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Highlights

A stochastic model for topographically influenced cell migration

AJ Mitchinson, M Pogson, G Czanner, D Conway, RR Wilkinson, MF Mur-

phy, I Siekmann, SD Webb

• Cell response to surface topography plays a crucial role in physiologic

function and biomedical applications.

• Mathematical modelling facilitates the identification of topographic

structures promoting certain patterns of cell migration.

• We develop a data-driven stochastic model for topographically influ-

enced cell migration for different topographic patterns.

• Our model shows that migrating cells can be ‘guided’ by linear topo-

graphic patterns, migration speed and trajectory linearity dependent

on parallel ridge density.

• Interestingly, adding slight random distortions increases the speed of

migration along the linear topographic pattern.
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Abstract

Migrating cells traverse a range of topographic configurations presented by

the native extracellular environment to conduct their physiologic functions.

It is well documented cells can modulate their behaviour in response to differ-

ent topographic features, finding promising applications in biomaterial and

bioimplant design. It is useful, in these areas of research, to be able to predict

which topographic arrangements could be used to promote certain patterns of

migration prior to laboratory experimentation. Despite a profusion of study
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and interest shown in these fields by experimentalists, the related modelling

literature is as yet relatively sparse and tend to focus more on either cell-

matrix interaction or morphological responses of cells. We propose a mathe-

matical model for individual cell migration based on an Ornstein-Uhlenbeck

process, and set out to see if the model can be used to predict migration

patterns on 2-d isotropic and anisotropic topographies, whose characteris-

tics can be broadly described as either uniform flat, uniform linear with

variable ridge density or non-uniform disordered with variable feature den-

sity. Results suggest the model is capable of producing realistic patterns

of migration for flat and linear topographic patterns, with calibrated out-

put closely approximating NIH3T3 fibroblast migration behaviour derived

from an experimental dataset, in which migration linearity increased with

ridge density and average speed was highest at intermediate ridge densities.

Exploratory results for non-uniform disordered topographies suggest cell mi-

gration patterns may adopt disorderedness present in the topography and

that ‘distortion’ introduced to linear topographic patterns may not impede

linear guidance of migration, given it’s magnitude is bounded within certain

limits. We conclude that an Ornstein-Uhlenbeck based model for topograph-

ically influenced migration may be useful to predict patterns of migration

behaviour for certain isotropic (flat) and anisotropic (linear) topographies in

the NIH3T3 fibroblast cell line, but additional investigation is required to

predict with confidence migration patterns for non-uniform disordered topo-

graphic arrangements.

Keywords: cell migration, topography, Ornstein-Uhlenbeck, mathematical

model, tissue engineering, bioimplant
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1. Introduction1

Surface topography has long been known to affect cell behaviour. Zool-2

ogist R.G. Harrison discovered early in the twentieth century that frog cells3

would align, elongate and migrate along the silk threads of spider web when4

presented on a cover slide, suggesting cells were able to both sense and re-5

spond to the structural characteristics of their environment [1].6

Cells are exposed to a diverse range of topographic arrangements within the7

complex extracellular environment navigated during migration within the8

body, existing across different length scales [2, 3, 4]. Experimentally, many9

cell types have been found to modulate their migration behaviour in response10

to certain topographic arrangements, such as linear ridges and grooves re-11

ported most significantly in fibroblasts [5, 6, 7], but also epithelial [8], en-12

dothelial and smooth muscle cells [9]), lattice patterns [10, 11, 12], pillars13

[13, 14, 15], pits [16] and curvature [17] (for additional detail see any of the14

following review papers: [18, 19, 20]). Topographically guided migration has15

even been shown to influence the progression of crucial physiological pro-16

cesses like dermal wound healing [21, 22], and complex pathophysiologies17

like breast cancer metastases [23, 24].18

Exactly how topographies affect cell behaviour mechanistically is not yet19

completely understood. A leading theoretical model suggests physical con-20

finement potentially restricts the development of focal adhesions in certain21

locations on the cell, ultimately redirecting cell orientation and subsequent22

movement [25, 26].23

The use of topographies to influence cell behaviour has found promising appli-24

cation in biomaterial and bioimplant design (e.g. tissue-implant integration25
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[22, 27, 28] and tissue scaffolds [29, 30, 31]), in which it is useful to know26

which geometries can be used to promote certain patterns of migration. The27

task of identifying and classifying these topographies with in vitro experi-28

mentation can be resource intensive.29

Modelling studies which incorporate topographic cues into cell migration30

models have traditionally focused on cell-matrix interactions, in which mi-31

gration behaviour and extracellular matrix (ECM) fibril properties are dy-32

namically interdependent. Examples of these types of model include Barocas33

and Tranquillo’s work on migration in tissue equivalents such as collagen gels34

[32], and those by Dallon, Sherratt and co-authors describing scar tissue for-35

mation [33, 34]. More recent studies have focused more specifically on mech-36

anistic and morphological aspects of cell migration behaviour in response to37

topographies, such as a 3-d discrete force-based ‘virtual’ cell model proposed38

by Heydari et al. [35], and Winkler, Aranson and Ziebert’s lamellipodia-39

based individual cell model [36]. In general, it appears there is a relative lack40

of mathematical and computational models to help experimentalists in the41

design and development of topographies to influence migration behaviours. A42

similar observation was expressed by Heydari et al. in their recent modelling43

study, stating “there are very few methods available for robust and accurate44

modeling that can predict cell behavior prior to experimental evaluations”45

[35].46

Individual-based cell trajectory models, like those published by Dallon, Sher-47

ratt and co-authors [33, 34], are particularly useful for prediction and analysis48

of potential migration patterns of individual cells. The models published by49

Dallon and co-authors are however formulated to be realistic under the con-50
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dition that topography structure is an ECM-like fibrillar matrix, producing51

unrealistic behaviour for topographies with sparse features.52

In this study, we develop a mathematical model for topographically influ-53

enced migration that is simple, interpretable, and we show can in principle54

be used to predict patterns of individual cell migration on 2-d isotropic and55

anisotropic topographic patterns, whose characteristics can be broadly de-56

scribed as either uniform flat, uniform linear and non-uniform disordered57

both with varied densities (see Methods 2.1). Similar to Dallon and co-58

authors, we use a discrete-point approach that incorporates directional cues59

from an underlying gradient field representing the arrangement of physical60

gradients of a topography. Our modelling approach differs in that we assume61

the discrete point cell migrates according to an Ornstein-Uhlenbeck process62

in the absence of physical gradients, whose movement is influenced by the63

presence of such gradients; a similar approach was used by Stokes, Lauffen-64

burger and Williams to describe chemotaxis in endothelial cells [37].65

We focus at first on movement on highly structured topographies which have66

parallel linear features, using published data (see: [7]) of NIH3T3 fibrob-67

last migration on linearly ridged surfaces to calibrate the model (for model68

calibration see Results 3.1 and for the calibrated migration model with uni-69

form linear topographic patterns Results 3.3); preliminary results for another70

dataset comprising polished metal surfaces [38] were previously presented by71

Conway [39]. We then explore how migration might change when linear topo-72

graphic features are gradually distorted, inspired by fabrication noise present73

when coarse methods have been used to generate the topographic pattern,74

producing non-uniform disordered topographic features (see Results 3.4).75
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2. Methods76

2.1. Model77

The model is based on an Ornstein-Uhlenbeck (OU) cell migration model,78

used in previous works as a general model of 2-d random motility [40] and as79

a model for endothelial chemotaxis [37]. This model assumes that given no80

environmental stimuli or guidance cue cell movement is well approximated81

by Brownian movement, using a combination of force terms to describe the82

velocity-time evolution of a single cell.83

To account for the influence of some underlying topography, we introduce84

directional bias into the model. We assume cells tend to avoid steep physical85

gradients in their migrations and instead reorient toward contour directions.86

The biased OU model for change in 2-d cell velocity v(t) with respect to time87

t, is given by Eq. (1).88

dv(t) =
(
κϕ(t)− βv(t)

)
dt+

√
αdW (t), (1)89

where κ controls topographic bias, β resistance to motion, α random accel-90

eration and W (t) is the 2-d vector Wiener process. The topographic bias,91

ϕ(t), is defined by Eq. (2).92

ϕ(t) = 〈g,v〉 g⊥

‖ g⊥ ‖
, (2)93

where g = ∇S(x1, y1), such that ∇ ≡
(
∂

∂x
,
∂

∂y

)
, continuous scalar field94

S(x, y) represents a 2-d surface topography, (x1, y1) denotes cell position (as-95

sumed to be the centroid of cell surface area) at time t on S, and g⊥ is the96
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orthogonal complement to g. The basic components of the topographic bias97

are illustrated schematically in Figure 1.98

Subsequent integrations of Eq. (1) yields displacements over time t for an99

individual point cell, given by Eq. (3).100

101

r(t) =

∫ t

0

v(t′)dt′, (3)102

where, r(t) is the 2-d cell position at time t.103

To estimate model parameters, P = (α, β, κ) ∈ R3
+, we use a grid search104

optimisation method (see Supplementary material 1.1 for methodological105

detail). We define an objective function as the nondimensional error function106

ε which, for a given parameter set, e.g. P1,1,1 = (α1, β1, κ1), is calculated by107

Eq. (4).108

ε =
N∑
i=1

(ζi − ζ∗i )2

(ζ∗i )2
, (4)109

where ζi is the ith metric derived from model simulations and ζ∗i is the ith110

metric derived from experimental data. N is total number of metrics.111

For our fitting procedure we use two metrics (N = 2): orientation angle θ (◦)112

and migration speed s (µm/h); taking the standard deviation θσ and mean113

sµ of 100 cell trajectories.114

Experimental metric data we use is extracted from a study published by Kim115

et al. [7]. To make the calculation in Eq. (4), we use population standard de-116

viation of “polarisation angle”, θ∗σ(◦), and mean migration speed, s∗µ (µm/h),117

over time on an anisotropic substratum with parallel linear ridges spaced in118

increasing 100 nm increments from densely to sparsely spaced ridges (from119

1µm to 9.1µm; see Supplementary material 1.2 for further study details). We120
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use this data to find parameter values for the model in relation to surfaces121

with linear features with either dense, intermediate or sparse ridge densities.122

g

v

g

g
g

x
1
y )( ,
1

g v,

T

Figure 1: Schematic diagram to illustrate the basic components of topographic bias for the
model in relation to cell position at time t, (x1, y1). The vector g = ∇S(x1, y1) denotes the
steepest local gradient at the point (x1, y1) on continuous 2-d surface S(x, y). Orthogonal
projection of cell velocity v onto g yields the scalar product, 〈g,v〉, the associated vector

in the direction of g is 〈g,v〉 g

‖ g ‖2
. The orthogonal complement of g is denoted by g⊥,

where 〈g, g⊥〉 = 0, the bias term being ϕ = 〈g,v〉 g⊥

‖ g⊥ ‖
.

123
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2.2. Migration metrics124

(i) Orientation angle. Defined as the argument between cell velocity125

direction v and fixed axis direction L = [0, 1], the direction of linear126

features on the topographic patterns used in the study, measured from127

the discrete point cell position (x1, y1) at time t, termed ‘orientation128

angle’, θ(◦). The calculation is symmetric about directions orthogonal129

to L and we determine the positions of the reference angle 0◦ to be130

at both opposing linear directions L and −L. We measure θ with131

positive angles clockwise from L and −L, keeping the angle range132

acute, −90◦ ≤ θ ≤ 90◦ (additional details of the calculation and a133

schematic diagram of the measurement can be found in Supplementary134

material 1.3 ).135

We compute θ between numerical time increments, j and j+1, for every136

increment and each cell i in a given simulation, to give a distribution of137

‘orientation angles’ for the whole simulation, θij,j+1, where i = 1, ..., Nc138

and j = 1, ..., Nt − 1, from which we then calculate the mean, θµ, and139

standard deviation, θσ, given by Eq. (5) and Eq. (6) respectively.140

θµ =
1

Nc(Nt − 1)

Nc∑
i=1

Nt−1∑
j=1

θij,j+1, (5)141

where i is the ith cell and j is the jth increment. Nc is total number142

of cells and Nt is total number of increments.143

θσ =

√√√√ 1

Nc(Nt − 1)

Nc∑
i=1

Nt−1∑
j=1

(θij,j+1 − θµ)2. (6)144
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(ii) Migration speed. We compute migration speed s (µm/h) from in-145

dividual cell displacements as with orientation angles, between incre-146

ments j and j + 1 for every increment for each cell i in a given simula-147

tion, to give a distribution of migration speeds, sij,j+1, from which we148

calculate the mean migration speed, sµ, Eq. (7).149

sµ =
1

Nc(Nt − 1)

Nc∑
i=1

Nt−1∑
j=1

sij,j+1. (7)150

Metrics are calculated from multiple simulations of the same stochastic model,151

Eq. (1), each trajectory taken as representative of the migration behaviour152

of an individual cell on a sparsely populated substrate.153
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2.3. Numerical implementation154

The software environment we use to generate different topographic pat-155

terns and solve the model is MathWorks MATLAB 2021a. To approxi-156

mate topographic patterns similar to those used to produce the experimental157

dataset, we generate matrices with data values corresponding to ‘depth’ val-158

ues, spatially distributed to approximate the arrangements of uniform linear159

ridges spaced at different densities, corresponding to 1µm ridges at uniform160

depth spaced at either high (2µm), intermediate (6µm) or low (9µm) den-161

sity. For predictions, we introduce random perturbations to these linear162

arrangements orthogonal to the orientation of the features using a MATLAB163

pseudo-random number generator, controlling the magnitude of random per-164

turbations with parameter ρ (further details of the methods used to generate165

topographic patterns for the study can be found in Supplementary material166

1.4 ).167

We use MATLAB’s numerical gradient function to compute an approximate168

gradient field for each topography, this is then used during the model simu-169

lation to influence cell orientation and re-orientation.170

We solve the model using an Euler-Maruyama scheme [41] to obtain an ap-171

proximation for cell migration velocities, obtaining subsequent cell positions172

by numerical integration. We run repeat model simulations to compute the173

metrics detailed in Methods 2.2.174
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3. Results175

3.1. Parameter estimation176

To estimate model parameters we use a grid search optimisation method177

(see Supplementary material 1.1 for further detail). We show in Figure 2178

a subset of results from the optimisation. Results show error surfaces (as179

contour plots, for the error ε, Eq. (4), over model kinesis parameters β and180

α) illustrating minima locations (blue) for (a) flat topography at κ = 0 (the181

choice of κ here is arbitrary, since there are no surface gradients and the182

topographic bias exerts no influence on movement) and (b)-(d) 9µm, 6µm183

and 2µm spaced linear topographies at fixed κ values; (b) κ = 1, (c) κ = 0.75184

and (d) κ = 0.5.185

We see clearly in Figure 2 (a) parameters are non-identifiable for the flat186

topography. To approximate parameter combinations for (a), we fit a model187

polynomial function (blue line) through minima (for further details see Sup-188

plementary 2.1 ). By contrast, in Figure 2 (b)-(d), we see clearly identifiable189

parameter combinations for β and α at given κ values for each of the linear190

topographic patterns. We find each κ by iterative search through ε error191

surfaces, E(α, β), across κ (see Supplementary material 2.1 for estimation of192

κ). We then estimate parameter combinations for (b)-(d) by choosing α at193

an arbitrary minimum for median β over the constrained region of minima,194

βη (for further details see Supplementary 2.1 ).195

Approximated parameter combinations for the model are given in Table 1 and196

used to generate model migration trajectories from which θσ(◦) and sµ(µm/h)197

in Figure 3 are calculated, and presented on the same axes as those derived198

from [7], θ∗σ(◦) and s∗µ(µm/h).199
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(b) 9µm spacing. κ = 1
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(c) 6µm spacing. κ = 0.75
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(d) 2µm spacing. κ = 0.5

Figure 2: Contour plots showing error ε against model kinesis parameters β and α and at
fixed values for model bias parameter κ resulting from grid search optimisation for four
different topographies: (a) flat, (b) sparse linear (9µm spacing), (c) intermediate linear
(6µm spacing) and (d) dense linear (2µm spacing). Colour bar represents ε. Blue asterisk
denotes approximate minimum values for ε, ε̂min (see Supplementary 2.1 for details of

approximation). Blue line is a polynomial function f(β̂) fit to the set of points ε̂min (see
Supplementary 2.1 for definition). Note that in (a) flat: α and β are non-identifiable, and
the relationship is approximately quartic, and in (b)-(d) 9µm, 6µm and 2µm: α and β
are identifiable with uncertainty for a given κ. Changes to κ do not influence ε for (a),
however there is a range for κ for which different and equally valid (under the condition
ε is small) parameter spaces exist for (b)-(d), such that the choice of κ may be arbitrary
within each range. (a) flat: κ = 0. (b) 9µm: κ = 1. (c) 6µm: κ = 0.75. (d) 2µm:
κ = 0.5. Spatial domain: 1000 × 1000µm2. Simulation parameters: m = 100, number of
cells, Nc = 100, time, t = 540 minutes, Nt = 36 increments, Xinit = (500µm,500µm) is
the fixed initial position.
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Figure 3: Metric data derived from Kim et al. [7] (blue) and the calibrated model (orange)
for topographies with average linear groove widths 2.6µm, 6.3µm and 8.6µm and uniform
linear groove widths 2µm, 6µm and 9µm, respectively. (a) polarisation angle θ∗(◦) from
[7] (square marker: mean, θ∗µ, error bar: θ∗µ ± θ∗σ) and orientation angle θ(◦) from the
calibrated model (circular marker: mean, θµ, error bar: θµ ± θσ), where θ∗σ and θσ denote
respective standard deviations. (b) migration speed s∗(µm/h) from [7] (square marker:
mean, s∗µ, error bar: s∗µ ± s∗σM ) and s(µm/h) from the calibrated model (circular marker:
mean, sµ, error bar: sµ ± sσ), where s∗σM and sσ denote standard error and standard
deviation, respectively. Spatial domain: 1000× 1000µm2. Migration parameters: β = 0.1,
α = 0.013, κ = 1 (9µm spacing); β = 0.06, α = 0.004, κ = 0.75 (6µm spacing); β = 0.11,
α = 0.005, κ = 0.5 (2µm spacing). Simulation parameters: Nc = 100 cell paths, t = 540
minutes, Nt = 36 increments, Xinit = (500µm,500µm) is the fixed initial position.
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Topography β α κ
Flat (no gradient) 0.650 1.068 0.000

Linear 9µm spacing 0.100 0.013 1.000
Linear 6µm spacing 0.060 0.004 0.750
Linear 2µm spacing 0.110 0.005 0.500

Table 1: Migration model parameter combinations (to 3 d.p.) for flat and linearly ar-
ranged (with 9µm, 6µm and 2µm spacings, respectively) topographies, determined by
grid search optimisation using migration data extracted from [7], and methods outlined in
Supplementary material 1.1 and 2.1.

3.2. Initial conditions200

We use optimisation output detailed in Results 3.1 to set model migration201

parameters for simulations using each topography for the following sections202

(Results 3.3 and 3.4), specified in Table 1. We continue to use Table 1 to203

calibrate the model when we introduce distortion to linear topographies in204

Results 3.4.205

Prior to numerical simulations, we fix the initial spatial position of all mi-206

gration trajectories constant (central on the domain). We see in Table 2207

dimensions of the spatial domains, initial positions and units used to gener-208

ate output for Results 3.3 and 3.4. Table 2 also details the number of cell209

trajectories in simulations, Nc, fixed to aid clarity in trajectory plots and210

accompanying metrics, unless otherwise stated.211

To match the time-lapse speed measurement in the experimental study [7], we212

set simulation time for every cell to t = 540 minutes split into Nt = 36 incre-213

ments each of 15 minute duration, and set Euler-Maruyama sub-increments214

a tenth the size. Time parameters are kept constant between all simulations.215

216
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Section Domain Xinit Nc t (minutes) Nt

Results 3.3 1000× 1000µm2 (500µm,500µm) 100 540 36
Results 3.4 2000× 2000µm2 (1000µm,1000µm) 100 540 36

Table 2: Initial conditions used for numerical simulations to generate output for Results
3.3 and 3.4. Specified are the dimensions and units of each spatial domain (2-d, µm2),
fixed initial position for migration trajectories, Xinit, number of simulated cell paths, Nc,
time in minutes, t, and number of numerical increments, Nt.

3.3. Calibrated migration model with flat and linear topographic patterns217

In Figure 4, we present individual cell migration trajectories over time218

(multi-colour) for the calibrated model with (a) flat, and (b)-(d) linear to-219

pographies, with (b) sparse (9µm), (c) intermediate (6µm) and (d) densely220

(2µm) spaced linear features.221

We see in Figure 4 (a)-(d) a clear trend for trajectories to acquire gradually222

more linearity and greater topographic alignment once topographic features223

are introduced from (b) through to (d). In Figure 4 (a) we see trajectories224

for the flat topography show no clear directional preference, trajectories in-225

stead appear directionally random, tortuous and stunted. In Figure 4 (b),226

trajectories for the sparse (9µm spaced) linear topography show some clear227

topographic alignment and displace significantly in the vertical directions228

whilst maintaining discernible stochasticity in local directions explored by229

each cell. In Figure 4 (c), trajectories for the intermediate (6µm spaced)230

linear topography show a clear preference to follow topographic feature di-231

rections resulting in considerable directional linearity, trajectories tending to232

diverge around the starting position, and follow topographic features in op-233

posing directions. Trajectory displacement also appears considerably more234

significant, some approaching the domain boundaries. In Figure 4 (d), we see235
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trajectories for the dense (2µm spaced) linear topography exhibit the most236

prominent directional linearity, aligning closely with the topographic feature237

direction. Overall trajectory displacement appears significant but less than238

for the intermediate (6µm spaced) linear topography.239

General trends we see in migration trajectory behaviour are reflected in met-240

rics orientation angle, θ(◦), and migration speed, s (µm/h), for the cell paths241

over time for each of the topographies, shown as cumulative distributions for242

each topography in Figure 5 (left and right columns, respectively). Statistical243

data for the distributions are represented by red dashes, their corresponding244

values listed in Table 3 and Table 4, respectively.245

Descending the left column of Figure 5, we clearly see both the shape and246

spread of distributions for θ change distinctively across topographies with247

increasing feature density, (a)-(g). The shape of distributions evolves from248

approximately uniform for the flat topography (a) to bell-shaped, approxi-249

mately symmetric around the linear feature direction (0◦), for the linear to-250

pographies (c)-(g). This appears to support earlier observations that model251

migration trajectories simulated for the flat topography show no apparent252

directional preference, whilst trajectories for the linear topographies show253

topographic alignment. Table 3 (right column) shows how the density of lin-254

ear topographic features affect topographic alignment. The orientation angle255

standard deviation, θσ, reduces markedly with each increase to linear topo-256

graphic feature density, also apparent in Figure 5 (left column) where the257

spread of distributions reduce the more densely packed with linear features258

the topographies become from (c)-(g) (light red dash is θσ).259

We see different trends in distributions for migration speed, s (µm/h), in Fig-260
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ure 5 (right column), which clearly change both in shape and in the location261

of their centre in s. The shape of these distributions evolve from right-skewed262

for the flat topography (b) to approximately bell-shaped for the densest lin-263

ear topography (h). Notably, we also see the distribution centre shift in s for264

(b)-(h), indicating each topography has a different effect on migration speed.265

Statistics for these distributions in Table 4 show explicitly these trends for266

mean and median speed sµ and sη, respectively, and first and third quar-267

tiles sQ1 and sQ3 , respectively. In Table 4, we notice that the intermediate268

(6µm spaced) linear topography, corresponding to Figure 5 (f), appears to269

encourage the highest migration speeds, including highest mean, sµ, median,270

sη, and quartiles sQ1 and sQ3 out of all topographies presented. It is also271

apparent from Table 4 there may exist a small range of linear spacings for272

which migration speed may be maximised, for which evidently a 9µm spacing273

is too sparse and a 2µm spacing too dense.274

The trend we observe between linear feature density and migration speed275

s is also reflected in the mean-squared displacement over time of migration276

trajectories (see Appendix A).277
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(a) Flat. (b) 9µm spacing.

(c) 6µm spacing. (d) 2µm spacing.

Figure 4: Calibrated model migration trajectories over time (multi-colour) over gradient
fields (blue) of four different topographies: (a) flat (no gradient), (b) 9µm linear spacings,
(c) 6µm linear spacings and (d) 2µm linear spacings, (b)-(d) with constant ridge width 1µm
and depth 0.4µm. Trajectories develop a clear linearity when introduced to the linearly
arranged topographies, the extent of linearity present dependent on the feature density.
There is a clear trend for trajectories to show more pronounced linearity with increasing
linear feature density (b)-(d). Spatial domain: 1000 × 1000µm2. Migration parameters:
(a) β = 0.65, α = 1.07, κ = 0, (b) β = 0.1, α = 0.013, κ = 1, (c) β = 0.06, α = 0.004,
κ = 0.75, (d) β = 0.11, α = 0.005, κ = 0.5. Simulation parameters: Nc = 100 cell paths,
t = 540 minutes, Nt = 36 increments, Xinit = (500µm,500µm) is the fixed initial position.
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(a) Flat. θ(◦).
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(b) Flat. s (µm/h).
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(c) 9µm spacing. θ(◦).
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(d) 9µm spacing. s (µm/h).
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(e) 6µm spacing. θ(◦).
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(f) 6µm spacing. s (µm/h).
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(g) 2µm spacing. θ(◦).
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(h) 2µm spacing. s (µm/h).

Figure 5: Orientation angle, θ(◦), (left column) and migration speed, s (µm/h), (right
column) cumulative distributions for the four different topographies (rows): (a)-(b) flat,
(c)-(d) 9µm spacing, (e)-(f) 6µm spacing and (g)-(h) 2µm spacing. Distributions for both
θ(◦) and s (µm/h) display total measurements taken for all cells at Nt = 36 increments
over t = 540 minutes simulation time (for details see Methods 2.2). Distributions for θ (left
column) are approximately uniform for the flat topography (a), acquiring a symmetric bell-
shape for the linear topographies (c)-(g), standard deviation, θσ, (red, light) dependent
on feature density. Distributions for s (right column) are right-skewed for flat (b) and
sparse linear topographies (d), changing to an approximate bell-shape with denser linear
topographies (f)-(h). Simulations produce maximal average speed, sµ, (red, heavy) for
the 6µm linearly spaced topography, (f).
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Topography θµ(◦) θσ(◦)
Flat (no gradient) −0.79 52.4

Linear 9µm spacing 0.61 37.0
Linear 6µm spacing −0.48 20.4
Linear 2µm spacing 0.12 12.1

Table 3: Orientation angle θ(◦) distribution statistics (to 3 s.f.), mean, θµ, and standard
deviation, θσ, (columns) for each topography presented in Figures 4 and 5: flat, sparse
linear (9µm spacing), intermediate linear (6µm spacing) and dense linear (2µm spacing)
(rows).

Topography sµ(µm/h) sη(µm/h) sQ1(µm/h) sQ3(µm/h)
Flat (no gradient) 30.4 28.8 18.4 41.1

Linear 9µm spacing 31.0 29.3 15.6 44.1
Linear 6µm spacing 41.6 42.4 32.1 52.1
Linear 2µm spacing 35.6 34.9 29.2 41.7

Table 4: Migration speed s(µm/h) distribution statistics (to 3 s.f.), mean, sµ, median,
sη, first and third quartiles respectively, sQ1

and sQ3
, (columns) for each topography

presented in Figures 4 and 5: flat, sparse linear (9µm spacing), intermediate linear (6µm
spacing) and dense linear (2µm spacing) (rows).
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3.4. Model predictions with randomly perturbed linear topographic patterns278

In the following section we present model migration trajectory (Figure279

6 - 8) and metric (Figure 9, Appendix B contains additional information)280

output for linear topographies with dense, intermediate and sparse topo-281

graphic features which have been gradually perturbed with random noise, or282

‘distorted’, using the methods described in Methods 2.3 and Supplementary283

material 1.4 (where ρ is a perturbation or ‘distortion’ parameter for surface284

features).285

In Figure 6, for the set of topographies with dense (2µm spaced) (a) linear286

and (b)-(d) randomly perturbed linear features, we see a clear reduction in287

trajectory linearity as surface distortion is introduced across topographies288

(a)-(d). Trajectories appear to mirror the ‘disorderedness’ in the topogra-289

phies, becoming more tortuous and randomly or unpredictably directional290

with increasing surface distortion. In Figure 6 (d), trajectories still appear291

to maintain a perceptible degree of general alignment with the prevailing to-292

pographic feature direction, however alignment fades once surface distortion293

degrades remaining linear characteristics of the topography (observations294

made in results not shown). Trajectories also extend noticeably further on295

the domain as surface distortion increases, indicating potential changes to296

migration speed.297

In Figure 7, for the set of topographies with intermediate (6µm spaced) (a)298

linear and (b)-(d) randomly perturbed linear features, we see a similar pat-299

tern, a reduction in trajectory linearity and increased disorderedness with300

surface distortion (a)-(d), which is more gradual. Thus, we see in (a)-(d)301

general alignment with the prevailing feature direction (vertical axis), which302
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similarly fades when the surface is sufficiently randomly arranged. Notably,303

trajectories extend much further, up to domain boundaries (d), with in-304

creased surface distortion.305

In Figure 8, for the set of topographies with sparse (9µm spaced) (a) linear306

features and (b)-(d) randomly perturbed linear features, we see the familiar307

general trend repeat, reduction in trajectory linearity with increasing sur-308

face distortion (a)-(d), but here trajectories align much more weakly to the309

prevailing direction of topographic features (d). Trajectories also, whilst ap-310

pearing to extend with increasing surface distortion, appear comparatively311

stunted to topographies with denser spacings, indicating a less significant312

effect on migration speed.313

In Figure 9 (a)-(b), for the dense (2µm spaced) topographies shown in Fig-314

ure 6, we see clear trends for both accompanying (a) orientation angle, θ(◦),315

and (b) migration speed, s (µm/h), distribution statistics through increas-316

ing ρ. In Figure 9 (a), we see mean orientation angle, θµ, remain centred317

around 0◦, whilst standard deviation, θσ, represented by error bars, broad-318

ens significantly through ρ, supporting earlier observations that trajectories319

lose linearity as the surface is gradually distorted. In Appendix B, we see320

in Figure B.11 (left column), distribution shape for the more linearly organ-321

ised topographies, (a) and (c), appears bell-shaped but, with increase to ρ,322

evolves bimodal characteristics, (e) and (g). In Figure 9 (b), we see both me-323

dian migration speed, sη (µm/h), and first and third quartiles, sQ1 and sQ3 ,324

represented by error bars, increase significantly through ρ. The third quar-325

tile, sQ3 , remains significantly larger than the first quartile, sQ1 . In Appendix326

B, we see in Figure B.11 (right column), distribution shape is uni-modal and327
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right-skewed for lower ρ, (b) and (d), and acquire slightly more symmetry328

with increasing ρ, (f) and (h). Also evident is the marked shift in s with329

increasing ρ, accompanied by a clear monotonic increase in mean migration330

speed, sµ.331

In Figure 9 (c)-(d), for the intermediate (6µm spaced) topographies shown332

in Figure 7, we see trends for both accompanying (c) orientation angle, θ(◦),333

and (d) migration speed, s (µm/h), distribution statistics which are similar334

to but distinct from those observed for the dense (2µm) spaced topographies335

through increasing ρ. In Figure 9 (c), we see θσ evidently broaden but com-336

paratively moderately through ρ. In Appendix B, we see in Figure B.12 (left337

column), distribution shape clearly also begins to shift from bell-shaped for338

the more linearly organised topographies, (a) and (c), to bimodal with in-339

creasing ρ, though less acutely. In Figure 9 (d), we see a pronounced increase340

in median migration speed, sη, first and third quartiles, sQ1 and sQ3 , through341

ρ, continuing to grow beyond ρ = 1 rather than saturate. In Appendix B, we342

see in Figure B.12 (right column), distribution shape is similarly uni-modal343

and right-skewed for lower ρ, (b) and (d), becoming more symmetrical with344

increasing ρ, (f) and (h), whilst remaining asymmetrical.345

In Figure 9 (e)-(f), for the sparse (9µm spaced) topographies shown in Figure346

8, we see subtler trends for both accompanying (e) orientation angle, θ(◦), and347

(f) migration speed, s (µm/h), distribution statistics, following a more dis-348

tinct pattern through increasing ρ. In Figure 9 (e), we see θσ barely broaden349

through ρ, remaining only weakly directed by the prevailing feature direction.350

In Appendix B, we see in Figure B.13 (left column), the distribution shape351

remains bell-shaped with increasing ρ but flattens significantly, approaching352
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uniform-like characteristics for the more disordered topographies. In Figure353

9 (f), we see comparatively minor increase to median migration speed, sη and354

first and third quartiles, sQ1 and sQ3 , through ρ, continuing to grow beyond355

ρ = 1. In Appendix B, we see in Figure B.13 (right column), distribution356

shape, like that for θ, remains largely stable with increasing ρ, uni-modal357

and right-skewed (b)-(h), though with steadily broadening quartiles and a358

small monotonic increase to sµ.359
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(a) 2µm spacing. ρ = 0. (b) 2µm spacing. ρ = 0.2.

(c) 2µm spacing. ρ = 0.35. (d) 2µm spacing. ρ = 0.5.

Figure 6: Model migration trajectories (multi-colour) over gradient fields (blue) of four
topographies with linear 2µm groove and 1µm ridge width topographic features perturbed
stochastically in the direction orthogonal to the ridge/groove plane with four different
‘noise’ levels, determined by feature perturbation parameter ρ (see Supplementary material
1.4 ): (a) ρ = 0 (linear), (b) ρ = 0.2, (c) ρ = 0.35 and (d) ρ = 0.5. Trajectories begin to lose
directional linearity with the introduction of feature perturbation, the degree of directional
unpredictability dependent on ρ (increasing with ρ). Spatial domain: 2000 × 2000µm2.
Depth: 0.4µm. Migration parameters: (a)-(d) β = 0.11, α = 0.005, κ = 0.5. Simulation
parameters: (a)-(d) Nc = 100 cell paths, t = 540 minutes, Nt = 36 increments, Xinit =
(1000µm,1000µm) is the fixed initial position.
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(a) 6µm spacing. ρ = 0. (b) 6µm spacing. ρ = 0.2.

(c) 6µm spacing. ρ = 0.35. (d) 6µm spacing. ρ = 0.5.

Figure 7: Model migration trajectories (multi-colour) over gradient fields (blue) of four
topographies with linear 6µm groove and 1µm ridge width topographic features, perturbed
in the manner described in Supplementary material 1.4 using four different ‘noise’ levels
determined by feature perturbation parameter ρ: (a) ρ = 0, (b) ρ = 0.2, (c) ρ = 0.35
and (d) ρ = 0.5. Similar to Figure 6, trajectories clearly lose directional linearity with the
introduction of feature perturbation, the degree of directional unpredictability also depen-
dent on ρ (similarly, increasing with ρ). Notably, trajectories show much more significant
dispersal as ρ is increased; see (d). Spatial domain: 2000 × 2000µm2. Depth: 0.4µm.
Migration parameters: (a)-(d) β = 0.06, α = 0.004, κ = 0.75. Simulation parameters: (a)-
(d) Nc = 100 cell paths, t = 540 minutes, Nt = 36 increments, Xinit = (1000µm,1000µm)
is the fixed initial position.
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(a) 9µm spacing. ρ = 0. (b) 9µm spacing. ρ = 0.2.

(c) 9µm spacing. ρ = 0.35. (d) 9µm spacing. ρ = 0.5.

Figure 8: Model migration trajectories (multi-colour) over gradient fields (blue) of four
topographies with linear 9µm groove and 1µm ridge width topographic features, perturbed
in the manner described using four different ‘noise’ levels determined by feature perturba-
tion parameter ρ: (a) ρ = 0, (b) ρ = 0.2, (c) ρ = 0.35 and (d) ρ = 0.5. Trajectories clearly
become more directionally random with the introduction of feature perturbation, the de-
gree also dependent on ρ (similarly, increase to ρ). Spatial domain: 2000 × 2000µm2.
Depth: 0.4µm. Migration parameters: (a)-(d) β = 0.1, α = 0.013, κ = 1. Simula-
tion parameters: (a)-(d) Nc = 100 cell paths, t = 540 minutes, Nt = 36 increments,
Xinit = (1000µm,1000µm) is the fixed initial position.
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(a) 2µm. θ(◦) vs ρ.
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(c) 6µm. θ(◦) vs ρ.
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(d) 6µm. s (µm/h) vs ρ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-80

-60

-40

-20

0

20

40

60

80

(e) 9µm. θ(◦) vs ρ.
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(f) 9µm. s (µm/h) vs ρ.

Figure 9: Orientation angle, θ(◦), (left column) and migration speed, s (µm/h), (right
column) distribution statistics against feature perturbation parameter ρ for the three dif-
ferent topographic feature densities (rows): (a)-(b) 2µm spacing, (c)-(d) 6µm spacing,
(e)-(f) 9µm spacing. Left column shows mean orientation angle, θµ, with standard devia-
tion, θσ, represented by error bars (θµ±θσ). Right column shows median migration speed,
sη, with first and third quartiles, sQ1

and sQ3
, represented by error bars (sη−sQ1

, sη+sQ3
).

Spatial domain: 2000 × 2000µm2. Simulation parameters: ρ = 0, ..., 1 in 100 increments,
Nc = 1000 cell paths, t = 540 minutes, Nt = 36 increments, Xinit = (1000µm,1000µm) is
the fixed initial position.
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4. Discussion360

In this study, we proposed a stochastic model for topographically influ-361

enced cell migration. The model was based on an Ornstein-Uhlenbeck (OU)362

process, modified to respond to surface topographic gradients. The introduc-363

tion of topographic bias was based on the assumption migrating cells would364

steer away from gradient directions and instead towards contour directions.365

To calibrate the model, we used experimental data comprising two distinct366

metrics, polarisation angle, θ∗(◦), and migration speed, s∗(µm/h), taken of367

NIH3T3 fibroblast cell migration trajectory paths for four different topogra-368

phies with two distinct properties and patterns: one isotropic (flat) and369

three anisotropic (linear with different ridge spacings) [7]. We used a grid370

search optimisation method to fit model simulations to this metric data, us-371

ing estimation methods to approximate parameter values. Calibrated model372

output comprised sample migration trajectories, and accompanying ‘orien-373

tation angle’, θ(◦), and migration speed, s (µm/h), metric distributions for374

four topographic patterns designed to mimic those in the study we use to375

parametrise and calibrate the model [7]: one isotropic topographic pattern376

(flat, i.e. no surface gradients present) and three anisotropic patterns with377

uniform linear 1 × 0.4µm ridge features spaced in the intervals 9µm, 6µm378

and 2µm, respectively, in a repeating pattern.379

Simulations, presented in Figure 4 (a)-(d), showed alignment and linearity of380

migration was markedly greater when introduced to the linear topographic381

patterns, clearly increasing with increased ridge density; the most clearly382

‘aligned’ trajectories were observed for the most densely packed linear to-383

pography (2µm spacing). This was reflected in distributions for θ in Figure384
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5 (left column), evolving from approximately uniform for the flat topogra-385

phy (indicating approximately random movement) to bell-shaped when intro-386

duced to linear patterns (indicating alignment with the topographic pattern),387

standard deviation, θσ, reducing significantly which each reduction to linear388

feature spacing. The monotonic decrease in θσ (from 9µm to 2µm spacing) in389

Figure 5 (c)-(g) was similarly reported in the study used to parametrise and390

calibrate the model [7], as was linearly directional migration at substratum391

regions of high ridge density (an average spacing of 2.6µm). The intermedi-392

ately spaced (6µm) linear pattern clearly maximised mean migration speed,393

sµ, compared with linear patterns featuring narrower or wider ridge spacings394

(2µm and 9µm). This trend was also reported in the aforementioned ex-395

perimental study [7], the highest average migration speed s∗µ on substratum396

regions with intermediate ridge densities (an average spacing of 6.3µm).397

We then used the calibrated model to predict how migration behaviour might398

change when linear topographic patterns are gradually distorted, becoming399

disordered and randomly arranged once distorted with sufficient magnitude.400

The intention was to explore in a general way how distortion introduced by401

coarse methods of surface fabrication (e.g. etching or polishing) may affect402

the trajectories of migrating cells.403

Preserving the dimensions used for previous linear topographic patterns (such404

that there is a sparse, intermediate and dense pattern), we introduce ‘noise’405

in which the linear pattern is randomly perturbed in the plane orthogonal406

to ridge direction. The ‘noise’ level is determined by feature perturbation407

parameter ρ, which is incrementally increased to generate new topographic408

patterns with increasingly distorted features on which to test the model.409
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Predictions suggest distortion introduced to uniform linear features induce410

degradation in linearity and alignment of migration trajectories, dependent411

on the magnitude of distortion and surface density of the topographic pat-412

tern. We found in general that instead, with intensified surface distortion413

(increase to ρ), cell direction showed increasing deviations from the ridge414

direction and cell speed increased, this being the case for each variation in415

surface density of topographic pattern. We see this evident in Figures 6 - 8,416

where migration trajectories lose directional linearity and topographic align-417

ment with increase to ρ for all linear feature spacings tested, approximately418

mirroring ‘disorderedness’ in the arrangement of the topographic pattern.419

Standard deviation for orientation angle, θσ, also clearly increased for all420

densities of topographic pattern (see Figure 9, left column). We also see421

in Appendix B distribution shape for θ for the 2µm and 6µm topographic422

patterns change over the approximate interval 0 ≤ ρ ≤ 0.5, from bell-shaped423

to bimodal, suggesting significant deviations from an orientation angle of 0◦,424

i.e. the original linear ridge direction, prompted by increased distortion to425

surface patterns.426

Interestingly, predictions also suggest that more randomly arranged topo-427

graphic features may increase migration speed compared to uniform linear428

features, evident in distributions for s which shifted markedly in s for all429

densities of topographic pattern, sµ increasing monotonically with ρ as the430

patterns became more disordered (see Appendix B). This is an unexpected431

result, as one would expect the presence of additional topographic obstacles432

to present a navigational challenge for migrating cells, and such a finding433

for disordered topographic patterns is not to our knowledge reported in the434
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experimental literature (e.g. see [38]). Although it may be possible that435

linear patterns without distortion constrain cell movement. The introduc-436

tion of distortion to surface patterns may remove these constraints while still437

‘guiding’ the cells in an approximately linear direction.438

Predictions also suggest that ‘distortion’ introduced to linear topographic439

patterns may not impede the guidance of migration in a linear direction,440

given its magnitude is bounded within certain limits; perhaps as far as the441

general linear characteristics of the pattern are maintained. In Figure 9, there442

appears to exist a step change in orientation angle θ and speed s around443

ρ = 0.2, suggesting magnitude of distortion introduced at this ‘intensity’444

of perturbation may be significant enough to begin to disrupt movement445

patterns of the migrating cells. The finding suggests linearly guided topo-446

graphically influenced migration may exist within precision limits for the447

topographic features, and that ‘approximately linear’ features may still suf-448

fice to linearly guide migration. It may be interesting to explore further449

where exactly these limits exist as it may improve both our understanding450

of cell behaviour and the utility of certain surface processing methods for451

controlling and regulating it.452
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Appendix A. Results 3.3: Mean-squared displacement (MSD) over471

time t for flat and linear topographies472

Mean-squared displacement (MSD) over time t for the flat (blue), 9µm473

(red), 6µm (yellow) and 2µm (purple) linearly spaced topographies are shown474

in Figure A.10. We see in Figure A.10 a similar trend as in migration speed,475

MSD over time being highest on the intermediately spaced linear features476

(6µm, yellow); significantly larger than for the flat topography. The presence477

of linear topographic features in general appears to increase MSD over time478

of calibrated model migration trajectories.
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Figure A.10: Mean-squared displacement (MSD) (µm) over time t for flat (blue), 9µm
(red), 6µm (yellow) and 2µm (purple) linearly spaced topographies. We see MSD over time
t is highest for the 6µm spaced linear features (yellow) compared to the other topographies,
markedly greater than for the flat topography (blue). Spatial domain: 1000 × 1000µm2.
Migration parameters: (blue) β = 0.65, α = 1.07, κ = 0, (red) β = 0.1, α = 0.013,
κ = 1, (yellow) β = 0.06, α = 0.004, κ = 0.75, (purple) β = 0.11, α = 0.005, κ = 0.5.
Simulation parameters: Nc = 100 cell paths, t = 540 minutes, Nt = 36 increments,
Xinit = (500µm,500µm) is the fixed initial position.
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Appendix B. Results 3.4: Orientation angle, θ(◦), and migration480

speed, s (µm/h) distributions and statistics481
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(a) 2µm. ρ = 0. θ(◦).

0 50 100 150

migration speed s ( m / h)

0

50

100

150

200

250

300

350

400

450

500

to
ta

l m
ea

su
re

m
en

ts
 (

al
l c

el
ls

)

(b) 2µm. ρ = 0. s (µm/h).
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(c) 2µm. ρ = 0.2. θ(◦).
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(d) 2µm. ρ = 0.2. s (µm/h).
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(e) 2µm. ρ = 0.35. θ(◦).
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(f) 2µm. ρ = 0.35. s (µm/h).
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(g) 2µm. ρ = 0.5. θ(◦).

0 50 100 150

migration speed s ( m / h)

0

50

100

150

200

250

300

350

400

450

500

to
ta

l m
ea

su
re

m
en

ts
 (

al
l c

el
ls

)

(h) 2µm. ρ = 0.5. s (µm/h).

Figure B.11: Orientation angle, θ(◦), and migration speed, s (µm/h), distributions (left
and right column, respectively) for the four topographies in Figure 6 (rows): (a)-(h) dense
(2µm) spaced linear features; (a)-(b) ρ = 0, (c)-(d) ρ = 0.2, (e)-(f) ρ = 0.35 and (g)-
(h) ρ = 0.5. We see θ distributions (left column) shift from bell-shaped uni-modal to
bimodal with increase to ρ (a)-(g), accompanied by increase to θσ (red, light). We see s
distributions (right column) shift markedly along the s axis with increase to ρ (b)-(h) and
a clear monotonic increase in sµ (red, heavy) with ρ. Accompanying distribution statistics
are listed in Tables B.5 and B.6. Model migration and simulation parameters: see Figure
6.
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(a) 6µm. ρ = 0. θ(◦).
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(b) 6µm. ρ = 0. s (µm/h).
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(c) 6µm. ρ = 0.2. θ(◦).
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(d) 6µm. ρ = 0.2. s (µm/h).
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(e) 6µm. ρ = 0.35. θ(◦).
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(f) 6µm. ρ = 0.35. s (µm/h).
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(g) 6µm. ρ = 0.5. θ(◦).
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(h) 6µm. ρ = 0.5. s (µm/h).

Figure B.12: Orientation angle, θ(◦), and migration speed, s (µm/h), distributions (left
and right column, respectively) for the four topographies in Figure 7 (rows): (a)-(h)
intermediate (6µm) spaced linear features; (a)-(b) ρ = 0, (c)-(d) ρ = 0.2, (e)-(f) ρ = 0.35
and (g)-(h) ρ = 0.5. For θ distributions (left column) we also see a shift in distribution
shape from bell-shaped uni-modal to bimodal with increase to ρ, and only a moderate
rise in θσ(red, light). In s distributions (right column) we see a clear trend for increased
distribution symmetry and a surge in sµ (red, heavy) with increase to ρ. Accompanying
distribution statistics are listed in Tables B.7 and B.8. Model migration and simulation
parameters: see Figure 7.
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(a) 9µm. ρ = 0. θ(◦).
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(b) 9µm. ρ = 0. s (µm/h).
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(c) 9µm. ρ = 0.2. θ(◦).
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(d) 9µm. ρ = 0.2. s (µm/h).

-80 -60 -40 -20 0 20 40 60 80

orientation angle °

0

100

200

300

400

500

600

700

to
ta

l m
ea

su
re

m
en

ts
 (

al
l c

el
ls

)

(e) 9µm. ρ = 0.35. θ(◦).
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(f) 9µm. ρ = 0.35. s (µm/h).
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(g) 9µm. ρ = 0.5. θ(◦).
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(h) 9µm. ρ = 0.5. s (µm/h).

Figure B.13: Orientation angle, θ(◦), and migration speed, s (µm/h), distributions (left
and right column, respectively) for the four topographies in Figure 8 (rows): (a)-(h) sparse
(9µm) spaced linear features; (a)-(b) ρ = 0, (c)-(d) ρ = 0.2, (e)-(f) ρ = 0.35 and (g)-(h)
ρ = 0.5. We see in all θ distributions (left column) a stable bell shape maintained through
to ρ = 0.5, (g), which flattens and only a small increase to θσ (red, light) with increase
to ρ. We see s distributions (right column) maintain a consistent positive-skew with
broadening quartiles sQ1 and sQ3 (red, light) and a moderate increase in sµ (red, heavy)
with increase to ρ. Accompanying distribution statistics are listed in Tables B.9 and B.10.
Model migration and simulation parameters: see Figure 8.
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ρ θµ(◦) θσ(◦)
0 −0.33 12.2

0.2 −0.22 15.4
0.35 −0.64 28.2
0.5 0.65 37.3

Table B.5: Dense (2µm spaced). Orientation angle θ(◦) distribution statistics (to 3 s.f.),
mean, θµ, and standard deviation, θσ, (columns) across variation in distortion parameter
ρ for the dense (2µm spaced) topographies (rows), shown in Figures 6 and B.11.

ρ sµ(µm/h) sη(µm/h) sQ1(µm/h) sQ3(µm/h)
0 35.7 35.2 29.5 41.6

0.2 37.9 36.3 29.7 44.3
0.35 59.2 60.4 44.1 73.4
0.5 71.9 72.2 60.8 84.2

Table B.6: Dense (2µm spaced). Migration speed s (µm/h) distribution statistics (to 3
s.f.), mean, sµ, median, sη, first and third quartiles respectively, sQ1

and sQ3
, (columns)

across variation in distortion parameter ρ for the dense (2µm spaced) topographies (rows),
shown in Figures 6 and B.11.
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ρ θµ(◦) θσ(◦)
0 0.01 17.6

0.2 −0.48 19.1
0.35 −1.83 27.4
0.5 −1.14 34.5

Table B.7: Intermediate (6µm spaced). Orientation angle θ(◦) distribution statistics (to
3 s.f.), mean, θµ, and standard deviation, θσ, (columns) across variation in distortion
parameter ρ for the intermediate (6µm spaced) topographies (rows), shown in Figures 7
and B.12.

ρ sµ(µm/h) sη(µm/h) sQ1(µm/h) sQ3(µm/h)
0 42.5 42.8 33.5 52.2

0.2 47.8 46.2 35.6 58.0
0.35 77.9 77.7 55.6 98.5
0.5 95.8 97.1 77.7 116.7

Table B.8: Intermediate (6µm spaced). Migration speed s (µm/h) distribution statistics
(to 3 s.f.), mean, sµ, median, sη, first and third quartiles respectively, sQ1

and sQ3
,

(columns) across variation in distortion parameter ρ for the intermediate (6µm spaced)
topographies (rows), shown in Figures 7 and B.12.
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ρ θµ(◦) θσ(◦)
0 0.77 37.1

0.2 0.58 37.3
0.35 0.03 40.4
0.5 0.18 41.7

Table B.9: Sparse (9µm spaced). Orientation angle θ(◦) distribution statistics (to 3 s.f.),
mean, θµ, and standard deviation, θσ, (columns) across variation in distortion parameter
ρ for the sparse (9µm spaced) topographies (rows), shown in Figures 8 and B.13.

ρ sµ(µm/h) sη(µm/h) sQ1(µm/h) sQ3(µm/h)
0 30.7 29.0 15.2 43.5

0.2 32.9 31.0 16.7 46.4
0.35 40.3 37.0 18.2 58.0
0.5 49.8 48.1 24.2 71.4

Table B.10: Sparse (9µm spaced). Migration speed s (µm/h) distribution statistics (to 3
s.f.), mean, sµ, median, sη, first and third quartiles respectively, sQ1

and sQ3
, (columns)

across variation in distortion parameter ρ for the sparse (9µm spaced) topographies (rows),
shown in Figures 8 and B.13.
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