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A B S T R A C T   

Drones are increasingly adopted for policing in many countries, as they can aid police officers to detect hazards 
and respond to incidents with timely and low-cost services. However, the planning and deployment of police 
drones are subject to several challenges, including the proper distance metric for drone flying and the risk-based 
location optimisation of drone base stations. This study proposes a new framework that enables the optimal 
deployment of police drones to address crime risk issues on urban street networks. This risk-based decision 
framework takes into account three potential distance metrics that regulate and shape the flying routes of drones, 
which in turn affects the optimal location of drone base stations. In addition, this framework takes into account 
the major risk constraints of flying drones in urban areas, including domestic privacy and elevation. The pro
posed risk-based decision framework is validated using the real case study of Liverpool with historical crime data 
and street network layouts. The findings contribute to the operations and management of police drones in urban 
areas and shift the paradigm of policing drones towards a risk-based regime.   

1. Introduction 

Unmanned aerial vehicles (UAVs) (also called drones) have been 
invented and continuously deployed in military operations (Wang, 
Zhou, Xing, Li, & Yang, 2023; Zhu, Zhu, Yan, & Peng, 2021). In recent 
decades, they have witnessed increased adoption in a wide range of civil 
applications (Finn & Wright, 2012), including remote sensing, goods 
delivery, surveillance, and medical aid (Feng, Murray, & Church, 2021; 
Gao, Chen, & Haworth, 2023; Pulver & Wei, 2018; Zhu, Yan, Peng, & 
Zhang, 2020). Police teams in various countries have been testing the 
use of drones for routine patrolling and emergency response (Finn & 
Wright, 2012; Kim & Davidson, 2015), as drones are capable of 
providing timely services to staff with low risk. Moreover, the use of 
police drones contributes to keeping the service at a reasonably low cost 
and high efficiency (Beg, Qureshi, Sheltami, & Yasar, 2021), which is 
especially important as the public sectors in many countries have been 
facing financial constraints. As an example, in Switzerland, camera 
equipment drones have become standardised tools for policing, serving 
various purposes such as visually preserving crime scenes, responding to 
kidnapping and terrorist-related incidents, and identifying criminals on 
the run. Police drones have introduced innovative approaches to 

policing and crime detection, incorporating aerial perspectives into 
policing (Klauser, 2022). Despite these advantages and case studies, 
using drones for police purposes based on crime data and risk levels is 
still in an early stage and is subject to several challenges. For instance, 
most of the existing studies of police drones assume that drones fly in 
straight lines between locations and follow a Euclidean distance, which 
is unrealistic in urban areas. Specifically, in urban areas, the flying 
routes of drones are restricted by a range of factors, including govern
ment regulations, no-fly zones, buildings, transport facilities, and do
mestic privacy concerns (Pang, Hu, Dai, & Low, 2022). Indeed, these 
factors increase the complexity of drone deployment and lead to new 
challenges, such as the location selection of drone base stations and 
route planning in urban areas. These issues should be tackled before the 
widespread deployment of police drones. 

Although existing studies have proposed location-allocation models 
that determine the optimal locations of drone base stations, two signif
icant research gaps exist in the literature. First, in most studies, the 
demand targets that are served by drones are well-defined discrete 
points, such as the locations of historical incidents (Claesson et al., 2016; 
Pulver & Wei, 2018) and the geometric/population-weighted centroids 
of census areas (Gao, Jiang, et al., 2023; Ozceylan, Ozkan, Kabak, & 
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Dagdeviren, 2022). Recent research has also investigated a continuous 
surface of distributed demands. However, the distributed demands 
along street networks have not been taken into account, yet are critical 
in the domain of urban crime detection and response. Second, most 
studies presume that drones fly in straight lines and follow a Euclidean 
distance. This is not realistic for drone deployment in an urban built 
environment, and various distance metrics need to be investigated and 
compared in the planning of drone services for future crime risk control. 

To address these research gaps, this study aims to develop a novel 
methodology facilitating the optimal deployment of police drones in 
response to crimes on street networks, using crime data and risk levels as 
key factors. The main contributions include considering street-level 
crime risk, testing different distance measures for drones’ location se
lection, and combining police patrols with drones based on crime data 
and risk levels. A real-world case study in Liverpool demonstrates how 
this approach can improve the use of police drones in urban areas, of
fering potential benefits for future drone operations and management. 

The remainder of this paper is organised as follows. Section 2 pro
vides a comprehensive review of studies using drones for police patrol 
and the location selection of drone base stations in different applica
tions. Section 3 presents the methodology and the key methods. Section 
4 details the case study area and relevant datasets. Section 5 presents the 
results with different distance metrics and discusses the findings and 
implications. Finally, Section 6 concludes this paper by summarising the 
key findings and discussing future research directions. 

2. Literature review 

In this section, a systematic review is carried out regarding drone 
patrolling, police patrolling, and the location selection of drone base 
stations. Specifically, this section will summarise the state-of-the-art 
research regarding the methods and applications, identify the research 
gaps, and outline the contributions of this paper. 

2.1. Drone patrolling 

A systematic review was conducted by the Web of Science (WoS) 
Core Collection in May 2022 to retrieve all publications from 1990 to 
2022 relating to the topic of ‘drone patrolling’. A total of 45 publications 
were retrieved. Only seven peer-reviewed journal papers concerning the 
algorithms and applications of drone patrolling were retained. These 
include border surveillance patrolling (2 papers), power line inspection 
(1 paper), air-ground cooperation patrolling of drones and police vehi
cles (1 paper), the cooperation of vehicles and drones to solve the 
limited endurance problem (1 paper), the cooperation of trucks and 
drones to conduct forest monitoring (1 paper), three-dimensional (3D) 
navigation algorithms of drones (1 paper), and improving the accuracy 
of drones on autonomous straight take-off (1 paper). These selected 
papers are presented in detail as follows. Luo, Zhang, Wang, Wang, and 
Meng (2019) proposed a Traffic Patrolling Routing Problem with Drones 
(TPRP-D) to solve the optimal routes for limited and fixed tasks with a 
double-layer arc routing problem and two-stage heuristic method. Liu 
et al. (2021) combined a whale algorithm and the chaos theory to find 
the best plans for multiple drones in border patrol tasks under different 
complex environments. Ahmadian, Lim, Torabbeigi, and Kim (2022) put 
forward a drone surveillance system with wireless battery charging and 
a multi-objective Mixed-Integer Non-Linear Programming (MINLP) 
model to optimise the cooperation of multiple drones and the charging 
system for smart border patrolling. Momeni, Soleimani, Shahparvari, 
and Afshar-Nadjafi (2022) developed a multi-objective mixed-integer 
programming method to find the trade-off of the cooperative patrolling 
of trucks and drones for bushfire prevention and rescue. Yang, Ding, and 
Wang (2021) investigated air-ground cooperative patrolling using 
drones and police cars, proposed a UAV-Police Vehicle Cooperative 
Patrol Algorithm (U-PVCPA), and combined speed and hovering time to 
simulate the different cases and solve the patrol tasks. Giuseppi, 

Germana, Fiorini, DelliPriscoli, and Pietrabissa (2021) designed a drone 
patrolling system to locate the fireplace and realise early fire prevention 
based on the real estimation index, different factors, and dynamic Vor
onoi Tessellation. Chang, Tsai, Lu, and Lai (2020) proposed a new deep 
reinforcement learning method to analyse the performance and improve 
the control of drones flying during patrolling. Ming and Huang (2021) 
put forward a 3D corn-based navigational method to realise the 
anti-collision among the crowed-spaced 3D obstacles for future UAV 
operations. In summary, the literature addresses the diverse approaches 
and techniques employed in drone patrolling, with an emphasis on 
routing, navigation, and operations. However, there appears to be a gap 
in integrating the selection of drone base station locations into these 
studies. 

2.2. Drones for policing 

A total of 82 peer-reviewed journal papers are retrieved by using the 
topic of “police drones” from the WoS. Following the abstract and 
content screening, eight papers are selected for further review. Salter 
(2014) explored the history and relationship between drones, wars, and 
policing, as well as the legality of drones from military, public, and 
private perspectives. The policing and surveillance from the spatial 
dimension were conducted based on professional drone users, including 
public and private, in Switzerland (Klauser, 2021). This paper discussed 
the frequency of drone usage, restrictive factors, the advantages of drone 
usage, and the legal framework, shedding light on the importance and 
utility of police drones. Additionally, Klauser (2022) developed the 
theoretical possibility of a 3D model, highlighting the spatial aspects of 
policing, surveillance, and power. This study conducts theory research 
without mathematical models. The deployment of drones was analysed 
to explore the recognition possibility of targets, criminal suspects, and 
missing people from the perspective of cognitive psychology (Fysh & 
Bindemann, 2018). The study took into account face, body, and motion 
identification to assess the success rate of aiding the police and recom
mended the inclusion of drone image analysts for criminal identifica
tion. Furthermore, drone power is discussed from four perspectives: 
environmental, humanitarianism, policing, and war (Fish & Richardson, 
2022). The biodiversity conservation, health services, police forces, and 
military factors were combined to emphasise the effectiveness of drone 
power. Drones were applied to aid the police force in crime scene sur
veillance (Bucknell & Bassindale, 2017). The analysis considered factors 
such as height, distance, and image quality to determine optimal 
monitoring performance, specifically focusing on indoor environments. 
Addressing the issue of police pursuits, Christie (2020) highlighted how 
the use of drones could help reduce injuries and risks based on a dataset 
from London. The study examined various influential risk factors and 
demonstrated that combining drones with police efforts could effec
tively control crime rates. The air-ground cooperation patrolling prob
lem was proposed to address the uncertainty of patrol environment and 
resources (Yang et al., 2021). The generic algorithms were applied to 
discover the optimal allocation of multiple drones and police vehicles, 
ultimately improving the capability of emergency response. 

In summary, the reviewed literature covers a range of topics related 
to police drones, including their historical and legal aspects, spatial di
mensions, cognitive psychology implications, power considerations, 
crime scene surveillance, injury reduction in police pursuits, and air- 
ground cooperation. However, there remains a research gap in system
atically comparing different distance metrics for police drone deploy
ment and exploring the potential of police drones for street-level crime 
detection. To the best of our knowledge, no previous research has spe
cifically investigated the use of police drones for street-level crime 
detection. 

2.3. Location selection of drone base stations 

A number of studies have emerged in the field of determining 
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optimal locations for drone base stations. These studies consider various 
factors and constraints that influence drone services, such as distributed 
demand, demand uncertainty, wind speed, and critical service time in 
medical aid scenarios. Depending on the objective of optimisation, these 
studies are classified into two types, namely maximising the coverage 
(Chauhan, Unnikrishnan, & Figliozzi, 2019; Pulver, Wei, & Mann, 2016; 
Pulver & Wei, 2018) and minimising the service cost (including mone
tary cost, time, distance, and energy) (Chowdhury, Emelogu, Mar
ufuzzaman, Nurre, & Bian, 2017; Dukkanci, Kara, & Bektaş, 2021; Feng, 
Murray, & Church, 2021; Feng & Murray, 2020; Ghelichi, Gentili, & 
Mirchandani, 2022; Leung et al., 2022; Lynskey, Thar, Oo, & Hong, 
2019; Zhu, Boyles, & Unnikrishnan, 2022). More details about these 
studies are presented in Table 1. 

There are two fundamental challenges that affect drone deployment 
in urban areas, including determining flight routes and accurately 
measuring travel impedance between drone stations and demand points. 
Most studies assume drones fly in straight lines, using Euclidean distance 

as a measure. However, the actual flying routes of drones are more 
complex due to factors like buildings, uneven terrains, and non-fly zones 
imposed by regulations (Pulver & Wei, 2018). Relying solely on the 
simplified Euclidean distance can lead to inaccurate estimations of 
flying time and ineffective drone deployment. Therefore, it is essential to 
evaluate and compare different distance settings for drones when 
selecting the locations of drone base stations. This study focuses on 
addressing these aspects, considering the varying distance measures and 
their impact on the effectiveness of drone station location selection. 

3. Methods 

3.1. Framework 

This section proposes a new risk-based decision framework that en
ables the optimisation of police drone services for crime incident 
response on urban street networks and rationalising police drone loca
tion selection, as shown in Fig. 1. In Step 1, the street-level crime risk is 
estimated from the historical crime incidents using a street network 
Kernel Density Estimation (KDE). In Step 2, the settings of drone services 
are determined by police officers with experience in patrol, emergency 
response, and local crimes. These settings include determining the 
number of drones and potential sites of drone base stations. In Step 3, the 
optimal location of drone base stations is determined by comparing 
different distance metrics that influence the flying routes and services of 
police drones. If the distance metrics lead to different configurations of 
drone base stations, the most feasible configuration will be selected via 
detailed comparison and analysis. 

It is noteworthy that this paper takes into account crime risk and 
police drone deployment on street segments rather than on grid cells or 
administrative regions. This street network-based approach is consistent 
with an increasing body of research that investigates crime and policing 
at the street level (Chen & Cheng, 2017; Chen, Cheng, & Shawe-Taylor, 
2018; Rosser, Davies, Bowers, Johnson, & Cheng, 2017; Weisburd, 
Groff, & Yang, 2012). There are several reasons why network-based 
models are appropriate for describing and predicting crime patterns. 
First, routine activity theory (Cohen & Felson, 1979) suggests that direct 
contact predatory crimes happen as a result of human interaction that 
emerges as a result of routine activities; crime pattern theory (Bran
tingham & Brantingham, 1993) suggests that the mobility patterns of 
offenders, victims, and guardians in routine activities lead to the 
development of activity spaces and pattern of crimes. Since a significant 
amount of urban crime and policing activity occurs on or along streets, 
street segments represent a meaningful spatial unit for predicting crime 

Table 1 
Details of related research on the location selection of drone sites.  

Refs. Application Distance 
metric 

Objective Considerations 

Pulver et al. 
(2016) 

AED-equipped 
drones for 
cardiac arrest 
response 

Euclidean To maximise 
service 
coverage of 
the cardiac 
arrest 

Travel time and 
implementation 
costs 

Pulver and 
Wei 
(2018) 

AED-equipped 
drones for 
cardiac arrest 
response 

Euclidean To maximise 
the primary 
and backup 
coverage of 
the cardiac 
arrest 

Backup coverage 
and distributed 
demand 

Chauhan 
et al. 
(2019) 

Delivery Euclidean To maximise 
the service 
coverage 

Drone energy 
consumption and 
range constraints 

Chowdhury 
et al. 
(2017) 

Delivering 
emergency 
supplies to 
disaster- 
affected areas 

Euclidean To minimise 
the overall 
cost 

Facility cost and 
transportation 
cost 

Lynskey 
et al. 
(2019) 

Visiting 
locations and 
taking photos 

Euclidean To minimise 
the average 
distance of 
drone delivery 

Drone port 
locations and 
energy cost 

Dukkanci 
et al. 
(2021) 

Delivery Euclidean To minimise 
the total 
operational 
cost (incl. 
energy 
consumption) 

Drone speed, 
energy 
consumption, 
and the drone 
range 

Feng, 
Murray, 
and 
Church 
(2021) 

AED-equipped 
drones for 
cardiac arrest 
response 

Euclidean To minimise 
the average 
distance of 
service 

The effect of 
wind speed on 
drone flying 
costs; spatio- 
temporally 
varying demand 

Zhu et al. 
(2022) 

Delivery of 
first-aid 
products post- 
disaster 

Euclidean To minimise 
the total fixed 
facility cost 
and the worst- 
case 
operational 
cost 

Demand 
uncertainty; 
energy 
consumption 
models of drones 

Leung et al. 
(2022) 

AED-equipped 
drones for 
cardiac arrest 
response 

Euclidean To minimise 
the overall 
response time 

Different drone 
base locations 
and travel time 

Ghelichi 
et al. 
(2022) 

Delivery of 
humanitarian 
aid packages 

Euclidean To minimise 
the maximum 
total cost 
across 
possible 
scenarios 

Multiple demand 
scenarios; 
demand with 
uncertainty  

Fig. 1. The framework for optimising police drone services in urban areas.  
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risk and reducing crime. Second, the features of the street network are 
likely to influence the long-term level of crime risk (Davies & Johnson, 
2015) and the short-term dynamics of crime risk (Johnson & Bowers, 
2014). 

3.2. P-median problem 

This section describes the p-median problem (PMP) for the location 
selection of drone base stations. PMP was proposed to optimise the lo
cations of p facilities so that the total weighted travel distance to the 
given demands is minimised (Hakimi, 1964). It assumes that each de
mand would be serviced by the nearest facility site that is selected by 
PMP. In this study, demands refer to street segments, with their demand 
weight representing the predicted crime risk, while facilities pertain to 
police drone base stations. To introduce PMP in police drone potrolling, 
the following notations are used. 

i: index of demand units, i = 1, …, n 
ai: demand size at i. 
j: index of potential facility sites, j = 1, …, m 
dij: the shortest distance or travel time from demand unit i to 

potential facility site j 
p: number of facilities to locate. 

xj =

{
1, if a facility is sited at location j
0, otherwise;

zij =

{
1, if demand i is assigned to facility j
0, otherwise; . 

With this notation, the PMP is formulated as follows: 

Minimise
∑

i,j
aidijzij (1)  

Subject to: 

zij ≤ xj, ∀i, j (2)  

∑

j
xj = p (3)  

∑

j
zij = 1, ∀i (4)  

xj ∈ {0, 1}, ∀j (5)  

zij ∈ {0, 1}, ∀i, j (6)  

In the context of this study, the PMP objective (1) is to minimise the total 
weighted distance between all street segments and drone base stations, 
using the estimated street-level crime level as weights. Constraint (2) 
implies that a street segment can be serviced by drones from a base 
station at location j only if there is a station located at j. Constraint (3) 
ensures that the p drone stations are located. Constraint (4) indicates 
that each street segment should be serviced by one drone station. 
Finally, constraints (5) and (6) impose binary restrictions on decision 
variables, including whether a location j is selected to set up a drone 
base station and whether a street segment i is serviced by a drone station 
at location j. 

3.3. Street network Kernel density estimation of crime risk 

The crime risk of each street segment is estimated using historical 
crime points data and street network KDE. A classical KDE estimates the 
density of a set of point events in a two-dimensional space that was 
divided into grid cells. It is, however, improper to analyse the density of 
events in a network for two reasons. First, the network is not an isotropic 
space, and movements in a network are only along the edges of the 
network. Second, estimating the density of locations outside the network 
is meaningless. Network KDE has been proposed to address these issues 
and provide an accurate estimation of density on the edges of a network 
(Gelb, 2022). The workflow of Network KDE is illustrated in Fig. 2, 
which consists of two steps. First, an event is snapped to the nearest 

Fig. 2. Illustration of network KDE (Gelb, 2022). (a) Events (red dots) snapped to the network (green dots); (b) the kernel function of a snapped event and the density 
distribution. 

Fig. 3. Illustration of the drone fly routes under three distance metrics: 
Euclidean distance (green), street network distance (blue), and 3D distance 
(orange). On the bottom surface, the grey lines represent a street network, and 
dotted lines represent the corresponding projected routes. This figure is moti
vated by (Feng, Murray, & Church, 2021). 
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street segment of a network if it does not fall on any street of the 
network. Second, the risk imposed by each event is represented by a 
kernel function, which decays along the network and is divided at each 
intersection (see Fig. 2(b)). In this study, the network KDE is imple
mented using the “spNetwork” (Gelb, 2021) in the R environment (R 
Core Team, 2015). The kernel function used is a quadratic function, and 
the bandwidth is set as 300 m, as most police drones would fly 300 m in 
20 s, which is a reasonable response time for police to a crime incident. 

3.4. Distance metrics 

Three types of distance metrics are taken into account in this study 
due to their potential impact on police drone patrolling in reality. In 
other words, distance metrics might affect the flying routes and response 
time of police drones (see Fig. 3) according to the characteristics and 
regulations of the area. Under each metric, the shortest route of drones is 
adopted. The first one is an Euclidean distance (or straight-line dis
tance), which is used as the baseline in this study. This metric is simple 
to compute and has been used in many studies that optimise the location 
of medical drone stations (e.g. Pulver & Wei, 2018; also see Table 1). The 
second metric is calculated by street network distance, which regulates 
that drones only fly over public street networks and are not permitted to 
fly over buildings, especially critical infrastructures (e.g. government 
buildings and military ranges). This metric is tested due to the concerns 
of potential damages of drones to facilities or any privacy issues caused 
by flying drones. The third distance metric is a 3D distance, which 
mirrors the fact that drones maintain a consistent vertical distance from 
the ground by adjusting their altitude in response to the terrain, 
ensuring that they remain at a uniform height above the ground even 
when encountering slopes. This metric is reasonable as the Civil Avia
tion Authority (CAA) requires drones to fly below the legal height limit 
of 120 m (Civil Aviation Authority, 2022). Moreover, drones with a 
sufficient vertical distance from the ground would avoid collision risk to 
buildings or hills. 

4. Case study 

In this section, the Liverpool city region, as part of Merseyside in 
North West England, is taken as the case study area due to its unique and 
mixed geographical characteristics. Furthermore, Merseyside Police, the 
police force responsible for Merseyside, has been a pioneer in the UK in 
launching a police drone unit in practice (BBC, 2010). Merseyside Po
lice, currently serving a population of 1.5 million and covering an area 
of 647 km2, is divided into five local policing teams (i.e. Wirral, Sefton, 
Knowsley, St Helens, and Liverpool) and further into 10 neighbour
hoods. Among them, the neighbourhood of Liverpool Community Police 
Team - Hub Four (called Liverpool Hub Four for short) is selected as the 
case study area, as it has a higher crime rate than the other neigh
bourhoods and is in the city centre of Liverpool. In 2021, there were 978 
crime incidents per square kilometre (km2) in Liverpool Hub Four, 
compared to the second highest of 828 incidents/km2 in Liverpool Hub 
Two and the lowest of 105 incidents/km2 in Wirral Hub One. Fig. 4 
presents the 10 neighbourhoods in Merseyside and then zooms into the 
Liverpool Hub Four. Notably, the northern section of Liverpool Hub 
Four contains a higher density of major roads compared to other areas, 
potentially resulting in increased network distances within this section. 

Several open datasets were obtained and used in this study. The 
aggregated crime incident data for the year 2021 were retrieved from 
Police UK (Police UK, 2022), in which crime incidents are spatially 
aggregated to the central points of streets. In total, 29,000 crime in
cidents were found in this region, which consists of a wide range of 
crimes, including anti-social behaviour, bicycle theft, burglary, criminal 
damage arson, drugs, other theft, possession of weapons, public order, 
robbery, shoplifting, theft from the person, vehicle crime, violent crime, 
and other crime. These crime types are selected as police drones can be 
used to search and locate the fleeing suspects and gather evidence when 

Fig. 4. The map of the case study. (a) Merseyside (consisting of 10 police 
neighbourhoods); (b) the neighbourhood of Liverpool Community Police Team 
Hub Four. 

Table 2 
The list of POI types selected to equip the drones.  

POI code from 
OS 

POI type Number of 
sites 

422 Police Stations 2 
414 Fire Brigade Stations 1 
106 Medical Equipment Rental and Leasing 3 
356 Ambulance and Medical Transportation 

Services 
2 

293 Gymnasiums, Sports Halls and Leisure 
Centres 

48 

456 Halls and Community Centres 37  
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these crime incidents take place, leading to effective crime detection. 
The street network was obtained via OpenStreetMap. The 
Point-Of-Interest (POI) data was sourced from the UK Ordnance Survey 
(OS) and Digimap and was used to define potential drone sites. We chose 
six POI types to equip the drones, which led to a total of 93 POI sites (see 
Table 2). In addition, the Digital Terrain Model (DTM) data (originally 
with a spatial resolution of 2 m) was acquired and resampled into a 20-m 
resolution before being used to compute the 3D distance (Department 
for Environment Food & Rural Affairs, 2022). This DTM product is called 
LIDAR Composite DTM and was collected and produced in 2020. 

Several settings are assumed to define the types and permissions of 
the drones used by Merseyside police without loss of generalisation. 
First, the police stations have acquired CAA permissions to fly drones 
legally. Second, these drones are below 500 g and C0 or C1 class so that 
they can fly closer to people than 50 m (Civil Aviation Authority, 2022). 
It is important as drones are likely to fly across busy urban areas. Third, 
the drones are equipped with batteries that can support flying from a 
base station to incident sites, and no charging is needed in the flying 
route. This requires elaborate planning of service zones of base stations 
and drones. The PMP instances are implemented using the “spopt” 
(Feng, Gaboardi, Knaap, Rey, & Wei, 2021) in Python and are optimally 
solved by Gurobi Optimization (2016), a commercial solver for mixed 
programming problems. The case study was conducted on a Linux 
Ubuntu server with Intel(R) Xeon(R) CPU E5-2630 v4 (2.20 GHz) and 

251 GB RAM. 

5. Results and discussion 

5.1. Estimated crime risk on the street network 

The street-level crime risk is estimated based on the historical crime 

Fig. 5. The estimated street-level crime risk in the Liverpool city region.  

Table 3 
Summary of the PMPs in this case study.  

Distance 
metric 

Number of 
demand 
points 

Number of 
potential 
sites 

Computing 
time (seconds) 

Average 
facility- 
demand 
distance 

Euclidean 1710 93 33.5 623.3 
3D 1710 93 56.5 658.2 
Network 1710 93 15.7 836.9  

Fig. 6. Overlap of the optimal facilities derived from three PMPs.  
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incidents and the Network KDE algorithm, and the risk level of street 
segments is demonstrated in Fig. 5. The segment of darker red means a 
higher crime risk on the street. The map shows that the northern part has 
a higher street density and a higher crime risk than other areas. 
Therefore, it is expected that more drone stations should be set up in this 
area to provide quick responses to potential crime incidents. 

5.2. PMP results 

The results of the three PMP instances are detailed in Table 3. The 
solution time for all PMP instances is less than 60 s, which demonstrates 
the efficiency of the proposed models. The average demand-facility 
distance indicates the average distance from each street segment to its 
assigned facility site. The average Euclidean distance is considerably 
shorter than the network distance, which is reasonable as the street 
network generally adds to the travelling distance between locations in 
urban areas. 

The three PMP instances led to different optimal configurations of 
drone stations. The overlaps of the selected locations are illustrated by 
the upset plot in Fig. 6. The three rows of this matrix correspond to the 
sets of facilities (i.e. facilities derived from Euclidean, 3D, and network- 
PMP), while the columns correspond to the cardinality of overlap 

between the given sets. Column A indicates that 75 out of 93 potential 
sites are not selected by any PMP. The last column represents the 
intersection between the facilities selected by all three PMP instances, 
meaning that the three instances have only two selected facilities in 
common. In addition, the third and fourth columns express that the 
Euclidean and 3D PMP derived identical optimal facilities. 

The optimal spatial configurations of the facilities are shown in maps 
in Fig. 7. In each map, a polygon represents the convex hull of the streets 
that are assigned to each selected facility (which is also inside the 
polygon). When the Euclidean or 3D distance is applied, the facilities 
derived from the PMP and the streets assigned to the selected facilities 
are the same. This is potentially because the landscape of the Liverpool 
city centre is quite flat (the DTM data with a median of 27.0 m, mean of 
26.1 m, and a maximum of 92.5 m), leading to a similar Euclidean and 
3D distance. On the other hand, the facilities derived from the street 
network distance are distinctively different from the Euclidean distance, 
with more facilities located in the northwest part of this area. This can be 
explained by the fact that this subarea intersects with the River Mersey 
and several dual carriageways, leading to a substantially longer distance 
on the network than in an Euclidean space. For this reason, the network 
PMP tends to set up more drone sites in the northwest part. 

Fig. 7. PMP-derived configuration of drone bases for serving the Liverpool Hub Four neighbourhood under different distances. (a) Euclidean; (b) 3D; (c) 
street network. 
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5.3. Spatial analysis of differences between distance metrics 

In this part, a series of spatial analyses are conducted to understand 
the main differences among the three distance metrics, elucidating the 
reasons behind the different optimal facilities selected by the PMP 
models. Fig. 8(a) depicts the comparison of the street network and 
Euclidean distances for each demand-facility pair. It is observed that 619 
demand-facility pairs out of 159,030 (0.389%) have a significant dif
ference greater than 2 km between the two distances. These points are 
highlighted in red in Fig. 8(a) and then illustrated in the map of Fig. 8(b). 
This spatial pattern shows that these outlier distances relate to the street 
links on the Queensway Tunnel and in the eastern part of this area, 
probably because of the intersections of dual carriageways and River 
Mersey. This result is consistent with the configuration of drone stations 
chosen by the network PMP, where five stations are selected to cover the 
street segments in the northern part, compared to the counterpart of four 
stations selected by the Euclidean PMP. These findings confirm the in
fluence of distance metrics on the optimal locations of drone stations. 

5.4. Discussion and implications 

The analysis above presents three configurations for the optimal lo
cations of police drone stations, which are derived from three distance 
metrics. We demonstrate that the configuration derived from the 
network distance is more practicable and efficient because of several 
considerations. First, compared with Euclidean and 3D distance metrics, 
this network PMP sets up more drone stations in the northern part that 
feature a higher density of street segments and a higher crime risk, 
which likely leads to a quicker response to crime incidents in this area. 
Second, if police drones mostly fly over streets rather than buildings 
(including critical infrastructures), it would considerably reduce the 
potential damage of drones to buildings and reduce the public’s con
cerns about drones with respect to safety, security, and privacy. 

This study provides theoretical implications on how to incorporate 
risks into drone applications in a wide range of sectors, including mili
tary, medical, firefighting, and high-risk manufacturing (e.g. nuclear 
and chemical plants), to improve the efficiency of drone operations. 
Furthermore, it provides a basis for future studies on risk-based drone 

routing and scheduling, in which more constraints, such as the limited 
flight range of drones, will be considered. From a managerial perspec
tive, the framework in this study can effectively improve police patrol
ling efficiency by minimising the total travel distance of drones (hence 
cost and response time) and maximising public security and welfare. 

This research highlights the importance of optimising the base sta
tion locations of police drones, which leads to multiple benefits for law 
enforcement agencies. Firstly, it allows for maximised coverage, 
ensuring that drone services can reach a larger area and monitor a 
greater number of street segments. This extended coverage enhances the 
ability to detect and respond to incidents promptly. Secondly, optimal 
base station locations would minimise the response times of the police to 
crime incidents or high-risk areas. This rapid response capability enables 
law enforcement agencies to gather real-time situational awareness, 
which supports timely decision-making. Additionally, the optimal drone 
base station locations contribute to efficient resource allocation, as it 
allows law enforcement agencies to prioritise areas with greater need for 
surveillance and crime detection. 

It is significant to integrate the selection of drone base station loca
tions into the overall planning and deployment of police drones, as it has 
important implications for crime detection, surveillance, and emergency 
response. This comprehensive approach takes into account both the 
spatial aspects and the operational requirements of police drones. 
Through this integration, law enforcement agencies can optimise their 
resources, improve public safety outcomes, and enhance their capabil
ities in addressing and combating crime. In summary, the selection of 
optimal drone base station locations has implications for maximising 
coverage, minimising response times, and ensuring efficient resource 
allocation of police drones. By integrating this selection process into the 
overall planning and deployment strategy, the effectiveness of crime 
detection, surveillance, and emergency response is enhanced, leading to 
improved public safety outcomes. 

5.5. Limitations 

This study has several limitations, which open the avenue for future 
research. First, the drones are assumed to follow the shortest route under 
the given distance metric. However, in real applications, the flying of 

Fig. 8. The comparison of the street network and Euclidean distances per demand-facility pair. (a) Scatter plot of all demand-facility pairs, highlighting the pairs 
with a distance difference above 2 km; (b) Map of the demand-facility pair with a distance difference above 2 km. 
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drones is affected by other factors, including no-fly zones, weather 
conditions, and high buildings. Future work will take into account these 
factors in the route planning of drones and engage police experts in the 
ranking of these important factors. Second, this research assumes fixed 
and static police drone stations once they are located and set up. How
ever, future work could accommodate the docking and charging of 
drones via dynamic vehicle-based drone stations. Moreover, this work 
assumes that the crime risk is only dependent on the frequency of crime 
incidents. Future work will incorporate the severity level of each inci
dent to improve risk-based drone patrolling. 

6. Conclusions 

In this study, we present a new risk-based decision framework for the 
optimal deployment of police drones for responding to crimes on urban 
street networks based on historical crime data, crime risk levels, 
network KDE, and PMP. Specifically, we adopt the spatial optimisation 
model to derive the optimal configuration of drone stations, considering 
different distance metrics that affect the flying routes of drones. This 
framework is implemented and tested in the case study of Liverpool city. 
Given the three configurations of drone station locations, we illustrate 
that the configuration derived from the network distance is more prac
ticable and efficient than the others. The results have important policy 
implications for the deployment of police drones and for reducing the 
risk in urban areas. 

This study initiates a theoretical exploration of risk-based deploy
ment of police drones for patrolling and seeks the optimal locations of 
drone base stations using spatial optimisation models. The objective is to 
ensure the coverage of street segments in urban environments, where 
each segment is assigned a crime risk level based on historical crime 
records. 

This study makes several significant contributions to the existing 
literature on drone base station location selection. First, it introduces the 
concept of risk-based drone patrolling by pioneering the incorporation 
of street-level crime incident data into drone location optimisation. The 
innovative approach considers crime risk levels derived from historical 
records, providing a new perspective on improving the effectiveness of 
police drone operations. Second, the study formulates and solves the 
drone station location selection problem. It presents a new formulation 
specifically tailored to selecting drone base station locations police 
patrolling. Through the development spatial optimisation models, the 
research addresses the practical aspects of drone deployment in law 
enforcement, contributing to applied research in this domain. In addi
tion, this study extends the boundaries of police patrol practices by 
discussing the utilisation of drones for police patrolling. This extension 
provides valuable insights for future operations and management of 
police drones in urban areas, potentially influencing the direction of law 
enforcement practices. 
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