Stoffel, MA, Esser, M, Kardos, M, Humble, E, Nichols, HJ, David, P and Hoffman, JI

inbreedR: An R package for the analysis of inbreeding based on genetic markers

http://researchonline.ljmu.ac.uk/3593/

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk
Summary

1. Heterozygosity fitness correlations (HFCs) have been used extensively to explore the impact of inbreeding on individual fitness. Initially, most studies used small panels of microsatellites, but more recently with the advent of next generation sequencing, large SNP datasets are becoming increasingly available and these provide greater power and precision to quantify the impact of inbreeding on fitness.

2. Despite the popularity of HFC studies, effect sizes tend to be rather small. One reason for this may be a low variation in inbreeding level across individuals. Using genetic markers, it is possible to measure variance in inbreeding through the strength of correlation in heterozygosity across marker loci, termed identity disequilibrium (ID).

3. ID can be quantified using the measure g_2 which is also a central parameter in HFC theory that can be used within a wider framework to estimate the direct impact of inbreeding on both marker heterozygosity and fitness. However, no software exists to calculate g_2 for large SNP datasets nor to implement this framework.

4. inbreedR is an R package that provides functions to calculate g_2 based on microsatellite and SNP markers with associated p-values and confidence intervals. Within the framework of HFC theory, inbreedR also estimates the impact of inbreeding on marker heterozygosity and fitness. Moreover, we implemented easy-to-use simulations to explore the precision and magnitude of estimates based on different numbers of genetic markers. We hope this package will facilitate good practice in the analysis of HFCs and help to deepen our understanding of inbreeding effects in natural populations.

Key-words: inbreeding, genetic marker, HFC, heterozygosity, identity disequilibrium
Introduction

Offspring of close relatives often show reduced fitness, a phenomenon referred to as inbreeding depression (Charlesworth & Charlesworth 1987; Charlesworth & Willis 2009). This decline in fitness among inbred individuals is a result of the increased proportion of loci in the genome that are identical by descent (IBD). A homozygous locus is IBD or autozygous when it carries two alleles that both originate from a single copy in a common ancestor. An increased proportion of loci in the genome that are identical by descent (IBD_G) may lead to the unmasking of deleterious recessive alleles and a reduction in heterozygote advantage by decreasing genome-wide heterozygosity (Charlesworth & Charlesworth 1987; Charlesworth & Willis 2009). In populations with unknown pedigrees, many studies have used genetic marker heterozygosity as a measure of IBD_G. The result is a large and expanding literature describing heterozygosity-fitness correlations (HFCs) across a range of species and traits (Coltman & Slate 2003; Chapman et al. 2009; Szulkin et al. 2010).

Despite the large and growing number of HFC studies, effect sizes are usually small (Chapman et al. 2009) and there has been debate over their mechanistic basis (Balloux et al. 2004; Hansson & Westerberg 2007; Slate et al. 2004; Szulkin et al. 2010). This reflects the fact that under many circumstances multilocus heterozygosity based on the 10-20 microsatellite markers employed by most studies provides little power to estimate IBD_G (Hansson & Westerberg 2002; Balloux et al. 2004; Szulkin et al. 2010; Hoffman et al. 2014). This is why the pedigree derived inbreeding coefficient (F_P) has long been the gold standard for estimating IBD_G (Pemberton 2004; 2008). F_P is defined as the probability of a given locus in an individual’s genome being autozygous based on its pedigree. However, an individual’s F_P will differ from its IBD_G as F_P can be imprecise due to linkage among loci and downwardly biased due to incomplete pedigree information (Hill & Weir 2011a; Keller et al. 2011; Kardos et al. 2015). Consequently, IBD_G can vary substantially among individuals with the same F_P (Franklin 1977; Hill & Weir 2011b; Forstmeier et al. 2012). In other words, even F_P derived from a perfect pedigree cannot fully capture the variance in genomic autozygosity ($\sigma^2(IVD_G)$) among individuals, as it does not incorporate variation due to linkage.

Recent advances in next generation sequencing technology (e.g. Baird et al. 2008; Peterson et al. 2012) now allow many tens or even hundreds of thousands of single nucleotide polymorphisms (SNPs) to be genotyped in virtually any organism. Applied to HFCs, these dense marker panels provide much greater power than a small panel of microsatellites to quantify the impact of inbreeding on fitness (Hoffman et al. 2014). Recent simulation and empirical studies also show that inbreeding coefficients based on genome-wide SNP data provide more precise measures of IBD_G and inbreeding depression than F_P (Keller et al. 2011; Pryce et al. 2014; Kardos et al. 2015; Huisman et al. 2016).
For marker loci to indicate inbreeding depression, their heterozygosity must be correlated with the heterozygosity of functional loci in the genome (Szulkin et al. 2010). Such correlations between marker loci and functional loci have been proposed to occur through two possible mechanisms: The 'general effect hypothesis' on the one hand assumes that multilocus heterozygosity (MLH) reflects genome-wide heterozygosity. This association emerges because variation in inbreeding causes heterozygosity to be correlated across loci, a phenomenon termed identity disequilibrium (ID, Weir & Cockerham 1973).

Alternatively, the 'local effect hypothesis' states that one or a few of the markers are in linkage disequilibrium (LD) with a trait locus under balancing selection, which creates a pattern whereby heterozygosity at the gene and marker are correlated. However, ID and LD do not necessarily have to be considered as competing hypotheses to explain HFCs as ID is a consequence and LD is a cause of variation in IBD_G (Bierne et al. 2000; Szulkin et al. 2010). Both mechanisms can therefore be united under an inbreeding or general effect model (Bierne et al. 2000). Variance in individual inbreeding levels can be caused by a variety of scenarios other than systematic consanguineous matings (Szulkin et al. 2010). For example, in small or bottlenecked populations, variance in $\sigma^2(IBD_G)$ and therefore ID occurs as a consequence of variation in the relatedness of mating partners. Similarly, immigration and admixture can result in the offspring of parents from different populations being relatively outbred, leading to an increased $\sigma^2(IBD_G)$ within a population (Tsitrone et al. 2001; Szulkin et al. 2010). In addition, in small randomly mating populations, both genetic drift and immigration generate LD (Hill & Robertson 1968; Sved 1968; Bierne et al. 2000), which in turn leads to ID (Szulkin et al. 2010). All of these scenarios ultimately increase $\sigma^2(IBD_G)$ and lead to ID, which is the fundamental cause of HFCs according to the general effect model.

The general effect model assumes that HFCs arise due to the simultaneous effects of inbreeding on variation among individuals in marker heterozygosity and fitness (David et al. 1995; David 1998; Bierne et al. 2000; Hansson & Westerberg 2002). Specifically, inbreeding affects the genome including the panel of genetic markers by increasing the proportion of loci that are IBD and by causing ID. When the aim of a study is to infer the effects of inbreeding on fitness from a panel of genetic markers, two related questions arise: (1) How well does MLH at genetic markers reflect IBD_G? and (2) How large is the inbreeding load, i.e. the correlation between inbreeding and fitness? These questions led to the development of a model to estimate these relationships based on the inbreeding coefficient f defined as individual IBD_G (Bierne et al. 2000). This model was developed further to estimate how well marker heterozygosity reflects F_P, which itself is an imprecise measure of IBD_G, but the best that existed in pre-genomic times (Slate et al. 2004). Within this framework, Szulkin et al. (2010) used g_2 (David et al. 2007), a point estimate of ID, to measure $\sigma^2(IBD_G)$. This allows the derivation of formulas to estimate the correlations between
inbreeding, MLH and fitness purely from a set of genetic markers.

Quantifying effects of inbreeding on heterozygosity and fitness

The general effect model assumes that heterozygosity at genetic markers \((h, \text{here defined as standardised MLH, Coltman et al. 1999})\) is correlated with genomic heterozygosity through variation in individual inbreeding levels \((f)\) and that individual fitness \((W)\) declines as a linear function of \(f\) which is expected if deleterious mutations have non-epistatic effects (Bierne et al. 2000). In other words, the correlation between \(W\) and \(h\) arises through the simultaneous effects of inbreeding level on fitness \((r(W,f))\) and marker heterozygosity \((r(h,f))\) (Bierne et al. 2000; Slate et al. 2004; Szulkin et al. 2010).

\[
r(W, h) = r(h, f) r(W, f)
\]
(eqn 1)

Although \(F_P\) has been used as a measure of \(f\) in the above formula (Slate et al. 2004; Szulkin et al. 2010), here we define the inbreeding coefficient \(f\) as a variable that explains all of the variance in genomic heterozygosity \((\sigma^2(I_{BDG}))\) and therefore includes both variance depending on an individual’s pedigree and the degree of linkage among loci (Bierne et al. 2000). When it is not possible to directly measure an individual’s inbreeding level \(f\), we can use ID to characterize the distribution of \(f\) in a population. A measure of ID that can be related to HFC theory is \(g_2\) (David et al. 2007), which quantifies the extent to which heterozygosities are correlated across pairs of loci (see Appendix S1 for details). Based on \(g_2\) as an estimate of ID, it is then possible to calculate the expected correlation between \(h\) and inbreeding level \(f\) as follows (Szulkin et al. 2010):

\[
r^2(h, f) = \frac{g_2}{\sigma^2(h)}
\]
(eqn 2)

Finally, the expected squared correlation between a fitness trait \(W\) and inbreeding level \(f\) can be derived by rearranging eqn 1 (Szulkin et al. 2010):

\[
r^2(W, f) = \frac{r^2(W, h)}{r^2(h, f)}
\]
(eqn 3)

Software is already available for calculating \(g_2\) from microsatellite datasets (David et al. 2007). However, for larger (e.g. SNP) datasets, the original formula is not computationally practical, as it requires a double summation over all pairs of loci. For example, with 15,000 loci, the double summations take of the order of \(0.2 \times 10^9\) computation steps. For this reason, it is necessary to implement a computationally more feasible formula to calculate \(g_2\), which assumes that the distribution of true heterozygosity is the
same in missing data as in non-missing data, i.e. that the frequency of missing values does not vary much between pairs of loci (Hoffman et al. 2014). In turn, the g_2 parameter builds the foundation for the implementation of the above framework to analyse HFCs, which is recommended to be routinely computed in future HFC studies (Szulkin et al. 2010; Kardos et al. 2014).

The package

`inbreedR` is an R package (R Core Team 2015) that provides functions for analysing inbreeding and HFCs based on microsatellite and SNP data. The main aims of the package are to (i) calculate g_2 and its confidence interval and p-value for both microsatellites and large SNP datasets; (ii) estimate the influence of inbreeding on marker heterozygosity and fitness through the derivation of $r^2(h, f)$ and $r^2(W, f)$; and (iii) explore the sensitivity of g_2 and $r^2(h, f)$ to marker number through user friendly simulations. The overall workflow is shown in Figure 1 and described below. For a more detailed description of the package and the functions, we have supplied a vignette for the package than can be accessed via `browseVignettes("inbreedR")` once the package is installed.

Example datasets

The functionality of `inbreedR` is illustrated using genetic and phenotypic data from an inbred captive population of oldfield mice (*Peromyscus polionotus*) (Hoffman et al. 2014). These mice were paired over six laboratory generations to produce offspring with F_P ranging from 0 to 0.453. Example files are provided containing the genotypes of 36 *P. polionotus* individuals at 12 microsatellites and 13,198 SNPs respectively. Data on body mass at weaning, a fitness proxy, are also available for the same individuals.

```r
library(inbreedR)
data("mouse_msats") # microsatellite data, data.frame or matrix
data("mouse_snps") # snp data, data.frame or matrix
data("bodyweight") # fitness data, numeric vector
```

Data conversion and checking

The working format of `inbreedR` is an individual x loci matrix or data.frame in which rows represent individuals and each column represents a locus. If an individual is heterozygous at a given locus, it is coded as 1, whereas a homozygote is coded as 0, and missing data are coded as NA. We provide a converter function from a common two-column-per-locus (allelic) format to the working format, as well as a function to check for common formatting errors within the input matrix. Guidelines for extracting genotype data from VCF files are given in the vignette.
Identity disequilibrium

The package provides functions to calculate g_2 for both microsatellites and SNPs. The `g2_microsats()` function implements the formula given in David et al. (2007). For large datasets (e.g. SNPs) the `g2_snps()` function implements a computationally feasible formula described in Appendix S1. For both microsatellites and SNPs, `inbreedR` also calculates confidence intervals by bootstrapping over individuals (Table 1). It also permutes the genetic data to generate a p-value for the null hypothesis of no variance in inbreeding in the sample (i.e. $g_2 = 0$). The `g2_snps()` function provides an additional argument for parallelization which distributes bootstrapping and permutation across cores.

```
g2_mouse_microsats <- g2_microsats(mouse_microsats, nperm = 1000, nboot = 1000, CI = 0.95)
g2_mouse_snps <- g2_snps(mouse_snps, nperm = 100, nboot = 100, CI = 0.95, parallel = FALSE, ncores = NULL)
```

The results of both functions can be plotted as histograms with CIs (Figure 2).

```
par(mfrow=c(1,2))
plot(g2_mouse_microsats, main = "Microsatellites", col = "cornflowerblue", cex.axis=0.85)
plot(g2_mouse_snps, main = "SNPs", col = "darkgoldenrod1", cex.axis=0.85)
```

Another approach for estimating ID is to divide the marker panel into two random subsets, compute the correlation in heterozygosity between the two, and repeat this hundreds or thousands of times in order to obtain a distribution of heterozygosity-heterozygosity correlation coefficients (Balloux et al. 2004). This approach is intuitive and has been shown to be equivalent to g_2 in its power to detect non-zero variance in inbreeding (Kardos et al. 2014) although it can be criticised on the grounds that samples within the HHC distribution are non-independent. Moreover, g_2 is preferable because it directly relates to HFC theory (eqn 2). The `HHC()` function in `inbreedR` calculates HHCs together with confidence intervals, specifying how often the dataset is randomly split into two halves with the `reps` argument.

```
HHC_mouse_microsats <- HHC(mouse_microsats, reps = 1000)
HHC_mouse_snps <- HHC(mouse_snps, reps = 100)
```

The results can be outputted as text (Table 2) or plotted as histograms with CIs (Figure 3).
par(mfrow=c(1,2))
plot(HHC_mouse_microsats, main = "Microsatellites", col = "cornflowerblue", cex.axis=0.85)
plot(HHC_mouse_snps, main = "SNPs", col = "darkgoldenrod1", cex.axis=0.85)

HFC parameters

Assuming that HFCs are due to inbreeding depression, it is possible to calculate both the expected correlation between heterozygosity and inbreeding level ($r^2(h, f)$) and the expected correlation between a fitness trait and inbreeding ($r^2(W, f)$) as described in eqn 1. These calculations are implemented in `inbreedR` using the functions `r2_hf()` and `r2_Wf()`. Both functions include an `nboot` argument to run bootstrapping over individuals and estimate confidence intervals. Similar to the base R `glm()` function, the distribution of the fitness trait can be specified using the `family` argument, as shown below:

```
# r^2 between inbreeding and heterozygosity
hf <- r2_hf(genotypes = mouse_microsats, nboot = 100, type = "msats")
# r^2 between inbreeding and fitness
Wf <- r2_Wf(genotypes = mouse_microsats, trait = bodyweight, family = gaussian, type = "msats", nboot = 100)
```

Workflow for estimating the impact of inbreeding on fitness using HFC

Szulkin *et al.* (2010) in their online Appendix 1 provide a worked example of how to estimate the impact of inbreeding on fitness within an HFC framework. Below, we show how the required calculations can be implemented in `inbreedR`. We start with the estimation of identity disequilibrium (g^2) and calculation of the variance of standardized multilocus heterozygosity ($\sigma^2(h)$), followed by the estimation of the three correlations from eqn 1. Example code for the microsatellite dataset is shown below and the results for both microsatellites and SNPs are given in Table 3.

```
# g^2 and bootstraps to estimate CI
g2 <- g2_microsats(mouse_microsats, nboot = 1000)
# calculate sMLH
het <- sMLH(mouse_microsats)
# variance in sMLH
het_var <- var(het)
# Linear model
mod <- lm(bodyweight ~ het)
# regression slope
beta <- coef(mod)[2]
# r^2 between fitness and heterozygosity
Wh <- cor(bodyweight, predict(mod))^2
# r^2 between inbreeding and sMLH including bootstraps to estimate CI
hf <- r2_hf(genotypes = mouse_microsats, type = "msats", nboot = 1000)
# r^2 between inbreeding and fitness including bootstraps to estimate CI
Wf <- r2_Wf(genotypes = mouse_microsats, trait = bodyweight, family = gaussian, type = "msats", nboot = 1000)
```
Sensitivity to the number of markers

Sampling subsets of loci from an empirical genetic dataset and estimation of a statistic of interest based on these subsets can give insights into the power provided by a given marker panel (Miller et al. 2013; Hoffman et al. 2014; Stoffel et al. 2015). However, although subsampling markers (with replacement) from an empirical dataset allows exploration of trends in the magnitude of a statistic, the precision (variation) of the same statistic is necessarily biased. This is due to the increasing non-independence of resampled marker sets as they approach the total number of markers. For example, given a dataset of 20 genetic markers, repeatedly subsampling 18 markers and calculating g_2 will always lead to lower variation in the estimates than subsampling sets of 5 markers. To circumvent this problem, the `simulate_g2()` function simulates genotypes from which subsets of loci can be sampled independently. The simulations can be used to evaluate the effects of the number of individuals and loci on the precision and magnitude of g_2. The user specifies the number of simulated individuals (`n_ind`), the subsets of loci (`subsets`) to be drawn, the heterozygosity of non-inbred individuals (`H_nonInb`, i.e. expected heterozygosity in the base population) and the distribution of f among the simulated individuals. The f values of the simulated individuals are sampled randomly from a beta distribution with mean (`meanF`) and variance (`varF`) specified by the user (e.g. as in Wang 2011). This enables the simulation to mimic populations with known inbreeding characteristics or to simulate hypothetical scenarios of interest. For computational simplicity, allele frequencies are assumed to be constant across all loci and the simulated loci are unlinked. Genotypes (i.e. heterozygosity/homozygosity at each locus) are assigned stochastically based on the f values of the simulated individuals. Specifically, the probability of an individual being heterozygous at any given locus (H) is expressed as $H = H_0(1 - f)$, where H_0 is the user-specified heterozygosity of a non-inbred individual and f is an individual’s inbreeding coefficient drawn from the beta distribution.

```r
sim_g2_mouse_microsats <- simulate_g2(n_ind = 50, H_nonInb = 0.5, meanF = 0.2, varF = 0.03,
                                 subsets = c(5, 10, 15, 20, 25, 30, 35, 40, 45, 50),
                                 reps = 100, type = "msats")

sim_g2_mouse_snps <- simulate_g2(n_ind = 50, H_nonInb = 0.5, meanF = 0.2, varF = 0.03,
                                subsets = seq(from = 1000, to = 10000, by = 1000),
                                reps = 100, type = "snps")
```

The results can be visualized by showing the mean and CI of g_2 plotted against the number of loci used (Figure 4). Bear in mind that g_2 values calculated from the simulated data may over-estimate precision due to the assumption of unlinked loci. However, in practice, the number of linked SNPs in most real
datasets will be small compared to the number of unlinked SNPs (Szulkin et al. 2010) and hence g_2 should not be substantially affected.

```r
par(mfrow = c(1, 2), mar=c(5,5,15,3,1,2))
plot(sim_g2_mouse_microsats, main = "Microsatellites",
     cex.axis=1.5, cex.main = 1.5, cex.lab = 1.5)
plot(sim_g2_mouse_snps, main = "SNPs",
     cex.axis=1.5, cex.main = 1.5, cex.lab = 1.5)
```

Finally, it is of interest to infer how well genetic marker heterozygosity reflects the inbreeding level f and whether this correlation could be increased by genotyping individuals at a larger set of markers. The `simulate_r2_hf()` function can be used to compare the precision and magnitude of the expected squared correlation between heterozygosity and inbreeding ($r^2(h,f)$) for a given number of genetic markers.

```r
sim_r2_mouse_microsats <- simulate_r2_hf(n_ind = 50, H_nonInb = 0.5, meanF = 0.2, varF = 0.03,
                                          subsets = c(5, 10, 15, 20, 25, 30, 35, 40, 45, 50),
                                          reps = 100, type = "msats")
sim_r2_mouse_snps <- simulate_r2_hf(n_ind = 50, H_nonInb = 0.5, meanF = 0.2, varF = 0.03,
                                     subsets = seq(from = 1000, to = 10000, by = 1000),
                                     reps = 100, type = "snps")
```

The results can again be plotted as a series of $r^2(h,f)$ estimates together with their means and CIs (Figure 5).

```r
par(mfrow = c(1, 2), mar=c(5,5,15,3,1,2))
plot(sim_r2_mouse_microsats , main = "Microsatellites",
     cex.axis=1.5, cex.main = 1.5, cex.lab = 1.5)
plot(sim_r2_mouse_snps, main = "SNPs", cex.axis=1.5,
     cex.main = 1.5, cex.lab = 1.5)
```

Effects of LD under the general effect model

LD may affect the strength of an HFC because it increases $\sigma^2(\text{IBD}_G)$ (Bierne et al. 2000). This is because the variance in individual IBD_G is explained by (i) a component that reflects the different pedigrees of individuals, and (ii) a component that reflects variation among individuals with the same pedigree (Bierne et al. 2000). In the absence of linkage (i.e. if there were infinitely many unlinked loci), an individual’s IBD_G would solely depend on the pedigree. However, loci do not segregate independently and LD and especially physical linkage will therefore cause variation in IBD_G among individuals with the same pedigree. Calculating g_2 and derived HFC statistics based on large SNP datasets, which are likely to include linked markers, is therefore not a problem per se. As g_2 does not incorporate any pedigree
information but purely quantifies correlated heterozygosity among genetic marker pairs, it is a direct
measure of $\sigma^2(\text{IBD}_G)$. The only assumption needed is that IBD is equally frequent among marker loci
and fitness loci that are responsible for inbreeding depression. Put another way, the fitness loci should
have an equivalent genomic distribution to the genetic markers.

Increasing the total number of genetic markers should not affect the proportion of linked markers
and should thus not affect g_2. To test this, we evaluated the sensitivity of g_2 to marker number by
repeatedly sampling random subsets of between 100 and 13,000 SNPs from the full mouse dataset and
calculating the respective g_2 values. For each subset, markers were sampled without replacement to avoid
non-independence, which is why the number of repetitions decreases with increasing marker number. The
mean g_2 was found to be stable across all subset sizes, suggesting that, for our dataset, the expected g_2
does not vary appreciably with marker density (Figure 6).

In general, the number of locus pairs in strong linkage is expected to be very low compared to the number
of non-linked pairs (Szulkin et al. 2010). As g_2 averages over all pairs of loci, this point estimate should
therefore be relatively insensitive to the inclusion of linked markers as long as all markers are broadly
distributed across the genome. To test this, we conducted LD pruning of our SNP dataset at various
stringency thresholds to determine how linkage among SNPs affects g_2 estimates and their confidence
intervals. We used the indep-pairphase function in PLINK version 1.09 (Purcell et al. 2007) to remove
one SNP from each pair with an r^2 above thresholds ranging from 0.5 – 0.99 with increments of 0.05
and a last increment of 0.04. In order to account for our SNPs being on unplaced contigs, we assumed
that all SNPs were on the same 'chromosome' and used a sliding window spanning the full dataset. The
magnitude and precision of g_2 estimates was found to be stable across all LD pruned datasets (Figure 7),
suggesting that, for our dataset, g_2 is relatively insensitive to the inclusion of strongly linked SNPs.

Final remarks

The inbreedR package implements a framework to estimate the impact of variation in inbreeding on
marker heterozygosity and fitness, which has been suggested to be routinely reported in HFC studies
(Szulkin et al. 2010; Kardos et al. 2014). A good example is a recent study of red deer, in which Huisman
et al. (2016) quantify identity disequilibria through g_2 in several datasets to estimate the power of a
genomic inbreeding measure to detect inbreeding depression. In addition to the quantification of ID and
HFCs for empirical data, straightforward simulations within inbreedR provide a way to explore the effect
of the number of genetic markers on g_2 and the expected correlation between marker heterozygosity and
inbreeding. This is important for evaluating the power of a given dataset to measure inbreeding depression,
and could also facilitate the planning of future projects by exploring the effects of sample size and marker
number on the power to detect ID and HFCs.
Although g_2 and related parameters can provide insights into whether an HFC is due to inbreeding or not, the user should be aware that spurious HFCs can occur due to population structure (Slate et al. 2004), which has to be appropriately dealt with beforehand. For instance, genetically distinct populations could be analysed separately. Also, it is worthwhile considering whether SNPs should be filtered based on their minor allele frequencies (MAF) prior to analysis. One the one hand, genotyping by sequencing approaches rely on sufficient depth of coverage to call SNPs with reasonable confidence. Thus, low MAF SNPs may be disproportionately error prone when the depth of sequence coverage is not high enough to capture multiple copies of the minor allele. On the other hand, filtering out low MAF SNPs may distort the allele frequency spectrum and lead to the loss of valuable information (Hoffman et al. 2014).

Finally, LD and ID have been seen as alternative hypotheses to explain HFCs (Hansson & Westerberg 2008). However, LD often goes hand in hand with ID and is therefore a relevant variance component when the aim is to estimate $\sigma^2(\text{IBD}_G)$ (Bierne et al. 2000; Szulkin et al. 2010). As most HFC studies should be interested in estimating $\sigma^2(\text{IBD}_G)$ through g_2, linked markers need not be pruned as long as the genomic distributions of the marker and trait loci are comparable. However, if the goal of a study is to infer characteristics of a pedigree from g_2 (such as self-fertilization rates), it might be useful to reduce physical linkage among markers using PLINK (Purcell et al. 2007) or other methods to ensure their independence (David et al. 2007). Further investigation would be needed to evaluate the impact of pruning linked markers on selfing or inbreeding rates estimated through g_2.

Computation times

Computation times will be negligible for most microsatellite datasets but somewhat longer for very large SNP datasets. On a standard Laptop (Intel Core i5 2.60GHz, 8 GB RAM) running the `g2_snps()` function for our example SNP dataset (36 individuals genotyped at 13,198 loci) with 1000 bootstraps takes 1 min 12 secs without parallelisation and 38 secs with parallelisation on 3 cores. For comparison, we also simulated a large SNP dataset with 3500 individuals at 37,000 loci (similar to Huisman et al. (2016)) and ran this on a 40 core server with 1000 bootstraps, which took 73 hours.

Availability

The current stable version of the package requires R 3.2.1 and can be downloaded from CRAN as follows:

```
install.packages("inbreedR")
```

In the future, we will aim to extend the functionality of `inbreedR` and the latest development version can be downloaded from GitHub.
install.packages("devtools")
develtools::install_github("mastoffel/inbreedR")

Data accessibility

Both example datasets are included in the R package.

References

Table 1. Output of the g_2 functions showing g_2 values and their 95% confidence intervals, standard errors and p-values for 36 mice genotyped at 12 microsatellites and 13,198 SNPs

<table>
<thead>
<tr>
<th></th>
<th>g_2</th>
<th>CI lower</th>
<th>CI upper</th>
<th>SE</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsats</td>
<td>0.022</td>
<td>-0.008</td>
<td>0.065</td>
<td>0.019</td>
<td>0.076</td>
</tr>
<tr>
<td>SNPs</td>
<td>0.035</td>
<td>0.022</td>
<td>0.050</td>
<td>0.008</td>
<td>0.010</td>
</tr>
</tbody>
</table>
Table 2. Output of the HHC function, showing mean HHCs with 95% confidence intervals and standard deviations for 36 mice genotyped at 12 microsatellites and 13,198 SNPs.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>CI lower</th>
<th>CI higher</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsats</td>
<td>0.194</td>
<td>-0.062</td>
<td>0.453</td>
<td>0.128</td>
</tr>
<tr>
<td>SNPs</td>
<td>0.976</td>
<td>0.961</td>
<td>0.987</td>
<td>0.007</td>
</tr>
</tbody>
</table>
Table 3. Parameters central to interpreting HFCs for the microsatellite and SNP datasets. \hat{g}_2 is the empirical point estimate of g_2, $\hat{\sigma}^2(h)$ is the variance in sMLH, $\hat{\beta}_{W_h}$ is the regression slope of sMLH in a linear model of the fitness trait, \hat{r}_{hW}^2 is the squared correlation of the fitness trait and sMLH, \hat{r}_{hf}^2 is the expected squared correlation of sMLH and inbreeding and \hat{r}_{Wf}^2 is the expected squared correlation between sMLH and fitness. 95% confidence intervals are shown in squared brackets for the estimates from the package. Note that \hat{r}_{hf}^2 is an expected correlation derived from the ratio of $\hat{g}_2/\hat{\sigma}^2(h)$ and may slightly exceed one due to missing values; we therefore bound the estimate between 0 and 1.

<table>
<thead>
<tr>
<th></th>
<th>\hat{g}_2</th>
<th>$\hat{\sigma}^2(h)$</th>
<th>$\hat{\beta}_{W_h}$</th>
<th>\hat{r}_{hW}^2</th>
<th>\hat{r}_{hf}^2</th>
<th>\hat{r}_{Wf}^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsats</td>
<td>0.022 [0.01, 0.06]</td>
<td>0.078</td>
<td>1.601</td>
<td>0.121</td>
<td>0.280 [0.52]</td>
<td>0.434 [0.88]</td>
</tr>
<tr>
<td>SNPs</td>
<td>0.035 [0.02, 0.05]</td>
<td>0.033</td>
<td>2.634</td>
<td>0.139</td>
<td>1 [0.89, 1]</td>
<td>0.132 [0.14]</td>
</tr>
</tbody>
</table>
For both microsatellite and SNP datasets, the program provides utilities for data conversion and checking, estimation of identity disequilibrium, derivation of key parameters relating to HFC theory, and exploration of sensitivity to the number of loci deployed. Further details are provided in the main text.
Fig 2. Output of the g_2 functions for the microsatellite and SNP datasets showing the distribution of g_2 estimates from bootstrap samples over individuals together with their 95% CIs. The empirical g_2 estimate is marked as a black dot along the CI.
Fig 3. Output of the HHC function showing the distribution of heterozygosity-heterozygosity correlation coefficients for the microsatellite and SNP datasets. Also shown are the mean HHCs as black dots and their 95% CIs. The two distributions are very different, microsatellites being positive but with the 95% CI overlapping zero, and SNPs being well in excess of 0.9 with a much greater precision. This reflects the enhanced power of the larger SNP dataset to capture variance in f among individuals.
Fig 4. Output of the `simulate_g2()` function. Different sets of microsatellites and SNPs were simulated and stochastically drawn from distributions based on a mean(sd) inbreeding level f of 0.2(0.03) assuming that a non-inbred individual has a heterozygosity of 0.5. The two plots show the g_2 statistics from all samples including their means and 95% CIs.
Fig 5. Output of the `simulate_r2_hf()` function. Different sets of microsatellites and SNPs were simulated and stochastically drawn from distributions based on a mean(sd) inbreeding level \(f \) of 0.2(0.03) assuming that a non-inbred individual has a heterozygosity of 0.5. The two plots show the \(r^2(W,f) \) values for an increasing number of markers including their means and 95% CIs. The expected correlation between inbreeding and marker heterozygosity increases and is estimated with higher precision when the number of markers is increased.
Fig 6. Mean and standard deviation of g^2 derived from an increasing number of SNPs drawn at random from the empirical mouse dataset (13,198 SNPs). The distribution of data points for each subset size is based on sampling without replacement to obtain non-overlapping marker sets. For this reason, the number of datapoints decreases from 131 for 100 markers to 1 for subsets larger than 6599 SNPs. The mean g^2 is stable across all subset sizes, which suggests that estimating g^2 from larger numbers of markers does not introduce bias for our dataset.
Fig 7. Estimates of g_2 with confidence intervals for subsets of SNPs pruned based on different LD thresholds. We used PLINK to remove one SNP from each marker pair with an r^2 above the respective threshold. As we used a sliding window spanning the full dataset instead of local regions on a chromosome, the retained datasets contained a maximum of 4363 ($r^2 > 0.99$) and a minimum of 1095 ($r^2 > 0.5$) SNPs. The magnitude and precision of g_2 does not vary noticeably for our dataset when pruning strongly linked SNPs.