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SPORTS MEDICINE AND BIOMECHANICS

Characterization of movement patterns using unsupervised learning neural 
networks: Exploring a novel approach for monitoring athletes during sidestepping
Sina David a and Gabor J. Barton b

aDepartment of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; bResearch Institute for Sport and Exercise 
Sciences, Liverpool John Moores University, Liverpool, UK

ABSTRACT
The monitoring of athletes is crucial to preventing injuries, identifying fatigue or supporting return-to- 
play decisions. The purpose of this study was to explore the ability of Kohonen neural network self- 
organizing maps (SOM) to objectively characterize movement patterns during sidestepping and their 
association with injury risk. Further, the network’s sensitivity to detect limb dominance was assessed. The 
data of 67 athletes with a total of 613 trials were included in this study. The 3D trajectories of 28 lower- 
body passive markers collected during sidestepping were used to train a SOM. The network consisted of 
1247 neurons distributed over a 43 × 29 rectangular map with a hexagonal neighbourhood topology. Out 
of 61,913 input vectors, the SOM identified 1247 unique body postures. Visualizing the movement 
trajectories and adding several hidden variables allows for the investigation of different movement 
patterns and their association with joint loading. The used approach identified athletes that show 
significantly different movement strategies when sidestepping with their dominant or non-dominant 
leg, where one strategy was clearly associated with ACL-injury-relevant risk factors. The results highlight 
the ability of unsupervised machine learning to monitor an individual athlete’s status without the 
necessity to reduce the complexity of the data describing the movement.
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1. Introduction

Active participation in sports is regarded as one contributor to 
life-long health including its social benefits (Biddle et al., 2000; 
Hagger & Chatzisarantis, 2005). However, sport is also a major 
cause of injuries to the musculoskeletal system. These injuries 
result in loss of training hours and high socio-economic cost 
(Gottlob et al., 1999) may end an athlete’s career and in the 
worst-case result in degenerative diseases (Ruiz et al., 2002). 
Especially with increasing professionalization, the narrow gap 
between performance enhancement and injury prevention 
makes it crucial to identify an athlete at risk. Various screening 
tools have been developed in the past years, but they often lack 
high reliability and validity or are not of high predictive value 
(Bahr, 2016). In their meta-analysis, Bonazza et al. reported, that 
the Functional Movement Screen (FMS), which is a widely used 
screening tool for the prevention of musculoskeletal injuries, 
shows an intra- and inter-rater reliability of 0.81, which was 
rated as excellent. The tool’s predictive value showed a 2.7 
times higher chance of getting injured if scoring lower than 
14 in the FMS. However, concerns remained regarding validity 
(Bonazza et al., 2017). Also, the question remains how sensitive 
the tool is to detect an actual athlete at risk (Bahr, 2016).

Recent studies showed the impact of individual movement 
patterns on injury-related structural loadings during fast side
stepping manoeuvres (David et al., 2018; Dempsey et al., 2009; 
Donnelly et al., 2017). The results provided a clear indication 
that preparatory strategies such as trunk inclination, 

preorientation and foot strike pattern determine the knee val
gus moment, which is often considered a proxy for anterior 
cruciate ligament (ACL) load.

Also, limb dominance was pointed out as a risk indicator 
(Dos’Santos et al., 2019). The unpredictable nature of multi
directional sports requires the athlete to perform sidestepping 
manoeuvres in a safe manner both with their dominant and 
non-dominant limb (Dos’Santos et al., 2019). While several 
studies reported no or minor biomechanical differences 
between limbs (Bencke et al., 2013; Brown et al., 2014; Greska 
et al., 2017; Marshall et al., 2015; Mok et al., 2018; Pollard et al.,  
2020) the study of Brophy et al. reported that males rupture the 
ACL of their dominant limb more often than females (Brophy 
et al., 2010). Whether or not leg dominance is indeed a risk 
factor for ACL injuries is to date not clear, however, the fact that 
some athletes do show limb differences indicates that also the 
movement pattern of each leg should be investigated when 
monitoring an athlete (Dos’Santos et al., 2019).

The strong evidence that a high knee frontal and transverse 
plane moments is of predictive value for injury risk screening is 
jeopardized by the problem that identifying an athlete at risk 
requires the definition of a load threshold (Bahr, 2016). But the 
load tolerance of the ACL is not the same for every athlete (Bahr 
& Krosshaug, 2005) and therefore defining a meaningful thresh
old is impossible. Also, this is in contrast to the idea that the 
transition between no risk and risk is not categorical but con
tinuous and that athletes who score similarly should not end up 
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in different groups if they happen to fall on different sides of 
the division line.

Modern lab technology allows researchers to investigate 
complex problems from different perspectives. Three- 
dimensional movement analysis systems can capture accurate 
positions and orientations of linked body segments and the use 
of inverse dynamics can combine the movement data with 
external forces to calculate joint loading. Additional features 
like electromyography to obtain muscle activity, pressure dis
tribution within the shoe and other objective data can be 
added to further increase the amount of information and to 
give a more granular picture. This results in a large amount of 
multidimensional data which is a big advantage of modern 
data acquisition, but the problem arises of how to process 
and more importantly understand and interpret all the data. 
The human brain can receive, process, and remember between 
seven to nine items at a time (Miller, 1956). When reviewing the 
large datasets gathered through motion analysis, only the 
lower limb joint angles of the right leg in three dimensions 
already exceed this number of items. So, the researcher must 
decide on a preselection of parameters. From other subdisci
plines employing 3D motion analysis, it was reported that these 
assumptions are dependent on the profession or experience of 
the investigator or even the institution the researcher works at 
(Skaggs et al., 2000; Watts, 1994). In sports biomechanics, the 
selection is often based on the mechanical understanding of 
the load-tissue interaction. However, every movement is the 
result of the interplay of mechanics, tissue characteristics, 
motor control, psychology, and others. It might therefore be 
impossible to identify a single cause that forces an athlete into 
a movement pattern with an elevated risk of injury while others 
will end up using a different pattern in the same situation. 
Additionally, the transition from one movement pattern into 
another is continuous – as are the risk factors, which makes 
data analysis even more complex and the grouping of athletes 
to further investigate them neglects athlete-specific factors 
(Bahr, 2016).

We summarize the state-of-the-art motion analysis 
approaches result in high-quality datasets. The conventional 
ways to approach these datasets require a reduction of the 
amount of data and often also force the researcher to make 
a-priori assumptions. This may result in a narrowed view of the 
dataset and eventually lead to overestimating the importance of 
single parameters together with loss of essential information. 
One solution to the raised issues is to employ Kohonen self- 
organizing map neural networks (Kohonen, 2001). These unsu
pervised neural networks can overcome the described problems 
as they can process large quantities of input data without the 
need to make an a-priory reduction of data (Barton et al., 2006). 
A recent paper has already shown the ability of SOMs to identify 
athletes who change their movement pattern during drop jumps 
after a fatigue protocol (Strutzenberger et al., 2022). With this 
study, we aim to assess a more complex and injury-relevant 
movement, namely sidestepping and will explore to what extent 
the SOM is sensitive to limb dominance with regard to ACL-injury 
-relevant joint loading. SOMs were already used to find clusters 
of athletes of different skill levels (Babaee Khobdeh et al., 2021) 
or shot techniques (Lamb et al., 2010) in Basketball. Both studies 

showed that SOMs outperform expert-based or standard statis
tical analysis when it comes to decision-making. Schöllhorn et al. 
used SOMs in their study to analyse javelin throwing techniques 
and concluded, that contrary to the expectations, there is 
a variety of different techniques that result in high performance, 
therefore strengthening the need for athlete-specific investiga
tions (Schöllhorn & Bauer, 1998). Also, their results justify that 
SOMs can be considered the right approach for this current study 
about athlete-specific execution of the turning task.

The aim of this study was therefore to explore the ability of 
SOMs as an objective tool to assess the athlete’s individual 
movement pattern and monitor changes between the domi
nant and non-dominant limb herein. We demonstrate that the 
SOM can be used to relate the athlete’s movement to accepted 
ACL-relevant risk factors in an unsupervised manner.

2. Materials and methods

Lower body marker trajectories of athletes performing planned 
full-effort 90° sidestepping (David et al., 2017) were used to 
train an unsupervised neural network using Kohonen self- 
organizing maps (Kohonen, 2001).

The dataset contained 613 trials of 67 athletes in total 
(adults: 26 male, 31 female, age 22.6 ± 3.3 years, height 1.77 ±  
0.1 m, mass 70.9 ± 0.1 kg; children: 10, age 9.8 ± 1.0 years, 
height 1.45 ± 0.1 m, mass 36.98 ± 6.38 kg). All participants 
were free of injury or pain and gave their written informed 
consent to participate in the study. Ethical approval for the 
study was given by the University’s ethical committee 
(Approval number 125/2015).

The trajectories of 28 lower body retro-reflective markers 
were captured by 14 infrared cameras (sampled at 200 Hz, 
VICON, Oxford, UK). Two floor-embedded force plates (Kistler, 
Winterthur) recorded the ground reaction forces (GRF) of the 
execution (EXEC) and depart (DEPART) contact phases of the 
sidestepping task (Figure 1). Each athlete performed sidesteps 
using their dominant and non-dominant leg as the EXEC leg, 
where the preferred side was determined by asking them to 
kick a ball.

Inverse kinematics and dynamics were carried out using 
AnyBody (V6, Aalborg, Denmark) to calculate the 3D lower- 
limb joint angles and internal joint moments. For this purpose, 
kinematic and kinetic data were filtered with a recursive 2nd 
order low pass filter with a cut-off frequency of 20 Hz 
(Kristianslund et al., 2012).

MATLAB 2020b (The Mathworks) was used for all the follow
ing steps. As the dataset contained sidestepping to the left and 
the right, the marker positions were mirrored, and the GRF and 
GRF moments were rotated around the global reference frame 
which was placed centrally between the two force plates in 
case athletes turned to the left and used force plate 2 for the 
EXEC contact. After this procedure, all sidesteps were executed 
to the right, with the left leg touching Force Plate No.1 during 
the EXEC contact and the right leg touching Force Plate No. 2 
during the DEPART contact. The origin of the global reference 
frame was placed between the two force plates (see Figure 1). 
This process ensured, that the neural network was not biased 
by sidestepping either to the left or the right side.
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The marker trajectories, joint angles and moments and the 
GRF were time-normalized to the ground contact of the EXEC 
contact, using the vertical GRF. Touch down and take off were 
the first and last instances where the GRF crossed a threshold 
of 20 N.

To test the SOM’s ability to be used as a tool to screen the 
ACL-relevant load that is related to specific movement patterns, 
we extracted factors relevant to an ACL injury which were knee 
abduction moment (Nm/m*kg−1) and knee and hip joint angles 
to account for the leg alignment, in the following referred to as 
hidden variables. The idea behind relating the movement pat
tern to the hidden variables is, that they have to be represented 
in the training data, in this case, the joint angles, although their 
relationship to this input data is not clear. The hidden variables 
are not used for the training process. With this approach, we 
aimed to identify movement patterns, that will cross areas of 
increased injury risk of ACL-relevant joint loading, therefore 
being related to increased injury risk.

In the next step, all lower-limb marker trajectories were 
space-corrected. To ensure that the distance from the global 
reference frame does not bias the input data for the neural 
network, the centre of the four pelvis markers at the instance of 
the touch-down of the EXEC contact was calculated and sub
tracted from the time-normalized marker trajectories (Figure 1). 
With this, the confounding effect of the absolute position of the 
body in the global reference frame was removed. In other 
words, all athletes started the EXEC contact at the same spot. 
Any different movement trajectory from this point is an expres
sion of their movement strategy.

Finally, one matrix was created (61913 × 84) containing all 
613 trials with 101 data points in each (613 × 101 = 61913) with 
the 84 marker trajectories in the 61913 rows to generate the 
input data set for the neural network.

An unsupervised learning Kohonen self-organizing map 
(SOM) neural network was trained with the marker trajectories 
(Kohonen, 2001) using the SOM Matlab Toolbox (V 2.1). The 
input layer consisted of a matrix of 61,913 input vectors. The 
columns of the input matrix were normalized by subtracting 
the mean of each input column and dividing it by its standard 
deviation upon presenting them to the network. The initial 
connection weights of the neurons are set by the first two 

principal components of the input dataset. The SOM was 
trained using a Gaussian neighbourhood relationship of the 
weights and the default settings as described in the SOM 
Toolbox (http://www.cis.hut.fi/somtoolbox/, initialization: lin
ear, algorithm: batch, lattice: hexagonal, map size: small, train
ing: short).

For a more in-depth description of the SOMs functionality, 
we refer to Kohonen (2001).

To use the hidden variables, the following approach was 
taken: For each input vector of the training data, also data for 
the hidden variables are present (i.e., for 101 marker trajectory 
vectors, also 101 joint moment vectors exist). The vector num
bers that were associated with a single best-matching neuron 
were extracted (Figure 2). Then, these vector numbers were 
used to extract the according hidden variable vectors (i.e., the 
joint moment of that specific posture) and the mean of these 
hidden variable vectors was calculated. By doing so, each pos
ture that was identified by the SOM could be associated with 
the hidden variable of choice.

3. Results

After initialization, the Kohonen layer consisted of 1247 neu
rons (determined by the size of the input matrix), distributed 
over a 43 × 29 rectangular map with a hexagonal neighbour
hood topology of each neuron (Figure 2). The size of the map is 
determined automatically when initializing the SOM with the 
target to represent the variability in the training data suffi
ciently. This means that the 61913 input postures were reduced 
to 1247 relevant postures to describe the whole data set. From 
the 2D trajectory of the best-matching neurons on the map (see 
Figure 2) one can reconstruct the movement of a specific input 
trial from the codebook vectors representing the movement 
patterns in the SOM weights. With this, the movement trajec
tory of an athlete can be followed and also compared to either 
other athletes or within the same athlete to monitor changes. 
From Figure 3(b) it becomes visible that the movement trajec
tory of four different athletes follow quite distinct paths on the 
2D SOM.

In combination with the 2D coordinates and the quantisa
tion error (see Figure 2), additional hidden variables can be 

Figure 1. Left: Laboratory setup. All sidestepping trials executed to the left side were modified to match the right sidestepping trials by using the left leg as the EXEC leg 
and touching force plate 1 during the EXEC contact. The black trapezium represents the pelvis segment with the four pelvis markers that were used to calculate the 
pelvis centre at the initial touch-down of the EXEC contact. The green coordinate system represents the global reference frame. Right: 3D position of the lower-body 
markers on the pelvis, thighs, shanks and feet.
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used to label the SOM. The first of these was the time instance 
(%) during the EXEC contact. As can be deducted from 
Figure 3(c), the distribution of the postures over the SOM is 
very smooth concerning their occurrence in time during the 
EXEC contact. With this, zones of interest e.g., in terms of injury 
risk can be identified on the map. Most non-contact injuries 
occur during the weight acceptance phase which refers to 
approximately the first 30% of the contact phase (the upper 
part of the SOM in Figure 3(c)). Also, the number of neurons 
(representing similar but discrete instances of postures along 
movement patterns) associated with each of the phases during 
the ground contact is different between athletes, as can be 
appreciated from Figure 3(b). While the pink trajectory shows 
the highest resolution (number of neurons per phase) during 
the first 40% of the contact, the black trajectory is showing 
a higher resolution during 50 to 60% and the green one dom
inates the last 20% of the contact phase. Taking this one step 
further changes to the movement trajectory within one athlete 
can be monitored. The maps in Figure 3(d–g) show the trajec
tories of four different athletes and the trials towards their 
preferred (black) and non-preferred (red) directions. While ath
letes A and B show clear changes in their movement trajec
tories, athletes C and D do not seem to be affected by changing 
the movement direction. The same procedure can be done 
with data pre- and post-injury, or to monitor fatigue.

Finally, adding more hidden variables such as joint angles or 
moments can be used to interpret the path of the trajectory. 
The maps in Figure 3(h–k) display the distribution of the knee’s 
sagittal and frontal and the hip’s sagittal joint angle as well as 
the frontal knee joint moment. These variables were chosen for 
illustration as they are related to knee joint injuries. By project
ing the trajectories on these maps, it becomes possible to 
investigate, whether an athlete crosses an area of high joint 
loading or joint positions with a high risk of injury. Also, the 
aforementioned changes in the path of the trajectory can 
directly be translated into changes in the joint angles and 
moments. The change of movement path of athletes A and 
B from the preferred to the non-preferred side results in 
a decrease in knee and hip flexion and an increase in knee 
abduction, which is more likely to result in a collapse of the 
knee joint. Athletes C and D show this movement strategy for 

all their trials, which could indicate that they are in general at 
higher risk for knee joint injuries.

4. Discussion

The results of this study demonstrated the power of the SOM to 
reduce the dimensionality of a large dataset of 61913 input 
vectors to 1247. The reduction of dimensionality refers to 
visualising an 84-dimensional problem on a two-dimensional 
map of neurons. This leads to the emergence of fundamental 
patterns of the movement arranged on the SOM according to 
their similarities. This is done with some loss of detail while 
retaining most of the information content as proven by the 
ability to reconstruct an entire movement pattern from the 
stored vectors of the SOM. Further, this is a data-driven 
approach, which did not require any assumptions or hypoth
eses for data reduction.

The visualization of the marker trajectories during side
stepping using a Kohonen self-organising map allows for 
a new way to investigate individual movement patterns and 
the associated research questions. The SOM itself can be 
used to understand the distribution of the different postures 
along the individual movement trajectories. The option to 
examine other hidden variables such as time gives insight 
into the proportion of time taken within the different phases 
of the movement. This does not mean that an athlete spends 
more time in the weight acceptance phase, but the resolu
tion of the SOM for this athlete is higher in this phase 
(indicated by the number of neurons in this phase), meaning 
that the differences (i.e., multi-dimensional distances) 
between the single input vectors are higher for this athlete 
than for the other examples chosen for Figure 3(b). By fol
lowing the black trajectory in Figure 3(a), it can be observed 
that the athlete shows more knee and hip flexion of the 
execution leg than the other athletes, suggesting that 
a higher number of different postures were achieved. 
Evaluating the lower limb joint angles as hidden variables 
as with time could be one way of gaining deeper insight into 
these individual movement patterns. It has to be mentioned 
that time or joint angles were not included in the input 

Figure 2. Workflow of training and testing a Kohonen self-organizing map with 3D marker trajectories, leading to the selection of the best matching neuron and its 
quantization error.
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vectors used for training, thus the smooth distribution of the 
timing (Figure 3(c)) confirms the quality of the learning pro
cess based purely on pre-processed marker positions.

Taking this one step further, information associated with 
injury risk such as joint moments can also be evaluated as 
hidden variables. In this way, the user can take advantage of 
the hidden relationships between e.g., the movement and the 
actual joint loading. With this, it becomes possible to identify 

zones on the map, where several risk factors fall together, such 
as a high knee valgus moment during the weight acceptance 
phase (Boden et al., 2010; Dempsey et al., 2009; Donnelly et al.,  
2017). A movement trajectory that is travelling through this 
zone could identify an athlete with a higher risk of injury. 
However, data including injured athletes is necessary, which 
was not the case for the current study. In particular, longitudi
nal data that includes athletes before and after an injury would 

Figure 3. Results gained with the trained SOM. a) plane plot of the SOM showing the content of the single neurons that can be reconstructed into a stick figure 
b) movement trajectories of four selected athletes, showing distinct paths on the SOM. The coloured squares indicate the neurons that were hit by the athlete’s 
movement trajectory. c) distribution of the timing during the EXEC contact (%) added as a hidden variable to the SOM. The colour change indicates the change of time. 
d–g) visualization of the movement trajectories of sidestepping trials towards the preferred (black) and non-preferred (red) sides of four randomly selected athletes. 
h–k) distribution of the knee flexion and adduction angle, hip flexion angle and knee adduction moment added as hidden variables to the SOM. The colour coding 
represents the value of the respective parameter.
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be beneficial to understand whether their movement pattern 
was increasing their injury risk.

The results displayed in Figure 3 show the network’s 
sensitivity to limb dominance. Although limb dominance 
as a risk factor is to date still questionable, it is used for 
return-to-play decisions. If a test detects a difference 
between limbs, the athlete is supposed to be not ready to 
return to the pitch. While the concept of symmetry is gen
erally questionable, the variable that is chosen to calculate 
the differences is subjective. So instead of calculating a ratio 
between legs, our proposed approach is to assess whether 
the movement pattern differs between legs and whether 
one of the trajectories is passing through a zone of high 
joint loading within the map.

The advantage of using a network as presented in this study 
is, that once the network is trained and the associated hidden 
variables are linked, it is not necessary anymore to acquire 
these hidden variables. This is supported by an acceptable 
good correlation between the joint moments calculated via 
the inverse dynamics approach and the reconstructed joint 
moments from the SOM (e.g., r = 0.7 for the knee joint 
moments). To monitor a future athlete, only the movement 
trajectories have to be collected and expensive equipment 
such as force plates and time-consuming calculations for 
inverse dynamics are not needed.

This approach is completely different from the screening 
tools that are commonly used. There is no need to define 
thresholds for joint loading or other risk factors, which was 
critically discussed recently (Bahr, 2016). An athlete who is 
closer to the centre of a risk zone will be more likely to be 
exposed to an injury-relevant load. Also, there is no need to 
group athletes according to any hypotheses, which always 
contain the risk of missing effects or choosing a grouping vari
able that is not discriminative. Therefore, a SOM is a sensitive 
tool, to highlight individual movement patterns and given its 
mode of operation it offers the identification of risk.

A distinct advantage of the proposed method is the gradual 
change that is distributed across the map. With this, the effect 
of small changes in the movement on the overall movement 
pattern can be visualized. Another important benefit of the 
proposed method is its flexibility. If the research question 
focuses on the ankle instead of knee injuries, the same map 
can be used but labelled with ankle-relevant latent parameters. 
Also, the SOM can be used to monitor athletes, by observing 
how their trajectories on the 2D SOM change over time, e.g., 
indicating a movement towards or away from identified risk 
zones. The advances in pose estimation would allow feeding 
the network with other features such as joint angles or even 
parameterised images. For example, this could be used for 
direct feedback to the athlete in the form of warnings if risky 
postures are detected repeatedly.

It has to be mentioned that the used data set does not 
contain data from injured athletes. Therefore, no conclusion 
can be drawn towards the predictive value of the SOM as an 
injury screening tool. However, this was also not the aim of the 
study. Also, we only included the lower-body marker trajectories 
as upper-body markers were not present for all included athletes. 
Where whole-body movements contribute to injury risk, the 
additional data could improve the sensitivity of the method.

Future investigations should also take other network set
tings into account. For the present study, mainly default set
tings were used. The study of Serrien et al. reported the 
influence of different training settings on the training and 
quantization error of the SOM (Serrien et al., 2017). The topo
graphic error with the current setting was 0.12 which is slightly 
higher when compared to the results of the optimization study 
results of Serrien et al (Serrien et al., 2017). However, by taking 
a look at the reconstruction accuracy of the knee moment data, 
we are confident, that our results are based on sufficient accu
racy, however, improvements can and should be achieved in 
the future.

Another point to discuss is the normalization method. 
For the presented results, the input matrix was normalized 
column-wise by subtracting the mean of each column and 
dividing the result by the column’s standard deviation. This 
ensured that all variables were centred around zero and had 
a spread of ± one standard deviation. However, this form of 
normalization retains the effects of different body heights. 
We argue that for this study – namely to identify different 
movement patterns, the outcome is not affected by differ
ent body heights. We could not find clusters of movement 
patterns of the adults and the children, which would have 
been caused by their different heights. It seems that the 
large differences in the horizontal movement of the athletes 
were more informative to the network than the smaller 
differences in the vertical displacement. Also, for this 
study, within-participant changes were the main focus. 
However, different normalization methods should be con
sidered depending on the research question.

5. Conclusion

Kohonen self-organizing maps are a useful method to investi
gate the outcome of different movement patterns without the 
need for assumptions or grouping of athletes according to 
global parameters. Further, the network is sensitive to limb 
dominance and as presented earlier to fatigue. They can high
light how small adaptations in the movement pattern influence 
the movement pattern. In combination with the advances in 
posture estimation, they can be used for feedback training or 
athlete evaluation.
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