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A B S T R A C T   

Chemoinformatics has been successfully employed in safety assessment through various regulatory programs for 
which information from databases, as well as predictive methodologies including computational methods, are 
accepted. One example is the European Union Cosmetics Products Regulations, for which Cosmetics Europe (CE) 
research activities in non-animal methods have been managed by the Long Range Science Strategy (LRSS) 
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Chemoinformatics 
In silico safety assessment 

program. The vision is to use mechanistic aspects of existing non-animal methods, as well as New Approach 
Methodologies (NAMs), to demonstrate that safety assessment of chemicals can be performed using a combi
nation of in silico and in vitro data. To this end, ChemTunes•ToxGPS® has been adopted as the foundation of the 
safety assessment system and provides a platform to integrate data and knowledge, and enable toxicity pre
dictions and safety assessments, relevant to cosmetics industries. The ChemTunes•ToxGPS® platform provides 
chemical, biological, and safety data based both on experiments and predictions, and an interactive/custom
izable read-across platform. The safety assessment workflow enables users to compile qualified data sources, 
quantify their reliabilities, and combine them using a weight of evidence approach based on decision theory. The 
power of this platform was demonstrated through a use case to perform a safety assessment for Perilla frutescens 
through the workflows of threshold of toxicological concern (TTC), in silico predictions (QSAR and structural 
rules) and quantitative read-across (qRAX) assessment for overall safety. The system digitalizes workflows within 
a knowledge hub, exploiting advanced in silico tools in this age of artificial intelligence. The further design of the 
system for next generation risk assessment (NGRA) is scientifically guided by interactions between the work
group and international regulatory entities.   

1. Introduction 

Molecular informatics, which incorporates technologies from both 
chemistry (chemoinformatics) and biology (bioinformatics), has become 
an advanced tool and a key component in modern structure-based 
design of new chemical entities. Chemo- and bio- informatics bring 
together technologies to capture information from chemical structure, 
molecular and physicochemical properties, as well as biological activ
ities and effects. Specifically, chemoinformatics encompasses techniques 
to develop databases of chemical structures with associated tools to 
mine these data and develop predictive modeling strategies. As such, 
chemoinformatics has become integral in many industrial sectors to 
leverage chemistry knowledge to make new discoveries. Many databases 
of chemical structures are linked to biological data which have been 
measured in a multitude of assays ranging from omics techniques, in 
vitro tests, in vivo responses. The power of informatics approaches is to 
capture, harness and interrogate the information to learn new knowl
edge and assist in decision making using that knowledge [1], then 
incorporating the new knowledge back into the system beyond the 
initial cycle. 

Whilst originally focused on drug discovery with the aim of identi
fying and optimizing pharmacological activity, many computational 
tools based on molecular informatics have also been applied to safety 
assessment of chemicals. These tools utilize the strengths of molecular 
informatics, which enable efficient use of resources to search complex 
databases, support making inferences and draw conclusions, identify 
potential hazards, and support safety assessments. Informatics tools find 
particular use in product development, but also in regulatory sub
missions across numerous diverse sectors. Several international regula
tions, such as the European Union (EU) Registration, Evaluation, 
Authorisation and Restriction of Chemicals (REACH) and Cosmetics 
Products Regulation, as well as International Council for Harmonisation 
(ICH) guideline M7(R1) on assessment and control of DNA reactive 
(mutagenic) impurities in pharmaceuticals, encourage or mandate the 
use of non-animal methods, placing a greater reliance on in silico toxi
cology [2]. As a result, the need to satisfy regulatory requirements has 
motivated the development of predictive methodologies implemented in 
public and commercial chemoinformatics systems for chemical safety. 
Such predictive in silico methodologies encompass a variety of ap
proaches including read-across, (quantitative) structure–activity re
lationships ((Q)SARs) and modeling of pharmacokinetics and exposure 
[1]. 

With regard to the promotion of the need for computational methods 
for safety assessment, one of the most significant pieces of legislation 
was European Regulation EC N◦1223/2009 [3]. The Cosmetics Directive 
was originally adopted in 1976 and this Directive was replaced in 2009 
to enable further harmonization and the EU-wide Cosmetics Products 
Regulation entered into force in July 2013. A full animal testing and 
marketing ban on cosmetic ingredients, or combinations thereof, 
entered into force on 11 March 2013. This prohibited generation of 

animal data solely for the safety of cosmetic products and their in
gredients [4]. To this end, among the array of computational and in silico 
tools, several systems were specifically developed to meet the needs for 
assessing the safety of cosmetics ingredients, which are often data-poor. 
A full review of the in silico tools available to address the diverse per
spectives of cosmetics safety assessment is available [5]. 

To illustrate the potential for using computational approaches, in 
combination with targeted in vitro data, the International Cooperation 
on Cosmetics Regulation (ICCR) proposed a set of principles for the risk 
assessment of cosmetics ingredients [6]. The ICCR principles built upon 
the SEURAT-1 workflow [7] and have been a key driving force behind 
Next Generation Risk Assessment (NGRA). Through Cosmetic Europe’s 
(CE’s) Long Range Science Strategy (LRSS) initiative, a workflow for 
NGRA has been assessed using several case studies [6,8-10]. The 
workflow is intended to handle the complex nature of safety/risk 
assessment of target substances for which specific data are not available. 
The main components of the workflow are summarized in Fig. 1. 

As the NGRA workflow relies heavily on informatics and computa
tional tools, the CE Task Force on Systemic Toxicity (TF SysTox) iden
tified the need to develop a chemoinformatics platform capable of 
integration and federation of relevant data, prediction of properties and 
effects along with quantifiable reliability measures, application of 
exposure-based approaches such as the threshold of toxicological 
concern (TTC), and that provides a read-across workflow that draws 
upon all of the above. These issues are well represented systematically in 
a recent review by Cronin et al. of the landscape of informatics and 
computational tools available for safety assessment of cosmetics-related 
chemicals [5]. To this end, the chemoinformatics workgroup of the TF 
SysT established in Cosmetics Europe (2017–2022) decided to adopt 
ChemTunes•ToxGPS® [11] as the basis of their platform to digitalize the 
complex NGRA process defined in Fig. 1. 

As illustrated in Fig. 1, the workflows adopted by domain experts 
(SEURAT-1 workflow [12]) are mapped to the functional workflows of a 
platform (digitalized software workflow). Whilst current informatics 
systems focus predominantly on chemistry, there are opportunities to 
extend functionality with regard to the needs of the NGRA (and other) 
safety assessment workflows. 

There are also other opportunities for further developing a molecular 
informatics platform in the current age of sophisticated artificial intel
ligence (AI). The workflow for NGRA should be equipped with data and 
functionalities of both chemistry and biology, not only to provide data 
and knowledge, but also to ultimately assist or facilitate timely decision- 
making in both domains within a single framework. There should be a 
seamless conduit to integrate and federate both chemical and biological 
domains as the core resources of the system that should include the 
following components:  

• Compound safety data, study data (chemical-specific and chemical- 
agnostic biology), alerts/profilers/models, underlying rules (meta 
data) 
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• Safety data: human-based limit values for a variety of product use 
types involved in regulatory offices and authorities 

• Toxicity data – in vitro, historical in vivo data from animals, tox
icogenomics/pharmacology  

• Metabolism data – in vitro (human/animal), historical in vivo data 
from animals, human data  

• Biology data – transcriptomics, pathways  
• Prediction models to fill data gaps – e.g., QSARs and structure-based 

rules for human health-based endpoints, metabolites, etc.  
• Prediction models to predict external and internal exposure – e.g., 

physiologically-based kinetic (PBK) models  
• Safety assessment workflows – TTC, read-across 

The current paper describes the development of an informatics sys
tem to address the needs of safety assessors applying NGRA to cosmetics 
ingredients. Specifically, it has been designed and built using case 
studies focused on the application on TTC and conventional read-across 
(RAX) (Tier 0 in Fig. 1). System requirements were delineated with 
respect to TTC analysis, conducting a read-across of multiple steps with 
a variety of considerations, and finally estimating the assessment reli
ability in order to arrive at a final outcome statement. The aim was to 
allow these methods to be applied systematically not only to well- 
characterized structures, but also to complex mixtures observed in bo
tanicals or unknown or variable composition, complex reaction prod
ucts, or biological materials (UVCB) substances. In this study, we 
selected compounds often found in botanical extracts and demonstrated 
how a set of multiple related structures can be handled within the 
workflow based on the supporting evidence from historical in vivo ani
mal, in vitro, and in silico data. Many of these materials tend to lack 
compound-specific safety data; whilst some may be considered as 
Generally Regarded as Safe (GRAS) in the USA [13] or having no safety 
concerns considering estimated exposure levels, some may be flagged as 
a potential “constituent of concern”. As an illustrative example, the 
safety assessment of the use of Perilla frutescens in a cosmetics formu
lation is demonstrated in Section 3. The identity and structures of sub
stances for the case study were investigated through the platform 
resources described in Sections 2.2 – 2.4 to retrieve existing information, 
apply TTC and allow for the profiling and calculation of compound 
properties and read-across to fill data gaps. 

2. Molecular informatics platform 

2.1. ChemTunes•ToxGPS® platform 

An NGRA workflow requires a large number of functionalities and 
diverse resources accessible via complex integration and federation of 
tools. For this reason, the desired system was built as an extension to the 
existing ChemTunes•ToxGPS® platform since the existing platform 
already met many of the pre-requisites. The NGRA process has been 
captured via contextual interviews with users and this feedback was 
then transformed into user requirements, which were used to derive 
functionalities to design the workflows. As illustrated in Fig. 1, the 
workflows adopted by domain experts are mapped to the functional 
workflows of a platform system (digitalized software workflow). 

The ChemTunes•ToxGPS® platform uses a 3-tier architecture 
namely chemoinformatics backend, middle layer for communication, 
and the frontend web application (Fig. 2). The three key application 
components of this platform are database (ChemTunes), in silico work
flows for predictions and assessments (ToxGPS), and computational 
solutions (Express). A high level architectural diagram is illustrated in 
Fig. 2. 

The ChemTunes database is implemented in the PostgreSQL version 
13.4 [14] object-relational database system with RDKit-2021.03.5 [15]. 
The PostgreSQL system combined with the RDKit chemistry cartridge 
facilitates structure searching capability based on a set of molecular 
topological fingerprints. In addition to RDKit, ChemTunes•ToxGPS® 
also employs the internally developed MOSES [16] and CORINA [17] 
chemistry libraries developed at MN-AM. They are the essential under
lying foundation for calculation of physico-chemical properties and 
molecular descriptors in ToxGPS workflows. 

The platform backend is also capable of communicating with 
external libraries and tools. These individual components are available 
in the platform function as the engine underlying the knowledge hub, 
one purpose of which is to capture and exchange data across multiple 
knowledge sources to serve diverse users from multidisciplinary and 
cross-cutting sectors. The conceptual framework is designed to expand 
the domains of the knowledgebase to also include biology, tox
icogenomics, transcriptomics, and molecular pathways although only 
the chemistry-centric portions of the backend are discussed in this sec
tion. This versatility to adapt and expand to non-chemistry domains 
necessary for molecular informatics is also important since, eventually, 
molecular awareness of the system in the next generation should include 
both chemo- and bioinformatics knowledge. Ontologies are also inter
preted and stored within the meta-database, which is beyond the scope 

Fig. 1. Expert workflow for Next Generation Risk Assessment and its digitalization procedures [9]. Numeric indices (3.2–3.5) in the digitalized software workflow 
correspond to the use case sections in this paper. 
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of this manuscript. 

2.2. Databases to support NGRA 

2.2.1. ChemTunes chemical database 
Descriptions of fundamental database architectures have been pub

lished previously [18]. Highly curated chemistry content in terms of 
structures and compound information is available for users of the plat
form. Each chemical record represents a test substance and is linked to 
information containing regulatory and biological endpoints including 
safety assessment, toxicity, bioavailability, and metabolic studies. So
phisticated searching functionalities enable flexible and highly 
customized searches against the various information types. Since 
ChemTunes is a chemistry-centered database, a robust compound reg
istry system is required. 

Compound Registry: The ChemTunes chemistry database follows the 
COSMOS (CMS) registry standard [18] and captures rigorous annota
tions related to structures, compounds, and test articles through a sys
tematic quality control/quality assurance process. The registry system 
allows both automatic searching and duplicate detection with a sys
tematic quality scoring system to map many sources, as well as a manual 
expert-mode review of the underlying chemistry database. Chemical 
structure attributes such as stereochemistry, double bond geometry, 
material types, and composition types are annotated in detail along with 
the names and identifiers. Data sources include United States Environ
mental Protection Agency (US EPA), United States Food and Drug 
Administration (US FDA), European Chemicals Agency (ECHA) [19,20], 
European Food Safety Authority (EFSA) OpenFoodTox [21,22], Euro
pean Commission cosmetic ingredient database [23], PubChem Project, 
ChemSpider, and CAS Common Chemistry [24]. Over 500,000 curated 
substance records are currently stored in the registry and serve as the 
supporting resources for chemistry databases of ChemTunes and 
COSMOS NG [25]. Nearly 120,000 unique CMS-IDs with associated in
formation are made available in ChemTunes•ToxGPS® v.2022. 

2.2.2. Regulatory and safety evaluation information 
Risk assessment results leading to human safety are easily retrievable 

in the ChemTunes database. Specifically, the Safety Evaluation browser 
displays the critical information in this meta database populated with 
data from opinions and monographs from the regulatory entities. Along 
with the safety results, quantitative human health-based limit/guidance 
values are also included, e.g., Acceptable Daily Intake (ADI) (EFSA, The 
Joint FAO/WHO Expert Committee on Food Additives; (JECFA)), Total 

Daily Intake (TDI) (EFSA, Hazard Evaluation Support System (HESS 
[26])), Reference Dose (RfD) (US EPA) [27], Margin of Safety (MOS) 
([28]). Also available are benchmark doses for carcinogenicity studies 
from Carcinogenicity Potency Database [29], US National Toxicology 
Program (NTP) [30], and International Agency for Research on Cancer 
(IARC) [31]. Each safety assessment record provides the associated 
point of departure value from a critical study based on critical effects 
which are supported by the underlying toxicity studies in the Chem
Tunes database. 

2.2.3. ChemTunes toxicity database 
Experimental toxicity data are compiled from regulatory sources as 

well as the open literature. The in vivo and in vitro experimental toxicity 
data cover over 80 endpoints including, but not limited to, genetic 
toxicity, carcinogenicity, skin sensitization, skin/eye irritation, 
repeated-dose toxicity for target organs and developmental and repro
ductive toxicity (DART). The toxicity database data model has been 
published previously [18]. Over 12,000 substances have some level of 
toxicity data from 117,762 studies. Also available is a curated no 
observed (adverse) effect level (NO(A)EL) database for >2,400 test 
substances, which acts as the underlying data for the NO(A)EL Bounds 
Estimation in silico tool [32]. A summary of the endpoints available for 
toxicity data is given in Supplementary Information Table S1. 

2.2.4. ChemTunes ADME database 
Both in vivo and in vitro experimental data are provided in Chem

Tunes. Available endpoints include dermal and oral absorptions, 
bioavailability, PBK and metabolic transformations. A summary of the 
available bioavailability data is given in Supplementary Information 
Table S2. 

2.2.4.1. Metabolism database. The ChemTunes metabolism database 
currently has two biotransformation domains, i.e., endogenous and 
exogenous reactions of xenobiotics. Metabolism data for drugs are 
mostly based on human hepatocytes from the literature [33] and 
Pharmacological Reviews for New Drug Approvals (NDA) from US FDA 
Center for Drug Evaluation and Research (CDER) [34]. Data for pesti
cides are from both in vitro and in vivo studies (laboratory rodents, pri
mates, and farm animals) found in EFSA opinions. Combining both 
drugs and pesticides, transformations of >500 substances by nearly 
3,000 phase I and II reactions are covered in the database. The endog
enous database contains transformations from, prokaryotes, vertebrates, 
plants and yeasts, based on 14,540 molecules, 3,912 reactions, and 640 

Fig. 2. High level system architecture of the ChemTunes•ToxGPS® platform.  
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pathways. The metabolism database provides information on reactants, 
products, and reaction pathways from both in vitro and in vivo studies 
where pertinent study design information are captured, including spe
cies, sex, strain, cell lines, route of exposure, organ/tissue, compart
ment, activation, microsome, cofactor, medium, duration, dosage, and 
for data from experimental animals, information on group sizes. 

2.2.4.2. Physiologically-Based Kinetics (PBK) database. The PBK data
base contains both pharmacokinetic (PK) and toxicokinetic (TK) studies. 
The sources of the database are US FDA CDER [34], and various types of 
EFSA opinions [35]. Substances include drugs (pharmacological reviews 
of NDA), industrial chemicals, plant protection products (EFSA PPR) and 
residues, food contact materials (EFSA CEP) and additives (EFSA FAF), 
food contaminants (EFSA CONTAM), and industrial chemicals [36]. 
Over 900 total substances provide assay information including kinetics, 
absorption/bioavailability, excretion, distribution, and bio
accumulation. The database captures study design parameters (route of 
administration, study duration, doses, dosing regimen, species, sex, 
number of animals in test and control groups, animals age and/or 
weight), analytical methods, and results for each assay, e.g., maximum 
concentration (of substance) in blood/plasma (Cmax), time to reach Cmax 
in blood/plasma (Tmax), area under the curve (AUC) and half-life (Thalf). 

2.2.5. In vitro assays 
In vitro assays covering a wide range of endpoints and including AOP- 

related assays and the Tox21/CAST high throughput assays database, 
are available in the ChemTunes database, including, but not limited to, 
additional assay results from the Cosmetics Europe LRSS activities, e.g., 
Caco-2 cell permeability and in vitro skin sensitization assays. 

The in vitro ToxCast/Tox21 database is available for 9,298 sub
stances and 1,569 assays developed from ToxCast/Tox21 and their 
collaborators [37]. Due to the sparse nature of this database (i.e., many 
missing values), the signals from related assays were aggregated to in
crease sensitivity. Each assay result was transformed to a binary 
response (active/inactive) so that the data are represented as a 
compound-assay array, where each compound is represented as a vector 
of 0/1 values across all in vitro assays, with missing values assigned 
denoted “NaN”. For each assay, the mean and standard deviation 
(ignoring “NaNs”) was calculated treating the 0/1 as floating point 
values, so the mean for a particular assay is then the proportion of active 
(1) results. 

The next step was to group related assays into assay categories. For 
this aggregation step, the mode of action terms developed by NTP [38] 
were used. This process enabled the mapping of 900 assays with 27 NTP 
High Throughput Screening (HTS) Mode of Action (MOA) category 
terms spanning 43 mechanistic targets. The rest of the unannotated as
says were grouped by their assay targets, resulting in a total of 37 
category terms covering 1,479 assays. The assay hierarchy is listed in the 
Supplementary Information Table S3. For example, assays related to 
endocrine disruption screening used in the Endocrine Disruption 
Screening Program (EDSP) (64 in total) and DNA binding/damage/ 
repair (86 in total) were aggregated into categories containing fewer 
groups of related assays. The responses for individual assays within each 
group were combined to enhance the signal so that the resulting data 
array has a much lower proportion of missing values than the original 
unaggregated compound-assay array. 

2.3. ToxGPS in silico knowledge 

ToxGPS offers in silico knowledge in the areas of molecular proper
ties, chemotype profilers, QSAR and rule-base models as well as work
flows and tools for read-across. 

2.3.1. Molecular & physicochemical properties 
Three types of molecular properties are calculated in ToxGPS: 1) 

whole molecule 2-dimensional (2D) or 3-dimensional (3D)); 2) shape (3- 
dimensional (3D)); 3) quantum mechanics-based (3D) descriptors. 
Whole molecule properties are further divided into three different 
groups to address bonding interactions, interfacial/bioavailability, and 
molecular size. Shape descriptors calculated from 3D structural con
formations capture molecular characteristics that play a role in long- 
range interactions important in macromolecule binding (asphericity 
eccentricity, diameter, radius of gyration, moments of inertia). Various 
energy and physicochemical properties obtained by quantum mechan
ical calculations provide chemical reactivities (Heat of Formation (ΔHf), 
energies of the Highest Occupied Molecular Orbital (HOMO) and Lowest 
Unoccupied Molecular Orbital (LUMO), HOMO/LUMO Gap) [39]. 
Three-D structures are generated by CORINA [40] implemented within 
ToxGPS. More details on the molecular descriptors are available in the 
Supplementary Information and have been previously published [41]. 
Additional physicochemical properties are also implemented in the Ex
press solution in the ChemTunes•ToxGPS® platform. Supplementary 
Information Table S4 in summarizes the available properties and their 
possible use. 

2.3.2. Chemotype profilers 
Chemotype profiling attempts to identify structural (sub-)fragments 

that are associated with some activity, property or PK effects. Three 
types of structure profiling methods are available in ToxGPS, ranging 
from general feature mapping to endpoint-specific rules coded with 
sensitivity and specificity statistics derived from testing the rules against 
knowledgebase datasets. These chemotype profilers are coded in 
Chemical Structure and Reaction Mark-Up Language (CSRML), in which 
electronic, atomic, and bond properties can be encoded in addition to 
molecular connectivity [42]. 

2.3.2.1. Profilers. In ToxGPS, the term “profilers” is used in general 
where chemotypes are applied to associate structural features with 
chemical binding or reactivity towards biological target molecules. 
Profilers are not specifically intended to reflect endpoint associations, 
nor the likelihood of such events. Examples are DNA and/or protein 
binders [43-45]. ToxPrint chemotypes are offered only to allow visual
ization of each chemotype defined for fingerprinting structures. 
Although ToxPrint chemotypes cover the chemical space of large diverse 
toxicity databases and are designed with toxicity modes of action in 
mind, these profilers should not be interpreted as endpoint-related alerts 
unless this is justified by further analysis against a training set to 
demonstrate a sufficiently strong statistical association [46]. 

2.3.2.2. Alerts. A structural alert is traditionally a fragment matching a 
particular structure feature that is known to trigger a warning for a 
certain endpoint or is associated with a molecular initiating event [47]. 
However, it should be noted that an alert does not provide a measure of 
reliability or likelihood that the possibility of an adverse event may 
occur. Chemotype profilers in ToxGPS such as liver toxicity [48-53], 
DART decision tree [54], and mitochondrial toxicity [55] are comprised 
of alerts. 

2.3.2.3. Rules. In ToxGPS, a rule is defined as a chemotype that has 
been associated quantitatively with a biological activity or toxicity 
endpoint. Whilst the structural category is visualized in the chemotype 
profiler frontend in the same way as any profiler or alert, a rule is in fact 
coded with the positive predictivity (PPV) and an odds ratio as deter
mined from the underlying knowledgebase. These ToxGPS rules include 
steatosis, skin permeability, and liver and skin metabolic reactivities. 
Toxicity endpoint-specific rules available in the Chemotype Profilers 
may overlap with some of the in silico prediction methods, but, for the 
most part, the profilers are more general than the rule-base predictions 
and can be used in the combination method described in Section 2.4. 

Fig. 3 illustrates various chemotype profiler matches for beta-ionone, 
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one of the constituents of the Perrilla frutescens extract (a case study in 
Section 3), where the fragment(s) matched by the profiler are 
highlighted. 

2.3.2.4. Biotransformation rules. Liver Metabolism Rules: Liver BioPath 
rules consist of a total of 144 human-relevant biotransformation rules 
that represent enzymatic reaction sites similar to the public Systematic 
Generation of potential Metabolites (SyGMa) rule definitions [56]. The 
top transformation categories include cleavage, conjugation, hydrolysis, 
hydroxylation, lactam formation, lactone formation, oxidation/reduc
tion, and rearrangement. The rules are represented in chemotypes 
embedded with physicochemical properties according to the CSRML 
syntax [42]. The rules are used as profilers and fingerprints to allow 
comparison of metabolic reactivities between chemical structures. 
Within the ChemTunes Metabolism database, these human-based 
transformations can be explored quickly against other species. 
Furthermore, in the Liver BioPath metabolizer, the biotransformation 
rules are coded as reactions and the reaction products are presented as 
possible metabolites along with the likelihood measures. The list of rules 
is documented in Supplementary Information Table S5. 

Skin Metabolism Rules: A total of 87 structural rules for dermal 
transformations were derived from the literature [57]. Similar rules are 
observed as for liver; these include biotransformations from oxidore
ductases, transferases (e.g., conjugation reactions), hydrolases, lyases, 
and isomerases. Again, the rules are represented in CSRML and are 
available as profilers and fingerprints within ToxGPS. The list of rules is 
available in Supplementary Information Table S5. 

2.3.3. Cramer classification and threshold of toxicological concern (TTC) 
The TTC framework is implemented within the informatics platform 

as a decision tree. This approach requires chemical structure to assign 
Cramer classes [58] and knowledge of estimated daily intake. ToxGPS 
provides all Cramer classification methods available in Toxtree v.3.1 
including the original, revised, and extended rules [59]. Warnings will 
be given for known existing issues of Toxtree assignments. There are two 
types of TTC trees available: the original Kroes non-cancer tree and the 
modified tree for cosmetics-related chemicals based on SCCS Notes of 
Guidance [60]. Whilst the original TTC tree applies the thresholds from 
Munro’s approach for the three Cramer classes [61], the new cosmetics 
tree employs the threshold values analyzed by the COSMOS TTC effort 
[62]. The TTC values for Cramer Class I and Class III were assigned to 
thresholds of 46 and 2.3 µg/kg-bw/day respectively, whereas the 
Cramer Class II still followed the Munro’s original value of 9 µg/kg-bw/ 
day. 

The TTC tree addresses a series of questions in the framework. The 
first question in the TTC decision tree excludes a substance if it is a metal 
or metal-containing compound, or if the substance belongs to the cohort 
of concern (COC) defined by Kroes et al. [63]. Five “structural groups” 
are excluded from the TTC consideration if a substance is a known 
potent carcinogen (nitroso, azoxy, aflatoxin-like) or strongly bio
accumulating (polyhalogenated dibenzodioxins/benzofurans and 
steroids). 

The second step of the TTC framework is to check whether the 
substance contains structural alerts for genotoxicity. This step is 

executed by checking DNA reactive mutagenicity and/or clastogenicity 
either by performing manual SAR or employing in silico methods such as 
structural rules and/or QSAR models when experimental data are not 
available [64]. 

2.3.4. In silico predictions 

2.3.4.1. Machine learning (ML) hybrid rules. The CSRML methodology 
allowed development of novel hybrid rules combining expert-guided 
knowledge with machine learning (ML) approaches. During the 
expert-driven rule extraction stage, a highly curated training set con
taining target response data (binary, multinomial, or continuous) about 
a clearly defined endpoint is constructed. Initial chemotypes are first 
selected by substructure searches within the training set using the 
ToxPrint chemotypes. Associations of these initial chemotypes with the 
target endpoint are explored and the chemotypes are further refined to 
enhance the SAR (structure–activity relationship) and enrich target as
sociation. These enriched chemotypes are then used to subset the 
datasets into more homogeneous target responses by splitting the set 
using compound properties based on machine-learning techniques, e.g., 
recursive partitioning. The full development process and results are 
described elsewhere [65]. These ML-hybrid rules are used in predictions 
of various endpoints in genetic toxicity, liver toxicity, DART as well as 
dermal toxicity (irritation and sensitization) and permeability. 
Furthermore, when these structural rules are associated with numerical 
point of departure values, the rulebase gives insights on potency far 
beyond the simple correlations. For example, the quantitative correla
tion of these structural rules for potency, e.g., NOAEL values have been 
previously published for agrochemicals and food-related materials [66]. 

2.3.4.2. Mode-of-action QSAR approaches for toxicity models. The pre
diction methods in ToxGPS include QSAR models built from mode-of- 
action driven training sets as well as rule-base system with pre
dictivity measures to result in a probabilistic outcome. These ToxGPS 
models have been developed with regulatory perspectives to give ra
tionales and transparency for predictions, which are also documented 
following the core QSAR Model Reporting Format (QMRF) standard. 
The general approach combines QSAR results from a global model and 
multiple MOA models built within the structural neighborhoods of 
compounds sharing potentially the same or similar molecular initiating 
event (MIE). Overall, the ToxGPS QSAR models yield a probability es
timate for each of the possible outcomes, which are then combined with 
the rule-base structural alerts, each of which has an associated positive 
predictivity value. The evidence from both QSAR model and rule-base 
predictions is combined by Dempster-Shafer Theory [67,68]. 

The general modeling algorithm for the ToxGPS models is logistic 
partial least squares regression, a learning method that has the advan
tage of being more easily interpretable than many other machine 
learning methods. QSAR models yield a probability estimate for each of 
the possible outcomes. The prediction outputs include the probability of 
being positive (endpoint toxic), uncertainty, and the applicability 
domain (AD). AD is defined based on the model descriptor space of the 
global model whilst the structural requirements of MIE neighborhood 
for the MOA models define the AD of such models. All toxicity 

Fig. 3. Profiling of beta-ionone by various chemotypes (profilers, alerts and rules).  
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predictions in ToxGPS follow the same paradigm although other ma
chine learning or neural networks modeling methods are also employed. 

An example of the ToxGPS approach, as applied to skin sensitization 
of perillaldehyde, is illustrated in Fig. 4. The first step in the in silico 
model for skin sensitization in ToxGPS is the prediction of the skin 
sensitization hazard (a binary classification: sensitizer/non-sensitizer); 
these results are shown in the top portion of Fig. 4 (skin sensitization, 
Local Lymph Node Assay (LLNA) hazard). The colored probability bars 
depict the results from evidence: the global model, two local MOA 
models, two alerts, and the overall result obtained by combination of the 
five individual results. In the hazard model, the red and green bars 
indicate, for each result, the strength of the evidence for a positive 
(sensitizer) and negative (non-sensitizer) outcome, respectively. The 
yellow bar represents the uncertainty in the prediction. 

For perillaldehyde, the two reactivity neighbor models (Schiff base 
formation; Michael acceptor) tend to be positive; for example, the 
probability of being positive is reported as the range 0.74–0.91 for 
Michael acceptors. The global model was positive for sensitization with 
the positive probability range of 0.72–0.85. The overall outcome esti
mates perillaldehyde to be sensitizing with high probability and low 
uncertainty. A positive LLNA hazard prediction in ToxGPS triggers 
application of a second model designed to estimate LLNA potency by 
predicting whether the query compound is likely to be classified as 
either GHS 1A (strong sensitizer with an effective concentration to 
induce 3-fold increase of Stimulation Index (EC3) ≤ 2 wt/vol %) or GHS 
1B (weak-moderate sensitizer with EC3 > 2 wt/vol %) [69]. As shown in 
Fig. 4, perillyl aldehyde is predicted to be a weak-moderate sensitizer 

with probability of being GHS 1A of 0.08, GHS 1B of 0.82, and with 
uncertainty 0.10. This prediction is consistent with the published LLNA 
results with EC3 values ranging from 7.9 to 8.7% [70-72]. These pub
lications report none-to-moderate reactivities from various studies 
including Adverse Outcome Pathway (AOP)-related assays (Direct Pep
tide Reactivity Assay (DPRA), Human Cell Line Activation Test (h-CLAT 
and KeratinoSens), human maximization test (positive at 4%) and 
confirmatory human repeat insult patch test (negative at 0.6%). Sup
plementary Information Table S6 lists all toxicity prediction endpoints 
available in ChemTunes•ToxGPS®. 

2.3.4.3. ADME predictions. Bioavailability Predictions: Whilst the 
ToxGPS approach for toxicity predictions focuses on transparency and 
rationales required in regulatory-related workflows, the bioavailability 
models are implemented with machine learning methods targeted for 
improved predictivity such as artificial neural network, SVM/SVR 
(support vector machine/support vector regression), and random forest 
approaches. A wide range of endpoints are available covering physico
chemical properties, oral/dermal absorptions and permeabilities, blood 
brain barrier, and plasma protein binding. The list of these Express 
models is available in Supplementary Information Table S6. 

Liver BioPath Metabolizer: Liver BioPath [73] rules for human in 
vitro hepatocytes are coded as reactions such that metabolism products 
can be generated stoichiometrically. Both Phase I and II transformation 
rules are considered for two successive levels of reactions. To prioritize 
various metabolites from a transformation, PPVs and odds ratios were 
determined using the underlying ChemTunes metabolism database [67]. 

Fig. 4. Prediction browser in ToxGPS for Local Lymph Node Assay (LLNA) models.  
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2.4. Methods for quantitative read-across 

This section describes in detail the approach to apply read-across 
quantitatively within a NGRA process such that uncertainties involved 
in the read-across process can be quantitatively estimated. Therefore, we 
present methods to establish a quantitative read-across (qRAX) based on 
approaches available from ToxGPS. 

2.4.1. Structure similarity and measures 
Various similarity searching methods are available in Chem

Tunes•ToxGPS®. From the main query builder, similar structures can be 
queried against the whole database, which can be further constrained to 
include particular endpoints in the database. Within the ToxGPS work
flow, this first query result can also be augmented by analogue searching 
tools that constrain search hits based on a specified similarity threshold 
and, if desired, substructure scaffolds representing relevant biology. In 
the Express service, finding analogues via ensemble searching of nearest 
neighbors from a specific endpoint dataset (NOAEL or EC3 datasets) is 
also possible. 

ToxGPS provides a number of fingerprinting schemes for quantifying 
structure-based similarity, including both extended connectivity fin
gerprints (RDKit molecular topological and Morgan [15,74,75]) and the 
pre-defined features (ToxPrints [42,46] or public 166 MACCS keys 
[76]). The capability of evaluating similarity with multiple finger
printing schemes is important because different schemes may capture 
different perspectives. Once the structures have been fingerprinted, 
Tanimoto [77] and Dice indices [78] are applied to calculate pairwise 
similarities. Based on similarity calculations for all structure pairs in the 
full ChemTunes database using the above four fingerprints, a similarity 
index of approximately 0.7 is recommended as a reasonable threshold 
for defining similar structures [32]. 

The issue over the values of similarity indices such as Tanimoto and 
Dice is important and must be acknowledged when applying such a 
method. Mellor et al. [79] undertook an analysis of various calculation 
methods for molecular similarity. The study demonstrated that simi
larity indices are dependent on the fingerprint (or other information) 
that they are computed from. Individual similarity values are compa
rable only when computed from the same fingerprint and metric (as is 
undertaken in ToxGPS). Mellor et al. [79] also demonstrated that an 
inappropriate molecular fingerprint may result in poor quality ana
logues. In addition, the cut-offs for similarity of analogues must be 
approached in a pragmatic manner. The value of 0.7 applied in ToxGPS 
is in line with previous studies and recommendations for cut-offs in 
molecular similarity [80]. 

2.4.2. Property and assay similarity 
Chemical similarity is estimated by structural and molecular/phys

icochemical properties whereas biological similarity can be based on in 
vitro or HTS assays. An analogue in ChemTunes•ToxGPS® is defined as a 
structure sufficiently similar to the target to justify read-across, where 
similarity takes into account structure connectivity, physicochemical 
properties, and biological assay information, when available. Addi
tionally, evidence that the target and analogue share the same MOA or 
metabolic pathways is desirable. 

2.4.2.1. Metrics for property or assay similarity. Within a well-defined 
structural neighborhood, molecular and physicochemical properties 
are useful to further differentiate structures in ways that cannot be 
captured by structural features alone. ToxGPS calculates properties 
described in Section 2.3.1 (Supplementary Information Table S4) and 
enables evaluation of property-based similarity to further constrain the 
retrievals from the structure-based similarity searching. When an 
endpoint is known to be driven by one particular property or assay, this 
can be easily compared across various structures. When comparisons of 
profiles of multiple properties across structures are desired, the profiling 

method by skyline plots were used. 
To compare similarity quantitatively, we can use a measure based on 

Pearson Correlation coefficient to calculate Pearson Similarity [32] 
when correlation of profiles between structures is important. Pearson 
similarity is the Pearson correlation coefficient scaled 0 and 1 so that the 
similarity value itself represents a probabilistic estimate of the relevance 
of the analogue to the target with respect to physicochemical properties. 
To address cases where the absolute distance between the property sets 
is important, a Euclidean Similarity metric based on Euclidean distance 
is defined as in Eqs. (1) and (2): 

Euclideandistance ≡ d =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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2

√
√
√
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Euclideansimilarity =

⎛

⎜
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⎝

1
1 + d̅ ̅̅

N
√

⎞

⎟
⎟
⎠ (2)  

where N is the number of selected variables (properties or assays), and xi 
and yi denote standardized values of variable i for molecules x and y, 
respectively. In our previous publication [32], Euclidean Similarity was 
calculated from the distance (d) using the common relation of 1/(1 + d); 
however, this is too simplistic for our purpose because similarity would 
then tend to decrease rather sharply as the number of variables (N) used 
to calculate d increases. Equation (1) thus represents a robust 
improvement for property- or assay-based similarity. 

It is important to note that when calculating property or assay-based 
similarity values, the variables must first be scaled by standardization or 
some other appropriate normalization method since the original vari
ables have different units and may vary widely in magnitude. Before 
computing the profile similarity for properties, the original values were 
therefore standardized using means and standard deviations computed 
from a large random sample of approximately 50,000 structures in the 
ChemTunes database so that robust and reproducible pairwise similar
ities can be calculated. For bioavailability properties such as Caco-2 cell 
permeability, skin permeability, hepatic clearance, and fraction un
bound, ChemTunes provides large datasets so that the smaller datasets 
can be standardized in a systematic and reproducible manner. 

2.4.2.2. Profile comparisons of property similarity. The profiles of 12 
molecular properties described in Section 2.3.1 are plotted in Fig. 5. We 
refer to these bar charts as “skyline plots”. Three structures are 
compared using both Euclidean and Pearson similarities. All three are 
quite similar in property space according to both metrics (above 80% by 
Euclidean and 97% by Pearson similarity). Two tertiary alcohols with 
aliphatic chains (C > 6) were compared with the primary alcohol. Far
nesol and nerolidol both have a C > 12 backbone chain with the same 
number of double bonds and were recognized as more similar to each 
other than to linalool. Three properties that differentiate these struc
tures were log P [81], HOMO, and HOMO/LUMO Gap, which relate to 
the length of the aliphatic chain and number of double bonds. In this 
property space, the primary vs. tertiary alcohol seemed to have less 
effect. 

2.4.2.3. Profile comparisons of assays. Biological similarity can also be 
quantified based on data from activity or screening assays. For example, 
patterns for binding activities related to EDSP assays were selected 
including the 21 estrogen (ER), 12 androgen (AR), 13 progesterone (PR), 
6 aryl hydrocarbon receptor (AhR), and 12 peroxisome-proliferator- 
activity (PPAR) assay categories [82]. In this analysis, only the assays 
having data for at least 30% of the structures in the database were 
included. The Endocrine Disruption Screening Assays and others 
selected in this analysis contained a large number of data points: AR_BLA 
Activity (8,306), ER_Era_BLA Activity (8,305), PR_BLA Activity (7,871), 
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Ahr Activity (8,887), and PPARg Activity (9,179). 
For each substance, all available assay results within each group of 

aggregated assays are averaged and normalized from − 0.5 to +0.5. Each 
substance can then be visualized with a skyline plot where each bar 
represents a different assay group [65]. Fig. 6 illustrates the 23 aggre
gated assay categories. Pooling individual assays in this manner in
creases the signals from the above 64 assays to 33 assay categories (6 
AR, 14 ER, 2 AhR, 5 PR, 6 PPAR assays). The values above the horizontal 
axis depict the assays whose activities were greater than the mean of the 
available database substances. The EDSP assay categories are grouped 
by AR, ER, AhR, PR, and PPAR. 

The assay-based similarity between any two substances can then be 
calculated from the respective profiles in the same way as was done for 
property-based similarity, using either Pearson or Euclidean similarity 
measures. When the activities are binned into categories, variability 
among the observations with many missing values is minimized and 
Euclidean similarity is a better choice because it depends on absolute 
distance, not simply correlation. The EDSP assay profiles in Fig. 6 seem 

to be similar between the three aliphatic alcohols: 0.78 for farnesol- 
nerolidol, 0.74 for farnesol-linalool, and 0.83 for nerolidol and 
linalool by Euclidean similarity. Whilst the property similarity found 
farnesol and nerolidol more similar (Fig. 5), the biological metric (i.e., 
EDSP assays) found nerolidol and linalool (the two tertiary alcohols) 
more similar. These assays demonstrated the power of inclusion of assay 
patterns as a way to capture biological similarities. 

2.4.3. Analogue quality 
As described in the previous sections, chemical similarity can be 

quantified in various ways, considering structure, property, and bio
logical profiles (assays, MOA, AOP, alerts). In ToxGPS, the analogue 
quality (AQ) is defined as the geometric mean of all similarity measures 
selected to quantify a given qualified analogue [18,32] relative to a 
target of interest. 

AQ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
S1S2...Sn

n
√

(3) 

Fig. 5. Comparison of properties based on Euclidean and Pearson similarities ("similarity" abbreviated to SIM in the Figure).  

Fig. 6. Profiles of ToxCast EDSP assays.  
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where each Si can be a Tanimoto coefficient or Dice index for structural 
similarity between analogue and target, or a Pearson or Euclidean 
similarity from property or assay profiles of the analogue and target. In 
all cases, each Si, and therefore AQ, is a value between 0 and 1. Note that 
analogue quality can be assessed for each analogue candidate without 
consideration of the endpoint(s) of interest. 

2.4.4. Study quality (SQ) 
The next important step in qualifying analogue candidates for read- 

across is to evaluate the quality of the evidence provided by the studies. 
To obtain a read-across outcome with a quantitative uncertainty, it is 
necessary to apply objective study quality schemes. As expected, this 
involves some subjective judgement, although certain aspects of the 
study designs can be evaluated systematically and more objectively. For 
example, guideline studies conducted in GLP environments by a well- 
documented source are more highly rated than experiments from non- 
guideline investigations. Certain assays are also known to generate 
higher quality data due to the nature of the assay complexity, e.g., re
sults from Ames studies are generally viewed as more reliable than re
sults from experiments for in vitro chromosome aberrations. The values 
for study quality (SQ) were assigned after reviewing the study protocols 
and call rationales from the sources. A rigorous and systematic process 
for extracting quantitative study quality measures has been published 
previously [32]. 

In a ToxGPS workflow, SQ assignments are made by the user, with 
options for SQ being HIGH (1.0), MED-HIGH (0.95), MED (0.85), MED- 
LOW (0.8), and LOW (0.70 or lower). Many data sources provide Kli
misch scores [83] and study completeness scores or reliability which can 
be mapped to this five-category scale. In general, HIGH and MED-HIGH 
usually correspond to Klimisch scores of 1, and MED and MED-LOW to 
Klimisch scores of 2. An SQ value lower than 0.5 may provide justifi
cation for excluding that particular study; if used in the weight of evi
dence combination process, a study with a low SQ could substantially 
increase the uncertainty in the read-across result. 

2.4.5. Read-Across (RAX) reliability & outcome 

2.4.5.1. RAX reliability. The reliability of a given evidence source for 
RAX depends primarily on the AQ and SQ. In ToxGPS, the joint proba
bility of these two is defined as the RAX reliability (RR), a measure of 
confidence in reading across using the selected analogue(s) and their 
study data to the target. This reliability can be calculated per analogue 
either individually for each study or by averaging using a decision 
theory method across multiple studies available for the analogue [68]. 
High RAX Reliability supports the suitability of the selected analogue 
evidence for the purposes of read-across to the specified target. 

2.4.5.2. RAX outcome. Once selected analogues are qualified and read- 
across reliabilities are estimated, the read-across outcome will depend 
on the endpoint of interest for the target. For repeated-dose toxicity, 
point of departure values such as NOAEL concentrations are typically of 
interest. For genetic toxicity endpoints, the outcomes will often be bi
nary (positive or negative). For skin sensitization, several outcomes are 
envisioned, namely, the binary hazard call (sensitizer or non-sensitizer), 
multinomial ordinal calls (non, mild, moderate, or strong sensitizers), or 
continuous values (e.g., EC3 values) if the substance was considered a 
sensitizer. 

In Section 3, three use cases are presented which consistently apply 
the same systematic procedure using our proposed quantitative methods 
for performing a read-across: 1) calculate AQs for each analogue based 
on structure, property, and assay information; 2) assign study quality 
(from 0 to 1) for each contributing study; 3) calculate RR for each 
analogue over available studies; 4) apply Weight-of Evidence (WOE) 
method to calculate overall RR for all selected analogues with their 
contributing studies; 5) calculate the final outcome by combining all 

sources of evidence, each weighted by its respective RR, using a decision 
theory approach based on Dempster Shafer Theory. 

3. Use cases: demonstrating the support of NGRA of the major 
constituents of Perilla frutescens by molecular informatics 

The informatics system, in silico knowledge and methodology 
described in Section 2 can be applied in many chemical safety assess
ment scenarios, notably for identifying existing data and filling data 
gaps. One of the most challenging areas for safety assessment is the 
evaluation of complex chemical mixtures, botanicals and UVCBs. Bo
tanicals are particularly important in cosmetics safety due to their 
widespread use in these products [84]. Botanicals are complex mixtures, 
often containing several thousand chemical constituents, the relative 
concentrations of which may vary depending on site and time of har
vesting, growing conditions, and many other factors. These compli
cating aspects explain the previous lack of informatics solutions for 
botanicals [85]. 

This section demonstrates how molecular informatics tools may be 
applied to fill some of the frequently observed data gaps for a botanical. 
The goal here is not to cover a full NGRA process, but rather to illustrate 
how in silico approaches contribute to finding solutions for Tier 0 in 
Fig. 1, capitalizing on the techniques described in Section 2. Perilla 
frutescens, a herb with a variety of uses in cosmetics and other industrial 
products, was selected, and the following steps which specifically sup
port NGRA are described:  

• Characterization of the constituents of a botanical substance 
(relating, in part, to Steps 2 and 3 in Fig. 1).  

• Determining the exposure/use scenario of a botanical substance in a 
cosmetics product (relating, in part, to Step 1 in Fig. 1).  

• Performing TTC for the constituents of a botanical substance 
(relating, in part, to Steps 2 and 3 in Fig. 1).  

• Undertaking quantitative read-across for selected constituents of a 
botanical substance for genetic toxicity, repeat dose toxicity and skin 
sensitization (relating, in part, to Step 4 in Fig. 1). 

3.1. Problem formulation: safety assessment of the essential oil of Perilla 
frutescens 

This investigation and associated use cases attempt to demonstrate 
how molecular informatics, implemented through a software platform, 
can assist elements of Tier 0 in the NGRA of a botanical used in a 
cosmetic product. Specifically, these use cases considered a hypothetical 
use case of a leave-on hand cream containing P. frutescens at 0.01%. In 
this instance, the substance was characterized in the initial step 
(otherwise considered to be Steps 2 or 3 of the NGRA) such that the 
exposure to individual components could be considered (Section 3.2). 

P. frutescens largely consists of naturally occurring monoterpenes and 
monoterpenoids. One of its constituents is perillyl alcohol, a mono
terpene derived from the volatile components of the essential oil of 
many botanicals including lavender, peppermint, cherries, sage, 
lemongrass as well as P. frutescens. It has been widely used in flavoring 
and fragrance formulations in toiletries [86], and topical insecticide 
repellant along with the aldehyde form (perillyl aldehyde) and other 
monoterpenoids [87], Recently, the potential use of perilla alcohol for 
treatment of cancer via inhalation has been also reviewed [88]. 

The composition of several variants of P. frutescens (L.) Britton have 
been reported in the literature. A 2021 study of a variant from Vietnam 
was used [89] to prepare the case study presented here for a botanical 
mixture. Although components and compositions vary greatly depend
ing on sources of accessions, e.g., specific locations in China [90], Japan 
[91], Korea [91,92], Lithuania [93], and US [94], there are constituents 
common to the reported variants containing volatile components such as 
alicyclic and aliphatic chains along with their functionalized forms of 
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alcohols, aldehydes, and acids. In a particular variant from Vietnam, the 
most abundant constituents were reported to be perillaldehyde (62%), 
caryophyllene (6.7%), limonene (5%), caryophyllene oxide (2.5%), 
linalool (1.4%), humulene (1.1%), perillyl alcohol (0.8%), nerodilol 
(0.65%), and alpha-terpineol (0.5%). Table 1 shows the list of 18 major 
identified constituents based on the 24 peaks (including 3 unknowns) in 
the GC MS chromatogram from Dat et al. [89]. 

Some notable differences in composition among the reported vari
ants include perillaldehyde (0.89–62.1 %), caryophyllene (0.14–16%), 
caryophyllene oxide (0.45–12%), limonene (0.049–12.6%), phytol 
(0.18–4.76%), and linalool (0.46–4.6%). In particular, a remarkable 
difference in the concentration of perillaldehyde, i.e., 0.89% vs 62.1% 
was observed between “var. Japonica” and “Thai Binh Province Viet
nam”, respectively. In addition to the effect of harvesting location dif
ference, it is also worth noting that the difference in extraction methods, 
such as aqueous/solvent vs. microwave-assisted distillation, used to 
prepare GC MS samples might have played a role since perillyl alcohol 
can be oxidized to perillaldehyde abiotically under certain conditions. 
Interestingly, perillyl alcohol was found in much lower concentrations 
(0.8 – 2.2 %) and the variation in this amount between variants was also 
relatively small. These observations are good examples of some of the 
complex issues faced when assessing botanical mixtures quantitatively. 

Limonene, myrcene, and farnesene can be transformed to mono
terpenoids. In human metabolism (summarized in Fig. 7), limonene is 
oxidized to perillyl alcohol, which can be further oxidized to perillic acid 
by aliphatic primary alcohol oxidase [95,96]. Similar transformations 
occur in skin via alcohol and aldehyde dehydrogenases as well as 
aldo–keto reductase and aldehyde oxidase (Table 2). 

In summary, the components of the P. frutescens mixture can be 
roughly grouped into approximate classes within the monoterpene and 
monoterpenoids, i.e., alicyclic ring, aliphatic chain, functionalized ali
cycles and alcohols. Conventional cluster analysis can be used to group 
these constituents, where the clustering algorithm uses a distance metric 
calculated from either structural features or pertinent physicochemical/ 
molecular properties. Hierarchical clustering was applied using Jaccard 
distances calculated based on 129 ToxPrint chemotypes, followed by 
agglomerative nesting using single linkage. The dendrogram in Fig. 8 
reveals five clusters at a distance of approximately 0.4 to 0.5, namely 
four clusters and a singleton that is perillene. The four clusters were 
alicylic rings (Cluster I), long aliphatic (C > 6) chains (Cluster II); 
terpenoid alcohols (Cluster III) and terpenoid aldehydes & ketones (IV). 
This grouping is reasonable from a structure–activity relationship (SAR) 
perspective, differentiating alicycles and aliphatics and their derivatives 
with functional groups. 

Therefore, the assessments were performed for constituents as 
members of these clusters. We will employ TTC and Read-Across ap
proaches following the workflow presented in Fig. 1 by the Cosmetics 
Europe LRSS task force. 

3.2. Exposure/use scenarios 

Step 1 of NGRA, as presented in Fig. 1, is the definition of the 
exposure/use scenario. As noted above, for the purposes of this inves
tigation, a hypothetical use case of a leave-on hand cream containing 
P. frutescens at 0.01% was considered. The assumed external exposure to 
leave-on hand creams is 32.70 mg/kg-bw/day in Europe [60]. Thus, for 
this hand cream scenario, an exposure of 3.27 µg/kg-bw/day collec
tively to the various constituents from P. frutescens may be assumed. 
Based on the constituent compositions given in Section 3.1, examples of 
possible daily exposures (µg/kg-bw/day) are estimated for each con
stituent: perillaldehyde (2.03), caryophyllene (0.22), limonene (0.16), 
caryophyllene oxide (0.08), linalool (0.05), humulene (0.04), perillyl 
alcohol (0.03), nerolidol (0.02), and alpha-terpineol (0.02). The possible 
exposures of all constituents are listed in Table 1. 

Since most of the constituents are well-known fragrance and 
flavoring agents, risk assessments on many of these substances have 

been published by RIFM and EFSA, including information on general 
exposure estimations. For example, RIFM reported the total aggregated 
systemic exposure (oral, dermal, and inhalation) for perilla alcohol to be 
0.047 μg/kg/day [86], 6.7 µg/kg/day for alpha terpineol [97], and 38 
μg/kg/day for dl-limonene [98]. Considering these general estimations, 
the above hypothetical exposures from a hand cream containing the 
perilla extracts are within the normal ranges even if 100% absorption 
through the skin is assumed for those substances. These estimated daily 
intakes will be analyzed in terms of the thresholds for toxicological 
concerns in Section 3.3. 

The skin permeability rules and QSAR models in ToxGPS were 
applied to find that the perillyl alcohol and terpineols are predicted to 
have logarithmic values of the skin permeability coefficient (log Kp 
where the units of Kp are cm/h) in the range − 3 to − 1.5 (medium 
penetration), whereas large alicyclic rings (e.g., beta-caryophyllene) 
were predicted to have log Kp values below − 3 (low penetration) 
[99,100]. For example, Lucca et al. reported that beta-caryophyllene 
extracted from Copaiba oil was penetrating only through the stratum 
corneum layer at 0.0001% of the amount delivered on top of the skin 
[101]. When a microemulsion is prepared and applied, there was 0.07% 
penetration to the epidermis and dermis. Thus, the maximally conser
vative assumption of 100% absorption is significantly over-protective 
for some compound classes. 

3.3. Thresholds of toxicological concern 

For substances whose exposures are sufficiently low, a substance- 
specific data waiver, such as the use of TTC may be appropriate at 
Steps 2 and 3 of Tier 0 of NGRA. TTC was performed on the identified 
constituents of P. frutescens according to the method described in Section 
2.3.3. A component-based approach was applied by assessing all well- 
defined components individually for their genotoxic potential [64]. 
The outcome of the TTC analysis along with the genotoxic outcomes is 
summarized in Table 1. Two constituents were found to be associated 
with genotoxic potential according to predictions from Ames mutage
nicity, in vitro chromosome aberration, and in vivo micronucleus QSAR 
models and rule-base outcomes in ToxGPS as well as experimental data, 
where available, in the ChemTunes database and literature. 

For all non-genotoxic cases, the Cramer classes were determined by 
the revised Cramer tree and appropriate thresholds were assigned for the 
non-cancer cosmetics TTC tree (Section 2.3.3). As illustrated in Fig. 9, 
the estimated daily exposure of all non-genotoxic constituents would 
pass the TTC threshold comfortably even assuming 100% bioavail
ability. Bury et al. also analyzed the exposure scenarios of perillyl 
alcohol and confirmed that even under the worst-case assumption of 
100% bioavailability, the daily intake of this substance would be much 
lower than the TTC threshold of Class I, hence perillyl alcohol is safe to 
use given its actual low bioavailability from cosmetics formulations [9]. 

For structures that are deemed genotoxic either by experimental data 
or predictions, the non-cancer tree is not pursued, as in the case of 
perillene for which ToxGPS yielded an equivocal result due to potential 
clastogenicity. It should be noted that an EFSA panel considered that 
perillene, as one of many constituents of Zingiber officinale Roscoe, 
would be of no concern for genetic toxicity safety, citing predictions 
from OECD Toolbox [102]. 

If we assume the exposure of perillene to be 100%, the estimated 
daily intake would be 0.0036 μg/kg-bw/day, which is above the 
threshold of 0.0025 µg/kg-bw/day (0.15 µg/person/day) below which a 
less than one-in-a-million cancer risk may be assumed [63]. If a nominal 
bioavailability of 50% of oral absorption is assumed, the use of perillene 
found in the P. frutescens would be acceptable if the botanical was 
formulated at 0.01% in a hand cream, even if perillene were genotoxic. 
To be more conservative, the bioavailability of perillene was further 
investigated employing skin metabolic and permeability rule bases as 
well as QSAR models. According to the skin metabolic rules in the 
Chemotype profiler, perillene does not undergo substantial metabolic 
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Table 1 
Characterization of constituents in Perilla frutescens and the threshold of toxicological concern approach.  

Compound Names CMS ID Approx. 
Composition 
(%)1 

Cramer 
Class2 

TTC(µg/kg-bw/ 
day)2 

Daily 
Intake3(µg/kg- 
bw/day) 

GenotoxicityPrediction 
(ToxGPS)4 

GenotoxicityExperiment Summary5 

Cluster 1: Alicyclic alkenes 
C1. D-cadinene CMS- 

42433 
0.20 Low (I) 46 (30) 0.0065 NEGATIVE  

• Ames: NEG  
• in vitro chromosome 

aberration (ivtCA): NEG  
• in vivo micronucleus 

(ivMN): NEG  

• Ames: NEG; EQ 
aliphatic and alicyclic hydrocarbons — 
not genotoxic [103] 

C2. Beta-Elemene CMS- 
51192 

0.24 Low (I) 46 (30) 0.0078 NEGATIVE  
• Ames: NEG  
• ivtCA: NEG  
• ivMN: NEG  

• iv MN NEG [104] 

C3. Limonene CMS- 
797 

4.99 Low (I) 46 (30) 0.16 NEGATIVE  
• Ames: NEG  
• ivtCA: NEG  
• ivMN: NEG  

• Ames: NEG  
• ivtCA NEG  
• ivtMM (MLA): NEG 

C4. Beta- 
caryophyllene 

CMS- 
3991 

6.72 Low (I) 46 (30) 0.22  • Ames: NEG  
• ivtCA: NEG  
• ivMN: NEG  

• Ames: NEG  
• ivCA NEG;  
• ivMN: NEG; ivt MN NEG; UDS NEG 

C5. Humulene CMS- 
42579 

1.11 Low (I) 46 (30) 0.036 NEGATIVE  
• Ames: NEG  
• ivtCA: NEG  
• ivMN: EQ 

aliphatic and alicyclic hydrocarbons — 
not genotoxic [105-107]  

Singleton: Heterocycle alkene 
C6. Perillene CMS- 

54767 
0.11 High (III) 2 (TTC);0.0025 

(TOR) 
0.0036 Predicted: EQUIVOCAL  

• Ames: NEG  
• ivtCA: POS  
• ivMN: POS  

• Ames QSAR: POS [108]  
• Ames QSAR: NEG [Data from the 

OECD QSAR Toolbox [109]]  
• Genotoxic endpoints: NEG [Data 

from the OECD QSAR Toolbox [109]]  

Cluster 2: Aliphatic (>C6) chains & alcohols 
C7. Farnesene CMS- 

11498 
0.22 Low (I) 46 (30) 0.0072 NEGATIVE  

• Ames: NEG  
• ivtCA: NEG  
• ivMN: NEG  

• No safety concern [107]  
• ivtCA: NEG; ivtMN: NEG [110]  
• Comet Assay: NEG [110] 

C8. Nerol CMS- 
4979 

0.16 Low (I) 46 (30) 0.0052 NEGATIVE  
• Ames: NEG  
• ivtCA: NEG  
• ivMN: NEG  

• Ames: NEG  
• ivtCA: NEG  
• ivt MN NEG 

C9. 1-octene-3-ol CMS- 
7321 

0.11 Int (II) 9 (9) 0.0036 NEGATIVE  
• Ames: NEG  
• ivtCA: NEG  
• ivMN: NEG 

Ames QSAR: NEG [Data from the OECD 
QSAR Toolbox [109]Experimental data 
not found 

C10. Phytol CMS- 
8161 

0.18 Low (I) 46 (30) 0.0059 NEGATIVE  
• Ames: NEG  
• ivtCA: NEG  
• ivMN: NEG  

• ivtCA: NEG  
• No data found  
• ivtMM NEG [111] 

C11. Linalool CMS- 
4400 

1.41 Low (I) 46 (30) 0.046 NEGATIVE  
• Ames: NEG  
• ivtCA: NEG  
• ivMN: NEG  

• Ames: NEG  
• ivtCA (CHL) NEG  
• ivtMN NEG 

C12. Nerolidol (E 
& Z)6 

CMS- 
2195 

0.78 Low (I) 46 (30) 0.021 NEGATIVE  
• Ames: NEG  
• ivtCA: NEG  
• ivMN: NEG  

• Ames: NEG (Cytotoxic)  
• ivtCA: No data found  
• ivMN: NEG [112]  

Cluster 3: Terpenoid Alcohols and Derivatives 
C13. Alpha- 

Terpineol 
CMS- 
4937 

0.51 Low (I) 46 (30) 0.16 NEGATIVE  
• Ames: NEG  
• ivtCA: EQ  
• ivMN: NEG  

• Ames: NEG  
• ivtCA: No data found  
• ivtMN NEG [97] 

C14. Beta- 
Caryophyllene 
Oxide 

CMS- 
13699 

2.45 High (III) 2 (1.5) 0.080 NEGATIVE  
• Ames: POS  
• ivtCA: POS  
• ivMN: POS  

• Ames: NEG [113,114]  
• ivtMN NEG [113,114] 

C15. 
Perillaldehyde 

CMS- 
14264 

62.1 Int (II) 9 (9) 2.03 NEGATIVE  
• Ames: NEG;  
• ivtCA: EQ  
• ivMN: NEG  

• Ames: NEG [70]; POS [103]  
• ivtMM: EQ [103]; NEG [113]  
• ivMN: NEG [113]; ivtMN NEG; DNA 

Repair NEG; DNA Damage EQ; [103] 

(continued on next page) 
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transformations in the skin. When applying skin permeability chemo
type rules (Section 2.3.4.1), hits are observed for the hybrid rules 
associated with medium and low Kp classes. When applying the quan
titative log Kp model (Section 2.3.4.3 and Supplementary Information 
Table S8), we obtain log Kp of − 1.98 cm/h, which would be classified as 
medium Kp class. Based on both the skin permeability and the estimated 
daily exposure from the hand cream, even if we assume that perillene 
were genotoxic, the use of P. frutescens would not have been likely to 
raise a safety concern. 

3.4. Quantitative read-across (qRAX) 

Botanicals in general are data-poor substances whose chemical 
structures and compositions are often ill-defined. The case of 
P. frutescens is fortunate since structure and composition data have been 
published. As shown in Fig. 8, further characterization of the constitu
ents into several structurally similar clusters facilitated the read-across 
approach for substance-specific assessment. We selected three clusters 
for the use-case: 1) alicyclic alkenes; 2) aliphatic chain alcohols; 3) 
terpenoid alcohol. The structures in three clusters and their data profile 
are listed in Table 2. 

To establish a broad profile of data availability, all constituents of 
P. frutescens were searched for similar structures in the ChemTunes 
database (over 100,000 structures), selecting structures with pairwise 
similarity >0.70 (Tanimoto coefficients) against the constituent of in
terest. From this query, additional structures were identified including 
p-menthane-3,8-diol (CMS-7392), dihydro alpha-terpineol (CMS-9118), 
4-terpineol (CMS-10854), perillic acid (CMS-59861), menthadienol 
(CMS-14225), and isocyclogeraniol (CMS-2635). When the similarity 

searching is constrained to the ToxCast in vitro assay database of 9,298 
substances, most structures in Cluster-2 (aliphatic chain alcohols) had 
data on endocrine disruption screening, DNA binding/damage/repair, 
liver/biliary metabolism as well as immune system/inflammation as
says. Other clusters also return data although not necessarily for all 
substances in the cluster. As described in Section 2.4.2.3, these assays 
were used as a metric for biological similarity whenever possible. 
Structural similarity was calculated based on both RDKIT molecular 
fingerprints and ToxPrint chemotypes, while property-based similarity 
was calculated using the same 12 properties depicted in Fig. 5. 

For the purpose of this use-case, and in order to present a stepwise 
demonstration of qRAX, each cluster was assigned to a major target 
endpoint, based on the data availability in the areas of genetic toxicity, 
repeated-dose, DART and skin sensitization. Toxicity and safety data 
were compiled from the ChemTunes database and augmented with 
additional public data from ECHA, EFSA, HESS, SCCS, US Cosmetics 
Ingredients Review (CIR) [116], US EPA, and open literature. The 
toxicity data availability is summarized in Table 2 and more details are 
described in the Supplementary Information Table S7. 

The three case studies for this qRAX were undertaken using the 
informatics tools/methods described previously. The same approach 
was applied consistently for read-across over the three case studies:  

• STEP 1: calculate AQ for each analogue based on structure, property, 
and assay information;  

• STEP 2: assign study quality (from 0 to 1) for each contributing 
study;  

• STEP 3: calculate RR for each analogue over available studies;  
• STEP 4: apply WOE method to calculate overall RR for all selected 

analogues with their contributing studies; and 
• STEP 5: calculate the final outcome by combining all sources of ev

idence, each weighted by its respective RAX Reliability, using a de
cision theory approach based on Dempster Shafer Theory 

3.4.1. Use case 1: read-across to fill a data gap for genetic toxicity potential 
of beta-elemene 

Constituents in the Cluster-1 including beta-elemene (T-1) are 
monoterpenes that are found in many herbs and botanicals. They are 
mostly data-poor with one exception, i.e., various (d-, l-, racemic) forms 
of limonene. Conducting a similarity searching against ChemTunes 
database, trivinylcyclohexane (A-1.2) was identified as an analogue 

Table 1 (continued ) 

Compound Names CMS ID Approx. 
Composition 
(%)1 

Cramer 
Class2 

TTC(µg/kg-bw/ 
day)2 

Daily 
Intake3(µg/kg- 
bw/day) 

GenotoxicityPrediction 
(ToxGPS)4 

GenotoxicityExperiment Summary5 

C16. Perillyl 
alcohol 

CMS- 
15331 

0.80 Low (I) 46 (30) 0.026 NEGATIVE  
• Ames: NEG  
• ivtCA: EQ  
• ivMN: NEG  

• Ames: NEG [86]  
• ivtMN: NEG [86] 

C17. P-menth-1- 
en-9-ol 

CMS- 
32553 

0.12 Low (I) 46 (30) 0.0039 NEGATIVE  
• Ames: NEG  
• ivtCA: EQ  
• ivMN: NEG 

Chemical-specific experimental data 
not found 

C18. Cadinol CMS- 
62435 

0.34 Low (I) 46 (30) 0.011 NEGATIVE  
• Ames: NEG  
• ivtCA: EQ  
• ivMN: NEG 

Experimental data not found  

1 The composition was taken from the literature [89]. 
2 Toxtree v3.1.0 with revised Cramer decision rules was used. TTC values used the SCCS [60] recommendation (values in parenthesis are Munro original). 
3 Expected daily intake was estimated in the section 3.2. 
4 Predicted by ToxGPS models and alerts for Ames mutagenicity, in vitro chromosome aberration, and in vivo micronucleus. 
5 Unless specified in the table, genetic toxicity data are available within ChemTunes database. The data sources include US FDA, EFSA, SCCS [115] ECHA, and 

literature. 
6 Both E-and Z-isomers are combined: E- nerolidol (0.65%); Z-isomer (peruviol) (0.13%). 

Fig. 7. Partial human metabolic pathways of perillyl alcohol to acid.  
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Table 2 
Compiled evidence for target-analogue pairs for each cluster used in the case studies.  

Substance 1 Name & IDs Similarity 
RDKit2,3 

Similarity 
ToxPrint3 

Liver metabolic 
rules4 

Skin metabolic 
rules4 

Tox data 
availability5 

Property 
Pearson similarity 

Tox21/Cast EDSP 
Euclidean Similarity 

Cluster 1: Alicyclic alkenes 
beta-Elemene 
CMS-51192 
CAS: 33880–83-0  

1.0  1.0 9 rules: Aliphatic 
hydroxylations; 
carboxylations; 
vinyl oxidation… 

No rules Genetox 
Skin Sens. 

No data  

D-limonene 
CMS-797 
CAS: 5989–27-5  

0.58  0.25 9 rules: Aliphatic 
hydroxylations; 
carboxylations 

No rules Genetox 
Repeat Dose 
Toxicity 
(RDT) 
DART 
Skin Sens. 

Trivinylcyclohexane 
CMS-15106 
2855–27-8  

0.67  0.8 9 rules: Aliphatic 
hydroxylations; 
vinyl oxidations 

No rules Genetox 
Skin Sens. 

No data 

Cluster 2: Aliphatic (>C6) alcohols 
octene-3-ol 

amylvinyl 
carbinol 

CMS-7321 
CAS: 3391–86-4  

1.0  1.0 9 rules: Aliphatic 
hydroxylations; 
sec-OH & vinyl 
oxidations 

2 rules: Aldo- 
keto reductase; 
Alcohol 
dehydrogenase 

Genetox 
(read- 
across) 
RDT insuff. 
DART 
insuff. 

Linalool 
CMS-4400 
CAS: 78–70-6  

0.41  0.53 11 rules: Vinyl 
oxidation 

No rules Genetox 
RDT 
DART 
Skin Sens. 

CMS-2195 
Nerolidol 
CAS: 7212–44-4  

0.37  0.47 16 rules: 
Aliphatic 
hydroxylation; 
vinyl oxidation 

No rules Ames assay 
RDT 
DART 
Skin Sens. 

Farnesol 
CMS-6748 
CAS: 4602–84-0  

0.27  0.44 18 rules: 
Aliphatic 
hydroxylations; 
dehydrogenase; 
p-OH oxidation 

3 rules: Alcohol 
dehydrogenase 

read-across 
from 
nerolidol 

Cluster 3: Alicyclic Alcohols 
alpha-Terpineol 
CMS-4938 
CAS: 98–55-5  

1.0  1.0 11 rules: 
Aliphatic 
hydroxylation; 
Carboxylation 

No rules Genetox 
RDT 
DART 
Skin Sens. 

Isocyclogeraniol 
CMS-26351 
CAS: 68527–77-5  

0.74  0.75 15 rules: 
Alipharic 
hydroxylations; 
carboxylations 

1 rule: Alcohol 
dehydrogenase 

Ames assay 
RDT insuff. 
DART 
insuff. 
Skin Sens. 

No Data 

Terpinyl acetate 
CMS-4888 
CAS: 80–26-2  

0.66  0.36 12 rules: 
Alipharic 
hydroxylations; 
carboxylations 

2 rules: 
Carboxyesterase 

Genetox 
RDT 
DART 
insuff. 
Skin Sens. 

4-Terpineol 
CMS-10854 
CAS: 562–74-3  

0.77  0.78 10 rules: 
Alipharic 
hydroxylations; 
carboxylations 

No rules Genetox 
RDT 
DART 
insuff. 
Skin Sens. 

CMS-15331 
Perillyl alcohol 
CAS: 536–59-4  

0.54  0.60 11 rules: 
Aliphatic 
hydroxylation; p- 
OH oxidation; 
carboxylation 

1 rule: Alcohol 
dehydrogenase 

Ames assay 
RDT insuff. 
DART 
insuff. 
Non-Skin 
Sens. 
Human 

No data  

Perillaldehyde 
CMS-14264 
CAS: 2111–75-3  

0.42  0.33 10 rules: 
Aliphatic 
hydroxylations; 
Aldehyde 
oxidation & 
reduction 

3 rules: Aldo- 
keto reductase; 
Aldehyde DH; 
Aldehyde 
oxidase 

Ames assay 
RDT insuff. 
DART 
insuff. 
Skin Sens. 

No data  

1 Structures codes: “C” for constituents of the P. frutescens; “T” for target’; “A” for analogues; “M” for metabolites. Chemical Records for structurable constituents of 
P. frutescens are provided in Supplementary Information Table S9. 

2 RDKit topological fingerprints were used. Other fingerprints from RDKit included Morgan and MACCS keys. 
3 Structure similarity is quantified by pairwise Tanimoto coefficients. The numbers in parenthesis are Dice indices. 
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candidate having genetic toxicity data. The T-1 and A-1.2 structures 
share a common cyclohexyl alkene scaffold, resulting in a structure 
similarity of 0.80 (ToxPrint fingerprints) and Pearson similarity of 0.93 

in property profiles. The structural similarity of d-limonene (A-1.1) to 
the target was surprisingly low (0.58 by RDKit) although the property- 
based similarity was higher (0.91 by Pearson similarity). The same set 

4 List of metabolic rules are provided in the Supplementary Information Table S5. 
5 Available toxicity data are listed in the Supplementary Information Table S7. 

Fig. 8. Hierarchical grouping of Perilla frutescens constituents based on Toxprint fingerprints and single linkage.  

Fig. 9. Cosmetics TTC with revised Cramer Decision Tree in ToxGPS Workflows.  
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of properties are calculated as in the Section 2.4.2.2 and their patterns 
are compared in Table 2 as skyline plots. D-limonene (A-1.1) is included 
as an analogue for read-across for beta-elemene since it provides rich 
data on Ames mutagenicity, in vitro chromosome aberration, and in vitro 
mammalian mutagenicity. Both target and analogue structures do not 
contain any DNA binding structural features, which suggests negligible 
DNA reactivities. 

Next, we compiled genetic toxicity data, both mutagenicity and 
clastogenicity endpoints commonly required in regulatory process, e.g., 
bacterial reverse mutagenesis (Ames test), in vitro mammalian muta
genesis (mouse lymphoma or hypoxanthine–guanine phosphoribosyl
transferase (HGPRT)), in vitro chromosome aberration, and in vivo 
micronucleus. In addition to the call criteria, study qualities depend on 
study design parameters including test systems (strains, cells), metabolic 
activations, dose/concentration ranges, control types, and cytotoxicity. 
The quality rating approach described in Section 2.4.4 was applied and 
the data used in the evaluation are summarized in Table 3. 

The AQ and SQ were combined to give RR that can be used to judge 
whether read-across is feasible from the compiled evidence. The qRAX 
approach further quantifies the confidence in the outcome by estimating 
the associated uncertainty. In ToxGPS, the read-across is performed first 
for each analogue per individual endpoint, followed by an assessment 
that considers multiple analogues. This process can be combined with 
the outcomes from other related endpoints to arrive at a read-across 
result for a single overall aggregated outcome. In this case the read- 
across outcomes for mutagenicity and clastogenicity were further com
bined to give an aggregated result for the more general genetic toxicity 
endpoint. This weight-of-evidence analysis followed the Dempster 
Shafer Theory approach [68]. We present four common examples how 
the evidence in Table 3 may be applied for assessing the RAX reliability. 

Case Study 1: RAX from one analogue for one study. The Ames 
mutagenicity of the target can be assessed by one analogue A-1.1. Since 
only this single piece of evidence is considered, the RR is 69% (AQ*SQ =
0.73*0.95). 

Case Study 2: RAX from multiple analogues for one study type. 
Another common approach is to combine results across multiple ana
logues for one study type, e.g., two Ames studies from each analogue. 
Simple averaging of the individual RR values would give 75%. However, 

a basic idea from decision theory allows combination of multiple inde
pendent sources of reliable evidence to yield a WOE result with a higher 
reliability than any individual source alone. In this case, the reliability of 
the Ames read-across based on both analogues will be 94%. Fig. 10A 
depicts this process graphically using the WOE calculator within 
ToxGPS. 

Case Study 3: RAX from multiple studies per one analogue. The 
third approach is to combine evidence for one analogue across multiple 
studies or study types. The three genetic toxicity studies for each 
analogue can be combined for the genotoxic potential of the target 
compound. The genotoxicity RRs were 94 and 99% per A-1.1 (d-limo
nene) and A-1.2 (trivinyl cyclohexane), respectively. The combination 
process is illustrated in Fig. 10B for A-1.1. 

Case Study 4: RAX from multiple studies per multiple analogues. 
Evidence from all analogues across all relevant studies are combined in 
this case study. When both analogues along with all studies are 
considered in Table 3, we achieve a higher RR. The decision theory 
approach results in greater reliability when combining multiple inde
pendent studies whose outcomes are in agreement, thereby giving 
greater confidence than a single study by itself. When a WOE approach is 
employed to both analogues and including all four studies, the reliability 
increases to 99%. This result justifies the combination of independent 
multiple sources of information as shown in Table 3. 

The RAX reliability gives the confidence that the genetic toxicity of 
beta-elemene can be estimated by the selected analogues and their 
studies. The final step is to estimate the outcome itself. If the purpose of 
the read-across is to determine the outcome of an Ames assay, it would 
be difficult to conclude that the target is Ames negative due to the low 
RAX reliability. However, if the goal of the read-across was to predict the 
genotoxicity of beta-elemene based on d-limonene and triv
inylcyclohexane, then we have very high confidence (99%) that the 
read-across result will be reliable. 

The Assessment Table exported from the ToxGPS RAX workflow is 
displayed in Fig. 11, detailing the input and output of this process, 
namely the AQ, SQ and individual study results (negative, positive, 
equivocal, not used). The individual study results are depicted by 
colored probability bars with green, red, or yellow denoting, respec
tively, the strength of the evidence for a negative, positive, or uncertain 

Table 3 
Weight-of-Evidence assessment of the target (CMS-51192) for RAX Reliability (RR).  

Analogues AQ SQ-1 (Ames) SQ-2 (ivtCA) SQ-3 (ivtMM) RR (WOE) per analogue (all studies) 

0.73 (
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.58 × 0.91

√
) SQ-1: 0.95 (Med-High) 

RR A1_S1: 0.69 
4 TA strains ± S9 
non-mutagenic 

SQ-2: 0.80 (Med -Low) 
RR A1_S2: 0.58 
CHO cells ± S9 
non-clastogenic 

SQ-2: 0.75 (Low) 
RR A1_S3: 0.55 
Mouse Lymphoma 
negative  

0.94 

0.81 (
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.67 × 0.99

√
) SQ-1: 1.0 (High) 

RR A2_S1: 0.81 
4 TA, 2 WP2 strains ± S9 
non-mutagenic 

SQ-2: 1.0 (High) 
RR A2_S2: 0.81 
CHL V79 ± S9 
non-clastogenic 

SQ-3: 0.80 (Med-Low) 
RR A2_S3: 0.65 
CHO HPRT 
negative  

0.99 

RR (WOE) for each assay  0.94 0.92 0.84  
Overall RR 0.99  
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result. The uncertainty is derived from the study quality. The individual 
probability bars for all selected pieces of evidence are combined to give 
the final weight of evidence outcome with the associated uncertainty. 

As shown in Fig. 11, the outcome of this read-across for the genetic 
toxicity of beta-elemene is negative based on mutagenicity and clasto
genicity evidence and supported by the RAX Reliability >99.9%. The 
final genetic toxicity outcome is depicted by a probability bar indicating 
an expected probability of >99.9% for a negative outcome (green) with 
very low uncertainty (yellow). A positive (genotoxic) study outcome 
would result in a red bar with uncertainty in yellow. In summary, the 
genetic toxicity potential of beta-elemene by read-across is negative 
with very high confidence judging from the RAX Reliability combining 
the non-genotoxic evidence from d-limonene and trivinylcyclohexane. 

Although conventional read-across analyses generally do not 
consider in silico methods as sources of evidence, in the context of NGRA 
for genetic toxicity, QSAR models and rule-base data can also be 
included. For example, a prediction for Ames mutagenicity from a reli
able QSAR model can be included to strengthen the evidence, improving 
the read-across for Ames mutagenicity of the target. In cases where Ames 
mutagenicity is the goal of the read-across using only A-1.2 (CMS- 
15106), the RAX reliability would be acceptable (77%) but can be 
improved by combining the QSAR evidence. The decision theory 
approach explicitly takes into account the strength and the reliability of 
the in silico model itself, as determined from conventional model vali
dation statistics [68]. As shown in Fig. 12, the uncertainty of the pre
dicted outcome is reduced greatly (14%) while confirming the negative 
Ames mutagenicity outcome. 

3.4.2. Use case 2: read-across to fill a data gap for repeated-dose toxicity of 
amylvinyl carbinol 

Cluster-2 of the P. frutescens extract consists of structures having long 
aliphatic chains (>= 6 carbons) with one or more double bonds. As 
shown in Table 2, this class consists of hydrocarbon chains and alcohols 
that are well known fragrance and flavor additives. Both linalool and 
nerolidol are data-rich substances, which have been used as read-across 
materials for other aliphatic alcohols such as amylvinyl carbinol [117- 
119]. Hence, nerolildol, linalool, and farnesol were considered here as 
analogues for the target, amylvinyl carbinol, although their reactivities 
may need to be explored further due to the tertiary- (linalool and ner
olidol), secondary- (amylvinyl carbinol), and primary- (farnesol) nature 
of alcohols. Primary aliphatic alcohols, e.g., farnesol, were labelled for 
protein binding potential, whereas the secondary alcohol, e.g., amyl
vinyl carbinol would have different metabolic potential than the tertiary 
alcohols. ToxPrints distinguished these alcohols for reactivity as well as 
the degree of branching and number of double bonds in the aliphatic 
chains. Several quantum mechanical properties, heats of formation and 
HOMO, differentiated target from the analogues. For biological simi
larity, the aggregated EDSP assays defined in Fig. 6 were used to 

quantify assay-based similarity, using the Euclidean similarity measure. 
When the profile of the aggregated assay vectors was compared, the 
pattern of the target turned out to be more closely related to nerolidol 
and linalool rather than to farnesol (cluster-2 in Table 2). The AQ values 
were calculated as the geometric mean of all three measures of simi
larities (structure-based, property-based, assay-based). Although not 
described in detail in this paper, properties related to bioavailability 
(absorption, permeability, hepatic clearance) and biokinetics parame
ters can also be included in the AQ determination. For metabolites, the 
platform is also equipped with metabolite generation capability (Section 
2.3.2.4). 

We then compiled the toxicity data from short-term, subchronic/ 
chronic, and systematic effects from DART studies. Studies following 
guidelines were preferred, which resulted in clear NO(A)EL values with 
systemic/target organ effects. For NOAEL estimation, the original 
NOAEL values were standardized to chronic NOAEL by applying 
adjustment factors 3 and 6 for subchronic and short-term studies, 
respectively. When NOAEL was not established due to the Lowest 
Observed (Adverse) Effect Level (LO(A)EL) being the lowest tested dose, 
an adjustment factor of 3 was applied for NO(A)EL extrapolation. The 
study qualities (SQ) were again estimated in five categories from high to 
low and mapped to the numeric scale of 0–1 to facilitate the probabilistic 
assessment as described previously. Table 4 summarizes the steps to 
estimate RAX reliabilities in consideration of both the analogue qualities 
(AQ) and the study qualities (SQ) of the data from the analogue candi
dates. At this point, farnesol was eliminated as an analogue candidate 
due to insufficient toxicity data as well as its low AQ. Nerolidol provided 
NOAEL of 105 mg/kg-bw/day from a 59-day repeated-dose/repeated/ 
reproductive study resulting in a chronic NOAEL of 35 mg/kg-bw/day 
with associated critical effects in liver. The SQ was rated at 0.9 due to a 
penalty from being shorter than 90-day duration. Two studies were used 
for linalool, one short-term and the second for a subchronic study. The 
second 95-day chronic NOAEL was rated at SQ of 0.9 due to a penalty 
from a free-standing NOAEL (where a LO(A)EL was not established). 

The RR for the first analogue (A-2.1 nerolidol) depends only on one 
study, hence it simply is calculated by AQ*SQ to be 0.63. The RR for the 
second analogue (A-2.2 linalool) is estimated from the two contribution, 
namely, AQ*SQ (rat 28-day) and AQ* SQ (90-day). These two terms are 
then combined using Dempster Shafer Decision Theory to result in RR of 
91%. The WOE approach implemented in ToxGPS workflow is analo
gous to the process depicted in Fig. 10. Again, we observe the benefit of 
combining multiple sources of evidence so that expected reliability of 
the WOE result is higher than the individual sources alone. 

Unlike the genetic toxicity read-across example in Use Case 1, where 
the outcome was binary (positive or negative), the outcome of repeated- 
dose toxicity requires the evaluation of endpoint findings and an asso
ciated point of departure value, e.g., NOAELs. Reported findings 
included clinical chemistry and possible kidney and liver toxicities. The 

Fig. 10. Weight of Evidence process for read-across reliability estimation for various RAX approaches.  
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Fig. 11. Read-across assessment table for genetic toxicity (binary endpoints).  
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assessment table is customized for the specified endpoint category of 
interest, so for this read-across on repeated-dose toxicity, the ToxGPS 
workflow also provides a rough initial estimate of the POD based solely 
on the NOAEL values provided by users. It’s important to stress that the 
platform does not predict NOAEL values. A 95% confidence interval is 
obtained by weighting each NOAEL value by its respective individual 
RR. The target NOAEL is reported based on the data presented in 
Table 4. The estimated 95% CI (weighted by RR) was 3–765 mg/kg-bw/ 
day with the mean of 48 mg/kg-bw/day. Whilst the RAX reliability 
quantitatively assesses the robustness of the read-across process, the 
uncertainty involved in the read-across outcome is, in this case, reflected 
in the width of the confidence interval. A tight range indicates the 
various sources complement each other and are in close agreement, 
whereas a wide confidence interval is the result of significant variability 
among NOAEL values of the analogues. In this example, there were only 
three observations with relatively low RR. 

This chemoinformatics method has been published previously [32], 
which describes two complimentary approaches for estimating NOAEL 
confidence bounds. In the work here, we employ the nearest neighbor 
ensemble searching method by querying the target amylvinyl carbinol at 

a confidence level at 95% and the nearest neighbor threshold of 0.6 
against the full chronic NOAEL dataset. The similar structures were also 
constrained to contain the scaffold 3-butene-2-ol, thus limiting search 
candidates to tertiary or secondary alcohols. The NOAEL bounds esti
mation service identified additional nearest neighbors, e.g., 2-methyl-e- 
buten-2-ol (CMS-11757) and linalyl isobutyrate (CMS-11771). Chronic 
NOAEL bounds were based on 5 observations from repeated-dose 
toxicity studies. This additional investigation narrowed the 95% confi
dence interval for the target’s NOAEL to 5.1–353 mg/kg-bw/day, a 
tighter interval than the initial range of 3–765 obtained in the qRAX 
process. We can say with 95% confidence that this interval contains the 
true mean chronic NOAEL value for the target. This estimation method 
allows the refinement of the NOAEL bounds by combining the data from 
ChemTunes NOAEL dataset with the user provided data, which is the 
ultimate result of the read-across for repeated-dose toxicity. 

3.4.3. Use case 3: read-across to fill a data gap for skin sensitization 
potential of alpha-terpineol 

The risk assessment of alpha-terpineol published by RIFM [97] 
indicated that the terpineols “do not present a concern” for skin 

Fig. 12. The effect of including QSAR predictions on read-across reliability and outcome confidence.  

C. Yang et al.                                                                                                                                                                                                                                    



Computational Toxicology 26 (2023) 100272

20

sensitization potential. However, the authors also indicated that “cyclic 
terpenes could be reasonably anticipated to undergo autoxidation 
resulting in potentially sensitizing degradation products” [97]. Alpha- 
terpineol belongs to cluster-3, which consists of terpenyl derivatives. 
Many substances in this class have been assessed for skin sensitization 
potential previously and deemed safe for the use of cosmetics in
gredients although many of the weight of evidence decisions were 
qualitative. This study revisited this aspect with a more quantitative 
treatment. We will here assess alpha-terpineol (CMS-4938) as a neat 
ingredient. 

To identify suitable analogues, dermal profiles of various substances 
were compared in Table 5 for dermal properties including skin perme
ability, skin metabolic reactivity, and irritation in addition to protein 
binding ability. The target and the first two analogues (A-3.1, A-3.2) did 
not hit any protein binding chemotypes while their skin permeability 
and irritation profiles were also similar. The analogue A-3.2 (CMS-4888) 
is alpha terpinyl acetate which is expected to be hydrolyzed to the 
alcohol form, namely the target, under physiological conditions. 

Chemical similarity was again addressed by structural features and 
molecular properties as in the other clusters. When these candidates 
include metabolites and/or reacted species, chemical similarity based 
solely on structural features becomes less indicative or reliable than 

molecular properties indicating chemical reactivity. In fact, a case is 
reported in a REACH dossier where repeated dose toxicities of alpha- 
terpinol were addressed by alpha-terpinyl acetate [112]. Therefore, 
terpineol acetate was considered in this study as one of the viable ana
logues although it does not yield high similarity from the structure point 
of view. The other two candidates were 4-terpineol (CMS-10854) and 
isocyclogeraniol (CMS-26351). Perilla alcohol and perillaldehyde were 
excluded due to their protein binding reactivity. 

As in the other cases, the same set of molecular properties were 
employed to address aspects related to size and bonding (H-bond ac
ceptors and donors, number of heavy atoms), interfacial properties for 
penetrating skin (logarithm of the octanol–water partition coefficient 
(log P), Total Polar Surface Area (TPSA)), shape of the molecules (e.g., 
asphericity) important for interacting with proteins, and quantum me
chanical properties indicating reactivity, e.g, ΔHf, HOMO. The skyline 
plots in Table 2 illustrated patterns of property profiles for analogues 
and the target. Asphericity and ΔHf seem to vary within this group. In 
addition, judging from the rules and QSAR model, their permeabilities 
were all in the medium log Kp bin (− 3 ≤ log Kp < − 1.5 cm/h). It should 
be pointed out that the information from skin irritation models or the 
data from Material Safety Data Sheet is for neat chemicals and were not 
for a constituent of a botanical extract that is present in a low amount as 

Table 4 
Weight of Evidence assessment of target (CMS-7321) for Repeat Dose Toxicity (RDT) RAX Reliability.  

Analogs AQ SQ-1 
(short-term) 

SQ-2 
(sub/chronic) 

RR per analogue (all studies) 

0.70 (
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.47 × 0.90 × 0.803

√
) No Data 0.9 (Med-High)RR A1_S-2  

(0.63) 
Rat 59-day oral-diet; liver; 
chronic NOAEL = 35 mkd  

0.63 

0.75 (
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.53 × 0.91 × 0.883

√
) 0.95 (Med-High)RR A2_S-1  

(0.71) 
Rat 28-day oral-gavage; liver, kidney; 
chronic NOAEL = 20 mkd 

0.9 (Med)RR A2_S-2  
(0.68) 
Rat 95-day oral-diet; 
no adverse effect; 
chronic NOAEL = 167 mkd  

0.91 

0.67 (
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.44 × 0.91 × 0.743

√
) Insufficient data Insufficient data  

RR per study type  0.68 0.88  
Overall RR 0.96  

Table 5 
Dermal Toxicity Relevant Profiles.  

Profile Description CMS-4938(C13)  
alpha-terpineol†

CMS-26351 
isocyclo- 
geraniol 

CMS-4888 
terpinyl acetate 

CMS-10854 
4-Terpineol  

CMS-15331 
(C16) perillyl 
alcohol 

CMS-14264 (C15) 
perillaldehyde 

Role T (target) A-3.1 A-3.2 A-3.3 A-3.4 A-3.5 
Protein Binding 0 0 0 0 1 hit 1 hit 
Skin Metabolic 

Reactivityǂ 
0 1 hit 2 hits 0 1 hit 3 hits 

Skin Permeability 
Prediction†

4 rules; MED log Kp Class 0 rules; MED 
log Kp Class 

0 rules; MED log Kp Class 4 rules; MED log Kp Class 0 rules; MED 
log Kp Class 

0 rules; MED log 
Kp Class 

Skin Irritation† Positive/Irritating** Positive/ 
Irritating** 

Positive/Irritating* Positive/Irritating* Positive/ 
Irritating** 

Positive/ 
Irritating** 

Tox21/CAST assay 
(assay vector 
skyline plots) 

Cell surface, growth factor, 
Immune system, 
Inflammation, Histone 
modification  

No Data  Cell surface, growth factor, 
Immune system, 
Inflammation, Histone 
modification  

Euclid sim. = 0.92   

Cell surface, growth factor, 
Immune system, 
Inflammation, Histone 
modification  

Euclid sim. = 1.0   

No Data No Data 

*Data from ECHA Dossier ** Data taken from Material Safety Data Sheets. 
ǂ Table S5 in Supplementary Information for metabolic rules. 
† Table S8 in Supplementary Information for more details on the models. 
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in our hand cream scenario. 
To bring biological similarity into the analysis, available evidence 

from Tox21/CAST HTS assays was also included. Although there are no 
assays directly related to hapten formations or dendritic cell in
teractions, several assay categories were related to cell surface, growth 
factors, immune responses, inflammation (e.g., interlukin-2), and his
tone modifications. These assay data were available for target T-3 and 
the two analogues (A-3.1 and A-3.2). Pairwise biological similarity was 
estimated by Euclidean similarity over the assay vectors when data were 
available. Table 2 shows that assay activity patterns of the target ana
logues were similar and tend to be lower than the average of the whole in 
vitro dataset. 

Decisions on the analogues also depended on the availability of 
reliable local lymph node assay (OECD Test Guideline (TG) 429) data 
although the AOP-related assays such as DPRA, KeratinoSens (or 
LuSens) and/or hCLAT assays were also considered. Older in vivo studies 
were also cited when no other data were available, but the study quality 
was lower. The target was associated with a negative popliteal lymph 
node assay study in rat as well as negative guinea pig and human studies; 
no OECD TG 429 or AOP-related assays were found in public literature. 
Two analogues of isocyclogeraniol (A-3.1) and alpha-terpinyl acetate 
(A-3.2) have well-characterized LLNA data; A-3.1 was considered a mild 
sensitizer (EC3 > 25 wt/vol%) whereas A-3.2 was labelled a non- 
sensitizer (EC3 > 100 wt/vol%). The AOP-related assays alone for A- 
3.1 indicated possible negative results in conflict with positive in vivo 
studies in LLNA and Buehler Test [120]. The analogue 4-terpeniol (A- 
3.3) had positive outcomes in DPRA and LuSens assays. The analogue 
perillyl alcohol (A-3.4) had only human maximization data [121], 
where no reactions indicative of sensitization were observed with the 
test material exposure of 2760 μg/cm2. The toxicity data and SQ are 
summarized in Table 6 along with the analogue qualities. 

The RR values were estimated to be high due to multiple analogues 
and studies. The next step is to assess the skin sensitization potential of 
the target. Due to conflicting study results shown in Table 6, the overall 
RAX outcome based on these studies has high uncertainty. For each 
given analogue, there are conflicts across the studies (LLNA, AOP, 
other); for each study, there are conflicts across the analogues. In fact, 
the main source of the uncertainty originates from the conflicts in LLNA 

study results for the two analogues (isocyclogeraniol and alpha-terpinyl 
acetate), hence combining other studies or analogues will not greatly 
reduce the uncertainty of the outcome. If only one analogue with one 
LLNA study is selected, the RR decreases, but will artificially decrease 
the outcome uncertainty by ignoring other qualified information. If only 
A-3.1 is considered with one LLNA study, the RR will decrease to 0.70 
(from 1.00) with the expected outcome of sensitizer with an uncertainty 
of 0.30. Taking A-3.2 with LLNA study will yield RR of 0.77 and the skin 
sensitization potential would be non-sensitizer with uncertainty of 0.23. 
Since the AQ of the two analogues and the SQ of both studies were all 
similar, the RR values are also comparable. The only difference is that 
the outcome of LLNA studies were in conflict where the results were 
deemed both acceptable. The uncertainty involved in this outcome 
estimation was quantitatively estimated to be nearly 0.5 (48%) and 
hence the skin sensitization hazard outcome would be considered 
equivocal. Even when the LLNA model result for the target is added in 
the combination, the uncertainty does not decrease due to the fact that 
the prediction was also a weak negative (probability of being positive 
(pPOS) = 0.37; probability of being negative (pNEG) = 0.60; probability 
of being uncertain (pUNC) = 0.03). 

The target CMS-4938 (alpha-terpineol), however, had a few older 
pre-LLNA studies, which were not included in the above assessment due 
to uncertainties associated with the test methods, including guinea pig 
[122], human and rat (popliteal lymph node assay) [112] studies. Since 
the analogue data give conflicting information, we decided to include 
one of these studies for the target in the combination of evidence. Fig. 13 
illustrates the impact of inclusion of popliteal local lymph node assay as 
part of the target information with a very low study quality of 0.5. In 
Fig. 13-A, the outcome of the two pieces of evidence, i.e., RAX results for 
3 analogues in Table 6 and LLNA hazard prediction. The outcome is still 
equivocal. When we add the study data for target (3rd custom evidence), 
the combined outcome turned to negative (pNEG = 0.60) with lower but 
still relatively large uncertainty (21%) as exhibited in Fig. 13-B. 

In a sense, this is not a surprising conclusion based on the publica
tions on many of these terpineol analogues [70,86,97,98,123]. Whilst 
the risk assessment determined there were no safety concerns for skin 
sensitization under a realistic daily exposure condition, the conclusions 
also mentioned the possible reactivity of terpenoids. This discussion is 

Table 6 
Weight of Evidence assessment of CMS-4938 for skin sensitization RAX Reliability (RR).   

AQ SQ-1 
(LLNA) 

SQ-2 
(AOP assays) 

SQ-3 (other) RR per analogue (all studies) 

0.86 (
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.74 × 0.93

√
) 1 (High) 

LLNA 
weak sensitizer 
EC3 = 25 wt/vol% 

0.85 (Med) 
negative 

0.75 (Med-Low) 
Buehler test positive  

0.98 

0.83 (
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.66 × 0.93 × 0.923

√
) 1 (High) 

LLNA 
non-sensitizer 
EC3 > 100 wt/vol% 

NA NA  0.83 

0.90 (
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.77 × 0.95 × 1.03

√
) NA 0.85 (Med) 

positive 
NA  0.77 

0.71 (
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.54 × 0.96

√
) NA NA 0.75 

Human study 
negative  

0.53 

RR per study type  0.97 0.93 0.82  
Overall RR 0.999  
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very much in agreement with extensive assessment reports from RIFM 
on the fragrance materials based on terpenoids. 

3.5. Safety assessment of Perilla frutescens 

Although the safety assessment of the botanical itself was not our 
goal, an overall picture can now be described after individual evalua
tions. For each major cluster, endpoint assessment was feasible by 
applying the qRAX approach. Whenever possible, our findings were 
compared with those of the assessment for P. frutescens. 

Genetic Toxicity. Genetic toxicity data of constituents of P. frutescens 
are presented in Table 3. Most substances did not show mutagenicity or 
clastogenicity except perillaldehyde. When no genetic toxicity data were 
available, a substance-specific assessment was carried out. ToxGPS 
prediction results based on QSAR and chemotype rules along with qRAX 
were applied using the same set of criteria for analogue quality, i.e., 
structural features, properties, and DNA binding/damage/repair HTS 
assay profiles. Beta-elemene, amylvinyl carbinol and terpinyl acetate 
were the target structures for which the in silico safety assessments were 
carried out in ChemTunes. Their outcome was non-genotoxic with un
certainties in the outcomes range of 0.003–0.01. 

From the point of view of the extract as a whole, there is only one 
recent publication on genetic toxicity evaluation of P. frutescens (L.) Britt 
[124]. On the basis of in vitro micronucleus assay in CHL V79 Cell Line, 
the authors concluded no genotoxic effect of the extract neither with nor 
without metabolic activation. These data are consistent with our overall 
weight of evidence outcomes. 

Repeated-Dose Toxicity Information on repeated-dose, as well as 
DART, studies is summarized in the Supplementary Information 
Table S7. In addition to the analysis of cluster-2 (read-across of RDT for 
amylvinyl carbinol) in Section 3.4.2, both cluster-1 and cluster-3 
structures were also analyzed using the qRAX approach. Given d-limo
nene and its data from cluster-2, repeated-dose toxicity of members of 
the cluster-1 whose AQ values are above 0.7, were considered to be 
related to systemic effects including body weight changes and possible 
liver effects from short, subchronic, and chronic studies with chronic 
NOAEL values ranging 167–250 (as compared to the experimentally 
determined NOAEL values ranging from 250 to 500 mg/kg-bw/day). 
Studies showing nephrotoxicity in male rats were not selected since 
these kidney effects identified as alpha 2u-globulin nephropathy are not 
considered to be relevant for humans [125]. Similarly, evaluation of 
repeated-dose toxicity of perillyl alcohol was feasible by using the 
cluster-3 members as analogues, resulting in RAX Reliability of 97%. 
Again, for the members of cluster-3, applying the qRAX approach for 
liver effects may be a consideration, yielding an estimated NOAEL range 
of 58–357 mg/kg-bw/day based on the data employed. Based on data 
from all three clusters, the NOAEL 95% confidence bounds was 5–357 

mg/kg-bw/day. 
The pharmacological and toxicological profiles of P. frutescens have 

been reviewed from the vantage point of the extract considered as a 
whole [126]. However, studies leading to understand long-term safety, 
e.g., chronic or subchronic studies in animals, have not been reported 
[124,127]. Atypical interstitial pneumonia for human and acute pul
monary emphysema in bovines were reported for P. frutescens. Recently 
a 13-week study was reported for a herb medicine (Samson) containing 
P. frutescens (L.) Britton along with Panax ginseng C. A. Mey. and Peu
cedanum praeruptorum Dunn [128] with a NOEL of 1000 mg/kg-bw/day 
for increased serum creatinine level and overall NOAEL of 4000 mg/kg- 
bw/day. Overall, very little information is known for the P. frutescens 
extract on studies designed to address long-term safety. 

Skin Sensitization Most of the constituents in cluster-1 and 2 had 
positive skin sensitization potential whereas the members in cluster-3 
exhibited varying degrees of skin reactivity and sensitization potential 
to in vitro AOP assays, in vivo toxicities of LLNA or guinea pig assays as 
well as human studies. P. frutescens has been reported for occupational 
dermatitis in Asia [129]. However, the exposure from the extract in the 
cosmetic formulation is several orders of magnitude lower than the 
exposure associated with occupational hazard. Our substance-specific 
evaluations were more relevant to the occupational hazard than the 
use of this substance in cosmetics formulations. As discussed in Section 
3.2, the anticipated exposure of P. frutescens would be 3.27 µg/kg-bw/ 
day assuming the use case of its concentration at 0.01% in hand cream 
lotion with hand surface area of 860 cm2 [130]. This would be equiv
alent to an exposure (mass per area of skin) of 0.228 µg/cm2, which is 
4000-fold lower than the non-reactive Dermal Sensitization Threshold of 
900 µg/cm2 [131]. 

4. Conclusions 

This investigation demonstrated the pivotal role of molecular infor
matics designed to facilitate and support safety and risk assessment 
process for chemical substances. The presented ChemTunes•ToxGPS® 
platform for NGRA implemented improvements such as new chemical, 
biological, and safety data based both on experiments and predictions, 
and the ability to construct read-across workflows with quantitative 
methods for evaluation. Thus, the safety assessment workflow enables 
users to compile qualified data sources, quantify their reliabilities, and 
combine them using a weight of evidence approach based on decision 
theory. The conceptual framework is also designed to expand the do
mains of the knowledgebase to new approach methodologies including 
toxicogenomics, transcriptomics, and molecular pathways. 

Further, the power of these approaches to support the assessment of 
the use of a botanical in a cosmetic product, for which no data currently 
exist, was demonstrated. Common workflows for chemical safety 

Fig. 13. Effect of a relevant study for the target on the skin sensitization outcome. A: no experimental data for target; B: experimental data for target.  
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assessment of botanical extracts were described following a component- 
based approach. Constituents of a botanical with known composition 
were analyzed first for threshold of toxicological concerns based on the 
exposure estimation from the product formula for non-genotoxic con
stituents. Substance-specific assessments were then conducted for safety 
outcomes for genetic toxicity, repeated-dose toxicity, and skin sensiti
zation. Nearly 30 constituents of P. frutescens were clustered into five 
structural groups, from which three clusters were selected to process 
through the qRAX process. Chemical and biological similarities (AQ) 
and SQ were combined to give RAX reliability, a measure of the confi
dence that read-across using the selected analogues and their respective 
study data will generate reliable outcomes for the target of interest. Each 
read-across was then completed by exploring combinations of the 
available evidence to estimate outcomes, with examples presented for 
genotoxic calls, systemic/target organ findings with estimated NOAEL 
bounds, and skin sensitization potential with estimated EC3 bounds. 
Implementation of these workflows is enabled by computational 
methods available in the ChemTunes•ToxGPS® platform. This paper 
will be supported by the findings of a further study with use cases in 
which bioavailability and metabolite generation must be considered. In 
summary, this study has confirmed the possibility of integration infor
matics capabilities to support NGRA into a single software platform. 
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