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Abstract 44 

The desire to reduce the number of animals used in experiments has highlighted the need to 45 

standardise and validate in vitro methods as alternatives to bioaccumulation studies using fish. 46 

The present work details a process based on five criteria to develop a list of reference 47 

compounds to evaluate alternative test methods to standard assays using rainbow trout 48 

(Oncorhynchus mykiss). The approach was based on: 1) inclusion of relevant chemical classes 49 

for bioaccumulation and supported by data on bioconcentration factor (BCF), whole body 50 

biotransformation rate (Kmet) and metabolic pathways (criteria 1-2); 2) cover a broad range of 51 

bioconcentration potencies, logarithmof octanol-water coefficient (Log Kow), metabolic 52 

susceptibility, molecular weight and maximum molecular diameter (criteria 3-4); and 3) 53 

identification of chemicals that are unsuitable for in vitro testing according to cut-off values for 54 

hydrolysis, volatility in solution and lipophilicity (criterion 5). In silico techniques were 55 

employed to predict maximal log BCF, Kmet and the metabolic pathway for those chemicals for 56 

which in vivo data for some of these properties were not available. Of the 139 compounds 57 

considered as reference compounds, 51 were supported by high quality in vivo BCF, 22 58 

compounds were supported by either in vivo Kmet or metabolic biotransformation data and ten 59 

chemicals did not pass volatility and lipophilicity cut-off values. The list of reference 60 

compounds is anticipated to provide a transparent basis for future experimental assessment of 61 

the applicability of alternative methods for bioaccumulation assessment within the larger 62 

scientific community.  63 

Keywords:  Bioaccumulation, reference list, Bioconcentration factor, Alternative testing, In 64 

vitro  65 
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Introduction 66 

The potential of a compound to bioaccumulate is one of many hazardous properties that needs 67 

to be evaluated in risk assessment procedures. Although bioaccumulation refers to the 68 

accumulation of a substance in an organism from all routes of exposure (from the environment 69 

and diet), the bioaccumulation of chemicals is usually expressed by the bioconcentration factor 70 

(BCF) that refers only to its accumulation from the environment in a waterborne exposure. In 71 

aquatic risk assessments, BCFs have been measured in fish according to the Organisation for 72 

Economic Cooperation and Development (OECD) Test Guideline305 [1-2].   73 

In vivo test systems for bioaccumulation are demanding in terms of resources and the use of 74 

large number of animals per test substance. Coupled with this, compliance with legislation such 75 

as the European Union REACH (Registration, Evaluation, Authorisation and restriction of 76 

Chemicals) regulation [3] has the potential to increase the demand for animal testing to assess 77 

bioaccumulation for a large number of chemicals. Other methods such as in silico (computer-78 

based) and in vitro techniques have been proposed as alternatives to in vivo testing since they 79 

comply better with the principles of the 3Rs (reduction, refinement and replacement) for animal 80 

testing [4]. 81 

In silico models for bioaccumulation have been developed for more than 30 years, mostly in 82 

the form of Quantitative Structure-Activity Relationships (QSARs) [5]. As chemical 83 

bioaccumulation is a steady-state phenomenon controlled predominantly by passive diffusion 84 

processes and lipid partitioning, the majority of these mathematical models have been based on 85 

relationships between the observed log BCF and hydrophobicity, often represented by the 86 

logarithm of n-octanol/water partition coefficient (log Kow). Whilst there is a strong 87 

relationship with hydrophobicity, the maximum bioconcentration of a chemical may be reduced 88 

by ionisation, poor chemical bioavailability in the water column and others factors that are 89 
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associated with the Absorption, Distribution, Metabolism and Excretion (ADME) properties of 90 

the chemicals [6-7].  91 

Of the ADME properties, absorption and metabolism have been implicated as factors 92 

introducing uncertainty into models for bioaccumulation [8]. To deal with factors that affect 93 

chemical absorption, in silico approaches have considered molecular properties to screen 94 

chemicals with limited bioaccumulation as a result of molecular constraints. In particular, 95 

molecular weight (MW) and maximum inter-atomic distance between two atoms in the 96 

chemical structure (Dmax) have been demonstrated to be useful descriptors [9-10]. Molecular 97 

descriptors have resulted in a variety of molecular cut-off values; however, there has been little 98 

consensus in the use. This can be explained partly by the fact that other features such as low 99 

bioavailability and extensive biotransformation of chemicals may also contribute to reduce 100 

bioaccumulation of large molecules [11]. To deal with uncertainties associated with 101 

metabolism, modelling studies have been incorporated chemical biotransformation data into the 102 

log Kow-based models to correct for the effect of metabolism in aquatic bioaccumulation [12]; 103 

however, the prediction of metabolic susceptibility employed have been based on mammalian 104 

predictions due to the lack of metabolic in vivo data for fish.  105 

A variety of fish cell-based methods have been developed to study the biotransformation of 106 

chemicals, mainly based on a depletion approach to calculate the hepatic clearance rate [8]. In 107 

vitro hepatic clearance data can be incorporated into physiologically-based models that allow 108 

for the extrapolation to whole animal biotransformation rates (Kmet) and the prediction of BCF 109 

[13-14]. In vitro test systems can also provide specific information on the metabolic pathway 110 

of a compound by identifying its resulting metabolites [15]. Although standardised protocols 111 

for subcellular fractions (S9) and primary hepatocytes spheroids in rainbow trout 112 

(Oncorhynchus mykiss) have recently been proposed [16-17], the applicability of in vitro assays 113 

for assessing chemical bioaccumulation is currently limited by methodological and technical 114 
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shortcomings as well as assay variability [18]. There is a need, therefore, to enable the 115 

development, standardisation and validation of in vitro methods for the prediction of in vivo 116 

bioaccumulation within a regulatory context [19].  117 

In order to ensure that non-animal methods can be used as surrogates for whole fish testing, the 118 

establishment of a high quality and well-parameterised relationship between in vivo and 119 

estimated data is required. A small number of such comparisons have been reported for 120 

bioaccumulation assessments [20-21], but they have been applied to a limited selection of 121 

chemicals. Therefore, a representative list of chemicals for bioaccumulation, chosen on the 122 

basis of defined criteria, is required in order to allow a scientifically transparent process for 123 

future data comparisons. 124 

The aim of this study was, therefore, to develop a list of reference compounds for rainbow trout 125 

for the evaluation of alternative methods as a potential surrogate, or compliment, to in vivo 126 

studies to assess chemical bioaccumulation. The development of a reference list was conducted 127 

according to a set of criteria that were applied to include a variety of chemical classes supported 128 

by data on BCF, Kmet and their potential biotransformation pathways. A broad coverage of log 129 

Kow, range of bioconcentration potential and molecular properties (MW and Dmax), and the 130 

identification of benchmark (control) chemicals and others with potential in vitro difficulties 131 

based on key physico-chemical properties (hydrolysis, volatility in solution and lipophilicity) 132 

were also pursued. This study shows the importance of in silico techniques to assist in the 133 

creation of the reference list of chemicals by the use of established in silico models and software 134 

for the prediction of chemical properties considered.  135 

Materials and methods 136 

Strategy for developing a reference list of compounds 137 

The development of a list of reference compounds was conducted according to the following 138 

criteria: 139 
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1. To include different chemical classes that were established to cover a broad range of 140 

metabolic reactions studied in fish and chemicals of environmental concern.   141 

2. To identify chemicals supported by in vivo/in silico data on BCF, Kmet and metabolic 142 

pathway for rainbow trout. 143 

3. To cover a broad range of lipophilicity and bioconcentration potential. 144 

4. To cover a broad range of molecular properties and metabolic susceptibility.  145 

5. To identify  chemicals with in vitro testing difficulties according to cut-off values for 146 

hydrolysis, volatility in solution and lipophilicity.  147 

These criteria were established using expert judgement based on previous criteria of the validity 148 

of the test procedures [22] and specific considerations for chemical bioaccumulation. 149 

Criterion 1 150 

Due to in vitro metabolism assays becoming more frequent in bioaccumulation studies, the first 151 

step in the strategy was the selection of the chemical classes that should be included in the 152 

reference list to cover all biotransformation routes characterised in fish [23]. Table 1 shows the 153 

18 chemical groups that were considered in this study with their main metabolic reaction and 154 

enzymes. Of these, Polycyclic Aromatic Hydrocarbons (PAHs) represent one of the most 155 

studied groups of chemicals using in vitro methods. For instance, benzo(a)pyrene is usually 156 

taken as a benchmark compound for the development of clearance assays such as S9 [16] and 157 

primary hepatocytes [20].  It should be noted that although little is known on fish metabolism 158 

for some chemical classes such as heterocyclic compounds, they represent a group of interest 159 

for research because of their wide agrochemical and pharmacological applications [24]. Other 160 

chemicals such as polychlorinated biphenyls (PCBs) and organophosphates (OP) were also 161 

included in this study since they have been considered chemicals of environmental concern. 162 

[Table 1 here] 163 

Criterion 2 164 
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The next step in the strategy was the selection of the appropriate fish species from which to 165 

obtain in vivo data, bearing in mind that in vivo data are available for many fishes including 166 

freshwater and marine species. Rainbow trout was chosen as being one of the eight OECD 167 

recommended test species for conducting flow-through in vivo bioconcentration studies [1-2] 168 

and for which different alternative approaches have been proposed [8]. 169 

Once the fish species was chosen, chemicals supported by in vivo data on BCF, Kmet and 170 

knowledge of the metabolic pathway for rainbow trout were compiled from different sources 171 

of information such as the scientific literature and BCF databases. In selecting chemicals based 172 

on available in vivo BCF data, those BCF values with the highest quality/reliability score 173 

assigned by the parent databases (refer to Table 2) and measured under the same experimental 174 

conditions were preferred. The experimental considerations were: 1) analytical determination 175 

of tissue concentrations of the test compounds in whole fish (wet weight) and; 2) experimental 176 

tests being conducted in a flow-through system and using the steady-state method for the 177 

calculation of the BCF. In addition, experimental data from organometallic compounds and 178 

organic salts were removed from the chemical selection due to the possibility that mechanisms 179 

other than hydrophobicity could strongly affect bioaccumulation of a compound [12]. Single 180 

BCF values for each chemical were obtained by averaging the multiple data points after the 181 

removal of statistically significant outliers and single BCF values for a test concentration. It 182 

should be noted that compounds with coefficient of variation (CV) of the reported BCF data 183 

higher than 0.5 and those presenting inconsistencies with their analogue chemicals were not 184 

considered further for the development of the reference list.  185 

When there were no in vivo BCF, Kmet and metabolic pathways data for a compound on the 186 

reference list, in silico techniques were used to predict these properties. These involved: 1) the 187 

bilinear model developed by Bintein et al [25] (stated as Equation 1) to build a maximal log 188 

BCF model (log BCFmax model) for rainbow trout; 2) the Arnot et al [26] QSAR model 189 
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developed from fish in vitro metabolism data to predict Kmet; and 3) Meteor, a commercial 190 

software for the prediction of the metabolic pathway of chemicals. 191 

Reference chemicals were thus classified into four types of compounds according to the 192 

presence of in vivo or in vitro data for BCF, Kmet and metabolic pathways as is shown in Figure 193 

1.  194 

[Figure 1 here] 195 

Criteria 3 and 4 196 

These criteria refer to achieving a broad range of lipophilicity (expressed by log Kow), 197 

bioconcentration potencies, molecular properties and metabolic susceptibility. Log Kow was 198 

selected amongst other physico-chemical descriptors due to its strong influence on BCF [5]. To 199 

establish a range of bioconcentration potencies, Gold-Standard BCF compounds were classified 200 

into three ranges depending on the difference between their reported in vivo BCF data and the 201 

predicted maximal BCF values. As a difference of 0.5 log BCF is assumed reasonable to 202 

account for the variability resulting from experimental procedures [27], compounds whose 203 

residuals were lower than 0.5 log units for this maximal log BCF were considered well-204 

predicted by log Kow. In this manner, compounds whose residuals were between 0.5 and 1 log 205 

units were considered moderately over-predicted, and compounds whose residuals were greater 206 

than 1 log unit were classified as highly over-predicted by the model. Among molecular 207 

descriptors, MW and Dmax were selected as they have been used widely to investigate the effect 208 

of molecular mass and size on chemical bioaccumulation [9-10]. Finally, predicted Kmet data 209 

were used as a measure of metabolic susceptibility.  210 

Criterion 5 211 

The last criterion was established to ensure chemical stability during the experimentation due 212 

to as this is considered one of the essential criteria for the validity of the test procedures [22]. 213 

Therefore, the identification of compounds that may be subject to abiotic degradation and/or 214 
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potentially significant adsorption to the test vessels was required to ensure their stability in in 215 

vitro test systems. The following chemical properties were considered relevant for the 216 

bioavailability and stability of compounds in the water phase: 1) volatility in solution 217 

(expressed by Henry’s Law constant (HLC)); 2) hydrolysis (expressed by half-life (HL) in 218 

water); and 3) lipophilicity (log Kow). The cut-off values for these properties were applied to 219 

identify compounds that were highly volatile in solution (log HLC <-11 atm(molL-1)-1), readily 220 

hydrolysed (HL <12 hours), and highly lipophilic (log Kow>8). The cut-off value for log HLC 221 

was taken from the physico-chemical constraints or indicators of low bioaccumulation proposed 222 

by Nendza et al [28]. The guidance on bioconcentration and bioaccumulation for the 223 

implementation of the REACH legislation [18] provided the cut-off value for HL on the basis 224 

of the assumption that the rate of hydrolysis of chemicals should be greater than 12 hours for it 225 

to be sufficiently absorbed by the organisms being exposed. The cut-off value of log Kow was 226 

taken from the analysis of the relationship between log Kow and in vivo log BCF of rainbow 227 

trout compounds conducted in this study, representing a potential threshold where reliable log 228 

BCF predictions could be obtained.   229 

Data extraction 230 

Reference chemicals were compiled from different sources of information. A thorough 231 

literature search was conducted to compile chemicals with in vivo data on Kmet and metabolic 232 

pathways for rainbow trout. However, a wider coverage of literature, involving other species 233 

and bioaccumulation endpoints, was needed with the aim to include all relevant chemicals 234 

established for the development of the reference list of chemicals (Table 1) and cover a broad 235 

range of chemical properties considered (criteria 3 and 4). 236 

Chemicals selected based on high quality in vivo BCF values for rainbow trout were obtained 237 

from the Environment Canada Domestic Substance List (DSL) and non-DSL Environment 238 

Canada databases, both reviewed by Arnot et al. [29] and the EURAS-CEFIC database [30]. 239 
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Table 2 lists the general features of the different databases in terms of their availability and 240 

format, BCF data contained therein and the score used to assess the quality of the data. It should 241 

be noted that although the databases differ in the number of criteria and scoring system, they 242 

all covered the crucial aspects reported in the guidance proposed by Parkerton et al [31] for 243 

evaluating in vivo fish BCF data. Such aspects include the correct analysis of test substance in 244 

both fish tissue and exposure medium, no significant adverse effects on exposed fish and 245 

achievement of steady-state with unambiguous units.  246 

[Table 2 here] 247 

In silico tools  248 

Calculation of physico-chemical descriptors 249 

Chemical structures of the compounds considered were obtained from the EPISuite v. 4.1 and 250 

were recorded as SMILES strings. SMILES strings were entered into different EPISuite models 251 

to calculate: 1) Log Kow from KOWWIN v.1. 68; 2) HLC from HenryWin v. 3.20; and 3) HL 252 

from the Fugacity model V. 253 

Calculation of molecular descriptors  254 

KOWWIN v.1. 68 was used to calculate the MW of chemicals. Dmax data were calculated from 255 

the geometry optimised 3-D structures (in xyz format). The 3-D structures were obtained using 256 

a Python v 2.7.3 script. The 3D geometries were generated using OpenBabel v. 2.3.2 257 

(http://:www.openbabel.org), accessed using Python via the Pybel module v. 1.8, and locally 258 

optimised using the MMFF94 force-field [32]. The MOPAC input files were extracted and 259 

MOPAC v. 2012 (http://openmopac.net/) was run to optimise the chemical structures using the 260 

AM1 Hamiltonian. The following keywords were employed: charge=0 and PRT INT (setting 261 

no charge and exporting the interatomic distances, respectively). Dmax values were obtained 262 

from the MOPAC.out file; Dmax being defined as the maximum interatomic distance between 263 
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non-hydrogen atoms. The Dmax values were extracted automatically from the MOPAC.out file 264 

using an in-house perl script.     265 

Identification of outliers 266 

Outliers for multiple BCF data were identified using the boxplot graph representation in the 267 

SPSS software v.18 (http://www.spss.co.in). In this simple analysis, outliers were identified as 268 

non-normally distributed when identified outside the T-bars (95% confidence intervals of the 269 

data). 270 

Development of a max log BCF model 271 

In order to calculate the potential of maximal bioconcentration (log BCFmax)for those chemicals 272 

that did not have in vivo BCF data for rainbow trout (see Figure 1), the development of a log 273 

BCFmax model was required. Equation (1), developed by Bintein et al [25], was re-built for a 274 

subset of chemicals that were supported by the highest in vivo BCF values using the Minitab v. 275 

16 statistical software (http://www.minitab.com). In addition, the log BCFmax model developed 276 

allowed for the identification of benchmarks or positive controls on the basis of their good 277 

correlation with log Kow (a difference of 0.5 log units between their predicted log BCF values 278 

log and observed log BCF). 279 

log BCF = 0.91 log Kow – 1.97 log (6.8 10-7 Kow + 1) - 0.79      (1) 280 

n = 154, r2 = 0.950, s = 0.347, F = 464 281 

Where: 282 

n is the number of observations 283 

r2 is the square of the correlation coefficient 284 

s is the standard error 285 

F is Fisher’s statistic 286 

http://www.minitab.com/en-US/products/minitab/default.aspx
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The model described by Bintein et al [25] was selected in preference to others due to the fact it 287 

was obtained using BCF values for freshwater fish (1/3 for rainbow trout), measured in whole 288 

fish (wet weight) and under flow-through conditions.  289 

Prediction of metabolic-related properties  290 

Kmet data estimated for a one kg fish were obtained from BCFBAF v.3.01 model of EPISuite 291 

and which is based on the QSAR model developed by Arnot et al [26]. 292 

The prediction of metabolic pathway and resulting metabolites was made using the Meteor 293 

software (Lhasa Limited, Leeds, England (www.lhasalimited.org/meteor/). Three levels were 294 

selected for the analysis: probable, plausible and equivocal. The structure of parent compounds 295 

were entered into .sdf format and the resulting metabolic pathway and metabolites were stored 296 

being available in the Supplementary Information.   297 

Results and discussion 298 

This study aimed to develop a list of reference compounds for the development, assessment and 299 

validation of the performance of alternatives methods to in vivo bioaccumulation studies for 300 

rainbow trout. As no official guidance is provided for conducting such a selection process, the 301 

current study presents a novel approach to identify, select and evaluate reference compounds.  302 

Similar to other chemical selection strategies in toxicity studies [33-35], the strategy followed 303 

in this study was based on a list of criteria established and the use of in silico techniques to 304 

assist in the selection process. It should be noted, however, that whilst for toxicity studies there 305 

is a need to consider the toxic mechanism and/or mode of action to ensure either consistency or 306 

diversity, bioaccumulation is governed by ADME processes that are more clearly linked to 307 

physico-chemical and molecular properties.  308 

According to the five criteria detailed above, a total of 139 chemicals were considered as being 309 

the best candidates for the development and assessment of non-animal methods for 310 

bioaccumulation (Table 3). Reference chemicals included the 18 chemicals classes listed in 311 

http://www.lhasalimited.org/meteor/
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Table 1 and a broad range of lipophilicity (log Kow: -2.25 to 12.11), bioconcentration potential 312 

(W, O1, O2), MW (30 to 959 g/mol), Dmax (0.18-2.65 nm) and metabolic susceptibility (Kmet: 313 

0 to 37.6). Details of the metabolic pathway and resulting metabolites for each compound are 314 

provided in Supplementary Information. Approximately half of the reference compounds were 315 

supported by in vivo data for some of these properties, and therefore they were considered Gold 316 

Standard compounds due to their role in the evaluation of the applicability of alternative 317 

methods. A set of 10 compounds were identified as a challenge for in vitro testing due to they 318 

did not pass the cut-off values for log HLC and log Kow. 319 

[Table 3 here] 320 

Gold Standard-BCF compounds 321 

Initially, investigation of the databases identified 354 in vivo BCF values for a total of 59 322 

chemicals that were obtained under the same experimental conditions and assessed with the 323 

highest reliability score. Table 4 lists the number of BCF values for individual chemicals, CV, 324 

the database from which they were retrieved and experimental features such as test 325 

concentration. As can be seen, the Environment Canada DSL and Non-DSL Databases 326 

contributed in approximately equal terms to the total number of experimental data, whereas a 327 

low percentage of compounds were in common between the EURAS-CEFIC database and 328 

either of the Environment Canada databases. Moreover, the majority of these compounds were 329 

found to be halogenated benzenes (40 %) and chloronitrobenzenes (20%) with a small number 330 

of compounds of environmental concern such OPs (53).  331 

[Table 4] 332 

BCFs values for 79 chemicals  failed to meet one or more of the established quality/reliability 333 

criteria of the databases [29-30] and thus they were not considered for the creation of a reference 334 

list of chemicals. Some examples of these unreliable compounds include the toxic effects 335 

reported for two dioxin-like compounds (e.g. tetradioxin), uncertain correction of the radiolabel 336 
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analysis for the parent compound for some organophosphates (e.g. tricresyl phosphate) and 337 

insufficient exposure duration to achieve 80% of steady-state for the majority of 338 

polychlorinated compounds (e.g. mirex). 339 

Only experimental data for rainbow trout were considered in order to avoid the variability in 340 

BCF that may be caused by data obtained from different species. Such variability of fish species 341 

may be a result of differences in biological factors and uptake kinetics [36]. However, 342 

differences in organism size and lipid content of the same fish species may explain the BCF 343 

variability obtained for the same compounds. Other factors such as strain, culturing conditions 344 

and different metabolic capacities due to different feeding regimens or/and seasonal variation 345 

could potentially explain some of the variability found in in vivo BCF data; however, they were 346 

not assessed due to the lack of such data in the original databases. 347 

Multiple BCF values were obtained for the majority of chemicals (Table 4). Compounds with 348 

CV > 0.5 were not included in the list of reference chemicals. Of these 59 chemicals, six 349 

compounds (20, 21, 23, 35, 31, 37) had CV higher values than the established and thus were 350 

rejected.  Additionally, 1,4-dichlobenzene (12) and 1,3,5-trichloro-2-ntirobenzene (16) were 351 

rejected as some discrepancies were found in comparison with their analogues. 352 

Single BCF values for each chemical were obtained by averaging the multiple data points after 353 

removal of statistically significant outliers. Furthermore, single data for a test concentration 354 

were also rejected for the average of the multiple BCF data points.  Figure 2 shows the box plot 355 

representation of the range of BCF values for the compounds considered. Three statistical 356 

outliers were identified (values for compounds 14, 24 and 33), which were excluded from use 357 

in the calculation of the average values for these compounds.  358 

[Figure 2 here] 359 

Development of a log BCFmax model for rainbow trout compounds and assignment of 360 

bioconcentration potencies  361 
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The 51 Gold Standard-BCF compounds obtained above were used to build a max log BCF 362 

model for rainbow trout compounds. Equation 1 (stated above) was modified to accommodate 363 

a subset of in vivo BCF data (represented as open circles in Figure 3). The bilinear log BCFmax 364 

model built is shown as a solid line in Figure 3 and was calculated using Equation 2. This model 365 

represents the worst-case scenario of bioconcentration driven by passive diffusion processes 366 

and which should be considered specific for rainbow trout. 367 

Log BCFmax = 0.88 log Kow – 1.73 log (2.25 10-6 Kow + 1) - 0.08   (2) 368 

It should be noted that the data used in Equation 2 (six compounds in total) were selected a 369 

priori to obtain the maximal BCF value and, therefore, there is no statistical significance to this 370 

relationship.  371 

[Figure 3 here] 372 

Compounds were classified into three bioconcentration potency ranges depending on the 373 

difference between their reported in vivo BCF data and predicted maximal BCF values (well-374 

predicted (residuals<0.5); moderately over-predicted (residuals=0.5-1) and highly over-375 

predicted (residuals>1)); Following this rationale, 29 compounds were classified as being well-376 

predicted compounds, 9 to be marginally over-predicted and another 13 substances were 377 

identified as being significantly over-predicted.  378 

The majority of well-predicted compounds were neutral compounds such as biphenyls (38-40, 379 

45, 48), halogenated benzenes (11, 13, 17, 19, 32-34, 41, 56) and alkylbenzenes (24, 25, 30). 380 

This observation is supported by the lack of polar groups in the chemical structure that may 381 

make them less susceptible to a metabolic attack [5]. Following the same rationale, most 382 

compounds that were moderately over-predicted by Equation 2 were polar compounds such as 383 

nitrochlorobenzenes (for example compounds 6-8). However, hydrophobic compounds (log 384 

Kow <3) with polar groups in their structure (2-5) were also well predicted by Equation 2. This 385 

finding indicates that the high biotransformation potential of hydrophilic compounds is unlikely 386 
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to affect their bioaccumulation significantly. This is in agreement with previous in silico 387 

predictions that observed that high rates of chemical flux across the gills could be more 388 

significant than the biotransformation rates for bioaccumulation of hydrophilic compounds [15, 389 

37]. 390 

Highly over-predicted compounds included other nitrobenzenes (14, 15, 28), triphenyl 391 

phosphite (53), pentabromomethylbenzene (54) and ionic compounds such as phenolics (18, 392 

36) and hydrophobic organic acids (49-52, 55, 58). The low observed log BCF of the OP 393 

compound may be a result of metabolism, since modelling studies that have shown that 394 

relatively low biotransformation rates may have a large influence on bioaccumulation for 395 

hydrophobic compounds [15,37]. As expected, the observed log BCF of ionisable compounds 396 

in this study was low, as the bioaccumulation of ionisable compounds is not primarily driven 397 

by hydrophobicity [6]. Rather, a mechanistic model for the uptake and elimination of ionisable 398 

compounds via fish gills [38] showed that although ionisable compounds are less bioavailable 399 

than neutral species, in terms of crossing biological membranes, they can maintain a high 400 

diffusion across epithelial cell membrane which is comparable to neutral molecules. 401 

Consequently, descriptors other than log Kow have been considered in recent in silico studies 402 

to improve the predictions of bioaccumulation for ionisable compounds. Alternative descriptors 403 

include the logarithm of the distribution coefficient (log D), which is the ratio of concentration 404 

of unionised forms of a compound in octanol and the total concentration of unionised and 405 

ionised forms in water [39-40].  406 

It is worth noting that due to the fact that the bioaccumulation of a compound is a complex 407 

function comprising diverse physiological and biological processes, the reduced 408 

bioconcentration of some of these highly over predicted substances could be associated with 409 

more than one factor [11]. For example, the relatively high molecular size (Dmax= 1.16 to 1.20), 410 
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such as that of carboxylic acid compounds (49-52, 55), may also have contributed to reduction 411 

in BCFs. 412 

Gold Standard- metabolic  compounds  413 

Of the 139 reference compounds listed in Table 3, 22 were classified as Gold Standard 414 

metabolic compounds including Gold Standard -Kmet and MP compounds. Table 5 lists the in 415 

vivo data and other experimental details, amongst others, type of exposure, uptake phase and 416 

test concentration. In particular, eight pesticides (triazoles) (1-8) [41], two insecticides (9-10) 417 

[42] and four PCBs (11-14) [43] were found with in vivo Kmet data determined through a dietary 418 

exposure using juvenile rainbow trout. The Kmet data were calculated by comparing their HL 419 

with known recalcitrant PCBs in non-linear relationship between log Kow and HL developed 420 

by Fisk et al [44]. Based on this approach, chemicals whose HL fall on, or near, this non-linear 421 

relationship are assumed to not undergo high metabolism processes (recalcitrant), whereas 422 

those chemicals that fall below this relationship are suggested to be biotransformed. This 423 

method allows for the quantification of the biotransformation rates of organic chemicals that 424 

are tested using the same experimental conditions. 425 

A total of eight chemicals were compiled from the literature whose resulting metabolites were 426 

analysed in an in vivo system, and which are referred to Gold Standard-MP compounds in Table 427 

3. As Table 5 shows, these chemicals included four perfluoroalkylated compounds (15-18) [45-428 

46], decabromodiphenyl ether (19) [47] and three carboxylic acid pharmaceuticals (20-22) [48-429 

49]. Although few metabolites were monitored for each compound, the whole 430 

biotransformation pathway was proposed for compounds 18,20,21,22. Depending on the study, 431 

different routes of exposure (dietary, waterbone, intraperitoneal injection) as well as fish tissues 432 

for analysis (muscle, blood, liver bile, kidney) were used to investigate the biotransformation 433 

pathways of Gold Standard-MP compounds. Worthy of mention is that both aspects may 434 

influence the formation and accumulation of resulting metabolites from the parent compound. 435 
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For instance, a different metabolic pattern was found for decabromodiphenyl ether (19), where 436 

debrominated diphenyl ethers metabolites (De-BDEs) were the main metabolites in liver, 437 

whereas methoxylated diphenyl ethers (MeO-BDEs) were found in higher concentration in 438 

blood [47]. It should be noted that different metabolites of ibuprofen (IBF) were found by 439 

comparing two types of exposure: a waterborne exposure with four additional pharmaceuticals 440 

[48] and on its own [49]. Whilst the hydroxylated and acyl glucuronide metabolites of IBF were 441 

reported in both studies, taurine conjugates of IBF were only reported in organisms that were 442 

exposed to a single waterborne exposure of IBF [49]. 443 

[Table 5 here] 444 

Supplementary compounds  445 

Although this study prioritised the selection of chemicals for in vivo data for rainbow trout, not 446 

all chemical classes listed in Table 1 were covered. As it was observed above, in vivo BCF 447 

compounds were mostly halogenated aromatic chemicals. This lack of diversity for some types 448 

of chemicals such as reactive compounds, could be explained by the fact such chemicals are 449 

likely to cause higher mortalities and adverse effects than the 10% of the limit established for 450 

the validity of OECD protocols [1-2] and hence will not be good candidates for in vivo 451 

bioaccumulation assessments. This observation is supported by the toxic effect reported for 452 

dioxin-type compounds described above. Nonetheless, the identification of the lack of in vivo 453 

data for certain chemical classes could provide a basis for the selection of chemicals for future 454 

in vivo BCF testing in rainbow trout [2].  455 

To facilitate the correct development and validation of alternative methods for bioaccumulation, 456 

67 compounds were added to the list to cover all relevant chemical classes presented in Table 457 

1. Generally, the complementary chemicals were extracted from the review of 458 

biotransformation in fishes [23], metabolism studies on different species such as mammals and 459 

others using rainbow trout aimed to provide additional information for future in vitro assays. 460 
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Supplementary chemicals encompassed a set of halogenated compounds (6-9) [50],six PAHs 461 

(42-47) [51], five heterocyclic compounds (58-62) [23,24,52] the majority of OPs (66-69) [53], 462 

and the complete set of organosulfur compounds (71-77) [23,54-56], amines and amides (99-463 

114) [23,52,57], aldehydes (115-118) [58-59], alcohols (119-122) [23,60-61],  quinones (127-464 

131) [23,62-64], epoxides (132-136) [65] and polyunsaturated fatty acids (137-139) [23]. 465 

Compounds with testing difficulties 466 

All 139 compounds compiled in Table 3 were screened according to the cut-off values defined 467 

in the last criterion of our strategy. Of these, six compounds (57,61,62,84,106,114) had log 468 

HLC lower values than the established cut-off, and four chemicals (29,41, 137,139) did not 469 

pass the criteria for lipophilicity. Since these compounds may be highly volatilite in solution 470 

and there may be potentially significant  adsorption to the test vessels respectively, special 471 

considerations should be taken into account to ensure their chemical stability in the in vitro 472 

assays. It should be noted that although all compounds passed the criteria for hydrolysis, 473 

chemicals with HL of 208 hours (100,101,119), and even those with values of 360 (as indicated 474 

in Table 3) could require further attention in long-term assays to avoid the loss of the parent 475 

compound.  476 

Other reported properties that may limit the bioaccumulation of chemicals, such as ready 477 

biodegradability and phototransformation were not taken into account in this study. This is due 478 

to the fact that readily biodegradable molecules can bioaccumulate if their uptake rate is greater 479 

than the rate of degradation [19], and for phototransformation processes are expected to be less 480 

significant under laboratory lighting conditions than under field conditions [31]. 481 

List of reference compounds: Further considerations and implications 482 

The present list of 139 chemicals (Table 3) could  undergo a refinement of the chemical 483 

selection process under project-specific requirements. For instance, other essential criteria for 484 

the selection of test chemicals [22] such as known and high consistent purity and commercial 485 
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availability should be applied to the present list of chemicals to select a set of compounds for 486 

in vitro testing.  Moreover, the possibility of a compound to be quantifiable by an analytical 487 

method and its existing in vitro data for rainbow trout (as indicated in Table 3) could be also 488 

taken into account in the making-decision process.  489 

When selecting chemicals within the same chemical group, chemicals with broader values for 490 

log Kow, molecular properties and Kmet should be selected with the aim to ensure a wider 491 

domain for these properties according to criteria 3 and 4 of this study. Furthermore, additional 492 

compounds can be added to the list expanding the chemical domain as appropriate.    493 

Previous work has assigned positive controls in reference lists proposed for the development of 494 

alternatives methods to in vivo testing [33, 35]. Of the 139 reference chemicals presented in this 495 

study, chemicals with a neutral (non-ionised) structure that were well-predicted by Equation 2 496 

(identified in Table 3) could be considered as positive controls or benchmark compounds since 497 

their bioaccumulation is expected to be driven mainly by passive diffusion processes. However, 498 

and no less important, is the consideration of the over-predicted chemicals (O1 and O2 499 

compounds in Table 3)due to the fact they might be susceptible to moderate metabolism (e.g. 500 

nitrocholobenzenes) and/or poor bioavailability (e.g. ionisable compounds); and thus in vitro 501 

test systems for metabolism may assist in elucidating where significant biotransformation 502 

processes impact on BCF, helping to clarify uncertain in vivo OECD measurements. Similarly, 503 

future development and improvement of aquatic non-animal tests for absorption could provide 504 

more information on the uptake processes of low bioavailable chemicals  and a better 505 

understanding of molecular constraints on chemical absorption at a cellular level. 506 

We believe that a successful development and validation of fish in vitro assays is the key for 507 

the correct use of non-animal methods in bioaccumulation tests. This is due to fact the various 508 

benefits can be obtained from the validation of such assays.. For instance, accurate in vitro data 509 

could enhance the knowledge of in vivo absorption and metabolism processes, allowing a better 510 
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understanding of how both processes can influence in vivo assessment of chemical 511 

bioaccumulation in fish. In addition, in vitro metabolic data could be incorporated into the log 512 

BCFmax model developed for rainbow trout compounds to correct for the effect of metabolism 513 

on bioaccumulation and refine the estimates of kmet and metabolic pathways.  And from 514 

regulatory perspective, in vitro assays potentially could be used together with in silico methods 515 

in a tiered approach to prioritise chemicals for future in vivo testing in order to reduce animal 516 

use.  517 

Conclusions  518 

There is an urgent need to develop and validate non-animal methods to assess bioaccumulation 519 

of chemicals in fish. A successful development of alternative test systems to in vivo testing 520 

could provide not only accurate information on ADME processes for a given compound, but 521 

also they could be used in risk assessment procedures to reduce the number of fish for 522 

experimentation.  523 

The present work has introduced a fully transparent description of an approach applied to 524 

develop a list of reference chemicals for the development of non-animal methods to assess 525 

chemical bioaccumulation. The rationale employed in this study was based on five established 526 

criteria. An in silico approach was required to develop a log BCFmax model for rainbow trout, 527 

explore the bioconcentration potential of examined chemicals and assist in the development of 528 

the list of reference compounds. As a consequence of this work, a reference list of 139 529 

chemicals including 18 different chemical classes is proposed to facilitate the evaluation of 530 

alternative methods to in vivo testing for rainbow trout. It is envisioned that using this list of 531 

reference compounds may enhance our understanding of the relationship between in vivo and 532 

in vitro data by providing a common basis for experimental effort, and through such effort 533 

facilitate the refinement of in silico prediction of BCF, Kmet and metabolic pathways of 534 

chemicals for one of the most common fish species used in regulatory testing. 535 
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Figure legends 755 

 756 

[Figure 1] Classification of reference compounds into four groups based on the presence of in 757 

vivo or in vitro data on BCF, Kmet and metabolic pathways. 758 

[Figure 2] Boxplot representation of the range of BCF values for the 59 chemicals listed in 759 

Table 4.  Outliers represented as open circles. 760 

[Figure 3] Relationship between and log BCF (L/Kg) ww log Kow for the Gold Standard-BCF 761 

compounds. Solid line: log BCFmax model (Equation 2) developed from a set of chemicals with 762 

high values (represented as open circles). Long-dashed line: Log BCFmax model-0.5. Short-763 

dashed line: Log BCFmax model -1. W: well-predicted compounds (residuals < 0.5 log units), 764 

O1: marginally over-predicted compounds (residuals > 0.5), O2: Highly over-predicted 765 

compounds (residuals > 1) according to log BCFmax predictions. 766 
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Figure 3 786 
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Table 1. Chemicals classes considered for the development of a reference list of chemicals and their main known biotransformation reactions in 

fish. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 792 

  793 

No. Chemical class Studied biotransformation reaction (enzyme) [23] 

1 Aliphatic halogenated hydrocarbons Phase I:  Oxidative dehalogenation(CYPs) 

Phase II: GSH conjugation (GSTs) 2 Aromatic halogenated hydrocarbons 

3 Heterocyclic compounds 
Phase I:  Oxidation, reduction (CYPs) 

Phase II: Glucuronidation (UGTs) 

4 Polycyclic aromatic hydrocarbons  
Phase I:  Hydroxylation, ( CYPs) 

Phase II: GSH conjugation ( GSTs) 

5 Polychlorinated biphenyls  
Phase I:  Hydroxylation ( CYPs ) 

Phase II: Glucuronidation ( UGTs) 

6 Organosphosphorus  
Phase I: Oxidative desulfuration (CYPs) 

               Hydrolysis (CES) 

7 Organosulfur compounds  Phase I: Oxidation (FMOs) 

8 Carboxylic acids Phase II: Amino acid conjugation (AAT) 

9 Nitroaromatic compounds Phase I:  Reduction (NTR) 

10 Aliphatic amines Phase I:  Oxidation ( CYPs, MAO,FMOs) 

               Reduction ( CYPs) 

Phase II: Glucuronidation ( UGTs) 

                Sulfonation (SULT) 

                Acetylation ( Acetyl-CoA) 

11 Aromatic amines 

12 Amides Phase II: Glucuronidation ( UGTs) 

13 Aldehydes Phase I:  Oxidation (AO, ALDH) 

14 Alcohols  
Phase I:  Oxidation (ADH) 

Phase II: Sulfonation (SULT) 

15 Phenols  
Phase II: Glucuronidation ( UGTs) 

               Sulfonation (SULT) 

16 Quinones Phase I:  Reduction (DTD) 

17 Epoxides Phase I:  Hydrolysis (EH) 

18 Polyunsaturated fatty acids Phase I:  Oxidation (LPO) 
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AAT: Aminoacyl transferase, Acetyl-CoA: Acetyl-coenzyme A, ADH: Alcohol dehydrogenase, ALDH: Aldehyde dehydrogenase, AO: Aldehyde 

oxidase, CES:Carboxylesterase, CYPs: Cytochrome P450, DTD: DT Diaphorase, EH: Epoxide hydrolase, FMOs: Flavin-containing 

monooxygenase, GSTs:Glutathione S-transferase, LPO: Lipoxygenase, MAO: monoamine oxidase, NTR: Nitroreductasa, SULT: 

Sulfotransferasa, UGTs: UDP-glucuronosyl transferase. 

 794 
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Table 2. A summary and comparison of the data and features of the BCF databases. 808 

 Environment Canada BCF  databases EURAS-CEFIC database 

Source On request from 

http://www.hc-sc.gc.ca 

Freely available from 

http://ambit.sourceforge.net/euras/ 

Format Microsoft excel spreadsheet Microsoft excel spreadsheet 

No.  BCF values 5317 1130 

No. chemicals 822 549 

Species Fish (82%), invertebrates (15%) 

autotroph (4%) 

Only fish (90% for Common carp) 

Score system 1 (high), 2 (moderate), 3 (low) Klimisch score: 1 (reliable without restrictions), 2 (reliable 

with restrictions), 3 (not reliable), 4 (not assignable) 

 

 809 

 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 
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Table 3. List of reference compounds for the development and evaluation of alternative methods to in vivo fish bioaccumulation 818 

studies. 819 

ID 
Cc 

(T1) 
Chemical name CAS RN 

Type 

(F1) 

Log 

Kow 

MW 

(g/mol) 

Dmax 

(nm) 

Log 

BCF 

 Kmet 

(1/d) 

MP and 

Ms (pp) 
Notes Ref 

Ref 

ed 

1 1 γ-Lindane 58-89-9 GS-BCF  4.26 290.83 0.68 3.13 0.01 1-2 W, control 1 Nd 

2 1,12 Perfluorooctanesulfonamide 754-91-6 GS-MP 5.80 499.14 1.40 4.34 0.01 3,T5  [45] Nd 

3 1,14 10:2 Fluorotelomer alcohol 865-86-1 GS-MP 7.08 564.13 1.60 3.63 0.00 4-5,T5  [45] Nd 

4 1,14 8:2 Fluorotelomer alcohol 678-39-7 GS-MP 5.75 464.12 1.34 4.35 0.01 6-7,T5  [45] [13] 

5 1 8:2 Fluorotelomer acrylate 27905-45-9 GS-MP 7.11 518.17 1.70 3.60 0.01 8-9,T5  [47] [66] 

6 1 Tetrachloromethane 56-23-5  SP 2.44 153.82 0.50 2.06 0.17 10  [50] Nd 

7 1 Trichloroethane 79-00-5  SP 2.01 133.40 0.37 1.68 0.50 11-12  [50] Nd 

8 1 Vinyl chloride 75-01-4  SP 1.62 62.50 0.37 1.34 0.72 13-14 HL=360 h [50] Nd 

9 1 Dichloromethane 75-09-2  SP 1.34 84.93 0.24 1.09 0.88 15  [50] Nd 

10 2 1,2-Dichlorobenzene 95-50-1 GS-BCF  3.28 147.00 0.56 2.58 0.06 16-17 W, control 1 Nd 

11 2 1,3-Dichlorobenzene 541-73-1 GS-BCF  3.28 147.00 0.56 2.74 0.06 18-19 W, control 1 Nd 

12 2 1,2,3-Trichlorobenzene 87-61-6 GS-BCF  3.93 181.45 0.59 3.26 0.04 20-21 W, control 1 Nd 

13 2 1,2,3,4-Tetrachlorobenzene 634-66-2 GS-BCF  4.57 215.89 0.59 3.85 0.02 22-23 W, control 1 Nd 

14 2 Pentachlorobenzene 608-93-5 GS-BCF  5.22 250.34 0.64 4.19 0.02 24 W, control 1 Nd 

15 2 1,3-Dibromobenzene 108-36-1 GS-BCF  3.77 235.90 0.60 2.82 0.08 25-26 W, control 3 Nd 

16 2 1,3,5-Tribromobenzene 626-39-1 GS-BCF  4.66 314.80 0.60 4.02 0.05 27 W, control 3 Nd 
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Table 3. List of reference compounds for the development and evaluation of alternative methods to in vivo fish bioaccumulation 820 

studies (cont.) 821 

 822 

 823 

ID 
Cc 

(T1) 
Chemical name CAS RN 

Type 

 (F1) 

Log 

Kow 

MW 

(g/mol) 

Dmax 

(nm) 

Log 

BCF 

 Kmet 

(1/d) 

MP and 

Ms (pp) 
Notes Ref 

Ref 

ed 

17 2 1,2,4-Tribromobenzene 615-54-3 GS-BCF  4.66 314.80 0.60 3.63 0.05 28 W, control 3 Nd 

18 2 1,2,4,5-Tetrabromobenzene 636-28-2 GS-BCF  5.55 393.70 0.67 3.67 0.04 29 O1 3 Nd 

19 2 Hexabromobenzene 87-82-1 GS-BCF  7.33 551.49 0.67 3.02 0.03 30 W, control 2 Nd 

20 2 1,2,4-Trichloro-5-

methylbenzene 

6639-30-1 GS-BCF  4.47 195.47 0.59 3.88 0.04 31-32 W, control 3 Nd 

21 2 1,2,4,5-Tetrachloro-3,6-

dimethylbenzene 

877-10-1 GS-BCF  5.67 243.95 0.70 3.55 0.03 33 O2 2 Nd 

22 2 Pentachlorotoluene 877-11-2 GS-BCF  5.76 264.36 0.75 3.83 0.02 34 O2 2 Nd 

23 2 Pentabromomethylbenzene 87-83-2 GS-BCF  6.99 486.62 0.70 2.43 0.02 35 O2 2 Nd 

24 2 Pentabromoethylbenzene 85-22-3 GS-BCF  7.48 500.65 0.72 2.52 0.02 36 O1 2 Nd 

25 2 2,4-Dichloro-1-

(trifluoromethyl)benzene 

320-60-5 GS-BCF  4.24 215.00 0.69 3.52 0.02 37 W, control 2 Nd 

26 2 1,2-Dichloro-4-

(trifluoromethyl)benzene 

328-84-7 GS-BCF  4.24 215.00 0.69 3.18 0.02 38-39 W, control 3 Nd 

27 2 1,2,3-Trichloro-4-

methoxybenzene 

54135-80-7 GS-BCF  4.01 211.47 0.75 3.25 0.01 40-42 W, control 3 Nd 

28 2 Pentachloroanisole 1825-21-4 GS-BCF  5.30 280.36 0.80 4.19 0.00 43 W, control 2 Nd 

29 2 Decabromodiphenyl ether 1163-19-5 GS-MP 12.1

1 

959.17 1.08 -0.62 0.00 44,T5 Highly 

lipophilic 

[47] [67] 

30 3 2,3-Dichloro-1,1'-biphenyl 16605-91-7 GS-BCF  5.05 223.10 0.93 4.08 0.01 45-46 W, control 2 Nd 
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Table 3. List of reference compounds for the development and evaluation of alternative methods to in vivo fish bioaccumulation 824 

studies (cont.) 825 

 826 

ID 
Cc 

(T1) 
Chemical name CAS RN 

Type 

 (F1) 

Log 

Kow 

MW 

(g/mol) 

Dmax 

(nm) 

Log 

BCF 

 Kmet 

(1/d) 

MP and 

Ms (pp) 
Notes Ref 

Ref 

ed 

31 3 2,5-Dichloro-1,1'-biphenyl 34883-39-1 GS-BCF  5.05 223.10 0.93 3.98 0.01 47-49 W, control 2 Nd 

32 3 3,5-Dichloro-1,1'-biphenyl 34883-41-5 GS-BCF  5.05 223.10 0.92 3.77 0.01 50 W, control 2 Nd 

33 3 2,2',5-Trichloro-1,1'-biphenyl 37680-65-2 GS-BCF  5.69 257.54 0.93 4.23 0.00 51-52 W, control 2 Nd 

34 3 2,2',5-Trichloro-1,1'-biphenyl 20020-02-4 GS-BCF  5.75 265.95 0.70 5.23 0.01 53 W, control 2 Nd 

35 3 2,2',3,3'-Tetrachloro-1,1'-

biphenyl 

38444-93-8 GS-BCF 

and Kmet  

6.34 291.99 0.93 4.23 0.00 54-55 W, control 2, 

[43] 

Nd 

36 3 p,p'-

Dichlorodiphenyltrichloroetha

ne 

50-29-3 GS-Kmet  6.79 354.49 1.04 3.85 0.01 56-57  [43] Nd 

37 3 2,2',3,3',4,6'-Hexachloro-

1,1'-biphenyl  

38380-05-1 GS-Kmet  7.62 360.88 0.89 3.19 0.00 58-60  [43] Nd 

38 3 2,2',3,3',5,6'-Hexachloro-

1,1'-biphenyl  

52744-13-5 GS-Kmet  7.62 360.88 0.93 3.19 0.01 61-62  [43] Nd 

39 3 2,2',3,3',6,6'-

Hexachlorobiphenyl-1,1'-

biphenyl 

38411-22-2 GS-Kmet  7.62 360.88 0.93 3.19 0.00 63-65  [43] Nd 

40 4 1,4-Dichloronaphthalene 1825-31-6 GS-BCF  4.46 197.06 0.77 3.75 0.02 66-67 W, control 3 Nd 

41 4 Octachloronaphthalene 2234-13-1 GS-BCF  8.33 403.73 0.78 2.58 0.00 68 W, control. 

Highly 

lipophilic 

2 Nd 
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Table 3. List of reference compounds for the development and evaluation of alternative methods to in vivo fish bioaccumulation 827 

studies (cont.) 828 

ID 
Cc 

(T1) 
Chemical name CAS RN 

Type 

 (F1) 

Log 

Kow 

MW 

(g/mol) 

Dmax 

(nm) 

Log 

BCF 

 Kmet 

(1/d) 

MP and 

Ms (pp) 
Notes Ref 

Ref 

ed 

42 4 9H-Fluorene 86-73-7 SP 4.02 166.22 0.84 3.43 0.15 69-70 HL=360 h [51] Nd 

43 4 Phenanthrene 85-01-8  SP 4.35 178.23 0.87 3.70 0.08 71-72  [51] [68] 

44 4 Anthracene 120-12-7  SP 4.35 178.23 0.90 3.70 0.08 73-74  [51] Nd 

45 4 Fluoranthene 206-44-0  SP 4.93 202.25 0.91 4.11 0.08 75  [51] Nd 

46 4 Benzo(a)pyrene 50-32-8 SP 6.11 252.31 1.04 4.26 0.23 76-77  [51] [16,2

0,58] 

47 4 Benzo(a)anthracene 56-55-3 SP 5.52 228.29 1.15 4.34 0.07 78-79  [51] Nd 

48 5 Dehydroacetic acid 520-45-6 GS-BCF  0.78 168.15 0.82 2.12 36.91 80 U, HL=360 h 1 Nd 

49 5 Myclobutanil 88671-89-0  GS-Kmet  3.50 288.78 1.10 2.98 0.20 81-82  [41] [69] 

50 5 Propiconazole 60207-90-1  GS-Kmet  4.13 342.22 1.18 3.52 0.57 83-84  [41] [69] 

51 5 Cyproconazole 94361-06-5 GS-Kmet  3.25 291.78 1.07 2.77 0.37 85-86  [41] Nd 

52 5 Penconazole 66246-88-6 GS-Kmet  4.67 284.18 1.01 3.94 0.21 87-88  [41] Nd 

53 5 Metconazole 125116-23-

6 

GS-Kmet  4.19 319.83 1.05 3.57 0.58 89-90  [41] [69] 

54 5 Triadimefon 43121-43-3 GS-Kmet  2.94 293.75 1.14 2.50 0.54 91-93  [41] [69] 

55 5 Tetraconazole 112281-77-

3 

GS-Kmet  4.25 372.15 1.14 3.62 0.24 94-96  [41] Nd 
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Table 3. List of reference compounds for the development and evaluation of alternative methods to in vivo fish bioaccumulation 829 

studies (cont.) 830 

 831 

 832 

ID 
Cc 

(T1) 
Chemical name CAS RN 

Type 

(F1) 

Log 

Kow 

MW 

(g/mol) 

Dmax 

(nm) 

Log 

BCF 

 Kmet 

(1/d) 

MP and 

Ms (pp) 
Notes Ref 

Ref 

ed 

56 5 Tebuconazole 107534-96-

3 

GS-Kmet  3.89 307.82 1.31 3.32 0.55 97-98  [41] Nd 

57 5 Fipronil  120068-37-

3 

GS-Kmet  6.64 437.15 1.21 3.96 1.01 99-100 Highly volatile 

in solution 

[41] Nd 

58 5 1,6-Hexalactam  105-60-2 SP 0.66 113.16 0.51 0.50 11.38 101-102 HL=360 h [56] Nd 

59 5 Levamisole 14769-73-4 SP 2.87 204.29 1.06 2.43 1.10 103-104 HL=360 h [24] Nd 

60 5 Paramethadione 115-67-3 SP 1.08 157.17 0.74 0.86 2.92 105-106  [24] Nd 

61 5,9 4-Nitroquinoline oxide 56-57-5 SP 0.82 190.16 0.72 0.64 3.87 107 Highly volatile 

in solution 

[23] Nd 

62 5,9 Nitrofurantoin 67-20-9 SP -0.17 238.16 1.09 -0.23 37.60 108 Highly volatile 

in solution 

[23] Nd 

63 6 Triphenyl phosphite 101-02-0 GS-BCF  6.62 310.28 1.10 2.39 0.05 109 O2 [23] Nd 

64 6 Diazinon 333-41-5 SP 3.86 304.35 1.11 3.29 0.15 110-112  [23] [58] 

65 6 Chlorpyrifos 2921-88-2  SP 5.11 350.59 1.15 4.21 0.10 113-114  [23] [21] 

66 6 Cyanophos 2636-26-2  SP 2.76 243.22 1.08 2.34 0.15 115-116  [52] [52] 

67 6,7 Fenthion 55-38-9  SP 4.08 278.33 1.03 3.48 0.08 117-118  [52] [52] 

68 6,9 Methyl parathion 298-00-0 SP 2.75 263.21 1.06 2.33 0.22 119-120  [52] [52] 

69 6,9 Chlorothion 500-28-7 SP 3.39 297.65 0.93 2.89 0.14 121-122  [52] [52] 
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Table 3. List of reference compounds for the development and evaluation of alternative methods to in vivo fish bioaccumulation 833 

studies (cont.) 834 

ID 
Cc 

(T1) 
Chemical name CAS RN 

Type 

(F1) 

Log 

Kow 

MW 

(g/mol) 

Dmax 

(nm) 

Log 

BCF 

 Kmet 

(1/d) 

MP and 

Ms (pp) 
Notes Ref 

Ref 

ed 

70 6,9 Parathion 56-38-2  SP 3.73 291.26 1.16 3.18 0.12 123-124  [23] [58] 

71 7 Diphenyl disulfide 882-33-7  SP 4.31 218.34 0.92 3.67 0.29 125-126 HL=360 h [53] Nd 

72 7 Sulfanilamide 63-74-1  SP -0.55 172.20 0.76 -0.57 13.79 127  [54] Nd 

73 7 Dibenzothiophene 132-65-0  SP 4.17 184.26 0.85 3.55 0.23 128-129 HL=360 h [55] Nd 

74 7,10 Thiourea 62-56-6 SP -1.31 76.12 0.50 -1.23 37.60 130 HL=360 h [23] Nd 

75 7,10 Aldicarb 116-06-3  SP 1.36 190.26 0.88 1.11 3.21 131-132  [23] [58] 

76 7,12 Thiobencarb 28249-77-6 SP 3.90 257.78 1.36 3.33 1.07 133-134  [23] Nd 

77 7,5 Methimazole 60-56-0  SP -0.49 114.17 0.53 -0.51 25.46 135 HL=360 h [23] Nd 

78 8 Pimaric acid 127-27-5 GS-BCF  6.45 302.45 1.16 1.85 0.00 136-138 O2 1 Nd 

79 8 Isopimaric acid 5835-26-7 GS-BCF  6.45 302.45 1.15 1.54 0.00 139-141 O2 1 Nd 

80 8 Abietic acid 514-10-3 GS-BCF  6.46 302.45 1.16 1.84 0.00 142-144 O2 1 Nd 

81 8 Neoabietic acid 471-77-2 GS-BCF  6.59 302.45 1.16 2.10 0.00 145-147 O2 1 Nd 

82 8 Palustric acid 1945-53-5 GS-BCF  7.27 302.45 1.20 1.40 0.00 148-150 O2 1 Nd 

83 8 12,14-

Dichlorodehydroabietic acid 

57055-39-7 GS-BCF  7.81 369.33 1.20 1.97 0.00 151-152 O2 1 Nd 

84 8 Diclofenac 15307-86-5 GS-MP 4.02 296.15 0.96 3.43 0.03 153-155, 

T5 

Highly volatile 

in solution 

[49] Nd 

85 8 Naproxen 22204-53-1 GS-MP 3.10 230.26 1.21 2.64 0.12 156-

158,T5 

HL=360 h [49] Nd 
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Table 3. List of reference compounds for the development and evaluation of alternative methods to in vivo fish bioaccumulation 835 

studies (cont.) 836 

 837 

 838 

ID 
Cc 

(T1) 
Chemical name CAS RN 

Type 

(F1) 

Log 

Kow 

MW 

(g/mol) 

Dmax 

(nm) 

Log 

BCF 

 Kmet 

(1/d) 

MP and 

Ms (pp) 
Notes Ref 

Ref 

ed 

86 8 Ibuprofen  15687-27-1 GS-MP 3.79 206.28 1.03 3.23 0.11 159-

160,T5 

HL=360 h [49-

50] 

[70] 

87 9 1-Chloro-4-nitrobenzene 100-00-5 GS-BCF  2.46 157.55 0.66 2.00 0.34 161-162 W 1 Nd 

88 9 1-Chloro-2-nitrobenzene 88-73-3 GS-BCF  2.46 157.55 0.60 2.09 0.38 163-164 W 2 Nd 

89 9 1-Chloro-3-nitrobenzene 121-73-3 GS-BCF  2.46 157.55 0.61 1.89 0.32 165-166 W 2 Nd 

90 9 1,2-Dichloro-4-nitrobenzene 99-54-7 GS-BCF  3.10 192.00 0.71 2.07 0.19 167-168 O1 1 Nd 

91 9 1,4-Dichloro-2-nitrobenzene 89-61-2 GS-BCF  3.10 192.00 0.62 2.05 0.20 169-171 O1 2 Nd 

92 9 2,4-Dichloro-1-nitrobenzene 611-06-3 GS-BCF  3.10 192.00 0.62 2.07 0.20 172 O1 2 Nd 

93 9 1,3-Dichloro-5-nitrobenzene 618-62-2 GS-BCF  3.10 192.00 0.62 2.23 0.20 173 W 2 Nd 

94 9 1,2-Dichloro-3-nitrobenzene 3209-22-1 GS-BCF  3.10 192.00 0.62 2.16 0.20 174-175 W 2 Nd 

95 9 1,2,4,-Trichloro-5-

nitrobenzene 

89-69-0 GS-BCF  3.74 226.44 0.67 1.80 0.14 176-177 O2 2 Nd 

96 9 1,2,3-Trichloro-4-

nitrobenzene 

17700-09-3 GS-BCF  3.74 226.44 0.60 2.19 0.13 178-179 O2 2 Nd 

97 9 1,2,4,5-Tetrachloro-3-

nitrobenzene 

117-18-0 GS-BCF  4.39 260.89 0.62 3.20 0.07 180-181 O1 2 Nd 

98 9 1,2,3,4-Tetrachloro-5-

nitrobenzene 

879-39-0 GS-BCF  4.39 260.89 0.67 1.85 0.10 182-183 O2 2 Nd 
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 839 

Table 3. List of reference compounds for the development and evaluation of alternative methods to in vivo fish bioaccumulation 840 

studies (cont.) 841 

ID 
Cc 

(T1) 
Chemical name CAS RN 

Type 

 (F1) 

Log 

Kow 

MW 

(g/mol) 

Dmax 

(nm) 

Log 

BCF 

 Kmet 

(1/d) 

MP and 

Ms (pp) 
Notes Ref 

Ref 

ed 

99 10 Ethylamine 75-04-7 SP -0.15 45.08 0.44 -0.22 2.17 184-185 HL=360 h [55] Nd 

100 10 Butylamine 109-73-9 SP 0.83 73.14 0.70 0.64 0.97 186-188 HL=208 h [55] Nd 

101 10 Hexylamine 111-26-2 SP 1.82 101.19 0.95 1.51 0.47 189-191 HL=208 h [55] Nd 

102 10 2-Amino-2-propanol 78-96-6 SP -1.19 75.11 0.54 -1.13 8.33 192-193 HL=360 h [55] Nd 

103 10 Trimethylamine 75-50-3  SP 0.04 59.11 0.62 -0.05 10.14 194 HL=360 h [23] Nd 

104 11 N,N-Dimethylaniline 121-69-7 SP 2.17 121.18 0.94 1.82 2.81 195-196  [23] [58] 

105 11 2-Aminofluorene 153-78-6 SP 3.10 181.23 1.02 2.64 1.24 197-199  [23] Nd 

106 11 Kynurenine 343-65-7 SP -2.25 208.21 0.97 -2.06 19.68 200-201 HL=360 h. 

Highly volatile 

in solution 

[56] Nd 

107 11 Tryptamine 61-54-1  SP 1.27 160.22 0.93 1.03 0.58 202-204 HL=360 h [56] Nd 

108 11 Benzenamine 62-53-3  SP 1.08 93.13 0.61 0.86 6.40 205-206 HL=360 h [23] Nd 

109 12 Butyramide 541-35-5 SP -0.18 87.12 0.60 -0.24 27.92 207 HL=360 h [55] Nd 

110 12 E,E-N-Isobutyl-2,4-

decadienamide 

18836-52-7 SP 4.20 223.35 1.85 3.58 0.43 208-210 HL=360 h [55] Nd 

111 12 Acetyl-1-pyrroline 99583-29-6 SP 1.66 111.14 0.64 1.37 1.89 211-212 HL=360 h [55] Nd 

112 12 2-Isopropyl-N,2,3-

trimethylbutyramide 

51115-67-4 SP 2.48 171.28 0.78 2.09 2.18 213-214  [55] Nd 
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 842 

Table 3. List of reference compounds for the development and evaluation of alternative methods to in vivo fish bioaccumulation 843 

studies (cont.) 844 
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 845 

ID 
Cc 

(T1) 
Chemical name CAS RN 

Type 

(F1) 

Log 

Kow 

MW 

(g/mol) 

Dmax 

(nm) 

Log 

BCF 

 Kmet 

(1/d) 

MP and 

Ms (pp) 
Notes Ref 

Ref 

ed 

113 12 N-Ethyl(E)-2,(Z)-6-

nonadienamide 

608514-56-

3 

SP 2.80 181.27 1.39 2.37 1.09 215-216 HL=360 h [55] Nd 

114 12 Piperine 94-62-2 SP 3.69 285.34 1.53 3.15 0.22 217-219 Highly volatile 

in solution 

[55] Nd 

115 13 Acetaldehyde 75-07-0  SP -0.17 44.05 0.31 -0.23 3.82 220-221 HL=360 h [57] Nd 

116 13 Acrolein 107-02-8  SP 0.19 56.06 0.40 0.08 2.88 222-224 HL=360 h [58] Nd 

117 13 Endrin aldehyde 7421-93-4 SP 4.80 380.91 0.72 4.03 0.01 225-227  [58] Nd 

118 13 Formaldehyde 50-00-0 SP 0.35 30.03 0.18 0.22 3.79 228 HL=360 h [58] Nd 

119 14 Ethanol 64-17-5 SP -0.14 46.07 0.31 -0.21 7.28 229 HL=208 h [23] Nd 

120 14 Allyl alcohol 107-18-6 SP 0.21 58.08 0.43 0.10 4.94 230-231 HL=360 h [23] Nd 

121 14 1-Propanol 71-23-8 SP 0.35 60.10 0.43 0.22 5.03 232-233 HL=360 h [59] Nd 

122 14 Cyclohexanol 108-93-0 SP 1.64 100.16 0.50 1.36 2.01 234-235 HL=360 h [60] Nd 

123 15 Pentachlorophenol 87-86-5 GS-BCF  4.74 266.34 0.62 2.65 0.09 236 O2 1 [71] 

124 15 4,5-Dichloro-2-

methoxyphenol 

2460-49-3 GS-BCF  2.63 193.03 0.77 2.03 0.61 237-238 W 1 Nd 

125 15 2-Methoxytetrachlorophenol 2539-17-5 GS-BCF  3.92 261.92 0.81 2.26 0.04 239 O2 1 Nd 

126 15 Phenol 108-95-2 SP 1.51 94.11 0.50 1.24 6.61 240-241 HL=360 h [57] [58] 

127 16 Phenanthrenequinone 84-11-7 SP 3.56 208.21 0.93 3.04 0.44 242-243  [23] Nd 
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Table 3. List of reference compounds for the development and evaluation of alternative methods to in vivo fish bioaccumulation 846 

studies (cont.) 847 

 848 

 849 

 850 

ID 
Cc 

(T1) 
Chemical name CAS RN 

Type 

(F1) 

Log 

Kow 

MW 

(g/mol) 

Dmax 

(nm) 

Log 

BCF 

 Kmet 

(1/d) 

MP and 

Ms (pp) 
Notes Ref 

Ref 

ed 

128 16 9,10-Anthraquinone 84-65-1 SP 3.34 208.21 0.96 2.84 0.54 244  [61] Nd 

129 16 1,4-Benzoquinone 106-51-4  SP 0.25 108.09 0.49 0.14 10.88 245 HL=360 h [62] Nd 

130 16 1,4-Naphthoquinone 130-15-4 SP 1.66 158.15 0.72 1.37 0.58 246-247 HL=360 h [63] Nd 

131 16 2-Hydroxy-1,4-

naphthoquinone 

83-72-7  SP 0.78 174.15 0.81 0.60 1.16 248-249 HL=360 h [64] Nd 

132 17 2-Ethenyloxirane 930-22-3 SP 0.73 70.09 0.56 0.56 2.69 250-251 HL=360 h [65] Nd 

133 17 1,2-Epoxyoctane 2984-50-1 SP 2.83 128.21 1.05 2.40 0.68 252-253 HL=360 h [65] Nd 

134 17 9,10-Phenanthrene oxide 585-08-0 SP 3.22 194.23 0.85 2.74 1.59 254-255 HL=360 h [65] Nd 

135 17 1-Phenyloxirane 96-09-3 SP 1.59 120.15 0.73 1.31 5.73 256-257 HL=360 h [65] Nd 

136 17 (2R,3S)-2,3-diphenyloxirane 1439-07-2 SP 3.22 196.24 1.16 2.74 5.20 258-259 HL=360 h [65] Nd 

137 18 Arachidonic acid 506-32-1  SP 8.07 304.47 2.65 2.81 0.01 260-262 HL=360 h. 

Highly 

lipophilic 

[23] Nd 

138 18 Eicosapentaenoic acid 25378-27-2 SP 7.85 302.45 2.52 3.00 0.00 263-266 HL=360 h [23] Nd 

139 18 Docosahexaenoic acid 6217-54-5  SP 8.62 328.49 1.23 2.34 0.00 267-270 HL=360 h. 

Highly 

lipophilic 

[23] Nd 
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CAS RN: Chemical Abstracts Service Registry Number, Cc: Chemical class according to Table 1, Dmax: Maximum inter-atomic distance 851 

between two atoms in the chemical structure (nm) calculated using MOPAC v.2012, ID: Identification number, Kmet: Whole body 852 

biotransformation rate (1/day (d)). In vivo values for GS-Kmet compounds and in silico values for GS-BCF, GS-MP and SP obtained from 853 

BCFBAF v.3.01 for one Kg fish, Log BCF: Logarithm of the average of bioconcentration factor (BCF) values (L/Kg ww (wet weight)). In vivo 854 

values for GS-BCF compounds and in silico values for GS-Kmet, GS-MP and SP compounds obtained from Equation 2, Log Kow: Logarithm of 855 

octanol-water partition coefficient calculated from KOWWIN v.1.68, MP: Metabolic pathway. In vivo biotransformation routes for GS-MP 856 

compounds are showed in Table 5 (T5). Predicted metabolic pathways for all reference compounds were calculated using Meteor software and 857 

are provided in Supplementary Information (pages (pp), Ms: Resulting metabolites from the parent compound. Metabolites analysed in a in vivo 858 

systems for GS-MP compounds are showed in Table 5 (T5). Structures of potential metabolites were calculated using Meteor software and are 859 

provided in Supplementary Information (pages (pp), Notes: HL: Half-Life (h: hours) calculated from Fugacity model from the EpiSuite v.4.1, W: 860 

well-predicted compounds (residuals < 0.5 log units), O1: marginally over-predicted compounds (residuals > 0.5 log units), O2: highly over-861 

predicted compounds (residuals > 1 log units) and U: under-predicted compounds according to Equation 2, Ref: Reference (1: DSL 862 

Environment Canada BCF database, 2: non-DSL Environment Canada BCF database, 3: Common between EURAS-CEFIC database and 863 

DSL/non-DSL Environment Canada BCF database), Ref ed:  Reference of exiting in vitro data in rainbow trout, Type: Type of compound 864 

according to Figure 1. GS-BCF: Gold-Standard BCF compounds, GS-Kmet: Gold-Standard- Kmet compounds, GS-MP: Gold-Standard metabolic 865 

pathway compounds, SP: Supplementary compounds.  866 

 867 

  868 



53 

 

Table 4. Experimental details of Gold-Standard BCF compounds 869 

Table 4. Experimental details of Gold-Standard BCF compounds (cont.) 870 

ID CAS RN Chemical name n 

BCF 

Log 

BCF 

CV Test 

concentration 

(µg/L) 

Uptake 

phase 

(days) 

T (°C) Rng  

Wwf (g) 

Rng lipid 

content 

(%) 

DB 

1 (48) 520-45-6 Dehydroacetic acid 4 2.12 0.36 3.6 5 to 20 15 140 Nd 1 

2 (87) 100-00-5 1-Chloro-4-nitrobenzene 5 2 0.11 0.78 5 to 36 15 165 8.40 1 

3 (88) 88-73-3 1-Chloro-2-nitrobenzene 5 2.09 0.26 0.72 5 to 36 15 165 8.40 2 

4 (89) 121-73-3 1-Chloro-3-nitrobenzene 5 1.89 0.15 0.8 5 to 36 15 165 8.40 2 

5 (124) 2460-49-3 4,5-Dichloro-2-methoxyphenol 1 2.03 0 7 20 15 140 8.00 1 

6 (90) 99-54-7 1,2-Dichloro-4-nitrobenzene 5 2.07 0.1 0.73 5 to 36 15 165 8.40 1 

7 (91) 89-61-2 1,4-Dichloro-2-nitrobenzene 5 2.05 0.06 0.77 5 to 36 15 165 8.40 2 

8 (92) 611-06-3 2,4-Dichloro-1-nitrobenzene 5 2.07 0.04 0.75 5 to 36 15 165 8.40 2 

9 (93) 618-62-2 1,3-Dichloro-5-nitrobenzene 5 2.23 0.05 0.76 5 to 36 15 165 8.40 2 

10 (94) 3209-22-1 1,2-Dichloro-3-nitrobenzene 5 2.16 0.07 0.77 5 to 36 15 165 8.40 2 

11 (10) 95-50-1 1,2-Dichlorobenzene 10 2.58 0.43 0.05,0.94 7 to 119 15 242-400 7.2-10.7 1 

12  106-46-7 1,4-Dichlorobenzene 21 2.76 0.47 0.03,0.07,0.08,0.67 7 to 119 15 175-400 5.0-10.7 1 

13 (11) 541-73-1 1,3-Dichlorobenzene 10 2.74 0.36 0.03,0.69 7 to 119 15 242-400 7.2-10.7 1 

14 (95) 89-69-0 1,2,4-Trichloro-5-nitrobenzene 5 1.8 0.18 0.68 5 to 36 15 165 8.40 2 

15 (96) 17700-09-3 1,2,3-Trichloro-4-nitrobenzene 5 2.19 0.23 0.66 5 to 36 15 165 8.40 2 
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 871 

  872 

ID CAS RN Chemical name 
n 

BCF 

Log 

BCF 
CV 

Test 

concentration 

(µg/L) 

Uptake 

phase 

(days) 

T (°C) 
Rng  

Wwf  (g) 

Rng lipid 

content 

(%) 

DB 

16 18708-70-8 1,3,5-Trichloro-2-nitrobenzene 5 2.92 0.24 0.54 5 to 36 15 165 8.40 2 

17 (15) 108-36-1 1,3-Dibromobenzene 1 2.82 0 <0.01 90 15 280 Nd 3 

18 (125) 2539-17-5 2-Methoxytetrachlorophenol 1 2.26 0 1 20 15 140 8 1 

19 (12) 87-61-6 1,2,3-Trichlorobenzene 8 3.26 0.43 <0.01,0.07 22 to 119 15 277-400 8-10.7 1 

20  108-70-3 1,3,5-Trichlorobenzene 8 3.49 0.64 <0.01,0.04 22 to 119 15 277-400 8-10.7 1 

21  120-82-1 1,2,4-Trichlorobenzene 20 3.38 0.51 <0.01,0.05 7 to 119 15 183-400 6.3-10.7 1 

22 (27) 54135-80-7 
1,2,3-Trichloro-4-

methoxybenzene 
13 3.25 0.32 <0.01*,0.01,0.07 7 to 96 15 183-400 6.3-10.7 3 

23 67-72-1 Hexachloroethane 10 2.84 0.57 <0.01,<0.01 7 to 119 15 242-400 7.2-10.7 1 

24 (25) 320-60-5 
2,4-Dichloro-1-

(trifluoromethyl)benzene 
10 3.52 0.34 0.03,0.21 21 to 96 15 183-312 5.0-8.0 2 

25 (26) 328-84-7 
1,2-Dichloro-4-

(trifluoromethyl)benzene 
1 3.18 0 <0.01 90 15 280 Nd 3 

26 (1) 58-89-9 γ-Lindane 12 3.13 0.45 <0.01,0.03,2.01* 5 to 96 15 175-312 5.3-8.0 1 

27 (97) 117-18-0 
1,2,4,5-Tetrachloro-3-

nitrobenzene 
12 3.2 0.36 <0.01,0.01,0.64 20 to 96 15 165-312 6.9-8.0 2 
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Table 4. Experimental details of Gold-Standard BCF compounds (cont.) 873 

 874 

 875 

 876 

  877 

ID CAS RN Chemical name 
n 

BCF 

Log 

BCF 
CV 

Test 

concentration 

(µg/L) 

Uptake 

phase 

(days) 

T (°C) 
Rng  

Wwf  (g) 

Rng lipid 

content 

(%) 

DB 

28 (98) 879-39-0 
1,2,3,4-Tetrachloro-5-

nitrobenzene 
8 1.85 0.47 <0.01,0.61 12 to 96 15 165-288 6.7-8.4 2 

29 (40) 1825-31-6 1,4-Dichloronaphthalene 1 3.75 0 <0.01 90 15 280 Nd 3 

30 (19) 6639-30-1 
1,2,4-Trichloro-5-

methylbenzene 
10 3.88 0.24 <0.01,<0.01,0.05 21 to 96 15 202-312 5.0-8.0 3 

31 95-94-3 1,2,4,5-Tetrachlorobenzene 7 3.9 0.53 <0.01,0.02 39 to 119 15 202-312 5.0-8.0 1 

32 (13) 634-66-2 1,2,3,4-Tetrachlorobenzene 17 3.85 0.38 <0.01,<0.01,0.03 39 to 119 15 258-312 7.0-10.70 1 

33 (16) 626-39-1 1,3,5-Tribromobenzene 11 4.02 0.33 <0.01,<0.01*,0.02 4 to 96 15 183-312 6.90-8.0 3 

34 (17) 615-54-3 1,2,4-Tribromobenzene 1 3.63 0 <0.01 90 15 280 Nd 3 

35  87-68-3 Hexachlorobutadiene 10 3.94 0.62 <0.01,<0.01 7 to 119 15 242-400 7.20-10.70 1 

36 (123) 87-86-5 Pentachlorophenol 2 2.65 0.11 91.2 6 12.5 19- 39 6.30-8.95 1 

37  82-68-8 Pentachloronitrobenzene 14 2.41 0.74 <0.01,0.01,0.69 5 to 96 15 165-312 6.30-8.45 2 

38 (30) 16605-91-7 2,3-Dichloro-1,1'-biphenyl 3 4.08 0.08 <0.01 75 to 96 15 223-278 6.60-8.20 2 
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Table 4. Experimental details of Gold-Standard BCF compounds (cont.) 878 

 879 

 880 

  881 

ID CAS RN Chemical name 
n 

BCF 

Log 

BCF 
CV 

Test 

concentration 

(µg/L) 

Uptake 

phase 

(days) 

T (°C) 
Rng  

Wwf  (g) 

Rng lipid 

content 

(%) 

DB 

39 (31) 34883-39-1 2,5-Dichloro-1,1'-biphenyl 4 3.98 0.24 0.01 35 to 96 15 191-341 6.60-8.20 2 

40 (32) 34883-41-5 3,5-Dichloro-1,1'-biphenyl 4 3.77 0.1 0.02 35 to 96 15 191-341 6.60-8.20 2 

41 (14) 608-93-5 Pentachlorobenzene 6 4.19 0.29 <0.01,<0.01 43 to 119 15 277-400 8.20-10.70 1 

42 (28) 1825-21-4 Pentachloroanisole 8 4.19 0.26 <0.01,0.01 35 to 96 15 202-312 6.70-8.0 2 

43 (18) 636-28-2 1,2,4,5-Tetrabromobenzene 8 3.67 0.35 <0.01,0.02 35 to 96 15 202-312 6.70-8.0 3 

44 (21) 877-10-1 
1,2,4,5-Tetrachloro-3,6-

dimethylbenzene 
3 3.55 0.41 0.01 50 to 96 15 262-288 6.70-8.0 2 

45 (33) 37680-65-2 2,2',5-Trichloro-1,1'-biphenyl 2 4.23 0 0.02 75 to 96 15 278-341 6.60-8.20 2 

46 (34) 20020-02-4 
1,2,3,4-

Tetrachloronaphthalene 
4 3.7 0.07 <0.01 35 to 96 15 191-341 6.60-8.20 2 

47 (22) 877-11-2 Pentachloromethyl benzene 4 3.83 0.07 <0.01 35 to 96 15 191-341 6.60-8.20 2 

48 (35) 38444-93-8 
2,2',3,3'-Tetrachloro-1,1'-

biphenyl 
2 4.23 0.03 2.8 14 to 20 15 140 Nd 2 

49 (78) 127-27-5 Pimaric acid 2 1.85 0.02 2.7 14 to 20 15 140 Nd 1 
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Table 4. Experimental details of Gold-Standard BCF compounds (cont.) 882 

 883 

CAS RN: Chemical Abstracts Service Registry Number, CV: Coefficient of variance, DB: Database reference (1: DSL Environment Canada BCF 884 

database, 2: non-DSL Environment Canada BCF database, 3: Common between EURAS-CEFIC database and DSL/non-DSL Environment 885 

Canada BCF database), ID: Identification number (identification number in Table 3), Log BCF: Logarithm of the average of bioconcentration 886 

factor (BCF) values (L/Kg ww (wet weight)), Nd: No data reported, T: Temperature (°C), Rng ww: Range of final wet weight (mg) of test species, 887 

Rng lipid content: range of final lipid content (%) of test species. 888 

  889 

ID CAS RN Chemical name 
n 

BCF 

Log 

BCF 
CV 

Test 

concentration 

(µg/L) 

Uptake 

phase 

(days) 

T (°C) 
Rng  

Wwf (g) 

Rng lipid 

content 

(%) 

DB 

50 (79) 5835-26-7 Isopimaric acid 2 1.54 0.02 2.7 14 to 20 15 140 Nd 1 

51 (80) 514-10-3 Abietic acid 2 1.84 0.01 2.1 14 to 20 15 140 Nd 1 

52 (81) 471-77-2 Neoabietic acid 2 2.1 0.05 0.7 14 to 20 15 140 Nd 1 

53 (63) 101-02-0 Triphenyl phosphite 1 2.39 0 0.81 96 12 Nd Nd 1 

54 (23) 87-83-2 Pentabromomethylbenzene 4 2.43 0.15 <0.01 35 to 96 15 191-341 6.60-8.20 2 

55 (82) 1945-53-5 Palustric acid 2 1.4 0 1.1 14 to 20 15 140 Nd 1 

56 (18) 87-82-1 Hexabromobenzene 5 3.02 0.22 <0.01 21 to 96 15 191-341 6.60-8.20 2 

57 (24) 85-22-3 Pentabromoethylbenzene 4 2.52 0.13 <0.01 35 to 96 15 191-341 6.60-8.20 2 

58 (83) 57055-39-7 
12,14-Dichlorodehydroabietic 

acid 
2 1.97 0.02 3.2 14 to 20 15 140 Nd 1 

59 (41) 2234-13-1 Octachloronaphthalene 2 2.58 0.2 0.01 75-96 15 278-341 6.60-8.20 2 
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Table 5. Experimental details of Gold-Standard metabolic compounds 890 

ID CAS NR Chemical name 
Kmet 
(1/d) 

Metabolites 
analysed 

Metabolic 
pathway 
proposed 

TE FTA 
   E  
(days) 

  TC 

(g/g 
ww or 

g/L) 

  T 
(°C) 

Wwi 

(g) 
Ref 

1 (50) 88671-89-0 Myclobutanil 0.200 Nd Nd DM C 8 30.15 12 18 [41] 

2 (51) 60207-90-1 Propiconazole 0.572 Nd Nd DM C 8 24.96 12 18 [41] 

3 (52) 94361-06-5 Cyproconazole 0.369 Nd Nd DM C 8 23.83 12 18 [41] 

4 (53) 66246-88-6 Penconazole 0.211 Nd Nd DM C 8 31.46 12 18 [41] 

5 (54) 125116-23-6 Metconazole 0.580 Nd Nd DM C 8 28.14 12 18 [41] 

6 (55) 43121-43-3 Triadimefon 0.541 Nd Nd DM C 8 29.02 12 18 [41] 

7 (56) 112281-77-3 Tetraconazole 0.237 Nd Nd DM C 8 30.95 12 18 [41] 

8 (57) 107534-96-3 Tebuconazole 0.552 Nd Nd DM C 8 26.43 12 18 [41] 

9 (58) 120068-37-3 Fipronil 1.006 Nd Nd DM C 32 7.68 12 10 [42] 

10 (36) 50-29-3 p,p'-Dichlorodiphenyltrichloroethane 0.011 Nd Nd DM C 32 0.42 12 10 [42] 

11 (35) 38444-93-8 2,2',3,3'-Tetrachlorobiphenyl 0.001  OH-PCBs Hydroxylation DM C 30 <0.01 12 80 [43] 

12 (37) 38380-05-1 2,2',3,3',4,6'-Hexachlorobiphenyl 0.004 OH-PCBs Hydroxylation DM C 30 0.04 12 80 [43] 

13 (38) 52744-13-5 2,2',3,3',5,6'-Hexachlorobiphenyl <0.001  OH-PCBs Hydroxylation DM C 30 0.03 12 80 [43] 

14 (39) 38411-22-2 2,2',3,3',6,6'-Hexachlorobiphenyl 0.002 OH-PCBs Hydroxylation DM C 30 0.02 12 80 [43] 

15 (2) 754-91-6 Perfluorooctanesulfonamide Nd PFOS Nd DM M 30 10.9 12 Nd [45] 

 891 
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Table 5. Experimental details of Gold-Standard metabolic compounds (cont.) 892 

Table 5. In vivo experimental data for Gold-Standard metabolic compounds (cont.) 893 

ID CAS NR Chemical name 
Kmet 
(1/d) 

Metabolites 
analysed 

Metabolic 
pathway 
proposed 

TE FTA 
  E  
(days) 

  TC 

(g/g 
ww, 

g/L) 

  T 
(°C) 

Wwi 

(g) 
Ref 

16 (3) 865-86-1 10:2 Fluorotelomer alcohol Nd 10:2 FTCA 

10:2 FTUCA 

Nd DM M 30 5.00 12 Nd [45] 

17 (4) 678-39-7 8:2 Fluorotelomer alcohol Nd 8:2 FTCA 

8:2 FTUCA 

Nd DM M 30 6.70 12 Nd [46] 

18 (5) 27905-45-9 8:2 Fluorotelomer acrylate Nd 

8:2 FTOH 

8:2 FTUCA 

7:3 FTCA 

8:2 FTCA 

PFOA 

8:2FTOH-Glu 

-like oxidation 

mechanism: 

8:2FTUCA>7:3 

-keto acid>7:2 

ketone>PFOA 

DM 
L,Bl,

k,Bi 
5 93.00 18 45 [47] 

19 (29) 1163-19-5 Decabromodiphenyl ether Nd 
De-BDEs 

MeO-BDEs 
Nd II 

M,L,

Bl 
28 0.1;0.5 15 100 [47] 

20 (84) 15307-86-5 Diclofenac Nd 

4'-OH-DCF 
5-OH-DCF 
DCF- A.Glu  
4'-OH-DCF-Sul 
5-OH-DCF-Sul 
4'-OH-DCF-A.Glu   
5-OH-DCF- A.Glu 
3'-OH-DCF-A.Glu 
4'-OH-DCF-E.Glu 

Hydroxylation> 

Glucuronidation 

Sulfatation 

 

WM Bi 10 1.8;43 14 33 [48] 

21 (85) 22204-53-1 Naproxen  Nd 

DNPX 

NPX-A.Glu 

DNPX-A.Glu 

Demethylation> 

Glucuronidation 
WM Bi 10 1.6;40 14 33 [48] 
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ID CAS NR Chemical name 
Kmet 
(1/d) 

Metabolites 
analysed 

Metabolic 
pathway 
proposed 

TE FTA 
   E  
(days) 

  TC 

(g/g 
ww, 

g/L) 

  T 
(°C) 

Wwi 

(g) 
Ref 

22 (86) 15687-27-1 Ibuprofen  

Nd 

Carboxyl-IBF 

2-OH-IBF 

IBF-A.Glu 

OH-IBFs--A.Glu 

Hydroxylation> 

Glucuronidation 

Sulfatation 

WM Bi 10 1;25 14 33 [48] 

Nd 

2-OH-IBF 

3-OH-IBF 

IBF-A.Glu 

OH-IBFs-A.Glu 

IBF-Tau 

Nd WS Bi 4 

0.17;1.

9;13;1

45 

14 58 [49] 

CAS RN: Chemical Abstracts Service Registry Number, DNPX: 6-O-desmethylnaproxen, E: Exposure duration (days) (Including 894 

uptake phase and intraperitoneal injection),FTA: Fish target analysed (Bi: Bile, Bl: Blood, C: Carcas, L: Liver, K: Kidney, M: Muscle), 895 

IBF: Ibuprofen, ID: Identification number (identification number in Table 3), Kmet: Whole body biotransformation rate (1/days), Nd: No 896 

data reported, NPX: Naproxen, Ref: Reference, T: Temperature (°C), TC: Test concentration (Dietary and Intraperitoneal injection 897 

exposure: g/g ww, waterborne exposure: g/L), TE: Type of exposure (D: Dietary, W: Waterborne, S: Single, M: Mixture of 898 

chemicals, II: Intraperitoneal injection), Wwi: Initial wet weight of fish (mg),Metabolites (PFOS: Perfluorooctanesulfonate, FTCA: 899 

Fluorotelomer saturated acid, FTUCA: Fluorotelomer unsaturated acid, FTOH: Fluorotelomer alcohol, FTOH-Glu: Fluorotelomer 900 

glucuronide conjugate, PFOA: perfluorooctanoate, De-BDEs: Debrominated diphenyl ethers,MeO-BDEs: Methoxylated brominates 901 

diphenyl ethers, OH-DCF: Hydroxylated diclofenac, DCF-A.Glu: Acyl glucuronide of E.Glu: Ether glucuronide of hydroxylated 902 

diclofenac,NPX-A.Glu: Acyl glucuronide of naproxen,DNPX-A.Glu: Acyl glucuronide of 6-O-desmethylnaproxen, Carboxyl-903 

IBF:Carboxyl ibuprofen,OH-IBF: Hydroxylated ibuprofen,IBF-A.Glu: Acyl glucuronide of ibuprofen,OH-IBF-A.Glu: Acyl glucuronide 904 

of hydroxylated ibuprofen, IBF-Tau: Taurine conjugate of ibuprofen). 905 
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