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Abstract 

 

The Shungura Formation in the lower Omo River Valley, southern Ethiopia, has yielded an 

important paleontological and archeological record from the Pliocene and Pleistocene of 

eastern Africa.  Fossils are common throughout the sequence and provide evidence of 

paleoenvironments and environmental change through time.  This study developed 

discriminant function ecomorphology models that linked astragalus morphology to broadly 

defined habitat categories (open, light cover, heavy cover, forest, and wetlands) using modern 

bovids of known ecology.   These models used seven variables suitable for use on 

fragmentary fossils and had overall classification success rates of > 82%.  Four hundred and 

one fossils were analyzed from Shungura Formation members B through G (3.4 to 1.9 million 

years ago).  Analysis by member documented the full range of ecomorph categories, 

demonstrating that a wide range of habitats existed along the axis of the paleo-Omo River.  

Heavy cover ecomorphs, reflecting habitats such as woodland and heavy bushland, were the 

most common in the fossil sample.  The trend of increasing open cover habitats from 

Members C through F suggested by other paleoenvironmental proxies was documented by 

the increase in open habitat ecomorphs during this interval.  However, finer grained analysis 

demonstrated considerable variability in ecomorph frequencies over time, suggesting 

substantial short term variability is masked when grouping samples by member.  The hominin 

genera Australopithecus, Homo, and Paranthropus are associated with a range of ecomorphs, 

indicating that all three genera were living in temporally variable and heterogeneous 

landscapes.  Australopithecus finds were predominantly associated with lower frequencies of 

open habitat ecomorphs, and high frequencies of heavy cover ecomorphs, perhaps indicating 

a more woodland focus for this genus.  This study reaffirms the utility of collecting well-

preserved appendicular elements for paleoenvironmental reconstruction. 
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Introduction 

 

The habitat preferences of fauna found at paleontological and archaeological sites can be 

used to infer the paleoenvironments that existed at particular places and times and assist in 

reconstructing hominin habitat preferences by inference.  We reconstructed habitat 

availability during the deposition of the Omo Shungura Formation using ecomorphology of 

fossil antelope astragali (Mammalia: Bovidae).  The ecomorphological approach relies on the 

links between morphology and environment or substrate, rather than relying on taxonomic 

uniformitarianism in habitat preference.  It also allows an abundance-based environmental 

reconstruction, whereas many synecological methods to predict environments rely on the 

presence or absence of particular taxa (e.g., Andrews et al., 1979; Reed, 1997; Louys et al., 

2015).  

 Previous work has demonstrated that bovid astragali can be classified successfully 

into habitat preference categories by analysis of morphologies associated with particular 

habitat preferences (DeGusta and Vrba, 2003; Plummer et al., 2008; Barr, 2014).  This 

method can be used to analyze fossil bovid astragali with known stratigraphic provenance.  

Relative abundance of fossil astragali assigned to different habitat preferences (relative 

ecomorph abundance) can, subject to taphonomic analysis, be used as a proxy for the relative 

abundance of the types of preferred vegetation cover, allowing us to infer their prevalence 

regionally during the stratigraphic interval of deposition (Kappelman, 1988; Plummer and 

Bishop, 1994; Kappelman et al., 1997; Kovarovic and Andrews, 2007; Bishop et al., 2011).   

 We examined the relative frequency of ecomorphs indicating habitat preference in 

Members B through G (3.4 – 1.9 million years ago (Ma)) of the Shungura Formation. 

Ecomorph abundance was calculated at different stratigraphic and temporal scales to examine 

the extent to which these abundances fluctuated through time.  This provided an independent 



Plummer et al. / 4 

line of paleoenvironmental evidence to compare with other indicators of Shungura Formation 

habitat presence and relative availability. 

Geological and paleoenvironmental background of the Shungura Formation 

 The Omo-Turkana Basin includes the Lake Turkana basin in northern Kenya as well 

as the lower Omo River Valley in southern Ethiopia (Fig. 1).  Systematic investigation of the 

lower Omo Valley deposits was undertaken by the International Omo Research Expedition, 

established in 1966, by separate French, American and Kenyan teams, although the Kenyan 

team quickly changed its focus to Koobi Fora.  The region is known for its rich Pliocene and 

Pleistocene paleontological and archeological records. Three major geological formations, 

the Shungura, Usno, and Mursi, were recognized in the stratigraphic sequence, and these 

have yielded over 50,000 fossils, including 220 hominin specimens (Alemseged, 2003).  The 

Shungura Formation consists an aggregate 766 m of sediment divided into 12 members, from 

oldest to youngest: Basal, A, B, C, D, E, F, G, H, J, K, and L (Fig. 1). It covers a time span 

from 3.6 to 1.16 Ma (Alemseged, 2003) and each member begins with a volcanic tuff bearing 

the same letter as the member.  Further lithological subdivisions within each member, termed 

units, are numbered from bottom to top of each member.  For example, the fourteenth unit 

from the base of Member G is designated Unit G-14.   

 The Shungura Formation has five major depositional phases, starting with lacustrine 

deposition in the first unit of the Basal Member (Bobe and Eck, 2001).  Fluvial deposition 

predominated between the second unit of the Basal Member and Unit G-13.  Lacustrine 

conditions returned in the third major depositional phase, from Units G-14 to G-27.   The 

fourth phase saw the resumption of fluvial deposition from G-28 to L-6, and the final phase 

was lacustrine from L-7 to L-9.   

The Shungura Formation is one of the best studied sequences in eastern Africa, and its 

paleoenvironments have been extensively researched. A variety of methods (sedimentological 
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analysis of depositional environments, analysis of pollen and macrobotanical fossils, analyses 

of microfaunal and macrofaunal taxa with specific habitat preferences, changes in faunal 

diversity and the relative abundances of taxa over time, correspondence analysis of 

macromammalian faunal abundances, stable isotopic analyses of paleosol carbonates to 

reconstruct vegetation cover, and stable isotopic analyses of enamel to indicate diet) have 

been used to reconstruct its paleoenvironmental history (Bobe and Eck, 2001; Bobe et al., 

2002; Alemseged, 2003; Bobe and Behrensmeyer, 2004; Bobe, 2006; Bobe et al., 2007; Bobe 

and Leakey, 2009; Bobe, 2011; Levin et al., 2011).  Study of fossil plants suggests that a 

mosaic of forest (both moist, evergreen forests with epiphytes, and drier deciduous forests 

with few epiphytes), woodlands, and grasslands in varying proportions characterized the 

paleo-Omo environs (Bonnefille and Dechamps, 1983).  Typha pollen provides evidence of 

wetlands, and taxa from the Chenopodiaceae and Amaranthaceae groups provide evidence of 

arid conditions.  The discontinuous paleobotanical and microfaunal records suggest that there 

was a drying trend from Member C to Member F (Bobe and Eck, 2001). 

Taxon-based analysis of the bovid fossil samples suggests that there was a transition 

around 2.8 Ma from wet, closed environments in Member B to closed but dry environments 

in Member C, and a drying trend from Members D through F (Bobe and Eck, 2001).  The 

shift from predominantly moist to drier closed environments at 2.8 Ma corresponds to an 

increase in species richness and a rapid change in taxonomic abundance, with a particularly 

large increase in the abundance of species in the tribe Tragelaphini (kudu and allies).  

Analyses of bovid tribes, and suid and primate genera indicate an interval of relative faunal 

stability from 2.7 Ma to 2.5 Ma, followed by greater variability in the Omo fauna from 2.5 to 

2.1 Ma (Bobe et al., 2002).  After 2.5 Ma taxa associated with secondary grasslands became 

more abundant than those associated with forests, and at 2.35 Ma (Member F) there was a 

slight increase in taxa indicative of open grasslands (Bobe and Leakey, 2009).  At 
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approximately 2.3 Ma in lower Member G, bovid diversity and abundance were exceptionally 

high, possibly reflecting greater environmental heterogeneity (Bobe and Eck, 2001), with 

evidence for an expansion of edaphic grassland (Alemseged, 2003).  In upper Member G 

there was a major shift in depositional environment as a large lake formed in the valley. 

There was also an increase in open grassland-indicating taxa, although these still comprised 

less than 15% of the macromammalian faunal sample, suggesting that environmental 

heterogeneity remained pronounced (Bobe and Behrensmeyer, 2004). The faunal and isotopic 

records indicate that the lower Omo Valley had higher proportions of woodland and forest 

through time than either the eastern or western sides of the Lake Turkana basin (Bobe and 

Behrensmeyer, 2004; Bobe and Leakey, 2009; Levin et al., 2011), with significant increases 

in grassland vegetation not occurring until after 2 Ma, in Members H through L.   

 

Shungura Formation taphonomy and faunal change 

Bobe and Eck (2001) examined faunal change in the Shungura Formation and concluded that 

it was a real phenomenon unlikely to have resulted from taphonomic processes.  In Member 

B to lower Member G fluvial deposition predominated, and isolated teeth are frequently 

preserved. When examined by member, the relative frequencies of isolated teeth and analysis 

of other skeletal parts suggests that the Shungura Formation is essentially isotaphonomic, that 

is to say, the taphonomic biases remained uniform over time (Bobe and Eck, 2001, Bobe et 

al., 2002, Bobe and Leakey, 2009, Bobe and Behrensmeyer, 2004).  Moreover, no significant 

association was found between the taxonomic and taphonomic data sets, lending further 

support to the idea that the two signals are independent of each other (Bobe et al., 2002).  

Because astragali were collected systematically, and taphonomic conditions were consistent 

through much of the sequence, stability or changes in the relative frequency of different 

ecomorphs over time provide evidence of how environments changed over time.  
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Ecomorphology and Shungura paleoenvironments 

 

The Shungura Formation fossil sample is well suited for ecomorphic analysis, because a long 

termporal interval is represented, and there is the potential for cross validation with a wide 

range of existing paleoenvironmental information.  Both French and American teams 

collected bovid postcranial elements, with the American team systematically collecting every 

bovid astragalus found during its surveys (Bobe and Eck, 2001).  Previous 

paleoenvironmental analyses suggest that complex mosaics of vegetation existed in the valley 

in the past, creating the possibility that a broad array of ecomorphs were present through the 

stratigraphic sequence.  Studying the ecomorphology of Shungura bovids provides an 

alternative means of evaluating previous paleoenvironmental research, and it has the potential 

to add new insights derived from abundance-based criteria. Specifically, the following 

paleoenvironmental inferences suggested by previous research (e.g., Bobe and Eck, 2001; 

Bobe et al., 2002; Alemseged, 2003; Bobe and Behrensmeyer, 2004; Bobe, 2006; Bobe et al., 

2007; Bobe and Leakey, 2009; Bobe, 2011; Levin et al., 2011) can be investigated here: 

1. A spectrum of habitats existed through time in the Shungura Formation sequence, 

with a relatively high representation of woodland and forest habitats. 

2. An environmental shift occurred at approximately 2.8 Ma (between Members B and 

C), which resulted primarily in a shift from wet, closed environments to dry closed 

environments. 

3. There was an interval of relative environmental stability from 2.7-2.5 Ma, followed 

by an increase in habitat variability between 2.5-2.0 Ma. 

4. A drying trend existed between Members C and F. 
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5. Taxa associated with grasslands became more common than those associated with 

forest after 2.5 Ma, with a small peak in taxa preferring relatively open environments 

in Member F at approximately 2.35 Ma. 

6. Grassland-dominated habitats expanded beginning with upper Member G, and 

thereafter, with some fluctuation, made up a greater proportion of the overall 

environment than they had prior to lower Member G. 

 

 Here, we improved upon the methodology of Plummer et al. (2008) in several ways.  

We generated new discriminant function models that require fewer measurements while still 

maintaining high classification success rates.  The reduced variable models reported here are 

useful for fossil samples as they allow a greater number of fragmentary specimens to be 

included in analyses and thus increase sample size.  Maintaining high success rates across 

habitat categories is critical to accurately reconstruct the relative proportions of different 

ecomorphs in fossil samples.  We also improved our analysis by integrating a method to 

determine the extent to which habitat preference and phylogeny interact with respect to 

morphology (e.g., Louys et al., 2013). Further, we refined the habitat classifications used in 

previous analyses to better reflect the range of habitats in the African vegetation spectrum. In 

addition to the four habitat preference categories (open, light cover, heavy cover, and forest) 

used in the past, the model was expanded to include a fifth category for wetland bovids. This 

is particularly relevant for the Shungura Formation, as there are sedimentological indications 

of deltaic and lagoonal environments, as well as Typha pollen, through much of the sequence 

(Bonnefille and Dechamps, 1983).  

Materials and Methods 
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 We examined 286 astragali from modern bovids housed in the collections of the 

American Museum of Natural History (New York, NY), the National Museum of Natural 

History (Washington, D.C.) and the Natural History Museum (London, UK) (Table 1). We 

measured adult specimens only, and used only wild-shot specimens whenever possible. 

Overall, fewer than 5% of the individuals were from specimens that died in captivity, and 

many of these had been wild caught. Specimens included thirty-seven modern African bovid 

species having average body masses between 5-228 kg. The largest species of bovid were 

excluded from our analysis because their large body size impacts their locomotor anatomy 

and behavior, particularly in response to predators; these animals tend to stand their ground 

rather than run from predators (Estes, 1991; Kappelman, 1988). Predator avoidance strategies 

that vary with habitat structure have been argued to be a potentially important influence on 

ecomorphology for the size range of bovids under consideration here (Kappelman, 1988; 

Kappelman et al., 1997). 

 Each bovid taxon was assigned to a habitat preference category based on ethological 

research (Scott, 1979, 1985; Kappelman, 1986, 1988, 1991; Kappelman et al., 1997) and our 

personal observations in modern African game reserves (Table 1). The environmental 

categories used here were open (grassland, arid country, ecotones bordering open country), 

light cover (light bush, tall grass), heavy cover (heavy bush, woodland), and forest 

(Kappelman et al., 1997; Plummer et al., 2008). The assignment of bovid taxa to habitat 

preferences generally followed that of Plummer et al. (2008), except for Madoqua kirkii, 

which was here assigned to the light cover category following field observations of habitat 

preferences in its range (Bishop, Plummer, pers. obs). We also used a fifth category, wetland, 

for Tragelaphus spekei, Kobus leche, and Kobus megaceros, taxa that are known to prefer 

near-water habitats (Table 1). In previous studies using four habitat preference types, these 

wetland taxa were included in the heavy cover category.  However, this is problematic, as it 
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groups taxa preferring woodlands with those preferring near-water environments.  We tested 

the use of a fifth category because sediments deposited in wetland environments appear to be 

variably present in the Shungura Formation (Bobe and Eck, 2001), and differences in distal 

limb anatomy linked to locomotion on wetland substrates have been noted in the Bovidae 

(Kohler, 1993).  Wetlands taxa were eliminated from the four habitat category DFA. 

Regardless of the nature of categories used, it is recognized that African habitats at 

the spatial scale of interest to our study often form a continuum, and to divide them is a 

computational necessity rather than a reflection of environmental reality. The sample 

consisted of 99 specimens from taxa that prefer open habitats, 87 light cover, 27 heavy cover, 

and 54 forest, with an additional 19 specimens in the wetland-preferring category for our five 

habitat model. 

One of us (LCB) collected 24 measurements on each modern astragalus using digital 

calipers (Fig. 2; Table 2). Logarithms of these measurements and several indices derived to 

reflect shape differences were subjected to a quadratic discriminant function analysis 

(Plummer et al., 2008, Bishop et al., 2011; SYSTAT v. 13).  Discriminant function analysis 

(DFA) was used to test the relationship between astragalus morphology and habitat 

preference among modern bovids.  DFA is a classification algorithm that classifies cases into 

previously determined, naturally occurring groups (James, 1985).  In this case an equation (or 

function) is derived, which best discriminates among habitat preference groups using 

astragalus measurements and indices from a sample of modern bovids with known habitat 

preferences.  The variables used are those that best discriminate between the groups to which 

specimens ultimately will be assigned.  As in our previous work (e.g., Plummer and Bishop, 

1994; Plummer et al., 2008; Bishop et al., 2011) we used quadratic, rather than linear, 

discriminant function analysis. In linear DFA, identical within-group covariance matrices are 

pooled to calculate a linear discriminant function (Kovarovic et al., 2011). We used quadratic 



Plummer et al. / 11 

DFA because significant differences were found among the within-group covariance matrices 

generated from our sample, violating the requirements of linear DFA. Quadratic DFA models 

do not require within-group covariance matrices to be identical (James, 1985; Reyment, 

1991).  The quadratic routine in SYSTAT v. 13 has the additional benefit of automatically 

limiting collinearity, by not allowing variables that are highly correlated with each other to be 

included in the same model, another factor that affects DFA performance. Canonical 

coefficients are generated for each analysis that indicate the relative contribution each 

variable makes to the discrimination among the habitat groups.  Probabilities of membership 

in each pre-determined habitat preference category is calculated on the basis of each 

specimen‟s generalized squared (Mahalanobis) distance from the centroids of each group. 

The quadratic DFA assigns each specimen to a habitat preference category by placing it in 

the group for which its probability of membership is highest.  

The same seven variables were used to classify astragali in both 4- and 5-habitat 

category models (Fig. 2, Table 2).  This variable list was somewhat different from that used 

by Plummer et al. (2008) on modern astragali, because certain landmarks or regions of the 

astragalus were not always preserved in the fossils.  We selected variables that were 

frequently present in fossil specimens so as to maximize the sample size of fossils available 

for analysis, while preserving the highest possible classification success rate.  From the 

subset of commonly preserved metric variables, we generated models with reasonably high 

(>82%) overall success rates.  Three variables were log-transformed linear measurements: 

LTARSMLT (the log of the mediolateral dimension of the tarsal articulation), LTAMAP (the 

log of the anteroposterior dimension of the medial side of the tarsal articulation) and 

LMINLEN (the log of the minimum length of the astragalus, measured between the central 

depressions of each trochlea). The remaining four variables were log-transformed 

dimensionless ratios: LENRA8 (the log of the medial length of the astragalus divided by the 
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log of the minimum breadth of the tarsal articulation LMEDLEN/LFOFO), LLENRA21 (the 

log of the medial length of the astragalus divided by the log of the trochlear diameter of the 

medial side of the tibial articulation LMEDLEN/LTIMAP), LMLRAT3 (the log of the 

maximum mediolateral dimension of the astralagus divided by the log of the minimum 

breadth of the tarsal articulation TUBML/FOFO), and DEPRA9 (the mediolateral dimension 

of the tarsal articulation divided by the maximum depth of the astragalus 

TARSMLT/MAXSI). Summary statistics for the measurements and ratios are provided in 

Table 3.  

 The same measurements were taken on the Omo fossil astragali collected by the 

French and American expeditions housed in the National Museum of Ethiopia in Addis 

Ababa by one of us (JF). We examined interobserver error before and after the Omo fossil 

dataset was measured (8 measurements on 11 astragali).  Before Omo data collection, mean 

interobserver error (between JF and LCB) was 0.9%.  After Omo data collection, mean 

interobserver error was 0.7%.  The mean intraobserver error before and after Omo data 

collection was 0.7%.   A total of 774 fossils with stratigraphic information from the Omo 

Fossil Database were measured from Members A through L.  Four hundred and thirteen of 

these were sufficiently well preserved for analysis.  However, some members had very small 

sample sizes and were excluded from further consideration.  Thus our results concentrate on 

401 specimens derived from Members B through H.  

The DFA model generated from the modern sample was applied to fossil “unknowns” 

to assign them to a habitat preference category.  Each fossil was placed in the habitat 

category for which it had the highest probability of membership, based on the smallest 

generalized squared (Mahalanobis) distance to the group centroid. We also used the set 

stratigraphic intervals of Bobe et al. (2002) to approximate shorter and more equal-time units, 

and thus minimize time-averaging effects within the constraints of stratigraphic resolution. 
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Relative proportions of habitat preferences were plotted by member and by stratigraphic 

interval to assess ecomorph frequency change over time using both the 4- and 5-habitat 

models (Figs. 4-6). 

 

Morphological convergence and divergence 

In order to satisfy the requirements of ecomorphological analysis, the morphological 

characteristics being examined must be a function of an organism‟s ecology rather than just a 

result of its phylogenetic heritage (Barr and Scott, 2013; Louys et al., 2013; Scott and Barr, 

2014). One of the most common comparative methods used to account for interspecific 

autocorrelation resulting from phylogeny is the phylogenetic generalised least squares 

(PGLS) technique. This technique represents a modified form of generalised least squares, 

and allows an assessment of the amount of phylogenetic signal any morphological variable 

might have. PGLS was recently championed as a way of determining the „phylogenetic risk‟ 

of any morphological trait being considered for ecomorphological analysis (Scott and Barr, 

2014). The use of this approach does not require that traits with high phylogenetic risks be 

immediately discarded, but rather highlights them so that they are considered within the 

context of functionally relevant observations. Nevertheless, implicit in this approach is the 

presumption that variables with strong phylogenetic signals are undesirable for 

ecomorphological models and that phylogenetic „risk‟ should be minimized or eliminated.  

Habitat preferences may be strongly correlated with phylogenetic signals, and so to 

disregard any corresponding morphological traits would negatively impact the accuracy of 

subsequent ecomorphological analyses. For example, the radiation of alcelaphin bovids 

produced closely related species which share the same habitat preferences and presumably 

habitat-related functional morphology (Hernandez-Fernandez and Vrba, 2005). Eliminating 

morphological traits which are highly correlated with both phylogeny and ecology would 
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reduce the accuracy of resultant ecomorphic models. Conversely, traits may be 

„evolutionarily labile‟, whereby closely related species are not more similar than would be 

expected under common evolutionary models such as Brownian motion (Symonds and 

Blomberg, 2014; Blomberg et al., 2003). In such cases, comparative methods such as PGLS 

run the risk of over-correcting for phylogeny (Westoby et al., 1995; Björklund, 1997; Rheindt 

et al., 2004).   

An alternative approach was recently outlined by Louys et al. (2013). Rather than 

attempting to determine the amount of phylogenetic signal present in any particular trait, 

these authors argued that the only criteria a valid ecomorphological analysis should satisfy 

are the assumptions of morphological convergence and divergence relative to phylogeny.  

These two conditions underlie the entire rationale for ecomorphology (DeGusta and Vrba, 

2003; Kappelman et al., 1997; Plummer et al., 2008). Louys et al. (2013) described 

convergence as the condition observed when two distantly related species having the same 

habitat preference are more similar morphologically than two similarly related species that 

prefer different habitats. That is to say, animals that are distantly related have converged upon 

a similar morphological solution to the same habitat-related environmental constraint. The 

condition of divergence occurs when two closely related species having different habitat 

preferences are more different morphologically than two similarly related species that share 

the same habitat preference. Thus, closely related taxa that prefer different habitats have 

diverged morphologically as a result of these preferences. Under this approach, both „high 

risk‟ and „low risk‟ traits can be comfortably included in any ecomorphological analysis, 

provided that the overall morphospace exhibits both convergence and divergence. This 

approach has the added advantage of accommodating traits that might be evolutionarily 

labile, as well as those that might otherwise be discarded due to the amount of phylogenetic 

signal they exhibit.  
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We examined the presence of divergence and convergence (DIVCON) in the bovid 

samples in our 4- and 5-habitat DFAs. Each potential species pair was assigned to one of four 

categories: (1) closely related sharing the same habitat preference; (2) closely related having 

different habitat preferences; (3) distantly related sharing the same habitat preference; and (4) 

distantly related having different habitat preferences. The average morphological differences 

between species pairs falling in categories (1) and (2) must be significantly different in order 

to satisfy an assumption of divergence in morphospace. Similarly, the average morphological 

differences between species pairs falling in categories (3) and (4) must be significantly 

different in order to satisfy an assumption of convergence in morphospace. For this analysis, 

the morphological distance was calculated on the basis of the morphospace defined by the 

DFA. The group centroids for each modern species were determined on the basis of the DFA 

output, and the distances between the centroids were calculated using PAST version 2.17c 

(Hammer et al., 2001). The habitat preference categories were used to indicate whether two 

species shared the same habitat preference (Table 1).  

A potential criticism of Louys et al.‟s (2013) DIVCON analysis is that it uses a 

morphospace constructed by a DFA. Since the underlying DFA assumes that differences 

between groups (in our case habitat preferences) are significant, when comparing a set of 

species with one habitat preference to another set of species with a different habitat 

preference, significant differences between these groups will always be found . This would be 

a concern if the DIVCON analysis was only examining the difference between all species in 

the same habitat versus all species in a different habitat. However, the species are further 

divided into two other sets, namely closely related or distantly related. There are no a priori 

reasons why this further division should result in significant differences because relatedness 

does not form part of the DFA.  
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We defined closeness of relationship on the basis of mean time of divergence of 

congeneric species rather than on the mean patristic distance used by Louys et al. (2013). 

Patristic distance gives an indication of topological distance between species pairs; however, 

this distance is relative only to the tree topology examined. While divergence times 

determined from dated phylogenies are also, in part, relative to the tree topology examined, 

they can be calibrated both by absolute (fossil and molecular estimates) and relative 

(molecular) dates and therefore provide more accurate estimates of species relatedness than 

those based on tree topologies alone.  We used the dated species-level supertree of 

Hernandez-Fernandez and Vrba (2005) to determine the degree of relatedness between 

species. We used supertree data to determine the mean and standard deviation of time since 

divergence between congeneric African Bovidae. We followed the taxonomic nomenclature 

of Hernandez-Fernandez and Vrba (2005), with the exceptions of: Beatragus, which we 

considered as a member of Damaliscus; and Damaliscus dorcas, which was not listed by 

Hernandez-Fernandez and Vrba (2005), but which we considered as part of an unresolved 

trichotomy with D. lunatus and D. pygargus.  These nomenclatural differences do not affect 

the calculations of mean divergence time. The mean divergence time between two species in 

a genus belonging to the African Bovidae was 4.59 Ma, with a standard deviation of 2.94 Ma 

(calculated using all African Bovidae data from Hernandez-Fernandez and Vrba, 2005). We 

considered each species pair to be closely related if their likely time of divergence fell below 

the mean best estimate of divergence plus two standard deviations, rounded to the nearest 

million years. Thus, two species were considered closely related if the time since their 

divergence from a shared ancestor was less than 11 Ma. While the taxonomic departure from 

Hernandez-Fernandez and Vrba (2005) means that slightly different divergence times for 

congeneric species are computed compared to their taxonomic scheme (as our definition of 

Damaliscus is different), tree topology remains unaffected with respect to degree of 
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relatedness between species belonging to different genera. In any case, we take a very 

conservative approach to relatedness, and these minor taxonomic differences do not change 

our overall results. Comparisons among the categories were analyzed by non-parametric 

Mann-Whitney U-tests, as per Louys et al. (2013). 

   

Body mass 

 

 We examined the correlations among all log-transformed variables used in the DFA 

with log femoral length, a commonly used proxy for body size in bovids (Scott, 1985; 

Kappelman, 1991; Kappelman et al.1997; Plummer et al., 2008).  We examined both the 

distributions of size in the modern habitat categories and also the representation of different 

sized bovids in the fossil sample.  This was done to assess whether our discriminant function 

analyses were driven by body weight (Klein et al., 2010). 

 

Results 

DFA of modern astragali 

 Success rates were high using both 4- and 5-category models to assign modern bovid 

astragali to habitat preference categories. The 5-habitat model was newly developed for this 

analysis of the Omo fossil sample. Results of the 4-habitat model are given in Table 4.  This 

analysis produced 3 discriminant functions, accounting for 71.5%, 19.2%, and 9.1% of the 

variance of the sample, respectively. Multivariate means of the different groups were 

significantly different (p<0.0001).  The resubstitution classification matrix showed that the 

DFA using seven variables was highly successful in assigning individual specimens to their 

correct pre-defined habitat category. For the 4-category model, the overall resubstitution 

success rate was 88% correct, with a range of 90% correct for astragali from bovids 
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preferring open habitat to 83% for bovids preferring light cover. We further examined 

reclassification accuracy by jackknife analysis (Table 4).  The jackknife matrix summarizes 

the results of the DFA in which each specimen in the sample was withheld from generating 

the discriminant function, and the resultant function was then used to predict the habitat 

preference of the „„left out‟‟ specimen. The procedure was carried out 286 times (one for each 

specimen in the sample), and the summary of the function‟s predictive success is given in 

Table 4.  A close relationship between resubstitution and jackknife analyses can be used as an 

indicator of the robustness of the DFA; however the more conservative jackknife method 

always produces lower success rates. 

 One indication of the accuracy of predictions made by the DFA is the probability of 

each case‟s membership in the group to which it is assigned (e.g., Hertel, 1995; DeGusta and 

Vrba, 2003; Kovarovic et al., 2011). When the DFA model assigns a specimen, it generates 

probabilities based on Mahalanobis distances from each group centroid, and assigns it to the 

group for which its probability of membership is highest. Probabilities range from 0 to 100%; 

theoretically any case can have equal or near-equal probabilities of membership in each class 

(e.g., if all probabilities approached 25%, it would be equivalent to chance assignment in a 4-

category model). The DFAs developed here assigned specimens to habitat preference 

categories with high probabilities. For the modern specimens, the mean probability of 

membership for specimens assigned to the open habitat category was 86%, 72% for light 

cover, 90% for heavy cover, and 84% for the forest preferring bovids. 

 Results of the DFA for the 5-habitat model are given in Table 5. This analysis 

produced 4 discriminant functions, accounting for 68.3%, 22.1%, 8.7%, and 0.9% of the 

variance of the sample, respectively. Multivariate means of the different groups were 

significantly different (p<0.0001).  Reclassification success rates for the 5-category model 

were only slightly lower than those for the 4-category model. Overall, 87% of the specimens 
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were assigned to the correct habitat category using resubstitution. For the most accurately 

reclassified category (open habitat), 90% of the bovids were classified correctly. The worst-

performing category was the light cover in which 80% of the cases were classified correctly. 

The overall jackknife success rate of 82% demonstrates that the DFA model is robust.  The 

fifth category for wetland-preferring bovids performed well in both resubstitution and 

jackknife analyses (100% and 89% correct, respectively).  

Analysis of missed cases  Only two of the 34 taxa studied in the 4-habitat DFA model were 

misclassified more than half the time (Table 6). The first, Addax nasomaculatus, is a 

hippotragine bovid that inhabits deserts of northern Africa. Two of the 4 specimens were 

misclassified from their assigned open country habitat preference into the light cover 

category.  Two of the four specimens of Cephalophus nigrifrons, a forest-dwelling 

cephalophine, were also misclassified into the light cover habitat preference. Both of these 

taxa were represented by small samples in our analysis, and their relatively high incidence of 

misclassification may represent natural variation highlighted by the small number of 

individuals. 

 The complete sample of 37 taxa was used for the 5-habitat model, including the 

wetland preferring species Tragelaphus spekei, Kobus leche, and Kobus megaceros. Four 

species sampled were misclassified in 50% or more of their cases (Table 6). The first two, A. 

nasomaculatus and C. nigrifrons, were misclassified in 50% of cases (2 out of 4 each) as they 

were in the 4-habitat model. Cephalophus nigrifrons misclassifications followed the same 

pattern as for the 4-category model; however, one A. nasomaculatus was misclassified as 

light cover preferring and the other was assigned incorrectly to the wetland category.  

Cephalophus silvicultor is another forest-dwelling cephalophine that was misclassified in 4 

out of 7 (57%) cases; 3 into the wetland category and the fourth into the light cover category. 
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Kobus kob, a reduncine that prefers light cover habitats, was misclassified in 5 of 10 (50%) 

cases. Of these, 4 were into the wetland category, and the fifth into the heavy cover category.  

 

Functional interpretations 

Four habitat model  Notched box plots summarize the range of canonical scores for each 

habitat group (Fig. 7). Virtually the same pattern emerged in the work by Plummer et al. 

(2008) even with slightly different variables used in their analyses. The first discriminant 

function accounted for 71.7% of variance. The open habitat ecomorphs had significantly 

higher scores on function 1 than the other habitat groups (Fig. 7a). Two variables loaded 

heavily on function 1; LMINLEN had a high negative loading whereas LTAMAP had a high 

positive loading (Table 4). A large LTAMAP indicates a wider distal condyle of the 

astragalus in the antero-posterior direction (Fig. 2), and therefore a wider arc; this gives a 

greater range of motion within a joint. The total velocity of a limb is the sum of the velocities 

at each movable joint; therefore increasing mobility at any given joint contributes to the 

overall speed of movement of the limb (Hildebrand and Goslow, 2001; Plummer et al., 2008). 

This would be advantageous for animals living in more open habitats that rely on speed to 

outrun their predators. The shortest LMINLEN found in open habitat ecomorphs indicates a 

more deeply notched astragalus in the proximo-distal direction, mostly in the proximal 

articulation with the tibia. A deeper groove along the middle axis forms a more tightly 

interlocking joint and therefore more restricted lateral movement. Restricted lateral 

movements are found in more cursorial animals (Gentry, 1970; Scott, 1985; Kappelman, 

1988; Hildebrand and Goslow, 2001; Plummer et al., 2008), which would be adaptive for 

open habitat bovids that avoid predation by fleeing from predators. 

 The second discriminant function accounted for 19.2% of sample variance (Table 4), 

with the heavy cover ecomorphs having significantly higher scores than the other three 
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ecomorphs (Fig. 7b). LTARSMLT loaded heavily on this axis, which suggests a wider distal 

trochlea and more medio-lateral support for the tarso-astragalar articulation (Fig. 2). This 

would be advantageous in a more closed habitat that would select for greater emphasis on 

side to side movements (Kappelman, 1988; Hildebrand and Goslow, 2001; Plummer et al., 

2008). LTAMAP was also loaded heavily on the axis but with a negative value (Table 4). In 

this case a narrower distal condyle was typical of heavy cover habitats, supporting the 

aforementioned interpretation. Given this interpretation, the same would be predicted in the 

forest forms, which do not appear to differ from the more open habitat forms on this function. 

In this case, it may be that body size is important because the heavy cover forms are generally 

larger than the forest forms. Selection for a wider distal articulation (greater support) may be 

stronger for a larger body size and thus smaller forest forms may tend to be more similar to 

less closed habitats. 

 The third discriminant function accounted for only 9.1% of the sample variance. 

LMINLEN had a high negative loading whereas LTARSMLT had a high positive loading on 

this function, both variables that loaded highly on the other discriminant functions (Table 4). 

Our overall functional interpretations were largely supported by Barr (2014) in his recent 

study of bovid astragali. 

Five habitat model For the 5-habitat model we were most interested in how well a DFA 

model could discriminate bovids preferring a wetland habitat. Interestingly, the same 

variables that were highly loaded in the 4-habitat model were virtually identical in the 5-

habitat model with only minor differences in the actual values but not the loadings (Table 5, 

Fig. 7d-g). The wetlands ecomorph was most similar to the heavy cover and forest categories, 

and most distinct on function 4 where LTARSMLT was the most heavily loaded positive 

variable.  As discussed above, a wider astragalus would be advantageous for providing 
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greater support to the distal segments, especially for animals with splayed digits that are 

typical of more wetland or swamp inhabiting bovids (Kohler, 1993). 

 

Morphological convergence and divergence 

 

 For the 4-habitat model, pairs of distantly related species with the same habitat 

preferences were more similar morphologically than pairs of distantly related species having 

different habitat preference, demonstrating convergence (U = 9516; p < 0.001) (Fig. 3a). 

Pairs of closely related species having different habitat preferences were more different 

morphologically than pairs of closely related species sharing the same habitat preference, 

demonstrating divergence (U = 118, p = 0.02) (Fig.3a). The same results were true for the 5-

category model (Fig. 3b). Pairs of distantly related species having the same habitat 

preferences were more similar than pairs of distantly related species having different habitat 

preferences (U= 6426; p < 0.001).  Pairs of closely related species having different habitat 

preferences were more different morphologically than pairs of closely related species sharing 

the same habitat preference (U = 11, p = 0.007). The morphospaces created by each DFA 

demonstrably satisfy the assumptions of both convergence and divergence (Fig. 3). This 

indicated that our analysis is driven by morphology influenced by habitat constraints, and that 

the DFA is appropriate for ecomorphological analyses seeking to allocate unknown fossil 

elements to habitat type using astragali.  This analysis provides support for an increasing 

body of work suggesting that although allometry and shared ancestry will influence an 

organism‟s phenotype, this phenotype will also be impacted by the environmental constraints 

under which the organism has to live (Plummer et al., 2008; Walmsley et al., 2012; Louys et 

al., 2013; Meloro et al., 2013; Barr, 2014).  
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Fossil astragali  For the 4-habitat model, the DFA developed using the modern astragali was 

used to classify fossil astragali from the Shungura Formation (Supplementary Material,  S1).  

As noted above, our results concentrate on 401 specimens derived from Members B through 

H.  Generally, samples in this paper will be designated by the member or unit(s) from which 

they were obtained.  However, because Member G depositional regimes varied over time, 

lower Member G (Units G-1 to G-13, deposited in fluvial environments) was distinguished 

from upper Member G (Units G-14 to G-27, deposited in lacustrine environments) in some 

figures, following Bobe et al. (2002).  Units G-28 to H-7 are deltaic, and included as a 

separate grouping when appropriate.  Sample sizes were unequal, ranging from 15 to 179 

specimens per member.  Statistically significant differences in mean astragalus size did not 

exist by member (ANOVA F-ratio 0.972, df=10, p=0.467), concordant with the argument for 

isotaphonomy through much of the sequence (Bobe et al., 2002).  Overall, the DFA classified 

12% of the sample into the open category, 16% into light cover, 50% into heavy cover, and 

22% into forest habitat.  The fossil specimens were assigned to habitat preference categories 

with high probabilities.  The mean probability of membership for Omo specimens assigned to 

the open habitat category was 85%, 78% for light cover, 87% for heavy cover, and 83% for 

the forest habitat category. The high probabilities of membership in all categories, and for 

modern and fossil specimens, give us confidence in the discriminatory power of the models. 

 Table 7 shows the distribution of astragali assigned to their habitat categories by 

member. Temporal midpoints are given for each member (from Bobe et al., 2002). The times 

between these midpoints ranged from 350 ka to 50 ka (mean = 170 ka), so the time intervals 

represented by each member‟s deposition vary by a factor of seven. In order to examine time 

periods that were more equal in duration, the Shungura sequence was subdivided into shorter 

time periods sensu Bobe et al. (2002). These subintervals varied from 10 ka to 210 ka, with a 

mean of 55 ka. Although subdividing the sample may provide better remedy for time 
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averaging and clearer temporal resolution, some of these subunits were very small both 

temporally and in terms of the number of specimens. Here, we limit our discussion to thirteen 

of these shorter intervals that have samples of 10 or more astragali (see Table 8 for all results 

by stratigraphic unit).  

 The proportions of all habitat preference ecomorphs fluctuated throughout the 

sequence (Fig. 4-6). Considering first the 4-habitat category model, the relative proportion of 

open habitat preferring bovids ranged from a low of 7% in Members B and C, to a high of 

19% in Member F. In fact, there was a trend of relatively high frequencies of open habitat 

preferring bovids in the later part of the sequence (Members D, E, F, and Upper G), which 

was interrupted by a relatively low frequency of 8% in Lower Member G. Light cover 

ecomorphs occurred with a low relative frequency of 10% in Member D and a high of 27% in 

Member B. Heavy cover ecomorphs were always dominant, varying from a low of 42% in 

Member F to a high of 60% in Member C. Finally, forest ecomorphs were present throughout 

the sequence, with relative proportions ranging from 13% in Member D to their highest 

proportion of 27% in Lower Member G. Except in two instances, in Member E and Upper 

Member G, there was always a higher relative frequency of forest ecomorphs than of open 

habitat ecomorphs. In most of the Omo Shungura Members, the proportion of open habitat 

ecomorphs was relatively low, and frequently the smallest of the four categories present 

except in Members D and F, where it was the second least frequent category after the light 

cover ecomorphs.  

 We also classified the 401 astragali from Members B through H using the 5-habitat 

category model to determine the extent to which the wetlands ecomorph was represented in 

the different stratigraphic units. The results are shown in the bottom of Table 7. Overall, this 

method classified 11% of the sample into the open habitat category, 16% into light cover, 

46% into heavy cover, 19% into forest, and 7% into the wetland category. The majority of the 
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fossils attributed to the wetland category had been assigned to either heavy cover or forest by 

the 4-habitat model.  When considering just Members B through Upper Member G (n=381), 

the wetland category was present in every member of the Shungura Formation except for 

Upper Member G, but was never abundant (Fig. 5). It represented a low relative abundance of 

5% of the assemblage in Member C, and its maximum extent was 10% of the assemblage in 

Member D (overall number of specimens ranged from 1 – 17).  It is likely that the low 

frequencies of wetland habitat ecomorphs in the fossil sample are correct because this 

category had a high classification success rate. 

 We subdivided the sample into smaller temporal divisions for further analysis using 

the 4-habitat category model (Bobe et al., 2002). Bobe et al. (2002) used twenty intervals for 

their taxon-based paleoenvironmental analysis based on craniodental remains, but the sample 

of bovid astragali is too small to follow suit.  Therefore we limited our analysis to 13 of these 

intervals that had at least ten astragali (Fig. 6). This subdivision enabled us to explore 

temporal variation at a finer scale, while maintaining reasonable sample sizes. Variation in 

relative ecomorph abundance was emphasized in these smaller samples. The open ecomorph 

varied in relative frequency from a low of 4% (in G6-8) to a high of 22% (in E3-4). This was 

a greater range of relative frequency than observed in the by-member analysis. Similarly, the 

light cover ecomorphs ranged from a low of 0% in D4-5 to a high of 46% in B11-C4. Once 

again this was a much larger range of frequencies than shown when examining the data by 

member. Heavy cover ecomorphs, although still dominating all the interval assemblages 

except B11-C4 and E5-F1, also had a wider range of relative frequencies from 33% (E5-F1) 

to 70% (G28-H7) of the interval assemblage. Forest ecomorphs were always present in these 

smaller intervals. Their relative proportions also fluctuated greatly, ranging from 5% of the 

G28-H7 interval assemblage to 44% of the F4-G3 sample. The sample sizes per interval were 

too small to enable use of the 5-habitat category model on this time-constrained scale.   
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Body mass  Six of the seven variables used for the DFA were correlated significantly with 

body size, using log femoral length as a body size proxy (Table 9; adjusted R
2
 ranging from 

0.21-0.96; p<0.001). Only the variable LDEPRA9 was not significantly correlated with 

femoral length (R
2
 = 0.00; p = 0.81).  We examined the size distribution of our sample of 

modern and fossil bovid astragali across the different habitat preference categories using 

LMINLEN as a proxy for body mass (Fig. 8). Comparing the modern and fossil size 

distributions makes it clear that very small bovids, which in the modern sample are 

predominantly in the light cover and forest preferring categories, are under-represented in the 

Omo collection.  This may signal that these ecomorphs were under-represented due to a size 

related taphonomic or collection bias.  Modern astragali attributed to the open and heavy 

cover categories largely overlap with each other in terms of size, and one would expect a 

great deal of misclassifications between these groups, and between light cover and forest, if 

body mass was driving the DFA results.  Moreover, a number of fossils assigned to forest 

actually extend beyond the size range of forest bovids in the extant sample used in the DFA 

model (Fig. 8).  This is a further indication that body size alone is not driving the habitat 

attribution of fossils. 

 

Discussion 

 The high overall success rates of our models allow us to have confidence in the 

habitat preference assignments predicted for the Omo fossil sample.  This is a critical starting 

point when investigating shifts in the relative proportions of ecomorphs through time 

(Plummer et al., 2008).  Given that much of the sequence is isotaphonomic, shifts in 

ecomorph proportions should, at some level, reflect shifts in the relative proportions of 

habitats existing in the vicinity of the paleo-Omo River (or lake, in upper Member G) (Bobe 

et al. 2002).  Here we use the results of our ecomorphic analyses to assess observations made 
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by previous taxon-based analyses of fauna, paleobotanical remains, sedimentological 

analyses and isotopic studies (e.g., Bobe and Eck, 2001; Bobe et al., 2002; Alemseged, 2003; 

Bobe and Behrensmeyer, 2004; Bobe, 2006; Bobe et al., 2007; Bobe and Leakey, 2009; 

Bobe, 2011; Levin et al., 2011; see Figure 9). 

 

1. A spectrum of habitats existed through time in the Shungura Formation sequence, with a 

relatively high representation of woodland and forest habitats. 

Our ecomorph data are consistent with this prediction.  A range of ecomorphs was found in 

the fossil sample, but ecomorphs representing wooded contexts (woodlands and forest) were 

particularly well represented (Fig. 4-6, 9).  Moreover, it is likely that the forest and light 

cover ecomorphs were actually underrepresented.  In attritional assemblages formed in past 

and present African ecosystems there is frequently a strong bias against small (<15 kg) 

mammal taxa, such that their frequency in death assemblages is often lower than their 

frequency in living communities (Behrensmeyer and Dechant Boaz, 1980, Potts, 1988; 

Behrensmeyer and Chapman, 1993).  The Omo sample lacks the small (size 1) bovids that are 

found in the modern forest and light cover samples (Fig. 8), most likely because of a 

taphonomic bias against this size class, and so these habitats may be underrepresented by the 

ecomorph proportions presented here. 

The heavy cover category, here interpreted as heavy bushland or woodland, was 

particularly well represented throughout the sequence.  Our past models (e.g., Plummer and 

Bishop, 1994; Plummer et al., 2008; Bishop et al., 2011, Louys et al., 2013), and the models 

of other researchers (e.g., Kappelman et al., 1997; DeGusta and Vrba, 2003) conflate bovids 

preferring wetlands with those preferring woodlands within the heavy cover category.  At 

many paleontological sites, where wetlands can be effectively ruled out by sedimentological 

analysis or other proxies, this is probably not a problem.  The Shungura Formation has clear 
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evidence of wetland environments however, both sedimentologically and in the form of 

Typha pollen, so it is potentially important not to conflate woodland with wetland habitats 

here (Bobe and Eck, 2001).  Our 5-habitat model suggests that wetland ecomorphs were 

present, but did not make up a substantial percentage of the overall bovid sample (< 10% in 

every member; see Table 7, Fig. 5).  The strong heavy cover signal in both the 4- and 5-

habitat models almost certainly reflects woodland rather than wetlands.  

 

2. An environmental shift occurred at approximately 2.8 Ma (between Members B and C), 

which resulted primarily in a shift from wet, closed environments to dry, closed 

environments.  A range of environmental proxies suggests there was a transition from wet 

and closed environments to dry and closed environments at approximately 2.8 Ma (between 

Members B and C) (Bobe and Behrensmeyer, 2004; Bibi et al., 2013).  Data from this study 

are equivocal on this matter.  There was not a significant shift in ecomorph frequency from 

Member B to Member C using either the 4- or 5-category model, especially when compared 

with the taxonomically-based rodent and bovid data (Fig. 9). At the finer scale, there is a 

strong shift in the proportions of light cover and heavy cover ecomorphs between interval 

B11-C4 and interval C6-7 (Fig. 6). Light cover strongly dominates the earlier interval, and 

this shifts to heavy cover dominance in C6-7 (from 46% light cover and 38% heavy cover to 

19% and 63%, respectively). The relative proportions of open and forest ecomorphs show 

less change between B11-C4 and interval C6-7.  

3.  There was an interval of relative environmental stability from 2.7-2.5 Ma, followed by an 

increase in habitat variability between 2.5 – 2.0 Ma.  Our data are consistent with this 

prediction (Figures 6, 9). The two intervals (C6-7, C8) that fall between 2.7 and 2.5 Ma are 

relatively similar (6% open,19% light cover, 63% heavy cover, 13% forest vs 7% open,11% 

light cover, 63% heavy cover, 19% forest, variation in frequencies 0%-8%) whereas those 
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that follow between 2.5 – 2.0 (intervals between D4-5 and G14-27) are quite variable, 

particularly in the frequency of open, light cover, and forest ecomorphs (range of variation 

for open 18%, light cover 30%, heavy cover 31% and forest 37%). However, the sample sizes 

are unequal, and time spans are unequal and discontinuous, so it is possible that results reflect 

varying temporal scales rather than a discrete paleoenvironmental trend. 

4.  A drying trend existed between Members C and F.  From our analysis, there was an 

increase in open habitat ecomorphs from Members C to F (Fig. 4, 5, 9).  This is consistent 

with an expansion of secondary grassland as reflected in pollen, rodent and bovid taxonomic 

abundance data. This may be related to aridification or simply result from landscape 

remodelling or soil change, for example by the deposition of a volcanic tuff.  Figure 6 shows 

that the samples from Members D and E had higher proportions of open habitat ecomorphs 

than the lower G units, though there was some fluctuation, with Unit G4 having a relatively 

high open ecomorph frequency. However, the proportion of forest ecomorphs also increased 

between Members C and D and can be seen to fluctuate throughout the sequence. This 

suggests that any drying trend did not decrease the availability of forest as grassland 

increased. This could be due to a variety of geographical causes, such as the persistence of 

gallery forest alongside the paleo-Omo River.  

5.   Taxa associated with grasslands became more common than those associated with forest 

after 2.5Ma, with a small peak in taxa preferring relatively open environments in Member F 

at approximately 2.35 Ma.  Our results do not support this observation.  There were times 

(e.g., Member E, Fig. 4, 5, 9) where open ecomorphs were more common than forest ones, 

but the opposite was true for Members D, F, and Lower Member G.  The more refined 

stratigraphic intervals show a great deal of fluctuation in open and forest ecomorphs, with the 

forest ecomorphs (e.g., F4-G3, G6-G8) sometimes being considerably more common than the 

open ones (Fig. 6).  Further, as mentioned above the increase in relative frequency of open 
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ecomorphs did not occur universally at the expense of forest ecomorphs. Although our data 

show that the highest relative proportion of open ecomorphs occurred during Member F, this 

does not represent a strong, outlying peak to the relative frequency of open habitats. Instead 

our data examined by member show a gradual increase in the relative proportion of open 

ecomorphs peaking at 19% during Member F. When examined by interval, however, the 

apparent pattern is more complex. The biggest jump in relative frequency of open ecomorphs 

occurred between C8 and D4-5, when it changed from 7% to 20%. However, these intervals 

were not continuous so the increased frequency might have been attained more gradually than 

it appears. The relative high proportion of open ecomorphs then persisted for 3 intervals (D4-

5, E3-4, and E5-F1) before dropping to 8% in interval F4-G3. There was no evidence for a 

peak in open country bovids in lower Member F, rather a more sustained plateau of relatively 

high frequencies between D4-5, E3-4, and E5-F1 (Fig. 6). Subsequently, open ecomorphs 

jumped to 21% of the overall sample in G4. The relative frequencies of forest ecomorphs also 

fluctuated, although the patterns evinced appear to bear no consistent relation, either positive 

or negative, with the changes in relative frequencies of open ecomorphs. The changes in 

relative frequency of open ecomorphs were more extreme in these smaller, discontinuous 

intervals, ranging from 4-22%. However, it is more difficult to discern patterns and trends in 

these data than it is for the samples examined by member. 

6.  Grassland-dominated habitats expanded during upper Member G deposition, and 

thereafter, with some fluctuation, made up a greater proportion of the overall environment 

than they had prior to lower Member G.  Our data are consistent with an increase in open 

habitats as reflected in an increase in the relative proportion of open habitat ecomorphs from 

lower to upper G (Fig. 4, 5). This is also borne out by the finer temporal intervals from G14-

27 to G28-H7 (Fig. 6, Table 8).  Our sample of ecomorphs from Members J through L is 

probably too small to put much stock in (n=11), but the frequency of ecomorphs in this 
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sample is similar to that of G28-H7 at 18%.  However, there are intervals with high open 

habitat ecomorph frequencies prior to lower Member G, suggesting that a more finely 

resolved record might show some relatively high intervals of open ecomorph representation 

earlier in time. 

 Predictions 5 and 6 were based on the analysis of multiple macromammalian taxa, as 

well as microfauna, paleobotanical data, and stable isotopes (e.g., Bobe and Eck, 2001; Bobe 

and Behrensmeyer, 2004; Levin et al., 2011).  Bobe et al. (2007) used the proportion of 

Alcelaphini-Antilopini-Hippotragini (AAH) bovids out of the total number of specimens 

identified to tribe as an additional proxy indicating grassy habitats (Table 10).  Modern game 

reserves that have high AAH frequencies tend to have a large proportion of open habitats, 

whereas those with low AAH frequencies do not (Vrba, 1980; Bobe, 2006).  Our analysis 

shows that the relative proportion of open habitat ecomorphs increased steadily from 7% in 

Member C to 19% in Member F. This is a stronger signal for a drying trend than is provided 

by the AAH using bovids attributed to tribe (Bobe et al., 2007).  Because the by-member 

fossil samples are relatively isotaphonomic (Bobe et al., 2002), the frequencies of cranial 

parts identifiable to taxon and astragali remained reasonably uniform over time (see Bobe et 

al., 2002).  It is therefore unlikely that this discrepancy between the AAH and open ecomorph 

frequencies is related to taphonomic variations affecting the relationship between cranial and 

postcranial elements over time.  The AAH oscillated between 2.6% and 8.8% without 

demonstrating a clear directional trend. In this case the ecomorph data provides an improved 

ability to register changes in relative habitat abundance and mirrors trends shown in a variety 

of environmental proxies, for example paleobotanical and microfaunal data (Bobe and Eck, 

2001; Alemseged, 2003, Fig. 9). 

  

Ecomorph variability and hominin paleoenvironments 
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The relative rarity of hominin fossils in the Shungura Formation suggests they were not 

particularly abundant in their paleocommunities.  This is best assessed by examining the 

frequency of hominin fossils occurring in the samples of the skeletal parts (astragali and 

mandibles) that were systematically collected by the American Omo Expedition for all taxa 

(Bobe and Eck 2001; Bobe and Leakey, 2009).  Eck‟s team recovered 601 astragali and 773 

mandibles from all mammals.   While none of the astragali were hominin, 5 of the mandibles 

were, demonstrating an overall abundance of 0.65% for the mandible assemblage. 

Theropithecus, which is similar in body size and overall skeletal morphology to hominins, is 

much more abundant in the mandible sample, (n=96, 12.4%). These abundances suggest that 

hominins were rare in the Omo paleolandscape, even relative to some other primates. 

Three hominin genera, Australopithecus, Paranthropus and Homo, are known from 

the Shungura Formation, and most of these are found in deposits below Unit G5 in Lower 

Member G (Bobe et al., 2002; Alemseged, 2003; Bobe and Behrensmeyer, 2004; Bobe and 

Leakey, 2009).  Specimens attributable to Australopithecus are known from Members B to D, 

from about 3.2 to 2.4 Ma (Fig. 4).  Paranthropus first appears in Member C at about 2.7 Ma, 

and Homo first appears in Member E at about 2.4 Ma.  The specific habitat preferences of 

individual hominin taxa, and the degree to which these habitat preferences differed, is 

difficult to determine.  Paleoenvironmental analysis at the level of member suggests that all 

three genera were associated with environments containing a broad range of habitats (forest 

to grassland), with wooded settings being particularly common (Fig. 4).  AAH values by 

member are all low, indicating that secondary grasslands were not particularly extensive 

(Table 10).  Several statistical associations have been made between hominin genera and 

other faunal elements in the paleocommunities (Bobe and Behrensmeyer, 2004).  

Australopithecus is significantly associated with the suid Kolpochoerus (limnetes) heseloni, 
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which preferred well-wooded to mixed habitats, and had a diet that varied from mixed C3/C4 

to a variable grazing C4 diet (δ
13

C -6.3 to 1.4) (Bishop et al., 2006).  Australopithecus is also 

strongly associated with the colobine Rhinocolobus turkanaensis, whose preference for 

woodlands and folivorous diet is an indicator of well-wooded settings (Bobe and 

Behrensmeyer, 2004).  In Members E to lower G, Paranthropus is strongly associated with 

Theropithecus oswaldi, which preferred grassy settings, and with Homo.  Homo, in turn, is 

associated with Papio, thought to be a habitat and dietary generalist, as well as with the bovid 

Tragelaphus gaudryi, thought to prefer bushy habitats.  The finding that Paranthropus and 

Homo had strong associations with different taxa, at the same time that Paranthropus was 

strongly associated with Homo, may indicate that there were but subtle habitat preference 

differences between these genera during Shungura Formation deposition. 

 When the ecomorph abundance data are grouped by member, Australopithecus is 

predominantly associated with lower frequencies of open habitat ecomorphs, and high 

frequencies of heavy cover ecomorphs (Fig. 4).  Perhaps, as indicated by its association with 

R. turkanaensis and K. (limnetes) heseloni, this reflects a more woodland focus for its 

activities.  Homo and Paranthropus are found in paleoenvironmental settings that include 

both very low open ecomorph frequencies (Lower G) as well as relatively higher open 

ecomorph frequencies (Members E and F) (Fig. 4).  When assessed by the shorter 

stratigraphic intervals, the predominantly heavy cover association for Australopithecus is still 

apparent, though the relatively small (n=10) D4-5 interval has a higher open ecomorph 

frequency than the larger C8 sample (n=27) that precedes it (Fig. 6).  Paranthropus and 

Homo are both associated with varied environments that still contain relatively high 

frequencies of open and often of light cover ecomorphs.  Homo occurs with a higher 

proportion of open ecomorphs in the by-member analysis, but this is not as evident in the 

interval analysis. Homo fossils are not uniquely associated with the intervals where open 
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ecomorphs are at their highest (G28-H7 no hominins, G4 Paranthropus only). Alternatively, 

the association of Paranthropus and Homo with habitat spectra containing slightly higher 

proportions of open and light cover ecomorphs could reflect a gradual drying trend through 

time (see observation 4 above) independent of habitat preference differences between earlier 

(Australopithecus) and later (Paranthropus and Homo) hominin taxa.  

 

Summary and conclusions 

 

 The bovid astragalus is a commonly preserved bone in the fossil and archeological 

records.  Here we provide astragalus DFA models that offer a good compromise between 

application to fragmentary fossil specimens, and high classification success rates.  Seven 

variable DFA models were developed to assign fossil bovid astragali to habitat categories 

ranging from open cover to forest, with a wetlands category being created for one model.  

Analysis of divergence and convergence within our bovid sample relative to phylogeny 

confirms that our models conform to an ecomorphic framework.  The accuracy of these 

models is high (>82 %) as assessed by resubstitution and jackknife analyses, and they provide 

a useful method for predicting the habitat preferences of unassigned astragali from the Omo 

Shungura Formation.  

 Analysis of the Shungura Formation fauna demonstrated an abundance of heavy cover 

ecomorphs, and a trend of increasing open ecomorph frequencies through time between 

Members C and F.  Our 5-habitat category model demonstrated that although Typha pollen 

and sedimentological indicators of near-water paleoenvironments existed, wetland ecomorphs 

were never very common.  Our results are also notable in demonstrating that, although there 

were fluctuations between the relative abundance of different habitat preference ecomorphs 

through time, each ecomorph type was always present.  Using ecomorph abundance as a 



Plummer et al. / 35 

proxy for habitat availability, we conclude that Omo vegetational environments were 

consistently heterogenous through time.  Even at times that other proxies suggested were the 

driest during Shungura Formation deposition, woodland and forest ecomorphs persisted, 

sometimes at relatively high frequencies.    

 Hominin fossils attributed to Australopithecus, Paranthropus, and Homo have been 

recovered from Shungura Formation deposits.  When the ecomorph abundance data are 

grouped by member, Australopithecus is predominantly associated with lower frequencies of 

open habitat ecomorphs, and higher frequencies of heavy cover ecomorphs (Fig. 4).  Homo 

and Paranthropus are found in paleoenvironmental settings that include both very low open 

ecomorph frequencies (Lower G) as well as relatively high open ecomorph frequencies 

(Members E and F) (Fig. 4).  This seems to support the suggestion that Homo and 

Paranthropus preferred, or perhaps simply had greater access to, a more heterogeneous mix 

of environments including more open and light cover habitats (sensu Bobe and 

Behrensmeyer, 2004). 

The development of ecomorphic methodologies using a broad array of taxa and 

skeletal elements will ultimately help mitigate data lost by the differential destruction of 

particular elements or element portions by density-mediated processes, such as carnivore 

consumption (Faith and Behrensmeyer, 2006).  Larger samples of fossils amenable to 

analysis will allow more robust comparisons between different types of ecomorphic analyses, 

such as postcranial ecomorphology and ecomorphic assessments of community structure.  

Future ecomorphic research in the lower Omo Valley and Turkana basin could productively 

extend the work described here.  The analysis of additional postcranial elements from the 

Shungura Formation samples would increase the sample of ecomorphs per member, and 

ultimately could provide large enough samples to look at shifts in ecomorph frequencies over 

much more refined (submember to unit) time intervals.  Improved sampling would also allow 
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ecomorphic analysis to be carried out by collection area or locality, to address horizontal 

variation in ecomorph frequencies across the areas the Shungura Formation is exposed, and to 

look specifically at the ecomorphic signal associated with hominin finds.  With a higher level 

of resolution and better correlation across proxy records, changes in ecomorph frequencies 

could be assessed relative to local, regional, and global climatic fluctuations.  Finally, it 

would be interesting to extend the ecomorphic analysis to the Nachukui and Koobi Fora 

Formations on the west and east sides, respectively of Lake Turkana.  Stable isotopic analysis 

of paleosol carbonates from the Omo Group suggested that the Shungura Formation was 

dominated by C3 vegetation (e.g., bushes and trees), whereas the coeval deposits of the 

Koobi Fora and Nachukui Formations had a greater proportion of C4 (grassy) vegetation 

(Levin et al., 2011).  We predict that this variation in C4 vegetation between different 

formations of the Omo Group will translate into parallel differences in ecomorph frequencies. 
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Figure captions: 

 

Figure 1 - Location of the Shungura Formation within the Omo-Turkana Basin.  After Bobe 

(2011), Fig. 1. 

 

Figure 2. Caliper measurements used in this study, illustrated on bovid left astragalus. 

Superior view, a. Medial view, b. For descriptions of these measurements, see Table 2. 

 

Figure 3. Box plots of the Euclidian distances between each potential species pair for 

externally ordinated morphospace, a: 4-habitat model, b: 5-habitat model. Species classified 

according to level of relatedness between species pairs, derived from Hernandez-Fernandez 

and Vrba 2005.  The mean divergence time for congeneric African Bovidae was 4.59 Ma, 

with a standard deviation of 2.94 Ma calculated using data from Hernandez-Fernandez and 

Vrba (2005). Two species were considered closely related if their time since divergence was 

less than 11 Ma, representing the mean divergence time + two standard deviations. 

Environments were represented by the habitat classifications of open, light cover, heavy 

cover, forest and, in the 5-category model, wetlands. For each group, the 25-75 percent 

quartiles are drawn using the box, the median is shown with a horizontal bar in the box, the 

whiskers accompanying the box show minimum and maximum values, and outliers are 

shown as points. Asterisks indicate significant differences (p < 0.05) between the groups for 

both models. 

 

Figure 4. Results of discriminant function analysis of Omo Shungura Formation astragali 

using the 4-habitat category discriminant function model. The relative frequencies of each 

habitat preference ecomorph are shown for individual stratigraphic members within each bar. 
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The number of fossils assigned to each category is shown within the bars. The occurrences of 

hominin taxa in each member (Bobe et al. 2002) are indicated by the letters above each bar, 

with A = Australopithecus, P= Paranthropus and H= Homo. 

 

Figure 5. Results of discriminant function analysis of Omo Shungura Formation astragali 

using the 5-habitat category discriminant function model. The relative frequencies of each 

habitat preference ecomorph are shown for individual stratigraphic members within each bar. 

The number of fossils assigned to each category is shown within the bars.  

 

Figure 6. Results of discriminant function analysis of Omo Shungura Formation astragali 

using the 4- category discriminant function model. The relative frequencies of each habitat 

preference ecomorph are shown for individual stratigraphic intervals (as defined by Bobe et 

al., 2002) where sample sizes were 10 or more astragali. Raw sample sizes for each category 

are shown within the bars. The occurrences of hominin taxa in each interval (Bobe et al. 

2002) are indicated by the letters above each bar, with A denoting Australopithecus, P= 

Paranthropus and H= Homo. 

 

Figure 7. Notched box plots summarizing the range of canonical scores for each habitat 

group; a, b, c are the canonical scores for the 4-habitat model and d, e, f, and g are those for 

the 5-habitat model. The horizontal line at the point of constriction of each box represents the 

sample median. The upper and lower margins of the boxed areas are termed hinges. The 

median divides the sample distribution in halves, whereas the hinges split the halves into 

quarters. The outer confidence limits are encompassed by each box. If the notched areas of 

two samples do not overlap, there is a high probability (95% or higher) that the samples in 

question were drawn from different populations.  
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Figure 8. LMINLEN (log minimum length of the astragalus, a proxy for body size) versus 

habitat category is shown for (a) modern astragali in this study and (b) Shungura Formation 

fossil antelope astragali analysed with the 4-habitat DFA.  The modern astragali exhibit a 

wider range of LMINLEN values, including small values not found in the fossil sample.  In 

addition, the range of LMINLEN in the Shungura Formation sample extends beyond what is 

seen in the modern forest habitat category. On the y-axis, 1=open, 2=light cover, 3=heavy 

cover, 4=forest.  

 

Figure 9.  A summary of select paleoenvironmental indicators, juxtaposed against Shungura 

Formation geochronology and stratigraphy.  (a) Chronology and stratigraphy.  (b) 

Depositional environments and paleosols. (c) Paleobotanical evidence. (d) Micromammals. 

(e) Shungura environments based on bovid abundances.  (f) Ecomorph frequencies for the 4-

habitat model described here.  After Bobe and Eck (2001), Fig. 3.  

C/A%=%Chenopodiaceae/Amaranthaceae.   

 

Supplementary Material, S1 

Listing of the Omo Shungura fossil specimens included in this study, showing the probability 

of assignment into both 4- and 5-habitat category models. 



Table 1.  Taxon list, sample size, and habitat preference category for specimens used in this analysis. 

 
Subfamily Tribe Species Sample 

size 
Habitat 

Bovinae Tragelaphini    

  Tragelaphus euryceros 6 Heavy cover 

  Tragelaphus imberbis 4 Heavy cover 

  Tragelaphus scriptus 17 Forest 

  Tragelaphus spekei 11 Wetland 

  Tragelaphus strepsiceros 7 Heavy cover 

 Cephalophini    

  Cephalophus dorsalis 5 Forest 

  Cephalophus leucogaster 4 Forest 

  Cephalophus monticola 4 Forest 

  Cephalophus natalensis 4 Forest 

  Cephalophus nigrifrons 4 Forest 

  Cephalophus silvicultor 7 Forest 

  Cephalophus weynsi 5 Forest 

Antilopinae  Sylvicapra grimmia 17 Light Cover 

 Neotragini    

  Madoqua kirkii 11 Light Cover 

  Neotragus moschatus 4 Forest 

  Ourebia ourebia 7 Light Cover 

  Raphicerus campestris 5 Light Cover 

 Antilopini    

  Antidorcas marsupialis 8 Open 

  Gazella granti 10 Open 

Hippotraginae  Gazella thomsoni 8 Open 

 Reduncini    

  Kobus ellipsiprymnus 10 Heavy Cover 

  Kobus kob 10 Light Cover 

  Kobus megaceros 7 Wetland 

  Kobus leche 1 Wetland 

  Redunca redunca 10 Light Cover 

  Redunca arundinum 7 Light Cover 

  Redunca fulvorufula 8 Light Cover 

 Hippotragini    

  Addax nasomaculatus 4 Open 

  Hippotragus equinus 4 Open 

  Hippotragus niger 9 Open 

Alcelaphinae  Oryx gazelle 13 Open 

 Aepycerotini    

  Aepyceros melampus 12 Light Cover 

 Alcelaphini    

  Alcelaphus buselaphus 14 Open 

  Connochaetes  gnou 5 Open 

  Connochaetes taurinus 6 Open 

  Damaliscus dorcas 8 Open 

  Damaliscus lunatus 10 Open 

 

Table



 

 

 
Table 2. Variables used in the analyses, illustrated in Figure 2. 

 
Variable 
name 

Variable 
Type 

Description 

TARSMLT 
 

measurement Mediolateral dimension of the tarsal articulation 

TAMAP measurement Anterioposterior dimension of the medial side of the tarsal 
articulation 

MINLEN measurement Minimum length of the astragalus, measured from the central 
depressions of each trochlea 

LENRA8 ratio Medial length of the astragalus (MEDLEN) divided by the minimum 
breadth of the tarsal articulation (FOFO) 

LENRA21 ratio Medial length of the astragalus (MEDLEN) divided by the trochlear 
diameter of the medial side of the tibial articulation (TIMAP) 

LMLRAT3 ratio Maximum mediolateral dimension of the astralagus (TUBML) divided 
by the minimum breadth of the tarsal articulation (FOFO) 

DEPRA9 ratio Mediolateral dimension of the tarsal articulation (TARSMLT) divided 
by the maximum depth of the astragalus (MAXSI) 

 
 
 
 
 



Table 3. Summary statistics of log-transformed variables used in the quadratic discriminant function models. 
      

 n Mean S.D. Min Max 

LTARSMLT      

Open 99 1.439 0.115 1.152 1.638 

Light cover 87 1.232 0.137 0.907 1.439 

Heavy cover 27 1.542 0.060 1.362 1.613 

Forest 54 1.222 0.140 0.924 1.428 

Swamp 19 1.420 0.026 1.384 1.471 
      

LTAMAP      

Open 99 1.347 0.107 1.069 1.539 

Light cover 87 1.136 0.139 0.797 1.353 

Heavy cover 27 1.418 0.052 1.252 1.495 

Forest 54 1.087 0.128 0.825 1.287 

Swamp 19 1.284 0.036 1.225 1.344 
      

LMINLEN      

Open 99 1.538 0.109 1.286 1.723 

Light cover 87 1.378 0.128 1.098 1.573 

Heavy cover 27 1.667 0.057 1.513 1.762 

Forest 54 1.361 0.135 1.057 1.541 

Swamp 19 1.555 0.026 1.506 1.604 
      

LLENRA8 (Log medlen)/(Log fofo)   

Open 99 1.218 0.039 1.123 1.302 

Light cover 87 1.276 0.066 1.175 1.534 

Heavy cover 27 1.216 0.029 1.158 1.264 

Forest 54 1.290 0.081 1.153 1.544 

Swamp 19 1.232 0.049 1.133 1.289 
      

LLENRA21 (Log medlen)/(Log timap)   

Open 99 1.139 0.015 1.108 1.18 

Light cover 87 1.189 0.036 1.142 1.296 

Heavy cover 27 1.138 0.016 1.099 1.168 

Forest 54 1.185 0.043 1.130 1.331 

Swamp 19 1.159 0.018 1.127 1.192 
      

LMLRAT3 (Log tubml)/(Log fofo)   

Open 99 1.084 0.030 0.989 1.13 

Light cover 87 1.092 0.042 1.014 1.205 

Heavy cover 27 1.080 0.022 1.036 1.125 

Forest 54 1.098 0.050 0.998 1.257 

Swamp 19 1.072 0.041 0.994 1.137 
      

LDEPRA9 (Log tarsmlt)/Log (maxsi)   

Open 99 1.020 0.011 0.996 1.046 

Light cover 87 1.014 0.020 0.967 1.059 

Heavy cover 27 1.019 0.010 0.997 1.052 

Forest 54 1.030 0.017 0.993 1.067 

Swamp 19 1.017 0.018 0.983 1.056 

 



Table 4.  Results of four-habitat category astragalus discriminant function analysis.  
 
A. Pooled within-class standardized canonical coefficients 
 
 
Canonical Discriminant Functions: Standardized by Within Variances 

 
  1 2 3 

LTARSMLT 0.990 5.757 5.133 

LTAMAP 4.233 -3.857 -1.371 

LMINLEN -4.742 -0.505 -4.273 

LLENRA8 0.002 1.402 0.798 

LLENRA21 -0.053 -0.044 -0.637 

LMLRAT3 0.004 -0.518 -0.373 

LDEPRA9 0.004 -0.168 0.196 

    

% Variance 71.7 19.2 9.1 

 

 
B. Resubstitution classification results from quadratic discriminant function analysis (total correct 88%) 

Classification Matrix (Cases in row categories classified into columns) 

  Open Light Cover Heavy Cover Forest %correct 

Open 89 4 6 0 90 

Light Cover 4 72 5 6 83 

Heavy Cover 1 1 25 0 93 

Forest 0 5 0 49 91 

Total     88 

 

 
C. Multivariate statistics testing hypothesis that class means are equal. 

Test Statistic 

Statistic Value Approx. F-Ratio df p-Value 

Wilks's Lambda 0.137 35.235 21 727 0.000 

Pillai's Trace 1.330 29.482 21 777 0.000 

Lawley-Hotelling Trace 3.343 40.703 21 767 0.000 

 

 
 
D.  Jackknifed classification results from quadratic discriminant function analysis (total correct = 84%) 

Jackknifed Classification Matrix 

  Open Light Cover Heavy  Cover Forest %correct 

Open 86 5 8 0 87 

Light Cover 4 67 5 11 77 

Heavy Cover 2 2 22 1 81 

Forest 0 6 0 48 89 

Total  
 

   84 

 

 



Table 5.  Results of five habitat category astragalus discriminant function analysis.   
 
A. Pooled within-class standardized canonical coefficients 
 
Canonical Discriminant Functions: Standardized by Within Variances 
 
  1 2 3 4 

LTARSMLT 1.085 4.994 4.909 7.134 

LTAMAP 4.072 -3.288 -1.520 -2.969 

LMINLEN -4.772 -0.232 -3.640 -4.245 

LLENRA8 -0.081 1.284 1.090 0.103 

LLENRA21 -0.081 0.089 -0.642 0.187 

LMLRAT3 0.050 -0.564 -0.459 -0.724 

LDEPRA9 0.023 -0.265 0.332 -1.174 

     

% Variance 68.3 22.1 8.7 0.9 

 
 
 
B. Resubstitution classification results from quadratic discriminant function analysis (total correct 87%). 

Classification Matrix (Cases in row categories classified into columns) 

  Open    Light Cover    Heavy Cover   Forest Wetland %correct 

Open 89 3 6 0 1 90 

Light Cover 4 70 1 5 7 80 

Heavy Cover 1 0 25 0 1 93 

Forest 0 4 0 45 5 83 

Wetland 0 0 0 0 19 100 

Total      87 

       

 

C. Multivariate statistics testing hypothesis that class means are equal. 

Test Statistic 

Statistic Value Approx. F-
Ratio 

df p-Value 

Wilks's Lambda 0.125 27.652 28 992 0.000 

Pillai's Trace 1.399 21.362 28 1,112 0.000 

Lawley-Hotelling Trace 3.470 33.891 28 1,094 0.000 

 
 
D.  Jackknifed classification results from quadratic discriminant function analysis (total correct = 82%) 
 

Jackknifed Classification Matrix 

 Open   Light Cover    Heavy Cover    Forest Wetland %correct 

Open 86 4 8 0 1 87 

Light Cover 4 65 1 10 7 75 

Heavy Cover 2 1 22 1 1 81 

Forest 0 5 0 44 5 81 

Wetland 0 1 0 1 17 89 

Total      82 

 
 



Table 6. Classification errors of the 4- and 5-habitat discriminant function models. Mixed sex body mass (in kg.) data from Kappelman et al. (1997) and 
Kingdon (1997). 
 
 

    
4-habitat category model 5-habitat category model 

Taxon 

Body 
Mass  
(kg) 

Habitat 
Category 

Total 
Sample 

Number 
Misclassified 

Percent 
Misclassified 

Most Likely 
Reclassification 

Number 
Misclassified 

Percent 
Misclassified 

Most Likely 
Reclassification 

Alcelaphus buselaphus 155 Open 14 0 0% 
 

0 0% 
 Damaliscus dorcas 68 Open 8 0 0% 

 
0 0% 

 Damaliscus lunatus 136 Open 10 0 0% 
 

0 0% 
 Connochaetes taurinus 214 Open 6 0 0% 

 
0 0% 

 Connochaetes  gnou 148 Open 5 0 0% 
 

0 0% 
 Hippotragus niger 228 Open 9 3 33% Heavy cover 3 33% Heavy Cover 

Addax nasomaculatus 96 Open 4 2 50% Light cover 2 50% Light Cover, Wetland 
Oryx gazella 169 Open 13 3 23% Heavy cover 3 23% Heavy Cover 
Hippotragus equinus 270 Open 4 0 0% 

 
0 0% 

 Antidorcas marsupialis 38 Open 8 0 0% 
 

0 0% 
 Gazella thomsoni 21 Open 8 1 13% Light cover 1 13% Light Cover 

Gazella granti 55 Open 10 1 10% Light cover 1 10% Light Cover 
Sylvicapra grimmia 20 Light Cover 17 3 18% Forest 3 18% Forest 
Aepyceros melampus 53 Light Cover 12 3 25% Open 4 33% Open 
Ourebia ourebia 17 Light Cover 7 0 0% 

 
0 0% 

 Raphicerus campestris 11 Light Cover 5 0 0% 
 

0 0% 
 Madoqua kirkii 5 Light Cover 11 2 18% Forest 2 18% Forest 

Kobus kob 79 Light Cover 10 4 40% Heavy cover 5 50% Wetland 
Redunca redunca 45 Light Cover 10 1 10% Forest 1 10% Wetland 
Redunca arundinum 58 Light Cover 7 2 29% Heavy cover, Open 2 29% Open, Wetland 
Redunca fulvorufula 30 Light Cover 8 0 0% 

 
0 0%   

Tragelaphus euryceros 270 Heavy Cover 6 0 0% 
 

0 0%   
Tragelaphus strepsiceros 214 Heavy Cover 7 1 14% Open 1 14% Open 
Tragelaphus imberbis 82 Heavy Cover 4 1 25% Light cover 1 25% Wetland 
Kobus ellipsiprymnus 210 Heavy Cover 10 0 0% 

 
0 0% 

 Tragelaphus scriptus 43 Forest 17 1 6% Light cover 3 18% Wetland 
Cephalophus natalensis 13 Forest 4 0 0% 

 
0 0% 

 Cephalophus leucogaster 18 Forest 4 0 0% 
 

0 0% 
 Cephalophus silvicultor 63 Forest 7 2 29% Light cover 4 57% Wetland, Light Cover 

Cephalophus monticola 6 Forest 4 0 0% 
 

0 0% 
 Cephalophus nigrifrons 16 Forest 4 2 50% Light cover 2 50% Light Cover 

Cephalophus weynsi 20 Forest 5 0 0% 
 

0 0% 
 Cephalophus dorsalis 22 Forest 5 0 0% 

 
0 0% 

 Neotragus moschatus 5 Forest 4 0 0% 
 

0 0% 
 Kobus megaceros 90 Wetland 7 

   
0 0% 

 Kobus leche  90 Wetland 1 
   

0 0% 
 Tragelaphus spekei 78 Wetland 11 

   
0 0% 

 Total misclassified 
  

286 32 
  

38 
   



 

Table 7.  Results of the 4- and 5-habitat category discriminant function analyses of Omo Shungura Formation 
antelope astragali, shown by Member. Temporal midpoints from Bobe et al., 2002. 
 
 

Member B C D E F G Lower G Upper  

Temporal Midpoint 3.0 Ma 2.65 Ma 2.45 Ma 2.4 Ma 2.35 Ma 2.2 Ma 2.0 Ma 

4 Habitat Model 

Open 1 4 3 6 10 15 3 

Light Cover 4 11 2 9 8 27 4 

Heavy Cover 8 35 10 15 22 88 10 

Closed 2 8 6 5 13 49 3 

5 Habitat Model 

Open 1 4 3 6 10 15 2 

Light Cover 3 11 2 9 8 25 4 

Heavy Cover 8 33 8 14 20 80 10 

Closed 2 7 6 4 12 42 3 

Wetland 1 3 2 2 3 17 0 

Total n 15 58 21 35 53 179 20 
 
 
 



 

Table 8. Results of the 4-habitat category discriminant function analysis of Omo Shungura Formation antelope 
astragali for the entire sample, shown by Member and Unit. 
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A 3 1       1  G 1 1 2 6 4 13 

A Total   1       1    3 1  4 5 10 

  2   
 

1 
 

1    4 3 4 6 1 14 

  9   
  

1 1    5 1 1 8 2 12 

B 10   2 4   6    6   2 4 1 7 

  11 1 2 1 1 5    7 1 1 4 4 10 

  12   
 

2 
 

2    8 2 1 32 19 54 

B Total   1 4 8 2 15    9    2 1 3 

C 4   4 2   6    10    3  3 

  5   1 4 1 6    11 1 1  1 3 

  6 1 3 8 1 13    12 5 11 16 9 41 

  7   
 

2 1 3    13   4 3 2 9 

  8 2 3 17 5 27    15   2 2  4 

  9 1 
 

2 
 

3    19 1 1 4 3 9 

C Total   4 11 35 8 58    24 1 1   2 

D     1 1   2    27 1  4  5 

  0 1 
   

1    28 2  10 1 13 

  1   
 

2 2 4  G Total 20 31 108 53 212 

  2   
 

1 
 

1  H 2 1   2   3 

  3   1 
 

2 3    4 1 1 2  4 

  4   
 

2 1 3  H Total  2 1 4   7 

  5 2 
 

4 1 7  J 2     1   1 

D Total   3 2 10 6 21    6 1  4 1 6 

E 1   2 1   3  J Total  1   5 1 7 

  2   
  

1 1  K        1 1 

  3 3 5 6 1 15    1    1  1 

  4 3 
 

6 3 12  K Total      1 1 2 

  5   2 2 
 

4  L 8 1       1 

E Total   6 9 15 5 35    9   1   1 

F   1 1 1 2 5  L Total  1 1     2 

  0 4 1 11 2 18         

  1 4 6 6 4 20         

  2    1  1         

  3 1  3 3 7         

  5     2 2         

F Total   10 8 22 13 53  Grand Total 49 67 208 89 413 



 
Table 9. The correlation coefficient (R) and the adjusted coefficient of determination (R

2
) between the log of femoral 

length and the log of variables used in this study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Caliper Measurements 
n R Adjusted 

R
2
 

p 

LTARSMLT 177 0.980 0.961 <0.0001 
LTAMAP 177 0.965 0.932 <0.0001 
LMINLEN 177 0.987 0.974 <0.0001 
     
Ratios     
LLENRA8 177 0.778 0.603 <0.0001 
LLENRA21 177 0.815 0.663 <0.0001 
LLMLRAT3 177 0.464 0.211 <0.0001 
LDEPRA9 177 0.018 0.000 0.810 



 
 
 
Table 10. Table showing the relative frequency of Antilopini, Alcelaphini, and Hippotragini (AAH) as a proportion of the 
total sample of antelopes identifiable to tribe from each member of the Omo Shungura Formation, compared to the 
percentage of open habitat ecomorphs determined by this study. Taxonomic identifications are based on craniodental 
material. Data for AAH and temporal midpoints from Bobe et al., 2002. 
 

 

Formation 
Member or unit 

Alcelaphini Antilopini Hippotragini 
total 

Antelopes 
percent 

AAH 

percent 
OPEN 

Temporal 
Midpoint  

(Ma) 

Shungura B(U)  7 1 0 176 4.5% 7% 2.9 

Shungura C 5 3 3 430 2.6% 7% 2.7 

Shungura D 6 1 0 174 4.0% 14% 2.5 

Shungura E  9 0 1 287 3.5% 17% 2.4 

Shungura F  25 5 0 342 8.8% 19% 2.36 

Shungura G(L)  51 4 2 1615 3.5% 8% 2.2 

Shungura G(U) 13 9 0 79 27.8% 15% 2 

Shungura H 12 3 0 153 9.8% 18% 1.8 

Shungura J-L 34 3 0 167 22.2% 18% 1.5 
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