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Abstract 

 

Recent advances in social neuroscience research have unveiled the neurophysiological correlates of 

race and intergroup processing. However, little is known about the neural mechanisms underlying 

intergroup empathy. Combining event-related fMRI with measurements of pupil dilation as an index 

of autonomic reactivity, we explored how race and group membership affect empathy-related 

responses. White and Black subjects were presented with video clips depicting white, black and 

unfamiliar violet-skinned hands being either painfully penetrated by a syringe or being touched by a 

Q-tip. Both hemodynamic activity within areas known to be involved in the processing of first and 

third-person emotional experiences of pain, (i.e. bilateral anterior insula), and autonomic reactivity 

were greater for the pain experienced by own-race compared to that of other-race and violet models. 

Interestingly, greater implicit racial bias predicted increased activity within the left anterior insula 

during the observation of own-race pain relative to other-race pain. Our findings highlight the close 

link between group-based segregation and empathic processing. Moreover, they demonstrate the 

relative influence of culturally acquired implicit attitudes and perceived similarity/familiarity with 

the target in shaping emotional responses to others’ physical pain.  
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Introduction 

 

Empathy is the defining feature of social interactions that allow us to share and understand others’ 

feelings and intentions. Recent neuroscientific models posit that empathising may imply the 

vicarious mapping of others’ experiences onto the neural and physiological circuitries involved in 

the first-person experience of the same or similar sensations (Preston & de Waal, 2002; Gallese et 

al., 2004; Decety & Jackson, 2004; Keysers & Gazzola, 2009; Decety, 2011). For instance, the mere 

perception and/or imagination of someone in pain induces activity in a neural network which 

includes structures involved in processing somatosensory aspects of pain as the primary (SI) and 

secondary (SII) somatosensory cortices (e.g. Bufalari et al., 2007; Akitsuki, 2009; Betti et al. 2009; 

Valeriani et al., 2008; Voisin et al., 2011; Aziz-Zadeh et al., 2011; Keysers et al., 2010) and 

structures coding the motivational-affective dimensions of pain, such as the anterior insular (AI) 

cortex, and anterior and mid cingulate cortex (Singer et al., 2004, 2006; Jackson et al., 2005; 

Saarela et al., 2007; Lamm et al., 2011). This suggests that empathy, or at least some forms of it, 

may trigger automatic resonance mechanisms that allow the inter-individual sharing of sensory and 

affective states (Avenanti and Aglioti, 2006; Avenanti et al., 2009b; Gallese, 2006; Bastiaansen et 

al., 2009; Fitzgibbon et al., 2010; Decety, 2011). Embodied empathy is not an all-or-none 

phenomenon but is tuned by a variety of factors that provide the required flexibility to respond to 

the demanding complexities of human social interactions (de Vignemont et al., 2006). Accordingly, 

inter-individual differences such as the empathizer’s personality (Avenanti et al., 2009a; Minio-

Palluelo et al., 2009; Lawrence et al., 2006; Jabbi et al., 2007) and previous experiences with an 

empathy-triggering situation (Cheng et al., 2007) may influence empathic reactivity.  In addition, 

empathy-related neural responses seem sensitive to the social context and the appraisal of it 

(Akitsuki et al., 2009; Lamm et al., 2007a). Importantly, given its intrinsic interpersonal dimension, 

the target’s characteristics and the relationship with the empathizer are key determinants of the 

intensity and quality of the empathic responses. The perceived fairness (Singer et al., 2006) and 
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social status (Decety et al., 2010) of the target person, along side with the affective link (Singer et 

al., 2004; Cheng et al., 2010) and similarity with the empathizer (Lamm et al., 2010) are known to 

strengthen empathic resonance. Two recent studies demonstrated differential neural responses to 

others’ physical pain (Hein et al., 2010) or success/failure (Cikara et al., 2011) as a function of 

group affiliation. Both studies reported stronger activity within empathy-related brain areas, i.e. AI, 

in response to negative experiences of individuals belonging to the participants’ group relative to 

those of the rival group. 

Indeed, humans are extremely prone to categorize and divide others and the self into in-groups and 

out-groups, in a “Us versus Them” fashion (Tajfel, 1981; Amodio, 2008). People spontaneously 

classify others according to socially relevant categories, such as race, age and gender, and based on 

this classification determine who may be the target of favouritism or derogation. Race represents a 

powerful salient cue to group membership, especially in the absence of other affiliation factors. 

Considerable evidence demonstrates that race affects social categorization and evaluation within 

milliseconds even when processed subliminally (Amodio, 2008; Ito et al., 2009). Several 

neuroimaging studies revealed that individual scores in behavioural measures of implicit racial bias 

predicted increased amygdala reactivity to other-race faces and increased fusiform activity to own-

race faces (Golby et al., 2000; Phelps et al., 2000; Cunningham et al., 2004; Chiao et al., 2008). 

These findings are of great importance as they suggest that culturally acquired prejudiced attitudes 

(Dunham et al., 2008) result in automatic and negative emotional responses and impoverished 

visual processing of other-race stimuli. The discovery of such neural and physiological markers 

encouraged researchers to hypothesize different neural responses in empathy-eliciting situations 

according to the target’s ethnicity. Indeed, a recent study showed greater neural reactivity within the 

anterior cingulate cortex in response to painful stimulation applied to same versus other-race faces 

(Xu et al., 2009). Additionally, increased activity within the medial prefrontal cortex, likely 

reflecting self evaluative processing, in response to scenes depicting emotional suffering of own-

race relative to other-race individuals predicted greater empathy and altruistic motivation for in-
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group members (Mathur et al., 2010). These studies suggest that different emotional reactions are 

elicited when perceiving the suffering of own-race and other-race individuals. Nevertheless, it is not 

clear whether reduced affective responses for the pain of other-race members reflect specific racial 

attitudes or are a reflection of broader intergroup characterization processes such as reduced 

familiarity/perceived similarity with the target (Preston & de Wall, 2002; Valentini et al., 2012; 

Liew et al., 2011). 

Here we sought to investigate how racial group membership and racial attitudes affect neural 

and autonomic responses associated with empathy for pain. Combining event-related fMRI with 

measurements of autonomic reactivity, i.e. pupil dilation, we examined White-Italian and Black-

African participants’ reactivity to the physical pain of white and black models. Crucially, we 

measured subjects’ racial attitudes, using both implicit and explicit methods, as well as 

judgments of familiarity/similarity with the models in order to explore the mechanisms 

underlying possible biased empathy-related responses to the pain of different-race individuals. 

Additionally, we presented to participants the pain of a novel/unknown race, i.e.Violet-skinned 

models. In this way, we explored empathy-related brain responses in conditions of remarkable 

visual unfamiliarity and perceived dissimilarity with the self, but in the absence of racial cues 

(Avenanti et al., 2010). 

We predicted that the perception of pain, irrespective of the model, would be associated with 

resonant activation of both the affective and sensory nodes of the pain network, as well as with 

enhanced pupillary changes. Based on the notion of in-group bias in empathic reactivity, we 

expected subjects to empathize preferentially with in-group members (i.e. own-race) compared 

to out-group (i.e. other-race and violet) models’ pain. Most importantly, we predicted reduced 

empathic resonance with other-race compared to own-race members. We further 

hypothesized that such impaired reactivity to other-race models’ pain could be predicted by 

participants’ (implicit) racial attitudes. Additionally, the comparison between other-race and 

violet conditions also allowed us to assess the relative influence of familiarity/perceived similarity 
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and of other-race disregard on empathic reactivity with out-group members. If biased empathic 

responses are uniquely driven by culturally acquired racial attitudes, greater empathic 

reactivity should be detected for the culturally unmarked violet models relative to other-race 

models. Alternatively, if empathic responses are largely influenced by familiarity/perceived 

similarity, then greater empathy-related responses should be found for other-race relative to 

the unknown and remarkably unfamiliar and dissimilar violet models. Finally, based on 

previous imaging research on facial race processing we expected some brain areas (e.g. fusiform 

gyrus, amygdala) to respond preferentially to own-race or out-group stimuli independently of 

stimulation type. 
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Materials and Methods 

 

Participants 

The sample comprised a total of twenty-seven subjects: fourteen White-Caucasian (7 males; mean 

age= 23.57, s.d.=4.01) and thirteen Black-African (4 males, mean age=24.26, s.d.= 4.35, mean 

years in Italy= 7.54, s.d.=5.08). All White participants were Italian native and all Black subjects 

were born in African countries – Burundi, Cameroon, Congo, Nigeria, Tunes – living in Italy for a 

minimum of 2.5 years, and were fluent in Italian. All subjects were university students with the 

exception of four pre-university students (1 White male, 1 White female and 2 Black females) and 

one graduated worker (White male). All had normal or corrected vision, free from any 

contraindication to fMRI, and with no history of major psychiatric or neurological problems. All 

subjects gave written informed consent and the study was approved by the independent Ethics 

Committee of the Santa Lucia Foundation (Scientific Institute for Research Hospitalization and 

Health Care). Five additional volunteers took part in the experiment but were excluded from 

analysis due to excessive head motion during image acquisition, i.e. a displacement within each 

functional run greater than 2° or 2mm.   

 

Visual Stimuli  

The visual stimuli consisted of video clips showing right male hands being either deeply penetrated 

by a hypodermic needle (Pain condition) or touched by a Q-tip (Touch condition). Stimulation sites 

were identical in both conditions, namely in the first dorsal interosseous muscle region, the abductor 

digiti minimi muscle region and in the region between the base of the little and ring fingers. Models 

were either two White Italians or two Black Africans. Additionally, Violet–skinned models were 

created by digitally colouring the White and Black models’ hands. During the experiment, White 

and Black subjects were presented with the Violet hands stimuli obtained by colouring the other-

race hands (Black and White hand respectively), thus removing skin colour racial cues while 
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maintaining the morphology of the hands. It is worth of noting that the colour and morphology 

of the hands were the only indicators of the models’ race. All videos were manipulated frame-

by-frame in Photoshop 2.0 (Adobe, CA; http://www.adobe.com) and were identical in size, mean 

luminance and motion parameters (i.e. speed, trajectory, angle). However, due to hands’ colour 

differences, only stimuli within the same Model type were matched for contrast, luminance 

distribution and colour. Images were taken from the first-person perspective so that subjects would 

not need to perform mental rotation. To minimize habituation effects, needles of three different sizes 

were filled with different red-toned liquids, and three different coloured Q-tips were used. Each 

video had a total duration of 3133 ms and started showing a static hand and a still needle/Q-tip 

positioned slightly above. After 1000ms, the needle/Q-tip moved towards the hand and penetrated 

or touched it, respectively. The hand remained perfectly still throughout the stimulation and the 

holder of the syringe/Q-tip was not visible at anytime.  

 

Procedure 

Participants were positioned in the scanner, in a dimly lit environment. The experimental visual 

stimuli were presented via a mirror mounted on the MRI headcoil (total display size 19.5° x 14.6° 

degrees of visual angle). The visual stimuli were back-projected on a screen behind the magnet, 

from a computer monitor with 1024 × 768 screen resolution and 60 Hz refresh rate. Stimulus 

presentation was controlled with Cogent2000 (www.vislab.ucl.ac.uk/Cogent/). Six event types were 

organized in a 2 x 3 factorial design: Stimulation (Pain or Touch) x Model (White, Black or Violet). 

A fully randomized event-related design was used. Each subject completed a total of 5 functional 

runs, each consisting in the presentation of 72 stimuli (12 per condition) interleaved with a fixation 

cross (inter-stimulus interval) of jittered duration (2500-3500 ms). Each run lasted approximately 8 

minutes for a total experiment duration of about 50 minutes. Subjects were only instructed to pay 

maximum attention to the stimuli and were informed that some questions about the stimuli would 

be asked at the end of the scanning session. 
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Behavioral Measures 

Measures of Racial Bias  

To assess implicit racial bias, subjects performed a computerized version of the Racial Implicit 

Association Test (IAT) (Presentation software; http://www.neurobs.com/). The IAT measures the 

easiness and strength of automatic associations between pairs of concepts such as social categories 

(White and Black individuals) and attributes (good or bad) (for further information regarding the 

IAT refer to: Greenwald et al., 2003). Each participant completed two sequences of the IAT with 

reversed block orders, one before and one after the functional sessions. D scores of each sequence 

were computed as suggested by Greenwald et al. (2003) and averaged to create a final IAT D score. 

D values greater than zero reflect implicit preference for own-race relative to other-race individuals.   

To measure explicit racial bias we used a selection of questions of the Italian version (Arcuri et al., 

1996) of the Subtle and Blatant Prejudice Scale by Pettigrew and Meertens (SPML) (Pettigrew et 

al., 1995). Larger scores reflect greater reports of racial bias (min= 7; max=35).  

  

Dispositional Empathy 

To assess empathic dispositional traits, subjects were asked to complete the Italian version (Albiero 

et al., 2006) of the Interpersonal Reactivity Index (IRI)  (Davis, 1996) a 28-item self- report 

questionnaire comprising four subscales: two emotional, Empathic Concern (EC, which measures 

the tendency to feel sympathy and concern for others) and Personal Distress (PD, which measures 

self-oriented anxiety when experiencing others in distress), and two cognitive, Perspective Taking 

(PT, which measures the tendency to take the perspective of others) and Fantasy Scale (FS, which 

measures the tendency to imaginatively transpose oneself into the feelings and actions of fictitious 

characters and situations). 

 

Subjective Ratings 
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After the fMRI session, subjects reviewed each video clip and were asked to rate the intensity and 

unpleasantness of the sensation supposedly felt by the model using a 10-point likert scale, in which 

0indicated no sensation (intensity or unpleasantness) and 10 maximum sensation imaginable. 

Additionally, subjects were presented with still pictures of the models’ hands and were asked to 

evaluate how familiar to them was the morphology of each hand and how similar was to their own 

hand. Ratings were made on a 10-point likert scale, in which 0 indicated no familiarity/similarity 

and 10 indicated maximum familiarity/similarity. 

 

Pupil dilation  

Participants’ pupil diameter was monitored by means of an ASL eye-tracking system that was 

adapted for use in the scanner (Applied Science Laboratories, Bedford, MA; Model 504). Pupil 

diameter was sampled at 60 Hz from stimuli onset to stimuli offset. For each trial, baseline 

correction was performed by subtracting the first sample (at trial onset), from each of the following 

pupil samples. Additionally, an eight-point moving un-weighted average was applied to smooth the 

data. Although all stimuli had identical mean luminance, because of hands’ colors differences, 

stimuli were only matched in terms of contrast and luminance distribution within model type. 

Therefore, in order to account for possible effects due to such differences, pupil changes to touch 

stimuli were subtracted from the responses to pain stimuli delivered to the same model. To validate 

this procedure, we performed paired t-tests at each time point of the average waveforms of 

responses to pain and touch videos (across Model and Race conditions), and confirmed larger 

reactivity to pain relative to touch from 1400 ms after stimuli onset onwards (all ts> 4.2, ps<0.05, 

Bonferroni corrected for the number of time points). Additionally, pupil data was divided into two 

different time windows, Early and Late, according to such time point. 

 

Magnetic Resonance Imaging and Data Analysis 

A Siemens Allegra (Siemens Medical Systems, Erlangen, Germany) operating at 3T and equipped 

Page 10 of 51

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

for echo-planar imaging (EPI) acquired functional magnetic resonance (MR) images. A quadrature 

volume head coil was used for radio frequency transmission and reception. Head movements were 

minimized by mild restraint and cushioning. Thirty-two slices of functional MR images were 

acquired using blood oxygenation level-dependent imaging (3.0 x 3.0 x 2.5 mm thick, 50% distance 

factor, TR = 2.08 s, TE = 30 ms), covering the entire cortex. 

We used the statistical parametric mapping package SPM8 (www.fil.ion.ucl.ac.uk) implemented in 

MATLAB (v 7.1, The MathWorks, Natick, MA) for data pre-processing and statistical analyses. For 

all participants, we acquired a total of 1090 fMRI volumes, 218 for each of the 5 functional runs. 

The first four image volumes of each run were used for stabilizing longitudinal magnetization and 

were discarded from the analysis. Pre-processing included rigid-body transformation (realignment) 

and slice timing to correct for head movement and slice acquisition delay. Residual effects of head 

motion were corrected for by including the six estimated motion parameters for each subject as 

regressors of no interest in the statistical multiple regression model. Slice-acquisition delays were 

corrected using the middle slice as a reference. All images were normalized to the standard SPM8 

EPI template, resampled to 2 mm isotropic voxel size, and spatially smoothed using an isotropic 

Gaussian kernel of 8 mm FWHM. Statistical inference was based on a random effects approach 

(Penny and Holmes, 2004). The paradigm is based on a 2 x 3 x 2 factorial design: Stimulation (Pain 

/ Touch) x Model (Own-race / Other-race / Violet) x Race (White / Black). For each participant, the 

data was best-fitted at every voxel by convolving each of the 6 conditions (2 stimulation x 3 

models) with the SMP8 hemodynamic response function. The hemodynamic function was time-

locked 1000 ms after stimuli appearance, corresponding to the time point of needle/Q-tip movement 

start, until stimuli offset for a total duration of 2133 ms. For each subject, contrast images were 

estimated for each of the 6 individual conditions. For group analysis, the single-subjects contrast 

images of parameter estimates were entered into a mixed design ANOVA with Stimulation and 

Model as within-subjects variables and Race as between-subjects variable. Analyses were 

performed collapsing data from both groups of subjects. The analysis aimed at determining: 1) the 
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brain areas associated with the observation of pain stimuli irrespective of model and group 

membership, i.e. the main effect of pain (all pain conditions > all touch conditions); 2) the brain 

areas showing increased activation to the pain of own-race models compared to that of the 

remaining models, i.e. in-group bias [(pain > touch)own-race] > [(pain > touch)out-group]; 3) 

brain activity showing reduced resonance with racially charged members, i.e. [(pain > 

touch)own-race] > [(pain > touch)other-race]; 4) brain activity reflecting the relative influence 

of culturally driven prejudice and perceptual similarity/familiarity/novelty in out-group 

disregard [(pain > touch)other-race] > [(pain > touch)violet], and [(pain > touch)violet] > 

[(pain > touch)other-race]; 5) whether any brain area responds specifically to the models’ race 

independently of stimulation type, i.e. the main effect of in-group (all own-race conditions > 

all other-models conditions), and the main effect of out-group (all other-models conditions > 

all own-race conditions). Please note that we use the terms “own-race” and “in-group” as 

synonyms, while we use “out-group” to refer to “other-race” and “violet” models averaged together. 

Except for the main effects of in-group and out-group, all analyses are based on the 

subtraction of touch from pain responses within model type. Touch stimuli provide a baseline 

for each model type by minimizing responses related to tactile sensation, action, movement, 

and non-pain responses related to the models (e.g. salience, novelty, aversiveness, etc.). 

Statistical maps were initially tresholded at voxel level at p<0.001 uncorrected. Results were 

reported at cluster level at p<0.05 corrected for multiple comparisons (Family Wise Correction, 

FWE), except when specified differently.  

 

Region of interest analyses 

In order to further investigate biased empathic resonance with members of different racial 

groups we carried out region of interest (ROI) analyses. Three ROIs were identified, one based 

on our whole-brain analysis and two on extant literature. First, whole-brain analysis revealed a 

cluster within the left Anterior Insular cortex (lAI) (-30, 20, -4) that responds primarily to the pain 
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of in-group individuals compared to that of out-group models, i.e. [(pain > touch)own-race] > 

[(pain > touch)out-group]. Additionally, a recent meta-analysis based on 32 empathy for pain 

fMRI studies revealed 2 further areas consistently activated when observing others in pain 

independently of stimuli type: right anterior insular cortex (rAI) (39, 23, -4) and anterior/medial 

cingulate cortex (aMCC) (-2, 23. 40) (Lamm et al., 2011). Accordingly, ROIs were created with 

Marsbar 0.4 (MARSeille Boîte À Région d'Intérêt’ SPM toolbox) extracting average BOLD signals 

from voxel activity within a 8 mm of radius sphere (i.e., matching the FWHM of the smooth 

parameters) centered at the above mentioned coordinates. Within each individual ROI, we 

explored differential responses according to models’ race, i.e. direct comparisons between the 

brain responses to the pain (vs touch) of  the different models. Additionally, we proceeded to 

investigate if any difference can be observed between Black and White subjects in such contrasts. 

All statistical results presented are Bonferroni corrected for the number of ROIs, and significance 

threshold set at p<0.05.  

 

Correlation analyses 

We were interested in understanding if levels of racial bias could explain the differential brain and 

autonomic reactivity to the pain of own-race vs. other-race individuals. Therefore, we carried out 

correlation analysis between BOLD activity within the ROIs and both implicit and explicit scores of 

racial bias. Since IAT’s D score is computed by considering behavioral responses to own-race and 

other-race individuals (not to violet models), correlation analyses were performed using the 

contrasts [(pain > touch)own-race models] > [(pain > touch)other-race models]. Additionally, we 

investigated possible correlations between perceptions of similiarity and familiarity with 

differential activity within the ROIs to the pain of the different models. We also explored the 

relationship between empathic traits (IRI) and general reactivity to others’ pain at both BOLD and 

autonomic level. Finally, we looked for relationships between pupillary and brain responses. 

Presented p-values were Bonferroni corrected for the number of ROIs. Significance threshold 

Page 13 of 51

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

was set at p<0.05. 
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Results 

Behavioral Measures 

IAT scores revealed that both groups showed implicit preference toward in-group members. 

However, while White subjects revealed a strong bias towards own-race individuals (t13=6.05, 

p<0.001), Black subjects showed weaker, and non significant, racial bias (t12=1.525, p=0.15) (Tab. 

1). Consistent with previous literature (Dunham et al., 2008; Avenanti et al., 2010), the socially 

dominant group (White-Italians in our study) revealed greater racial bias compared to that of the 

ethnic minority (i.e. Black-Africans) (t25=2.93, p=0.007). Conversely, explicit bias scores (SPML) 

did not differ between groups (t25=0.79, p=0.44) (Tab. 1). IRI scores revealed similar empathic traits 

between groups (ts<1.46, ps>0.16) (Tab. 1); with the exception of PD scale, for which Black 

subjects demonstrated greater levels of personal distress to others’ suffering (t25=2.71, p=0.012). 

Regarding the subjective ratings of the stimuli, both groups of subjects perceived pain videos as 

more intense and unpleasant than touch videos (ts>119.84, ps<0.001). No difference between 

models (ts<1.74, ps>0.09) or subjects’ groups was observed (ts<1.59, ps<0.14). Own-race hands 

were rated as more familiar than other-race hands (ts>5.88, ps<0.001), and violet hands as less 

familiar than both the others (ts>4.02, ps<0.001). Regarding the similarity judgments, subjects 

perceived own-race hands as more similar to their own than the other two groups of models 

(ts>5.32, ps<0.001), and judged both other-race and violet hands as equally dissimilar (t26=1.95, 

p=0.18). Together these results confirmed our expectations of greater identification with own-race 

models in respect to the remaining, and that violet models were perceived as very unfamiliar (Fig. 

1).  

 

------------ Please insert Table 1 near here---------- 

------------Please insert Figure 1 near here------------ 
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Pupil dilation 

The Model x Time x Race ANOVA on amplitude of pupillary response revealed a main effect of 

Time (F1,25 = 35.18, p<0.000003) and of Model (F2,50 = 4.27, p<0.019) and, importantly, a 

significant interaction Time x Model (F2,50 = 7.62, p<0.0013). No main effect of Race or interaction 

with this factor was found (Fs<1.89, ps<0.16), suggesting that Black and White individuals reacted 

in a very similar way to the pain of the three models. In the early time window (when the needle/Q-

tip were approaching the hand and no pain-related response was detected) response to own-race 

models’ pain was comparable to other-race and violet models’ pain (p>0.92); response to other-race 

models’ pain was slightly but significantly greater than violet models’ pain (p = 0.047). A different 

pattern of results was obtained in the later time window (when the needle was entering the hand and 

significant pain-related responses were detected): responses to own-race were larger than those to 

other-race and violet models’ pain (ps<0.02); moreover, responses to other-race were larger than 

responses to violet models’ pain (p=0.013) (Fig.2). 

 

------------Please insert Figure 2 near here------------ 

 

fMRI results 

ME Pain 

We first investigated the hemodynamic responses related to the perception of others in pain 

irrespective of model and group membership (i.e. all pain stimuli vs. all touch stimuli). In keeping 

with previous research, the observation of others in pain resulted in the activation of bilateral 

clusters in fronto-parietal regions (Table 2A; Fig. 3A) known to be involved in action understanding 

and anticipation, as well as in the evaluation of pain intensity and unpleasantness (Lamm et al., 

2007b), including the ventral premotor cortex and the intraparietal sulcus. Notably, parietal lobe 

activity comprised the postcentral gyri, an area responsible for the sensory representations of pain 

(i.e., the primary somatosensory cortex, SI). Finally, two bilateral clusters were found in the 
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posterior temporo-lateral regions encompassing parts of the occipital cortices and cerebellum, likely 

due to increased visual processing. 

 

ME of group membership 

Two clusters, in the inferior temporal-occipital region, bilaterally, and including the extrastriate 

body area (EBA)1, an area known to process body parts, revealed increased activity for own-race 

relative to out-group models irrespective of stimulation type (Tab. 2B; Fig. 3B; Fig. 3C). No 

significant activation was found for the inverse comparison, i.e. greater activation for stimuli 

depicting out-group models compared to in-group models. 

 

------------------- Please insert  Table 2 near here------------- 

------------------- Please insert  Figure 3 near here------------- 

 

Own-race empathy-related bias 

To test our main hypothesis of increased empathic resonance towards own-race individuals, we 

tested for areas with greater responses to the pain of own-race models compared to that of other 

models [(pain > touch)own-race > (pain  > touch)out-group)]. Whole brain analysis revealed 

increased activation in the lAI (t=4.56, p=0.030) (Fig. 4A), an area that has been consistently 

reported as responsible for encoding affective aspects of self and observed pain (Lamm et al., 2011). 

The inverse contrast [(pain > touch)out-group) > (pain > touch)own-race] did not reveal any 

significant activation.  

                                                
1 confirmed by masking whole brain activation with a sphere with a 8 mm of radius (i.e., matching 

the FWHM of the smooth parameters) centered on mean coordinates of peak activity in independent 

studies (right: 47.6, -69.3, 0.8; left: -48.5,-72.7,4 ; Moro et al., 2008) (ts>4.24, ps<0.001, FWE 

voxel level) . 
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Whole-brain analysis exploring empathic bias towards culturally charged racial members, i.e. 

[(pain > touch)own-race > (pain  > touch)other-race)], and those exploring the importance of 

racial attitudes vs similarity and familiarity/novelty in out-group disregard, i.e. [(pain > 

touch)other-race models] > [(pain > touch)violet models] and [(pain > touch)violet models] > 

[(pain > touch)other-race models], did not show any significant activation at the selected 

threshold. Data inspection at uncorrected level revealed activity in main areas related to 

empathic responding to pain stimuli (Lamm et al., 2011; see methods section). Specifically, in 

the lAI (30; 20; -2) (t=3.36) for the contrast own-race vs other-race and in the aMCC (0; 34; 

28) (t=3.78) for the contrast other-race vs violet models. Additionally, we restricted the search 

volume (using small volume correction SPM function) to the brain areas responding to pain 

stimuli (i.e. main effect of pain) but found no further significant activity for the contrasts of 

interest. 

To further investigate differential empathy-related responses to the pain of the different models 

we carried out ROI analyses on the lAI, rAI, and aMCC. Confirming whole-brain analysis, lAI 

revealed enhanced activation for own-race pain compared to that of other models. Additionally, in-

group bias was also found in the rAI, but not in the aMCC where neural activity was greater for 

own and other-race models’ pain relative to violet models (Tab. 3; Fig. 4B; Fig. 4C). Increased 

response was present also when contrasting individually own-race pain with other-race and violet 

pain in the lAI, but only with violet in the rAI. Consistently, analysis on both groups separately 

revealed in-group bias in the lAI (White: t=3.64, p<0.001; Black: t=2.77, p=0.011). Only in the 

white group however this difference reached significance in the rAI (t=2.74, p=0.012).  

No significant activations emerged from the between group analyses. 

 

------------ Please insert Table 3 near here --------------- 

------------ Please insert Figure 4 near here --------------- 
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Correlation analyses 

We found a linear relationship between IAT scores and increased activity in the lAI for own-race 

pain compared to other-race pain (r=0.577, p=0.002) (Fig. 5A). Thus, subjects with greater implicit 

race bias showed stronger reactivity in the lAI for own-race relative to other-race models’ pain and, 

notably, this effect was present in both White subjects (r=0.608, p=0.031) and Black subjects 

(r=0.583, p=0.055). These findings support the notion that implicit racial bias inhibits empathic-

related brain responses towards other-race individuals. Nevertheless, no relationship was found 

between implicit racial bias and autonomic reactivity levels (r=0.227, p=0.123). No correlations 

were found with explicit measures of bias (ps>0.74)2. 

Regarding the subjective ratings, we found that for the contrast [(pain > touch)own-race) > 

(pain > touch)other-race], activity in the lAI correlated positively with familiarity ratings 

(r=4.65, p=0.032), and activity in the aMCC correlated negatively with differences in 

perceived similarity (r=-4.28, p=0.040). No significant results were found for the contrast 

involving violet models. We then carried out a subject-based parametric regression with the 

IAT and both similarity and familiarity ratings to explore the relative importance of each 

variable predicting biased empathic reactivity with other-race members. When accounting for 

all the variables, IAT still significantly predicted increased resonance with own-race members 

(vs other-race) in the lAI (p=0.009), and became marginally correlated with activity in the 

aMCC (p=0.058)
3
. On the other hand, the previous correlations with similarity and familiarity 

ratings were no longer present, p=0.17 and p=0.095, respectively. 

Correlation analysis between empathic traits (IRI scores) and BOLD responses to pain stimuli 

revealed a positive relationship between the Personal Distress scale and activity in the rAI (r= 

                                                
2 To explore the possibility of conflict between implicit and explicit measures of bias, i.e. dissonance between 

automatic and controlled attitudes, we created an index of conflict consisting in the product of the IAT and 

SPML scores (see Cunningham et al., 2004). However, we found no relation between this measure and brain 

activity.   
3 IAT scores do not correlate with familiarity or similarity ratings and therefore the criteria for mediation 

analyses are not met (Baron and Kenny, 1986) 
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0.436, p=0.026), an area which seems to map negative-self centered emotions (Craig, 2005; Straube 

et al., 2011). No other correlation between IRI subscales and brain activity was found. Conversely, 

autonomic reactivity correlated only with the Fantasy Scale (r=0.564, p=0.008) (the remaining: 

rs<0.19,  ps>0.34) that reflects the tendency to transpose oneself to the place of fictitious characters 

in films and books. 

Finally, no linear relationship was observed between autonomic and neural responses to the 

perception of pain stimuli, i.e. main effect of pain. Yet, a positive correlation was found between 

enhanced activity within the lAI and pupil responses to the pain of own-race models compared to 

that of out-group models (r=0.501, p=0.012) (Fig. 5B). Such relationship supports both the finding 

of empathic resonance modulation by group membership and the use of pupil dilation as a measure 

of autonomic reactivity in empathy eliciting situations.  

 

------------- Please insert Figure 5 near here ----------- 
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Discussion 

 
In the present study we compared the neurophysiological responses associated with the 

observation of pain stimuli delivered  own-race, other-race or violet-skinned hands. We 

observed increased autonomic activity and brain activations in the anterior insula, which is an 

important empathy-related area, in response to the pain of own-race members compared to 

that of the remaining models. This result expands the notion of in-group bias in empathic 

reactivity. Most importantly, we provide evidence that impaired resonance with culturally 

marked racial groups in the lAI can be predicted by the levels of negative implicit attitudes 

towards that specific race. Additionally, the pain of models of an unknown race, with no social 

connotations, elicited less activity in the bilateral insula and aMCC, suggesting less motivation 

to resonate with these remarkably unfamiliar and dissimilar models. Together, we 

demonstrate the relative influence of different intergroup segregation features when 

resonating with the pain of individuals of distinct racial groups. 

Consistent with previous research, the perception of pain in others brought about activation of 

sensorimotor and affective areas involved in first-person experience of pain (Bastiaansen et al., 

2009; Lamm et al., 2011). In particular, watching a needle entering the hand of strangers models 

activated a frontal-parietal network that is known to be involved in action anticipation and 

understanding  (Gallese, 2006; Cattaneo and Rizzolatti, 2009; Avenanti and Urgesi, 2011; Aglioti 

and Pazzaglia, 2011), as well as in the evaluation of pain stimuli intensity and unpleasantness 

(Lamm et al., 2007b; Avenanti et al., 2007). Additionally, increased SI activation in pain compared 

to touch conditions, confirms the vicarious mapping of the sensory qualities of the stimulation (e.g. 

Bufalari et al., 2007; Voisin et al., 2011; Lamm et al., 2007b, Avenanti et al., 2007; Valeriani et al., 

2008; Keysers et al., 2010). While motor and somatic regions were similarly activated by seeing the 

pain of in-group or out-group members, the structures encoding the motivational-affective aspects 

of pain, i.e. bilateral AI and aMCC showed model-related selectivity. Confirming the hypothesis 
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of in-group bias, the bilateral anterior insula was found more active in response to the pain of 

own-race members than to that of out-group individuals. Consistently, the pattern of concurrent 

autonomic activity also revealed larger pupillary responses to the pain of in-group vs out-group 

individuals. Such in-group bias paralleled activity in the lAI, confirming greater emotional 

engagement with the pain of same-race members.  

Intergroup categorization is an automatic feature of human behaviour and a powerful source of self-

identification (Tajfel, 1981; Amodio, 2008). In the present experiment, group categorization cues 

were only based on the physical features of the models’ hands, i.e. skin colour, and previous 

associations with racial groups. Although we cannot determine whether judgments of similarity 

with the models are the cause or the consequence of group categorization, similarity ratings 

and hemodynanimc responses to models independently of simulation type clearly suggest that 

subjects identified themselves with the models of their own-race. The pattern of activation in the 

inferior temporal cortex (Fig. 3B, Fig. 3C), most importantly within the EBA, an area know to 

process body parts with preference to the self body and/or emotional body expressions (Peelen et 

al., 2007; Vocks et al., 2010; Urgesi et al., 2004, 2007; Downing et al., 2001), indicates advantaged 

processing of same-race stimuli. Activity within EBA may reflect top-down modulation due to 

increased attention toward same-race bodies no matter whether innocuously or painfully stimulated 

(Downing and Peelen, 2011; Urgesi and Avenanti, 2011). In keeping with this notion, greater 

orienting response and faster autonomic reactivity (as indexed by heart beat and skin conductance 

response) was previously found when seeing stimuli delivered to same-race body (Avenanti et al., 

2010). Notably, previous imaging research has demonstrated increased activation in the fusiform 

face area in response to in-group faces compared to out-group faces, likely reflecting increased 

perceptual expertise or enhanced motivation (Golby et al., 2001, Van Bavel et al., 2008, 2011). We 

extended these findings by showing a similar processing bias for in-group body parts, and provide 

further support to the notion that self-identification and intergroup distinction occur at an early 

processing stage.  
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Studies on empathy for pain showed biased neural empathic responses according to racial group 

membership (Xu et al., 2009; Mathur et al., 2010). However, previous imaging research did not 

establish whether such biased empathic brain responses are linked to specific racial attitudes or to 

broader intergroup categorization processes. Studies on empathy for pain showed biased neural 

empathic responses according to racial group membership (Xu et al., 2009; Mathur et al., 2010). 

However, previous imaging research did not establish whether such biased empathic brain 

responses are linked to specific racial attitudes or to broader intergroup categorization processes.  

In the present study we observed diminished autonomic responses and decreased activity in 

the lAI to the pain of other-race race members compared to that of own-race. Most 

importantly, we observed that individual IAT scores could predict the left insular cortex BOLD 

responses evoked by the observation of  pain stimuli delivered to own-race relative to other-race 

members. The IAT scores reflect implicit preferences, i.e. often without awareness, about social 

groups that are believed to be mainly a product of cultural influences and personal 

experiences
4
. Previous research has shown that such racial evaluations could predict 

amygdala activity to other-race faces (Phelps et al., 2000; Cunningham et al., 2004) and 

reduced sensorimotor empathic resonance with other-race pain (Avenanti et al., 2010). We 

extend these findings by demonstrating that IAT scores can predict affective-motivational 

brain responses to the pain of different race individuals. Interestingly, no relationship was 

found with the levels of explicit bias, in keeping with the notion that racial prejudice 

influences interpersonal reactivity at an unconscious level (Avenanti et al., 2010; Amodio, 

2008; Dunham et al., 2008; Ito et al., 2009).  

We also found a relationship between BOLD responses in the lAI for own vs other-race pain 

and judgments of familiarity. However, when taking into account the levels of implicit bias 

                                                
4
 We adopted the IAT’s standard approach (Greenwald et al., 2003) and assume that d scores simply reflect 

automatic preferences towards Black or White individuals. However, there are other emerging views on the 

IAT’s interpretation. For instance, some authors argue for multiple processes underlying performance on the 

IAT and social attitudes in general (Conrey et al., 2005). Also, there is now some conflicting evidence suggesting 

that the IAT either reflects specific bias towards the targeted groups (e.g., Dasgupta et al., 2009) or instead a 

general preference for in-group/out-group members (van Ravenzwaaij et al., 2011). For further discussion on the 

interpretation, limitations and future directions of implicit measurements see: Nosek and colleagues (2011);  De 

Houwer and colleagues (2009). 
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this relationship was no longer significant. These results demonstrate that although familiarity 

with the target modulate empathy-related responses, pre-existing attitudes towards that 

specific racial targets play a central role in shaping empathic brain responses. 

The comparison of the neurophysiological responses to the pain experienced by other-race and 

violet models, allowed us to highlight the relative effect of perceived familiarity/similarity in 

shaping empathy-related responses to the pain of out-group individuals in the absence of previous 

racial associations. We observed greater aMCC activity and autonomic responses to the pain of 

other-race models relative to violet models, supporting the key role of familiarity/similarity in 

empathic resonance with members of an unknown race. Such pattern, however, was not found in 

the AI that, together with the aMCC, is involved in processing the motivational-affective aspects of 

self and others’ pain (Lamm et al., 2011). A possible explanation for these differential responses 

may be related to the different roles of the insular and cingulate cortices in emotional processing 

and in the experience of pain. The insular cortex, is an interoceptive cortex, involved in mapping 

internal bodily states and in representing emotional arousal and feelings (Critchley, 2005). In 

particular, activity in the AI is believed to be the final product of the integration of physiological 

signals with motivational and social conditions represented in other parts of the brain, providing a 

meta-representation of the “global emotional moment” (Craig, 2009). In other words, the AI is most 

likely the brain region that better reflects the subjective feeling state associated with the vicarious 

experience of pain. In the present experiment, the subjective experience of resonating with the 

models’ pain is likely to be the result of the integration of the vicarious autonomic responses with 

the social and perceptual features associated with each model. We found no difference in activity in 

the AI for the pain of other-race and violet models, suggesting similarly reduced empathy-related 

feelings for both out-groups. In keeping with the notion of in-group bias (Xu et al., 2009; Mathur et 

al., 2010; 2011; Avenanti et al., 2010; Hein et al., 2010; Liew et al., 2011; Van Bavel et al., 2011) 

subjects resonated preferentially with models more similar to themselves and tended to resonate less 

with the models associated to negative social connotation or unfamiliar features. It is worth noting 
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that, the cingulate cortex is believed to be mostly related with the motivational and volitional 

aspects of pain processing, such as preparation and regulation of associated motor and autonomic 

responses (Craig, 2002; Medford et al., 2010; Vogt et al., 2003; Critchley, 2005; Fan et al., 2011). 

Thus, decreased aMCC and autonomic activity to violet models’ pain suggest less motivation 

to respond to the pain of models with particularly dissimilar and unfamiliar/implausible 

features. Another non-alternative possibility is that increased activity in the aMCC for other-

race relative to violet pain might reflect an effort to inhibit unwanted race-biased responses 

(Bartholow et al., 2010; Ito et al., 2009). Indeed, we found a seemingly counterintuitive 

relationship between reported judgements of similarity and activity in the aMCC for the 

contrast pain of own versus other-race members. This relationship seems to suggest the 

influence of a top-down mechanism where the larger the perceived dissimilarity between these 

two groups of models the less bias could be observed in this aMCC that in fact revealed very 

similar activity levels. Moreover, when entering both the subjective judgments and IAT scores 

in the same regression model not only the effect of similarity was no longer present but the 

levels of implicit bias became (marginally) correlated with activity in the aMCC. These 

opposing correlations suggest that activity in the aMCC at least partially reflects regulation of 

biased neurophysiological responses to others’ pain. In sum, that differences between other-

race and violet conditions were particularly visible in the aMCC prompt us to suggest that by 

colouring other-race hands in violet we decreased the motivation to resonate with this 

novel/strange race and/or decreased the motivation to inhibit unwanted biased responses 

towards these unknown models.  Nevertheless, future studies designed to disentangle the 

functional roles of the insular and cingulate cortices in empathy-eliciting situations (Valentini, 

2011; Gu et al., 2010), or using more sensitive measures of the motivation to inhibit bias (e.g. 

Plant et al., 1998), are needed to elucidate this further. 

Increased resonance with own-race members’ pain seems to arise from the interaction 

between the responses to pain and touch stimuli, and not only from increased response to pain 

Page 25 of 51

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

per se. This pattern was previously reported (e.g. Gou et al., 20011; Perry et al., 2010) and 

suggests that vicarious experiences are differently mapped according to perceived valence 

(Bufalari et al, 2007; Jabbi et al., 2007; Morisson, et al., 2011) and as a function of the target 

(Cikara et al., 2011). Interestingly, Cikara and colleagues (2011) recently found opposite 

patterns of AI responses to positive, neutral and negative events occurring to differently 

socially charged targets. Future studies with extra control conditions and with designs 

allowing a better estimation of baseline BOLD activity might help to reach a better 

understanding of the meaning of touch or neutral conditions in empathy-related studies 

By showing greater emotional responding to the pain of in-group members, the present fMRI study 

extents the results of our previous TMS study where greater sensorimotor resonance to others’ pain 

was found in-group relative to out-group individuals (Avenanti et al., 2010). Thus, when facing the 

physical pain of others, both emotional and sensorimotor brain regions may show a bias in empathic 

responding as a function of racial membership and implicit racial bias. However, in contrast to our 

previous study, no race-related modulation of sensorimotor activity was found in the present 

experiment. The lack of such modulation may be due to difference in the experimental design 

(event-related vs block design) and/or to the different techniques (fMRI vs TMS) used in the two 

studies. Studies suggest that sensorimotor regions are less consistently modulated than emotional 

brain regions in empathy for pain (Lamm et al., 2011). Moreover, TMS may be particularly adept in 

detecting weak effects in sensorimotor cortices (Singer and Frith, 2005; Avenanti et al., 2009b; 

Fourkas et al., 2008).  

It is also worth noting that our study confirms pupil dilation as a valid measurement of empathic 

reactivity in experimental studies. In specific, the observation of others in pain brought about an 

increase in autonomic activity independently of the targets’ characteristics. The levels of 

physiological arousal indexed by pupil dilatation correlated with the ability or tendency to transpose 

themselves into the feelings of fictional characters. Moreover, the pattern of autonomic activity 

paralleled brain responses of in-group biased reactions to others’ pain. These findings complement 
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and extend previous studies showing that during social perception facial mimicry and autonomic 

measures, such as heart beat and skin conductance response (Brown et al., 2006; Yabar et al., 2006; 

Avenanti et al., 2010), may be modulated by group membership, and reveal pupil dilation as an 

important physiological marker of intergroup empathic processing. 

Finally, we advocate some caution in the interpretation of some of the results of this study. 

First, empathy is a complex phenomenon that cannot be fully grasped by individual studies 

alone. While we provide evidence for neurophysiological reactivity to others’ pain, our study 

does not deal with all the possible aspects of empathy. Secondly, it is worth noting that by 

colouring other-race hands in violet we decreased the perception of familiarity/similarity with 

the models. However, we cannot exclude the possibility that the bias found for violet hand 

models is partially due to the novelty/implausibility of this stimulus. Given their intrinsic 

relation the race effect cannot be differentiated from the effects of perceived 

familiarity/similarity. Therefore, we may only conclude that biased responses to these models’ 

pain are due to remarkable dissimilarity and unfamiliarity/novelty with this 'new' race. In 

any case, the role of perceived familiarity/similarity in shaping empathy-related brain 

responses finds support in the correlation analyses with other-race member’s pain. 

In sum, we provide neural and autonomic evidence of in-group bias in empathic reactivity and 

demonstrate that both perceived familiarity/similarity and racial attitudes modulate motivational and 

affective responses to out-group members’ pain. Although humans may be hard-wired to empathize 

with everyone, they seem to preferentially resonate with the pain of individuals belonging to the 

same social group. Advantaged resonance with relevant others may be crucial to maintain and 

strengthen the bonds that unite people particularly in situations of potential threat, like pain, or 

competition over resources, when favouring close others may be of great value. In conclusion, our 

findings suggest that in-group and out-group segregation may be at the core of intergroup empathic 

processing. Moreover, automatic and unconscious attitudes, such as implicit racial bias, play a key 

role modulating the neural correlates of interpersonal reactivity. 
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Fig. 1 – Subjective ratings of familiarity (A) and similarity (B) with the models’ hands, and 

intensity (C) and unpleasantness (D) of the sensation supposedly felt by each group of models. ** 

p<0.001 
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Fig. 2 – Pupil dilation (mm) over time (ms) in response to the pain (pain > touch) of each model 

group. The white vertical bar signals the time point defining Early and Late time windows. 

Significant statistical differences found only for the late time window. * p<0.05, ** p<0.001 
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Fig. 3  -  Brain responses associated with:  A -  main effect of pain (contrast: (all pain stimuli > all 

touch stimuli), and B – main effect of group membership (contrast: [(pain + touch)own-race > (pain 

+ touch)out-groups]). C – Parameter estimates extracted from the cluster in the right inferior 

temporal cortex, including extrastriate body area (EBA), associated with the observation of each 

model group (other-race, own-race, violet) independently of stimulation type (pain + touch). p<0.05 

(FWE) at cluster level.  
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Fig. 4 – A – Activation in the left anterior insula reflecting in-group bias in empathic reactivity 

(contrast: [(pain > touch)own-race > (pain > touch)out-groups)]), p<0.05 (FWE) at cluster level. B - 

3D rendering of the canonical MNI template showing the location of the 3 ROIs – left anterior 

insula (lAI; red), anterior medial cingulate cortex (aMCC; green) and right anterior insula (rAI; 

blue). C- Parameter estimates extracted from each region of interest (ROI) when subjects observed  

pain and touch being delivered to of each group of models (Other-race, Own-race, Violet), * 

p<0.05..   
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Fig. 5 - A – Correlation between the mean activity within the lAI ROI for the contrast [(pain > 

touch)own-race > (pain  > touch)other-race)] and individual scores in the racial implicit association 

test (IAT). Greater activity for own-race models was associated with higher racial bias. B - 

Correlation between the mean activity within the lAI ROI and pupil dilation (mean averaged values) 

for the contrast [(pain > touch)own-race > (pain  > touch)out-groups)]. WS- White subjects; BS – 

Black subjects; O – Overall correlation. 

 

 

 

Page 43 of 51

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Fig 1 - Subjective ratings of familiarity (A) and similarity (B) with the models’ hands, and intensity (C) and 
unpleasantness (D) of the sensation supposedly felt by each group of models. ** p<0.001  
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Fig. 2 – Pupil dilation (mm) over time (ms) in response to the pain (pain > touch) of each model group. The 
white vertical bar signals the time point defining Early and Late time windows. Significant statistical 

differences found only for the late time window. * p<0.05, ** p<0.001  
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Fig. 3  -  Brain responses associated with:  A -  main effect of pain (contrast: (all pain stimuli > all touch 
stimuli), and B – main effect of group membership (contrast: [(pain + touch)own-race > (pain + touch)out-
groups]). C – Parameter estimates extracted from the cluster in the right inferior temporal cortex, including 

extrastriate body area (EBA), associated with the observation of each model group (other-race, own-race, 
violet) independently of stimulation type (pain + touch). p<0.05 (FWE) at cluster level.  
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Fig 4 - A – Activation in the left anterior insula reflecting in-group bias in empathic reactivity (contrast: 
[(pain > touch)own-race > (pain > touch)out-groups)]), p<0.05 (FWE) at cluster level. B - 3D rendering of 

the canonical MNI template showing the location of the 3 ROIs – left anterior insula (lAI; red), anterior 
medial cingulate cortex (aMCC; green) and right anterior insula (rAI; blue). C- Parameter estimates 

extracted from each region of interest (ROI) when subjects observed  pain and touch being delivered to of 
each group of models (Other-race, Own-race, Violet), * p<0.05..    
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Fig. 5 - A – Correlation between the mean activity within the lAI ROI for the contrast [(pain > touch)own-
race > (pain  > touch)other-race)] and individual scores in the racial implicit association test (IAT). Greater 

activity for own-race models was associated with higher racial bias. B - Correlation between the mean 
activity within the lAI ROI and pupil dilation (mean averaged values) for the contrast [(pain > touch)own-
race > (pain  > touch)out-groups)]. WS- White subjects; BS – Black subjects; O – Overall correlation.  

 
53x17mm (300 x 300 DPI)  

 

 

Page 48 of 51

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Figures and Tables 

 

 IRI   

 EC PT FS PD IAT 

(D score) 

SPML 

       

Black 

subjects 

20.3 (3.9) 18.6 (4.7) 16.7 (2.6) 16.00 (3.5) 0.105 (0.25) 12.7 (3.4) 

       

White 

subjects 

17.9 (2.6) 18.2 (4.6) 17.9 (2.6) 12.00 (4.0) 0.377 (0.23) 12.0 (4.3) 

 

Tab. 1. Black subjects and White subjects mean (s.d.) scores on personality trait measures. IRI. 

Interpersonal Reactivity Index; EC, Empathic Concern subscale; PT, Perspective Taking subscale; 

FS, Fantasy Scale subscale; PD, Personal Distress subscale; IAT, racial implicit association test; 

SPML, adapted version of the Subtle and Blatant Prejudice Scale by Pettigrew and Meertens. 
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A) Main effect of Pain x y z t-value 

     

Parietal Cortex     

Left Postcentral Gyrus (BA2)/ Supramarginal Gyrus -58 -26 38 8.54 

Left Intraparietal Sulcus -38 -50 58 4.89 

Right Postcentral Gyrus (BA2) 62 -18 36 7.01 

Right Intraparietal Sulcus  34 -58 58 6.22 

Right Superior Parietal Lobe 28 -52 52 5.36 

Right Inferior Parietal Cortex 54 -32 42 4.88 

     

Pre-frontal Cortex     

Left Ventral Premotor Cortex (BA44) -60 8 28 4.29 

Right Ventral Premotor Cortex (BA44) 62 12 16 6.48 

     

Temporal Cortex, Occipital Cortex and Cerebellum     

Left Mid Temporal Cortex -48 76 4 8.6 

Left Inferior Temporal Cortex -44 -70 0 8.55 

Left Cerebellum -36 -70 -20 7.11 

Right Mid Temporal Cortex 32 -80 26 5.08 

Right Inferior Temporal Cortex 48 -70 2 12.02 

Right Cerebellum 24 -90 -14 5.3 

Right Occipital Cortex 32 -90 -4 5.11 

     

B) Main effect of In-group     

     

Left Occipital Cortex -48 -76 -14 4.51 

Right Inferior Temporal Cortex /Inferior Occipital Gyrus (EBA) 46 -70 -10 4.99 

 

Tab. 2. Brain areas activated for: A - Main effect of pain (i.e. pain stimuli > touch stimuli); B - 

Main effect of In-group (i.e. In-group stimuli > Out-groups stimuli). Initial activation maps were 

tresholded at voxel level at p<0.001(uncorrected) and clusters significance set at p<0.05 (FWE-

corrected). Reported coordinates correspond to local maxima of the respective clusters, and are 

defined in Montreal Neurologic Institute (MNI) stereotactic space.  
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Coordinates 

 

 

Pain Own 

> 

Pain (Other & Violet) 

Pain Own 

> 

Pain Other 

Pain Own 

> 

Pain Violet 

Pain Other 

> 

Pain Violet 

 x y Z t-score p-corr t-score p-corr t-score p-corr t-score p-corr 

lAI -30 20 -4 4.54 <0.001 2.96 0.006 4.28 <0.001 - n.s 

rAI 39 23 -4 2.43 0.025 - n.s. 2.71 0.012 - n.s 

MCC -2 23 40 - n.s. - n.s. 2.36 0.029 2.39 0.027 

 

Tab. 3. Biased empathy-related brain responses within each region of interest (ROI). Anatomical 

coordinates of ROIs, t-scores and p-values (Bonferroni corrected) for each contrast of interest. 
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