total number of data patterns.
y and ŷ represent the actual and predicted output value, respectively.
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The comparison between the performance of the SMIA network and the R_SMIA network based on 
the percentage of AR detect an increasing on profits obtained with R_SMIA network. The R_SMIA 
successfully reaches the highest profits than SMIA network when forecasting the following five 
financial time series: USD/UKP, NASDAQO, NASDAQC, DJIAC and DJUAO.

The overall performances of the five networks which are utilised in forecasting the various signals using 
the AR is depicted in Figure 5. The five-steps-ahead prediction for all networks indicated that the SMIA and 
R_SMIA networks produce better percentage of AR than the other multilayer networks. Meanwhile, it 
complements the FLNN in some stock prices data.

For the value of the decay rate, it can be noticed from Figure 6 that the signals can reach the best 
ratio of profits by using small values of decay rate (which is 0.0001) when predicting the five-step-
ahead prediction for R_MLP and R_SMIA networks.

7.3. One-step-ahead prediction using non-stationary signals
The number of hidden units or network order used to obtain the best prediction showed that the 
performance of MLP network produces the best results of profits using six or eight hidden nodes 

Figure 4. Best decay rate used 
in prediction of all financial 
signals.

Figure 5. The average of AR 
predicted from all networks.

Figure 3. The average of AR 
predicted from all networks.
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while the R_MLP network gives better profits using seven or eight hidden nodes. Furthermore, the 
SMIA and R_SMIA networks could reach high values of profits using seven or eight hidden units and 
above. The FLNN reaches the best performance when using only the third order in most cases.

For the AR, the R_SMIA shows higher values than all other network for the USD/UKP, JPY/USD, 
NASDAQO, DJIAO, DJIAC, DJUAC and OIL time series. The SMIA network achieved the highest profit 
on two signals the NASDAQC and the DJUAO signals. Meanwhile the R_MLP can obtain the best 
average of profit only when it is used to forecast the USD/EUR signal. Figure 7 illustrates the 
performance of the AR for the forecast of the five network models that are used in this research 
work, while Figure 8 shows the rate decay values which were used for the prediction of all data 
signals.

Figure 7. The best average of 
AR predicted from all networks.

Figure 8. Best decay rate used 
in prediction of all financial 
signals.

Figure 6. Best decay rate used 
in the prediction of all financial 
signals (five-steps ahead).
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7.4. Five-step-ahead prediction using non-stationary signals
Although the prediction for the non-stationary signals usually give inconsistent results, the extensive 
experiments of this research proved that the proposed application of the SMIA and R_SMIA for the 
prediction of financial time series showed the best profit values when compared to other neural 
networks.

The MLP and R_MLP networks can produce the best average results of profits with seven or eight 
hidden nodes. The SMIA network gives the best results using only five or seven hidden units. However, 
the R_SMIA network attains the highest percentage of AR with four hidden nodes and above. For the 
FLNN most prediction results indicated that the best profits can be achieved using two or three 
network order.

The comparison between all networks demonstrated that the high ratio of the AR is achieved 
using the SMIA and R_SMIA networks. Meanwhile, for the MLP and R_MLP networks, each network 
can attain higher profit value for only one signal namely NASDAQC and OIL signals, respectively. 
Furthermore, the FLNN produced the worst profits in comparison to the multilayer networks.

Figure 9 shows the values of the AR for the prediction of the various networks. The simulation 
results indicated that the SMIA and R_SMIA networks produced better percentage of AR than the 
other networks in most cases. Figure 10 represents the best decay rate values that are used for the 
R_SMIA and R_MLP neural networks.

Figure 10. Best decay rate used 
in prediction of all financial 
signals.

Figure 9. The average of AR 
predicted from all networks.
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8. Discussion
Simulation results demonstrate that all the neural networks models used in this research work were 
potentially profitable, the non-stationary financial signals are very difficult to predict due to its 
instability behaviour. The non-stationary signals are highly volatile and noisy and that is why they 
often change their behaviour and fall sharply at some point during the training. The networks are 
trying to learn the price values of the non-stationary signals during the training phase where they 
are unable to respond well, since the prices values include high-frequency components. Therefore, 
the networks generate unpromising prediction using the AR measure.

For the stationary signals, the networks predicted high percentage of profits. The non-stationary 
signals are smoothed and transferred into Relative Different in Price (RDP) and the neural networks 
generate better forecasting and profit. Consequently, neural networks can attain stable prediction 
and higher profits for stationary signals than the non-stationary signals.

In this research study, six stock opining prices and stock closing prices time series data have been 
used which includes NASDAQO, NASDAQC, DJIAO, DJIAC, DJUAO and DJUAC. Three of these time 
series are stock opening prices and the others are stock closing prices. The aim of these signals is to 
investigate the differences between the predictions of the opening stock price and closing stock 
results.

For stationary signals, the simulation results showed that for all networks used in this work, there 
is a slightly differences in the results when using these signals in one-step-ahead prediction. While 
the prediction results for five-steps-ahead illustrate variances between these series.

The non-stationary signals show that in most cases the prediction results for one-step-ahead and 
five-steps-ahead have small difference between the opening and closing stock prices for all net-
works which have been utilised in the current work.

It is worth to notice that these differences related to the raw data, since the data are affected by 
several factors such as the threats of war, good or bad economic climate, announcements of 
company earning and the advertisements of economic statistics.

As it can be noticed from Table 8, the simulation results indicated for the prediction of the US/UK 
exchange rate time series that the standard deviations for the SMIA, R_SMIA, MLP and the R_MLP 
have significantly different values which indicate that the results achieved by each network is 
strategically different.

9. Conclusion
This research work underlines an important contribution of a new application of the self-organised 
multilayer neural network inspired by the SMIA for the prediction of the financial time series; namely, 
its elegant ability to approximate non-linear financial time series. The network has shown its 
advantages in forecasting both stationary and non-stationary signals. A considerable profitable 

Table 8. The standard deviation for the exchange rate between the UK/US Dollar time series over 50 simulations with respect to 
the profit value
Network One-step-ahead 

prediction using 
stationary data

Five-steps-ahead 
prediction using 
stationary data

One-step-ahead 
prediction using  

non-stationary data

Five-steps-ahead 
prediction using  

non-stationary data
SMIA 0.4709 0.3538 6.5302 7.1744

R_SMIA 0.1795 0.2654 5.9049 6.4938

MLP 13.7166 6.9672 7.4127 7.7695

R_MLP 1.1148 2.6221 3.2671 4.0839
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value does exist in the proposed network when compared to other networks and the network 
demonstrated a vast speed in convergence time. Hence, it is anticipated that the self-organised 
multilayer neural network inspired by the SMIA can be used as an alternative method for predicting 
financial variables and thus justified the potential use of this model by practitioners. The superior 
property hold by the network could promise more powerful applications in many other real world 
problems.
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