Hussain, A, Fergus, P, Al-Askar, H, Al-Jumeily, D and Jager, F

Dynamic neural network architecture inspired by the immune algorithm to predict preterm deliveries in pregnant women

http://researchonline.ljmu.ac.uk/id/eprint/2369/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk
Dynamic Neural Network Architecture Inspired by The Immune Algorithm to Predict Preterm Deliveries in Pregnant Women.

A. J. Hussaina,*, P. Fergusa, H. Al-Askara, D. Al-Jumeilya and F. Jagerb

aSchool of Computing and Mathematical Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK

bFaculty of Computer and Information Science, University of Ljubljana, Congress trg 12, 1000 Ljubljana, Slovenia

ABSTRACT

There has been some improvement in the treatment of preterm infants, which has helped to increase their chance of survival. However, the rate of premature births is still globally increasing. As a result, this group of infants are most at risk of developing severe medical conditions that can affect the respiratory, gastrointestinal, immune, central nervous, auditory and visual systems. There is a strong body of evidence emerging that suggests the analysis of uterine electrical signals, from the abdominal surface (Electrohysterography – EHG), could provide a viable way of diagnosing true labour and even predict preterm deliveries. This paper explores this idea further and presents a new dynamic self-organised network immune algorithm that classifies term and preterm records, using an open dataset containing 300 records (38 preterm and 262 term). Using the dataset, oversampling and cross validation techniques are evaluated against other similar studies. the proposed approach shows an improvement on existing studies with 89\% sensitivity, 91\% specificity, 90\% positive predicted value, 90\% negative predicted value, and an overall accuracy of 90\%.
Keywords: Term delivery, preterm delivery, machine learning, classification, neural networks, Electrohysterography

1. INTRODUCTION

Preterm birth, also known as premature birth or delivery, is described by the World Health Organisation (WHO) as the delivery of babies who are born, alive, before 37 weeks of gestation [1]. In contrast, term births are the live delivery of babies after 37 weeks, and before 42 weeks. According to the WHO, worldwide in 2010, preterm deliveries accounted for 1 in 10 births [1]. In 2009, in England and Wales, 7% of live births were also preterm¹. Preterm birth has a significant adverse effect on the newborn, including an increased risk of death and health defects. The severity of these effects increases the more premature the delivery is. Approximately, 50% of all perinatal deaths are caused by preterm delivery [2], with those surviving often suffering from afflictions, caused by the birth. These include impairments to hearing, vision, the lungs, the cardiovascular system and non-communicable diseases. Up to, 40% of survivors of extreme preterm delivery can also develop chronic lung disease [3]. In other cases, survivors suffer with neuro-developmental or behavioural defects, including cerebral palsy, motor, learning and cognitive impairments. In addition, preterm births also have a detrimental effect on families, the economy, and society. In 2009, the overall cost to the public sector, in England and Wales, was estimated to be nearly £2.95 billion [4]. However, developing a better understanding of preterm deliveries can help to create preventative strategies and thus positively mitigate, or even eradicate, the effects that preterm deliveries have on babies, families, and society and healthcare services.

Preterm births can occur for three different reasons. According to [2] approximately one-third are medically indicated or induced; delivery is brought forward for the best interest of the mother or baby. Another third occurs because the membranes rupture, prior to labour (PPROM). Lastly, spontaneous contractions (termed preterm labour or PTL) can develop. However, there is still a great deal of uncertainty about the level of risk each factor presents, and whether they are causes or effects. Nevertheless, in

some of the causes of preterm labour, which may or may not end in preterm birth, have been discussed. These include infection, over-distension, burst blood vessels, surgical procedures, illnesses and congenital defects of the mother’s uterus and cervical weakness. Further studies have also found other risk factors for PTL/PPROM [7], [8]. These include a previous preterm delivery (20%); the last two births have been preterm (40%), and multiple births (twin pregnancy carries a 50% risk). Other health and lifestyle factors also include cervical and uterine abnormalities, recurrent antepartum haemorrhage, illnesses and infections, any invasive procedure or surgery, underweight or obese mother, ethnicity, social deprivation, long working hours/late night, alcohol and drug use, and folic acid deficiency.

As well as investigating preterm deliveries, several studies have also explored preterm labour (the stage that directly precedes the delivery). However, in spite of these studies, there is no internationally agreed definition of preterm labour. Nonetheless, in practice, women who experience regular contractions, increased vaginal discharge, pelvic pressure and lower backache tend to show Threatening Preterm Labour (TPL). While this is a good measure, Mangham et al., suggest that clinical methods for diagnosing preterm labour are insufficient [4]. Following a medical diagnosis of TPL, only 50% of all women with TPL actually deliver, within seven days [2]. In support of this, McPheeters et al., carried out a similar study that showed 144 out of 234 (61.5%) women diagnosed with preterm labour went on to deliver at term [5]. This can potentially add significant costs, and unnecessary interventions, to prenatal care. In contrast, false-negative results mean that patients requiring admittance are turned away, but then go on to deliver prematurely [6].

Predicting preterm birth and diagnosing preterm labour clearly have important consequences, for both health and the economy. However, most efforts have concentrated on mitigating the effects of preterm birth. Nevertheless, since this approach remains costly [1], it has been suggested that prevention could yield better results [9]. Effective prediction of preterm births could contribute to improving prevention, through appropriate medical and lifestyle interventions. One promising

2 http://bestpractice.bmj.com/best-practice/monograph/1002/basics.html
method is the use of Electrohysterography (EHG). EHG measures electrical activity in the uterus, and is a specific form of electromyography (EMG), the measurement of such activity in muscular tissue. Several studies have shown that the EHG record may vary from woman to woman, depending on whether she is in true labour or false labour and whether she will deliver term or preterm. EHG provides a strong basis for objective predication and diagnosis of preterm birth.

Many research studies have used EHG for prediction or detection of true labour. In contrast, this paper focuses on using EHG classification to determine whether delivery will be preterm or term. This is achieved by using a new neural network posited in this paper which is evaluated against several existing machine-learning classifiers using an open dataset, containing 300 records (38 preterm and 262 term) [10]. A signal filter and pre-selected features that are suited to classifying term and preterm records are used to produce a feature set from raw signals and is used by all classifiers. The results show that selected classifiers outperform a number of approaches, used in many other studies.

The structure of the remainder, of this paper is as follows. Section 2 describes the underlying principles of Electrohysterography. Section 3 discusses feature extraction from Electrohysterography signals. Section 4 describes machine learning and its use in term and preterm classification, while section 5 describes the approach taken in this paper. Section 6 describes the evaluation, whilst Section 7 discusses the results before the paper is concluded in Section 8.

2. ELECTROHYSTEROGRAPHY

Since the late 1930s, information on the electrical activity of the uterus has been known [11]. However, it has only been in the last twenty years that formal techniques for recording this type of activity, have appeared.

In order to retrieve EHG signals, bipolar electrodes are adhered to the abdominal surface. These are spaced at a horizontal, or vertical, distance of 2.5cm to 7cm apart. Most studies, including [10], use four electrodes although one study utilizes two [12]. In a series of other studies, sixteen electrodes were used [13–18], and a high density grid of 64 small electrodes was used in [19]. The results show that EHG
may vary from women to women. This is dependent on whether she is in true or false labour, and whether she will deliver at term, or prematurely.

A raw EHG signal results from the propagation of electrical activity, between cells in the myometrium (the muscular wall of the uterus). This signal measures the potential difference between the electrodes, in a time domain. The electrical signals are not propagated by nerve endings; however, the exact propagation mechanism is not clear [20]. Since the late 70s, one theory suggests that gap junctions are the mechanisms responsible. Nevertheless, more recently it has been suggested that interstitial cells, or stretch receptors may be the cause of propagation [21]. Gap junctions are groups of proteins that provide channels of low electrical resistance between cells. In most pregnancies, the connections between gap junctions are sparse, although gradually increasing, until the last few days before labour. A specific pacemaker site has not been conclusively identified, although, due to obvious physiological reasons, there may be a generalised propagation direction, from the top to the bottom of the uterus [22].

The electrical signals, in the uterus, are ‘commands’ to contract. During labour, the position of the bursts, in an EHG signal, corresponds roughly with the bursts shown in a tocodynamometer or intrauterine pressure catheter (IUPC). Clinical practises use these devices to measure contractions. More surprisingly, distinct contraction-related, electrical uterine activity is present early on in pregnancy, even when a woman is not in true labour. Gondry et al. identified spontaneous contractions from EHG records as early as 19 weeks of gestation [23]. The level of activity is said to increase, as the time to deliver nears, but shoots up especially so, in the last three to four days, before delivery [24]. As the gestational period increases, the gradual increase in electrical activity is a manifestation of the body’s preparation for the final act of labour and parturition. In preparation for full contractions, which are needed to create the force and synchronicity required for a sustained period of true labour, the body gradually increases the number of electrical connections (gap junctions), between cells. In turn, this produces contractions in training.

Before analysis or classification tasks, EHG signals in their raw form, need pre-processing. Pre-processing can include filtering, de-noising, wavelet shrinkage or
transformation and automatic detection of bursts. Recently, studies have typically focused on filtering the EHG signals to allow a bandpass between 0.05Hz to 16Hz [25–29]. However, there are some that have taken filtered EHG recordings to as high as 50Hz [20]. Nevertheless, using EHG with such a wide range of frequencies is not the recommended method, since more interference affects the signal.

3. FEATURE EXTRACTION FROM ELECTROHYSTEROGRAPHY SIGNALS

The collection of raw EHG signals is always temporal. However, for analysis and feature extraction purposes, translation, into other domains, is possible. These include a frequency representation, via Fourier Transform, [16], [29–31] and wavelet transform [25], [28], [31–34]. The advantage of frequency-related parameters is that they are less susceptible to signal quality variations, due to electrode placement or the physical characteristics of the subjects [27]. In order to calculate these parameters, a transform from the time domain is required, i.e., using a Fourier Transform of the signal. Still, further transformation is often required before the extraction of frequency parameters. In several of the studies reviewed, in order to obtain frequency parameters, Power Spectral Density (PSD) is used. Peak frequency is one of the features provided with the Term-Preterm ElectroHysteroGram (TPEHG) dataset. It describes the frequency of the highest peak in the PSD. Most studies focus on the peak frequency of the burst, and in both human and animal studies, they are said to be one of the most useful parameters for predicting true labour [35]. On the other hand, the study by [10] found medium frequency to be more helpful in determining whether delivery was going to be term or preterm.

Several studies have shown that peak frequency increases, as the time to delivery decreases; this usually occurs within 1-7 days of delivery [20], [31], [25], [27], [12], [36]. In particular, the results in [29] show that there are, statistically, significant differences in the mean values of peak frequency and the standard deviations in EHG recordings taken during term labour (TL) and term non-labour (TN) and also between preterm labour (PTL) and preterm non-labour (PTN).

In comparison to peak frequency, the TPEHG study [10] found that median frequency displayed a more significant difference between term and preterm records.
When considering all 300 records, the statistical significance was $p=0.012$ and $p=0.013$ for Channel 3 on the 0.3-3Hz and 0.3-4Hz filter, respectively. Furthermore, this significance ($p = 0.03$) was also apparent when only considering early records (before 26 weeks of gestation), with the same 0.3-3Hz filter on Channel 3. The TPEHG study [10] concluded that this might have been due to the enlargement of the uterus, during pregnancy, which would affect the position of electrode placement. The placement of the Channel 3 electrode was, approximately, always 3.5cm below the navel. However, as pregnancy progressed, this would mean that the electrode would move further away from the bottom of the uterus (cervico-isthmic section). If a generalised pacemaker area actually exists, and it is at the cervico-isthmic section, then, as pregnancy progresses, its position would move further and further away from the electrode, resulting in a diminished record of the signal. Whether this explanation is true or not, the results of [10] show that the discriminating capability of median frequency is somehow diminished, after the 26th week.

Amplitude-related EMG parameters represent the uterine EMG signal power, or signal energy. However, a major limitation is that the differences in patients can easily affect these parameters. Patients may differ in the amount of fatty tissue they have, and the conductivity of the skin–electrode interface, which leads to differences in the attenuation of uterine signals [27], [6], [35]. Examples of amplitude-related parameters include root mean square, peak amplitude and median amplitude. To obtain the root mean square, the signal value of every sample, in the recording, is squared, summed together, and then divided by the number of samples before the square root is taken. Root mean square is statistically descriptive of the signal’s amplitude. The peak amplitude of the PSD is, in general, the maximum amplitude of a signal.

Using the Student’s t-test, [10] found that root mean square might be useful in distinguishing between whether the information was recorded early (before 26 weeks of gestation) or late (after 26 weeks). The results obtained are in agreement with [31], [20], and [37], who found that the amplitude of the power spectrum increased, just prior to delivery. This was despite only analysing the root mean square values, per burst, rather than the whole signal. In other studies they found that amplitude-related parameters did not display a significant relationship with gestational age or
indicate a transition to delivery (within seven days) [26], [24], [29]. Some of these discrepancies may be due to the differences in the characteristics of the studies: [10] compared records before and after 26 weeks, whereas [26] only examined records after the 25th week; [30] and [36] studied rat pregnancy, in contrast to human pregnancy. The frequency band used in [31] and [20] was a much broader band than in other studies (0.3- 50Hz; no bandwidth given for [37]), and also, the studies by [30] and [36] measured per burst, whilst [26] measured the whole signal.

Meanwhile, the TPEHG study [10] could not find any significant difference in root mean squares between preterm and term records. However, [26] did find that the root mean squares, in preterm contractions, were higher (17.5mv ±7.78), compared to term contractions (12.2 mV ±6.25; p <0.05). The results, from [26], could not find a correlation between root mean squares and the weeks left to delivery. Nevertheless, they do suggest that a greater root mean square value was, for the most part, a static symptom that indicated a woman’s dispensation to give birth prematurely. They also found that the root mean square values, within each pregnancy, did increase within a few days of birth.

Overall, the results suggest that there is no significant difference in the amplitude-related parameters between term and preterm deliveries, when taken during labour, or close to it. However, there may be considerable differences earlier on in the pregnancy. This suggests that by the time of delivery any differences have equalised themselves.

Sample entropy measures the irregularity of a time series, of finite lengths. This method was introduced by [38] to measure complexity in cardiovascular and biological signals. The more unpredictable the time series is, within a signal recording, the higher its sample entropy. The process is based on calculating the number of matches of a sequence, which lasts for m points, within a given margin r. The disadvantage of this technique is the requirement to select two parameters, m and r. However, sample entropy did show a statistical difference between term and preterm delivery information, recorded either before or after the 26th week of gestation, when using any of the filters but only using the signal from Channel 3 [10].
In this section, numerous studies have been discussed, such as [10] and [25]. These investigations have used statistical analysis to examine the differences in EHG parameters, as well as the potential of such parameters to allow discrimination between different classes. The next section builds on the generally agreed upon idea that features can be used to separate term and preterm groups; specifically, using root mean square, median frequency, peak frequency and sample entropy, in exploring several well-known classification algorithms, and their ability to separate term and preterm records.

4. TERM AND PRETERM CLASSIFICATION

Computer algorithms, and visualization techniques, are fundamental in supporting the analysis of datasets. More recently, the medical domain has been using such techniques, extensively. One example of this is the Common Spatial Patterns (CSP) algorithm. This was proposed by Woon et al. and has been successfully used to study Alzheimer’s [39]. In other studies, Latchoumane et al., examines electroencephalogram (EEG) signals using Multi-way Array Decomposition (MAD). This is a supervised learning process for evaluating multidimensional and multivariate data like EEG [40].

Multi-Layer Perceptrons (MLP) and Probabilistic Neural Networks (PNNs) have featured widely in research to process and analyse medical datasets. MLPs are feed-forward networks that work with back-propagation learning rules. PNNs are similar to MLPs and consist of three layers, an input layer, radial basis layer, and a competitive layer. This type of feed-forward network operates using the Parzen’s Probabilistic Density Function (PDF). In terms of overall functionality, PNN networks perform slightly better than PML networks [41].

The primary goal of such algorithms is to extract meaning from potentially huge amounts of data. Their association with particular data characterizes these features, such as datasets that contain data about neurodegenerative diseases. This has led to a great deal of work in feature extraction within datasets. One example of this is the Discrete Cosine Transform (DCT) algorithm that decreases the number of features and the computation time when processing signals. DCT is used to calculate the trapped zone, under the curve, in special bands [42].
New neural network models have also emerged, called self-organized network inspired by the immune algorithm (SONIA) [19] which is a single hidden layer neural network that uses a self-organization hidden layer inspired by the immune and back-propagation algorithms for the training of the output layer. The SONIA network was first proposed to improve the generalization and recognition capability that was lacking in back-propagation neural networks. The SONIA network has been used in financial time series prediction [45], [46], and the experimental results in this paper will show that the SONIA network can be applied successfully to predict term and preterm records. Extensions to the SONIA network have been reported in other studies [47] and [48].

Using Decision Trees, Naïve Bayes and Neural Networks, similar algorithms have been used to predict heart disease. The results show that, using the lift chart for prediction and non-prediction, the Naïve Bayes algorithm predicted more heart disease patients than both the Neural Network and Decision Tree approaches [43]. Using data collected from patients suffering with Alzheimer’s, Joshi et al., identified the various stages of Alzheimer’s. This was achieved using neural networks, multilayer perceptrons, including the coactive neuro-fuzzy inference system (CANFIS) and Genetic Algorithms [44]. The results showed that CANFIS produced the best classification accuracy result (99.55%) when compared with C4.5 (a decision tree algorithm).

Other algorithms, such as dissimilarity based classification techniques, have proven to be very useful for analysing datasets. For example, the classification of seismic signals has been extensively explored using algorithms such as the k-nearest neighbour classifier (k-NN), and Linear and Quadratic normal density based classifiers. However, when there are a large number of prototypes, the results have shown that Bayesian (normal density based) classifiers outperform the k-NN classifier.

Meanwhile, Artificial Neural Networks (ANN) have been used in a large number of studies to classify term and preterm deliveries [45], [46], [12]. In other works, they have helped to distinguish between non-labour and labour events [46], [12], irrespective of whether they were term or preterm. In [15] the focus was on
identifying the most important risk factors for preterm birth. The global accuracy of these studies varied from between 73% and 97%.

A study by [47] used the TPEHG database [10] to evaluate classification accuracy. This occurred via sample entropy, against thirty cepstral coefficients and then against three. One of the feature sets used for classification consisted of calculating thirty cepstral coefficients, from each signal recording. The second feature set contained three cepstral coefficients. The selection of these values occurred by sequential forward selection and Fisher’s discriminant. A multi-layer perceptron neural network classified the records, into term and preterm records. The results indicate that the reduced feature set, of three cepstral coefficients, gave the best classification accuracy of 72.73% (±13.5). This was in contrast to the entire thirty coefficients, whose accuracy was 53.11% (±10.5), and sample entropy, which was 51.67% (±14.6). In addition, Support Vector Machine (SVM) classification has been used in [13–15]. They classify contractions into labour or non-labour using different locations on the abdomen. The classifications were also combined with decision fusion rules – majority voting, weighted majority voting (WMV) and kernel function was the Gaussian radial basis function (RBF). The features that were used include the power of the EMG signal, and the median frequency. The highest accuracy for a single SVM classifier, at one location, was 78.4% [13], [14], whilst the overall classification accuracy, for the combined SVM, was 88.4% [15]. Finding the coefficients, for the decision boundary, occurs by solving a quadratic optimisation problem.

In contrast, [48] have utilised k-NN for classification. However, the emphasis of this work was much more on the Autoregressive (AR) modelling and wavelet transform pre-processing techniques. The study aimed to classify contractions, from 16 women, into three types. G1, were women who had their contractions recorded at 29 weeks, and then delivered at 33 weeks; G2 were also recorded at 29 weeks, but delivered at 31 weeks, and G3 were recorded at 27 weeks and delivered at 31 weeks. Classification occurred against G1 and G2 and against G2 and G3. The comparison of two different classification techniques then occurred. 1) k-NN combined with the pre-processing method of AR, and 2) an Unsupervised Statistical Classification Method (USCM) combined with the pre-processing method of Wavelet
Transform. The basis of USCM is the Fisher Test and k-Means methods and it would appear the authors have designed this method. The wavelet transform, combined with USCM, could provide a classification error of 9.5% when discerning G1 against G2, and 13.8% when classifying G2 against G3. On the other hand, using AR, the k-NN was able to provide a classification error of 2.4% for G1 against G2 and 8.3% for G2 against G3. In other words, in both classifications, the AR and k-NN methods performed better than the USCM. In addition, the classification accuracy of G1 against G2 was always lower than the equivalent G2 to G3 classifications. This suggests that it is easier to distinguish between pregnancies recorded at different stages of gestation than it is to distinguish between the time of delivery.

5. PREDICTION OF PRETERM DELIVERIES

Despite the advances, within the last twenty years in the EHG diagnosis and prediction field, knowledge of the uterus, and its mechanisms remains particularly poor. This is especially evident when compared to other organs such as the heart, and to a lesser extent, the gastro-intestinal system [21]. Given this inadequate knowledge, it may be easier to utilise an empirical backward looking, ‘data mining’ or ‘brute force’ approach. This is opposed to a forward-looking conceptual model approach, in order to find features that best describe pregnancy.

The aim of most studies, in EHG prediction or detection, has been to detect true labour, rather than predicting, in advance, whether delivery will be preterm or term. Furthermore, many of the studies concentrated on a late state in gestation. Even if earlier stages were incorporated, they always only included those with threatened preterm labour. However, the TPEHG dataset is different, as it involves the general population of pregnant women. Therefore, this collection includes fewer records for women who delivered preterm than term.

For term deliveries, true labour only starts within 24 hours. For preterm deliveries, it may start within 7 to 10 days. The change in EHG activity, from non-labour to labour, is dramatic; throughout the rest of pregnancy, any change in EHG is more gradual. Therefore, it is expected that, classification of the records, into preterm and term, is particularly challenging. For this reason, and due to the configuration of the dataset,
the study attempts to classify records from an earlier stage, according to whether they will eventually result in *term* or *preterm* deliveries.

5.1. Self-organised Multilayer network inspired by Immune Algorithm

The self-organised network inspired by the immune algorithm is developed to improve recognition and generalization capability of the backpropagation neural networks.

The concept of immune algorithm was initially discussed in [64]. Then in 2005, Widyanto *et al.* [70] suggested the Self-Organized inspired by immune algorithm as a method to improve recognition and generalization capability of the back-propagation neural networks which is called Self Organised Neural Network Inspired by the Immune Algorithm (SONIA).

The idea is based on the relation between antigen and cell (Recognition Ball). Biologically, it is known that when the cell matched with antigen this antigen stimulates the cell to duplicate itself. Then a mutated cell is created to fight unknown viruses that are attacked via the antigen.

In neural network, the input vector represents an antigen while the hidden layer of the network is considered as a recognition ball as shown by Figure 1.

In immune system, there is a recognition ball and an antigen. The recognition ball includes the B-cell, a single epitope and many paratopes, the epitope is attached to B-cell and paratopes are attached to antigen. Single B-cell can represent various antigens. It should be noted that the antigen which has the most characteristic with a particular type of recognition ball, simulates it to create mutated B cells allowing it to fight unknown viruses. For the SONIA network, the hidden unit is created to deal with the testing data that has similar characteristics to the trained data. The mutated hidden unit is generated in the region where no hidden unit currently exists. The idea of adding a hidden unit similar to adding artificial data to this region, this will allow the training data to be distributed in the input space better and hence improves the generalization capability.

In neural networks, to overcome the overfitting problem, a hidden unit represents the recognition ball. This hidden unit has a centroid, which can represent several input vector, therefore the centroids are chosen to determine the value of the connection
weights between input nodes and the corresponding hidden unit. This will provide
the neural network with the ability to prevent memorising the training data.
The self-organised neural networks inspired by immune algorithm have a mutated
hidden unit that is generated to deal with the testing data. The generated units of the
hidden layer can be realized as adding artificial data to that region; therefore, the
distribution of training data in the input space will become more acceptable and lead
to improved generalisation ability.

![Diagram of BP-NN and Immune Algorithm](image)

Figure 1: Input vector and hidden units of Backpropogation-NN are considered as
antigen and recognition ball of immune algorithm [70].

For the SONIA network; consider that the first layer has a number of input units
\(\{1, \ldots, N_i\} \), the self-organized hidden layer with a number of hidden units \(\{1, \ldots, N_h\} \),
and the output layer has a number of output units \(\{1, \ldots, N_o\} \).
The input \(x_i, \{i=1, \ldots, N_i\} \) is normalized between 0 and 1, and the output of the first
layer is \(U_i \in [0,1] \), this will be fed as input into the hidden layers. \(x_{hj} \) is the output of
the hidden layer which is computed by the Euclidean distance as follows
\[
x_{hj}(t) = f_{ht} \left(\sqrt{\sum_{i=1}^{N_i} (W_{hji} - U_i(t))^2} \right)
\]
\[(i=1, \ldots, N_i, j=1, \ldots, N_h)
\]

(1)

\(W_{hij}\) refers to the strength of the connection between the \(i^{th}\) input units to \(j^{th}\) hidden units, and \(f_{ht}\) is a nonlinear transfer function. This output will be the input for the output layers. The output can be computed as:

\[
y_k(t) = f_{ot} \left(\sum_{j=1}^{N_h} W_{ojk} X_{Hj}(t) + \theta_{ok} \right)
\]

(2)

\(W_{ojk}\) refers to the strength connection between the \(j^{th}\) hidden unit and \(k^{th}\) output units of the output layers. \(\theta_{ok}\) is a bias of the \(k^{th}\) output units and \(f_{ot}\) is a nonlinear activation function. The overall aim of this training is to minimise the cost function which is:

\[
E(t) = \frac{1}{2} \sum e(t)^2
\]

and \(e(t) = d(t) - y(t)\)

(3)

Where \(d(t)\) and \(y(t)\) are the target and the network output at time \(t\), respectively. Minimizing the error value \(E\) is performed by updating weights in the hidden and the output layers. The \(W_{ojk}\) and \(\theta_{ok}\) which correspond to the output layer are updated by the back-propagation algorithm.

The weights \(W_{hji}\) in the hidden layers are updated using B cell creation, where the hidden unit is considered as recognition ball in the immune algorithm. In the initialisation procedure, the first hidden unit \((t_1, w_{h1})\) is generated with \(t_1 = 0\), and \(w_{h1}\) is taken arbitrarily from the input vector.

The procedure of the immune algorithm is used to create the hidden unit [64]. This procedure will be repeated until all inputs have found their corresponding hidden unit as follows [70]:

For \(m=1\) to \(N_i\) which is the number of input, repeat the following procedure:

1. Calculate the Euclidean distance between \(m^{th}\) input and the centroid of the \(j^{th}\)
hidden unit \(j = \{1, \ldots, N_h \} \) by:

\[
D_{hj}(t) = \alpha \sqrt{\sum_{i=1}^{n_i} (u_i(t) - W_{hi})^2}
\]

(4)

Where \(u_i(t) \) is the \(i \)th input unit of the input vector and \(W_{hi} \).

2. Find the short distance \(D_c \)

\[
D_c(t) = \arg\min \ D_{hj}(t)
\]

3. Check the distance \(D_c \) if it is below stimulation level \(s_1 \), where \(s_1 = [0 \ 1] \), then the input has found its corresponding hidden unit. Then update the weight as follows:

\[
W_{hi}(t + 1) = W_{hi}(t) + \gamma D_c(t)
\]

(5)

Where \(\gamma \) is the learning rate.

4. If the shortest is bigger than stimulation level \(s_1 \), adjust the number of the hidden neurons \(N_h \) as follows:

\[
N_h = N_h + 1
\]

(6)

i.e. generate a new hidden unit, and go to step 1.

5.2. Dynamic Self-Organised Network Inspired by the Immune Algorithm (DSIA)

In this paper, we build on previous research and propose a new dynamic neural network architecture that incorporates recurrent links within the structure to create a self-organising layer; inspired by Artificial Immune System theory [64]. As shown previously, Widyanto et al. [70] introduce a method to improve the recognition as well as the generalization capabilities of the backpropagation algorithm. Our proposed neural network architecture extends the SONIA network by introducing recurrent links.

The proposed network has three layers, the input layer the hidden layer and the output layer. These include the dynamic self-organisation of hidden-layer units and hidden-based feedback to the input layer. This represents a major improvement compared to feed-forward networks, which can only implement a static mapping of the input vectors. In order to model dynamic functions, it is essential to exploit a
system capable of storing internal states and implementing complex dynamics. Neural networks with recurrent connections are dynamic systems with temporal/state representations, which, because of their dynamic structure, have been successfully used for solving a variety of problems. This work is motivated by the potential of recurrent dynamic systems in solving complex real-world problems. Furthermore, in the last couple of years, various medical applications based on Recurrent Neural Networks (RNN) have been employed, which use the recurrent Elman neural network trained with the Levenberg–Marquardt algorithm to classify arterial disease. In this study, the trained Elman network obtained a high classification accuracy of 97% [68].

This section provides an overview of the Dynamic Self-organising Multilayer network inspired by the Immune Algorithm (DSIA) as shown in Figure 2.

![Figure 2: Dynamic Self-organized neural network inspired by immune algorithm (DSIA)](image-url)
The input vector and the hidden layer of the proposed DSIA network represent the antigen and recognition ball, respectively. The recognition ball, which is the generation of the immune system, is used for hidden unit creation.

For the DSIA network, each hidden unit has a centre that represents the number of input vectors that are attached to it. To avoid the overfitting problem each centre has a value that represents the strength of the connections between input units and their corresponding hidden units. Furthermore, recurrent connections are established between the hidden layer and the input layer.

In Self-organised Kohonen networks (SOM), each unit j of a map ($1 \leq j \leq nh$), where nh is the number of hidden units, is compared with the weight vector w_j and an input $x(t)$ and $t=1, \ldots, ni$, and ni is the number of input units and the output. The Euclidean distance function is used for the comparison between w_j of the hidden map and the $x(t)$ input.

$$E_j = \sqrt{\sum_{i=1}^{ni} (x(t)_i - w_j)^2}$$ \hspace{1cm} (7)

For an input vector, the best matching unit is the unit that minimizes the error function:

$$E = ||x(t) - w_j||$$ \hspace{1cm} (8)

The learning rule is based on updating the weights of neurons that are related to a neighbourhood of the best matching unit:

$$\Delta w_j = \gamma h_k (x(t) - w_j)$$ \hspace{1cm} (9)

where γ is the learning rate, k is the index of the best matching unit and h is the neighbourhood function, which decreases the distances between units j and k on the map.
In the case of the proposed DSIA, each unit \(j \) on the map has two weights, \(w_{ij}^{x} \) and \(w_{ij}^{h} \), where \(wx \) is the weight matrix of the map with the input and \(wh \) is the weight matrix of the context unit and the output of the hidden layer at the previous time step \(\text{net}_{j}^{h}(t - 1) \) where:

\[
\text{net}_{j}^{h}(t) = \sigma(\alpha \| x(t) - w_{ij}^{x} \| + \beta \| \text{net}_{j}^{h}(t - 1) - w_{ij}^{h} \|)
\]

(10)

With \(\sigma > 0 \) and \(\beta > 0 \), \(\| \cdot \| \) denotes the standard Euclidean distance of the vectors. The best matching unit is defined as the unit that minimized net where:

\[
D = \text{argmin}\{ \text{net}_{j}^{h}(t) \}
\]

(11)

Finally, the learning rule applied to update the weights of input units and context units are:

\[
\Delta w_{ij}^{x} = \gamma h (x(t) - w_{ij}^{x})
\]

(12)

\[
\Delta w_{ij}^{h} = \gamma h (\text{net}_{j}^{h}(t - 1) - w_{ij}^{h})
\]

(13)

The purpose of hidden unit creation is to form clusters from input data and to determine the centroid of each cluster formed. These centroids are used to extract local characteristic of the training data and to enable the DSIA network to memorize the characteristics of training data. The use of Euclidean distance to measure the distance of input data and these centroids, enables the network to exploit local information of the input data, while the recurrent links enable the proposed network to remember past behaviours.

5.3. Methodology

Fele-Zorz et al. conducted a comprehensive study that compared linear and non-linear signal processing techniques to separate uterine EMG records of term and preterm delivery groups [10]. The study was based on EHG records that were
collected from a general population of pregnant patients at the Department of Obstetrics and Gynaecology Medical Centre in Ljubljana, between 1997 and 2006. These records are publically available, via the TPEHG dataset, in Physionet\(^3\). The aim of this paper was to evaluate the effectiveness, and efficiency, of using machine-learning algorithms, on the TPEHG dataset, to classify preterm and term delivery records. In the TPEHG dataset, there are 300 records/recordings (one record per pregnancy). Each recording was approximately 30 minutes long, had a sample frequency of 20Hz, and had a 16-bit resolution, with an amplitude range ± 2.5mV. Prior to sampling, the signals were passed through an analogue three-pole Butterworth filter, in the range of 1 to 5Hz. Four electrodes were attached to the abdominal surface, with the navel at the symmetrical centre. Three signals were actually obtained simultaneously per ‘record’ by recording through three different channels – Channel 1, Channel 2, and Channel 3. Although 1211 records were collected, only 300 of these were used. Rejection occurred on those records which had excessive noise or no discernible electrical activity, or that ended in Caesarean sections or induced delivery. Records were either recorded early, <26 weeks (at around 23 weeks of gestation) or later, =>26 weeks (at around 31 weeks).

The 0.3-3Hz filtered signals on Channel 3 was chosen, since it is the best filter for discriminating between preterm and term delivery records, as reported in [49]. The dataset records were generated using four features – root mean squares, peak frequency, median frequency, and sample entropy. Mean frequency and sample entropy have the most potential to discriminate between term and preterm records, while root mean squares and peak frequencies have had conflicting results, in the classification of term versus preterm records, but, nonetheless, have shown potential. In this paper, all these features are considered.

The TPEHG data has pre-labelled classes. Therefore, supervised learning has been chosen as the learning technique. There is no such thing as one best classifier for all data domains; the choice of classifier depends on the dataset to some extent. The

\(^3\) http://www.physionet.org
selection of an appropriate classifier, still generally involves a trial-and-error process, although statistical validation can be used to guide the process [50].

Artificial Neural Networks (ANN) appeared to be the classifier of choice, as they are featured in many studies [45], [46]. In this paper, our new DSIA model will be used and compared against other common neural networking models (MLP, SONIA and Fuzzy SONIA).

Following an analysis of the literature simple yet powerful algorithms, which give good results, will also be considered in our experiments. These include the k-nearest neighbour, decision tree classifier and the support vector classifier. The support vector and k-nearest neighbour classifiers are nonlinear classifiers. Nonlinear classifiers compute the optimum smoothing parameter between classes in the datasets. Using smoothing parameters without any learning process, produces discrimination. Smoothing parameters may be a scalar, a vector or a matrix with objects and their features. The decision tree classifier uses binary splitting and classes are decided upon the basis of a sequence of decision rules.

Sensitivity, specificity, positive predicted values, negative predicted values, overall accuracy of the classifier and ROC curves are used as the performance evaluation techniques. These have been chosen since they are suitable evaluation methods for classifiers, which produce binary output [54].

5.3.1 Data Pre-processing

By initially reviewing the features, in the dataset, using quantile-quantile plots (Q-Q Plots), for each of the features, normal distributions were not evident, as illustrated in Figure 3.
The plots show that there are likely outliers in the data. This is particularly the case with root mean squares, median frequency and peak frequency, as there are significant departures from the reference line for several observations. The likely cause for these outliers could either be from the sensor equipment itself; movement by the mother, or child, during data capture; or interference from other equipment, in the hospital room or ward. From the dataset, and information provided by the original producers of TPEHG, this information was not available.

The removal of all outliers occurred by looking at the upper and lower limits, for each of the features. This transpired across all records that reside outside the body of records, in the dataset. For example, looking at the root mean squares feature, most of the records reside within 1.5 and 7. All records with root mean square values bigger than 7, and less than 1.5, have been removed. This process was repeated for
median frequency (values bigger than 0.7 and less than 0.3 have been removed), peak frequency (values bigger than 0.5 and less than 0.25 have been removed) and sample entropy (values bigger than 1.0 and less than 0.5 have been removed). This ensures the removal of values, which are furthest from the sample mean. The results from a lilliefors test, on each of the features, still conclude that the data is not normally distributed. However, the Q-Q Plots illustrate that several of the features are close to being normally distributed, as shown in Figure 4. Figure 5 shows the proposed system for term/pre-term classifications.

Figure 4: TPEHG data with Outliers removed.
6. EVALUATION

In this paper, the proposed DSIA network was benchmarked against the SONIA network, the multilayer MLP neural network, Fuzzy-SONIA, K-Nearest Neighbour Classifier (KNN), Decision tree classifier (TREEC) and Support Vector Classifier (SVC). Their performances have been evaluated using the sensitivity, specificity, positive, and negative predicted values that each classification algorithm produced to separate term and preterm signals. The data has been split up as follows – 60% of the data is randomly selected for training data, 25% for validation and 15% for testing. The experiments have been run thirty times to generate an average of the results obtained. The formulas used to measure sensitivity; specificity and accuracy are defined as follows:

\[
\text{Accuracy} = \left(\frac{TP + TN}{TP + TN + FP + FN} \right) \times 100
\]

\[
\text{Sensitivity} = \frac{TP}{TP + FN}
\]

\[
\text{Specificity} = \frac{TN}{FP + TN}
\]

This section presents the classification results for term and preterm delivery records using the TPEHG dataset. The 0.3-3Hz filter on Channel 3 is used.
6.1 Results for 0.3-3Hz TPEHG Filter on Channel 3 with RMS, FMean, FPeak, and Sample Entropy with Oversampling

This evaluation uses the 03-3Hz filtered signals on Channel 3 with seven classifiers. The performance for each classifier is evaluated using Sensitivity, Specificity, Negative and Positive predicted values with 30 simulations and randomly selected training and testing sets for each simulation.

6.1.1 Classifier Performance

The first evaluation uses the original TPEHG dataset (38 preterm and 262 term) – the preterm are oversampled using min and max to produce 262 preterm records). Tables 1 and 2 show the average performance for all the classifiers used in this experiment. The simulation results as shown in Table 1 indicated that the sensitivity for preterm records obtained with the SONIA network is slightly better than the MLP; the specificity is also higher than the MLP. This means that the SONIA network has the ability to predict the true positive value of the preterm class; it can also predict the true negative value, which is the term class. The DSIA shows the highest values for Sensitivity and True Positives with slightly lower values for Specificity and True Negatives as can be seen in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>True Negative</th>
<th>True Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>0.6481</td>
<td>0.5691</td>
<td>0.6261</td>
<td>0.6205</td>
</tr>
<tr>
<td>SONIA</td>
<td>0.6316</td>
<td>0.6920</td>
<td>0.7959</td>
<td>0.6073</td>
</tr>
<tr>
<td>KNNC</td>
<td>0.6944</td>
<td>0.6388</td>
<td>0.6764</td>
<td>0.6573</td>
</tr>
<tr>
<td>TREEC</td>
<td>0.5833</td>
<td>0.6111</td>
<td>0.5945</td>
<td>0.6000</td>
</tr>
<tr>
<td>SVC</td>
<td>0.6660</td>
<td>0.6388</td>
<td>0.6571</td>
<td>0.6486</td>
</tr>
<tr>
<td>DSIA</td>
<td>0.8269</td>
<td>0.3229</td>
<td>0.6676</td>
<td>0.5314</td>
</tr>
<tr>
<td>Fussy_SONIA</td>
<td>0.8642</td>
<td>0.4566</td>
<td>0.7647</td>
<td>0.6227</td>
</tr>
</tbody>
</table>

Table 1: Classifier Performance Results for the 0.3-3Hz Filter

<table>
<thead>
<tr>
<th></th>
<th>Mean error</th>
<th>Std Error</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>0.3073</td>
<td>0.0369</td>
<td>61.60%</td>
</tr>
<tr>
<td>SONIA</td>
<td>0.2244</td>
<td>0.0031</td>
<td>70.34 %</td>
</tr>
<tr>
<td></td>
<td>Mean Error</td>
<td>Standard Deviation</td>
<td>Classifier Accuracy</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>--------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>KNNC</td>
<td>0.4000</td>
<td>0.0424</td>
<td>66%</td>
</tr>
<tr>
<td>TREEC</td>
<td>0.3907</td>
<td>0.0565</td>
<td>59%</td>
</tr>
<tr>
<td>SVC</td>
<td>0.4292</td>
<td>0.0476</td>
<td>65%</td>
</tr>
<tr>
<td>DSIA</td>
<td>0.2410</td>
<td>7.8507e-05</td>
<td>56%</td>
</tr>
<tr>
<td>Fuzzy_SONIA</td>
<td>0.2287</td>
<td>0.0015</td>
<td>66.41%</td>
</tr>
</tbody>
</table>

Table 2: Mean Error, Standard Deviation and Classifier Accuracy

6.1.2 ROC Analysis

The receiver operator characteristic (ROC) curve shows the cut-off values for the true negatives and false positives. The simulation results indicated that the proposed DSIA network showed an average sensitivity of 0.8269, while the SONIA network demonstrated an average sensitivity value of 0.6316. The ROC in Figures 6 and 7 illustrate the trade-off between a classifier’s true positives rate (sensitivity) versus its false positives rate (specificity).

![ROC curve for SONIA](image1)

![ROC curve for DSIA](image2)

Figure 6: ROC curve for two best performing classifiers

Figure 6 shows that the SONIA performance is lower than the DSIA, which indicates that the DSIA curve is close to the upper left corner and its area is greater than the SONIA curve; this confirms that the DSIA has greater power for classification than SONIA does.

6.2 Results for 0.3-3Hz TPEHG Filter on Channel 3 with RMS, FMean, FPeak, and Sample Entropy with Clinical Data and Over-Sampling
Each TGEHG signal record contains clinical information relating to each of the patients that includes the pregnancy duration, gestation duration at the time of recording; maternal age, number of previous deliveries (parity); previous abortions, weight at the time of recording, hypertension, diabetes, placental position, bleeding first trimester, bleeding second trimester, funnelling, and whether they are a smoker. These eleven items of clinical information are added to the original TPEH feature set (RMS, FMean, FPeak and SampEmp). Some information was missing for some of the patients, which led to unknown features on some recorders. Hence, the records with unknown information are removed for the next experiment, reducing the number of samples in the dataset to 19 preterm data samples and 108 term data samples. As before, the re-sampling method was applied to generate the 150 preterm data items.

6.2.1 Classifier Performance

The 19 preterm records are oversampled using a min/max technique. This technique allows a new dataset to be constructed that provides an even balance between term and preterm records. The evaluated results for the proposed DSIA network are illustrated in Tables 3 and 4. The SONIA model scored the highest in all evaluation parameters, followed closely by the proposed DSIA model.

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>True Negative</th>
<th>True Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>0.8070</td>
<td>0.8627</td>
<td>0.8000</td>
<td>0.8803</td>
</tr>
<tr>
<td>SONIA</td>
<td>0.9123</td>
<td>0.9451</td>
<td>0.9060</td>
<td>0.9490</td>
</tr>
<tr>
<td>KNNC</td>
<td>0.8076</td>
<td>0.9047</td>
<td>0.7916</td>
<td>0.9130</td>
</tr>
<tr>
<td>TREEC</td>
<td>0.8846</td>
<td>0.7619</td>
<td>0.8421</td>
<td>0.8214</td>
</tr>
<tr>
<td>SVC</td>
<td>0.8076</td>
<td>0.8571</td>
<td>0.7826</td>
<td>0.8750</td>
</tr>
<tr>
<td>DSIA</td>
<td>0.9123</td>
<td>0.8824</td>
<td>0.9000</td>
<td>0.8966</td>
</tr>
<tr>
<td>Fuzzy-SONIA</td>
<td>0.8401</td>
<td>0.7881</td>
<td>0.8561</td>
<td>0.7673</td>
</tr>
</tbody>
</table>

Table 3: Classifier Performance Results for the 0.3-3Hz Filter

<table>
<thead>
<tr>
<th></th>
<th>Mean Error</th>
<th>Std Error</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>0.1681</td>
<td>0.0491</td>
<td>84.87%</td>
</tr>
<tr>
<td>SONIA</td>
<td>0.0741</td>
<td>0.0011</td>
<td>92.77%</td>
</tr>
<tr>
<td>KNNC</td>
<td>0.2260</td>
<td>0.0505</td>
<td>65.00%</td>
</tr>
<tr>
<td>TREEC</td>
<td>0.2433</td>
<td>0.569</td>
<td>82.00%</td>
</tr>
<tr>
<td>SVC</td>
<td>0.1761</td>
<td>0.0549</td>
<td>83.00%</td>
</tr>
</tbody>
</table>
The results in Table 4 show that the highest values obtained are by the SONIA network in terms of mean error, standard deviation and classification accuracy followed by the DSIA network.

6.2.2 ROC Analysis

The ROC curves in Figure 7 show an improvement compared to the ROC curve illustrated in Figure 6. The area under the curve for DSIA and SONIA are 0.90 and 0.93, respectively. Extending the number of features to 15 has significantly improved the classifiers’ performance. These features have provided classification methods with enough information from each record to allow them to obtain better values in all of the evaluation functions.

The results illustrate that using the proposed DSIA are encouraging. Within a wider context this approach might be able to utilise real-life data to predict, with high confidence, whether an expectant mother is likely to have a premature birth or proceed to full term.

![a) ROC curve for SONIA](image1.png) ![b) ROC curve for DSIA](image2.png)

Figure 7: ROC curve for two best performing classifiers

7. DISCUSSION

Most of the uterine EHG signal studies have concentrated on predicting true labour, which is based on the last stage of the pregnancy duration. This paper has evaluated
the use of a machine learning approach, using records from earlier stages of gestation, to predict term and preterm deliveries.

The method of classification used in this paper compares several existing classification algorithms and our newly proposed DSIA neural network. The evaluation of classifier performance has been measured using sensitivity and specificity, which are suitable evaluation measures for binary outputs (term/preterm). In addition, the capabilities of classifiers have been visually compared using the ROC curve, which is a technique commonly used in decision-making. It is a useful method for visualizing classifier performance.

From the results obtained from the oversampling data, the results show that the self-organized hidden layer immune systems and dynamic links improve the predictive capabilities of classifiers. More importantly, the proposed DSIA model shows promise where the results indicate that it outperformed several classification algorithms. This improvement can be associated with the novel combination of supervised and unsupervised learning techniques used in the DSIA model and neural networks in general [50]. This has helped to overcome the limitations often found in back propagation learning.

We conclude that the DSIA network has performed well in the classification of uterine signal because it has used SOM unsupervised methods in the hidden layer and recurrent links. The hidden layer can cluster the input nodes to the centroids of hidden units, which gives the local network pattern of the input data. The Euclidean distance was utilized to compute the distance between the input units and the centroids of hidden units. Thus, DSIA is able to exploit locality characteristics of the data [19].

8. CONCLUSIONS AND FUTURE WORK

This research work underlines an important contribution of a new recurrent self-organising multilayer neural network inspired by artificial immune systems. In this case, recurrent links from the hidden layer to the input layer was proposed, which allows the network to have memory. It is applied to and evaluated against the classification of term and preterm records for pregnant women. The simulation results indicated that the proposed network achieved improved results when
compared to a number of machine learning algorithms.
The focus of the paper has been to improve sensitivity rates, as it is more important to predict preterm delivery, as opposed to misclassifying a term pregnancy. The results indicated that using the original TPEHG dataset, the number of preterm records (minority class) was considerably lower than the number of term records (majority class). Since the classifiers do not have enough preterm records to learn from, the results were not significant, however when using the oversampling technique for the minority class, this enables the distribution between the two classes (term and preterm) to be more balanced.
The simulation results indicated that the DSIA network has performed well in the classification of uterine signal due to the SOM unsupervised methods in the hidden layer and recurrent links. The simulation results indicated that the proposed technique achieved 56% accuracy and 0.8269 sensitivity when using the oversampled TPEHG dataset. Furthermore, when using additional clinical data the accuracy had improved to 89.8148 % while the sensitivity was 0.9123.
Future work will investigate and assess an improved, regularised-DSIA scheme for the proposed DSIA network. While weight-decay is not without its performance-related problems, work by others has shown that it can help to avoid over-fitting the network to training data, as such, improving the network. Another direction of research is to investigate the best choice of network architecture [65-67],[69], which includes the number of inputs and the use of higher order terms in the input units similar to the functional link neural network. This may improve the performance of the proposed network since this can extend the input space into higher dimensional spaces where linear separability is possible.

ACKNOWLEDGEMENTS
The authors would like to thanks Prof. Paulo Lisboa from the School of Computing and Mathematical Sciences from Liverpool John Moores University for his valuable comments and supports for this research.

REFERENCES

[41] D. I. Ispawi, N. F. Ibrahim, and N. M. Tahir, “Classification of Parkinson’s Disease based on Multilayer Perceptrons (MLP) Neural Networks and ANOVA

