Brandt, SD, Kavanagh, PV, Westphal, F, Elliott, SP, Wallach, J, Colestock, T, Burrow, TE, Chapman, SJ, Stratford, A, Nichols, DE and Halberstadt, AL

Return of the lysergamides. Part II: Analytical and behavioural characterization of N6-allyl-6-norlysergic acid diethylamide (AL-LAD) and (2'S,4'S)-lysergic acid 2,4-dimethylazetidide (LSZ)

http://researchonline.ljmu.ac.uk/id/eprint/3397/

Article

Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work)

Brandt, SD, Kavanagh, PV, Westphal, F, Elliott, SP, Wallach, J, Colestock, T, Burrow, TE, Chapman, SJ, Stratford, A, Nichols, DE and Halberstadt, AL (2016) Return of the lysergamides. Part II: Analytical and behavioural characterization of N6-allyl-6-norlysergic acid diethylamide (AL-LAD) and

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/
Return of the lysergamides. Part II: Analytical and behavioural characterization of N⁶-allyl-6-norlysergic acid diethylamide (AL-LAD) and (2’S,4’S)-lysergic acid 2,4-dimethylazetidide (LSZ)

ᵃ School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
ᵇ Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James Hospital, Dublin 8, Ireland
ᶜ State Bureau of Criminal Investigation Schleswig-Holstein, Section Narcotics/Toxicology, Mühlenweg 166, D-24116 Kiel, Germany
ᵈ ROAR Forensics, Malvern Hills Science Park, Geraldine Road, WR14 3SZ, UK
ᵉ Department of Chemistry and Biochemistry, University of the Sciences, 600 South 43rd Street, Philadelphia, PA 19104, USA
ᶠ Department of Chemistry, University of Toronto, St. George Street, Toronto, ON M5S 3H6, Canada
ᵍ Isomer Design, 4103-210 Victoria Street, Toronto, ON, M5B 2R3, Canada
ʰ Synex Ltd, 67-68 Hatton Garden, N13 4BS, London, UK
ᵣ Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27599, USA
ᵢ Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0804, USA

* Correspondence to: Simon D. Brandt, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK. E-Mail: s.brandt@ljmu.ac.uk
<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photographs of powdered AL-LAD / LSZ and blotter samples</td>
<td>S2</td>
</tr>
<tr>
<td>Background subtracted EI mass spectra of minor LSZ isomers</td>
<td>S3</td>
</tr>
<tr>
<td>Proposed AL-LAD fragmentation pathways (EI-MS)</td>
<td>S4</td>
</tr>
<tr>
<td>Proposed AL-LAD dissociation pathways (QTOF-MS/MS)</td>
<td>S5</td>
</tr>
<tr>
<td>Proposed LSZ fragmentation pathways (EI-MS)</td>
<td>S6</td>
</tr>
<tr>
<td>Proposed LSZ dissociation pathways (QTOF-MS/MS)</td>
<td>S7</td>
</tr>
<tr>
<td>HPLC-DAD analysis of AL-LAD and LSZ powder</td>
<td>S8</td>
</tr>
<tr>
<td>DAD spectra of AL-LAD, LSZ and LSD</td>
<td>S9</td>
</tr>
<tr>
<td>GC-solid-state-IR spectrum of LSZ isomer I</td>
<td>S10</td>
</tr>
<tr>
<td>GC-solid-state-IR spectrum of LSZ isomer II</td>
<td>S11</td>
</tr>
<tr>
<td>GC-solid-state-IR spectrum of LSZ isomer III</td>
<td>S12</td>
</tr>
<tr>
<td>Partial, overlaid GC-solid-state-IR spectra of LSZ isomers I - III</td>
<td>S13</td>
</tr>
<tr>
<td>HPLC-UV (250 nm) traces of extracted AL-LAD and LSZ blotters</td>
<td>S14</td>
</tr>
<tr>
<td>Chiral HPLC-UV (250 nm) traces of AL-LAD and LSZ samples</td>
<td>S15</td>
</tr>
<tr>
<td>Chiral HPLC-UV analysis conditions</td>
<td>S16</td>
</tr>
<tr>
<td>"H-NMR of AL-LAD hemitartrate (700MHz)</td>
<td>S17</td>
</tr>
<tr>
<td>"C-NMR of AL-LAD hemitartrate (176 MHz)</td>
<td>S22</td>
</tr>
<tr>
<td>HSQC of AL-LAD hemitartrate</td>
<td>S23</td>
</tr>
<tr>
<td>"H-NMR of LSZ tartrate (700MHz)</td>
<td>S24</td>
</tr>
<tr>
<td>"C-NMR of AL-LAD hemitartrate (176 MHz)</td>
<td>S29</td>
</tr>
</tbody>
</table>
LSZ Isomers (minor)
(spectra background subtracted)
Chemical Formula: $C_{22}H_{28}N_3O^+$
Exact Mass: 350.22269

Chemical Formula: $C_{18}H_{21}N_2O^+$
Exact Mass: 281.16484

Loss of ethyne

Chemical Formula: $C_{22}H_{28}N_3O^+$
Exact Mass: 350.22269

Loss of N

Chemical Formula: $C_{14}H_{12}N_2$•
Exact Mass: 208.09950

Chemical Formula: $C_{17}H_{17}N_2$•
Exact Mass: 249.13862

Chemical Formula: $C_{15}H_{15}N_2$•
Exact Mass: 223.12297

Chemical Formula: $C_{19}H_{23}N_3O$•
Exact Mass: 309.18356

Chemical Formula: $C_{18}H_{17}N_2O$•
Exact Mass: 277.13354

Chemical Formula: $C_{10}H_{17}N_2$•
Exact Mass: 249.13862
AL-LAD
Powder
HPLC-DAD
220 nm

LSZ
Powder
HPLC-DAD
220 nm
Chiral HPLC analysis

Chiral HPLC analyses were performed using the equipment described in the manuscript. Separation was obtained on a CHIRALPAK® AD-H column (250 × 4.6 mm, 5 µm) from Daicel Chemical Industries, Ltd. (Cedex, France). An isocratic mobile phase consisting of 9:1, 2-propanol: n-hexane was used. Powdered AL-LAD and LSZ, and LSZ reference material was dissolved individually in the isocratic mobile phase and diluted to a final concentration of 0.1 mg/mL. LSZ blotter was dissolved and extracted into the isocratic mobile phase following the procedure described in the manuscript. Injection volume was 10 µL, flow rate was 0.3 mL/min, and the column temperature was set at 25 °C. The total run time was 30 minutes.
AL-LAD hemitartrate

1H-NMR (700 MHz)
d$_6$-DMSO
AL-LAD hemitartrate
1H-NMR (700 MHz)
d$_6$-DMSO
AL-LAD hemitartrate
1H-NMR (700 MHz)
d$_6$-DMSO

TA = Tartraric acid

19ppm
AL-LAD hemitartrate
1H-NMR (700 MHz)
d$_6$-DMSO
AL-LAD hemitartrate

\(^1\)H-NMR (700 MHz)
d\(\text{s}\)-DMSO

4\(\alpha\) + solvent
AL-LAD hemitartrate
13C-NMR (176 MHz)
d$_6$-DMSO

TA = Tartaric acid
AL-LAD hemitartrate

HSQC (700 / 176 MHz)

d_6-DMSO

TA = Tartaric acid
LSZ tartrate

1H-NMR (700 MHz)
d$_6$-DMSO
LSZ tartrate

1H-NMR (700 MHz)
d$_6$-DMSO
LSZ tartrate

1H-NMR (700 MHz)
d$_6$-DMSO

TA = Tartaric acid
LSZ tartrate
1H-NMR (700 MHz)
d$_6$-DMSO
LSZ tartrate

1H-NMR (700 MHz)

d$_6$-DMSO
LSZ tartrate

13C-NMR (176 MHz)

d$_6$-DMSO