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Abstract
The present study demonstrates the potential of synchronous fluorescence spectroscopy and multivariate data analysis for 
authentication of COVID-19 vaccines from various manufacturers. Synchronous scanning fluorescence spectra were recorded 
for DNA-based and mRNA-based vaccines obtained through the NHS Central Liverpool Primary Care Network. Fluores-
cence spectra of DNA and DNA-based vaccines as well as RNA and RNA-based vaccines were identical to one another. 
The application of principal component analysis (PCA), PCA-Gaussian Mixture Models (PCA-GMM)) and Self-Organising 
Maps (SOM) methods to the fluorescence spectra of vaccines is discussed. The PCA is applied to extract the characteristic 
variables of fluorescence spectra by analysing the major attributes. The results indicated that the first three principal com-
ponents (PCs) can account for 99.5% of the total variance in the data. The PC scores plot showed two distinct clusters cor-
responding to the DNA-based vaccines and mRNA-based vaccines respectively. PCA-GMM clustering complemented the 
PCA clusters by further classifying the mRNA-based vaccines and the GMM clusters revealed three mRNA-based vaccines 
that were not clustered with the other vaccines. SOM complemented both PCA and PCA-GMM and proved effective with 
multivariate data without the need for dimensions reduction. The findings showed that fluorescence spectroscopy combined 
with machine learning algorithms (PCA, PCA-GMM and SOM) is a useful technique for vaccination verification and has 
the benefits of simplicity, speed and reliability.

Keywords  Covid-19 · Vaccines · Synchronous fluorescence · Principal component analysis · Gaussian mixture models · 
Self organising maps

Background

Medicine counterfeiting is a patient safety concern and pub-
lic health which consequences range from ineffectiveness of 
treatment, resistance to treatment and/or lethal effects [1]. 
Counterfeit medicines can be encountered anywhere across 
the global supply chain, with any medicine and of any for-
mulation [1, 2]. Whereas no class of medicines is exempt, 
highly sold medicinal products have higher chance of being 
counterfeited. Covid-19 vaccines are in high demand glob-
ally due to their effectiveness in controlling the Covid-19 
pandemic [3]. The demand of Covid-19 vaccines outweighs 
the available global manufacturing capacity and supply and 
that introduces a challenge in their availability especially in 
low and middle income countries [4, 5].

In this respect, the black market for Covid-19 vaccines 
had been estimated at 400% and attributed mainly to the lock 
down situations [6]. Counterfeit vaccines of different brands 
have been reported in many countries including China [7], 
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Honduras [8], India [9], Mexico [8, 10], Poland [8, 10] and 
South Africa [11]. This urges the need for development of 
rapid methods for authentication of Covid-19 vaccines wher-
ever they were encountered.

Detection of DNA or mRNA in vaccines is important 
step in authentication of vaccines. Among methods of detec-
tion, spectroscopic methods are so popular due to their being 
rapid, non-destructive and not requiring extensive sample  
preparation. Fluorescence spectroscopy offers highly 
sensitivity and specificity for detection of organic com-
pounds. Synchronous fluorescence (SF), first discovered by  
Lloyds in 1971, is one of the advanced fluorescence meth-
ods where both the excitation (λexc) and emission (λemission)  
wavelengths are scanned simultaneously such that the wave-
length interval (Δλ = λemiss – λexc) between them is kept 
constant [12]. Once this wavelength interval is optimised, 
fluorescence spectra will show better improved resolution, 
resolvable spectral features, narrower bands and less overlap-
ping spectral components than those encountered with con-
ventional fluorescence. Hence, SF spectroscopy enhances the 
selectivity of detection of compounds in a mixture alongside  
maintaining sensitivity.

SF spectroscopy has been popular for characterising com-
pounds in solution form [13–17]. In addition, SF spectros-
copy has been used for DNA characterisation [13] where 
it has shown to be a more specific technique for detecting 
nucleic acids unlike conventional fluorescence spectroscopy. 
It is noteworthy to mention that conventional fluorescence of 
nucleic acids is usually weak and requires the use of fluores-
cent labels in order increase their fluorescent activity [18]. 
However, SF occurs in femtoseconds before nucleic acids 
decay (picoseconds) [19–22]. This detection is attributed to 
the interaction between nucleobases of DNA that changes 
the nature of the excited state [23]. SF spectroscopy have 
also been used for other biomolecules [24–27] due to the 
sharp emission bands the technique yields and that allows 
specific characterisation of biological compounds. The nar-
row spectral bands also allow to characterise compounds in 
mixtures. Hence, SF spectra offer a fingerprint of the sample 
that contains multiple ingredients.

Covid-19 vaccines, whether based on DNA or mRNA, 
contain multiple ingredients including lipid nano-particles 
and diversity of excipients. When in liquid form, SF would 
offer an ideal technique for characterising these vaccines 
non-destructively by providing a spectroscopic signature 
specific to each vaccine. When combined with machine 
learning algorithms (MLAs), spectroscopic data of medi-
cines have informed about identity, authenticity, manufac-
turing sources and/or geographical location [28]. Part of 
MLAs, artificial neural network (ANN) algorithms have 
shown accuracy in detecting Covid-19 disease diagnosis and 
prediction of mortality [29–31] Subsequently, this research 
utilises SF and MLAs (including ANN) for authentication 

of DNA- and RNA-based vaccines obtained from different 
manufacturers. The work explores three MLAs for classifi-
cation of the measured vaccines and understanding patterns 
between vaccines of the same and different manufactures.

Materials and Methods

Samples

All materials used were of analytical grade. Commercially 
prepared salmon sperm DNA was obtained from Sigma and 
suspended in normal saline solution then diluted down prior 
to measurement. RNA was extracted from HaCaT keratino-
cytes and diluted with normal saline solution. DNA-based 
(n = 21) and mRNA-based (n = 21) vaccines were obtained 
through the NHS Central Liverpool Primary Care Network. 
In this case, the vaccines obtained were left over vials after 
six doses had been given to patients. Hence, each vial con-
tained less than 0.5 mL of solution and was further diluted 
with normal saline prior to measurement. Before the experi-
ment all solutions were stored and maintained at a tempera-
ture of 4 °C.

Instrumentation

2D synchronous spectra were collected using the FL6500 
equipped with a pulsed xenon lamp as light source (Fig. 1). 
Scanning was made over the full range of 230 -700 nm with 
30 nm constant difference between excitation and emission 
wavelengths.

Procedure

Fluorescence measurements for DNA, RNA and vaccines 
solutions were obtained after dilution with normal saline 
solution. Hence, minimal sample intervention was sought in 
order to keep the sample type as realistic as it could be in a 
real-world scenario. All synchronous scans were taken using 
the FL6500 single cell accessory and 10 × 10 mm quartz flu-
orescence cuvette. The wavelength difference (delta lambda) 
was 30 nm. Each datapoint was the average of two scans. 
Background correction was made using normal saline being 
the solvent in the vaccine samples.

Data Analysis

Spectral data was imported into Matlab 2019a where spec-
tral visualisation and unsupervised clustering were applied. 
Unsupervised clustering was undertaken using three dif-
ferent algorithms being: principal component analysis 
(PCA), PCA-Gaussian Mixture Models (PCA-GMM)) 
and Self-Organising Maps (SOM) were applied. In all the 
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aforementioned algorithms, the patterns among the different 
vaccines were observed.

Feature Selection

In any data analysis, feature selection is important in terms 
of what data play a key role in providing meaningful infor-
mation about the dataset [29]. In this particular study, the 
data obtained represented spectra that were fingerprint of the 
measured vaccines. These spectra resulted from the inter-
action of light with the vaccines and hence represented a 
fingerprint of the vaccine. Hence, data point on the spectrum 
was important and played a significant in the identification 
of the vaccine. Therefore, the full SF spectra were consid-
ered when MLAs were applied.

PCA

PCA clustered fluorescence spectra according to variances 
by reducing the dimensions of the spectra into two space, 
being scores and loading [32]. The PC scores showed the 
vaccine clusters in multidimensional space whereas the load-
ing showed the significant fluorescence intensities within the 
PCA model. The relationship between the spectra, scores 
and loadings is described in Eq. (1):

where,

(1)X = T .P + Q

X is the original data matrix;

T  represents the scores;

P represents the loadings;

Q represents the residuals.
Accuracy of the PCA model was evaluated by explor-

ing the grouping among the clusters. Thus, cluster of DNA-
based vaccines were expected to be grouped together and 
separated from other vaccines and vice versa.

PCA‑GMM

GMM is a probabilistic model that evaluates the distance 
between the points in an n-dimensional space in a such a way 
that each dimension is formed by a distinct observation [33]. 
GM encompasses several Gaussians such that each is identi-
fied by k ∈ {1,…, K}, such that K is the number of clusters 
in the dataset. The multivariate Gaussian distribution has the 
following three parameters: A mean μj corresponding to its 
centre, a covariance Σj defining its width and a probability � 
defining the size of the Gaussian function. The multivariate 
Gaussian distribution is explained by Eq. (2):

where,

(2)P(y) =
∑k

j=1
�jf (yi|�j,

∑
j
) =

∑k

j=1
�jPj(y)

Fig. 1   The PerkinElmer FL6500 
equipped with a pulsed xenon 
lamp
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�j is the mixing proportion for cluster j
The clusters are calculated fitting the maximum likeli-

hood GMM as a function of the set of parameters in Eq. (3):

In this respect, GMM was applied to the PCA scores and 
the accuracy of the PCA_GMM mode was evaluated by the 
width of the covariance matrix.

SOM

SOM offers additional unsupervised clustering approach to 
PCA and PCA-GMM. SOM has the advantage in the abil-
ity to deal with non-linear data and shows them in lower 
dimensions [34, 35]. Similar to PCA, SOM is able to detect 
features in the spectra without previously knowing classes 
or membership about the spectra. Being a neural network 
mode, SOM consists of organised neurons that can vary 
from few and up to thousands of neurons [34]. The output 
of SOM comprises a similarity map of the input data but of 
lower dimensions. Mapping in SOM is similar to a classical 
vector quantisation (Eq. (4)):

where,

X is the input vector that is real

ε are the input variables (in this case fluorescence intensity)

j is the number of variables

ℝ is a set of real numbers
At the beginning of learning, a parametric real vector 

(weight) is assigned to each input variable as per Eq. (5):

where,

wi Is the parametric real vector linked to neuron I on the grid

n is the total number of neurons
If the distance between x and m is d(x, mi ), then the image 

of the input vector is defined by the array element c that best 
matches x (Eq. (6)) such that:

In this respect, c is optimised such that w is close to x 
and the weight of the winning neuron and its neighbour is 
updated by Eq. (7) until the map converges:

(3)� = {�j,�j,Σj}
k

j
= 1

(4)X =
{
�1, �2,… , �j

}T
∈ ℝ

n

(5)wi =
[
wi1,w2,… ,win

]T
∈ ℝ

n

(6)c = arg min
i
{d

(
x,w

i

)
}

where,

n(v, k, t) is the neighbouring function

x(t) is the input at time t

wv(t)] is the weight of the winning neuron at time t

Results and Discussion

This study represented the first application of SF spectros-
copy to Covid-19 vaccines. SF showed many advantages 
relating to the high scanning speed (rapidity) and ability 
to detect the analyte the DNA and RNA in a sample in the 
presence of other impurities. SF yielded sharp bands and 
that made it a robust technique for determining Covid-19 
vaccines. SF spectra showed a fingerprint of each type of 
vaccine that corresponded to the excitation-emission spectra 
of the vaccines. Moreover, when combined with MLAs, SF 
was able to differentiate between DNA- and RNA-based vac-
cines with no prior knowledge of the samples.

Vaccines Characterisation

The fluorescence spectra of DNA, RNA, DNA-based vac-
cines and RNA-based vaccines are shown in Fig. 2. The 
results showed a similarity in between fluorescence spectra 
of DNA and DNA-based vaccines, and between RNA and 
RNA-based vaccines. In this respect, DNA showed bands at 
288.5 (strong) and 353 (weak) nm that were strong and weak 
bands and that corresponded to the excitation and emission 
of thymine (6–4) photoproduct respectively [36]. The (6–4) 
photoproduct have shown to be a much stronger emitter than 
DNA itself [37]. This agreed with the previous literature that 
reported thymine (5–4) photoproduct illumination around 
369 nm win synchronous fluorescence spectra when using a 
delta lambda of 50 nm [38]. Our study has used delta lambda 
of 10 nm and this could have attributed to the difference in 
the emission wavelength between both studies. On the other 
hand, thymine dimer could not be detected and this could 
be attributed to the lack of conjugation in the dimer in con-
trary to the photo-product [38]. Likewise, RNA showed key 
bands at 280.8 and 352.6 nm that related to the uracil (6–4) 
adduct excitation and emission wavelengths respectively 
[39]. Nonetheless, vaccine spectra varied slightly from the 
fluorescence spectra of DNA and RNA by the presence of 
a band at 660.7 nm and that could be linked to the common 

v(t) = arg mink�Ω ∥ �(t) − wk(t) ∥

(7)Δwk(t) =∝ (t)n(v, k, t)[x(t) − wv(t)]
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excipients in both vaccines. Apart from this band, DNA-
based vaccines and mRNA-based vaccines showed corre-
sponding bands to DNA and RNA respectively.

Classification of Vaccines

Principal Component Analysis

When PCA was applied, the first three PCs contributed to 
99.5% of the variance among the data as follow: PC1 rep-
resented 90.8%, PC2 7.32% and PC3 1.35% (Fig. 3). The 
PCA scores plot showed clear grouping between DNA- 
and RNA-based vaccines (Fig. 4). When PC loading were 
examined PC1 loading showed key contribution from both 
DNA- and mRNA-based vaccines with significant intensi-
ties around 260, 290, 354 and 660 nm respectively (Fig. 5). 
The same bands were seen significant at PC2 loading and 
that explained the model representation of the vaccines’ 
spectra. Where PC clusters were examined, the PC scores 
plot showed two distinct clusters corresponding to the DNA-
based vaccines and mRNA-based vaccines respectively. 
Though both groups were clustered separately there was no 
precision in the group of mRNA-based vaccine. Hence, the 
scores of mRNA-based vaccines showed distances within 
their individual scores and that could be attributed to the 
variation in mRNA that attributes to individual variations in 
the nucleic acids and fats between the samples [40]. Hence, 
PCA was able to inform about variations in spectra that 
could not be identified by visual inspection.

Gaussian Clustering

GMM clustering complemented the PCA clusters by further clas-
sifying the mRNA-based vaccines (Fig. 6). The GMM clusters 
showed three mRNA-based vaccines not grouped with the remain-
ing vaccines. On the other hand, the remaining three mRNA-based 
vaccines were clustered within the same covariance matrix as the 
DNA-based vaccines. This latter finding showed that although 
GMM clustering could add to the information identified by PCA; 
it could not classify efficiently DNA- and mRNA-based vaccines.

Self‑organising Maps

The U-Matrix showed the weight distances that expressed the 
distances between neighbouring neurons. Neurons featured in 
(Fig. 7) as purple hexagons and were connected to each other by 
the red lines (distance between neurons). Smaller distances had 
higher densities and larger distances had lower distances. The 
map size chosen was small (3 × 3) considering the three varia-
tions between vaccines related to DNA, mRNA and other addi-
tives. The algorithm grouped the vaccines into several groups 
and that was not dependant of the number of iterations. In this 
respect, the 21 DNA-based vaccines were all associated with the 
same group; whereas, the mRNA-based vaccines were grouped 
into seven groups and that corresponded to the individual varia-
tion between the vaccines (Fig. 8). Hence, SOM complemented 
both PCA and PCA-GMM and showed to be powerful with 
multivariate data without the need for dimensions reduction.

Fig. 2   Synchronous fluorescence spectra of a DNA, b DNA-based vaccine, c RNA and d RNA-based vaccine solutions diluted in normal saline
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Fig. 3   Cumulative variance of PC scores against the number of PCs
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Fig. 4   PCA scores plots of 
the synchronous fluorescence 
spectra of DNA-based vaccines 
(blue) and RNA-based vaccines 
(red)

Fig. 5   PC1 loading plots of 
the PCA model applied to the 
DNA- and RNA-based vac-
cines’ synchronous fluorescence 
spectra contributing to 90.8% of 
the variance among the data
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Conclusions

The present work proposed a novel synchronous method 
for authentication of Covid-19 vaccines by spectral visu-
alisation and using three classification algorithms being 
PCA, PCA-GMM and SOM. Spectral visualisation of 
DNA- and mRNA-based vaccines showed key bands corre-
sponding to the (6–4) photoproducts of thymine and uracil 

respectively. In addition, classification results showed that 
PCA outperformed GMM in differentiating between the 
two main groups of DNA- and mRNA-based vaccines. At 
the same time, PCA indicated outliers within a specific 
group. On the other hand, SOM did not require any previ-
ous clustering as the case of PCA-GMM. Moreover, SOM 
could classify DNA-based vaccines and show the different 

Fig. 6   PCA-GMM clustering of 
the synchronous fluorescence 
spectra of DNA-based vaccines 
(blue) and RNA-based vaccines 
(red)

Fig. 7   U-Matrix for the synchronous fluorescence spectra of DNA-
based and RNA-based vaccines

Fig. 8   Label-Matrix for the synchronous fluorescence spectra of 
DNA-based and RNA-based vaccines
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groups of mRNA-based vaccines. Therefore, future will 
involve further trials with SOM by using larger sample 
size that was not possible in this case considering the type 
and accessibility of the present samples. Moreover, other 
spectroscopic techniques such as infrared and Raman spec-
troscopy may offer more information about constituents 
within vaccines in addition to DNA and RNA.
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