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Abstract: Behavioral studies indicate that directional gaze and hand pointing are fundamental social sig-
nals that may capture spatial attention more powerfully than directional arrows. By using fMRI, we
explored whether reflexive shifts of attention triggered by different distracters were influenced by the
motor effector used for performing an overt response. In separate blocks, healthy participants performed
a directional saccadic or a hand pointing movement. Color changes of a central black fixation point con-
stituted the imperative instruction signal to make a leftward (red color) or a rightward (blue color) move-
ment while ignoring distracting leftward or rightward oriented gaze, hand pointing, or arrow. Distracters
that were directionally incongruent with the instruction cue impaired the saccadic and pointing-release
RTs. The comparison of incongruent versus congruent conditions showed an increase of BOLD signal in
the frontal eye field (FEF), the intraparietal sulcus (IPS), and the posterior parietal cortex (PPC) bilaterally.
Importantly, a specific relationship between distracter and effector used for the response was found in
these frontal and parietal regions. In particular, higher activity in the FEF, for distracting gaze was found
mainly during the saccadic response task. In the same vein, higher activity in the left and right IPS
regions was found for the distracting hand mainly in the hand pointing task. The results suggest that
reflexive shifts of attention triggered by social signals are coded in the fronto-parietal cortex according to
effector-specific mapping rules. Hum Brain Mapp 00:000–000, 2011. VC 2011 Wiley-Liss, Inc.

Key words: reflexive attention; gaze; hand; mirroring; coordinate systems; pointing; saccadic eye
movements

r r

INTRODUCTION

Allocation of attention to a specific point in space may
be automatically triggered by biological (e.g., averted

gaze or pointing hands) as well as non-biological direc-
tional signals (e.g., regulatory or warning road arrows)
[Frischen et al., 2007; Itier and Batty, 2009; Langton et al.,
2000]. Whether biological cues are pre-eminent in deter-
mining attentional shifts with respect to non-biological
cues is hotly debated [Bonato et al., 2009; Eimer, 1997;
Friesen and Kingstone, 1998; Friesen et al., 2004, 2005;
Hietanen, 1999; Jonides, 1981; Ristic et al., 2002, 2007;
Stevens et al., 2008; Tipples, 2002], mainly because labo-
ratory based paradigms use impoverished tasks that
hardly reproduce the situational complexity of real life
human interactions [Birmingham and Kingstone, 2009;
Kingstone, 2009]. Indeed, fundamental socio-cognitive
operations, for example, intention and mind reading, are
inherently linked to the power of gaze in capturing the
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attention of an observer and in triggering reflexive joint
attention under daily life conditions [Kuhn and Land,
2006; Smilek et al., 2006].

Possibly, because eye contact is a hallmark of inter-
personal interactions, a considerable number of behavioral
studies focused on the role of gaze perception in modulat-
ing social attention [Kingstone, 2009; Klein et al., 2009;
Nummenmaa and Calder, 2009]. Importantly, unlike non-
social orienting cues such as arrows, gaze cues not only
signal a seen agent’s direction of attention but are also
used to infer current goals and intentions of other individ-
uals. This difference raises the important issue, explored
by recent functional neuroanatomy and electrophysiologi-
cal studies, of whether orienting attention to biological,
socially relevant cues, such as gaze, may engage neural
mechanisms distinct from those engaged by orienting to
non-social cues. Hietanen et al. [2006], for example,
explored at behavioral and neural levels the effect of
responding to left or right visual targets preceded by cen-
tral non-predictive gaze or arrow cues pointing to same or
opposite direction. Although the interference effect (IE) of
cue-target directional incongruence was found for both
gaze and arrows, changes of BOLD signal revealed that
while gaze-cued orienting recruits occipital regions, arrow-
cued orienting also recruits parietal and frontal regions.
That arrow-cues related orienting activates a larger net-
work with respect to gaze-cue related orienting is also sug-
gested by an event-related study showing that changes of
parietal and frontal attention-directed neuroelectric signa-
tures are found for arrow—but not for gaze-cues [Hieta-
nen et al., 2008]. However, using an ingenious event-
related fMRI design in which the central cue was an am-
biguous stimulus that could appear as an eye in profile or
an arrow, Tipper and colleagues [2008] demonstrated that
attention to social and non-social cues activates a largely
overlapping neural network centered upon ventral and
dorsal fronto-parietal and lateral occipital regions. Since
activation in two regions of this network, namely the ven-
tral frontal cortex and the lateral occipital, was higher for
gaze- than arrow-cues, the authors suggested that quanti-
tative more than qualitative differences underlie the social
versus non-social mapping of attentional shifts [Tipper
et al., 2008].

Although most of the original studies focused on the
importance of gaze in social attention, body parts other
than the eyes play a fundamental role in triggering joint
attention. Studies demonstrate, for example, that full
body/head orientation as well as hand orientation of a
model modulates attentional shifts of an observer [Langton
and Bruce, 2000; Langton, 2000; Pierno et al., 2008]. Much
less is known on whether shifts of attention are similarly
triggered by different person-related cues. Information on
whether reflexive social attention triggered by different
person-related cues is mapped according to the social
valence of the cue or in body-centered coordinates is very
scanty. Studies indicate that social attention may recruit a
more extensive neural network with respect to non-social

spatial attention. Indeed, areas involved in face, gaze,
hand, and even full body perception may be called into
play specifically in social attention tasks [Nummenmaa
and Calder, 2009]. This raises the question of whether
social spatial attention may be coded according to body-
centered coordinate systems.

In a recent behavioral study, we explored whether the
IE of person-related cues (averted gaze and pointing
hands) and of non-social stimuli (arrow) was specifically
influenced by the type of effector used for responding
namely, saccadic movements and hand pointing [Crostella
et al., 2009]. We expected that a non-specific spatial inter-
ference of social stimuli would produce higher interference
of gaze and pointing hands than arrows, regardless of the
body part performing the action. By contrast, we hypothe-
sized that finding a relation between the type of distract-
ing stimulus and the type of response would suggest that
additional reference frames are called into action in the
task. The results showed that distracting gaze stimuli
interfere specifically with saccadic performance and dis-
tracting hand stimuli with pointing performance. Relevant
to this issue is the fMRI study showing that mere observa-
tion of directional and non-directional eyes, hands, and
arrows in the absence of any motor response, activated
overlapping neural regions that included the posterior
superior temporal sulcus (STS), the inferior parietal lobule
(IPL), the inferior frontal gyrus (IFG), and the occipital
cortices in the right hemisphere [Sato et al., 2009].

Capitalizing on such behavioral and neuroimaging evi-
dence we sought to determine whether the neural activity
in the network underpinning the observation of person-
and non-person related signals was modulated by the rela-
tionship between type of distracter and type of effector
used for the response. We recorded changes of BOLD
fMRI signal associated to conditions where three different
distracters (gaze, hand, or arrows) influenced overt direc-
tional saccadic or hand responses triggered by central
instruction signals. This design allowed us to highlight:
(i) the neural network activated during reflexive shifts of
attention triggered by social and non-social distracters; (ii)
the possible modulatory role of gaze and hand distracters
on saccadic and hand pointing responses, respectively.

We predicted a specific involvement of dorsal fronto-
parietal structures in modulating attentional shifts trig-
gered by directional, socially relevant stimuli (i.e., eyes
and hand vs. arrow). The fronto-parietal attention system,
which includes portions of the intraparietal cortex (e.g.,
the intraparietal sulcus, IPS) and of the superior frontal
cortex (e.g., frontal eye field, FEF) [Corbetta et al., 2002], is
involved in the selection of stimuli and goal-directed
responses for goal-directed actions. Importantly, specific
sections of this system (FEF and some parts of IPS) may
be differentially active when subjects plan and perform
visually guided hand movements, instead than eye move-
ments [Astafiev et al., 2003; Corbetta and Shulman, 2002;
Corbetta et al., 2008]. It is also relevant that clinical and
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brain imaging studies suggest the presence in humans of a
segregated pattern of effector representations in the parie-
tal lobe [De Renzi, 1982; Jeannerod, 1986; Seitz et al., 1991].

On the basis of this evidence, we investigated whether
the tendency of an onlooker to imitate the actions of the
observed model reflects the activity of a resonant system
that works according to body-part specific reference frames.

MATERIALS AND METHODS

Participants

Eighteen right-handed volunteers (10 males and 8
females, mean age ¼ 28 years, range: 23–36 years) took
part in the study. All subjects had normal or contact-cor-
rected-to-normal visual acuity. All were in good health,
free of psychotropic or vasoactive medication, with no his-
tory of psychiatric or neurological disease. After having
received an explanation of the procedures, participants
gave their written consent. The study was approved by
the independent Ethics Committee of the Santa Lucia
Foundation (Scientific Institute for Research Hospitaliza-
tion and Health Care). Behavioral and imaging data were
analyzed for subjects who showed reliable IE (slower
responses for incongruent vs. congruent condition both for
saccade and pointing task). Five subjects did not meet this
criterion and therefore were not included in the analyses
that were performed on 13 subjects (8 males, mean age:
27.5 years; 5 female, mean age: 27 years; range: 23–32
years).

Stimuli and Procedure

Participants were positioned in the scanner, in a dimly
lit environment. The experimental visual stimuli were pre-
sented via a mirror mounted on the MRI headcoil (total
display size 19.5� � 14.6� degrees of visual angle, 1.024 �
768 screen resolution, 60 Hz refresh rate). The visual stim-
uli were back-projected on a screen behind the magnet.
Stimulus presentation was controlled with Cogent2000
(www.vislab.ucl.ac.uk/Cogent/).

Each trial started with the appearance of a black central
fixation mark (0.5� � 0.5� in size), presented centrally
against a gray background, and of two black squares (1.4�

� 1.4� in size), presented for 500 ms at 7.5� of eccentricity
in the left and the right visual field. The distracting stimuli
consisted of digital Photoshop 8.0.1 (Adobe, CA) modified
photographs of gaze, hand, or arrow. The three distracters
were created by using colored photographs of: (i) an emo-
tional neutral-expression, full-face of a young woman
looking to the right; (ii) a man hand pointing to the right;
(iii) an arrow pointing to the right obtained by digitally
scrambling the hand distracter. The mirror images of these
pictures were created to produce leftward directed stimuli.
To make the attention-capture effect conspicuous and the
scenario reminiscent of what can be encountered under

daily life conditions, the stimuli were animated by pre-
senting two frames in rapid sequence. The first frame
depicted a straight gaze, an upward pointing fist or a T-
like shape. The second frame, which depicted a leftward
or rightward oriented gaze, extended finger or arrow,
replaced the first frame. The direction of the distracter and
the one indicated by the instruction cue could be 50% of
the time congruent or incongruent. Before starting the
fMRI acquisition, each participant was asked to perform
outside the scanner a training task in which they had to
learn with 100% accuracy on 30 consecutive trials per
task, the association between instruction signal (red or
blue) with leftward or rightward saccadic or pointing
movements.

In the scanner, each trial started with the presentation
behind the black fixation mark of a straight gaze, an
upward pointing fist or a T-like shape which lasted 500
ms. At 500 ms, a second frame, that depicted leftward or
rightward oriented gaze, extended finger or an arrow,
replaced the first frame and created a strong animation
effect. The directional distracters remained on until the
end of the trial and 75 ms after the oriented distracter pre-
sentation, the black central fixation mark (imperative cue)
changed to either blue or red color. This was the instruc-
tion signal for the subjects to make, in separate runs, a sac-
cade or a right index pointing movement towards the left
(change into red) or the right (change into blue) target
square (for saccades) and the left or right button of a
home-made keypad (for pointing). Thus, the direction of
the distracter and that indicated by the instruction cue
could be congruent (left-red or right-blue) or incongruent
(left-blue or right-red). The colored cue remained visible
until the end of the trial (See Fig. F11).

To engage automatic processes and minimize expecta-
tions, the directional cues were equiprobable (50% congru-
ent) and non-predictive. It is worth noting that the
subjects were instructed to ignore the distracters and to
focus on the central mark color change. Moreover, they
were explicitly informed that the instruction cue was not
informative about the direction of the distracters. In the
hand pointing task, subjects were also instructed to fixate
the central cross for the entire trial. This allowed us to
measure attentional shifts independent of eye movements.
To avoid subjects anticipating stimuli, a random inter-trial
interval ranging from 3.5 to 4.5 s was used.

Twelve event types were organized in a 3 � 2 � 2 facto-
rial design. One factor was the Distracter: gaze, hand (both
biological distracters with social valence), and arrow (non
biological and non social distracter). The second factor
was the type of Effector: saccadic versus pointing move-
ments. To minimize any task-switching requirements, each
participant performed three fMRI runs of saccadic move-
ment and three fMRI runs of pointing movement. The
order of the effectors was counterbalanced across partici-
pants. On each run, participants were verbally instructed
about the motor response to be performed (saccadic or
pointing task). The third factor was the Condition:
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congruent vs. incongruent direction between instruction
signal and distracter. Congruent and incongruent direc-
tional combinations of instruction cues and distracters
were presented in unpredictable and randomized order.
Thus, fMRI data were acquired via a mixed, blocked
(Distracter, Effector)/event-related (Condition) protocol.
All participants underwent six fMRI runs. Each participant
completed a total of 720 trials (360 for each effector), there-
fore each imaging session consisted of 40 repetitions for
each of the three distracters (Gaze/Hand/Arrow), respec-
tively, 20 for congruent and 20 for incongruent conditions
(balanced for left/right direction and red-blue imperative-
cues). Each scanning session lasted �8 min for a total
experiment duration of about 50 min.

Eye Movements Recording

In the training session outside the scanner, subjects sat
in front of a computer screen. In all subjects, eye position
and saccadic movements were monocularly monitored
using an infrared video camera (Sony EVI D31, color video
camera, Sony JP). Participants were instructed to look at
the location indicated by the instruction cue and then to
quickly look back at the fixation point. During the scan-
ning session, again the participants’ saccadic movements
were monocularly monitored in real-time by means of an
ASL eye-tracking system that was adapted for use in the
scanner (Applied Science Laboratories, Bedford, MA;
Model 504, sampling rate: 60 Hz). For each subject, the
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Figure 1.

Schematic depiction of the events occurring during a representative trial. The three possible

distracting stimuli namely: G, gaze; H, pointing hand; A, arrow; are reported. At the beginning of

the trial, a straight gaze, an upward pointing fist, or a T-like shape was presented behind a black

fixation mark (500 ms). Turning the black fixation point into red was the imperative instruction

signal for leftward saccades or hand pointing movements. Only incongruent conditions are repre-

sented for the sake of simplicity.
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eye-tracking system was calibrated before fMRI scanning.
The calibration was repeated during the experiment when-
ever necessary. Eye-position traces were examined in a
1,175 ms time window, beginning with the imperative cue
onset until the end of the trial. In the sessions requiring
pointing movements, the maintenance of central fixation
was monitored throughout the trial. We defined losses of
fixation as changes in horizontal eye-position >�2� of vis-
ual angle with durations at least 100 ms. For trials requir-
ing saccadic responses (Saccadic Task), the saccadic RTs
were calculated from the target onset time to when an
horizontal eye position exceeded 2�. Moreover, we did not
compute RTs for the trials in which subject made a
saccade to the wrong side (e.g., saccade to the left target
after the central cue turned into blue) or did not perform
any saccade at all.

Hand Movement Recording

In the training session outside the scanner, participants
sat in front of a computer screen by keeping their right
index finger on a central response key until the occurrence
of the instruction signal. Then, based on the directional
instruction cue, subjects pointed towards a left or a right
key located 2 cm laterally with respect to the central
position. In the scanner, the right hand was positioned in
correspondence of the low abdomen in a relaxed posture
with the right index finger extended and all other fingers
flexed. This position allowed participants to perform cen-
tral-cue instructed index finger movements toward the
right or the left button key. The right shoulder and arm
were supported and immobilized with cushioning wedged
between the scanner bed and the coil surface. When the
central mark changed color, subjects pointed as quickly as
possible in the direction of the target location (lateral key
presses) and then returned to the resting position. Pointing
involved a minimal rotation of the wrist with extending
index without movements of the shoulder or the arm [see
Astafiev et al., 2003]. For pointing data, we computed a
Release RTs measure and we only analyzed trials in which
subjects maintained fixation on the central fixation mark.

Magnetic Resonance Imaging

A Siemens Allegra (Siemens Medical Systems, Erlangen,
Germany) operating at 3T and equipped for echo-planar
imaging (EPI) acquired functional magnetic resonance
(MR) images. A quadrature volume head coil was used for
radio frequency transmission and reception. Head move-
ments were minimized by mild restraint and cushioning.
Thirty-six slices of functional MR images were acquired
using blood oxygenation level-dependent imaging (3.0 �
3.0 � 2.5 mm thick, 50% distance factor, TR ¼ 2.34 s, TE ¼
30 ms), covering the entire cortex.

Data Analysis

We used the statistical parametric mapping package
SPM5 (www.fil.ion.ucl.ac.uk) implemented in MATLAB
(v 7.1, The MathWorks, Natick, MA) for data pre-process-
ing and statistical analyses. For all participants, we
acquired 1.290 fMRI volumes, 215 for each run. The first
four image volumes of each run were used for stabilizing
longitudinal magnetization and were discarded from the
analysis. Pre-processing included rigid-body transforma-
tion (realignment) and slice timing to correct for head
movement and slice acquisition delay. Residual effects of
head motion were corrected including the six estimated
motion parameters for each subject as regressors of no in-
terest. Slice-acquisition delays were corrected using the
middle slice as a reference. All images were normalized
to the standard SPM5 EPI template, resampled to 2 mm
isotropic voxel size, and spatially smoothed using an iso-
tropic Gaussian kernel of 8 mm FWHM. Statistical infer-
ence was based on a random effects approach [Penny
and Holmes, 2004]. First, for each participant, the data
were best-fitted at every voxel using a combination of
effects of interest. These were delta functions representing
the onsets of the 12 conditions given by the crossing of
our 3 � 2 � 2 factorial design: Distracter (gaze/hand/
arrow) � Condition (congruent/incongruent) � Effector
(saccadic movement/pointing movement) convolved with
the SPM5 hemodynamic response function. The onset of
the hemodynamic response function was aligned with the
onset of the imperative cue with duration ¼ 0. Onsets of
trials in which an erroneous response or an eye move-
ment toward the wrong side occurred were included in
the design matrix as covariates of no interest, but
excluded from any further analysis. Linear contrasts were
used to determine differential activation for incongruence
minus congruence conditions separately for 3 � 2 (Dis-
tracter � Effector) (e.g., [Gaze (Incong) > Gaze (Cong)]
for saccadic movement) factors, averaging the three fMRI
runs (three for the saccade and three for the pointing
task). These six contrasts images were entered in a 3 � 2
factorial ANOVA with Distracter (gaze, hand, and arrow)
and Effector (saccadic movement, pointing movement).
Finally, linear compounds (contrasts) were used to com-
pare the Incongruency effect using between-participants
variance (rather than between scans). Correction for
nonsphericity [Friston et al., 2002] was used to account
for possible differences in error variance across conditions
and non-independent error terms for the repeated
measures.

The analyses aimed at determining: (i) the brain regions
called into action when directional cue and distracters
provided conflicting directional information (incongruent
condition); (ii) whether any modulation exerted by the
biological distracters (gaze and hand) was specifically
linked to the effector the onlookers used for responding;
(iii) whether reflexive joint attention was differentially
modulated by the biological (gaze and hand) vs.
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non-biological distracters (arrow), irrespective of motor
effector.

We first sought to determine any specific cortical atten-
tional network associated with the directional incongru-
ence conditions (comparing incongruent vs. congruent
condition, irrespective of distracter and effector). Thus, the
main effect of Incongruence allowed us to identify the
network activated by the directional conflict between task-
irrelevant distracters and instruction signals. For this com-
parison, the SPM threshold was set to P corr. ¼ <0.05 at
cluster level (cluster extent estimated a P uncorr. ¼ 0.001),
considering the whole brain as the volume of interest. To
test for the interaction between the IE with Motor-Effector
and Distracter, we created regions of interest (ROIs)
extracting average BOLD signals (MarsBar 0.41, ‘‘MAR-
Seille Boı̂te À Région d’Intérêt’’ SPM toolbox) from the
peak activity of the voxels that showed a main effect of
Incongruence. Each ROI was defined as a 10 mm radius
sphere centered on the corresponding maxima of the
whole-brain analysis (see Table II), and P values were Bon-
ferroni-corrected. We expected that our manipulations of
IE would affect activity within the dorsal fronto-parietal
attentional systems depending on specific relationships
with Distracter and Effector [Corbetta and Shulman, 2002;
Crostella et al., 2009; Ricciardelli et al., 2002]. Accordingly,
we used a combination of anatomical and functional crite-
ria to identify six ROIs in the dorsal attentional system:
the FEF, the posterior parietal cortex (PPC), the IPS
bilaterally.

The bilateral frontal ROIs included a portion of middle
frontal gyrus (FEF) located laterally within the superior
frontal sulcus [Paus, 1996]. Because of the large extension
of parietal cortex clusters, we decided to distinguish
between posterior and anterior anatomical regions, bilat-
eral PPC and IPS, respectively. Bilateral PPC included a
portion of superior parietal lobule close to superior parie-
tal gyrus and precuneus. Bilateral IPS ROIs were instead
located anteriorly and close to the inferior parietal lobule,
the angular gyrus and the IPS.

For each ROI, we tested the three-way interaction IE �
Effector � Distracter to provide information on whether
the cost of directional incongruence was mapped on
different brain regions depending on specific relation-
ships with distracter and motor effector. For example,
this interaction allowed exploring whether observation of
incongruent saccades performed by the distracting gaze
induced differential brain responses in the onlookers’
when performing the saccadic with respect to the hand-
pointing movement. It should be noted that main effect
and interactions are orthogonal and, therefore, our ROI
selection procedure was unbiased. Moreover, based on
the prediction that IEs are stronger when elicited by
social (gaze and hand) than by non-social (arrow) dis-
tracters, we tested the interaction between the IE and the
biological vs. non-biological distracters, irrespective of
motor effector.

RESULTS

Behavioral Performance

Both saccadic and release mean RTs were calculated col-
lapsing left and right target trials. Incorrect responses
(movements performed following distracters instead than
instruction cues), misses (no response), anticipations (RTs
< 100 ms), and retards (RTs > 1.500 ms) were not
included in the analysis. Overall, we discarded 12.7% of
trials for saccadic sessions and 7.5% of trials for pointing
sessions. Following previous studies [Kitagawa and
Spence, 2005; Murphy and Klein, 1998; Spence et al.,
2001a,b], we computed an inverse efficiency score by
dividing, for each condition and in each subject, the mean
correct RTs by the percentage of directionally correct
responses. The inverse efficiency score provides a way to
combine RT and accuracy measures of performance into a
single measure [Townsend and Ashby, 1983] and allows
controlling for any speed-accuracy trade-off effects. As for
RT and error measures, higher inverse efficiency scores
indicate worse performance. Table T1I reports inverse effi-
ciency scores in the saccadic and hand pointing tasks, for
each distracter type and incongruent and congruent condi-
tions, acquired during fMRI scanning.

The inverse efficiency scores were entered in two sepa-
rate 3 � 2 repeated-measures ANOVAs (one for saccadic
and one for pointing task) with Distracter (gaze, hand, and
arrow), and Condition (congruent and incongruent) as
within-subjects effects. In the saccadic task, the main effect
of Condition [F (1, 12) ¼ 22.297, P ¼ 0.001] was explained
by the worse performance in the incongruent than congru-
ent trials (629 vs. 505 ms/percentage of correct trials). No
other effects or interactions were significant. Also in the
pointing task, the main effect of Condition was significant
[F (1, 12) ¼ 8.521, P ¼ 0.01] because of the worse perform-
ance in the incongruent than congruent trials (535 vs. 510
ms/percentage of correct responses). Again, no other
effects or interactions were significant.

To sum up, saccadic and release RTs/percentage of
correct trials scores during MR scanning show that the
incongruent cues worsened both saccadic and pointing
performances. However, this effect was independent from
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TABLE I. Behavioural performance for Saccadic and

Hand-pointing tasks

Distracter

G H A

Saccade Congruent 512 (33) 511 (44) 494 (30)
Incongruent 608 (56) 634 (41) 648 (55)

Hand pointing Congruent 528 (30) 511 (24) 499 (21)
Incongruent 552 (30) 521 (25) 534 (24)

Inverse efficiency scores (mean RT/percentage of correct
responses, S.E.M. in brackets) are represented separately for sacca-
dic and release RTs as a function of Distracter (G ¼ Gaze/H ¼
Hand/A ¼ Arrow) and Condition (Congruent/Incongruent).
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the type of Distracter (as indicated by the non-significant
Distracter � Effector interaction).

fMRI Data

Main effect of incongruence

To highlight the neural underpinnings of the IE trig-
gered by incongruent distracters, we tested for the main
effect of incongruence irrespective of Distracter and Effec-
tor (See TableT2 II).

This contrast revealed the expected activation of the
ventral and dorsal frontal and parietal regions. The parie-
tal region consisted of a large cluster including the right
superior and inferior parietal cortex bilaterally. The frontal
region included the left precentral gyrus, the right middle
frontal cortex bilaterally, the right supplementary motor
area, the most posterior portion of the inferior frontal
gyrus, the operculum, bilaterally, and the pars triangularis
extending into the insula and the middle portion of the
right cingulate cortex (See Fig.F2 2).

The main effect of Incongruence considering the three
distracters (G ¼ Gaze/H ¼ Hand/A ¼ Arrow, averaging
across saccadic/hand-pointing motor effector) was used to
define the center of each ROI in the two hemispheres.
Within each ROI, we tested for: (i) the critical interaction:
IE of Distracter (Gaze and Hand) on the paired saccadic
and hand pointing task; (ii) the IE of biological (Gaze
and Hand) vs. non-biological distracters (Arrow), irrespec-
tive to effector.

IE of distracters in the saccadic and hand pointing tasks

We investigated the possible influence on BOLD signal
of the pairing between body-part related (gaze or pointing

hand) distracter of motor-effector used for the response
(eyes or hand) within each frontal and parietal ROI. The
mean BOLD activation for each Distracter and Effector in
the frontal and parietal ROIs is shown in Figure F33. Statis-
tics, for the interaction effect and additional t test in each
ROI are reported in Table T3III.

Left FEF was specifically modulated by the interaction
IE � Distracter � Effector, while right FEF showed a trend
toward significance. To further confirm the specificity of
these effects, we compared the IE of gaze vs. hand dis-
tracter for saccadic motor effector. This revealed that left
and right FEF were modulated by the selective correspon-
dence between ‘‘Gaze’’ body-part and ‘‘Saccadic’’ effector
(See bars Fig. 3, left panel: G > H). The opposite pattern
was found in left IPS region; as for left FEF, this region
resulted specifically influenced by the interaction IE �
Distracter � Effector, whereas right IPS showed a trend to-
ward significance. Additional t test confirmed that this
effect was due to a larger IE for ‘‘Hand pointing’’
than gaze-distracter during ‘‘Hand pointing’’ movements
(See bars Fig. 3, right panel: H > G). This demonstrates
that activity in these regions is specially influenced by the
motor effectors used to perform the task. This effect was
stronger in the left than in the right hemisphere. Finally,
left PPC was not sensitive to this interaction given that
results were not replicated (albeit a significant IE for Gaze
more than Arrow was found for right PPC).

fMRI Activations Associated to the IE of

Biological Versus Non-Biological Distracters

To explore whether reflexive joint attention was differ-
entially modulated by the different categories of distracters
(e.g., biological and social vs. non-biological non-social
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TABLE II. Mean MNI coordinates of activation foci associated with incongruence effect

Anatomical area Cluster size P corr. x y z z scores

Parietal lobe
R PPC 7,804 <0.001 14 �66 58 6.09*
L PPC �22 �70 46 5.67*
R IPS 42 �56 58 3.97*
L IPS �32 �44 40 4.98*

Frontal lobe
R FEF 930 <0.001 36 0 56 5.81*
L FEF 507 <0.001 �28 0 54 5.54*
R Cingulum Mid 397 <0.001 8 14 46 4.16
L Precentral G 376 0.002 �52 2 38 4.90
R Insula 1,346 <0.001 34 24 8 5.21
L Insula 564 <0.001 �30 20 6 4.89

Anatomical locations, peak coordinates in MNI space (Montreal Neurological Institute), and statistical values for the main effect of
incongruence (incongruent > congruent trials, irrespective of distracter and effector). P values are corrected for multiple comparisons at
the cluster level, considering the whole brain as the volume of interest. R/L PPC ¼ Right/Left Posterior Parietal Cortex; R/L IPS ¼
Right/Left Intraparietal Sulcus; R/L FEF ¼ Right/Left Frontal Eye Field; R/L Insula ¼ Right/Left Insula; R Cingulum Mid ¼ Right
Middle Cingulum; L Precentral G ¼ left Precentral Gyrus. With the asterisk (*) we indicated the ROIs within the dorsal fronto-parietal
attentional network. ROIs were extracted averaging BOLD signals (see Methods) from a 10 mm sphere centered on the cluster peak.
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cues) independently from motor-effector, we compared the
IE for biological (gaze and hand) vs. non-biological
distracters (arrow).

Statistics for the interaction effect and additional t test in
each ROI are reported in TableT4 IV.

Significant interactions, mainly in the left hemisphere
were found within the parietal ROIs. In particular, in the
left and the right PPC, the activation for the IE triggered
by biological distracters (gaze and hand) was larger than
the activation for the IE triggered by non-
biological distracter (arrow; See Bars Fig.F4 4: G > A). In
other words, the BOLD signal in these regions was higher
when the directional conflict between distracter-instruction
signals involved biological (gaze and hand) distracters
than when the conflict involved the non-biological (arrow)
distracter. Confirmatory t tests demonstrated that this
effect was due to both a significant IE for gaze versus
arrow distracters and to a significant IE for hand versus
arrow distracters in left IPS and bilateral PPC. Finally,
these analyses did not reveal any significant interaction for

right and left FEF or right IPS, with the exception of a
larger IE for G > A in bilateral FEF and a larger IE for
H > A in right IPS.

DISCUSSION

The present study had two main aims: (i) to ascertain
whether the possible differential attention orienting-power
of directional gaze, hand, and arrow distracters relies
upon commons neural substrates; (ii) to explore whether
the relationship between gaze and hand distracters and
the motor effector used in the experimental task (Saccadic
or Hand pointing response) was reflected in a specific
modulation of the activity in the dorsal fronto-parietal
nodes of the reflexive attention network. Finally, the study
explored the architecture of the reflexive orienting trig-
gered by biological (Gaze and Hand) and non-biological
(Arrow) distracters, irrespective of motor effector.
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Figure 2.

Brain regions activated by incongruence (Incongruent > Congru-

ent trials). Clusters showing higher activity in the incongruent

than congruent condition irrespective of distracter and effector

are rendered on three-dimensional (3D) views of the SPM tem-

plate. This contrast revealed the activation of frontal and parietal

regions. The frontal region included the left Precentral Gyrus

(L Precentral G), the right Middle Frontal (L/R FEF) cortex bilat-

erally, the right Supplementary Motor Area (R SMA), the most

posterior portion of the Inferior Frontal Gyrus, the Operculum,

bilaterally, and the Pars Triangularis (IFG) extending into the

Insula and the middle portion of the right Cingulate Cortex.

The parietal region included the right superior and inferior Pari-

etal Cortex bilaterally. These regions were used as ROI to

assess any differential influence of distracter/instruction signal

incongruence on brain responses (SPM thresholds are set to

P corr. ¼ 0.05 at cluster level).
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Behavioral and Neural Correlates of

Reflexive Attention

A cost of directional incongruence between distracters
and instructions signals was found. All distracters in the
behavioral performance showed a congruency effect both
for saccadic and pointing task. This is in keeping with
studies showing that attention is captured by gaze and
arrows to a similar extent [Kuhn and Benson, 2007; Kuhn
and Kingstone, 2009; Sato et al., 2009] and at variance

from studies showing that social distracters like averted
gaze or pointing hands induce stronger attentional capture
more than symbolic arrow [Langton and Bruce, 2000;
Ricciardelli et al., 2002]. It is worth noting that in many
complex daily life interactions, the tendency to follow
others seems to be very strong. Thus, the lack of predomi-
nance of gaze- over arrow-distracters in triggering reflex-
ive attention of arrows in some studies may be due to a
floor effect induced by the extremely simplified reality of
laboratory conditions [Birmingham and Kingstone, 2009;
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Figure 3.

Activity in the bilateral FEF and IPS regions elicited by the IE of

the two social distracters during Saccadic and Pointing move-

ments. Central panel: 3D rendering of the canonical MNI template

showing the localization of four ROI corresponding to the left

(green) and right (blue) FEF and to the left (pink) and right (red)

IPS is reported in the axial section. Left panel: signal plots for the

IE [IE (inc > cong)] in the right FEF (up) and the left FEF (down)

as a function of the two biological distracters (G ¼ Gaze/H ¼
Hand) and effectors (Saccade/Pointing). Right panel: signal plots

for the IE [IE (inc > cong)] in the right IPS (up) and the left IPS

(down) for each biological distracter (G ¼ Gaze/H ¼ Hand) dur-

ing saccadic and hand-pointing task. In each plot, the level of activ-

ity for the four conditions represents the average amplitude of

the hemodynamic response for the [IE (inc > cong)] belonging to

the corresponding condition (e.g., Gaze or Hand trials, for Sac-

cade) and expressed in arbitrary units (a.u., �90% confidence

interval). The asterisks indicate significant (G vs. H) difference for

left/right FEF and (H vs. G) difference for left/right IPS.
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Kingstone, 2009]. However, one may observe that the pres-
ent behavioral results differed also from our previous
study where gaze and hand distracters interfered more
with eye and hand pointing movements respectively
[Crostella et al., 2009]. It should be noted however, that,
different from Crostella et al. [2009] in the current study
the pointing movement was defined as a index finger
extension toward the right or the left button key with the
shoulder and the arm immobilized instead of a free hand
arm movement in the space, accounting substantial differ-
ence in motor programming and executing.

At any rate, the present study demonstrated that, despite
the instruction to focus on the imperative signal, subjects
could not ignore the distracters. Importantly, the behav-
ioral interference of directional incongruence between
instruction signal and distracters was reflected in an
increase of the BOLD signal. Such increase occurred in a
fronto-parietal network that included the left precentral
gyrus and the right middle frontal gyrus bilaterally, the
right supplementary motor area, the most posterior portion
of the inferior frontal gyrus, the operculum, bilaterally, and

the pars triangularis extending into the insula and the mid-
dle portion of the right cingulate cortex as well as posterior
regions of the superior and inferior parietal cortex bilater-
ally. Previous studies highlighted the importance of fronto-
parietal networks in a variety of attentional tasks, including
covert and overt reorienting of attention to non biological
stimuli [Corbetta and Shulman, 2002; Corbetta et al., 2008;
Szczepanski et al., 2010], as well as to the direction of
others’ gaze [Grosbras et al., 2005]. Although studies indi-
cate that gaze and arrows may modulate attention-shifts
related activity in different brain regions [Hietanen et al.,
2006] even in the absence of differences in behavioral tasks
[Engell et al., 2010], only one study has thus far explored
the neural network activated by mere observation of direc-
tional versus non-directional eye gaze, hand-pointing ges-
tures and arrows [Sato et al., 2009]. This study showed
activation in inferior frontal and inferior parietal areas as
well as in the superior temporal sulcus common to the
three distracters, even if an increase of activity in temporo-
parietal clusters and in the amygdala was found for direc-
tional arrows and directional eyes respectively.
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TABLE III. IE of distracters in Saccadic and Hand pointing tasks

Side
Anatomical

area

IE for distracter by effector IE for Saccade G > H IE for Hand pointing H > G

t test values P corr. t test values P uncorr. t test values P uncorr.

L FEF 3.06 <0.01 3.04 <0.01 1.82 n.s.
IPS 2.47 <0.05 1.32 n.s. 2.52 <0.01
PPC 1.87 n.s. 1.43 n.s. 1.36 n.s.

R FEF 2.33 0.068 2.36 <0.05 1.41 n.s.
IPS 2.32 0.069 0.71 n.s. 2.79 <0.01
PPC 2.33 0.068 2.57 <0.01 1.22 n.s.

Anatomical locations of ROIs, t test, and P values (Bonferroni-corr) for the IE of social distracter (Gaze ¼ G/Hand ¼ H) by effector (Sac-
cade/Pointing), in the Left/Right (L/R) hemispheres. A significant interaction was found for L FEF and L IPS, whereas a trend toward
significance was found for R FEF and R IPS. Additional t test (P uncorr) confirmed a significant larger differential effect for (G > H) dis-
tracter in the L and R FEF, whereas bilateral IPS showed a larger IE for (H > G; see Results section for more details), indicating a selec-
tive correspondence between G/H body-part and saccadic/hand-pointing effector.

TABLE IV. IE of biological versus non-biological distracters

Side Anatomical area

IE for Bio vs. Non-Bio IE for G > A IE for H > A

t test values P corr. t test values P uncorr. t test values P uncorr.

L FEF 1.74 n.s. 2.03 <0.05 1.09 n.s.
IPS 3.00 <0.05 2.18 <0.05 2.24 <0.001
PPC 2.52 <0.05 2.26 <0.05 2.24 <0.05

R FEF 1.38 n.s. 1.52 0.066 1.00 n.s.
IPS 1.41 n.s. 0.71 n.s. 2.13 <0.05
PPC 3.07 <0.01 2.82 <0.01 2.74 <0.01

Anatomical locations of ROIs, t test, and P values (Bonferroni-corr) for the IE of biological (Gaze ¼ G/Hand ¼ H) versus non-biological
distracter (Arrow ¼ A), in the Left/Right (L/R) hemispheres. A significant interaction was found for L/R PPC and L IPS. Additional t
test (P uncorr) confirmed significant larger differential effect for biological versus non-biological (G > A) and (H > A) in bilateral PPC
and L IPS, irrespective to Effector (see Results section for more details; albeit some trends were found for bilateral FEF and R IPS).
These results confirm a larger IE driven by the biological distracters with social valence (Gaze and Hand) respect to Arrow.
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Body-Part Specific Reference Frames for

Mapping Reflexive Social Attention in the

Fronto-Parietal Cortex

In keeping with previous neuroimaging studies
[Grosbras et al., 2005; Hietanen et al., 2006; Sato et al.,
2009; Tipper et al., 2008], our results highlight the funda-
mental role of fronto-parietal structures in mediating gaze
and hand related shifts of attention. However, our study
expands significantly previous knowledge by combining,
for the first time, two main issues, namely the possible
specificity of the neural representation of different effec-
tors used for response and the influence of social and non

social distracters in modulating reflexive attention. It is
widely held that movements performed with different
effectors are coded in different cortical regions. Distinct
posterior parietal modules, for example, may preferentially
code for saccades and reaches, respectively [Colby and
Goldberg, 1999; Glimcher, 2003]. More recent studies indi-
cate that far from being a strict principle, effector-selectiv-
ity implies a gradual transition of preference from one
effector to another, with areas of balanced activation to
saccades and reaches and areas with significant preference
for reaches [Levy et al., 2007]. Similarly, effector preference
was found in parieto-frontal areas during eye or hand
movement planning but no region responded exclusively
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Figure 4.

Activity in the bilateral PPC regions elicited by the IE of the

two biological distracters respect to non-biological distracter.

Right panel: 3D rendering of the canonical MNI template show-

ing the localization of two ROI corresponding to the left (yel-

low) and right (light blue) PPC is reported in the axial section.

Left panel: the relative plots show the mean IE [IE (inc < cong)]

of the three distracters (averaged across the two effector,

respectively). A significant interaction was observed in these

ROIs: biological distracter (G ¼ Gaze/H ¼ Hand) interfered on

shifts of attention more than the non-biological (A ¼ Arrow)

distracter. The asterisks indicate significant higher IE for (G than

A), and higher IE for (H than A) in both regions. The level of

activation is expressed in arbitrary units (a.u., �90% confidence

interval).
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to either effector [Beurze et al., 2009]. A predominance of
left lateralized maps for coding the preparation of pointing
movements in the presence of equivalent coding of sacca-
dic and reaches preparation in frontal areas has also been
reported [Astafiev et al., 2003]. Testing the hypothesis of a
difference in the visuospatial maps recruited by pointing
and saccades, Hagler and colleagues [2007] identified mul-
tiple maps in both PPC and superior frontal cortex
recruited for eye and hand movements, including maps
not observed in previous studies. Although their analysis
revealed subtle differences between pointing and saccades,
including hemispheric asymmetries, no evidence of point-
ing-specific maps of visual space was found.

In the present study, we explored whether biological
directional distracters such as directional gaze and pointing
gestures, influenced the neural underpinnings of reflexive
shifts of attention in relation to the motor effectors used for
the response, namely eyes or hands. To this aim, we com-
pared the BOLD signal in the fronto-parietal ROIs that
turned out to be involved in reflexive attention. We found a
functional dissociation in the frontal and parietal nodes of
the reflexive joint attention network, hinting at a specific
influence of gaze and hand distracters in the saccadic and
hand pointing tasks, respectively. Overall, the fMRI data
indicated that the observed interference with voluntary ori-
enting varied as a function of central distracter-type and
motor-effector. In particular, we observed greater IE-related
activation in the frontal ROIs for shifts of spatial attention
triggered by gaze in the saccadic task and in the parietal
ROIs, specifically bilateral IPS, for shifts of attention trig-
gered by hand in the pointing task. This result is in keeping
with previous studies indicating the importance of parietal
regions in mediating interference of hand movements in-
congruous with planning of a different hand movement
[Grefkes et al., 2004] or of hand-related attention switching
tasks [Rushworth et al., 2001].

Tellingly, a main point of novelty of the present study is
that the fronto-parietal network subserving reflexive shifts
of social attention is specially sensitive to the relationship
between specific body-related distracters and the respond-
ing body parts. Importantly, an effector-specific activation
of fronto-parietal networks in humans has also been found
in a recent study on cortical temporal dynamics of visually
guided behavior [Hinkley et al., 2010]. In this study, high-
gamma activity was observed in SEF and subsequently in
visual cortex and FEF bilaterally, followed by a low-beta
power decrease over caudal PPC during saccade execution.
Thus, hand or saccadic movements implied a different
functional connectivity between frontal and parietal areas.

Mirroring of Attention in the

Fronto-Parietal System

In our experimental paradigm, participants were specifi-
cally instructed to ignore the visual distracting stimuli
(gaze, hand, and arrow), to focus on the central imperative

go signal and to maintain the fixation on the central point.
Given that the distracter was presented before the unpre-
dictable central cue, the cost of re-orienting to fully irrele-
vant-task distracters is likely due to interference with
ongoing action programs. This may be in keeping with
pre-motor theories of attention [Rizzolatti et al., 1987] and
with the notion of mirroring others’ actions [Rizzolatti and
Sinigaglia, 2010]. Behavioral studies indicate that priming
a given motor response is more effective if the visual
prime shares specific properties with the requested
response suggesting that perceptual codes and action
plans may share a common representational medium
[Craighero et al., 2002]. Neuroimaging studies indicate
that viewing hand, mouth and foot actions may induce a
specific increase of the BOLD signal in the frontal and pa-
rietal representations of the acting body parts [Buccino
et al., 2001]. A clear link between action mirroring and
sharing of attention between individuals has been estab-
lished in a single cell recording study from the monkey
parietal lobe [Shepherd et al., 2009]. This study demon-
strates an increase of activity of parietal neurons not only
when the monkey oriented his attention towards their
receptive field, but also during observation of another
monkey orienting in the same direction. It is also relevant
that overlapping fronto-parietal cortical representations are
called into play during executed, observed, and imagined
reaching in humans [Filimon et al., 2007]. That reflexive
shifts of social attention may be coded in body-part
specific coordinates and may reflect a specific tendency to
imitate other movements, is indirectly suggested by a
behavioral study showing that distracting gaze and hand
pointing distracters impaired saccadic and pointing per-
formance, respectively [Crostella et al., 2009]. The pattern
of activation found in the present study likely represents
neural evidence that mirroring of attention may be coded
according to body-part specific reference frames.

Influence of Social Versus Non-Social

Distracters on Changes of BOLD Signal

in the Fronto-Parietal Network Underlying

Reflexive Attention

As reported in the results section, the performance to
incongruent trials was impaired with respect to congruent
trials irrespectively of the distracter (gaze, pointing hand,
or arrow). Importantly, however, despite the equivalent IE
of the three distracters at the behavioral level, higher
changes of BOLD signal for biological (gaze and hand-
pointing) than non biological distracters were found in the
bilateral PPC and left IPS regions. This suggests that
hemodynamic brain responses may be more sensitive than
behavioral responses in signaling selective influences on
attentional shifts and thus in highlighting the special con-
tribution of the parietal-frontal network to reflexive social
attention [Deaner and Platt, 2003]. Thus biological stimuli,
possibly because of their social relevance, may have an
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inherently higher power in catching attention than non-
biological stimuli even when this is not elected in the
behavioural performance. This result is in keeping with a
recent fMRI study showing that even though the interfer-
ence of gaze and arrows was comparable at the behavioral
level, only the latter distracter modulated neural activity
in the temporo-parietal attention network, thus indicating
that different neural substrates underpin reflexive atten-
tion mediated by biological and non-biological cues
[Engell et al., 2010].

CONCLUSION

Our study indicates that frontal and parietal cortical
regions map the conflict between a central cue instructing
leftward or rightward saccadic or hand pointing move-
ments directions and to-be-ignored distracters (gaze, hand,
and arrow) pointing in opposite direction. Crucially, how-
ever, the detrimental effect of the directional conflict
induced by gaze and hand distracters brought about dif-
ferential activation in parietal and frontal structures
depending on whether subjects performed a saccadic or
hand-pointing task. In particular, the distracting effect of
pointing gestures is associated with higher parietal activity
when the motor task is performed with the hand. By con-
trast, the distracting effect of averted gaze is associated
with high frontal activity when the motor task is per-
formed with the eyes. It is worth noting that the distract-
ing effect of arrows induced increased responses in the
fronto-parietal network independently from the effector
used for the response but overall to lesser degree than bio-
logical distracter. This pattern of results indicates, for the
first time, that reflexive social attention is coded in the
fronto-parietal cortex according to body-part centered
coordinate systems.
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