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†Institut Mines-Télécom, Télécom SudParis, Evry, 91000, France
†Department of Computer Science, Université Pierre et Marie CURIE, Paris, 75005,
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Abstract. Recent studies have increasingly turned to graph theory to
model Realistic Contact Networks (RCNs) for characterizing propaga-
tion dynamics. Several of these studies have demonstrated that RCNs
are best described as having exponential degree distributions. In this
article, based on the mobile data gathered from in-vehicle wireless de-
vices, we show that RCNs do not always have exponential degree distri-
butions, especially in dynamic environments. On this basis, a model is
designed to recognize the structure of networks. Based on the model, we
investigate the impacts of network structure on disease dynamics that is
an important empirical study to the propagation dynamics. The time-
varying infected number R is the important parameter that is used to
quantify the disease dynamics. In this study, the prediction accuracy for
R is improved by utilizing realistic structural knowledge mined by our
recognition model.
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1 Introduction

In recent years, there have been increasing efforts to uncover, model, and under-
stand propagation processes arising over a wide variety of networks, e.g., propa-
gation of infectious diseases [4][3], propagation of information [10][23][9][15], and
even propagation of computer viruses [8][5]. Observing a propagation process,
and quantifying and predicting the dynamics of the propagation, are important
for: (i) reducing the transmission rate of an infectious disease, (ii) decreasing
the number of infected individuals during an epidemic, (iii) allocating public
health resources and responding to public health events, (iv) acquiring timely
and accurate information, (v) capturing a new behavior or a new development



tendency from the propagation of information/knowledge, and (vi) controlling
the number of infected nodes with the propagation of computer viruses. And
these propagation processes arise over a wide variety of networks. It is necessary
to figure out the impacts of network structure on the propagation dynamics, and
automatically recognize the network structure based on a recognition model.

As an important aspect of propagation dynamics [25], the quantification and
prediction of disease dynamics during epidemics [30][31] are very important in
allocating public health resources and in responding to public health events.
Underestimating the impact of a disease can lead to an inadequate public health
response, while overestimating can lead to the misallocation of limited public
health resources. The time-varying infected number R1 can be used to quantify
the disease dynamics during an epidemic, and a wide range of methods have
been proposed to estimate or predict the parameter R [21][27][28][1][11] with
time-based or network-based models. However, the existing methods are based
on Exponential Networks (ENs)2. Compared with the ENs, Realistic Contact
Networks (RCNs) [2] contain realistic structural knowledge that is helpful to
improve the prediction accuracy for disease dynamics during an epidemic.

In this article, based on the mobile data gathered from in-vehicle and hand-
held wireless devices, we show that RCNs do not always have exponential degree
distributions. On this basis, a model is designed to recognize the structure of
networks, for mining the knowledge of network structure. With the model, we
investigate the impacts of network structure on propagation dynamics. As the
important empirical study for the propagation dynamics, we investigate the im-
pacts of network structure on disease dynamics, and the key parameter R is used
to quantify the disease dynamics.

The scientific contributions of this article are shown as follows:

– We compare RCNs with ENs, and measure the differences between them in
their network structures with precise measurements.

– A model is designed to recognize the structure of networks.
– Real surveillance data is used to evaluate the prediction performance for

R. And realistic structural knowledge is used into the prediction, which is
mined and acquired by our recognition model.

The achieved main results of this article are: (i) RCNs do not always have
exponential degree distributions, (ii) the structural knowledge from RCNs is
helpful to improve the prediction accuracy for propagation dynamics, and (iii) as
the basic and important structural knowledge for networks, degree distribution,
is effective to reflect the structure of a network, and to improve the accuracy of
predicting for the infected number R.

The remainder of this article is organized as follows. Section 2 introduces the
preparatory work and methods of carrying out our study. In Section 3, fitting
results are shown and discussed in detail, and these results are about fitting

1 R is defined as the number of infected cases during an epidemic over time.
2 In this study, the network with exponential degree distribution is named as “Expo-
nential Network”.



the network structure of RCNs into exponential, normal, poisson and power-
law distributions. Based on these results, in Section 4, a model is designed to
recognize the structure of networks. In Section 5, we investigate the impacts
of network structure on propagation dynamics. With the structural knowledge
of respective networks, the prediction accuracy for R on the RCNs and ENs is
measured respectively, and the prediction results for R are compared with real
surveillance data. As the background of this study, Section 6 provides related
work. This article is concluded in Section 7.

2 Methods

Two types of networks and the real surveillance data of a disease outbreak are
used in our study. For evaluating the impacts of the structural knowledge about
networks on propagation dynamics, extensive experiments for a knowledge-based
Susceptible-Infected-Recovered (SIR) model [29] are run on these networks.

2.1 Networks

Two types of networks are used: (i) Exponential Networks, and (ii) Realistic
Contact Networks from the real physical world.

Exponential Networks. It has recently been demonstrated that empirical
contact networks are best described as having exponential degree distribution-
s [2].

Through analyzing empirical contact networks [2] and based on the analysis
and proof of literature [1], a Bansal Network (BN) is implemented and used as
the EN. In the BN, each pair is generated using an algorithm of Bansal et al. [2]
(Greedy Rewiring Algorithm (Alg. 1)).

The probability mass function (pmf) of BN’s degree distribution meets Eq.(1).

f(x;λ) =

{
λe−λx, x ≥ 0,

0, x < 0,
(1)

where x ∈ [0,∞) is the degree of a node, and λ > 0 is the key parameter of
an exponential distribution, which is called “rate parameter”. This can be de-
scribed as: X ∼ Exp(λ), which means the random variable X has an exponential
distribution.

The nodes of BN are labeled (1, ..., N), and an edge between two nodes
indicates the presence of a transmission probability for a disease from one node
to another. For example, there is a pair of nodes, i and j, i ̸= j, the edge between
them is e{i,j}, and the transmission probability on the edge between i and j is
given by p{i,j}.

The input of Greedy Rewiring Algorithm is a connected and undirected net-
work G, and the algorithm rewires edges until the degree distribution of the
network becomes approximately exponential. In particular, the algorithm run-

s until the coefficient of variation ( standard deviation(sd)
mathematical expectation(E[fx]) ) of the degree



distribution is less than 1 (this ensures an exponential distribution of network).
The algorithm is described below and illustrated in Fig. 1.

Algorithm 1 Greedy rewiring algorithm

Input: A fully connected, undirected network G
1: select a random node i from the network G.
2: select a random edge e{i,j} from the network G such that the degree of node j is

greater than one.
3: select a random edge e{j,m} from the network G, where the selected node m has

the maximum probability of km/
∑

km, and km means the degree of node m.
Meanwhile m ̸= i and the node m is not the neighbor of node i.

4: If we find the appropriate node j and m, we remove the edge e{i,j} and add the
edge e{i,m} to the network G.

5: The termination condition for re-building the network G is: sd/E[fx] < 1
– sd is the standard deviation of the degree distribution
– The degree distribution of network G is fitted into an exponential distribution

fx
– E[fx] is the mathematical expectation of fx

Output: A network with exponential degree distribution

j

i

m

Fig. 1: Greedy rewiring process: node i is chosen at random, the edge e{i,j} is
selected at random from the edges of node i, and the edge e{j,m} is selected at
random from the edges of node j with probability proportion to the degree of
node m. The edge e{i,j} (shown with a dotted line) is removed and the edge
e{i,m} (shown with a dashed line) is added.

Realistic Contact Networks. Two RCNs from the real physical world are
studied in this article.

Vehicle-based contact network (Fig. 2). There are 2483 nodes in this network
with spatio-temporal GPS traces of vehicles, and the traces come from in-vehicle
and GPS-enabled wireless devices. The network can be modelled as a dynamic
graph Gt with the time-varying velocities of different traffic segments, and the
velocities can be estimated using a combination of sources, including Automatic



Number Plate Recognition (ANPR) cameras, in-vehicle and GPS-enabled wire-
less devices and inductive loops built into road surfaces (a scenario is illustrated
in Fig. 3).
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Fig. 2: Vehicle-based contact network. Using the coordinates of junctions of each
traffic segment, the network can be built, where the black nodes are junctions,
and the lines between these junctions are traffic segments that are with different
traffic velocities.

Fig. 3: A scenario of vehicle-based contact network. This network includes Auto-
matic Number Plate Recognition (ANPR) cameras, in-vehicle and GPS-enabled
wireless devices and inductive loops built into road surfaces. With this network,
massive mobile data of different traffic segments can be gathered based on var-
ious sensor nodes and wireless devices. The mobile sensing data is gathered by
the Highways Agency, in England.

The dynamic graph Gt can be described as follows. An undirected weighted
graph Gt = (Vt, Et,Wt), where Vt is a set of nt vertices with an online sequence
of updates: (i) Delete(e{i,j}): delete the edge e{i,j} from Et and corresponding
vertices i and j from Vt; (ii) Insert(e{i,j}): insert the edge e{i,j} into Et and



corresponding vertices i and j into Vt; (iii) Update(w{i,j}): update the weight
w{i,j} related to the edge e{i,j} to Wt, and the weight w{i,j} is the velocity on
the corresponding edge e{i,j}. On the above (i), (ii) and (iii) basis, the graph Gt

is updated, from Gt = (Vt, Et,Wt) to Gt+1 = (Vt+1, Et+1,Wt+1). It means that
at different time points, with different velocities on different traffic segments,
the transmission rates on these traffic segments are different. This vehicle-based
contact network is time-varying.

Moreover, the data for this network is gathered from all motorways and ‘A’
roads managed by the Highways Agency, in England. The data provides average
velocities and traffic flow information for 15-minute periods since April 2009
on these motorways and roads. The data includes these variables: (i) Segment
ID. A unique alphanumeric segment id represents a segment from one junction
(intersection) to another junction; (ii) Date. There is a date for each record; (iii)
Time Period. There are 96 time periods, 0-95, with 15-minute intervals, in a day
(1440 minutes); (iv) Average Velocity. The average velocity (km/h) of vehicles
on a traffic segment within a given 15-minute time period; (v) Segment Length.
The length of a traffic segment (km).

Human-based contact network. There are 942 nodes in this network. With the
wireless communication devices held by volunteers of epidemic areas, the volun-
teers report new cases (confirmed and suspected cases), corresponding locations,
and relationships between these cases, and then, these reported cases with cor-
responding locations can be used to build the human-based contact network (an
example is shown in Fig. 4). During an epidemic, the network is time-varying a-
long with the propagation of an infectious disease, with the order of time stamps
of reports. As the vehicle-based contact network, the human-based contact net-
work can be modelled as a dynamic graph Gt. However, the weight w{i,j} is the
transmission probability (p{i,j}) of a disease from vertex i to vertex j (on the
corresponding edge e{i,j}). For this network, there are four variables: (i) Case
ID. A unique number indicates a case; (ii) Source ID. A source id indicates the
source of infection for a case; (iii) Date. It is the date that a case is reported;
(iv) Location. It indicates the coordinates (longitude and latitude) of a reported
case.

2.2 Outbreak Data

The outbreak data of Ebola in West Africa from March 2014, is used as real
surveillance data to evaluate the prediction performance for R on RCNs and
ENs.

As a latest outbreak of disease, until February 15, 2015, Ebola Virus Disease
(EVD. It is commonly known as “Ebola”) has killed 9380 people, and the total
cases have reached 23253. Researchers generally believe that from a 2-year-old
boy of Guinea to his mother, sister and grandmother (a human-based contact
network), Ebola rapidly spreads in West Africa, from March 2014.

The reported Ebola cases with time series and location information are gath-
ered by theWorld Health Organization (WHO), as well as the ministries of health
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Fig. 4: An example of our human-based contact network. This example displays
50 cases and their relationships (contact), from three typical countries and sev-
en regions of the Ebola outbreak in 2014. Three countries are: Guinea, Nigeri-
a and Liberia. Seven regions are: Gueckedou, Macenta, Kissidougou, Conakry,
Monrovia, Lagos and Port Harcourt. The black nodes of this network are cases
(suspected and confirmed) and if there is an edge between two nodes, it means
that there is contact between the individuals of the two cases.

of epidemic countries. And in this study, we select part of data from three typ-
ical outbreak countries, Guinea, Nigeria and Liberia. Guinea is the source of
this outbreak and is with relatively high quantity of confirmed cases (2727, as of
February 15, 2015), and Nigeria is far away from the source of the outbreak, and
is with relatively low quantity of confirmed cases (19, as of February 15, 2015),
and Liberia is close to the source of the outbreak, and is with high quantity
of confirmed cases (3149, as of February 15, 2015). And seven regions of these
three countries are: Gueckedou of Guinea, Macenta of Guinea, Kissidougou of
Guinea, Conakry of Guinea, Monrovia of Liberia, Lagos of Nigeria, and Port
Harcourt of Nigeria. And these variables are included in the outbreak data: (i)
Case ID. A unique number indicates a case; (ii) Source ID. A source id indicates
the source of infection for a case; (iii) Date. It is the date that a case is reported;
(iv) Location. It indicates the coordinates (longitude and latitude) of a reported
case.

2.3 Methods

A knowledge-based SIR model is used to evaluate the impacts of network struc-
ture on disease dynamics. As the results of this evaluation, the number of infected
cases (infected number R) is calculated for each time period (different time pe-
riods have different network structures along with the propagation of a disease
during an epidemic).

The SIR model is a model from epidemiology [13]. This model is developed
to describe the propagation of an epidemic that occurs during a period of time.



The individuals of a contact network might be in three states: Susceptible (S),
Infected (I) and Recovered (R). Susceptible individuals become infected at a
given rate through contact with infected individuals. Infected individuals recover
with a given rate and become recovered. The model is capable of showing the
important parameter R which is measured to quantify the disease dynamics
during an epidemic. The parameter R is the number of infected cases over time.
In this study, we consider a knowledge-based SIR model with the knowledge of
network structure.

Moreover, we consider different time periods (t), for our RCNs. For the
vehicle-based contact network, the unit of time period is “15 minutes”, and
for the human-based contact network, the unit of time period is “day”. And for
comparing the impacts of different networks, the ratio RA/B is used to measure
the different impacts of the network A and the network B. And for a network,
the degree distribution is used to characterize and reflect the structure of the
network.

3 Results and Analysis

To evaluate the impacts of network structure on disease dynamics, the basic and
important structural knowledge of networks, degree distribution, is measured
and compared for each network that is studied in this article.

In a network, the degree of a node is its most basic structural knowledge, and
it indicates the number of adjacent edges of the node. The degree distribution is
the probability distribution of these degrees over the network. It gives the overall
structural information of the network. For a real-world network, the relationships
between nodes are complex. The degree distribution is helpful to characterize
and model a real-world network. On this basis, the structural knowledge of a
complex network can be acquired and formulated. The formulated knowledge is
effective for analyzing and solving network-related problems.

In this study, we analyze the degree distributions of RCNs in detail, by
conducting maximum-likelihood fitting to fit the degree distributions of these
networks into exponential, normal, poisson and power-law distributions [2], and
calculating and comparing the estimated standard deviations and the estimated
variance-covariance matrices of these fittings.

Vehicle-based contact network. Figure 5 illustrates the degree distribu-
tion of vehicle-based contact network.

From Fig. 5, we can observe that the degrees of nodes are not exponential
distribution, in this real-world contact network. For figuring out the differences
between them, the degree distribution of vehicle-based contact network and ex-
ponential, normal, poisson and power-law distributions, maximum-likelihood fit-
ting is conducted to fit the degree distribution of vehicle-based contact network
into exponential, normal, poisson and power-law distributions (Fig. 6), and then
the estimated standard deviations and the estimated variance-covariance matri-
ces of these fittings are measured to quantify “how many differences between
two different degree distributions”.
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Fig. 5: Degree distribution of our vehicle-based contact network. There are 2483
nodes and 2500 edges in this network. The black spots are the probability dis-
tribution of nodes’ degrees.
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Fig. 6: Maximum-likelihood fitting of degree distributions. The degree distribu-
tion of vehicle-based contact network is fitted into exponential, normal, poisson
and power-law distributions with maximum-likelihood fitting. The black spots
display the probability distribution of nodes’ degrees to the vehicle-based con-
tact network, and the red lines are the corresponding fittings for exponential,
normal, poisson and power-law distributions.

With these fittings that are shown in Fig. 6, corresponding parameter es-
timates can be calculated, for example, using maximum-likelihood fitting, the
most likely value of parameter λ (rate parameter) is 0.4966, for the fitting with
the exponential distribution. Corresponding estimated standard deviations and
estimated variance-covariance matrices are measured, and these deviations and
matrices are calculated by comparing with standard distributions that are with
corresponding parameter estimates, for example, the exponential distribution
with λ = 0.4966 is used as the standard distribution for the fitting with the



exponential distribution. These deviations and matrices show how many differ-
ences between two distributions. Moreover, the parameter estimates for different
distributions from maximum-likelihood fitting, are listed as follows: (i) the rate
parameter λ of exponential distribution is 0.4966, (ii) µ = 2.013693113 and
σ = 0.539810394 for the normal distribution, (iii) λ = 2.013693 for the poisson
distribution, (iv) xmin = 2 and α = 5.785002 for the power-law distribution.

Table 1 shows the estimated standard deviations and the estimated variance-
covariance matrices of these fittings.

Table 1: Estimated standard deviations and estimated variance-covariance ma-
trices for different fittings
Distribution Standard deviation Variance-covariance matrix

Exponential λ (rate parameter): 0.009965942
rate parameter

rate parameter 9.932e− 05

Normal
µ (mean): 0.010833103,

σ (standard deviation (sd)): 0.007660161

mean sd

mean 0.0001173561 0.0000000000

sd 0.0000000000 5.867806e− 05

Poisson λ (lambda): 0.02847792
lambda

lambda 0.000810992

Power-law xmin+ α: 0.006375843 NULL

From the fitting results displayed in Fig. 6 and Tab. 1, the degree distribution
of nodes for the vehicle-based contact network, is approximate to the power-law
distribution with xmin = 2 and α = 5.785002 and with the standard deviation
0.006375843.

Human-based contact network. Figure 7a illustrates the degree distri-
bution of human-based contact network. On Fig. 7a basis, for figuring out the
degree distribution of human-based contact network, maximum-likelihood fitting
is conducted to fit the degree distribution of human-based contact network into
exponential, normal, poisson and power-law distributions, and then the estimat-
ed standard deviations and the estimated variance-covariance matrices of these
fittings are measured to quantify “how many differences between two different
distributions”. The results of fittings are illustrated in Fig. 7b.

In Fig. 7, the results show that the degree distribution of human-based con-
tact network is approximate to the exponential distribution with λ = 0.50159915.

The parameter estimates for different distributions from maximum-likelihood
fitting are: (i) the rate parameter λ = 0.50159915 for the exponential distribu-
tion, (ii) µ = 1.99362380 and σ = 2.77914691 for the normal distribution, (iii)
λ = 1.9936238 for the poisson distribution, and (iv) xmin = 2 and α = 2.803973
for the power-law distribution.

Table 2 shows the estimated standard deviations and the estimated variance-
covariance matrices of these fittings.
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nodes and 938 edges in this network.
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Fig. 7: Degree distribution and maximum-likelihood fitting for our human-based
contact network.

Table 2: Estimated standard deviations and estimated variance-covariance ma-
trices for different fittings
Distribution Standard deviation Variance-covariance matrix

Exponential λ (rate parameter): 0.01635166
rate parameter

rate parameter 2.673769e− 04

Normal
µ (mean): 0.09059760,

σ (standard deviation (sd)): 0.06406218

mean sd

mean 0.008207925 0.000000000

sd 0.000000000 0.004103963

Poisson λ (lambda): 0.0460285
lambda

lambda 0.002118623

Power-law xmin+ α: 0.03831463 NULL

Comparing the estimated standard deviations and estimated variance-covariance
matrices listed in Tab. 2, the minimum standard deviation for these fittings is
0.01635166. This minimum standard deviation is corresponding to the exponen-
tial distribution with the rate parameter λ = 0.50159915.



However, based on the descriptions for the networks that are studied in this
article, the human-based contact network is time-varying along with the prop-
agation of an infectious disease. As an example, the analysis results of the sub-
network that is with 96 time periods of August 26th, 20143, are shown in Fig. 8
and Tab. 3.
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(a) Degree distribution for the subnet-
work of human-based contact network.
There are 96 time periods of August
26th, 2014 in this network. The black
spots are the probability distribution of
nodes’ degrees.

1 2 3 4 5 6 7

0
50

10
0

15
0

Exponential distribution

Degree

F
re

qu
en

cy

1 2 3 4 5 6 7

0
50

10
0

15
0

1 2 3 4 5 6 7

0
50

10
0

15
0

Normal distribution

Degree

F
re

qu
en

cy

1 2 3 4 5 6 7

0
50

10
0

15
0

1 2 3 4 5 6 7
0

50
10

0
15

0

Poisson distribution

Degree

F
re

qu
en

cy

1 2 3 4 5 6 7
0

50
10

0
15

0
1 2 3 4 5 6 7

0
50

10
0

15
0

Power−law distribution

Degree

F
re

qu
en

cy

1 2 3 4 5 6 7

0
50

10
0

15
0

(b) Maximum-likelihood fitting of
degree distributions. The degree
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human-based contact network is fitted
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Fig. 8: Degree distribution and maximum-likelihood fitting for the subnetwork
of human-based contact network.

With the fittings for the subnetwork of human-based contact network, the
parameter estimates for different distributions are: (i) the rate parameter λ =
0.74796748 for the exponential distribution, (ii) µ = 1.33695652 and σ = 1.00841216
for the normal distribution, (iii) λ = 1.33695652 for the poisson distribution, and
(iv) xmin = 1 and α = 3.041947 for the power-law distribution.

Table 3 shows the estimated standard deviations and the estimated variance-
covariance matrices of the fittings for the subnetwork.

3 This subnetwork is obtained by a time-based sample. It is the contact network of
this day, August 26th, 2014.



Table 3: Estimated standard deviations and estimated variance-covariance ma-
trices for different fittings
Distribution Standard deviation Variance-covariance matrix

Exponential λ (rate parameter): 0.05514089
rate parameter

rate parameter 0.003040518

Normal
µ (mean): 0.07434113,

σ (standard deviation (sd)): 0.05256712

mean sd

mean 0.005526604 0.000000000

sd 0.000000000 0.002763302

Poisson λ (lambda): 0.08524123
lambda

lambda 0.007266068

Power-law xmin+ α: 0.02865438 NULL

From the fitting results for the subnetwork of August 26th, 2014, which are
listed in Tab. 3, the degree distribution of the subnetwork is approximate to the
power-law distribution with xmin = 1 and α = 3.041947.

With the above detailed analyses on the structure of networks, this fact can
be observed: network structure is different to different networks, and is time-
varying to dynamic networks.

4 Recognition Model of Network Structure

Because network structure is different to different networks, and the network
structure is time-varying to dynamic networks, it is necessary to recognize the
structure of a network, for analyzing the propagation dynamics on the network.

Our recognition model consists of: fitting, selection and parameter adjust-
ment, and it can be formulated and described as follows:

– As the first step of model, the fitting is to fit the structure of a network into
exponential, normal, poisson and power-law distributions with maximum-
likelihood fitting, and the fitting calculates the parameter estimates and
standard deviations to corresponding distributions. The parameter estimates
and standard deviations to corresponding distributions, can be denoted as:
(i) peexp and sdexp for the exponential distribution, (ii) penorm, sdµ,norm and
sdσ,norm for the normal distribution, (iii) pepois and sdpois for the poisson
distribution, and (iv) pepl and sdpl for the power-law distribution.

– And then, the selection is to select an approximate distribution by comparing
the calculated standard deviations of four distributions. This step is denoted
as:
min{sdexp, sdnorm =

sdµ,norm+sdσ,norm

2 , sdpois, sdpl}.
– Finally, our model uses the standard deviation of the selected approximate

distribution to adjust the degree distribution function of the selected ap-
proximate distribution, and the selected approximate distribution is with
the corresponding parameter estimate calculated by the fitting of first step.



Degree distribution functions and the detailed process of adjustment are intro-
duced as follows:

(i) The degree distribution functions of exponential, normal, poisson and
power-law distributions:

– The degree distribution function of exponential distribution is: f(x;λ) =
λe−λx(x ≥ 0).

– The degree distribution function of normal distribution is: f(x;µ, σ) = 1
σ
√
2π

e−
(x−µ)2

2σ2 .

– The degree distribution function of poisson distribution is: f(x;λ) = λxe−λ

x! .
– The degree distribution function of power-law distribution is: f(x;xmin, α) =

α−1
xmin (

x
xmin )

−α.

(ii) The detailed process of adjustment:
Based on (i) above degree distribution functions, and (ii) the parameter es-

timates and standard deviations to corresponding distributions, the adjusted
degree distribution functions can be obtained and these adjusted degree dis-
tribution functions reflect the structure of real networks. The adjusted degree
distribution functions to corresponding distributions are listed in Eq.(2).

f(x; (λ± sdexp)) = (λ± sdexp)e
−(λ±sdexp)x(x ≥ 0),

f(x; (µ± sdµ,norm, (σ ± sdσ,norm)

=
1

(σ ± sdσ,norm)
√
2π

e
− (x−(µ±sdµ,norm))2

2(σ±sdσ,norm)2 ,

f(x; (λ± sdpois)) =
(λ± sdpois)

xe−(λ±sdpois)

x!
,

f(x; (xmin± sdpl), (α± sdpl))

=
(α± sdpl)− 1

(xmin± sdpl)
(

x

(xmin± sdpl)
)−(α±sdpl).

(2)

An example is provided to explain the adjustment. The human-based contact
network is approximate to the exponential distribution with λ = 0.50159915, and
the standard deviation from the rate parameter λ of this exponential distribution
is 0.01635166, so the degree distribution function of this human-based contac-
t network can be denoted as: f(x; 0.50159915 ± 0.01635166) = (0.50159915 ±
0.01635166)e−(0.50159915±0.01635166)x(x ≥ 0). And the degree distribution func-
tion can be used to reflect the network structure of this human-based contact
network.

5 Evaluation

We investigate the impacts of network structure on propagation dynamics. With
the structural knowledge of respective networks, the prediction accuracy for R
on the RCNs and ENs is measured respectively, and the prediction results for R
are compared with real surveillance data.



Knowledge-based SIR model. For a SIR model, the following differential
equations represent this model:

dS

dt
= δR− βSI,

dI

dt
= βSI − γI,

dR

dt
= γI − δR,

(3)

where β is the rate at which susceptible individuals contract the disease when
exposed to infection, γ is the rate at which infected individuals recover from
the disease and δ is the rate at which recovered individuals lose immunity and
become susceptible again.

The important parameter I in Eq.(3) indicates an individual is infected, and
is used to calculate the infected number R. In this study, our SIR model is based
on the knowledge of network structure. For our knowledge-based SIR model, the
important parameter I is formulated in Eq.(4).

I = β0 + β1f(x), (4)

where f(x) is the degree distribution function of a network, and it can be ac-
quired by our recognition model.

Parameter configuration of experiments. Based on the description of
BN, a BN is an exponential network. For the comparability with RNs, the values
of rate parameter λ for BNs are set to: (i) 0.4966 corresponding to our vehicle-
based contact network, and (ii) 0.50159915 corresponding to our human-based
contact network. And the number of nodes: (i) the BN with λ = 0.4966, is 2483,
and (ii) the BN with λ = 0.50159915, is 942.

We repeat the process 100000 times for each network in our experiments with
different randomly selected individuals. We use the average number of infected
cases across all 100000 realizations as the value of R for each network.

Prediction accuracy for R. Based on our knowledge-based SIR model,
extensive experiments are run on different networks, and on these experiments
basis, the infected number R can be predicted, and the parameter R is time-
varying to reflect the propagation dynamics of a disease. And the prediction
results for R from different networks are compared with real surveillance data,
to show network structure impacts the propagation dynamics on the network.
And utilizing realistic structural knowledge can help to improve the prediction
accuracy for R that is used to reflect the propagation dynamics on a network.
Figure 9 illustrates: (i) the prediction results, and (ii) the comparison of the
prediction results and real surveillance data.

From Fig. 9, we acquire: with realistic structural knowledge of networks,
the prediction accuracy for R is improved, and network structure impacts prop-
agation dynamics. For comparing the impacts of different networks, the ratio
RA/B = RA

RB
is calculated, at different time points, respectively, to measure the

different impacts of the network A and the network B. First, we use A to de-
note real surveillance data, B to denote our vehicle-based contact network, C to
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Fig. 9: Comparison of prediction results and real surveillance data. (i) The black
line with triangular spots displays the acquired result by mining real surveil-
lance data. (ii) The green line with star spots is the prediction result on our
vehicle-based contact network. (iii) The red line with diamond-shaped spots is
the prediction result on our human-based contact network. (iv) The pink line
with square spots is the prediction result on the BN with λ = 0.4966 and 2483
nodes. (v) The blue line with circular spots is the prediction result on the BN
with λ = 0.50159915 and 942 nodes.

denote our human-based contact network, D to denote the BN with λ = 0.4966
and 2483 nodes, and E to denote the BN with λ = 0.50159915 and 942 nodes.
And then, Rt

A/B denotes the ratio for network A and network B, at the tth time

point. Finally, Rt
B/A, R

t
C/A, R

t
D/A and Rt

E/A (t = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

(12 months)) are calculated and listed in Tab. 4.

Table 4: Ratios of R to measure the different impacts of two different networks
on propagation dynamics

Rt
B/A Rt

C/A Rt
D/A Rt

E/A

t=1 0.91 2.6 0.039 0.052

t=2 0.82 0.58 0.11 0.16

t=3 1.3 0 0.43 0.75

t=4 1.8 0 1.7 2.5

t=5 2.2 0 5.5 5.8

t=6 3.1 0 14 11

t=7 5.2 0 31 19

t=8 6.7 0 60 28

t=9 8 0 105.7 40.9

t=10 5 0 186.5 63.5

t=11 35 0 281.5 84

t=12 10 0 550 148.5



The ratios listed in Tab. 4, are all different, so the impacts of these networks
on propagation dynamics are different.

6 Related Work

6.1 Propagation Dynamics

Understanding the propagation processes arising over a wide variety of network
structures is very important to mine useful knowledge about how a behavior
on a network to impact the nodes of the network, and even is helpful to model
the behavior. In recent years, there is an increasing effort to study propagation
dynamics based on a variety of networks. Recent achievements can be divided
into two categories based on different types of networks:

– The propagation dynamics of information on social networks [14][17]. In
the information propagation of social networks, exponential and power-law
models that reflect network structure have been widely used to model the
dynamics of propagation [9][26]. Not only the network structure but also
the prior probabilities of activation of edges [22] or the transmission rates of
networks [7] are used to study the propagation dynamics of information on
social networks.

– The propagation dynamics of real phenomena on contact networks. The con-
tact networks describe the real relationships between individuals/systems
of the physical world. Based on the real relationships from the physical
world, the propagation dynamics on these networks is different from the
propagation dynamics on social networks. With the development of the IoT
(Internet of Things) and the help of various sensors and wireless devices,
some researchers have paid their attention to this propagation dynamics,
and have obtained some achievements: (i) for the propagation of infectious
diseases [18][24][12][6], and (ii) for the propagation of contaminants [16].
Analyzing and studying the dynamics of propagation between individual-
s/systems can help us to understand and control the propagation dynamics
on these real networks.

Some previous achievements assume networks to be static so that information
propagates over these networks that their structures remain constant over time,
and these achievements consider that different networks possess similar network
structures and the structures of different networks can be modelled into unified
models, e.g., exponential models and power-law models.

6.2 Disease Dynamics

As an important aspect of propagation dynamics, the disease dynamics on con-
tact networks has been widely studied.

The quantification and prediction of disease dynamics during epidemics [30][31][20]
are very important to public health [19] in allocating public health resources and
in responding to public health events.



The infected number R can be used to quantify the disease dynamics during
epidemics. For studying the quantized disease dynamics, a wide range of methods
have been proposed to estimate or predict R [21][27][28][1][11] based on the
assumptions of network structure, e.g., the contact networks for the spread of
disease are best described as having exponential degree distributions [2].

However, realistic contact networks are not always and absolutely with the
assumptions of network structure (e.g., exponential degree distributions). For
improving the accuracy of estimating and predicting for R during an epidemic
on a network, the realistic structure of the network needs to be mined.

7 Conclusion

In this article, we have mined the impacts of network structure on propagation
dynamics through studying the disease dynamics that is an important aspect of
propagation dynamics. Our study is based on the mobile data gathered from the
real physical world, and with the mobile data, two RCNs are built, and as a com-
parison, we have implemented exponential networks using the greedy rewiring
algorithm that is proposed by Bansal et al.. Exponential networks are widely
used into RCN-based studies, and it has been demonstrated that the RCNs are
best described as having exponential degree distributions. As a key result of
this study, we have observed that RCNs do not always have exponential degree
distributions, especially in dynamic environments. On this result basis, we have
designed a model to recognize the structure of a network. Based on the model,
we have investigated the impacts of network structure on propagation dynamics
with evaluating and comparing the accuracy of prediction for the time-varying
infected number R. In this comparing, the prediction results for R from differ-
ent networks are compared with real surveillance data. From this investigation,
we have obtained another key result of this study, the structure of a network
impacts the propagation dynamics related on this network, and the prediction
accuracy for R can be improved by utilizing realistic structural knowledge mined
by our recognition model.
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