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Abstract 

    The miniaturization and three dimensional die stacking in advanced microelectronic 

packages poses a big challenge to their non-destructive evaluation by acoustic micro imaging. 

In particular, their complicated structures and multiple interfaces make the interpretation of 

acoustic data even more difficult. A common phenomenon observed in acoustic micro 

imaging of microelectronic packages is the edge effect phenomena, which obscures the 

detection of defects such as cracks and voids.  

    In this paper, two dimensional finite element modelling is firstly carried out to numerically 

simulate acoustic micro imaging of modern microelectronic packages. A flip-chip with a 

140µm solder bump and a 230MHz virtual transducer with a spot size of 16µm are modelled. 

Crack propagation in the solder bump is further modelled, and B-scan images for different 

sizes of micro-cracks are obtained. C-line plots are then derived from the simulated B-scan 

images to quantitatively analyze the edge effect. Gradual progression of the crack is found to 

have a predictable influence on the edge effect profile. By exploiting this feature, a crack 

propagation characterization method is developed. Finally, an experiment based on the 

accelerated thermal cycling test is designed to verify the proposed method. 

 

Keywords: Crack propagation; Acoustic micro imaging; Microelectronic package; Edge 

effect; Accelerated thermal cycling 

 

 

 

 



1.  Introduction 

    With the miniaturization of electronic devices, the solder bump pitches are increasingly 

dense with diameters as small as 30µm and decreasing. Moreover, many electronic devices 

are used in hostile environments. For example, in automobiles, electronic control units deal 

with vast temperature differences and constant vibrations. This brings into question the 

structural reliability of such devices [1]. According to Wunderle [2], up 65% of failures are 

thermo-mechanically related. Accelerated environment testing offers a way to evaluate the 

lifetime of such devices [3]. During thermal cycling, a crack will initiate in the solder bump 

and propagate through the solder bump structure, eventually resulting in an electrical 

discontinuity. It is observed that this particular failure mode usually occurs close to the 

silicon die to bump interface for the flip chip packages. To determine the crack size 

quantitatively in between thermally cycles, destructive evaluation on the sample often has to 

use in industry where a cross section will be cut, polished and optically examined.  

    Acoustic micro imaging (AMI) is effective at detecting discontinuities inside a test sample, 

which makes it ideal of non destructive evaluation of solder bump discontinuities [4-7]. Edge 

effect [8] is a physical phenomenon in acoustic imaging of microelectronic packages where 

sample edges scatter acoustic energy leading to dark annular regions around the solder bump. 

This is clearly seen from the ultrasonic C-scan images shown in Figure 1. The ultrasonic C-

scan images in Figure 1 were produced from the detection of two flip-chip packages soldered 

on a PCB board [3] using a 230MHz focusing transducer and gating at the silicon die-solder 

bump interface. The images labelled as A0 and B0 were obtained before thermal cycling while 

A40 and B40 were obtained after thermal cycling for 40 thermal cycles. The flip-chip packages 

contained 109 solder joints. From Figure 1, it can be seen that the area and intensity the 

bright spot at a solder bump inner region increases after thermal cycling. This is due to that 

thermal cycling causes crack initiation and propagation at the silicon die-solder bump 



interface. With a larger acoustic impedance mismatch caused by cracks, most of the incident 

signals are reflected back to the transducer and consequently produce higher intensities. 

However, how to non-destructively evaluate the crack size is a big challenge due to the 

limited resolution of acoustic imaging and the existing of edge effect. In this paper, a crack 

propagation characterization method is proposed, which is achieved through exploiting the 

relationship of the edge effect and the crack size.  

 

 

 

Figure 1: Edge effect in ultrasonic C-scan images of the silicon die-solder bump interface 

produced from the detection of two flip-chip packages soldered on a PCB board using a 

230MHz focusing transducer.  A0 and B0: before thermal cycling; A40 and B40: after thermal 

cycling for 40 thermal cycles.  

 

2.  Finite element modelling for acoustic micro imaging of microelectronic packages 

    Finite element modelling for acoustic micro imaging of microelectronic packages was 

carried out in our previous research to investigate the acoustic wave propagation inside a 

package and the generation mechanism of edge effect [8, 9]. The numerical model was built 



on the basis of acoustic micro imaging of the physical Flip Chip test sample used in our 

practical experiments. Two dimensional modelling was carried out using ANSYS APDL. The 

model schematic is shown in Figure 2. The numerical model consists of three parts: 1) the 

flip-chip modelled by a solder bump connecting to the silicon die through the Under Bump 

Metallization (UBM) structure. The composition of the UBM structure is based on [10]. 2) 

The water medium. The model is submerged in the water medium for simulation of 

immersion ultrasonic imaging. 3) A Virtual Transducer (VT) attached to the top of the model. 

The VT is modelled based on the 230MHz focused transducer used in our experiments. The 

displacement loads on the VT curve is vectored to mimic a travelling pulse ultrasonic waves 

very close to the sample. The same VT curve is used as a receiver to collect the reflected 

ultrasonic waves. In water, the VT produced a spot size of 16µm and a focal depth of 186µm 

which is in close agreement with the physical transducer with a spot size of 15µm and a focal 

depth of 192µm. The mechanical scanning in acoustic imaging of the flip chip package is 

implemented in the simulation by laterally moving the flip-chip at 1µm increment. Moving 

the flip-chip package is equivalent to scanning the transducer. At each scanning position, the 

entire model is solved to obtain an A-scan signal. The resultant A-scans at different scanning 

positions are assembled to create a B-scan image with a resolution of 1µm per pixel on the 

lateral X-axis. The B-Scan is a cross-sectional image of the flip chip. The deailed parameters 

of the FEM modeling undertaken to describe the contrast in the UT-imaging of solder bumps 

using an SAM can be found in [8]. 

    To simulate crack propagation, a crack is modelled by the introduction of an air gap with a 

thickness of 2µm inside the solder bump. The crack length propagates at an increment of 

2.5µm. The initial and end positions of the crack propagation are illustrated in  

Figure 3.  



 

Figure 2: Numerical model schematic for acoustic imaging of a flip-chip package. Unit: µm. 

         

 

Figure 3: Crack propagation modelled by a crack with length from 25µm to 75µm at an 

increment of 2.5µm.  

 

3.  Characterization of crack propagation through analysis of edge effect  

     Error! Reference source not found.4(a) shows a simulated B-scan image. Since the 

solder bump structure is symmetrical, only half of the flip-chip show in Figure 2 is scanned 

and shown in Figure 4(a). The position of 0µm on the lateral X-axis in Error! Reference 

source not found.4(a) represents that the transducer located on the centre axis of the solder 

bump. Similar to the C-scan imaging, a C-Line plot can be obtained from the B-scan image 



by gating the B-scan image at a desired interface. At each transducer position, the biggest 

amplitude in the gated A-scan signal is taken as the amplitude in that transducer position of 

the C-line plot. Figure 4(b) shows the C-line plot obtained from the B-scan shown in Figure 

4(a) by gating interface between 40ns to 60ns.  

 

 
 

(a) (b) 

Figure 4: (a) A simulated B-Scan image. (b) The C-Line plot produced by gating the B-scan 

in Figure 4(a) at the interface between 40ns to 60ns. 

 

    Using the finite elemental modelling described above, a number of simulations were 

carried out to monitor the crack propagation by the resultant B-scan images.  C-Line plots 

were then obtained from these simulated B-scan images for the silicon die-solder bump 

interface. Figure 5 shows the C-Line plots for different size of cracks. The initial crack is set 

as 25µm as shown in Figure 3(a). The crack propagates into the centre of the solder bump 

underneath the UBM at an increment of 2.5µm. 

    To quantitatively characterise the severity of the edge effect from these C-Line plots, a key 

feature of Dip-Y is extracted from each C-Line plot. The Dip-Y is a feature used to 



characterise the intensity of the dark ring of the solder joint C-scan image as shown in Figure 

1. From Figure 5a, it can be seen that at the centre of the solder bump, the C-Line plot has a 

relatively flat profile. This flat region has been named as the cap as shown in Figure 5a. This 

was followed by a trough which is caused by the edge effect. The peak intensity of the 

trough, i.e., the minimum intensity in the C-line plot is defined as Dip-Y as illustrated in 

Figure 5b. From Figure 5a, it can be seen that as the crack becomes bigger, the Dip-Y value 

increases, i.e., the trough becomes shallower.  

 

(a)                                                   (b) 

Figure 5: (a) The C-Line plots obtained for different crack sizes by finite element modelling; 

(b) Illustration of Dip-Y and Cap-X definition. 

 

Figure 6 plots the obtained Dip-Y against the crack size. From Figure 6, it can be seen that 

the Dip-Y reaches a quasi-saturation point beyond a crack of 55µm. This is due to the edge 

effect mainly occurring in regions at and close to the edge of the UBM structures [8]. Due to 

the transducer resolution limitation, current scanning acoustic microscopy cannot 

quantitatively evaluate small defects directly through C-scan images. The feature Dip-Y 

extracted from the edge effect seems to be an efficient way for defect sizing.  



 

Figure 6: Crack sizes verse Dip-Y extracted from the simulated C-Lines. 

 

4.  Experimental verification 

    The experimental verification is based on our previous experimental data obtained in the 

study on through-life monitoring of solder joints using acoustic micro imaging [2]. A 

multipurpose test board was designed to enable reliability experiments to be undertaken to 

study the performance of various IC, PCB and solder configurations. An organic FR4 board 

containing 14 flip chips spread over both sides of the board was used in the tests. The flip 

chips contained 109 solder joints of 125μm height, 140μm diameter positioned in a staggered 

fashion at the periphery of the package. The silicon die thickness is 725μm and the die size is 

3948μm × 8898μm. Accelerated thermal cycling (ATC) testing was carried out on these test 

samples.  

    Before the start of the ATC testing, AMI imaging and X-ray imaging were performed on 

the flip chips. The initial inspection confirmed that no cracks were generated during assembly 

and provided datum points for future comparison. Parameters obtained from this image were 

used as reference features to represent a healthy joint. Then, the board was subjected to 

thermal cycling testing. The testing was performed for a total period of 96 thermal cycles 



after which time most of the solder joints had failed due to thermal fatigue loading. At each 8 

cycle intervals, the board was removed from the chamber to investigate its integrity using 

acoustic imaging with a 230MHz focusing transducer and X-ray imaging. The ultrasonic C-

scan images were acquired by gating to silicon die- solder joint interface. More details for 

sample preparation and experimental procedure can be found in ref.[2]. In [2] and [3], a few 

methods based on the image processing techniques were proposed to monitor the crack 

propagation for through-life monitoring of solder joints.  

 

 

Figure 7: C-scan images of a solder bump before thermal cycling and after various number of 

thermal cycles. 

 

    Figure 7 shows the acquired C-scan image examples of a solder bump during the ATC 

testing after a certain number of thermal cycles. A number of C-Line plots can be obtained 

from an experimental C-scan image by directly extracting the cross-sectional profiles of the 

intensity (the pixel value) along various axes which pass through the centre point of the 

solder bump. Figure (b) shows two C-Line examples obtained from the C-scan image shown 

in Figure 7(a) along the two illustrated axes. 

 



 

(a) (b) 

Figure 8: (a) A measured C-scan image; (b) Two C-Line plot examples obtained from the image in (a) 

along the illustrated axes respectively.  

 

    Figure 9 shows the C-Line plots obtained from the C-scan images of a solder joint before 

and during the ATC testing. The C-Line plots were extracted along the X-axis as illustrated in 

Figure 8(a). Due to a lack of reference point in the image acquisition, the C-Line plots are 

unaligned. This is done in this paper by manually aligning the C-line plots along the rise 

transition. The rise transition describes the positive gradient caused by high reflections. This 

occurs when the transducer is positioned over the silicon die-water interface. In Figure , this 

is observed between 110µm and 150µm. Under the assumption that the solder bump is 

symmetrical, the C-Lines in Figure 9 are halved by discarding the left side of 0µm to 80µm 

for the purpose of comparison to the simulated results in Figure 5. Thus, the aligned C-Line 

plots are presented in Figure 10. Note that 0µm on the lateral axis in Figure 10 represents the 

centre of the solder bump. 

    Similar to the simulated C-Line plots, the Dip-Y feature can be directly obtained from the 

experimental C-Lines shown in Figure 10. The relationship of the Dip-Y against the number 

of thermal cycles is plotted in Figure 11. Notice that the number of thermal cycles is an 



indicator to the crack size. A line obtained through curve fitting is plotted in Figure 11 as 

well. From Figures 6 and 11, it can be seen that the Dip-X is a suitable feature to characterize 

the crack size and crack propagation.  

      

 

Figure 9: C-Line plots extracted from the experimental C-Scan images of a solder bump 

before and during the ATC testing. 

 



 

Figure 10: Aligned C-Line plots from Figure 9. 

 

 

Figure 11:  Dip-Y versus the number of thermal cycles. 

  

5.  Discussions 



In this paper, a feature Dip-Y is extracted from the C-line plots to characterize crack 

propagation. Advanced techniques to compute the proposed the feature is expected. 

Moreover, more features could be extracted from the C-Line plots to detect defects and 

monitor crack propagation in the future, and fusion of all the extracted features could further 

improve the monitoring accuracy of crack propagation.  For example, the Cap-X illustrated in 

Figure 5b is a potential feature to characterise the gradual expansion of the bright central 

region of the solder joint C-scan image as shown in Figure 1. The Cap-X value can be 

defined as the width from the centre of the solder bump, i.e., zero X-axis position in Figure 

5a to the lateral position of the Dip point as illustrated in Figure 5b. Since significant acoustic 

energy being reflected by the crack as the crack propagates, the Cap-X should decrease 

across the crack propagation.   

    Due to the limited pixels of the solder joint in the both the simulated and experimental C-

scan images, the extraction of the Cap-X feature is not accurate. Therefore, the results are not 

presented in this paper. This issue can be tackled by acquiring the solder joint C-scan images 

using a small scanning step size in future experiment and simulation. 

    For the extraction of C-Lines from the experimental C-scan images, averaging all the 

possible C-Lines rather than extracting the C-Line from a single cross-section of a C-scan 

image will improve the quality of the C-Lines. More advanced data processing techniques for 

alignment of the experimental C-Lines will also benefit the proposed crack propagation 

characterization technique.   

    Reducing the interval of acoustic micro imaging inspection during the ATC testing, for 

example carrying out an AMI inspection for every thermal cycle, will help us build a more 

accurate relationship between the extracted features and the crack size, particularly benefiting 

the monitoring of early crack propagation because of the non-linear effect of crack 

propagation versus the number of thermal cycles as seen in Figures 6 and 11.   



    From the destructive failure analysis experimental results in our previous study [2], it 

showed that crack initiations usually originate from the outer parameter of the solder bump 

[2] which is the focus of this study. Other types of defects like voids and on rare occasions, 

the cracks initiated from the centre of the solder bump needs further study in the future.         

        

6.  Conclusions 

    In this paper, a crack propagation characterization technique has been proposed for non-

destructively through-life monitoring of solder joints. The proposed method is developed on 

the basis of edge effect observed in the C-scan image of a solder joint. Firstly, two 

dimensional finite element modelling is carried out to numerically monitor the crack 

propagation inside a solder joint by modelling acoustic imaging of a flip chip package. B-

scan images for different size of cracks are obtained through the finite element modelling. C-

Line plots which can be used to analyze the edge effect are then extracted from the simulated 

B-scan images. A feature called as Dip-Y is further developed to characterize the C-Line 

plots. The relationship between the feature and the crack sizes is investigated. Simulation 

results show that the feature Dip-Y can be used to characterise crack propagation.  

    An experiment is developed to verify the proposed crack characterization technique. A test 

board consisting of flip-chips is subject to ATC testing. The flip-chips were inspected using 

acoustic micro imaging before the ATC testing. During the ATC testing, the test boards were 

taken out from the thermal cycling chamber at an interval of 8 thermal cycles to be scanned 

by AMI. C-Line plots are extracted from the experimental C-scan images. The relationship 

between the Dip-Y versus the number of thermal cycles is presented. Experimental results 

confirmed the efficiency of the proposed technique.  
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