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Abstract—Virtualized cloud environments have emerged as a
necessity within modern unified ICT infrastructures and have es-
tablished themselves as a reliable backbone for numerous always-
on services. ‘Live’ intra-cloud virtual-machine (VM) migration
is a widely used technique for efficient resource management
employed within modern cloud infrastructures. Despite the ben-
efits of such functionality, there are still several security issues
which have not yet been thoroughly assessed and quantified. We
investigate the impact of live virtual-machine migration on state-
of-the-art anomaly detection (AD) techniques (namely PCA and
K-means), by evaluating live migration under various attack types
and intensities. We find that the performance for both detectors
degrades as shown by their Receiver Operating Characteristics
(ROC) curves when intra-cloud live migration is initiated while
VMs are under a netscan (NS) or a denial-of-service (DoS) attack.

Keywords—Cloud computing, anomaly detection, live VM mi-
gration.

I. INTRODUCTION

Cloud environments have evolved as the critical back-
bone for many ICT infrastructures due to their elasticity
and resource transparency. As reflected in a recent report
by the European Network and Information Security Agency
(ENISA), cloud environments are becoming increasingly
mission-critical [1]. Since they provide always-on services
for many everyday applications (e.g. IPTV), safety critical
operations (e.g., Air Traffic Control networks), critical manu-
facturing services (e.g., utility networks and industrial control
systems), and critical real-time services (e.g., transportation
and surveillance systems) [2]. Therefore, the ability of such
cloud environments to remain operational in the face of
anomalous activities becomes paramount.

Modern virtualised cloud environments support migration
of services and virtual machines (VMs) to different physical
nodes, and exploit the consequent elasticity and resource
transparency for dynamic resource management. In particular,
in contrast to cold migration, live migration allows a service or
VM to move while retaining its network identity and connec-
tions, and without having to be powered off, by transferring its
active memory and execution state. This makes live migration
essential functionality for effective on-line resource manage-
ment, allowing the workload to be balanced across physical
nodes without major disruption to users, and is performed by
the majority of cloud operators (such as VMware VSphere [3]).

While migration is a key feature of cloud environments,
it introduces novel security and resilience challenges. For

instance, an anomaly detector applied to network traffic visible
at the cloud-infrastructure level1 could be misled by the effects
of migration on that traffic in two ways. First, legitimate
migration could be misidentified as an anomaly (a false posi-
tive indication). Second, migration could occur simultaneously
with a genuine challenge, and thus mask its detection (a false
negative). Overall, despite the plethora of signature-based and
anomaly-based detection solutions for a number of computer
networks (e.g., [4], [5]), there has not yet been a thorough
analysis on the impact of VM migration on state-of-the-art
AD solutions. We aim to quantify this impact within an intra-
cloud scenario where migration occurs between physical nodes
in the same cloud environment.

We measured the performance of two AD techniques
(Principal Component Analysis (PCA) and K-means cluster-
ing) that have proven to be effective in past and current
literature [6], [7], [8]. These techniques were evaluated in a
controlled cloud testbed in which an attack (either denial-
of-service (DoS) or netscan) and a migration occur either
simultaneously or separately, yielding metrics such as detection
performance (i.e., true-positive rate; TPR) A broad observation
is that the presence of migration affects the ability of both
techniques to detect netscan more than DoS These outcomes,
empower our argument that under certain attack-type and
migration conditions, the number of attacks that are missed
and false alarms generated by these techniques could render
them unreliable and unusable respectively. Consequently, we
argue that widely used AD techniques such as PCA and K-
means clustering are directly affected by the live-migration
aspect and, therefore, future designs of cloud-oriented anomaly
detection components should consider this factor. To best of
our knowledge, our work is the first to investigate the effect
of VM migration on anomaly detection techniques.

The rest of the paper is organised as follows: Section II
describes our experimental set-up. Section III discusses the
experimental method, and the properties of the AD techniques
used. Section IV describes the outcomes of our analysis and
discusses the obtained results, while section V summarises and
concludes the paper.

II. EXPERIMENTAL SET-UP

We established a testbed in which live Local Area Network
(LAN) VM migration can take place while experiencing both

1We refer the reader to a SECCRIT whitepaper which presents an archi-
tectural model as a basis for the bringing critical-infrastructure (CI) services
into cloud environments: https://www.seccrit.eu/whitepaper



normal and abnormal traffic conditions. Two hosts serve as
nodes for running multiple VMs. Another host acts as a con-
troller to initiate migrations, and also to generate background
traffic. A fourth host generates attack traffic. All are connected
to a LAN, as shown in Fig. 1.

Each physical node runs Kernel-based Virtual Machine
(KVM)2 as virtualization infrastructure, and the Quick EM-
Ulator (QEMU3) provides hardware emulation. Migration is
achieved with libvirt4. All VMs on a node are connected to a
virtual bridge interface virbr0, so their own interfaces appear
to be part of the LAN.

For the experiments presented here, each VM runs Apache
HTTPd. The client host runs custom scripts to initiate random
HTTP requests from the VMs. The ‘challenger’ host runs
custom attack scripts to generate attack traffic directed towards
the VMs’ address range for a selected attack type and intensity
(i.e., the volume of traffic it generates). Tcpdump5 is used
to simultaneously collect packet traces from the two virtual
bridge interfaces, one in each physical node, and so these traces
represent aggregate traffic to/from all VMs on a node.

This set-up allows us to run experiments in which the
legitimate traffic of several web servers is continuously em-
ulated, while anomalous traffic is emulated by overlaying the
legitimate traffic with attack traffic from the attack scripts
that run during part of the experiment. Independently, one of
the VMs running a webserver can be migrated live between
the nodes during a period of either normal or anomalous
traffic. Subsequently, traces obtained at the virtual bridges can
be fed into anomaly detectors to observe their reactions to
normal/anomalous traffic with and without migration. Because
we have control over when migrations and anomalies occur,
we can confidently label our obtained traces with ground
truth about both conditions, and therefore assess the impact
of migration on anomaly detection that takes such traces as
input.

In order to obtain a coherent view in every experiment
we run, each monitored packet trace on every experimental
iteration was summarised as depicted in Table I. As shown,
every trace was described by the type of background traffic it
captures, the anomaly/attack type, the attack intensity, migra-
tion overlap (whether migration happens during the normal or
anomalous period), and migration direction (whether a VM is
leaving or arriving at the node generating the trace). Section III
explains characterization in more detail.

III. EVALUATION METHOD

To evaluate an anomaly detection technique in the face of
migration, we first perform several experimental runs, where
each yields a pair of packet traces which are labelled with
the ground truth regarding the presence of attack traffic or
migration in the trace. In each 10 minute run, background
traffic occurs continuously at a fixed rate, and hence appears
throughout a trace. At the first 5 minutes in the first run,
an attack script starts, hence its traffic appears in each trace

2Kernel-based Virtual Machine: http://www.linux-kvm.org/
3Quick EMUlator: http://www.qemu.org/
4The virtualization API: http://libvirt.org/libvirt2
5Tcpdump: http://www.tcpdump.org/
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Fig. 1: Experimental test-bed set-up

from the midpoint. At either 2.5 minutes or 7.5 minutes, a
migration of one of the VMs is initiated. A run can therefore
be characterized by the attack type and intensity, and whether
the migration occurs during the attack or during the normal
period (i.e. ‘migration overlap’). Each trace from a run can be
further characterized by whether the node it was taken from
experienced an outward (MDout) or inward (MDin) migration
of the VM.

In parallel, the two anomaly types are denoted as NS for
netscan and DoS for the denial-of-service where each type
is employed under a high (AH) or low intensity (AL). DoS
targets a VM that does not migrate. The Migration overlap is
denoted by either NM (the migration occurred during the first
half of the run, during the normal period), or AM (during the
anomalous period). The fixed background traffic is denoted
by BC0, to distinguish it from future runs with alternative
background characteristics. BC0 involves five VMs running
identical HTTP servers. Three run on one physical host, and
two on the other. A host external to the VM infrastructure runs
HTTP clients repeatedly connecting to each VM, two per VM.
We performed one run for each of the 8 possible combinations
of these characterizations, yielding 16 traces.

Each packet trace is filtered to eliminate the related man-
agement traffic between the VM host nodes. It is subsequently
divided into 1-second bins, and each bin is converted into
a feature vector, also labelled with ground truth. Tables of
labelled feature vectors from related traces, i.e., the four in
which the same attack type and intensity was applied (with
NM/AM and MDin/MDout varying), are combined to form
a dataset representing 40min of experimentation. Hence, our
16 traces yield 4 combined datasets. The processing from
experiments to combine data sets is shown in Fig. 2.

Each examined detection technique is then applied to each
dataset, by submitting them together to an evaluation process,
as depicted by Fig. 3. The feature vectors from the dataset
are submitted through a configured anomaly-detection engine,
yielding an anomaly time series, a series of anomaly scores,
one for each vector, indicating how anomalous the detector
finds that vector with respect to the others. The anomaly scores



TABLE I: Summary of characterization

Background
characterization

Anomaly characterization Experiment characterization Detector characterization

Type Type Intensity Migration overlap Migration direction Type
BC0 NS DoS AH AL NM AM MDin MDout PCA KM
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Fig. 2: Processing of data

are recombined with the corresponding ground truth, to yield
a table of 3-tuples including anomaly score (AS), boolean
anomaly ground truth (GT) and boolean migration ground
truth (i.e. ‘instantaneous migration intensity’, IMI). The same
dataset is also stripped of rows with IMI set, and submitted
through the AD engine to yield a second anomaly-score table,
which is similarly recombined with ground truth columns.
Each labelled anomaly-score table then generates a Receiver
Operating Characteristics (ROC) curve6, and the two can be
compared to derive an evaluation of the detection technique
against the scenario represented by the dataset. In order to aid
the visualization process of the dataset, we also present some
of the anomaly-score tables visually as anomaly-score graphs
(ASGs)7.

C and the libpcap API are used to derive features from the
packet traces. MATLAB is used to implement the anomaly
detectors and the decision analyser.

In order to capture the dynamics of varying attack types,
we extracted both volume-based features (e.g., count of bytes
and packets) and distribution-based features (computed as the
Shannon entropy of all values observed in the bin, as used in
many seminal pieces of work [6]). We provide the following
set of features computed for each bin:

6A ROC curve is a plot of true-positive rate (TPR) against false-positive
rate (FPR) for a range of thresholds. Points towards the bottom left correspond
to high thresholds (or low sensitivity), and the top right to low thresholds (or
high sensitivity). Better performance is indicated by curves that tend to occupy
the top left, as these imply that sensitivity can be decreased to eliminate more
FPs without degrading the TPR.

7An ASG displays a time series of outputs (anomaly scores) from a detector.
Our particular ASGs are annotated with the periods during which attacks
(GT = 1 in pink) and migration (IMI = 1 in pale green) occur. An ideal
detector would show high scores only while GT = 1, independently of IMI.
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Fig. 3: Evaluation process

• Number of packets

• Number of bytes

• Number of active flows in each bin

• Entropy of source IP address distribution

• Entropy of destination IP address distribution

• Entropy of source port distribution

• Entropy of destination port distribution

• Entropy of packet size distribution



500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bins

A
no

m
al

y 
sc

or
e

Anomaly score graph for netscan using K−means

Anomalous region
Migration region

(a) ASG for netscan using K-means

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bins

A
no

m
al

y 
sc

or
e

Anomaly score graph for DoS using PCA

Anomalous region
Migration region

(b) ASG for DoS using PCA

Fig. 4: Anomaly score graphs using K-means & PCA

A. Principal Component Analysis

As presented in [6], [9], [10], the PCA technique is not
only used to reduce the dimensionality for a given dataset but
also to separate the normal data from anomalous, based on the
scores obtained by the newly computed principal components
(PC). In practice, the produced PCs provide a transformation
of the original data points to a new set of axes. Overall, by
applying PCA to our combined dataset, the set X yields a set
of m principal components {pci}mi=1. Assuming that data in X
is zero-mean, the first principal component pc1 is the vector
that points in the direction of maximum variance in X and
computed as follows:

pc1 = arg max
�pc�=1

� Xpc � (1)

The PCA employs the Singular Value Decomposition
(SVD) method that obtains the k-subspace corresponding to the
normal behaviour of the traffic, and spans from pc1, through
pck, whereas the remaining subspace (i.e, pck+1 through pcm)
maps the anomalous behaviour with respect to the variance
of the dataset. Within the context of anomaly detection, it is
feasible to compute the magnitude of the projection of data
point xi into the anomalous subspace to quantify its anomalous
behaviour, which we define as the anomaly score for that point,
the time series of which produces an anomaly score graph.

B. Clustering using K-means

We have employed the commonly used K-means, as it
has been successfully used within seminal anomaly detection
techniques in past and current literature [11], [12]. In the
greatest majority of clustering-based techniques, there is al-
ways the underlying assumption that normal data instances lie
distance-wise closer to a given centroid of a cluster, whereas
anomalous data points are recognised due to their much longer
distance [13].

Simply enough, the first step within the K-means approach
is to select k random time-bins from training data as cen-
troids of the clusters C1, C2, . . . , Ck, where a subset of those
randomly selected bins is ensured to contain samples for
migration, anomalous events and background normal traffic.
An immediate following step is to partition the selected feature
observations x1, x2, . . . , xn into k sets until the centroids of
clusters stabilise by minimising sum of squares within the
cluster:

k�

j=1

N�

i=1

�X(j)
i − cj�2 (2)

where �X(j)
i − cj�2 is a chosen distance measure between a

data point Xi(j) and the cluster centre cj , is an indicator of
the distance of the N data points from their respective cluster
centre. Finally, for each test data instance, its distance to its
closest cluster centroid is calculated as its anomaly score [14].

IV. RESULTS AND ANALYSIS

Submitting each of our four 40 minutes datasets through
the evaluation process produces one ASG and two ROCs,
one including the effects of migration, and one without. By
comparing these ROCs, we are able to assess the effect of
migration on the AD technique that produced the table in the
context of detecting the anomaly used to produce the traces
that were submitted to the detector.

For illustration, two Anomaly score graphs (ASG) are
presented here. Fig. 4a and Fig. 4b show some typical ASG
obtained by using K-means for netscan and PCA for DoS
respectively. High scores occurring within pink regions in each
ASG plot indicate that each type of attack was successfully de-
tected, i.e., these would be regarded as true positives. However,
there are also high-scoring bins when only migration occurred
(the green zones with no surrounding pink, at around bins 1350
and 1950), which would be regarded as false positives.
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Fig. 5: ROC for attacks using K-means
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Fig. 6: ROC for DoS using PCA

We observe from our experimental runs that the presence of
migration degrades the detection performance of both detectors
for both the volume-based (DoS) and non-volume-based (NS)
attack types.

Given the ROC curve outputs for K-means under netscan
and DoS attack scenarios depicted at Fig. 5a and Fig. 5b
respectively, we have noticed that the K-means method is
sensitive to the chosen anomaly intensity and type. Also, in
some instances its performance degrades even more while live
migration occurs. However, for a volume-based attack such
as DoS, K-means performs better in detecting both low and
high intensity attacks but still its performance is negatively
affected during migration. In particular, it can be observed
that for low-intensity netscan, the true positive rate (TPR)
is dropped by 35% in the event of a migration. In contrast
under high attack intensity, the 65% TPR is achieved in face

of migration with less than 10% false positive rates (FPR).
Fig. 5b quantifies the effect of migration for volume-based
attack (DoS), and it can be seen that more than 80% of the
TPR is achieved with and without migration. There is a 5%
rise of FPR when migration is introduced, which is acceptably
small. In parallel, it can be seen in Fig. 6a that almost 80% of
TPR is achieved under high-intensity netscan with and without
migration for the PCA approach. Therefore, we conclude that
migration has considerably less effect under high-intensity
netscan on PCA. However, for the same attack type under low-
intensity, the migration affect is more visible. In particular, the
migration process impacts the performance by 30% when TPR
reaches just about 20% yielding unacceptable number of false
positives. For DoS, the PCA performs better comparatively
for both attack types and is less affected under migration.
As evidenced in Fig. 6b the FPR rate is less than 10% for
both high and low intensities for more than 80% of the TPR.



Finally, we argue that the detection sensitivity as evidenced
by the ROC curves is truly affected by migration. This can
also be illustrated by Fig. 7, where the changing behaviour
of features’ data points are illustrated. In more detail, Fig. 7a
and Fig. 7b show the effect of the first three features (packet
size, byte size and active flows) using scatter plots. Clearly,
the clusters have dispersed due to the change on the feature
distributions caused by migration, thus, new test data would
adopt different distances from the pre-defined cluster centroids,
making detection accuracy to vary.

Obviously, a different number of clusters may result in
better clusters, e.g., if the migration already shows distinct
periods of very low and very high traffic volume under normal
conditions. However, the determination of an optimum number
of clusters based on a cluster evaluation criterion is beyond the
scope of this work. The results show that, under migration, the
probability that a selected instance will be put in the correct
cluster has decreased more. These results are similar to those
obtained using PCA, indicating that VM migration makes the
use of this form of AD technique unreliable for deployment
of high assurance services. For a further examination of
results, we refer the reader to [15] where we conducted a
number of experiments on various state-of-the-art detection
techniques by varying the type of and intensity of anomalies,
and examining the live VM migration impact. As expected,
we observed similar behaviour which indicates that VM live
migration affects negatively the performance of several off-
the-shelf detection techniques.

Further work will explore different options to devise solu-
tion around this problem. One approach might involve making
migration aware anomaly detection technique whereby we
could train anomaly detector for the amount of migration,
and using this information to suppress alarms that relate to
migration.

V. CONCLUSION

The new and intrinsic capabilities of cloud environments
pose a number of security concerns that have not yet been fully
assessed with respect to their implications on the performance
of traditional off-the-shelf anomaly detection solutions. In par-
ticular, methods that empower the aspect of elasticity, resource
management and service transparency such as live migration
involve a range of system and network-wise activities. These
are hard to be monitored by cloud providers and further are
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non-trivial to relate with any anomalous incidents that are
likely to be initiated. In this work we have assessed the
impact of intra-cloud live migration over the de facto anomaly
detection techniques of PCA and K-means clustering within a
controlled experimental cloud testbed. Through our results we
demonstrate that live migration has a negative impact on both
techniques since their performance degrade under different
intensities of netscan and DoS scenarios.
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