{ LIVERPOOL

JOHN MOORES
UNIVERSITY

LJMU Research Online

Nieves, MJ, Mishuris, GS and Slepyan, LI
Analysis of dynamic damage propagation in discrete beam structures

http:/Iresearchonline.ljmu.ac.uk/id/eprint/3157/

Article

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Nieves, MJ, Mishuris, GS and Slepyan, LI (2016) Analysis of dynamic
damage propagation in discrete beam structures. International journal of
Solids and Structures. ISSN 0020-7683

LJMU has developed LUMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LUIMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/


http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Analysis of dynamic damage propagation in discrete
beam structures

M.J. Nieves* G.S. Mishuris' and L.I. Slepyan?

Abstract

In the last decade, significant theoretical advances were obtained for steady-state
fracture propagation in spring-mass lattice structures, that also revealed surprising
fracture regimes. Very few articles exist, however, on the dynamic fracture processes
in lattices composed of beams. In this paper we analyse a failure (feeding) wave
propagating in a beam-made lattice strip with periodically placed point masses. The
fracture occurs when the strain of the supporting beam reaches the critical value.
The problem reduces to a Wiener-Hopf equation, from which the complete solution is
obtained. Two cases are considered when the feeding wave transmits into the intact
structure as a sinusoidal wave(s) or only as an evanescent wave. For both cases, a
complete analysis of the strain inside the structure is presented. We determine the
critical level of the feeding wave, below which the steady-state regime does not exist,
and its connections to the feeding wave parameters and the failure wave speed. The
accompanied dynamic effects are also discussed. Amongst much else, we show that the
switch between the two considered regimes introduces a rapid change in the minimum
energy required for the failure wave to propagate steadily. The failure wave developing
under an incident sinusoidal wave is remarkable due to the fact that there is an upper
bound of the domain where the steady-state regime exists. In the present paper, only
the latter is examined; the alternative regimes are considered separately.

1 Introduction

Lattice models are used to reveal important quasi-static and dynamic phenomena caused by
both the microstructure of materials and the periodic structure of large-scale constructions.
In the first analytical solutions [Slepyan (1981)] and [Slepyan & Troyankina (1984)] obtained
for mass-spring lattices, the role of the microstructure in fracture and phase transition was
demonstrated. In particular, it was shown that wave radiation always accompanies the
steady-state dynamic crack and phase propagation, [Mishuris et al. (2009a), Slepyan (2010b),
Slepyan et al. (2010), Slepyan et al. (2015)]. The radiation creates the speed-dependent
wave resistance, which cannot be detected in a homogeneous material model, [Slepyan (2002),
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Slepyan (2010a)]. This phenomena accounts for instabilities in the crack path propagation
in a homogeneous material, which is attributed to the composition of its microstructure,
[Marder & Gross (1995)], that can yield complex crack behaviour such as micro-branching
and oscillation of the crack paths [Bouchbinder et al. (2010)].

A discrete structure provides an effective way of building in different physical scales to
describe local fracture phenomena. In this way, even the atomic-scale influences on fracture
processes can be traced [Marder (2004)].

On the other hand, linear lattice structures allow one to use effective analytical techniques
(such as the Fourier and Laplace transforms in conjunction with a moving coordinate system,
[Slepyan (2002)] and [Slepyan (2010a)]) to reduce to a problem involving a Wiener-Hopf
equation [Noble (1958)] set along the axis of the crack. This equation contains a term
corresponding to the load applied to the structure. One can specify the set of remote loads
(see [Slepyan (2002)]) and generate the corresponding analytical solutions to this equation,
which contain information on the dynamic features of various propagation regimes. Constant
and oscillatory loads can be embedded into such equations and readily solved to reveal very
different dynamical fracture regimes. A collection of such solutions for the mass-spring lattice
structures, with different geometries (having square or triangular unit cells), can be found in
[Slepyan (2002)], [Mishuris et al. (2009a)] and [Slepyan et al. (2010)] and for homogeneous
structures see in [Slepyan et al. (2015)].

Conventional materials under various loads may also induce other interesting fracture
patterns. In this sense, we refer to [Deegan et al (2003)], where experiments conducted
on single-crystal silicon strip under thermal loading with high temperature gradient may
produce straight line, wavy or multi-branched cracks.

A similar method to that presented in [Slepyan (2002)] can be utilised to model a bridged
crack propagating within a lattice [Mishuris et al. (2008b)] or the dynamical extraction of a
thread from the lattice
[Mishuris et al. (2008a)]. The techniques are also applicable to the analysis of cracks prop-
agating at speeds within subsonic, intersonic and supersonic regimes
[Slepyan (2001b), Guozden et al. (2010)] where changes occur in the lattice response in the
vicinity of the crack tip when moving between speed regimes. Brittle fracture propagation
in finite triangular mass-spring systems has been analysed in [Behn & Marder (2015)], along
with change in the local crack tip behaviour during the transition from subsonic to supersonic
regimes.

Other defects such as structured interfaces can be incorporated, through adjustment of
several local material properties within a lattice. These defects may then play a role in pro-
moting or hindering the propagation of flaws within a lattice as shown in [Mishuris et al. (2007)].
Cracks propagating through inhomogeneous elastic lattices can also be treated by the same
approach in [Nieves et al. (2013)].

Summarising, there exist many articles concerning the analytical solution to fracture and
phase transition problems in periodic mass-spring lattices, however, there are few for beam-
made periodic structures. The static problem of a crack within a beam-made square cell
lattice has been considered in [Ryvkin and Slepyan (2010)] where bending modes of fracture
in a beam-made lattice was analysed.

In the case of failure waves inside a massless beam structure, a simplified model of a
bridge was analysed, [Brun et al. (2013)]. There, models of a failure wave propagating in



uniformly and discretely supported beams under gravity forces were also compared. Failure
was assumed to propagate with constant speed and is represented by the drop in stiffness of
the elastic supports after the strain at the transition front reaches a critical value. Further,
this model has been applied to the analysis of the progressive collapse of the San Saba bridge
[Movchan et al. (2013)], and the collapse rate of this bridge can be accurately predicted by
the model.

Models of fracture in periodic structures may have applications to very important phe-
nomena such as the progressive collapse of a civil engineering structure. Engineering studies
of this phenomena have been used to analyse the collapse of the Twin Towers, World Trade
Centre, New York, on 9/11 [Bazant et al. (2007)]. Some discussions of progressive collapse in
the case of bridges as a result of localised damage or unwanted vibrations caused by natural
disasters such as earthquakes can be found in [Kawashima et al. (2009), Liu et al. (2011)].
Collapse of the several bridges due to the catastrophic Wenchuan earthquake, China, in 2008
has been reported in [Kawashima et al. (2009)].

As another example, in Figure 1 we show the result of spontaneous progressive collapse
of house roofing in Tottenham, London, U.K., 2014. The rooftop is composed of support
rafters that attach to the walls of the house (along the dashed line at 3.) and to a ridge beam
at the roof apex. The damage has been initiated at the point la. where the ridge beam
was connected to one of the neighbouring houses. After this, the ridge beam drops from
this point suddenly and as a result the supporting rafters along ridge beam are progressively
pushed outward as the damage propagates to 2. The collapse has also led to the damage
of connections between the base of the rafters and the house walls (their original position
marked with the dashed line at 3.), leaving a substantial part of the rooftop hanging over
the house walls. The damage process that can be characterised by the result of transverse
movement of the ridge beam that brings about the damage of the connections between
the support rafters and the house at the dashed line 3. This process can be linked to the
propagation of fracture of the transverse supports of a discrete structure within a rigid
interface as a result of transverse movement of the central beam, see Figure 2. We note that
the rooftop considered in Figure 1 is one example of the failure of a beam structure. The
focus of the current article is not to analyse the failure mechanisms of this rooftop, but to
understand such a phenomenon in a structure such as in Figure 2, which is closely linked to
the collapse of buildings, long rooftops and bridges amongst many others.

Civil engineering structures considered in [Bazant et al. (2007), Kawashima et al. (2009),
Liu et al. (2011)] are also known as multi-structures. Understanding their performance when
in operation and their failure mechanisms is of great importance. An exposition into the
asymptotic theory of boundary value problems for finite multi-structures (without failure
mechanisms though) has been given in the monograph [Kozlov et al. (1995)], with applica-
tions to problems in electrostatics, hydrodynamics, structural mechanics and in particular
fracture mechanics.

An alternative analysis of multi-structures, again without failure, involves the multi-
scale asymptotic homogenisation approach presented in [Panasenko (2005)]. This approach
encapsulates the effects brought about by the microstructure, similar to the discrete periodic
lattice approach presented here, in [Slepyan (2002)] and references therein. In dynamic
problems, homogenisation is frequency dependent and efficient methods have been developed
to treat high frequency regimes [Craster et al. (2010)].



Figure 1: The collapse of a roof in Tottenham, U.K., 2014. Picture from http://
www.tottenhamjournal.co.uk /news/lunchbreak_saves_lives_of_builders_in_tottenham_roof_collapse
-1.3858222.
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Figure 2: A heterogeneous discrete structure composed of massless beam members of length
a with concentrated masses M at the nodes m € Z. Members aligned with the horizontal
(vertical) axis have Young’s modulus F; (F3) and second moment of area I; (Iy). Here
we show a static situation, where it is permissible to number the nodes using the index
m € Z. Later, when we consider the propagation of the transition front with a constant
speed V through the structure, the transition front can be traced with the moving coordinate
n =m — Vt/a. In this case the variable n replaces m (with 7 = 0 representing the position
of this front).



In the present paper, we consider a similar structure as in [Ryvkin and Slepyan (2010),
Brun et al. (2013), Movchan et al. (2013)] but assume a failure wave propagation under a
sinusoidal incident wave. The appeal of such structures is that they are more commonly
found in applications than those formed by springs. For the first time, the steady dynamic
fracture of a beam structure is considered here. In accordance with [Slepyan et al. (2015)],
we expect that there exists a domain inside some parameter space where the steady-state
solution is realised. While analysing the steady-state fracture response gives us a good de-
scription of associated phenomena, non-physical solutions associated with this model provide
information of when such regimes do not exist. In addition, there may be different loading
on the structure and since the problem is nonlinear, the response may be different. We
therefore restrict ourselves to considering sinusoidal loading, which is very typical of such
problems. Note that the phenomena corresponding the the sinusoidal loading differs much
from those for the invariable load (as was discussed in [Slepyan et al. (2015)]). In particular,
in the steady-state regime, the transition wave speed coincides with the incident wave phase
speed independently of its amplitude and frequency, and this limits the domain where such
a regime can exist. Note that the transition wave under the action of a sinusoidal incident
wave can propagate steadily only if the group velocity of the latter exceeds the phase speed,
which is characteristic for a bending wave. Note that, in the considered problem, the lattice
periodicity, along with the beam-related mode of the interaction and the wave action are
completely incorporated for the first time.

The structure of the article is as follows. In section 2 we formulate the dynamic fracture
problem for discrete beam strip, as shown in Figure 2, composed of massless beams and
periodically placed masses. Section 3 contains the governing equations and associated solu-
tions for the massless beams necessary for further analysis. We also present the equations
for the balance of shear forces and moments at nodal points inside the strip, which are then
converted in terms of displacements and rotations at each node in section 3.2. Following
this, in section 3.2, this problem is reduced to a Wiener-Hopf equation. The dispersion rela-
tions for the structure are presented. The general solution of this Wiener-Hopf equation is
derived in section 4 for a general speed of the fracture transition front, while also assuming
a sinusoidal feeding wave provides energy to the front. In addition to this, section 4 also
contains the analytical description of the dynamic properties of the structure. In section 5,
the distribution of the feeding wave energy amongst the other dynamic features in the struc-
ture is considered, and this is followed by conclusions in section 6. Finally, some technical
derivations of the results presented here are given in the Appendix.

2 The problem formulation

We consider the discrete structure as in Figure 2, composed of massless beams connecting
periodically placed point masses along the central axis of the structure (along the z’-axis).
Each node is identified with an integer m € Z and at these nodes the masses are assumed
to have mass M. The beam connections emanating from each mass have length a, Young’s
modulus E; and second moment of area I;. In what is considered below, transverse beams
inside the structure have contrasting material properties to the longitudinal beams, and have
Young’s modulus Fsy and second moment of area I5.
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Figure 3: Positive directions of displacements, rotations, moments and shear forces within
elements of the structure in Figure 2.

Equations governing the structure will be completely written in terms of the displace-
ments w,,(t) and the rotations 67 (t) of the node at m. Bending moments and shear forces
inside the m longitudinal beam are denoted by M2, (z,t) and V2 (x,t). Here, z = 2’ — am
is the local coordinate in the m* beam and 0 < x < a. By symmetry of the structure we
restrict our attention to the shear force VY (y,t) inside the m** transverse beam having local
coordinate y, 0 < y < a, when considering the balance of shear forces in section 3.1. The
positive directions of the bending moments in the horizontal and vertical directions of the
structure are shown in Figure 3.

In Figure 2, the case m = 0 represents the interface between broken structure (without
transverse supports, m < 0) and the intact structure (with transverse supports, m > 0). In
the considered problem, fracture is assumed to occur inside the transverse beams (symmetric
about the longitudinal axis) and propagate with speed V' inside the structure. Thus the
transition front at some time ¢ can be located at m = k(t), k(t) € Z and can move a distance
a within the structure to the right, after the time interval a/V. As the transition front moves,
the broken structure can be identified by the inequality m < Vt/a and the intact structure
corresponds to m > Vt/a. Later we will introduce the moving coordinate n = m — Vit/a as
in Slepyan, [Slepyan (2002)], for which 7 > 0 represents the intact structure and n < 0 will
represent the broken structure.

Fracture occurs inside the structure as follows. Let w,. be the critical displacement for
fracture of the transverse links inside the structure to occur. Suppose at a particular time,
the transition front is at the mass m = k, k € Z (corresponding to n = 0). When the
displacement associated with the considered mass, wy(t), satisfies wg(t) = w,, the transition
front moves to the mass associated with m = k + 1. For steady-state fracture, in addition
to this condition one must also impose that the displacements ahead of the transition front
do not reach the fracture criterion w.. Therefore, we assume that

w(t) = w, , wi(t) <w.,j >k, (1)

where k£ € 7 represents the node position of the transition front at time ¢. It is worth



noting that any solution violating the preceding condition provides interesting information
about when non-steady fracture regimes can occur.

Connections will be derived later on the critical displacement w, in order for the steady-
state solution to exist. Several scenarios for the fracture of the transverse links are possible.
In Figures 2, the fracture occurs directly at the interfaces above and below the structure. It
is shown later that the equations governing the structure are independent of the where the
breakage occurs, provided that the symmetry of the structure is maintained.

3 Governing equations, dispersive nature of the struc-
ture and solution to the problem

Here, we consider the governing equations for the massless beam structure in Figure 2.
First, we introduce the fundamental relations for the beam connections inside the structure
in section 3.1. Then governing equations for the masses in the beam structure are considered
in section 3.2 and this is shown to reduce to a Wiener-Hopf equation from which the dispersive
nature of the structure is identified. We present the solution to this Wiener-Hopf problem
in section 4 and this is used to provide a full description of the dynamic features of the
structure that occur during the steady-state fracture process.

3.1 Fundamental equations for the massless beam

We compute expressions for the displacements inside the beams that will be used to construct
the governing equations in terms of the displacements and rotations of the m** node in the
next section.

For the massless Bernoulli-Euler beam model, from the equation

W (z,t)
Tt @
and the boundary conditions
ow ow
W(Ov t) = wm(t) ) %(0’ t) = an(t) ) W(a’ t) = wm+1(t) ) %(&, t) - ;-i-l(t)? (3)

we have
W(wt) = [2wn(t) = wner(t) + aB(0) + 051 (1))
(3 (8) — (1)) — (B, 0) + 265,)) L5 + 500 + (1), ()

where the rotation, bending moment and transverse force are defined as

OW (z,t) W(z,t) E183W(x,t) ‘

82
_ 2wy — _EI
o or ' M 0x? oz3 (5)

The expressions in (4) and (5) can be used for both the longitudinal beams and the transverse
beams (substituting the respective boundary conditions at y = 0 and y = a). Also recall

) V:_
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for the longitudinal (transverse) links E' = F;(Ey) and I = I;(I3). Note that if a transverse
massless beam is broken it does not influence the longitudinal structure’s dynamics. For the
intact transverse beams we state the following conditions

W =6=0 (at the interface), W =w,,, =0 (at the central longitudinal beam), (6)

which leads to expressions for W inside the intact transverse beams:

3 2
Wiy, t) = 2wm(t)% - 3wm(t)% + w,,(t) (above the central longitudinal beam), (7)

and to determine the displacement in the transverse beam below the m* node in the intact
part, we replace y by a — y in (7).

We note that if the beams composing the structure were to have non-negligible density
then the representations (4) and (7) are no longer valid as a result of the incorporation of a
dynamic term in (2).

3.2 Governing equations for the massless beam structure

Here we construct the governing equations for the problem under consideration using the
expressions for the displacements inside the m* longitudinal and transverse beams derived
in the previous section. The dynamic equation in terms of the balance of shear forces at the
m*™ node is

d2w,, (t)

an(()? t) - Vrflfl<a7 t) + (V%top(oa t) - ng’b()ttom(a’a t>>H<m - Vt/a’) - M ds2

=0, (8>
where M is the mass of the node at the m-th junction. Here VZ (z,t) is the shear force in
the m-th horizontal beam and V¥%°P(y, t) (V&P oUem(q ) is the shear force in the transverse
beams above (below) the m-th mass in the intact region.

Here we do not take into account the moment of inertia of the mass, and so the balancing
of the moments gives

MG(0,8) = M, 1 (a, 1) = 0. (9)

We now consider the steady-state problem, where the free longitudinal beam with the
point masses are placed at n = m — Vt/a < 0 (with the assumption that the speed V =
const), and the supported one is placed at n > 0.

According to (4) and (5), we have

Valet) = (1)~ winr (1)) + a0 (0) 4 05 ()} (10
Mi(e,t) = 2230 20) (1) — w0 (1)
Fafa — 32)(85, (1) + 05,(0)) + 0°63,(1)) (1)

whereas from (5) and (7), if m > Vt/a

12515
a3

 12B:0
- ==

VP 1) = — wy,(t) and  VEPOrtom(g ¢)

Wiy (1) (12)



Next we introduce the normalisation that V' = \/E1I;/Mawv, where v is the dimensionless
speed and use (8)-(12) together with the assumption

Wy (t) = w(m —Vt/a), 65 (t)=0"(m—Vt/a). (13)
to obtain the following equations:

6{22w(n) —w(n —1) —w(n + D]+ al0*(n+ 1) = 6°(n - [}

2 d2w(77) _
+24rw(n)H(n) + v —aE 0, (14)
and
Blw(n+1) —w(n — 1] —al0"(n+1) +6"(n — 1) +46"(n)] = 0, (15)
where
r = EQIQ/(El]l) (16)

is a dimensionless parameter which governs the contrast in material properties in orthogonal
directions inside the structure. We note that when the bending moments appearing in (9)
are zero, in addition to the rotations of each mass, the problem (14) and (15) reduces to the
familiar one-dimensional fracture problem of the spring structure in an interface, arranged
as in Figure 2.

As suggested by (14), the transverse connections act as spring supports. This effect
is general and independent of how the transverse beams are connected at the periodically
placed masses along the central axis. In the present case, one could replace the transverse
beam connections by an equivalent spring with stiffness s = 24F»15/a®.

In addition to (14) and (15), for steady-state fracture, we impose

w'(+0) <0, (17)

which ensures the displacement of the central axis of the structure, ahead of the transition
front, does not increase past the critical displacement (see (1)).

Note for a homogeneous beam structure ordered as in Figure 2, » = 1. Next we introduce
the Fourier transform with respect to 7 as

w (k) = /OO w(n)e*dny ,  and 6" (k) = /_OO 6% (n)e*dn | (18)

—00 [e.e]

where the dimensionless wavenumber k = ka (/; is the original wavenumber). This transform
is taken in equations (14) and (15).

Let w" = w"/a which is a dimensionless quantity, the Fourier transform of (15) with
respect to n leads to

F isink |
b = S 19
2 4 cos ke (19)
and consequently from (14) we receive
6sin’k ) . . : N
6 {4(1 — cosk) — m} W+ 24, + (0 + ikv)20Y =0, (20)

9



where the one-sided transforms w. are defined through

oo

wiy = ws (k) = / () H ()™ diy (21)

—00

and 0 + ikv = hrfog + ikv. This limit corresponds to the steady-state solution as the limit
e—

that is in accordance with the causality principle (see Slepyan [Slepyan (2002)]). In what
follows, we omit the hat "~ occurring in the above the quantities in (21).
The Wiener-Hopf equation, without the incorporation of an external load, then follows

g1(k)wy (k) + go(k)w—(k) = 0 (22)

with 12(1 k)?
g1(k) = S S I + 247 + (0 + ikv)?, (23)
92(k) = g1 (k) — 24r, (24)

and the contrast parameter r is defined in (16).

3.2.1 Dispersion relations for the beam structure

The dispersion relations for the structure can be found by setting w = kv as in [Slepyan (2002)],
with w being the dimensionless angular frequency (&0 = KV = /E I /Ma3w is the actual
angular frequency), and solving ¢;(k) = 0, j = 1,2, which leads to

wi (k) = \/12(025_(]:)01(2))2 + 24r (when ¢, (k) = 0) (25)

and

wa(k) = \/ 122)8‘(;)"1(’;”2 (when ga(k) = 0) (26)

The dispersion relations (25) and (26) are plotted in Figures 4 and 5 as functions of the
normalised wavenumber k, for the case when r = 0.5,1,1.5 and 4. The ray w = kv is also
plotted in these figures for various speeds. The intersection of the ray w = kv with wy(k)
(wo(k)) represents a wave propagating to the right (left) of the transition front within the
structure. Direct comparison of the group velocity of the wave v, = dw; (k)/dk (dwq(k)/dk)
at these intersection points with the phase speed v indicate which waves will reach the
transition front. At intersections of w = kv with wy (k) (w2(k)), if v, > v (v, < v) then the
corresponding waves will propagate away the transition front, otherwise they will propagate
towards this front if v > v, (v, > v).

10



Figure 4: (a) Dispersion relations w;(k), j = 1,2, plotted as functions of the dimensionless
wavenumber k, when (a) r = 0.5 and (b) » = 1. In (a) the line w = kv, for v = v1,0.78,0.83
and vy, is presented and in (b) the same line is given for v = v1,0.8,0.909 and v,. The
dashed lines indicate the limits of the gradient v of the lines, which are also limits of the
speed regimes V; and Vi, (see section 3.2.2). The solid black rays corresponding to (a)
v =0.78 and (b) v = 0.8 are shown, that indicate p;, j = 1,2, as the zeros of g,(k) and g¢;,
1 <1 < 3, as the zeros of g (k).

3.2.2 A particular speed range and associated fracture phenomena

As an example, we consider the dimensionless speed in the range v; < v < vy, with v; = 0.74
and ve = 2.335. According to the dispersion diagrams, in this speed range the function g (k)
will only have a double zero at k& = 0 and two pairs of simple zeros at +p;, p, (see the
intersections of the solid line w = kv with the function wsy (k) in Figures 4 and 5). We will see
that the considered speed range for v can also be partitioned into two speed ranges defined
by sets Vi and Vi;:

Vi={v:gi(k)=0for k==%q, q #0},
(27)
Virp:={v:gi(k) =0for k ==4q;, 1 <j <3, ¢; #0 and are distinct} .

If the speed v < vy, then the same concepts are extendable to this case. There, one may
expect the density of sets representing various collections of zeros of g;, 7 = 1,2, to increase
and the procedure developed here can be applied to these cases.

For v € V}, the pair of simple zeros of g;(k) is denoted by +¢;, whereas for v € Vj;, in
addition to these zeros we have two more pairs of simple zeros at k = +¢s, +¢q3. Examples
of when the speed v is chosen so that v € Vj; can be found in Figure 4, whereas when
v € V7 an example is shown in Figure 5(a) and 5(b). The behaviour of the wave numbers
pi, 1 =1,2, and ¢;, 1 < j < 3 as a function of v can be found in Figure 5(c) for » = 1. Here
the existence of the wavenumbers ¢ and ¢3 as a function of v can be seen and they appear
when v € V7 = (0.815,0.985).

The sets V; and V;; have a particular physical interpretation. If v € V7, then no wave
will be transmitted into the intact part of the structure. If v € V;;, then one can find that

11
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Figure 5: (a) Dispersion relations w;(k), j = 1,2, plotted as functions of the dimensionless
wavenumber k, when r = 1.5. The line w = kv, for v = v1,0.815, 0.985,1.2 and w,, is
presented. The description of p;, ¢ = 1,2, and ¢;, 1 < j < 3 is given in Figure 4. (b)
Dispersion curves corresponding to the case when contrast parameter r = 4 and the lines
w = kv for v =v1,0.775,1.272,1.3, 1.5 and vy. (c) The roots p;, i = 1,2, and ¢;, 1 < j <3
plotted as functions of the dimensionless speed v for r = 1.5.
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waves will be transmitted inside the intact part of the structure. The dispersion diagrams
(in Figures 4-5) show that for certain r values we can expect to encounter two different
physical behaviours of the structure for quite large speeds v, by the presence of the both
speed ranges V; and V;.

In Figure 5(b), another property of the set V;; is also highlighted, where the set can be
composed of discrete intervals of values for v. Here, in Figure 5(b), there occurs two small
discrete intervals and for this value of 7, Vi; = (0.74,0.775)U(1.272, 1.3). The same behaviour
of the set V; can also be asserted, and we refer to Figure 5(a), to demonstrate that this set
can be composed of two discrete intervals, represented as V; = (0.74,0.815) U (0.985, 2.335).
Therefore, for increasing v inside v; < v < vy, we may oscillate between either of the two
physical regimes connected with the sets V; and Vi, (see Figure 5(b)).

3.2.3 General description of zeros of the functions g;, j = 1,2

The function go(k) has a double zero at k = 0 and two or more pairs of non-trivial simple
zeros at k = +py, ..., £po,, where n > 1. Here p; < ps < -+ < pa,. Note that n =1 when
v; < v < vy, whereas n = 0 for v > vy and non-trivial zeros of gs(k) do not exist.
Forj=1,....n
(i) atk=py_1, v<uy,
(i) at k=py, v>u,,
as demonstrated in Figure 4.
The function g; (k) has one, three or more pairs of simple zeros k = +qy, . .., £qo,41, with

v > 0. These zeros form a monotonically increasing sequence i.e. q; < g < --- < @o,11. For
each value of the contrast parameter r

v=0, if wv>uw(r),

where vy(r) is a monotonically increasing function of r. As an example Vj(r) &~ 1.0519 when
r = 2. Also note if r > 2

Pon < q -

The preceding inequality does not hold if » < 2. For

(1) j:()?"'?l/? atk:q2]+17 ’U>’Ug,
(11) jzla'-.,V, atk?:(hj, v <y .

In the next section we derive the general solution for the Wiener-Hopf equation for any
speed v.

4 General solution of the Wiener-Hopf equation (22)

We discussed the waves propagating internally through two different parts of the structure,
but these waves should be generated by an external action. Clearly, the collection of dynamic
features inside the structure will depend on such an action. As an external load, here, we
will define the remote force that produces waves propagating from infinity to the right inside
the broken part of the structure (feeding waves), that will move the transition front to the
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right with a constant speed. This movement will initiate other waves (reflected waves that
move from the right to the left and transmitted waves that move from the left to right of
the transition front, see Slepyan [Slepyan (2002)]).

We begin by rewriting the homogeneous (22) as

ws (k) + L*(k)yw_(k) = 0., (28)

with L*(k) = g2(k)/g1(k), that has zeros and singular points located in both the upper and
lower half of the complex plane and L(k) — 1 as k — Fo0. It is possible to construct L* in
the form

L*(k) = L(k) (29)
where according to section 3.2.3

(=12 T (0 = i(k — paj—1))(0 — (K + paj—1))
e = [T, (0 — ik — )0 — i(k + 42,)) ’ (30)

[1=0(0 +i(k — g2;41)) (0 +i(k + go;41))

_ = - - - . 31
(1 +ik)2v=)(0 + ik)2 szl(() +i(k — p2;)) (0 +i(k + poj)) (31)
The meromorphic functions ¥ admit the asymptotes
2i(v — n) 1

Note L(k), has neither zeros nor singular points on the real axis. In addition, L(k) >
0(—o0 <k <o0)and L(k) = 1(k — %o0), with

Re(L(€)) = Re(L(=¢)) and  Im(L(¢)) = —Im(L(=¢)) - (33)
Thus, we may factorize it using the Cauchy type integral
LR = Lo (k)L (k). Lo(k) = exp [i% / h 12 f(i) dg] (4% > 0) (34)

with Ly (+iocc) = 1. The asymptotes for L for k — oo are

Li(k):lzt%—i—O(%), for k — +o0 . (35)
with | e | e
h=5e [ L= /O In |L(€)dé (36)
Then (28) and (29) imply
1 L)
L+(k)\11+(k;)w+<k) + \I}_(k)w,(k:) = d(k), (37)



where ®(k) represents the loading from the left of the transition front and appears as a result
of the division through equation (28) by factors corresponding to zeros at k = %py;_1 — i0,
j =1,...,n. The functions with the supports at &k = £py;_1, 1 < j < n, reflect the remote
actions at the left. If this action has frequency w = p,v, then this allows us to introduce in
the right-hand side delta functions of k at £p,. Thus ®(k) can take the form

Cel? Cel? Ce™i¢ Ce™i¢

(k) =
(k) 0+i(k—po)  0—i(k—py)  O+i(ktps)  O—ilk+p)

(38)

where C' is a complex constant to be determined and ¢ is the phase shift of the considered
load.
The solution of the Wiener-Hopf equation (37) then follows as

Cel? Ce ¢
welh) = CL(h) [ b (30)
and
_U_(k) Cel? Ce™i¢
) = T it T o (40)

4.1 Far-field behaviour of the structure

The poles of the functions w4 reveal information about the dynamic features within the
structure to the far left and right of the transition front. We now trace the expressions
which determine the behaviour of the structure far away from the transition front.

For n — —o0, the behaviour of the original function w can be identified in the form

w(n) wa+ws+2w,€j), n— —00 . (41)
j=1

Here the term wy corresponds to the feeding wave generated inside the structure which
propagates to the transition front, that is determined by the poles k = £p, of w_. Note the
points k = +£p, are removable singularities of w, defined by (39) and (30).

We assume that this feeding wave takes the form

wy(n) = Acos(pyn — ¢) , (42)

where A is the amplitude and ¢ is phase of this wave (already introduced in (37)-(40)).
This feeding wave is produced from the load applied at 7 = —oc. The phase shift, ¢ in (42)
defines the position of the transition front, n = 0, relative to the wave (see (38)).

The functions wy(«j), 1 < j < n, represent reflected waves propagating away from the
transition front, associated with the poles k = £py;, 1 < j < n. The term w;y is a linear

function of n that represents the slope of the beam for  — —oo, which arises owing to the
pole k =0 of w_ in (40).
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It is worth noting that no wave will propagate inside the intact structure if w, has no
poles along the real axis (see (30) and (39), for the case when v = 0). On the other hand, if
v > 1, we can expect transmission of feeding wave energy into the intact region and we find

wi) ~ > w?, oo, (43)
j=1

where ng ), 1 < j < v, represent waves transmitted into intact part of the structure. These
transmitted waves correspond to the poles k = %¢5;, 1 < j < v of the function wy.

Through an appropriate choice of C' in (39) and (40), a relation connecting w,, A and
¢ can be determined which governs the existence of the steady-state propagation of the
transition front. The form of remaining functions w7(~i), 1 <1< n, wﬁj ), 1 <75 <vand ws
for n — —oo can be determined explicitly using a similar approach.

In order to trace the expression for the feeding wave (42) from the asymptotes of w_ in
the vicinity of k = 4p, it is necessary to choose C' in the right-hand side of (38) as:

L_(p,) A

O — A 44
U (p) 20" (44)
and the detailed derivation of (44) can be found in the Appendix.
It also follows from (39) and (40) that
w(0) _ . o i
= lim (—ik)w; = lim (ik)w- =2R(Ce?), (45)
a k—ioco k——ioco

and equating this to the critical displacement, w,, we receive the first equation with respect
to the unknown constants

We

2R(Ce'?) (46)

a
Here the division by a appears as a result of the normalisation of displacement by the beam
length in section 3. Thus, w,. is completely determined if the feeding wave amplitude and
phase are supplied. Alternatively, (46) takes the form:

_ Y (po)| we
OOV = ) A o
Y. = arg(C) = arg (é:ig:;) ) (48)

It can then be established from (46) that the feeding wave amplitude A and critical
displacement w,. must be chosen to satisfy

L (po)]

in order for the transition front to propagate steadily through the structure.

[1]

We
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Owing to (33)—(36) the asymptote for w, in (39) as k — +oo is

2Re(Ce?)i

wi (k) = L

— 2 [Re(Ce?) {li + 2(v — n)} + p,Im(Ce?)] % + O (%) . (50)

Upon using the identity:

> : F'(A+1)
. A ikn —
s;lel—rgo 0 edn (0 — ik) 17

we obtain from (50) that
w() = w(+0) + 1w/ (+:0) + O(*) , for n — +0.,

where

w(+0) = 2a Re(Ce'?)

and
w'(+0) = 2a [Re(Ce?) {l; + 2(v — n)} + p,Im(Ce'?)] . (51)

Therefore, in accordance with (17), we prescribe that
Re(Ce?) {I; +2(v — n)} + p,Im(Ce*) < 0, (52)

where C' is determined by (44). The two conditions (46) and (52) are then necessary and
sufficient for the transition front to propagate steadily through the structure.

4.1.1 Minimum value of the feeding wave amplitude to steadily propagate the
front with a given speed v

The function = in (49) defines the minimum value of the feeding wave amplitude that gener-
ates steady-state fracture at a given speed v, v; < v < vy. The function = and its dependence
on v for v; < v < vy, is presented in Figure 6(a), for various values of the contrast parameter
r. The function is monotonically increasing for fixed v and increasing r. Note that the
dashed part of the curves correspond to those speeds v € V;;. The function Z is continuous
as we move between the sets V; and V;; for increasing v, and shows a singular behaviour as
v — vg, (in this case p; and py are approaching one another to form a resonance point and
where this occurs v = v,). The function = can change rapidly as we pass from v € V; to
v € Vi1 as shown for r = 2 in Figure 6(a) near v = 0.8.

Figure 6(a) also shows the behaviour of the set V;;. The position of set Vj; shifts along
the interval v; < v < vy and can redistribute into several discrete sets inside this interval,
for increasing r. From r = 1 up to r = 5.5 one can identify an interval that forms part of the
set Vir that shrinks with increase of r, reducing the possibilities for transmission of waves
into the intact structure. Further, for r = 5.5 we can see the appearance of another range
of speeds for which transmitted waves can occur in the intact structure. Here, we refer to
the representation of V;; in terms of discrete intervals (mentioned in section 3.2.2) in Figure
6(a) that form the set Vi;. The set V} also appears in Figure 6(a) as the union of discrete
intervals for r > 1.

17



Figure 6: (a) The dependence of = on the dimensionless speed v for r = 0.5,1,2,3,5.5 and
6. Dashed parts of each curve correspond to speeds v € Vj; for that particular r value.
(b) The ratio A/w. plotted as a function of the phase ¢, for » = 1 and several values
of the dimensionless speed. Dashed lines indicate the results for those speeds in the set
Vir. The minimum for each curve is marked with a cross, which correspond to the points
(¢, AJw.) = (4.033,3.161), (3.884,4.471), (3.656,11.589) and (3.634, 13.836). These points
coincide with the value of = for the given values of v. In addition, circles have been added
to curve to indicate combinations of ¢ and A/w,. for which (52) is invalid.
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A plot of the the ratio A/w,. as a function of the feeding wave speed is provided in Figure
6(b) for the case » = 1 and various speeds v. Note that condition (49) indicates the range
of values for ¢ for which the (46) is valid and this range also depends on the speed of the
transition front. In addition, the right-hand side in (47) is positive and only values of ¢
for which this condition is valid should be accepted if the feeding wave amplitude and the
critical displacement are known.

In Figure 6(b), we see that the range of ¢ for which (47) is valid shifts in the positive
direction along the horizontal axis for increasing v. For a given value of v, the curve will
approach two vertical asymptotes for values that coincide with the upper and lower bounds
of the range of admissible ¢ values.

For every value of the transition front speed v, there is a value of ¢ for which the ratio
AJw, takes its minimum value. Physically, for a given w,, these points can be linked to the
minimum amplitude A of the feeding wave required to propagate the transition front with a
constant speed. It also implies that the energy generated by feeding wave to create the latter
scenario is also at a minimum (see section 5). For every value of A/w, above this minimum
value, we see there corresponds two values of ¢ satisfying condition (46).

We also indicate on the curves in Figure 6(b) for which values of A/w. and ¢ that
condition (52) is not satisfied. For all speeds we show that the choice of ¢ is unique, and
this is taken from the left of the minimum point of each curve.

4.2 Other dynamic features to the left of the transition front

4.2.1 The reflected waves
The terms w,(nj ), 1 < j < n, correspond to the reflected waves (produced by poles at k =
+py;+10 of w_ in (40)). They can also be derived through application of the residue theorem

and the inverse Fourier transform. The function wﬁj ), 1 < j < n, takes the form
w? () = AY cos(pyn — Y — o), for1<j<n, (53)
where the reflected wave amplitude is given as

4a|WT (p2;)||C|
1p3; — PAIIL—(p2)|

A(]

T (2 cOS( + 40))2 + (pusin6 -+ )2 (54)

and
\IIT (p2j) = lim (0+ (k p2j>>\:[j (k) .

_>p2]
The terms in this wave’s phase shift are

o =g 20) (55)

and

o) = arg<2—2
25~ Fo

[pajcos(@+ ) +ipysin(o+ ve)}) v =arg(C) . (56)
For a detailed discussion of the derivation of the functions w ), 1 < j < n, see the Appendix.
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4.2.2 The inclination of the beam to the far left of the transition front

The remaining second order pole of w_, at k = 0i, in (40) gives us the expression for the
slope of the beam when 7 — —oo. The inclination of the beam to the far left of the transition
front takes the form

wy(n) = Asn + B, (57)
where the coefficient of the linear term in 7 is
2a Im(Ce?) T (0
_ ZaIm(Ce)u(0) -
puL-(0)

and the constant
_ 2ailm(Ce?)(U)'(0) | 2a ¥*(0) [Re(Ce) N Im(L' (0))
) pvL-(0) poL-(0) [ po L_(0)
Here, C' is defined in (44) and

(=1rntt H;‘/:o(kZ - qgj-&-l)

Ul(k) = , - .
W= T L 2 - %)

(60)

4.3 Dynamic features to the right of the transition front
()

4.3.1 The transmitted waves w;,

In addition to the reflected waves propagating inside the structure to the left of the transition
front (see section 4.2.1), for v > 0 there exist transmitted waves inside the intact structure.
The form of these waves, can be traced by considering the poles at k = +¢9; —i0, 1 < 5 < v,
in the function wy (see (39)). Therefore, when v is chosen so that ¥ > 0 and  — oo, one

will see a linear combination of the waves w(j )

1 < j <, in accordance with (61), where
wil () = A cos(qom — v —afl)), 1<j<v. (61)

Here

4a|\If”(CJ2J)HCHL+ Q2 ‘\/ (qaj cos(9 + 1e))? + (py sin(¢ + 1.))? (62)

A -
q2j v

where

V(o) = lim (0 —i(k = g2;)) U (k) ,

_>q2]

and terms in the phase of these waves are

) = arg (104 (g27) L+ () ) (63)

ol = arg(2—2{q2j cos(¢ + ¥.) + ipy sin(¢ + ¢c)}) ;

25— Pou

with ). defined in (48). Note that the functions w,gj) =0,1<j<vifv eV (this case
corresponds to v = 0).
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4.4 The rotation of each mass inside the structure

Having established the behaviour of the structure far from the transition front we now use
the results of the previous sections to address the behaviour of the rotations by using (19).
4.4.1 Rotations of the masses to the left of the transition front produced by

the waves and the inclination

Using the (42) and results of section 4.2.1, the forms of the waves that exist inside the
damaged part of structure are

wy(n) = Acos(p,n— o), (64)
wl(n) = AY cos(pyn — 9 —al) (65)

with 1 < 7 < n. We will concentrate on the feeding wave w¢(n) as in what follows results
for the reflected (and transmitted waves in the next section) can be derived in a similar way.
The Fourier transform of wy(n) is then

wi = = wA[e5(k—p,) +e 6k +p,)] - (66)

Insertion of this in (19) gives an expression for the Fourier transform of rotations 6 generated
by the feeding wave:

3misin k

F = —————— " _A[e?5(k — p, 5k +py)] . 67
! a(2 + cos k) (70t =) 700k +p.)] (67)

Applying the inverse Fourier transform yields

3Ai  sinp , .
o - _ v —i(pon—¢) _ pilpon—9)| 68
7(n) 2a (2 + cospy) [6 ¢ ] (68)
Therefore, .
sin p, )
0%(n) = -3A———— W — @) .

fn) = =3 a2+ cospy) sin(py1 — ¢) (69)

In a similar way, we can derive expressions for the rotations 677 associated with reflected

waves wq(«]), as

. . Sin . ) .
01 (n) = —3Af) o s sinpayn = v = o)
for1 <j<n.
In addition to the feeding and reflected waves existing to the left of the transition front,
in section 4.2.2, we also showed there exists a slope behind the transition front. To calculate

the rotations produced by the slope, we take the Fourier transform of (57) to obtain

w! = 2n[—i1A0 (k) + By(k)] . (70)
Then, in a similar way to the previous section, we can write
T AS

where 07 are the rotations produced by the linear function ws.
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4.4.2 Rotations of the masses produced by the transmitted waves ahead of the
front

In similar way to the derivation of (69), we can assert that the rotations 6y’ produced by

the waves w), 1< j < v, (see (61)), are given by the formula

()

., . Sin Q2 . .
etr] (77) = _3A1§]) : ) Sln(Q?jn - wt(i) - Oy ) :

" a(2 4+ cos qa;

4.5 Illustration: Beam profiles during the steady-state fracture
process

One can compute the inverse Fourier transform of (39) and (40) to retrieve the analytical
solution for the displacements. In addition, the solution presented in (39) and (40) needs
to be combined with (19), and then the inverse Fourier transform is taken to receive the
rotations of each mass. The inverse Fourier transforms can be computed numerically to
obtain values of the mass rotations and displacements and we can use these to construct the
beam displacements between each node along the central axis of the structure with (4).

The results are shown for two cases, when v € V; and v € Vj; in Figures 7 and 8,
respectively. In Figure 7(a), we show the normalised displacements w/w, along the central
beam of the structure as a function of 17 ahead and behind the transition front. In this case,
nodes have mass M = 1 and the beams have the properties a =1, E; = [; = 1, Eyl, = 0.5,
(r =0.5), and w, = 2.51. The feeding wave amplitude is A = 5.002. For these parameters,
the speed of the transition front is v = 1.7214 € V;. Masses are represented in this figure
by the black dots and those which are supported by the transverse beams are also supplied
with red crosses (n > 0). We also represent the critical displacement condition w/w. = 1 by
the horizontal dashed line. In Figure 7(b), we present the same displacements in the vicinity
of the transition front (n = 0).

During the steady-state fracture process, one can clearly identify the slope behind the
transition front (in Figure 7(a)), along which the feeding and reflected waves propagate
along. The gradient of this slope is predicted using A of (57), we also supply a red dashed
line having gradient A, = —6.287 demonstrating the slope behind the transition front has
exactly this inclination. On the other hand, as v € V;, according to the theory presented
here, no wave is transmitted to the intact structure and this is precisely what is observed in
both Figures 7(a) and 7(b).

On the contrary, when v € V7, one may expect the transmission of a wave into the intact
structure. In Figure 8(a), a view of the profile of the structure is given, for the same material
parameters as in Figure 7. Here, the feeding wave amplitude is A = 8.077, the inclination of
the slope Ay, = —5.435, the critical displacement w, = 0.5468 and v = 0.7745 € V;;. Again
for v € Vi; we see the slope following the propagation of the transition front. In Figure
8, we demonstrate there is a wave transmitted into the intact structure with amplitude
A; = 0.07672 when v € Vi (clearly observed for n > 2 in Figure 8(b), indicated by the
red dashed line A;/w.), whereas near 7 = 0 there is also some local deformation near the
transition front.
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Figure 7: Displacements along the central axis of the beam-made strip based on the inverse
Fourier transform of (39), (40) and (19). Masses in the structure are shown by black dots
and those masses which are supported by transverse links are also provided with red-crosses
(n > 0). In (a), we show the displacements both ahead and behind the transition front,
where one can observe the slope inside the structure and the feeding and reflected waves.
The gradient of the slope (also predicted by the theory) is represented by the red dashed line,
with gradient equal to As(= —6.287) of (57). In (b), we show computations in the vicinity of
the transition front, that shows no wave is transmitted to the intact structure. Parameters
used in the computations where M =1, a =1, £y = I, = 1, E;I;, = 0.5, (r = 0.5), and
w, = 2.51. The feeding wave amplitude is A = 5.002 and this profile occurs as the front
steadily propagates with speed v = 1.7214 € V.
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Figure 8: Displacements along the central axis of the beam-made strip based on the inverse
Fourier transform of (39), (40) and (19). Description of both diagrams is given in Figure
7. In (a), again we show the slope inside the structure and the feeding and reflected waves
during the fracture process. The gradient of the slope (also predicted by the theory) is
represented by the red dashed line, with gradient equal to As(= —5.435) in (57). In (b),
we show computations in the vicinity of the transition front, where a wave is transmitted
to the intact structure with amplitude A; = 0.07672 (a red dashed line corresponding to
A;/w,. is shown). Parameters used in the computations where M =1, a =1, By =1, =1,
EyI, = 0.5, (r =0.5), and w, = 0.5468. The feeding wave amplitude is A = 8.077 and this
profile occurs as the front steadily propagates with speed v = 0.7745 € V;.
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5 Energy redistribution within the structure

In this section we investigate how the energy carried by the feeding wave is distributed
within in the structure during the fracture process. In particular, we identify how the slope
occurring behind the transition front influences the wave radiation properties observed in
the fracture process.

5.1 Energy balance

The energy Gy carried by the feeding wave can be written as the sum of energies carried by
the other waves inside the structure, in addition to the kinetic energy given to the masses
by the linear deformation (57) and the strain energy required to break transverse links at
1n = 0. Thus, we can write

Gr=Go+> GV +3 G+ Gy (72)
j=1 j=1

where

(i) Gy is the energy spent on breaking the transverse links,
(ii) GY ), 1 < j <n, is the energy carried by the reflected waves,

(iii) GY . 1< j <, is that carried by the transmitted waves and

tr

(iv) Gy is the kinetic energy of the masses generated by (57).

The strain energy G

The energy released due to the breakage of the two transverse links at n = 0 can be computed

as
“ W (y, t
Go = —/ M(y,t)#dy
0 dy

where it is noted that the quantity W is defined by (7) for n = 0 (under the assumption
Wi () = w(n), 0%(t) = 6*(n)) and M is given in (5) with E' = FE, and I = I5. Here, if the
feeding wave amplitude A and the phase ¢ are supplied, then Gy can be calculated using
(46) and (73).

12B,15
= ——w

c )

(73)

a3

The energy carried by the feeding and dissipative waves

The energy G carried by the feeding wave takes the form

Gf:CLNflvg_v‘ s (74)
v

g
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whereas the energies GY) and Ggi) carried by the reflected and transmitted waves, respec-
tively, can be calculated through

Gf,j) = aNﬁj)—|Ug — U’, J=rtr. (75)
Yg
Here Ny is the time-averaged energy flux density produced by the feeding wave and this is

given by
_ 3A%E\I1p,V sin(py)(cos(p,) + 5)(1 — cos(py))

N
/ a*(2 + cos(py))? (76)

and for the reflected and transmitted waves

N0 _ BAYPELKDV sin(k) (cos(ky) + 5)(1 —cos(k)) o

J ()\\2 ) — ’
a*(2 + cos(kj’))
where . .
kD) =pyy 1<j<n, and k¥ =gy, 1<j<v.

Also, v, is the group velocity for the wave considered (v, = 3—“,:).

Kinetic energy of the masses along the inclination of the beam

The kinetic energy for the masses along the inclination observed for n — —oo is

M [(w(m)\? MV?
@_3( )—7§&, (78)

ot
which follows from (57).

5.2 Illustration: Energy ratios

Dependence of the energy ratios on ¢

In this section, we present numerical computations for the speed range v; < v < vq, showing
how the energy from the feeding wave is distributed within the structure during the fracture
process. For this speed range, there exists a single reflected wave ((n = 1), GY = G,) in the
structure and the existence of transmitted waves depends on the speed v and the contrast
parameter r. Also, as discussed in section 3.2.2, this speed range may be partitioned into
the two sets V; and Vi;. For v € Vi, v = 1 and there is a single transmitted wave in the
intact structure. The energy this wave carries is denoted by Ggi) = GYy,. If v € V}, then there
exists no transmitted waves in the intact structure and in (72) the terms Ggﬁ) =0,1<j<v
(in fact in this case v = 0).

In Figures 9(a) and (b), we show the dependence of the energy ratios Go/Gy, G, /Gy,
G /Gy and Gy /Gy on the phase shift ¢ for the contrast parameter r = 1. In this figure, it
can be seen that in accordance with (72), the energy ratios sum to unity.

This figure shows some main features of the energy ratios as functions of ¢, which can be
observed for any value of . In particular, there exists an optimal value of ¢ = ¢* = 2w —1),, for
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energy ratios
energy ratios

Figure 9: The energy ratios Go/Gy, G, /Gy, Gy, /Gy and G /G plotted as functions of the
phase ¢ for r =1, and (a) v = 0.75 (v € Vi) and (b) v = 1.5 (v € V7).

which the energy carried by the waves GG,., G, inside the structure and the energy release due
to fracture G take their maximum value, eg. in Figure 9(a), this occurs for approximately
¢ = 3.6.

At this optimal value of ¢, the kinetic energy Gy within the structure is zero. Consulting
(78) this implies the inclination A of the structure to the far-left of the transition front is
zero and therefore the feeding wave energy is distributed only amongst the waves. According
to (71), it also means the rotations produced by (57) to the far-left of the front are equal to
zero. Thus, in the case ¢* = 2w — )., masses will rotate as a result of the influence of the
waves inside the structure and no contribution to this rotation occurs as a consequence of
the deformation (57) (which is constant).

The phase ¢* = 2w —1). gives rise to the extremum in the energy ratios and corresponds to
the minimum feeding wave energy required to propagate the transition front with a constant
speed (see section 4.1.1).

Figure 9 also shows how the feeding wave energy is distributed for v € V; and v € Vp;.
For v € Vi, we see the presence of a transmitted wave in the intact structure and thus some
of the feeding wave energy is given to this wave in Figure 9(a). Note that when v € V;, we
no longer expect any transmission of waves into the intact structure (since v = 0), therefore
the energy in this case goes to the reflected waves and the slope of the broken part of the
structure as in Figure 9(b).

We also consider different values of the contrast parameter r and its effect on the energy
ratios. In particular, taking » > 1 we observe in Figures 10 and 11 that the intact structure
allows for less energy to be carried by the transmitted wave (and this part of the structure
begins to act like a rigid interface with increase of ). In this case, more energy is spent on
the reflection of the waves. In particular for increasing r, if v € V;;, the energy carried by
the transmitted wave in the intact structure is clearly seen to decrease quite rapidly for all
¢ (see Figure 10(a) and 11(a)). For example, in the cases r = 3 and r = 6 in Figures 10(a)
and 11(a), respectively, the effect generated by the transmitted waves is very small. As a
result, in these figures, the values of G./G have been appropriately scaled to demonstrate
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their effect on the partition of feeding wave energy. Here, large r corresponds to the intact
structure having stiffer transverse supports or a larger rotational inertia, due to either the
Young’s modulus or second moment of area being larger, in comparison to those properties
for the horizontal links. Such a contrast in these material properties could influence the
vibrations within the intact structure, making them smaller, and hence we see the decrease
in the magnitude of G;./G as we increase 7.

For r < 1, we can expect much more energy of the feeding wave to be transmitted into
the intact structure for v € Vi, (see Figure 12(a)). Note also that the energy given to the
transmitted waves in Figures 10-12 is always less than the energy carried by the reflected
waves. The energy spent on fracture is also seen to decrease as we increase r in Figures
10-12.

The way the energy is partitioned inside the structure is also dependent on the feeding
wave phase ¢. Focusing on Figure 12(a), we observe for approximately ¢ € [2.25,3.1], most
of the feeding wave energy is given to the slope behind the transition front, with the rest
being distributed to the waves and the fracture energy. When ¢ increases inside the interval
[3.1,3.7] (¢ = 3.7), the energy along the slope tends to zero at 1) = 1., whereas the energy
distributed to the fracture process and the waves increases. Similar competition between the
energy consumption of the dynamic features of the structure can be found in Figures 10-12.

6 Conclusions

Here we have considered dynamic fracture inside a discrete structure composed of periodically
placed masses connected by beams. This problem has been solved using the Wiener-Hopf
technique [Noble (1958)] for any given speed v of the transition front. Two distinct regimes
of the structure have been identified during the steady-state fracture process for a specific
range of the speed v. In one of these regimes, there exists a sinusoidal wave transmitted to
the intact part of the structure. In the other regime, only the evanescent waves exists there.
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We have also identified the magnitude of the feeding wave amplitude required to propa-
gate the transition front with a constant speed v. One may also observe a rapid transition
of the feeding wave energy associated with this amplitude as the structure moves between
the regimes discussed above.

Note that the displacement criterion at the transition front is also insufficient in guar-
anteeing the steady-state regime. In addition, it is necessary to prescribe that the dis-
placement of nodes ahead of the transition front remain below this critical displacement
[Marder & Gross (1995)]. This admissibility criterion is violated when the feeding wave am-
plitude (at a given frequency) is high enough. In such cases, alternative ordered regimes arise
[Mishuris et al. (2009a), Slepyan et al. (2015)]. Alternative regimes arising in the considered
structure are examined separately.

In the analysis of the structural dynamics during fracture, we have identified that behind
the transition front, waves reflected from and incident on the front will propagate along a
slope. Ahead of the front, one may find waves transmitted to the intact structure. Rotations
of the masses also accompany the displacements produced by these effects.

The distribution of energy amongst these dynamic effects has also been obtained. The
minimum energy required to propagate the front steadily with a certain speed has also been
shown to coincide with the case when the gradient of the slope behind the front vanishes.
Consequently, it occurs that the rotations for the masses associated with this inclination are
zero, and there only one can expect the rotations of these masses to be produced by the
feeding and reflected waves.
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Appendix

First, we provide the details of the derivations of (44) and (49) in section 0.1, where the latter
determines the lower bound for the feeding wave energy required to propagate the transition
front with constant speed. Then in section 0.2, we determine the dynamic features of the
structure during the fracture process.

0.1 Derivation of (44)

For a large distance from the transition point, the feeding wave is also defined by the residue
at k = £p, + 10 in the inverse Fourier transform. From (40), the leading order term in the
function defining w_ at k = p, is

U_(p,)  Cé?
L_

(p2) 013k — o) (0-1)

and for k — —p, it is

U_(p,) Ce™@
Here ¥_(p,) of (31) is simplified to

. H};o(pi - qngrl)

- (1 +ip,)2™)
P2 TLZ, (02 —p3;)

U_(p) = (1)

and owing to (30), (31) and (33),

Lo(~k)=L_(k) ,

Uy(—k) =Ve(k) .

Therefore, choosing C' as in (44) and applying the residue theorem at the poles k =
+p, + 0i of w_, for n = —oo we receive (42) as the expression for the feeding wave (here a
again appears because of the normalisation of w by the beam length in section 3).
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0.2 Derivation of dynamic features of the beam structure

0.2.1 Derivation of the expressions for the reflected waves w,(ﬁj)

Now we show how to obtain the representation for the reflected waves wY ), 1<j7<nin
section 4.2.1. The function w" arises in the consideration of the residues of k = £po; +0i in
the expression for w_ in (40). The leading order term in asymptotics of the function defining

w_ in (40), for k — *py; is
‘IJC(:tpgj) Cel? n Ce™i¢ 1
iL—(ip%’) (ipzj — Dv) (:l:p2j +pu)] 0+i(kF ij)

)

where
U (£pg;) = lim (0+i(kF poy))V_(k)

k—}:l:pzj
1 H?:O(pgj — @311)

= F —_1) " : = 1 :i:lp2 2(n—v) 7
(=1) 2ip3, H;;}(ng — D) ( i)

(see (31)) and

U (—p2j) = VT (p2;)
for j = 1,...,n. Since the poles of w_ reside in the upper half of the complex plane,
by application of the inverse Fourier transform and the residue theorem it is possible to
determine the asymptotes for n — —oo of the original function wY )(77) in the form

w (1) ~ aiZRes(w_(k)e_ik”, k), n— —o0 (0.2)
k*

where k* = £py; + 0i, j = 1,...,n, are the simple poles of w_(k)e™**. Therefore,

w) (n) aV” (pa;) [ Ce + e } e 1P2jm
" iL_(p2;) [(p2j —pu)  (P2j + Do)
iL_(pa;) L2 +1p0) (P2 — o)
wr (p2j) |: Cel? Ce™'¢ :| ipo s
= 2aRes - + e P27l 0.3
{IL—(paj) (p2j —po)  (P2j + Do) } 03

Thus from this we obtain (53)—(56).

0.2.2 Derivation of the transmitted waves w;{)
The transmitted waves appear from the residues of the poles of the function wy in (39) at
k= =+q; — 01, 1 <j < v, provided v > 0 (otherwise no transmitted waves exist).

Consider the asymptotes of w, near k = +¢qy; — 0i. Then the leading order term in these
asymptotes of w, is

Ce'? Ce™i¢ 1

+ . , 0.4
TG — o Fqe;+ o) 0—i(k F q2) 0-4)

WY (£q25) Ly (£425)
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for k — £qo; — 0i, with

V() = T (0= a) 0 (8
_ :F(_l)n—y+1 1 H?zl(q%j_pglfl) 1 (0.5)

2ig; [lii(a3; —g) (1 F g™

Next performing the inverse Fourier transform and the residue theorem, together with
(0.4) and applying similar steps used in the previous section allows one to derive the expres-
sions (61)—(63).

0.2.3 Derivation of the inclination behind the transition front

The second order pole at k = 0 of the function w_ produces a linear displacement behind
the transition front as discussed in section 4.2.2. To obtain the expressions for the slope
shown there, consider the function

el (k) Ce'¢ Ce™¢

Mk) = w-WO+kY = =0 | 55— T 0 1T )

which is obtained from (40). The function ¥* in (60) has the following asymptote near
k= 0:
(k) = W(0) + k(¥*)'(0) + O(k?)

for £ — 0 with

v 2 v 2
Hj:o 42j+1 Hj:o 425+1

Pel(0) = =02k Y (0) = —2i(y — n) =22
(0) e (P2)'(0) ( ) 1.7,
Also note
1 [ Cel? N Ce™i¢ }
L_(k) [0+i(k—p,) 0+i(k+p,)

_ 2Im(Ce¥) 2i [Re(cei¢) (L2 O) ooy | o+ o)

poL(0)  p,L_(0) Do L_(0)

Thus, computing the Taylor expansion of (k) near k = 0 we have to first order:

M(k) = M(0) + kMM (0) + O(k*), fork — 0,

where
_ _QIm(C'ei“i’)\IfS_l(O)
M(0) = I (0) (0.6)
and
0 (0)  2Im(Ce)(P)'(0) | 20W(0) [Re(Ce'?) N Im(L" O))Im(Cei¢) 0.7)

poL-(0) ARG L_(0)
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This then provides the asymptote of w_ near k = 0 in the form:

L (o) + k(0)] + O(1) .

o= = Gy

Application of the inverse Fourier transform and the residue theorem, for n — —oo, then
yields

and this with (0.6) and (0.7) gives (57)—(60).
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