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A B S T R A C T   

Trigonelline, an alkaloid found in the seeds of Trigonella foenum-graecum L. (fenugreek), has been recognized for 
its potential in treating various diseases. Notably, trigonelline has demonstrated a neuroprotective impact by 
reducing intrasynaptosomal calcium levels, inhibiting the production of reactive oxygen species (ROS), and 
regulating cytokines. Kainic acid, an agonist of kainic acid receptors, is utilized for inducing temporal lobe 
epilepsy and is a common choice for establishing kainic acid-induced status epilepticus, a widely used epileptic 
model. The neuroprotective effect of trigonelline in the context of kainic acid-induced epilepsy remains unex
plored. This study aimed to induce epilepsy by administering kainic acid (10 mg/kg, single subcutaneous dose) 
and subsequently evaluate the potential anti-epileptic effect of trigonelline (100 mg/kg, intraperitoneal 
administration for 14 days). Ethosuccimide (ETX) (187.5 mg/kg) served as the standard drug for comparison. 
The anti-epileptic effect of trigonelline over a 14-day administration period was examined. Behavioral assess
ments, such as the Novel Object Recognition (NOR) test, Open Field Test (OFT), and Plus Maze tests, were 
conducted 2 h after kainic acid administration to investigate spatial and non-spatial acquisition abilities in rats. 
Additionally, biochemical analysis encompassing intrasynaptosomal calcium levels, LDH activity, serotonin 
levels, oxidative indicators, and inflammatory cytokines associated with inflammation were evaluated. Trig
onelline exhibited significant behavioral improvements by reducing anxiety in open field and plus maze tests, 
along with an amelioration of memory impairment. Notably, trigonelline substantially lowered intra
synaptosomal calcium levels and LDH activity, indicating its neuroprotective effect by mitigating cytotoxicity 
and neuronal injury within the hippocampus tissue. Moreover, trigonelline demonstrated a remarkable reduction 
in inflammatory cytokines and oxidative stress indicators. In summary, this study underscores the potential of 
trigonelline as an anti-epileptic agent in the context of kainic acid-induced epilepsy. The compound exhibited 
beneficial effects on behavior, neuroprotection, and inflammation, shedding light on its therapeutic promise for 
epilepsy management.   

1. Introduction 

Epilepsy is the most prevalent severe neurological condition, which 
can be described as “a brain abnormality marked via a lasting suscep
tibility to induce seizure episodes” (Fisher et al., 2005). As per the World 
Health Organization (WHO), more than fifty million individuals 
worldwide are affected by the condition, with 2.4 million new cases 

identified annually (Theodore et al., 2006). Although the specific eti
ology of seizures is unknown, research suggests that Glutamate, a 
stimulating neurotransmitter, contributes to seizures associated with 
epilepsy (Chen et al., 2023). Intracellular Ca2+ levels rise as a result of 
inadequate glutamate production and glutamate receptor stimulation, 
which triggers a series of biological reactions, involving stimulation of 
the nitric oxide synthase (NOS), increased creation of oxygen free- 
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radical production, including an interruption of mitochondrial activity, 
leading to inflammatory reactions and the death of neuronal cells (Dong 
et al., 2009). Trigonelline (TG) is a plant alkaloid found in fenugreek 
(Trigonella foenum-graecum L.) seeds (Fig. 1A). It has a wide range of 
applications in traditional medicine. Trigonelline contains neuro
protective, anti-migraine, anti-hyperlipidemic, anti-hyperglycemic, and 
memory-enhancing effects (Zhou et al., 2012). Moreover, trigonelline 
has anti-inflammatory (Khalili et al., 2018), and anti-apoptotic (Zhou 
et al., 2013) properties, and may protect against diabetic peripheral 
neuropathy (Liu et al., 2018). However, no evidence of trigonelline in 
kainic acid’s preventive effect against epilepsy has been found. An 
excitotoxic glutamate derivative called kainic acid (KA) acts like an 
ionotropic KA receptor (Fig. 1B). The most well-acknowledged concept 
of temporal lobe epilepsy (TLE) is the KA-induced status epilepticus 
(Lévesque and Avoli, 2013). The goal of this investigation was to see 
whether trigonelline could protect rats against kainic acid-induced focal 
seizures. Trigonelline has neuroprotective properties, hence it might 
have antiepileptic properties via many routes. Cell signaling may be 
modulated or cytokines released can be inhibited by lowering intra
synaptosomal calcium levels (Morani et al., 2012). The combination of 
kainic acid and glutamate receptors, on the other hand, causes astrocyte 
proliferation and microglial activation, which increases cytokine pro
duction. Because trigonelline is a natural medication that has a neuro
protective effect by lowering intrasynaptosomal calcium levels and 
suppressing ROS and cytokines, it has been proposed as an anti-epileptic 
treatment. 

2. Material and methodology 

2.1. Materials 

Trigonelline and ethosuccimide were obtained from TCI (Toyko 
Chemical Industry, Japan). Kainic acid was obtained from Sigma Aldrich 
(Darmstadt, Germany). Intrasynaptosomal calcium kit and LDH kit were 
obtained from AUTOSPAN Pvt (London, UK) and IL-1β ELISA kit ob
tained from BIOCON Pvt. Ltd (Karnataka, India). All other chemicals and 
solvents used were of analytical grade. 

2.2. Animals 

Albino Wistar rats (either sex) were procured via Central Animal 
House Facility, Jamia Hamdard, New Delhi. They were kept in unre
stricted possession of food and water and kept within polypropylene 
cages with specific conditions (at 21 ± 1 ◦C and a 12-h light/dark cycle). 
The experiment was conducted according to the CPCSEA (the Commit
tee for the Purpose of Control and Supervision of Experiments on Ani
mals), New Delhi, India. The Institutional Animal Ethics Committee 
(IAEC) gave its approval to the protocol. A total of 48 animals were 
approved (protocol No: 1520) by the IAEC of Jamia Hamdard, New 
Delhi, India. 

2.3. Grouping and dosing 

A total of 48 albino Wistar rats, divided into six groups of eight rats 
each, with individual weights ranging from 180 to 220 g, were included 
in the study. The first group, labeled as the control, received distilled 
water intraperitoneal (I.P) (1 ml/kg body weight) once daily. The sec
ond group has been identified as kainic acid group given a single dose of 
(10 mg/kg s.c). The third group received TG (100 mg, i.p. once a day for 
14 days). The fourth group was treated by KA + TG (10 mg/kg, s.c. 
single dose + 100 mg/kg i.p for 14 days). The fifth group receives 
ethosuccimide (ETX) as a standard drug i.p. for 14 days; KA + ETX (10 
mg/kg s.c. single dose + 187.5 mg/kg). The sixth group was adminis
tered with a combination of TG + ETX + KA (100 mg/kg i.p + 180 i.p for 
14 days + 10 mg/kg single dose). For 14 days, every therapy was given 
consistently. 

2.4. Behavioral tests 

2.4.1. Behavioral seizures 
Following induction with Kainic Acid, animals were observed on 

camera for two hours. The stages of seizures were recorded according to 
the modified Racine scale (1972) with some minor changes (Borges 
et al., 2003). The stages recorded as follow; Stage 0: typical activity; 
Stage 1: stiffness or immobility; Stage 2: stiffened, elongated, and 
frequently arched tail; Stage 3: Partial body clonus, including head 
bobbing or forelimb or hind limb clonus; Stage 3.5: Whole body 
continuous clonic seizures while maintaining posture; Stage 4: Rearing; 
Stage 4.5: Severe whole body continuous clonic seizures while main
taining posture; Stage 5: Rearing and Falling; 6.Tonic-clonic seizures 
accompanied by loss of posture or jumping. The parameters that were 
considered were seizure latency and seizure intensities. The onset of 
head nodding was thought to signify the start of seizures. After two 
hours of video surveillance, the animals were given diazepam (10 mg/ 
kg, i.p.) to halt the convulsions. 

2.4.2. Open Field Test 
The size of the open field can range from modest (38 × 38 cm) to 

large (72 × 72 cm). The little open area can also act as a test chamber 
and full board for the innovative image identification task. Due to its 
vast central arena, open space is used to measure mobility, anxiety, and 
exploration. Rats were shifted to the test room in their cages, and they 
were always handled by the tip of their tails. Rats were released onto the 
open field’s center or one of its corners, where they were given five 
minutes to explore the equipment. Rats were put back in their cages after 
the five-minute test, and the open field was wiped with 70 % ethyl 
alcohol and left to dry in between experiments. Rats were exposed to the 
apparatus for 5 min on two consecutive days to assess the process of 
acclimatization to the novelty of the arena (Walsh and Cummins, 1976). 

Fig. 1. Chemical structures of (A) trigonelline, (B) kainic acid and (C) ethosuccimide.  
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2.4.3. Plus-Maze 
Two intersecting arms that formed the shape of a “+” made up the 

Elevated Plus-Maze (EPM) apparatus. A standard rat maze has four arms 
that are each 10 cm wide, raised around 70 cm off the ground. The walls 
of the enclosed arms were roughly 30 cm high and the EPM was about 
45 cm in length (Hogg, 1996). Observations were performed by video 
recording the test sessions, with the video camera mounted directly 
above the maze for 5 min. 

2.5. Biochemical tests 

2.5.1. Sample preparation 
The rats were euthanized by carbon dioxide chamber to sacrificed 

and remove the brains. The hippocampus was then isolated and washed 
with phosphate buffer saline to remove blood. The hippocampus was 
weighed and homogenized in phosphate buffer saline in 10 parts by 
weight. The homogenate was then centrifuged at 4 ◦C and aliquots were 
stored at − 80 ◦C. Then, firstly protein estimation was performed by the 
method of Lowry (Lowry et al., 1951). Then estimation of intra
synaptosomal calcium and LDH were performed by commercially 
available kits purchased from AUTOSPAN, and IL-1β was performed by 
commercially available rat ELISA kits purchased from Biocodon tech
nologies. Reduced glutathione (Ellman, 1959) and Malondialdehyde 
(Ohkawa et al., 1979), Nitrite (greiss reagent), GABA and glutamate, and 
serotonin were also estimated. 

2.5.2. Intrasynaptosomal calcium 
Intrasynaptosomal calcium level was examined by utilizing a Cal

cium kit that was acquired through AUTOSPAN Pvt. Ltd. The manu
facturer’s methodology was used to measure the level of 
intrasynaptosomal calcium in the sample, and the specimen data was 
collected using the standard curve. 

2.5.3. LDH 
By using an LDH kit that was acquired from AUTOSPAN Pvt. Ltd., the 

LDH level in rats’ brains was examined. The manufacturer’s technique 
was used to estimate the sample’s LDH concentration, and the standard 
curve provided the sample results. 

2.5.4. IL-1β 
ELISA kits from BIOCON Pvt. Ltd. were used to measure the levels of 

IL-Iβ in the rats’ brains. The manufacturer’s technique was followed to 
estimate the sample’s IL-1ß concentration and sample values were 
derived from the standard curve. 

2.5.5. Glutathione 
GSH was measured according to the method of Ellman (Ellman, 

1959). 10 % of tissue homogenate was prepared in 0.1 M PBS of pH 7.4. 
Then an equal amount of homogenate and 10 % TCA was mixed and 
centrifuged at 4000 rpm for 10 min. 0.1 ml of the above homogenate was 
taken in another test tube and 2 ml of PBS was added to it. Then 0.4 ml of 
the distilled water was added to make up the final volume of the mixture 
to 2.5 ml. Finally, 0.5 ml of DTNB (5,5-dithio-bis-(2-nitrobenzoic acid) 
(0.01 M) was added to it and the absorbance was read at 412 nm within 
5 min of the DTNB addition. 

2.5.6. Nitrite oxide 
The level of hippocampal nitrite was determined by a colorimetric 

test using Griess reagent (0.1 % N-(1-naphthyl) ethylenediamine dihy
drochloride, 1 % sulphanilamide, and 2.5 % phosphoric acid) (Green 
et al., 1982). Griess reagent and supernatant were combined in equal 
amounts, and they were then left to sit at room temperature for 10 min 
without any light. Using a Perkin Elmer Lambda 20 spectrophotometer, 
the supernatant’s absorbance was determined at 540 nm. In order to 
examine nitrite levels, a standard sodium nitrite curve that is repre
sented in micromoles per mg protein was established (Husain et al., 

2017). 

2.5.7. GABA and glutamate 
The three parts of the brain were quickly separated from the skull 

and placed on an ice-cold plate for dissection. Prefrontal cortex, thal
amus, and hippocampal tissue were separated, weighed, and put into 
1.5 ml Eppendorf-type microcentrifuge tubes. The samples were ho
mogenized in 15 volumes of methanol/water (85:15, v/v); centrifuged 
(7800 × g for 15 min at 4 ◦C) and aliquots of the supernatants were 
stored at − 20 ◦C until derivatization for GABA/glutamate analysis. 
GABA/glutamate was identified by HPLC method and compared with 
the calibration curve standard in order to quantify the amino acids 
concentrations (Zieminska et al., 2018). 

2.5.8. Serotonin 
A Teflon homogenizer homogenized the enclosed brain areas using 

0.17 M perchloric acid. The global standard was dihydroxybenzylamine 
(DHBA). Twenty sample microliters were introduced through a Shi
madzu HPLC system, which is linked to an isocratic pump (LC-10AT, 
Shimadzu) and reverse phase column (Lichrospher RP C-18, Shimadzu), 
all of which are used to separate biological amines. An electrochemical 
detector (ICS-3000, DIONEX) connected to the HPLC system and set to 
+0.60 V potential was used to find the interaction components. Citric 
acid, orthophosphate disodium hydrogen, EDTA, octane-1 sulfonic acid, 
sodium salt, and 14 % methanol (pH − 4.0) are all components of the 
mobile process, which has a flow rate of 0.8 ml/min. Neurotransmitter 
production was measured in terms of nanograms/gram of wet brain 
tissue weight. 

3. Results 

3.1. Effect of trigonelline on kainic acid induced focal seizure in Albino 
Wistar rat 

3.1.1. Latency to seizures 
The results summarized in Fig. 2A, display the delay for the initial 

convulsion in each group. Administration of kainic acid resulted in the 
development of characteristic seizure behaviors within a few minutes. 
The 14-day pretreatment with ethosuximide (187.5 mg/kg) and trig
onelline (100 mg/kg) significantly lengthened the time until the first 
seizure in toxic groups. 

3.1.2. Severity of seizures 
Results summarized in Fig. 2B, show the seizure severity of kainic 

acid-induced focal seizure in the rat. High seizure severity was observed 
in the kainic acid group. Trigonelline (100 mg/kg) and ethosuximide 
(187.5 mg/kg) pretreatment for 14 days significantly decreased the 
severity of seizures in the toxic groups. 

3.1.3. Percent mortality 
Results of mortality are given in Fig. 2C. Animals treated with kainic 

acid showed a 37.5 % death rate. Prior treatment through trigonelline 
(100 mg/kg) and ethosuximide (187.5 mg/kg) for 14 days reduced the 
death rate in the entire group. 

3.2. Impact of trigonelline on (Open Field Test) kainic acid-induced focal 
seizure in Albino Wistar rat 

3.2.1. Ambulation frequency 
Results are given in Fig. 3A. Kainic acid experienced localized sei

zures in rats due to which ambulation frequency of rats decreased as 
compared with Group III, Group IV as well as Group V. Pre-treatment 
was given by trigonelline (100 mg/kg), and ethosuximide (187.5 mg/ 
kg) for 14 days increased in ambulation frequency. 
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3.2.2. Rearing Frequency 
Results of rearing frequency are given in Fig. 3B. Kainic acid-induced 

focal seizure in rats due to which rearing frequency of rats increases as 
compared with Group III, Group IV, and Group V. Pre-treatment was 
given by trigonelline (100 mg/kg) and ethosuximide (187.5 mg/kg) for 
14 days resulted in decreases in rearing frequency. 

3.2.3. Freezing Duration 
Results of freezing duration are given in Fig. 3C. Kainic acid-induced 

focal seizure in rats due to which freezing duration of rats increases as 
compared with Group III, Group IV, and Group V. Pre-treatment was 
given by trigonelline (100 mg/kg) and ethosuximide (187.5 mg/kg) for 
14 days resulted in decreases in freezing duration. 

3.2.4. Grooming duration 
Results of grooming duration are given in Fig. 3D. Kainic acid- 

induced focal seizure in rats due to which grooming duration of rats 
increases as compared with Group III, Group IV, and Group V. Pre- 
treatment was given by trigonelline (100 mg/kg) and ethosuximide 
(187.5 mg/kg) for 14 days resulted in decreases in grooming duration. 

3.3. Effect of trigonelline on plus maze test induced focal seizure in albino 
Wistar rat 

3.3.1. The number of entries in open arms 
Results are given in Fig. 4A. Kainic acid-induced animals had very 

less entries in open arms as compared with another pre-treated group by 
trigonelline (100 mg/kg) and ethosuximide (187.5 mg/kg) for 14 days 
increased entrances within the open arms. 

3.3.2. Time spent in open arms 
Results are given in Fig. 4B. Kainic acid-induced animals had spent 

less time in the open arm due to anxiety whereas compared with another 
pre-treated group by trigonelline (100 mg/kg) and ethosuximide (187.5 
mg/kg) for 14 days increased had less duration in exposed arms. 

3.4. Effect of trigonelline on hippocampal intrasynaptosomal calcium, 
LDH, reduced glutathione (GSH) and lipid peroxidation (MDA), IL-1β, 
Nitrite, GABA, glutamate and serotonin levels following kainic acid- 
induced focal seizure 

3.4.1. Intrasynaptosomal calcium 
Results are given in Table 1. Kainic acid increased intrasynaptosomal 

calcium levels in KA groups. When compared with other pre-treated 
groups trigonelline (100 mg/kg) and ethosuximide (187.5 mg/kg) for 
14 days decreases intrasynaptosomal calcium levels in all the groups. 

3.4.2. Lactate dehydrogenase (LDH) 
Results are given in Table 1. LDH is an apoptotic protein that is 

responsible for cell death, When KA 10 mg/kg is administered in rats at a 
single dose shows elevation of LDH in rat brain tissue. Pre-Treatment 
with trigonelline 100 mg/kg for 14 days decreases the level of LDH in 
the respective group. 

3.4.3. Glutathione (GSH) and lipid peroxidation (MDA) 
Results are given in Tables 1. In the hippocampus, kainic acid pro

duction led to a rise in MDA levels and a decrease in GSH levels. Trig
onelline (100 mg/kg) and ethosuximide (187.5 mg/kg) pretreatment for 
14 days lowered MDA levels, while GSH levels were not substantially 
higher in either group. 

3.4.4. IL-1β 
Results are given in Table 2. IL-1β is an inflammatory cytokine that 

causes inflammation in rat brain tissue due to which neurotoxicity in
creases and cell death occurs while administration of kainic acid 10 mg/ 
kg. Pre-treatment with trigonelline (100 mg/kg) and ethosuximide 
(187.5 mg/kg) for 14 days reduced their levels significantly. 

3.4.5. Nitrite 
Results are given in Table 2. Increased brain nitrite expression during 

epilepsy causes nitrosative stress. When compared to the untreated 
group, the hippocampal nitrite level in the KA group was considerably 
higher. In comparison to the KA Group, the 14-day administration of TG 
and ETX dramatically decreased hippocampus nitrite levels. 

Fig. 2. (A) Indicates latency to first seizure, (B) indicates seizure score, (C) indicates % mortality. TG = Trigonelline, ETX = Ethosuximide, KA = Kainic Acid. Values 
are presented as Mean Standard Error of the Mean (Mean ± SEM) and significance was examined using one-way ANOVA followed by the Tukey multiple comparison 
test for seizure latency, Kruskalwallis one-way ANOVA followed by the Dunnet’s multiple comparison test for seizure severity score, and Fisher’s exact test to 
determine the percentage of death.***p < 0.001 when compared with Control, $p < 0.05, $$p < 0.01, $$$p < 0.001.when compared with KA,@@@p < 0.001 when 
compared with TG + KA. 
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3.4.6. GABA 
Results are given in Table 2. During epilepsy, brain hippocampal 

GABA level was significantly decreased in the KA group when compared 
with the untreated group. Delivery of TG and ETX for 14 days signifi
cantly increases hippocampal GABA levels as compared with the KA 
Group. 

3.4.7. Glutamate 
Results are given in Table 2. During epilepsy, brain hippocampal 

Glutamate level was considerably higher in the KA group when con
trasted with the untreated group. Administration of TG and ETX for 14 
days significantly decreased hippocampal GABA levels as compared 
with the KA Group. 

3.4.8. Serotonin 
Results are given in Table 2. During epilepsy, brain hippocampal 

Serotonin level was significantly decreased in the KA group in contrast 
with the untreated group, delivering TG for 14 days significantly in
creases hippocampal serotonin level as compared with the KA Group. 

4. Discussion 

Trigonelline has been shown to inhibit acetylcholinesterase and has 

been reported to rebuild dendrites and axons as well as enhance memory 
skills. In a mouse model of diabetes, trigonelline suppresses inflamma
tion and protects pancreatic cells throughout pregnancy (Ilavenil et al., 
2015). Its anti-epileptic effect in kainic acid-induced epilepsy, however, 
has yet to be documented. In this study, we aimed to see whether trig
onelline could protect rats against kainic acid-induced focal seizures. 

Trigonelline’s antiepileptic activity in rats was tested using kainic 
acid-induced focal seizures in the current study. Different approaches for 
behavioral testing of cognitive dysfunction and memory impairment are 
now accessible. To investigate rats’ spatial as well as non-spatial and 
acquisition capacities, we used the Novel Object Recognition (NOR) test, 
Open Field Test (OFT), or Plus Maze tests. In addition, we employed an 
open-field test to assess rat behavioral changes. In an open-field test, the 
control and experimental rates showed differences in locomotor and 
exploratory activity. In rats, hippocampus neuronal loss and open-field 
motor activity were shown to be reduced following KA (10 mg/kg). In 
the test group, trigonelline increased locomotor activity. The raised plus 
maze was utilized for analyzing emotional memory and learning ability 
in all rats. Indeed, one of the most often used models in the research of 
animal anxiety is the raised plus maze (Carobrez and Bertoglio, 2005). 
Seizures caused by KA were associated with impaired hippocampal 
function in this study. These results corroborate a clinical observation 
that many epilepsy patients also suffer from emotional and personality 

Fig. 3. Effect of trigonelline on kainic acid-induced refractory temporal lobe epilepsy. (A) Indicates ambulation frequency, (B) indicates freezing duration, (C) 
indicates rearing frequency, (D) indicates grooming duration. TG = Trigonelline, ETX = Ethosuximide, KA = Kainic Acid. Values are shown as Mean ± SEM, and 
significance was examined using one-way ANOVA, Tukey multiple comparison testing for seizure latency, Kruskal-Wallis one-way ANOVA, Dunnett’s multiple 
comparison testing for seizure severity score, and Fisher’s exact testing for death percentage.*** p < 0.001 when compared with control, $ p < 0.05, $$ p < 0.01, $$$ 
p < 0.001when compared with KA, @@@ p < 0.001 when compared with TG + KA. 
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issues (Dodrill, 2004). The injection of KA causes anxiety. There was a 
substantial difference between the harmful and experiment groups. The 
Novel Object Recognition (NOR) test was used to investigate rats’ spatial 
and non-spatial memory and learning abilities. In this study, rats given 
KA (10 mg/kg) showed a significant decrease in recognition of Novel 
Object compared to the Control group due to neuronal damage in the 
rats’ brains, but when trigonelline was administered for 14 days, the 
experimental group showed a highly significant difference from the KA 

group. 
According to previous research, kainic acid, a neurotoxic molecule 

that binds to the L-glutamate receptor, reduces intracellular Ca2+ levels 
and inhibits KA-induced neuronal loss of cells excitotoxicity in vitro 
model (Mohd Sairazi et al., 2015). Moreover, according to previous 
research, Trigonelline lowers intrasynaptosomal calcium levels (Lone 
et al., 2020). As a result, we formulate a hypothesis to determine if 
trigonelline reduces Ca2+ levels or not. We experimented on animals to 

Fig. 4. Effect of trigonelline on kainic acid-induced refractory temporal lobe epilepsy. (A) Indicates No. of entries in open arms, (B) indicates Time spent in open 
arms. TG = Trigonelline, ETX = Ethosuximide, KA = Kainic Acid. Values are presented as Mean ± SEM, with significance determined by one-way ANOVA followed 
by the Tukey multiple comparison test for seizure latency, by Kruskalwallis one-way ANOVA followed by the Dunnet’s multiple comparisons for seizure severity 
score, and by the Fisher’s exact test for mortality percentage. ***p < 0.001 when compared with non-treated when, $ p < 0.05, $$ p < 0.01, $$$ p < 0.001. When 
compared with KA, @ p < 0.05, @@ p < 0.01 when compared with TG + KA. 

Table 1 
Effect of trigonelline on hippocampal Intrasynaptosomal calcium, LDH, GSH, and MDA levels following kainic acid-induced focal seizure in albino Wistar rats.  

S. 
no 

Treatment 
Groups 

Dose and Route of Administration Intrasyna-ptosomal calcium 
levels (mg/dl) 

LDH Levels (unit/mg of 
protein) 

GSH Levels 
(µmol/mg of 
protein) 

MDA Levels (µmol/mg of 
protein) 

I Control 1 ml/kg (i.p) 9.925 ± 0.1750 725 ± 110.9 4.811 ± 0.070 1.107 ± 0.0023 
II KA 10 mg/kg (i.p) 13.91 ± 0.2215 1650 ± 64.55 0.8310 ± 0.1565 64.16 ± 0.4631 
III TG + KA 100 mg/kg (i.p) + 10 mg/kg (s.c) 12.03 ± 0.4329 1188 ± 42.70 2.015 ± 0.4089 5.447 ± 0.2064 
IV ETX + KA 180 mg/kg (i.p) + 10 mg/kg (s.c) 11.55 ± 0.4805 1425 ± 85.39 2.487 ± 0.1720 3.479 ± 0.2509 
V ETX + TG + KA 180 mg/kg + 100 mg/kg (i.p) + 10 

mg/kg (s.c) 
10.06 ± 0.4141 1175 ± 32.27 4.377 ± 0.2354 03.31 ± 0.34 

VI TG (per se) 100 mg/kg (i.p) 7.850 ± 0.3775 487.5 ± 112.5 5.455 ± 0.2291 1.054 ± 0.1749  

Table 2 
Effect of trigonelline on IL-1 beta levels, NO2, GABA, glutamate, and serotonin in the hippocampus of albino Wistar rats.  

S. 
no 

Treatment 
Groups 

Dose and Route of 
Administration 

IL 1 βLevels (µmol/ 
mg of protein) 

NO2– Levels (µmol/ 
mg of protein) 

GABA (nmol/mg 
of protein) 

Glutamate Levels (nmol/ 
mg of protein) 

Serotonin ug/gm 
wet tissue 

I Control 1 ml/kg (i.p) 14.30 ± 2.069 135.8 ± 2.406 146.3 ± 2.3 27.5 ± 1.4 1.8 ± 0.16 
II KA 10 mg/kg (i.p) 58.03 ± 0.9027 2017.4 ± 1.161 87.5 ± 12.5 40.75 ± 4.7 0.23 ± 0.04 
III TG + KA 100 mg/kg (i.p) + 10 mg/kg (s. 

c) 
49.67 ± 2.333 193.8 ± 1.250 117.5 ± 4.7 40 ± 2 1.4 ± 0.4 

IV ETX + KA 180 mg/kg (i.p) + 10 mg/kg (s. 
c) 

47.67 ± 1.1561 180.5 ± 7.708 123.8 ± 4.7 65 ± 2 0.14 ± 0.0 

V ETX + TG +
KA 

180 mg/kg + 100 mg/kg (i.p) 
+ 10 mg/kg (s.c) 

39.89 ± 0.273 174.3 ± 2.175 132.5 ± 1.4 40 ± 2 1.3 ± 0.11 

VI TG(per se) 100 mg/kg (i.p) 74.73 ± 0.7401 145 ± 2.041 170 ± 3.5 27.5 ± 1.4 1.4 ± 0.0  

M. Faizan et al.                                                                                                                                                                                                                                 



Saudi Pharmaceutical Journal 31 (2023) 101843

7

test this theory. Trigonelline (100 mg/kg) and trigonelline + ethosux
imide (100 + 187.5 mg/kg) were given to albino Wistar rats for 14 days. 
Because ethosuximide binds to Ca2+ channels, our findings reveal that 
intrasynaptosomal calcium levels fall in trigonelline-treated rats, but a 
considerable quantity of calcium decreases in TG + ETX-treated ani
mals. As a consequence, the combination of TG + ETX produces a 
satisfactory outcome as TG. The kainic acid group also experienced an 
increase in LDH activity. According to Liu et al. (Liu et al., 2017), the 
amount of LDH released relates to the number of damaged neurons. LDH 
enzyme is released by dead or damaged plasma membrane cells (Kor
zeniewski and Callewaert, 1983). The kainic acid group also experi
enced an increase in LDH activity. Trigonelline pretreatment of the KA 
group significantly decreased LDH activity, indicating reduced cyto
toxicity and neuronal damage in the tissue of the hippocampus. Natural 
trigonelline has been proven to protect against a KA-induced form of 
epilepsy, as seen by decreased LDH activity in rat brain tissues, which is 
consistent with this conclusion. 

An imbalance in pro-oxidant/antioxidant equilibrium causes oxida
tive stress, which is a primary pathogenic factor for many illnesses, 
including epilepsy (Salehi et al., 2019; Borowicz-Reutt and Czuczwar, 
2020). This discrepancy can be caused by an increase in free radical 
production or a reduction in antioxidant defense system activity 
(Alhalmi et al., 2022). In our work, tissue levels of MDA, a particular 
marker of lipid peroxidation, increased when kainic acid was produced 
(10 mg/kg), clearly suggesting increased oxidative stress in the hippo
campus. MDA levels were also shown to be higher in a KA-induced ep
ilepsy mouse (Feng et al., 2021). A considerable rise in MDA has been 
associated with oxidative degradation in cellular proteins (Miao et al., 
2021), which we also found. Furthermore, antioxidant components such 
as GSH were depleted in the KA-induced model in our investigation, 
which was consistent with previous results (Rege and Mackworth- 
Young, 2015). Trigonelline has been shown to reduce oxidative stress 
as well as boost the antioxidant defense system in the KA group in this 
research. Trigonelline has been demonstrated to reduce oxidative stress 
indicators in KA Induced Albino Wistar rats (Merrick et al., 2017), 
although there is currently no data on its anti-oxidative activity in 
epilepsy. 

The treatment of a single dosage of KA (10 mg/kg) exacerbated 
inflammation, as seen by greater hippocampus levels of IL-1 and several 
other cytokines. In an epileptic model produced by KA, there was also a 
greater incidence of inflammation (Bertoglio et al., 2017). Trigonelline 
pretreatment, on the other hand, was able to considerably lower in
flammatory indices, which is consistent with previous studies demon
strating their anti-inflammatory efficacy (Khalili et al., 2018). 

Because nitrite is a marker for NO generation, it was measured in the 
hippocampus. NO is a kind of endogenously generated free radical that 
has harmful effects on human bodies. Nitrite levels are reported to be 
considerably elevated during epilepsy, this could result in the produc
tion of reactive nitrogen species (RNS), such as peroxynitrite (ONOO), 
(Zhihui, 2013). Lipid peroxidation, protein and mitochondrial damage, 
DNA oxidation, and neural damage are all brought on by RNS produc
tion (Kaludercic and Giorgio, 2016). In our research, giving KA to Albino 
Wistar rats increased hippocampus nitrite levels considerably. Trig
onelline therapy reduced nitrite levels in the hippocampus of rats 
following KA in a dose-related reduction. This impact might be due to a 
drop in KA levels in the hippocampus mediated by trigonelline. Trig
onelline has also been shown to boost cognitive functioning by inhib
iting NO generation in the hippocampus in previous research. 

The modulatory effect of brain neurotransmitters in numerous epi
lepsy models has previously been shown. We discovered that KA seizures 
were associated with a decreased amount of 5-HT or GABA in the brain 
or higher levels of Glu. The action of neurotoxic on brain tissue might 
explain such changes in neurotransmitters following KA Induction. 
GABA-mediated synaptic inhibition is critical in the control of epileptic 
activity, since even slight disinhibition may promote hyperexcitability. 
As a result, a problem with GABA or glutamate accessibility has a big 

impact on seizure origin. Other neurotransmitters, such as serotonin, are 
changed in numerous animal models after KA-induced seizures. How
ever, this is the first research to look at how neurotransmitter levels 
change after KA. 

5. Conclusions 

In conclusion, our findings revealed that TG reduced behavioral 
disappearance by reducing open field and plus maze anxiety and 
memory impairment. Moreover, TG affected the KA-induced oxidative 
stress positively, whereas it significantly elevated GSH and decreased 
MDA and nitrite in all groups and inhibited KA-induced seizures via 
reducing oxidation. Additionally, TG significantly decreased the 
increased IL-1β levels in KA groups indicating anti-inflammatory prop
erties. Furthermore, our results confirmed the neuroprotective effect of 
TG by decreasing LDH levels and increasing serotonin levels in the brain. 
Consequently, the current research suggests that Trigonella foenum- 
graecum may be also anticonvulsant dietary herb however, more 
research on the extract, its fractions and furhter isolated compounds 
should be carried out. 
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