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Abstract 

Iraq is facing water shortage problem despite the presence of the Tigris and Euphrates Rivers. 

In this research, long rainfall trends up to the year 2099 were studied in Sulaimani city 

northeast Iraq to give an idea about future prospects. Two emission scenarios used by the 

Intergovernmental Panel on Climate Change (A2 & B2) were employed. The results indicates 

that the average annual rainfall show a significant downward trend for both A2 and B2 

scenarios. In addition, winter projects some increase/decrease in the daily rainfall statistics of 

wet days, the spring season show very slight drop and no change for both scenarios. However 

both summer and autumn show a significant reduction in maximum rainfall value especially 

in 2080s while the other statistics remain nearly the same.  

The extremes events are to decrease slightly in 2080s with highest decrease associated with 

A2 scenario. This because the rainfall under scenario A2 is more significant than under 

scenario B2 and temperature can be very hot and worse with increase in emission scenario 

which causes the moist air to be evaporated before going up and cause the rainfall. The return 

period of a certain rainfall will increase in the future when a present storm of 20 year could 

occur once every 43 year in the 2080s. An increase in the frequency of extreme rainfall 

depends on the return period, season of the year, the future period considered and the 

emission scenario under which it will occur. 

Keywords: Iraq, Rainfall, Climate change, Saulaimani 
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1 Introduction 

The Middle East and North Africa (MENA region) is considered as an arid to semi-arid 

region where annual rainfall is about 166mm [1]. Water resources in this region are scarce 

and the region is threatened by desertification. Climate change; population growth and 

development are other factors creating another burden on the water resources of the region. 

Salem [2] stated that 90% of the available water resources will be consumed in 2025. 

UN considers nations having less than 1500, 1000 and 500 cubic meters per capita per year as 

under water stress, under water scarcity severe water stress respectively. The average annual 

available water per capita in MENA region was 977 cubic meters in 2001 and it will decrease 

to 460 cubic meters in 2023 [3,4]. For this reason, the scarcity of water resources in the 

MENA region, and particularly in the Middle East, represents an extremely important factor 

in the stability of the region and an integral element in its economic development and 

prosperity [5,6]. 

The situation will be more severe in future [7,8]. Climate change is one of the main factors 

for future shortages expected in the region [9]. At the end of the century the mean 

temperatures in the MENA region are projected to increase by 3°C to 5°C while the 

precipitation will decrease by about 20% [10]. According to IP CC [11] water run-off will be 

reduced by 20% to 30% in most of MENA by 2050 and water supply might be reduced by 

10% or greater by 2050 [12]. 

    Iraq was considered rich in its water resources due to the presence of the Tigris and 

Euphrates Rivers. A major decrease in the flow of the rivers was experienced when Syria and 

Turkey started to build dams on the upper parts of these rivers [13]. Tigris and Euphrates 

discharges will continue to decrease with time and they will be completely dry up by 2040 

[14]. In addition, future rainfall forecast showed that it is decreasing in Iraq’s neighbouring 

“Jordan” [15,16,17].  

    In this research, rainfall records dated back to 1940 for Sulaimani city were studied and 

used in this research. These data were used in two different models to evaluate long term 

rainfall amounts expected in northeast Iraq due to two scenarios of climate change. This will 

help farmers and decision makers to take precautions to overcome water shortages. 
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2 Studied area 

Iraq occupies a total area of 437 072 square kilometres. Land forms 432 162 square 

kilometres while water forms 4910 square kilometres of the total area. Iraq is bordered by 

Turkey from the north, 352km, Iran from the east, 1458 km, Syria and Syria from the west, 

605 km and 181 km, respectively and Saudi Arabia and Kuwait from the south, 814 km and 

240 km, respectively (Fig. 1). The total population in Iraq is about 30,000,000. Iraq is 

composed of 18 Governorates (Fig. 1). Topographically, Iraq is divided into 4 regions (Fig. 

2). The mountain region occupies 5% of the total area of Iraq, restricted at the north and north 

eastern part of the country. This region is part of Taurus -Zagrus mountain range. Plateau and 

Hills Regions is the second region and it represents 15% of the total area of Iraq. This region 

is bordered by the mountainous region at the north and the Mesopotamian plain from the 

south. The Mesopotamian plain is the third region and it is restricted between the main two 

Rivers, Tigris and Euphrates. It occupies 20% of the total area of Iraq. This plain extends 

from north at Samara, on the Tigris, to Hit, on the Euphrates, toward the Gulf in the south. 

The remainder area of Iraq which forms 60% of the total area is referred to as the Jazera and 

Western Plateau.  

Sulaimaniyah Governorate is located northeast Iraq on the border with Iran within the 

mountain region (Fig. 2). The area of the governorates reaches 17023   square kilometres 

which forms 9.3% of the total area of Iraq. The population of the governorate reaches 

1878800, and in the capital city of the governorate reaches 725000. The area is characterized 

by its mountains. The maximum elevation reaches maximum altitude of 3500 meter above 

sea level in the northeast while it drops to 400 m a.s.l in the southern part. 
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Fig. 1. Physiography of Iraq 

 

 

Fig. 2. Map of Iraq with enlarge view of the ten districts of Sulaimani (Sulaimaniyah) 

Governorate. 

The weather in the summer is rather warm, with temperatures ranging from 15°C to 40°C and 

sometimes up to 45°C. The city is usually windy during winter and there are spills of snow 



5 

 

falling sometimes. This season extends from December till February. However, the 

temperature in the winter season is about 7.6°C. The average relative humidity for summer 

and winter are 25.5% and 65.6% respectively, while the evaporation reached 329.5 mm in 

summer and 53 mm in Winter where the average wind speed in winter 1.2 m. sec-1 and little 

bit more in summer 1.8 m. sec-1. Sunshine duration for winter is half its values for summer 

where it reaches 5.1 and 10.6 hr in winter and summer respectively. Average monthly rainfall 

in winter reaches 110.1 mm. Rainfall season starts in October at Sulaimani with light rainfall 

storms and it intensifies during November and continues till May. 

 

3 Data extraction   

The daily atmospheric variables were derived from the National Centre for Environmental 

Prediction (NCEP/NCAR) (NCEP) reanalysis data set [18] for a period of January 1980 to 

December 2001. The data have a horizontal resolution of 2.5o lat. by 2.5o long. The daily 

rainfall data was obtained from Iraqi Meteorological Office and available for the period 

January 1980 to December 2001.The met office in UK provides GCM data for a number of 

surface and atmospheric variables for the HadCM3 Global Climate Model (third version) 

which has a horizontal resolution of roughly 2.5° latitude by 3.75° longitude and a vertical 

resolution of 29 levels. These data has been used in the present study and comprise of 

present-day and future simulations forced by two emission scenarios, namely A2 and B2. The 

medium high (A2) and medium low B2 scenarios have been used for purpose of this study as 

they are more likely than others scenarios, that beside the fact that no climate modelling 

centre has performed GCM simulations for more than a few emissions scenarios (HadCM3 

has only these two scenarios) otherwise pattern scaling can be used for generating different 

scenarios which entail a huge uncertainty. The GCM data is re-gridded to a common 2.5° 

using inverse square interpolation technique [19].The utility of this interpolation algorithm 

was examined in previous down-scaling studies [20,21. 

 

4 Methodology 

General circulation models (GCMs) solve the principal physics equations of the dynamics of 

the atmosphere and of the oceans together with their interactions on a 3-D grid over the 

globe. GCMs allow us to simulate climate variables and to study the mechanisms of the 
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present, past, and future climate of the Earth. However due to the coarse scale of the GCM in 

order of hundred kilometres, downscaling approach is generally used to obtain local scale 

feature. Overview of downscaling approaches has been provided elsewhere (see [22,23].  

    In line with the scope of this study that simple approaches across a wide range of 

application are preferable. The present study used statistical downscaling (SD) method that is 

considered as one of the most cost-effective methods in local-impact assessments of climate 

scenarios and weather forecast. The statistical downscaling (SD) is cheap to run and 

universally applicable, this is why the current study has been applied it to the case study of 

Iraq.  

4.1 Optimization of Predictors 

Determination of appropriate predictors for the input layer is very important to build the 

downscaling of rainfall model. This process tends not only to drop out those variables that 

have less influence on the output to avoid over fitting but also to overcome the shortage of 

historical record used for calibration processes. This study takes into account the physically 

based consideration regarding the rainfall evolution. As addressed in the previous section, the 

study area is dominated by the orographic rainfall, therefore, among the range of variables 

provided by the NCEP/NCAR data, only few variables which are driving factors for the 

orographic rainfall evolution were selected in the calibration processes. So Predictors 

screening was conducted to finalize a good set of predictors based on “stepwise regression” 

or known as forward regression. It yields the most powerful and parsimonious model as has 

been shown by previous studies [24,25]. 

4.2 Developing Downscaling Rainfall Model 

Artificial neural network is simply understood as a nonlinear statistical data modelling tool 

that presents complex relationships between predictors (input layer) and predictants (output 

layer) through a synapse system hidden layers connecting predictors with predictants, or the 

so called required outputs . As a result, ANN has demonstrated its wide range of application 

to solve complicated problems in many fields, for instance, engineering and environment 

[26].  

    For the current application of ANN as downscaling technique, ANN aims at directly 

translating large-scale data into local-scale values by performing nonlinear regressions. The 

large scale observed NCEP climatic variable and local scale observed rainfall were used to 
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build this relationship. Then large scale predictors from GCM were fed into the ANN model 

to generate local scale future projection. In SD approach, it is assumed that this relation is 

constant with changing climate. Each set of selected predictor variables in the previous 

section were used to calibrate and validate the corresponding dynamic neural networks 

downscaling method for four seasons winter (JFD), spring (MAM), summer (JJA) and 

autumn (SON). Figure 3 show the structure of ANN used in building rainfall downscale 

model with k neurons for the hidden layer 1 and J neurons for hidden layer 2 and w weights 

of the link that connected all ANN layers. 

    Since GCMs do not always perform well at simulating the climate of a particular region 

this means that there may be large differences between observed and GCM-simulated 

conditions (i.e., GCM bias or error). This could potentially violate the statistical assumptions 

associated with SD and give poor results if the predictor data were not normalised [27]. The 

normalisation process ensures that the distributions of observed and GCM-derived predictors 

are in closer agreement than those of the raw observed and raw GCM data. So all the inputs 

of the ANN model have been normalised as show in Figure 3. 

    All of the ANN models developed herein contain a mapping ANN architecture and are 

based on supervised learning. In the developed network, the learning method used is a feed 

forward back propagation, and the sigmoid and linear functions are the transfer function used 

in the hidden and output layer respectively. The three-layer network with two hidden layers 

was selected as the best configuration. The number of nodes in each layer differs according to 

the selected model (see results below). These node numbers were determined after a 

systematic study of each model. There are different backpropagation algorithms, however in 

the present application, Levenberg-Marquardt approach (LM) [28,29] has been applied. It is 

usually 10 to 100 times faster, stable and more reliable than any other back-propagation 

techniques. The main objective behind all ANN training algorithm is to minimise a certain 

error function E. The quantity E, usually the Mean Square Error, measures the difference 

between the observed (o) and Target (d) values for a data with size (n) [30], 

 

E =  
1

P
(∑ (o(i) −  d(i))

2n
i ) ……………………………………………………... (1) 
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Fig. 3.  Network structure used for training the ANN models 

5 Results and discussion 

Downscaling models for the four seasons winter, spring, summer and autumn were developed 

following the methodology as discussed in preceding section. The results and discussion are 

presented in this section.  

5.1 Potential Predictors 

Before building the ANN regression model for rainfall, it is important to screen the suitable 

climatic variables which influence the rainfall feature in the studied region and hence form 

predictor-predict and relationship. Table 1 displays the main predictors in the seasonal 

rainfall models of winter; spring, summer and autumn. The addition of each new predictor to 

a model was tested using a stepwise procedure and assessing the partial and zero correlations, 

a measure of the relative goodness-of-fit based on significance. 

    The key variable such as meridional velocity is shown to be important predictor for all 

seasons in determining rainfall. Relative humidity and airflow strength at different levels 

(surface, 500 and 850) are shown to be important in all seasons except summer and winter 

respectively. Zonal velocity, at the surface or 500hPa level, would appear to be important 

predictor of rainfall during the autumn and summer months. While temperature and wind 
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direction play an important role for the autumn, spring and winter months, this effect was not 

found in summer although it is characterized with warm weather that could be due to 

inclusion of effect of altitude in the region. The effect of correlation for geopotential height at 

500 and vorticity at 850 was captured in spring only. Table 1 show ranges of significant 

correlation between 0.013-0.136 and 0.01-0.124 for zero and partial correlation respectively 

with significant level of less than 5% which results in number of selected predictors ranged 

between 3-8 predictors across the four seasons. 

5.2 Rainfall Model Feature and Efficiency 

To adequately assess the ability of the ANN technique employed to capture the underlying 

relationships between the large-scale atmospheric predictors and rainfall, the data was split 

into three periods, one for calibration & validation and that applied during the training 

process and another set for independent verification purposes  after the training terminate. 

The validation period is normally applied for ANN during the training to monitor the training 

error in order to avoid the over fitting. The calibration and validation periods for the four 

seasonal models were selected randomly within the period 1980–2001. Different percentages 

have been tested to investigate the suitable ratio which results in 80% of the data were 

selected for calibration, 5% for validation and 15% for verification. When calibrating the 

ANN, outliers were found to have a large impact on the resulting models and were excluded 

from subsequent analysis. 
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Table 1. Selected Climate variable (predictors) 

Predictors JFD 

 

MAM 

 

JJA 

 

SON 

 sig Zero-order Partial 

correlation 

sig Zero-

order 

Partial 

correlation 

sig Zero-

order 

Partial 

correlation 

sig Zero-order Partial 

correlatio

n 
Zonal velocity - - - - - - 0.025 0.05 -0.036 - - - 

Lagged Zonal 

velocity(500) 

- - - - - - - - - 0.027 0.040 0.067 

Meridional velocity - - - - - - - - - 0.001 -0.013 0.098 

Lagged meridional 

velocity 

0.001 0.039 0.116 
- - - 

- - - - - - 

Lagged meridional 

velocity (500) 

 

- - - - - - 0.002 0.073 0.050 - - - 

Meridional velocity (850) 

 

   0.001 -0.056 -0.052 - - - - - - 

Airflow strength(850) - - - 0.004 0.029 0.046 - - - - - - 

Lagged airflow 

strength(500) 

- - - - - - 0.003 0.068 0.049 0.004 0.032 -0.010 

Relative humidity 0.000 -0.069 -0.124 
- - - - - - 

- - - 

Lagged Relative humidity - - - 0.000 0.116 0.064 - - - 0.006 0.154 0.084 

Relative humidity(500) - - - 0.001 0.044 0.053 - - -    

Lagged relative 

humidity(500) 

- - -    - - - .085 .099 0.052 

Relative humidity(850) - - - 0.000 0.051 -0.070 - - - - - - 

Lagged relative 

humidity(850) 

0.002 0.063 0.108 
- - - 

- - - - - - 

Wind direction - - - - - - - - - 0.004 -0.098 -0.088 

Wind direction(850) - - - - - - - - - 0.001 -0.086 -0.101 

Lagged wind direction 0.000

4 

-0.094 -0.102 
- - - 

- - - - - - 

divergence 0.011 0.010 0.090 
- - - - - - 

- - - 

Geopotential height (500) - - - 0.012 -0.082 0.041 - - - - - - 

Lagged vorticity (850) - - - 0.045 0.025 0.033 - - - - - - 

Temperature 

 

- - - - - - - - - 0.047 -0.136 -0.060 

Lagged Temperature 

 

- - - 0.000 -0.126 -0.058 - - - - - - 
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Structures of the neural networks used in building the models are shown in Figure 4. It can be 

deduced from the network structures in Figure 4 that the ANN modelling approach employs a 

larger number of neurons in the hidden layers for all seasons. This larger number of neurons 

in the hidden layers generally contributes to the accuracy of the model.  

 

 

  

  

Fig. 4. Structure of ANN for (a) winter, (b) spring, (c) summer and (d) autumn 

    Table 2 shows results of the model produced from ANN against the observed data for each 

season in respect of mean, standard deviation and skewness. Generally all the fitted seasonal 

models perform well, as they reproduce the mean exactly. Nevertheless, looking at the model 

results in terms of standard deviation and skewness, there is some over/underestimation 

respectively across the whole seasons. This can be attributed to the fact that study area has the 

high rainfall variability and skewness (intense rainfall) due to the location in the mountainous 

area.  

Table 2. Statistics of model-computed versus observed daily rainfall for years 1980–

20001. 

Parameter 
Mean Standard deviation skewness 

Observed  Simulated Observed  Simulated Observed  Simulated 

JFD 4.01 4.19 9.71 7.82 4.69 6.77 

MAM 2.56 2.54 7.33 5.45 5.37 6.83 

JJA 0.01 0.01 0.16 0.14 37.57 38.71 

SON 0.87 0.89 4.75 4.05 9.53 12.39 

 

(a) (b) 

(c) (d) 
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    Figures 5 and 6 shows the comparison between monthly rainfall for both the observed and 

modelled series for the calibration and verification periods (1980-2001) which demonstrate a 

good degree of correspondence. The visual plot in Figure 4 shows the monthly average wet 

days for the observed and modelled rainfall for calibration and validation periods. The plot 

shows that the model is slightly over and under estimate the rainfall for some months by up to 

2days which demonstrated that ANN is a good choice for downscaling future rainfall. This 

would entail the assumption that model parameters are assumed time invariant and would not 

change in future. So both monthly pattern (wet days and rainfall) would appear to have been 

adequately captured by the model, an important requirement when assessing climate impacts 

on such systems as the hydrological system. 

 

 

 

Fig. 5. Average monthly rainfall of the observed & simulated rainfall during calibration 

and validation periods (1980–2001). 

 

 

 

 

 

0

20

40

60

80

100

120

140

160

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

R
ai

n
fa

ll 
(m

m
)

Month

Observed Modelled



 13 

 

Fig. 6. Average monthly numbers of wet days of the observed & simulated rainfall 

during calibration and validation periods (1980–2001). 

 

Furthermore, quantile – quantile plots of the four seasons was used to assess the model 

performance by comparing the simulated rainfall against the observed one after arranged in 

ascending order. As seen in Figure 7, model bias was found for most storm events for the four 

seasons. The model output- driven rainfall prediction was a bit lower than the actual 

observation. A reason for this discrepancy might be explained by the converse behaviour of 

altitudinal dependence of precipitation between actual observation and that obtained from 

model outputs. 
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Fig. 7. Quantile – Quantile plot for observed &simulated daily rainfall for (a) winter (b) 

spring, (c) summer and (d) autumn during calibration and validation periods (1961-

2001) 

    Ability of the seasonal models in reproduce the current climate were also evaluated using 

correlation coefficient, Nash coefficient [31],   Root Mean Squared Error (RMSE) [32] and 

Bias [33] as in Figures 8 and 9. The autumn and summer months appear to produce the best 

results as represented with high the correlation and Nash coefficient of 0.88 & 0.89 and 

0.77% & 0.79 respectively. As results the bias and RMSE were quite low in order of 3% and 

2% as a maximum. However, all results are comparable between seasons and the correlation 

between day to day variability does not go below 0.60 with corresponding efficiency of 0.42, 

Bias 4.6% and RMSE 7.5% as a minimum and that was associated with the winter season. 

 

Fig. 8. ANN model efficiency in terms of correlation coefficient (R) and Nash coefficient 

(Nash) during calibration and validation periods (1961-2001) 
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Fig. 9. ANN model error in terms of root mean square error (RMSE) and bias (Nash) 

during calibration and validation periods (1961-2001) 

Extreme rainfall is considered one of the most important parameters used in the design of 

many hydrological systems. So the ability of the ANN model to reproduce extreme values of 

rainfall has also been assessed in this study using a combined approach of annual maximum 

and Generalised Extreme Value Distribution, GEV [34]. Figure 10 shows an example of the 

cumulative distribution function for the observed and simulated extremes (daily) rainfall at 

Iraq in the winter, spring, summer and autumn seasons. It can be observed in these Figures 

that the cumulative distribution function produced by the ANN model closely matches or 

exceeds the corresponding observed one for extreme rainfall at daily scale at all seasons. The 

conclusion that can be made from cumulative distribution function plots is that the ANN 

model is reasonable in representing extreme rainfall observations and their probability. 
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Fig. 10. CDFs of model-computed versus observed daily extremes rainfall for (a) JFD, 

(b) MAM, (c) JJA and (d) SON for years 1980–2001 

5.3 Scenarios of Future Rainfall Projection up to 21st Century  

Once the downscaling models have been calibrated and validated, the next step is to use these 

models to downscale the control scenario and future scenario simulated by the GCM 

(HadCM3). Synthetic daily rainfall time series were produced for HadCM3 A2 for a period of 

139 years (1961 to 2099). The outcome was averaged and divided by three (3) period of time, 

which are 2020s (2010-2039), 2050s (2040-2069) and 2080s (2070-2099). Climate change 

was assessed by comparing these three future time slices with baseline period of 1961-1990 as 

recommended by the Intergovernmental Pannel of Climate change. 

   Trend study for observed rainfall data is widely used as a base reference or a caveat of 

climate change studies (e.g. [35]. Also, it can provide a quick visual check for the presence of 

unreasonable values (outliers). However, the usefulness of trend study is always being 

questioned. Possible trends in the data are investigated to offer an historical context before 

further climate change assessments in this work.  

    Using a simple linear trend approach [36], the gradient and its variance of the resulting 

regression of the hydrological series with respect to time is used to check the possible trends 
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in the rainfall series. Based on the Wald statistics, the significance of trend gradients is tested 

based on a normally distributed assumption (significant level is 5%). Hannaford and Marsh 

[36] used a similar linear regression approach to look at runoff trends in the UK. Figure11 

shows series plots and their trend lines for the average annual rainfall for which show a 

significant downward trend for both A2 and B2 scenarios for the period 1961-2099 with acute 

trend for A2 scenario and that indicate climate change did take place since the observed 

period data. 

 

 

 

Fig. 11. Average annual rainfall for A2 scenario (upper) and B2 scenario (lower) 

compared with control period. Linear trend indicates that there is a significant 

downward trend  

Figure 12 presents average monthly rainfall simulated by HadCM3 GCM for A2 and B2 

scenarios of greenhouse emission for the three future periods compared with the baseline 

period. Both plots consistently project some reduction in the monthly rainfall for the 2020s, 

2050s and 2080s; however 2080s experience largest drop especially during April and July 

months of A2 (51% and 77%) and during May and July of B2(49% and 79%) . Generally the 

projected rainfall in future varies significantly/slightly amongst the three future periods and 

the emission scenario considered as A2 experience more significant reduction than scenario 

B2. 
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Fig. 12. Average monthly rainfall for A2 scenario (upper) and B2 scenario (lower) 

compared with baseline period 

Other comparative plots of future periods against the baseline period is the daily rainfall box 

plots of the four seasons of A2 and B2 scenarios which were presented in Figure 13. The daily 

rainfall box plots are different across all seasons for the entire statistics with mix projections 

were found within the future periods. While the winter projects some increase/decrease in the 

daily rainfall statistics of wet days (maximum, 3rd quantile, mean, 1st quantile and 

minimum), the spring season show between very slight drop and no change for both 

scenarios. However both summer and autumn show a significant reduction in maximum 

rainfall value especially in 2080s while the other statistics remain nearly the same. In term of 

mean daily rainfall, a drop up to 8%, 6% and 24% for winter, spring and autumn respectively 

can be detected for A2 scenario by 2080s, while B2 projects a maximum drop of up to 6%, 

10%, 48% and 18% for winter, spring, summer and autumn. 
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Fig. 13. The daily rainfall box plots across the four seasons for different future period of 

A2 scenario (upper) and B2 scenario (lower) compared with baseline period. 

Moreover analysis for the obtained quantiles simulated by GEV revealed changes in the 

intensity and frequency (return period) of the extreme rainfall in the future periods of the 

2020s, 2050s and 2080s for scenario A2 and B2 compared to the extreme rainfall derived 

from the observed baseline period 1961-1990 as in Figure 14. The extremes events are 

projected to decrease slightly in 2080s with highest decrease associated with A2 scenario. 

This because the rainfall under scenario A2 is more significant than under scenario B2 and 

temperature can be very hot and worse with increase in emission scenario which causes the 

moist air to be evaporated before going up and cause the rainfall. So the water vapour causing 

rainfall is reduced with increase the emission of greenhouse gas. The 2020s and 2050s 

showed no considerable change across the different return periods for A2 and B2 especially 

with the higher return period while the lower periods show some increase and decrease. The 

results obtained from the extreme analysis of rainfall in the future periods under climate 

change, clearly demonstrate that in general future extreme rainfalls are projected to be less 

frequent especially in 2080s with a very small drop are detected (up to 2%) due to location of 
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the study area. The return period of a certain rainfall will increase in the future as 

demonstrated by the dashed line for quantile-return period plot displayed in Figure 14 when a 

present storm of 20 year could occur once every 43 year in the 2080s. The results in Figure 14 

also shows that an increase in the frequency of extreme rainfall depends on the return period, 

season of the year, the future period considered and the emission scenario under which it will 

occur. 

 

 

 

 

Figure 14. Future daily rainfall extremes for different return period of A2 scenario (upper) 

and B2 scenario (lower) compared with baseline period 

 

 

6 Conclusions  

Iraq is facing water shortage problems. One of the solutions to such problem is the use of 

water harvesting and artificial recharge of groundwater aquifers. These techniques greatly 

depend on rainfall events. In this research rainfall records were investigated in the northeast 
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part of Iraq to analyse the expected future rainfall trends. This will greatly help decision 

makers to set prudent water resources management plan. 

Rainfall records of Sulaimani city dating back to 1961 were used in two scenarios A2 and B2. 

The medium high (A2) and medium low B2 scenarios have been used for purpose of this 

study as they are more likely than others scenarios, that beside the fact that no climate 

modelling canter has performed GCM simulations for more than a few emissions scenarios 

(HadCM3 has only these two scenarios) otherwise pattern scaling can be used for generating 

different scenarios which entail a huge uncertainty. The outcome was averaged and divided 

by three (3) period of time, which are 2020s (2010-2039), 2050s (2040-2069) and 2080s 

(2070-2099) and compared with base line period (1961-1990). Climate change was assessed 

by comparing these three future time slices with baseline period of 1961-1990 as 

recommended by the Intergovernmental Pannel of Climate change. 

The results indicates that the average annual rainfall show a significant downward trend for 

both A2 and B2 scenarios for the period 1961-2099 with acute trend for A2 scenario and that 

indicate climate change did take place since the observed period data. Average monthly 

rainfall simulated by HadCM3 GCM for A2 and B2 scenarios of greenhouse emission for the 

three future periods compared with the baseline period show some reduction in the monthly 

rainfall for the 2020s, 2050s and 2080s; however 2080s experience largest drop especially 

during April and July months of A2 (51% and 77%) and during May and July of B2(49% and 

79%) . 

Generally the projected rainfall in future varies significantly/slightly amongst the three future 

periods and the emission scenario considered as A2 experience more significant reduction 

than scenario B2. 

The daily rainfall box plots are different across all seasons for the entire statistics with mix 

projections were found within the future periods. While the winter projects some 

increase/decrease in the daily rainfall statistics of wet days (maximum, 3rd quantile, mean, 1st 

quantile and minimum), the spring season show between very slight drop and no change for 

both scenarios. However both summer and autumn show a significant reduction in maximum 

rainfall value especially in 2080s while the other statistics remain nearly the same. 

In term of mean daily rainfall, a drop up to 8%, 6% and 24% for winter, spring and autumn 

respectively can be detected for A2 scenario by 2080s, while B2 projects a maximum drop of 

up to 6%, 10%, 48% and 18% for winter, spring, summer and autumn. 
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Moreover analysis for the obtained quantiles simulated by GEV revealed changes in the 

intensity and frequency (return period) of the extreme rainfall in the future periods for 

scenario A2 and B2 compared to the extreme rainfall derived from the observed baseline 

period. The extremes events are to decrease slightly in 2080s with highest decrease associated 

with A2 scenario. This because the rainfall under scenario A2 is more significant than under 

scenario B2 and temperature can be very hot and worse with increase in emission scenario 

which causes the moist air to be evaporated before going up and cause the rainfall. So the 

water vapour causing rainfall is reduced with increase the emission of greenhouse gas. The 

2020s and 2050s showed no considerable change across the different return periods for A2 

and B2 especially with the higher return period while the lower periods show some increase 

and decrease. 

The return period of a certain rainfall will increase in the future when a present storm of 20 

year could occur once every 43 year in the 2080s. The results also shows that an increase in 

the frequency of extreme rainfall depends on the return period, season of the year, the future 

period considered and the emission scenario under which it will occur.   
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