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ABSTRACT
Galactic scaling relations between the (surface densitiesof) the gas mass and the star forma-
tion (SF) rate are known to develop substantial scatter or even change form when considered
below a certain spatial scale. We quantify how this behaviour should be expected due to the
incomplete statistical sampling of independent star-forming regions. Other included limiting
factors are the incomplete sampling of SF tracers from the stellar initial mass function and the
spatial drift between gas and stars. We present a simple uncertainty principle for SF, which can
be used to predict and interpret the failure of galactic SF relations on small spatial scales. This
uncertainty principle explains how the scatter of SF relations depends on the spatial scale and
predicts a scale-dependent bias of the gas depletion time-scale when centering an aperture on
gas or SF tracer peaks. We show how the scatter and bias are sensitive to the physical size and
time-scales involved in the SF process (such as its durationor the molecular cloud lifetime),
and illustrate how our formalism provides a powerful tool toconstrain these largely unknown
quantities. Thanks to its general form, the uncertainty principle can also be applied to other as-
trophysical systems, e.g. addressing the time-evolution of star-forming cores, protoplanetary
discs, or galaxies and their nuclei.

Key words: galaxies: evolution — galaxies: ISM — galaxies: stellar content — ISM: evolu-
tion — stars: formation

1 INTRODUCTION

Galactic star formation (SF) relations (e.g. Silk 1997; Kennicutt
1998; Elmegreen 2002; Bigiel et al. 2011) break down below a
certain spatial scale (Schruba et al. 2010; Onodera et al. 2010;
Liu et al. 2011). This failure of SF relations to describe small
scales may potentially provide a better understanding of galactic-
scale SF than the relations themselves do (e.g. Blanc et al. 2009;
Schruba et al. 2010; Calzetti, Liu & Koda 2012; Leroy et al. 2012,
2013).

SF relations should be expected to break down at some point –
they relate the gas and radiation properties of the SF process, which
on some scale should no longer correlate because they cover subse-
quent phases of SF. For instance, a gas-free, young stellar cluster is
detectable in SF tracers such as Hα or UV emission, but not in the
gas tracers that were likely visible at an earlier stage. This example
can be expressed in terms of the statistical sampling of the SF pro-
cess – galactic SF relations average over all phases and implicitly
assume that each phase is statistically well-sampled.

In this paper, we present a simple uncertainty principle that is
similar in form to the famous criterion of Heisenberg (1927). It can
be used to identify the spatial scale on which SF relations break
down due to the incomplete sampling of the SF process, as well
as to quantify the resulting scatter around and bias of such rela-
tions. After introducing our framework, we illustrate its use with a

number of idealised examples. We show that it accurately describes
the observed range of spatial scales on which the SF relations can
be applied, as well as their scatter and bias on smaller scales. It is
also shown how the uncertainty principle can be used to derive a
number of fundamental characteristics of the SF process. Wevali-
date the method using Monte-Carlo models of star-forming regions
in galaxies. In a follow-up paper (Kruijssen et al. 2014, hereafter
K14), we apply the uncertainty principle to observational data.

At http://www.mpa-garching.mpg.de/KL14principle, we have
made Fortran and IDL modules for applying the uncertainty prin-
ciple publicly available. A checklist detailing the required steps for
their observational application is supplied in Appendix A.

2 AN UNCERTAINTY PRINCIPLE FOR STAR
FORMATION

2.1 The general uncertainty principle

We adopt the hypothesis that SF relations only apply above certain
spatial scales because on smaller scales the different phases of the
SF process are statistically not well-sampled. This may lead to the
perception of episodicity or a deviation from these SF relations:
given an ensemble of star-forming regions, certain permutations of
their states will lead to SFRs higher or lower than predictedby SF

http://arxiv.org/abs/1401.4459v1
http://www.mpa-garching.mpg.de/KL14principle
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relations. For instance, if all regions in the ensemble happen to be
on the verge of initiating SF, they will have very low SFRs fortheir
gas masses in comparison to the galactic average. The appropri-
ate sampling of the phases of the SF process can be achieved by
increasing the sample of states, or by somehow following thedif-
ferent phases in time. If a well-sampled SF relation is achieved by
covering a large area or volume, this implies that the size-scale∆x
on which the SF relation is evaluated should satisfy:

∆x > Aλ, (1)

whereA andλ represent a dimensionless constant and a length-
scale, respectively, both of which are specified below.

The fact that a single star-forming region is observed at a spe-
cific time implies that that region by itself cannot satisfy galactic SF
relations. However, if it were followed in time for the full duration
of the SF processτ such that all ‘relevant’ phases (i.e. those that
are traced in galactic SF relations) of the SF process are covered,
then the time-averaged properties of the region should be consistent
with the galactic SF relations – provided that the physics ofSF are
universal. Specifically, to retrieve the SF relation for a single star-
forming region, we require the time-scale over which the properties
of the region are averaged to cover at least the timeτ covering all
phases of the SF process traced in galactic SF relations. Observa-
tionally, this condition can never be satisfied – we cannot observe
a stellar cluster and its progenitor cloud at the same time. This is
why galactic SF relations must consider spatial scales large enough
to cover multiple star-forming regions.

Observationally, each phase of the SF process is probed witha
different tracer (e.g. CO for molecular gas, Hα for SF). The emis-
sion from these tracers is observable for some fraction of the to-
tal SF process, although an individual observation only retrieves a
snapshot at a discrete moment in time. The detection of a gas or SF
tracer does not distinguish at which time along the phase probed by
that tracer it is observed. For instance, the gas mass that will even-
tually participate in the SF process is visible for a certainduration
and can be detected throughout. If we now consider an ensemble
of star-forming regions at randomly distributed times along the SF
process, the key consequence is that a galactic SF relation can only
be retrieved if the shortest phase of the SF process is sampled at
least once. In other words, the phase with the shortest duration is
the limiting factor in whether or not the galactic SF relation is re-
trieved. We define the duration of the SF process as

τ =

N
∑

i=1

tph,i −

N−1
∑

i=1

tover,i,i+1, (2)

where tph,i is the duration of phasei and tover,i,i+1 represents
the duration of the overlap between phasesi and i + 1. Defining
∆t ≡ min (tph,i) as the shortest phase of the SF process that is
traced in galactic SF relations, the ratioτ/∆t then reflects the num-
ber of independentstar-forming regionsNindep,req that need to be
sampled in order to retrieve the statistically converged, galactic SF
relation. We illustrate this result with an example. If the SF were
to consist of two phases such thattph,1/tph,2 = 9 (i.e. 90 per cent
of the time is spent in the first, e.g. molecular gas, phase), then
∆t/τ = 0.1 and henceNindep,req = 10 independent star-forming
regions need to be covered to retrieve the galactic SF relation.

The size of an ‘independent’ region refers tothe largest spatial
scale on which SF events within that region are correlated, e.g. by
the global gravitational collapse of a molecular cloud, triggered SF,
or a galaxy-scale perturbation such as a merger. The number of
independent star-forming regions with a characteristic separationλ

that is sampled within a two-dimensional aperture of diameter∆x
isNindep = (∆x/λ)2. The condition that this number exceeds the
number of independent regionsrequiredto retrieve the galactic SF
relation (Nindep > Nindep,req) thus yields:

(

∆x

λ

)2

>
τ

∆t
. (3)

This can be rewritten in the familiar form of an uncertainty princi-
ple that needs to be satisfied for galactic SF relations to hold:

∆x∆t1/2 > λτ 1/2. (4)

Here,∆x is the spatial scale on which the SF relations are mea-
sured and∆t is the duration of the shortest phase of the SF process
that is traced by the SF relation in question. If equation (4)is sat-
isfied, then the shortest phase of the SF process is expected to be
well-sampled (modulo Poisson noise), and hence the galactic SF
relation is retrieved. Given the values of alltph,i, this defines the
minimum size-scale:

∆x > ∆xsamp ≡
(

τ

∆t

)1/2

λ, (5)

which specifies the constantA in equation (1). Hence, (1) the more
similar the varioustph,i are or (2) the smaller the size is of inde-
pendent regions, the smaller the minimum size-scale is on which
galactic SF relations still hold.

Next to the statistical sampling in time and space of the
full SF process, additional scatter is introduced by the incom-
plete sampling of the SF tracer at low SFRs (Lee et al. 2011;
Fumagalli, da Silva & Krumholz 2011). Observational estimates of
the SFR almost exclusively rely on emission from massive stars,
which statistically may not be produced at low SFRs, leadingto
an underestimation of the SFR. If we define a minimumSFRmin

above which a certain SF tracer arises from an adequately sampled
IMF (see Table 1), a given SFR surface densityΣSFR implies that
a spatial scale of

∆x > ∆xIMF ≡
(

4

π

SFRmin

ΣSFR

)1/2

(6)

is required to retrieve a reliable SFR estimate. Here, the factor of
four enters because∆x represents a diameter rather than a radius.

Finally, the above limits on the spatial scale on which galactic
SF relations hold only apply if the relative flux of gas and SF tracers
across the boundary of an aperture is negligible over the duration of
the SF processτ . Any net drift will introduce scatter or potentially
systematic deviations. Given a characteristic drift velocity σ, the
size-scale should therefore satisfy

∆x > ∆xdrift ≡
1

2
στ, (7)

where the factor of1/2 arises from taking the expected time dif-
ference between two regions positioned at random times during the
gas and stellar phases. In practice, the condition of equation (5)
implies that multiple independent star-forming regions are covered
in a single aperture. Statistically speaking, the flux of gasand SF
tracers across the aperture boundary is therefore much smaller than
across individual star-forming regions and equation (7) should typ-
ically be satisfied. This will be illustrated in§3 below.

Together, the above three conditions postulate that galactic SF
relations hold on size-scales

∆x > ∆xmax ≡ max{∆xsamp,∆xIMF,∆xdrift}. (8)
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Figure 1. Schematic representation oftgas , tstar, tover andτ . Depending
on the adopted gas and SF tracers (and their detectability),tover can refer
to the duration of SF itself, the duration of gas removal, or acombination
of both (see text).

2.2 Specification of key variables

The general uncertainty principle of equation (8) should besatis-
fied when evaluating galactic SF relations, irrespective ofthe pre-
cise choice of the variables it depends on. However, the practical
application of the principle requires the specification of the (tracer-
dependent) durations of the several phases of the SF processtph,i,
the minimum SFRs required for their useSFRmin, the total dura-
tion of the SF processτ , and the characteristic spatial separation of
independent star-forming regionsλ. Note that the numbers in this
section are strictly adopted for the purpose of illustration. In prac-
tice, they can be measured from the observational data (see§3 and
§4.3).

In the rest of this paper, we illustrate the use of our uncertainty
principle by assuming that the SF process as traced by galactic scal-
ing relations consists of two steps, as is shown schematically in Fig-
ure 1. During the first phase, the gas tracer can be detected while no
SF is seen, whereas during the second phase, a young stellar popu-
lation is in place and the gas has been expelled due to stellarfeed-
back (or any other mechanism that leads the gas phase to become
undetectable in the adopted gas tracer). The duration of theentire
SF process is therefore given byτ = tgas+ tstar− tover. Here,tgas
denotes the duration of the first phase, i.e. the time for which the
gas is visible in the adopted tracer before entering the SF process,
including possible interruptions,tstar represents the duration of the
second phase, andtover is the duration of the overlap between the
gas and stellar phases. As a result,∆t = min{tgas, tstar}, and in
the first examples we shall settover = 0. In reality, more phases
may exist and inevitablytover 6= 0 (see§3.3).

The meaning oftover depends on the adopted gas and SF trac-
ers. If a diagnostic is used that traces SF only in the unembedded
state (such as Hα), thentover may be dominated by the time it takes
the stellar feedback to remove the gas from the aperture (either by a
phase transition or by motion). If a diagnostic is used that traces SF
from the onset of SF, even when it is still deeply embedded (such as
cm continuum or young stellar object counts), thentover reflects the
duration of SF itself plus the time-scale for gas removal. Inevitably,
the precise onset of the overlap then depends on the sensitivity to
the SF tracer and the time-evolution of the star formation efficiency
(or feedback). For several of the examples below, we assume that
during the overlap the gas and SF tracers arestatisticallydetected
at 50 per cent of their normal intensity, consistent with a linear de-
crease (gas) or increase (stars). Higher-order functionalforms (e.g.
Burkert & Hartmann 2012) are likely more accurate, but thesetypi-
cally introduce corrections of only a few 10 per cent, which justifies
the use of a linear form. However, note that the equations provided

Table 1.Example star formation tracer properties

Tracer ∆t50%
a ∆t95%

a 〈t〉lum
a SFRmin

(Myr) (Myr) (Myr) (10−3 M⊙ yr−1)

Hα 1.7 4.7 2 1b

FUV 4.8 65 14 0.04c

aFrom Leroy et al. (2012).bFrom Kennicutt & Evans (2012).
cAssuming a FUV flux contribution from starsM > 3 M⊙.

below are generalised and do not depend on the detailed intensity
evolution of the gas and SF tracers. The overlap can only be ignored
if (1) its duration is much shorter than that of the individual gas and
SF tracers and (2) multiple independent star-forming regions are
covered in the aperture. We illustrate the effect of a non-zero over-
lap in§3.

For two popular SF tracers, Table 1 shows times at which
50 and 95 per cent of the total flux has been emitted for a typical
stellar population (see Leroy et al. 2012), as well as the luminosity-
weighted durations〈t〉lum of each tracer and the minimum SFR
required for adequately sampling the traced stars from a standard
Chabrier (2003) IMF. For the applications below, we settstar equal
to the luminosity-weighted duration, although in practiceother
choices may be more appropriate depending on the observational
sensitivity limits.

The duration of the gas phase is not well-constrained, and de-
pends on the specific gas tracer as well as the galactic environment.
If a molecular gas tracer is used in a Milky Way-like galaxy, aplau-
sible duration of its detectability is the dynamical time-scale of the
host galaxy, which sets the time interval between external pertur-
bations such as cloud-cloud collisions or spiral arm passages. By
contrast, if a tracer of atomic gas is used, then the condensation
time-scale to the molecular form enters. In the following examples,
we assume the use of a molecular gas tracer, and settgas = Ω−1,
whereΩ ≡ V/R is the angular velocity at circular velocityV
and galactocentric radiusR. In galaxy discs in hydrostatic equi-
librium, this time-scale is similar to the free-fall time ofGMCs
(e.g. Krumholz & McKee 2005). However, equilibrium is not al-
ways satisfied, and therefore an alternative definition would be to
use the typical observed free-fall time of GMCs. As shown in§3
and§4.3, our uncertainty principle can actually be used to empir-
ically determine the time-scales during which gas tracers are de-
tectable.

In galactic discs, a good proxy for the typical separation of
independent star-forming regionsλ is the Toomre length, which
for a flat rotation curve is given by

lT =
πGΣ

Ω2
, (9)

whereΣ is the gas surface density. Substituting the above expres-
sions forτ andλ in equation (5), we can specify the spatial scales
above which galactic SF relations apply due to the statistical sam-
pling of independent star-forming regions

∆xsamp =

(

Ω−1 + tstar − tover
min{Ω−1, tstar}

)1/2
πGΣ

Ω2
, (10)

and due to drift

∆xdrift =
1

2
σ(Ω−1 + tstar − tover), (11)

whereσ is assumed to be the gas velocity dispersion measured on
the largest scale young stars are assumed to inherit the velocity
dispersion of their natal cloud). Equation (6) does not require to
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Table 2.Adopted properties of idealised galaxies and regions.

Galaxy/ Σ Ω−2 σ ΣSFR tgas lT ∆xsamp ∆xIMF ∆xdrift ∆xmax

region (M⊙ pc−2) (100 Myr)−1 (km s−1) (M⊙ yr−1 kpc−2) (Myr) (kpc) (kpc) (kpc) (kpc) (kpc)

SN 10 2.6 7 0.0063 38 0.21 0.94 0.45 0.14 0.94
CMZ 120 85 35 0.20 1.2 0.0023 0.0039 0.080 0.057 0.08
Disc 15 4.0 10 0.011 25 0.13 0.49 0.34 0.14 0.49
Dwarf 10 3.0 10 0.0063 33 0.16 0.66 0.45 0.18 0.66
SMG 103 30 50 20 3.3 0.16 0.26 0.0080 0.14 0.26

The solar neighbourhood (SN) values are based on a flatVc = 220 km s−1 rotation curve and the Wolfire et al. (2003) gas model; the Central
Molecular Zone (CMZ) values are taken from Kruijssen et al. (2013, 230 pc-averaged); the disc and dwarf galaxy values are based on Leroy et al.
(2008); the sub-mm galaxy (SMG) values are based on Genzel etal. (2010). Except for the CMZ and the SMG, the SFR surface densities assume
a Kennicutt (1998) SF relation. Boldface∆x values indicate the maxima of equation (8). In all cases,tstar = 2 Myr is adopted (see text).

be specified further. The above equations show that the gas sur-
face densityΣ, the SFR surface densityΣSFR, the rotation curve,
and the gas velocity dispersionσ must be known to apply our un-
certainty principle in the way specified here. Galactic environments
other than discs (such as galaxy mergers) may require different def-
initions for tgas, τ andλ.

3 APPLICATION TO IDEALISED EXAMPLES

3.1 The failure of SF relations on small spatial scales

We now illustrate the use of the uncertainty principle quantita-
tively with a number of archetypical galactic environments, which
are listed in Table 2 together with their characteristic properties
and the resulting∆xi. We consider the solar neighbourhood (SN),
the Central Molecular Zone (CMZ) of the Milky Way, a ‘disc
galaxy’, a ‘dwarf galaxy’, and a starbursting ‘sub-mm galaxy’
(SMG). Throughout this section, we will assume the use of Hα
to trace SF. Adopting the luminosity-weighted duration, wedefine
tstar = 2 Myr (see Table 1).

In all cases other than the CMZ, the galactic SF relation breaks
down first due to the incomplete sampling of independent star-
forming regions (i.e. below∆xsamp), whereas in the CMZ the
SFR is too low to adequately sample the SF tracer from the IMF
on scaleslap < 80 pc. This is due to the low SFR measured in
the CMZ (Longmore et al. 2013), but even if the CMZ were form-
ing stars at a higher rate, the effect of drift would still be more
important than the incomplete sampling of star-forming regions
(i.e. ∆xdrift > ∆xsamp). The typical size-scales above which
galactic SF relations hold vary from∼ 100 pc in the CMZ to al-
most a kpc in the SN. It can be inferred from equation (10) thatthis
latter value is representative for much of the population ofnearby,
star-forming galaxies. These galaxies satisfy a broad trend of Ω ∝
Σ0.5 with about 0.3–0.5 dex scatter (Krumholz & McKee 2005;
Kruijssen 2012) because they simultaneously satisfy the Schmidt-
Kennicutt and Silk-Elmegreen SF relations (Schmidt 1959; Silk
1997; Elmegreen 1997; Kennicutt 1998). Substitution of this trend
into equation (10) results in a roughly constant∆x ∼ 1 kpc for all
surface densities, with a variation of 0.6–1.0 dex as in Table 2. Be-
cause the size-scales of GMCs and stellar clusters are much smaller
(Longmore et al. 2014), it is clear that they cannot satisfy galactic
SF relations.

In Figure 2, we illustrate the radial profiles of the three differ-
ent∆xi from equations (5)–(7) as well as∆xmax for a disc galaxy
with a logarithmic potential (V = 200 km s−1), an exponential gas
surface density profile with central valueΣ(0) = 200 M⊙ pc−2

and scale radiusRs = 2.5 kpc, and a gas velocity dispersion of

Figure 2. Example of the minimum size-scales∆xi above which galac-
tic SF relations hold as a function of galactocentric radiusin an idealised
disc galaxy (see text). The red dashed line shows∆xsamp, which accounts
for the statistical sampling of the different phases of the SF process. The
blue dotted line shows∆xIMF, which accounts for the sampling of the
high-mass (SF-tracing) end of the IMF. The green dash-dotted line shows
∆xdrift, which accounts for the drift of gas and young stars across the aper-
ture boundary. At each radius, the black solid line shows themaximum of
these three limits,∆xmax. The vertical dotted lines indicate the scale ra-
diusRs and the optical radiusR25 ∼ 5Rs (e.g. Leroy et al. 2008), while
the grey box indicates the radius interval where most of the SF occurs in an
exponential disc (R = 0.5–3 Rs).

σ = 10 km s−1. In the central kpc, the velocity dispersion is as-
sumed to rise linearly to a central value ofσ = 50 km s−1, and
the rotation curve is assumed to be solid-body (i.e.Ω is constant).
The Kennicutt (1998) relation is used to translate the gas surface
density to a SFR surface density.

In the central 500 pc, the drift of gas and young stars across
the aperture boundary set the minimum scale on which galactic SF
relations hold (∆xdrift ∼ 150 pc), which is consistent with the
known offset between the dense gas and 24µm sources in the CMZ
of the Milky Way (Yusef-Zadeh et al. 2009; Longmore et al. 2013).
However, the incomplete sampling of independent star-forming re-
gions sets∆xsamp = 100–900 pc over the largest part of the
galaxy, in the radius rangeR = 1–9 kpc. At larger radii, the
incomplete sampling of SF tracers from the IMF kicks in and
∆xIMF > 1 kpc. A direct implication is that when using SF tracers
that are visible over a longer age range (e.g. FUV), the IMF re-
mains properly sampled out to larger radii. This is why discsdo not
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show the same truncation in the UV (Thilker et al. 2007) as when
observed in Hα (Martin & Kennicutt 2001; also see Bigiel et al.
2010). Considering that the majority of the SF in exponential disc
galaxies occurs between 0.5 and 3 gas scale radii, Figure 2 shows
that∆xsamp most strongly restricts the application of galactic SF
relations on small scales.

3.2 The scatter of SF relations

Galactic SF relations are often characterised by defining the gas
depletion time-scaletdepl ≡ Mgas/SFR, which allows the scatter
of the SF relation to be quantified as the root-mean-square (RMS)
scatter of the depletion time-scaleσlog t (e.g. Bigiel et al. 2008;
Schruba et al. 2011; Leroy et al. 2013). In the framework of the
uncertainty principle presented in§2.1, the scatter of the SF rela-
tion for an aperture with diameterlap is determined by the Poisson
statistics of the number of times the SF phases are sampled within
the aperture, which will be dominated by the shortest phase.Addi-
tional sources of scatter are the luminosity evolution of the gas and
stars duringtgas andtstar, respectively, the mass spectrum of the
independent regions, and the intrinsic observational error:

σ2
log t = σ2

samp + σ2
evo + σ2

MF + σ2
obs, (12)

whereσsamp indicates the Poisson error,σevo represents the scatter
caused by the luminosity evolution of independent regions,σMF is
the scatter due to the mass spectrum, andσobs denotes the intrinsic
observational error. The full derivation of these four components
is presented in Appendix B and we describe their qualitativebe-
haviour here.

For lap ≫ λ, the scatter due to the Poisson statistics of sam-
pling independent regions decreases with aperture size asσsamp ∝
l−1
ap , because the relative Poisson error of the number of regions

covered in an aperture isσlnN = σN/N = N−1/2 = λ/lap. The
distribution of theseN regions over gas and stellar regions is set
by the fractionstgas/τ andtstar/τ , respectively, implying that for
largelap we have:

σlog t = α

[

1 + min

(

tstar
tgas

,
tgas
tstar

)]1/2
∆xmax

lap
, (13)

whereα ≡ 1/ ln 10 ≈ 0.43 converts the logarithmic scatter from
basee to base10, the term in brackets accounts for the conversion
of the scatter of a single tracer to the combined scatter of both trac-
ers ontdepl, and the ratio∆x/lap counts the number of shortest SF
phases within the aperture.1 If the apertures were truly randomly
positioned, this expression would describe the scatter forall spatial
scales. However, the scatter does not keep increasing indefinitely
towards small aperture sizes (lap < λ), because only apertures that
contain both the gas and SF tracer are included – otherwise the gas
depletion time-scale would be zero or infinity. Iftover = 0, this se-
lection bias implies that very small apertures each typically contain
the bare minimum of one gaseous region and one stellar region(the
probability of catching more is negligible), which causes the scat-
ter to vanish. This means that at small aperture sizes, the Poisson
scatter actually increases with aperture size rather than the decrease
that is seen atlap ≫ λ. In this part of the size-scale range, the lu-
minosity evolution and the mass spectrum therefore dominate the

1 We have tested the influence of a non-homogeneous environment (e.g. an
exponential disc galaxy with a scale radiusRs

<∼ lap) and the resulting
variation of∆xmax within the aperture. We find that equation (13) remains
accurate to within a few per cent under all physical circumstances.

scatter. In the simple case oftgas = tstar, the transition between
both regimes occurs atlap = 2–3λ.

The other terms of equation (12) will vary substantially be-
tween different tracers, galaxies, and specific observations. The
scatter due to the luminosity evolution of gaseous regions during
tgas and stellar regions duringtstar depends on its particular func-
tional form. Likewise, the scatter due to the mass spectrum of the
independent regions also depends on its detailed characteristics. In
both cases, the scatter does decrease with the aperture size, simply
because the scatter of the mean decreases with the number of re-
gions sampled, i.e.σmean = σ1N

−1/2, whereσ1 is the scatter for a
single region. As stated previously, the number of sampled regions
N ∝ (lap/λ)

2 for lap ≫ λ, but for small apertures the selection
bias of requiring the presence of both tracers preventsN < 1 (if
tover 6= 0) or N < 2 (if tover = 0). Detailed expressions are again
provided in Appendix B, and are included in the publicly available
routines (see Appendix A). We leave the scatter due to the lumi-
nosity evolution and the mass spectrum for single regions asa free
parameter. Reasonable values areσevo,1g = σevo,1s = 0.3 dex
for the luminosity evolution of a single gaseous or stellar peak, re-
spectively (cf. Leroy et al. 2012), andσMF,1 ∼ 0.8 dex, which is
roughly appropriate for a power law mass spectrum with a slope of
−2 over a factor of 40 in mass. Finally, the observational scatter
acts as a constant lower limit over all size-scales, which inpractice
flattens theσlog t–lap relation at large aperture sizes.

In addition to the analytic expression provided above, we es-
timate the scatter inlog tdepl with a simple Monte-Carlo experi-
ment, in which we randomly distribute 50,000 points over an area
such that their mean separation isλ = 130 pc and position each re-
gion randomly on the time sequence of Figure 1, using time-scales
tgas = tstar andtover = 0. We do not include any possible evolu-
tion of each region’s luminosity in either tracer, nor a region mass
function or an intrinsic observational error. We then randomly place
50,000 apertures to measure the scatter inlog tdepl, only includ-
ing those apertures that include non-zero flux for both the gas and
SF tracers. The resulting relation between the scatter and the aper-
ture size is shown in the top panel of Figure 3 (black line), which
also illustrates that the variation of the obtained relation when us-
ing only 100 apertures is minor (grey area). At large aperture sizes,
the scatter decreases asσlog t ∝ N−1/2 ∝ l−1

ap , which is expected
for Poisson statistics. As explained above, the scatter also does not
increase indefinitely towards small apertures, because apertures not
including both tracers are discarded. For the adopted parameters (in
particulartover = 0), this requires at least two independent regions
to be present in the aperture. The probability of finding morethan
that decreases rapidly whenlap ≪ λ, implying that most apertures
that are not discarded have the same content of one gaseous and
one stellar region. As a result, the scatter goes to zero forlap ↓ 0.

The top panel of Figure 3 also shows that the analytic ex-
pression of equation 12 and Appendix B (red dashed line) agrees
very well with the Monte-Carlo experiment.2 The decrease of the
scatter at small aperture sizes vanishes when includingσevo,1g =
σevo,1s = 0.3 dex scatter (blue dashed line). Even when all
apertures have the same content of (at least) one stellar andone
gaseous region, the evolution of the gas-to-stellar flux ratio leads

2 The small discrepancy atlap ∼ 2λ is not due to statistical noise and
arises because the derivation in Appendix B does not includethe covari-
ance between the number of gaseous and stellar regions. The complete ex-
pression is considerably more complex, which is undesirable in view of the
satisfactory accuracy of the presented form.
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Figure 3. Scatter in the gas depletion time-scale as a function of aper-
ture sizelap. Top panel: The black solid line reflects the result of a sim-
ple Monte-Carlo experiment using 50,000 randomly placed apertures. The
grey area indicates the RMS scatter of the scatter when usingonly 100
apertures. The red dashed line represents the analytic model from equa-
tion (12) and Appendix B forσevo = σMF = σobs = 0, and the red
dotted line indicates its power-law behaviour forlap ≫ λ as expressed in
equation (13). The{blue,green,grey} dashed lines subsequently add scat-
ters of{σevo,1, σMF,1, σobs} = {0.42, 0.8, 0.15} dex to illustrate the
effects of the luminosity evolution of independent regions, a cloud mass
spectrum, and an intrinsic observational error, respectively. The black dot-
ted line indicates the result from Feldmann, Gnedin & Kravtsov (2011) for
a particular numerical setup (see text).Bottom panel: The{blue,green,red}
solid lines show the{dwarf,disc,sub-mm} galaxies from Table 2. We have
setσevo,1g = σevo,1s = 0.3 dex,σMF,1 = 0.8 dex andσobs = 0.15 dex
as in the top panel. The{dotted,dashed,dash-dotted} lines refer to the disc
galaxy model withσMF,1 = 0 dex,σMF,1 = 1.6 dex, andσevo,1g =

σevo,1s = 0 dex, respectively. The grey-shaded area indicates the part
of parameter space covered by nine galaxies from the HERACLES sur-
vey (Leroy et al. 2013). The filled diamonds represent M33 (Schruba et al.
2010) and the open diamond indicates M51 (Blanc et al. 2009).

to residual variance and hence the scatter approachesσ2
log t =

σ2
evo,1g + σ2

evo,1s for lap ↓ 0. Similarly, including a scatter of
σMF = 0.8 dex due to an underlying mass function (green
dashed line) causes the scatter at small aperture sizes to saturate
at σlog t =

√

σ2
evo,1g + σ2

evo,1s + σ2
MF,1/2. It also increases the

scatter at large aperture sizes. Note that the presence or absence of
a mass function does not affect the scatter at small aperturesizes
whentover 6= 0 – the scatter at small aperture sizes is then domi-
nated by single regions residing in the overlap phase3, for which a

3 For typical parameters, this is more likely than catching one gaseous and
one stellar region independently in a single aperture.

mass function affects the gas and stellar flux in the same way and
hence does not introduce additional scatter. Finally, including an in-
trinsic observational error margin ofσobs = 0.15 dex (grey dashed
line) causes the scatter to saturate atσlog t = σobs for lap → ∞.

For reference, Figure 3 includes the relation be-
tween the scatter and the aperture size that was found by
Feldmann, Gnedin & Kravtsov (2011) in grid-based hydrodynami-
cal simulations of (disc) galaxies. Although a detailed comparison
is obstructed by the somewhat arbitrary position on the x-axis of
each model (our models assumeλ = 130 pc), both results agree
for lap > 300 pc. At smaller aperture sizes, the comparison is not
representative because in that regime the size-scale dependence
of the scatter depends on the details of the underlying luminosity
evolution and the adopted mass spectrum. Nevertheless, the
prediction that some flattening of the relation must occur below
size-scales of a few 100 pc seems to be robust.

Using equation (12), we can now predict the scatter of the ob-
served gas depletion time-scale as a function of aperture size for
several of our example systems from Table 2. This is shown in the
bottom panel of Figure 3 for the disc galaxy, dwarf galaxy andSMG
parameter sets. The galaxies follow roughly the same trend of de-
creasing scatter with aperture size, but there are several relevant dif-
ferences. For instance, the bumps and slightly wave-like behaviour
is caused by the dissimilar values oftgas andtstar and the resulting
increase of∆x – the bump visible atlap ∼ 500 pc for the dwarf and
disc galaxies coincides with∆x =

√

τ/∆tλ ∼ 3.9λ ∼ 500 pc.
For tgas ∼ tstar, this bump would have moved tolap ∼ λ, as is
the case for the SMG parameter set. The dotted, dashed and dash-
dotted lines show how the size-scale dependence of the scatter de-
pends on the luminosity evolution of individual regions andtheir
underlying mass spectrum. While the variation is non-negligible, it
clearly represents a secondary effect. The overall trend isthat the
scatter varies fromσlog t ∼ 0.9 at lap = 50 pc toσlog t ∼ 0.2 at
lap = 1 kpc, indicating a rough power-law relation of:

σlog t ∼ 0.2

(

lap
kpc

)−0.5

, (14)

for lap = 0.05–1 kpc. Note that the details of this relation are by
no means universal and should vary substantially between galax-
ies due to variations inλ, tgas, tover, σevo andσMF. While a slope
of −1 is expected for pure Poisson statistics, we see that a shal-
lower slope can emerge due to the combined effect of the flattening
at small aperture sizes that was explained above, the intrinsic ob-
servational error, and the dissimilarity oftgas andtstar. Although
a detailed comparison with observations is deferred to K14,Fig-
ure 3 does show which part of parameter space is covered by the
observed nearby galaxies of Leroy et al. (2013), as well as M33
(Schruba et al. 2010) and M51 (Blanc et al. 2009), indicatingthat
our model agrees very well with the trend of these observations.

3.3 How the uncertainty principle constrains SF physics

Thus far, we have assumed that apertures are randomly positioned
on a galaxy. However, it is also possible to estimate the relative
change of the measured gas depletion time-scale as a function of
aperture size when centering it on a concentration of gas (increasing
tdepl with respect to the galactic average) or young stars (decreas-
ing tdepl with respect to the galactic average, see Schruba et al.
2010). In particular, we show in this section that this relative change
(or bias) is a very useful quantity to constrain the time-scales gov-
erning the evolution of gas and SF in galaxies.
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The relative change of the gas depletion time-scale when cen-
tering apertures on gas or stellar peaks can be estimated with a
simple statistical model. The depletion time is defined astdepl ≡
Mgas/SFR ∝ Fgas/FSF, whereFgas andFSF indicate the flux
emitted by gas and SF tracers, respectively. The expected flux from
both tracers in apertures focussed on gas or stellar peaks follows
from the Poisson statistics of independent regions in apertures of
varying size. The resulting flux ratio can then be compared tothe
galaxy-wide flux ratio to obtain the relative change of the mea-
sured gas depletion time-scale. The derivation is presented in detail
in Appendix C and only the result is provided here.

By centering an aperture on a gas peak, the gas flux is guar-
anteed to be non-zero and may increase due to additional gas-rich
regions residing in the aperture by chance – the expected number of
these ‘contaminants’ increases with the aperture size. By contrast,
the stellar flux could potentially be zero, because it is constituted by
the sum of the flux emitted by stellar regions residing in the aperture
by chanceand the flux emitted by the central gas peak if it happens
to be in the overlap phase (which can only occur iftover 6= 0). The
relative change of the gas depletion time-scale then becomes

[tdepl]gas
[tdepl]gal

=
1 +

tgas
τ

(

lap
λ

)2

βs
tover
tstar

[

1 + (βs − 1) tover
tstar

]−1
+

tgas
τ

(

lap
λ

)2
, (15)

Analogously, for an aperture centered on a stellar peak we find

[tdepl]star
[tdepl]gal

=
βg

tover
tgas

[

1 + (βg − 1) tover
tgas

]−1

+ tstar
τ

(

lap
λ

)2

1 + tstar
τ

(

lap
λ

)2
.(16)

In these equations,βg ≡ Fg,over/Fg,iso indicates the ratio between
the mean gas flux of peaks in the overlapFg,over and the mean flux
of those in isolationFg,over. Likewise, βs ≡ Fs,over/Fs,iso in-
dicates the same ratio for stellar fluxes. These flux ratios can be
directly measured from observations if the spatial resolution allows
the smallest apertures to contain only a single region (i.e.lap < λ).
By only considering the smallest apertures, one can then obtainβg

andβs by dividing the mean flux in apertures containing both trac-
ers by the mean flux in those containing only a single tracer. If the
spatial resolution is insufficient, some parametrization of the flux
evolution needs to be assumed. For instance, if the gas (stellar) flux
decreases to zero (increases from zero) linearly during theoverlap
and is constant otherwise, thenβg = βs = 0.5. The advantage
of measuring the flux ratio rather than adopting some parametriza-
tion of the flux evolution is that equations (15) and (16) become
independent of any prior assumptions.

In equations (15) and (16), the number 1 in the numerator or
denominator indicates the guaranteed gas or stellar peak, respec-
tively. The terms containing(lap/λ)2 represent the gas and stel-
lar peaks residing in the aperture by chance. Iflap ≫ λ, then
both equations approach unity and the bias of the gas depletion
time-scale vanishes. Finally, the term in the denominator (numer-
ator) containingβs (βg) reflects the non-zero probability of find-
ing stars (gas) in the central gas (stellar) peak in case the gas
and stellar phases overlap (i.e.tover 6= 0). As explained in§2.2,
tover encompasses the duration of SFtSF as well as the time-scale
for the removal of gas from the aperture or region by feedback
tfb = min (lap, λ)/vej, wherevej is the characteristic removal ve-
locity of the gas, be it by a phase transition or by motion. Together,
this yieldstover = tSF + min (lap, lT)/vej. When using a tracer

Figure 4. Expected relative change of the measured gas depletion time-
scale as a function of aperture size when centering on gas peaks (top
curves) or stellar peaks (bottom curves) for several combinations of
{tgas, tstar , tover} (see legend). Except where noted otherwise, gas re-
moval due to feedback occurs instantaneously and hence the overlap equals
the duration of SF (tover = tSF). The thick black curves represent the
reference variable set, withtgas = tstar andtover = 0. The orange and
red curves illustrate the effect of a non-zero overlap time,the green curve
shows the effect of the ratio between the durations of the gasand stellar
phases, and the cyan curve indicates the combined effect. The blue curve
adds the effect of non-instantaneous gas removal due to feedback, with a
SF time-scale oftSF = 3 Myr and a characteristic gas removal velocity of
vej = 100 km s−1. The vertical dotted line denotes the adopted typical
separation between regionsλ = 0.13 kpc (cf. Table 2). The (asymptotic)
values reached forlap ↓ 0 are indicated towards the right-hand side of the
figure in grey. As can be verified by substituting equation (5)into equa-
tions (15) and (16), the bias oftdepl never exceeds a factor of two as long
aslap > ∆xsamp.

that only detects unembedded stars, thentSF must be close to zero
and hence the duration of the overlap is mainly set by gas removal.

In Figure 4, we show the relative change of the gas depletion
time-scale resulting from equations (15) and (16) for different com-
binations oftgas, tstar and tover. While Figure 3 already showed
substantial scatter on scales smaller than a few 100 pc, we now see
that centering an aperture on an overdensity of gas or stars sys-
tematically biases the gas depletion time-scale by up to an order of
magnitude or more. This is caused because focussing on a certain
tracer guarantees it to be present in the aperture, which leads to a
different depletion time-scale than measured on average through-
out the galaxy. Iftgas = tstar, this occurs symmetrically around
the galactic value of the depletion time, but in all other cases there
exists an asymmetry between the curves focussing on gas or stars,
which depends on the ratiotgas/tstar. This is easily understood,
because the bias is caused by the guarantee of having a gaseous or
stellar peak – if the visibility time-scale of either tracerexceeds that
of the other, it will also be more numerous at a given instant.There-
fore, the guarantee of including at least one region bright in that
tracer will change the depletion time-scale by an amount smaller
than when focussing on the shorter-lived tracer.

If the gas and SF tracers never overlap (tover = 0), the de-
pletion time-scale in the limitlap ↓ 0 goes to infinity (zero) when
focussing on gaseous (stellar) peaks. By contrast, a non-zero over-
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lap between the gas and stellar phases (i.e. the duration of SF and
gas removal) introduces a flattening of the curves in Figure 4for
aperture sizes smaller than the typical separation of independent
regions. When both phases overlap for some duration, then there
is always a non-zero probability that both tracers are present in the
aperture, even when only a single region is covered. This prevents
the depletion time-scale from approaching zero or infinity for small
aperture sizes. In particular, when focussing on gas peaks we see
that the bias oftdepl saturates at a value of

lim
lap↓0

[tdepl]gas
[tdepl]gal

= 1 + β−1
star

(

tstar
tover

− 1
)

, (17)

whereas when focussing on stellar peaks it approaches

lim
lap↓0

[tdepl]star
[tdepl]gal

=
[

1 + β−1
gas

(

tgas
tover

− 1
)]−1

. (18)

Becausetstar is known from stellar population modelling, this im-
plies that the relevant time-scales of the SF process can simply be
read off figures like Figure 4. This is a potentially very powerful ap-
plication of our framework, which is discussed in more detail below
and in Appendix A. Figure 4 also shows that the inclusion of a finite
gas ejection velocity causes the flattening for small apertures to be-
come more gradual, which occurs because the non-instantaneous
removal of the gas increases the duration of the overlap for large
aperture sizes (see above).

Note that the time-scales obtained through this method should
be interpreted carefully. The time sequence of Figure 1 follows the
mass flow of the gas towards and through SF, i.e. it is ‘Lagrangian’.
Because not all of the gas is consumed in the SF process, a mass
unit likely completes the sequence of Figure 1 multiple times, either
by only peripherally participating in the SF process or by actually
forming a star and subsequently being ejected by feedback. In this
context,tgas reflects thetotal time in betweensubsequent SF events
during which the mass unit is visible in the gas tracer. This also
means thattgas may span interruptions due to phase transitions un-
related to SF. While the duration of these interruptions themselves
does not contribute totgas, any prior visibility of a mass unit in the
adopted gas tracer is contained intgas.

As a first test of equations (15)–(18), we have performed a
set of Monte-Carlo experiments very similar to those discussed
in §3.2. We randomly distribute 20,000 points over an area such
that their mean separation isλ = 130 pc and position each re-
gion randomly on the time sequence of Figure 1, using time-scales
{tgas, tstar, tover} = {10, 5, 3} Myr. The gas (stellar) luminosity is
taken to decrease (increase) linearly during the overlap phase while
remaining constant when only a single tracer is present, implying
βg = βs = 0.5. We then place apertures of different sizes, which
are focussed on each of these regions. The entire gas and stellar
flux for the subsets of apertures centered on gas and stellar peaks,
respectively, are then added up to obtain the bias of the gas deple-
tion time-scale as a function of aperture size. In addition to this
standard model, in some cases we assign a mass spectrum to the
regions, account for detection limits, or consider different spatial
distributions of the points.

Figure 5 shows the comparison between the Monte-Carlo
model and the analytic expressions of equations (15) and (16). The
values ofβg andβs used in the analytic expressions are measured
from the Monte-Carlo model as they would be determined from ob-
served galaxies (see the earlier discussion) – the other variables are
simply set according to the initial conditions of the Monte-Carlo
model. The top-left panel shows that when using only 100 aper-
tures, an uncertainty of∼ 0.1 dex should be expected when using

Figure 5. Comparison of the gas depletion time-scales seen in a simple
Monte-Carlo experiment (see text) to those of the analytic expressions of
equations (15) and (16), centering the apertures on gas peaks (top curves)
or stellar peaks (bottom curves).Top left: The red dashed line indicates the
analytic expression. The grey areas indicate the uncertainty range for small
numbers of apertures (see legend) as obtained from the Monte-Carlo ex-
periment.Top right: As in the previous panel, but assigning a power-law
mass spectrum to the regions, covering two decades in mass with a slope
of −1.7. Bottom left: Effect of the spatial randomisation, comparing the
analytic expression (red dashed line) to the Monte-Carlo experiment for a
hexagonal equidistant grid (green), for an additional random scatter up to
0.5λ (blue), and for a fully random distribution (black).Bottom right: Ef-
fect of incompleteness, comparing the analytic expression(red dashed line)
to the Monte-Carlo experiment (black), using the same mass spectrum as in
the top right panel. In the case of ‘coupled limits’, the gas and stellar mass
spectra are undetected below twice their minimum mass, whereas in the
case of ‘independent limits’ the gas (stellar) mass spectrum is undetected
below five (three) times the minimum mass. Dashed lines indicate the ana-
lytic model when settingtgas , tstar andtover to the mean time-scales for
which the tracers aredetectable(or detectably overlapping).

the model to interpret observational data – for larger numbers of
apertures, theory and simulation converge to high accuracy. The
scatter increases by about a factor of two when including a mass
spectrum (top-right panel), to∼ 0.2 dex, suggesting that the anal-
ysis proposed here requires a minimum of about 100 aperturesto
yield statistically useful results. Note that the applicability of the
analytic expressions is unaffected by the presence of a massspec-
trum. The third panel in Figure 5 addresses the assumption made
thus far that independent regions are randomly distributed. If they
are distributed on an equidistant, hexagonal grid with inter-point
separationλ, the familiar saturation of the depletion time-scale at
small aperture sizes is already attained atλ – at smaller size-scales
there is never more than a single region residing in the aperture.
The addition of random perturbations to this fixed distribution of
points shifts the saturation point to0.5λ. In either case, the satura-
tion value is still a reliable measure oftgas andtover.

The bottom-right panel of Figure 5 considers the effect of in-
completeness – the partial detection of the mass spectra of gaseous
and stellar regions. Unsurprisingly, the bias of the gas depletion



An uncertainty principle for star formation 9

time-scale changes when only part of the mass spectrum is de-
tected. This gives incorrect results when using the model toderive
tgas and tover from observations. It makes no difference whether
the detection limits of the gas and SF tracers are coupled (i.e. the
gas limit turns into the stellar limit and the number of regions
is conserved between both tracers) or independent. However, we
also show the analytic model when adopting the meandetectability
time-scales of the gas and SF tracers rather than their underlying
lifetimes, as well as the mean duration of their detectable overlap
(dashed lines). These agree well with the Monte-Carlo experiment,
indicating that the time-scales that are obtained from incomplete
observations refer to the time-scales during which the tracers are
detectable. When the observations are incomplete, this naturally
differs from the underlying, true lifetimes of the gas and SFtracers
and their overlap.

We conclude that measurements of the gas depletion time-
scale in small apertures centered on gas or SF tracers directly probe
the duration of the several phases of the SF process. This mayopen
up a new avenue to infer the physics of SF and feedback as a func-
tion of the galactic environment.

4 DISCUSSION

4.1 Summary

We have presented a simple uncertainty principle for spatially re-
solved galactic SF relations. This explains the failure of these rela-
tions on small spatial scales as the result of the incompletestatis-
tical sampling of independent star-forming regions. The main con-
clusions of this work are as follows.

(i) Throughout most of the known star-forming systems, the in-
complete sampling of independent star-forming regions determines
the spatial scale∆x below which galactic SF relations break down.
It provides a more stringent criterion than the incomplete sampling
of SF tracers from the IMF (which dominates in the outer regions of
galaxy discs) or spatial drift (which dominates in galaxy centres). If
the Toomre length sets the separation of independent star-forming
regions, we predict that there should be little variation of∆x as a
function of the galactic gas surface density.

(ii) The Poisson statistics of sampling independent star-forming
regions cause the scatter of the gas depletion time-scale ofthe
spatially resolved SF relation to depend on the aperture size as
σlog t ∝ l−γ

ap with γ = 0.5–1 for lap = 0.1–1 kpc. The increase
of the scatter with decreasing size-scale flattens for smallaperture
sizes, where it is dominated by the cloud mass spectrum and the
details of the luminosity evolution during the SF process. We find
good agreement with the observed dependence of the scatter on the
spatial scale.

(iii) When focussing apertures on gas or stellar peaks, the mea-
sured gas depletion time-scale is biased to larger or smaller val-
ues, respectively. This bias directly probes the time-scales govern-
ing the SF process, such as the duration of the gas phase and its
time overlap with the stellar phase. These time-scales can be ob-
tained from galaxy-wide observations without the need to spatially
resolve independent star-forming regions – resolving their mean
separation suffices. Simple Monte-Carlo models of large numbers
of star-forming regions show that the method is insensitiveto the
cloud mass spectrum and can be applied reliably when at least100
gas or stellar peaks are used. Another important strength ofthis
method is that it is not hampered by the uncertain conversionfac-
tors between gas tracer flux and gas mass that traditionally plague

the inference of SF physics from galactic SF relations (see e.g.
Kennicutt & Evans 2012), because it relies exclusively on tracer
flux ratios.

Fortran and IDL modules for applying the uncertainty principle
are available at http://www.mpa-garching.mpg.de/KL14principle.
A checklist detailing the required steps for their observational ap-
plication is supplied in Appendix A.

4.2 Assumptions, observational caveats and biases

The statistical arguments used to derive the expected scatter in SF
relations rely on several implicit assumptions. If this theoretical
framework is applied in regimes where these assumptions break
down, the derived scatter will vary from that predicted. Forexam-
ple, we have assumed that the galactic SFR is roughly constant over
τ , which will break down in a localised ‘starburst’ event.4 Alter-
natively, if the physical properties of a galaxy vary substantially
within a given observational aperture, the characteristicsize and
mass of independent regions may also change, potentially giving
rise to additional scatter. Also, the above framework has been de-
fined under the simplest assumption that the galaxy is face-on. As
inclination will directly affect several key variables (e.g. the pro-
jected aperture area, gas/star surface density, rotation curves), the
deprojected values should be used.

Our framework also assumes that observations accurately re-
cover the full underlying gas and young star distributions.In the
idealised case where all independent star-forming regionshave the
same characteristic mass (e.g. the Toomre massMT = σ4/G2Σ),
the observations need to be sufficiently sensitive to both (1) de-
tect this characteristic gas mass and (2) detect the stellarpopula-
tion eventually resulting from this gas (e.g. the Toomre mass times
some SF efficiency). However, in practice the gas mass distribution
will be continuous and hence sensitivity limitations mean that ob-
servations will only detect emission from a fraction of the gas and
young stars. We have shown in§3.3 that this affects the time-scales
that are retrieved when considering the bias of the gas depletion
time-scale in small apertures. Ideally, the gas and SF tracer obser-
vations are complete, but at least they should encompass thesame
total fraction of gas clouds and resulting young stellar populations
they produce. A robust application of our framework requires the
recovered fraction to be large. The requirement that observations
be sensitive to a similar, substantial fraction of the gas and young
stars being produced effectively places a distance limit onthe ap-
plicability of this analysis. These and other observational points of
caution are discussed in more detail in Appendix A2.

One final thing to bear in mind, is that our uncertainty prin-
ciple mainly considers the statistics of observational tracers of a
physical system rather than directly describing that system itself.
As described in§3.3, the physics of SF can be characterised by
considering their effects on these statistics.

4.3 Implications and future applications

The uncertainty principle presented in this paper shows that care
must be taken when comparing galactic SF relations to small-
scale SF relations and provides quantitative limits on their appli-

4 In the framework of this paper, the clouds and regions in a galaxy-wide
starburst are no longer independent, which implies that theentire galaxy
actually constitutes a single independent region.

http://www.mpa-garching.mpg.de/KL14principle
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cability. For instance, SF relations measured in the solar neigh-
bourhood (Heiderman et al. 2010; Lada, Lombardi & Alves 2010;
Gutermuth et al. 2011; Lada et al. 2013) are fundamentally differ-
ent from their galactic counterparts. Small-scale SF relations de-
scribe the conversion of dense (and likely self-gravitating) gas into
stars, whereas large-scale SF relations additionally cover galactic
physics such as feedback, cooling and inflow dynamics. Despite
this added complexity, the clear advantage is a better statistical
sampling of the SF process – and as shown in this paper, the small-
scale characteristics of the SF process can be obtained by consider-
ing how the large-scale SF relations break down.

The framework of this paper also shows that there is no
reason why the SF recipes that are used in high-resolution
numerical simulations of galaxy formation and evolution (e.g.
Springel & Hernquist 2003) should be motivated by the galactic SF
relation, which in essence fails to describe the∆x ≪ 100 pc size-
scales that can actually be resolved in modern calculations. Because
the presented framework is Lagrangian in nature (i.e. it traces the
mass flow through a system), it may also be used as a means to
quickly analyse mass flows in Eulerian, grid-based simulations, al-
leviating the need for tracer particles.

The dependence of the scatter and bias of the gas depletion
time-scale on the aperture size (see Figures 3 and 4) presents
a novel and potentially powerful way of deriving the durations
of the different phases of the SF process, such as how long the
gas and stars are visible in their respective tracers, and how long
the phase lasts during which both are visible (i.e. the duration of
SF itself as well as the resulting gas removal). Any possiblede-
generacies can be lifted by considering different tracers.For in-
stance, when using Hα to trace stars and assumingtstar = 2 Myr,
∆xsamp ∝ (τ/∆t)1/2 is indistinguishable fortgas = {1, 4} Myr.
However, when adding FUV and hencetstar = 14 Myr, both gas
tracer lifetimes can be separated and the degeneracy is lifted. The
use of different SF tracers that capture the early, embeddedphase of
SF and are sensitive to different stellar masses (such as cm contin-
uum, far-infrared and young stellar object counts) may be used to
map the assembly of the stellar mass function. Similarly, the com-
bination of different gas tracers in our framework can be used to
constrain time-scales for gas phase transitions (e.g. HI→H2) and
to map the gas volume density evolution towards SF as a function
of absolute time. We conclude that our uncertainty principle and its
corresponding framework provide a powerful tool to characterise
the SF process, using spatially resolved, galaxy-scale observations.

Finally, we note that the statistical model presented in this pa-
per is very general and applies to any astrophysical processthat
can be separated into (partially overlapping) subsequent phases:
any system that is subject to some degree of time-evolution.By
contrast, it cannot be applied when the correlated quantities are
the simultaneous result of an underlying phenomenon (e.g. the
colour-magnitude relation of main sequence stars). The fundamen-
tal point is that when a macroscopic correlation is caused bya time-
evolution, then itmustbreak down on small scales because the sub-
sequent phases are resolved. This general observation supports the
application of the presented framework to a wide range of fields,
from small-scale star and planet formation to galaxy formation and
evolution.
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APPENDIX A: IDL AND FORTRAN ROUTINES FOR APPLYING THE UNCERT AINTY PRINCIPLE

A1 Code description

Fortran and IDL modules for applying the uncertainty principle are available at http://www.mpa-garching.mpg.de/KL14principle. The mod-
ules contain functions to predict the following quantities.

(i) The size-scale∆x below which galactic SF relations fail.
(ii) The logarithmic scatter of the depletion time-scale (see Appendix B).
(iii) The relative change of the depletion time-scale when focussing the aperture on gas or stellar peaks (see Appendix C).

The functions are written in a general form which does not necessarily refer to the SF process. They all require some choice of the duration of
the first phaset1 (e.g.tgas), the second phaset2 (e.g.tstar), their overlaptover and the separationλ, and are accompanied by comprehensive
documentation and examples.

A2 Checklist for observational applications

We focus here on the specific steps needed to determinetgas, tstar andtover from observed galaxies using the framework of this paper. In
particular, certain input parameters need to be estimated and it should be verified that the assumptions made for equations (15) and (16) hold.

(i) The gas and SF tracer maps should satisfy a number of simple criteria. (a) Contamination should be minimized, i.e. thetracers should
be directly associated with the physical objects that they are intended to probe. Possible sources of contamination include degenerate tracers
(e.g. 24µm emission traces both young and evolved stars) and the scatter of photons at large distances from their original sources. (b) The
maps should be as complete as possible, i.e. the loss of flux due to extinction, leakage, excitation, and chemistry shouldbe minor, and if the
gas tracer map relies on interferometric data, it should always be combined with single-dish observations. (c) The sensitivity of the gas and
SF tracer observations should be sufficient to recover a large fraction of the gas and SF tracer emission. (d) The spatial resolution of the maps
should be sufficient to resolve the separation between independent star-forming regions. Individual regions do not need to be resolved – in
fact, point (ii) shows that the analysis is simplified when they are not. (e) One of the three time-scalestgas, tstar andtover should be known
a priori. For most practical applications, the known time-scale will betstar, because a stellar population synthesis model (e.g. Leitherer et al.
1999) can be used to estimate over which time-scaletstar the SF tracer probes the young stellar emission.

(ii) A sample of gas and SF tracer peaks can be identified usinga clump-finding algorithm. In this paper, we assumed the star-forming
regions to be much smaller than their separation (i.e. they are treated as point particles), whereas in reality the ISM forms a continuous struc-
ture. This introduces a certain subjectivity in the selection process. While there is no intrinsically preferred method, ideally the identification
should ensure that independent star-forming regions are identified as single clumps rather than being divided into smaller fragments of which
the positions on the time sequence of Figure 1 may be correlated. However, with no prior definition of the size-scale on which the peaks
become independent, it is unclear how the identified peaks actually relate to independent regions. This uncertainty affects the method of
§3.3 in two ways. Firstly, the separation between independent regionsλ (see point [iii]) may be estimated incorrectly. Secondly, if a single
independent region is broken up into several peaks, this will bias the measured time-scales. For instance, if a gaseous independent region
without SF tracer emission is broken up into multiple peaks,separate apertures will be centered on each of these peaks and the gas depletion
time will be biased to larger values. Whentstar is known, this causestover andtgas to be underestimated. The measured time-scales may
therefore depend on the selection criteria (beyond their plausible physical variation with e.g. the cloud mass) and hence the analysis should be
performed for a range of selection criteria to test their robustness. A more detailed example of how to tackle this problem will be presented in
K14. A comparison with the method of§3.3 may also be used to test the selection criteria (e.g. by verifying that the bias of the gas depletion
time-scale never exceeds a factor of two forlap > ∆xsamp).

(iii) The typical separation between star-forming regionsis measured by counting the gas and SF peaks (making sure thatoverlapping
gaseous and stellar peaks are only counted once) and calculating λ = 2

√

A/πN , whereA is the total area of the observed field. Note that
this is a geometric mean and does not account for the possibleclustering of regions. Also, if the spatial distribution ofregions is fully random,
the expected distance to each point’s nearest neighbour is smaller thanλ.

(iv) The overlap-to-isolated flux ratiosβg ≡ Fg,over/Fg,iso andβs ≡ Fs,over/Fs,iso can be directly measured from observations if the
spatial resolution allows the smallest apertures to contain only a single region (i.e.lap < λ). By only considering the smallest apertures, one
can then obtainβg andβs by dividing the mean flux in apertures containing both tracers by the mean flux in those apertures containing only
a single tracer. If the spatial resolution is insufficient, some parametrization of the flux evolution needs to be assumed(see§3.3).

(v) The bias of the gas depletion time-scale at an aperture size lap is then calculated by centering at least 100 artificial apertures5 of size
lap on (1) gas or (2) SF tracer peaks. For these two separate cases, the entire gas and SF tracer fluxes should be added up across all apertures.
The biases when focussing on gas or SF tracer peaks are obtained by dividing the resulting gas-to-SF tracer flux ratios by the galactic mean.

(vi) The size-scale dependence of the bias of the gas depletion time-scale is obtained by repeating the above for different aperture sizes.
The time-scaleratios tstar/tover and tgas/tover are then measured by doing aχ2 minimization of equations (15) and (16) while varying
both ratios. If one of the three time-scales is known (in mostcaseststar is obtained from stellar population modelling, see point [i]), the
time-scale ratios are easily converted to absolute values (in most casestgas andtover). If the gas or SF tracer maps are incomplete, these
time-scales reflect thedetectabilitytime-scales, which may differ from the underlying physicaltime-scales. Therefore, it is desirable to use
high-sensitivity observations that recover a large fraction of the gas and SF tracer flux.

5 The method works with a smaller number of apertures, but the uncertainties will increase due to low-number statistics (see§3.3 and Figure 5).

http://www.mpa-garching.mpg.de/KL14principle
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An important strength of this method is that it is not hampered by the uncertain conversion factors between gas tracer fluxand gas mass that
traditionally plague the inference of SF physics from galactic SF relations (see e.g. Kennicutt & Evans 2012), because it relies exclusively
on tracer flux ratios.

APPENDIX B: DERIVATION OF THE SCATTER OF SF RELATIONS

This appendix details the derivation of the four scatter terms in equation (12), and in particular the scatter due to the Poisson sampling of
independent star-forming regions.

The gas depletion time-scale measured in a given aperture isdefined astdepl ≡ Mgas/SFR ∝ Fgas/FSF, whereFgas andFSF indicate
the flux emitted within the aperture by gas and SF tracers, respectively. Because we are interested in the scatter inlog tdepl, the proportionality
constant is irrelevant. The fluxes can be specified by counting the number of expected regions for each particular phase and multiplying them
by the corresponding mean flux received from a single region.For this, we need to identify the numbers of isolated gaseous(i.e. no SF tracer
emission is present) regionsNg,iso, isolated stellar regionsNs,iso, and overlap (i.e. both gas and SF tracer emission are present) regions
Nover. Because we are considering randomly-placed apertures, the total number of regions in the aperture isNrnd = (lap/λ)

2, where the
subscript ‘rnd’ refers to ‘random’ and indicates that theseregions are randomly positioned on the time sequence of Figure 1. This leads to
the definitions:

Ng,iso ≡
tgas − tover

τ

(

lap
λ

)2

;Ns,iso ≡
tstar − tover

τ

(

lap
λ

)2

;Nover ≡
tover
τ

(

lap
λ

)2

. (B1)

These are expectation values in the absence of further contraints – the true number depends on which combinations ofNg,iso, Ns,iso and
Nover are allowed. When calculating the scatter inlog tdepl, only those apertures are included that contain emission from both the gas and
SF tracer. In other words, the combinations

(1) Ng,iso = 0, Ns,iso = 0, Nover = 0; (2)Ng,iso > 0, Ns,iso = 0, Nover = 0; (3) Ng,iso = 0, Ns,iso > 0, Nover = 0, (B2)

are excluded. The number distributions considered here follow Poisson statistics, in which the probability of drawinga numberk at an
expectation valueN is given byp(k,N) = Nk exp (−N)/k!. The probabilities of the above three combinations are thus

p1 = e−Ng,iso−Ns,iso−Nover ; p2 = e−Ns,iso−Nover
(

1− e−Ng,iso
)

; p3 = e−Ng,iso−Nover
(

1− e−Ns,iso
)

, (B3)

where the two terms in parentheses indicate the probabilities of having non-zero numbers of isolated gaseous and stellar regions, respectively.
We can now express the proportionality of the gas depletion time-scale in terms ofNg,iso,Ns,iso andNover, omitting the three disallowed

combinations:

tdepl ∝
Fgas

Fstar
=

NoverFg,over +Ng,isoFg,iso − p2Ng,iso

(

1− e−Ng,iso
)−1

Fg,iso

NoverFs,over +Ns,isoFs,iso − p3Ns,iso

(

1− e−Ns,iso

)−1
Fs,iso

=

[

βgNover +Ng,iso

(

1− e−Ns,iso−Nover
)

βsNover +Ns,iso

(

1− e−Ng,iso−Nover

)

]

Fg,iso

Fs,iso
. (B4)

In the first equality, the terms includingp2 andp3 subtract the disallowed combinations from the otherwise expected gas and SF tracer
fluxes. They include the terms in parentheses to correctly reflect the expected numbers of non-zero gaseous (combination2) or stellar
(combination 3) regions, respectively. By disallowing thethree combinations of equation (B2), the total probabilityno longer adds up to
unity, but to1−p1−p2−p3. The numerator and the denominator represent the expected gaseous and SF tracer flux, respectively, and hence
should each be divided by the total probability. This correction is identical for the numerator and the denominator and therefore it cancels.

Going back to§3.2, we defined the scatter inlog tdepl as

σ2
log t = σ2

samp + σ2
evo + σ2

MF + σ2
obs, (B5)

whereσsamp indicates the Poisson error,σevo represents the scatter caused by the luminosity evolution of independent regions,σMF is the
scatter due to the mass spectrum, andσobs denotes the intrinsic observational error. In the context of equation (B4),σsamp is set by the
variances ofNg,iso, Ns,iso andNover. Formally,σevo follows similarly from the variances ofβg, βs, Fg,iso(t) andFs,iso(t) (i.e. their time-
evolution), andσMF is set by the variances ofFg,iso(0) andFs,iso(0) (i.e. their instantaneous variances, which are caused by the underlying
mass spectrum), but both are kept as free parameters here because they depend strongly on the properties of the system under consideration
(see below and§3.2). The observational errorσobs is also a free parameter, which has to be determined separately for each observation.

Following the above separation of the scatter into four different components, we defineσsamp as

σ2
samp = α2

[

(

∂ ln tdepl
∂Ng,iso

)2

σ2
Ng,iso

+

(

∂ ln tdepl
∂Ns,iso

)2

σ2
Ns,iso

+
(

∂ ln tdepl
∂Nover

)2

σ2
Nover

]

, (B6)

whereα ≡ 1/ ln 10 ≈ 0.43 converts the logarithmic scatter from basee to base10. The covariance terms are omitted on purpose, because
the added complexity is not warranted by the precision gained (see Figure 3 and§3.2). The three variances are Poissonian and thus read

σNg,iso
= N

1/2
g,iso; σNs,iso

= N
1/2
s,iso;σNover = N1/2

over. (B7)
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The three derivatives are obtained by differentiation of equation (B4):

∂ ln tdepl
∂Ng,iso

=
1− e−Ns,iso−Nover

βgNover +Ng,iso

(

1− e−Ns,iso−Nover

) −
Ns,isoe

−Ng,iso−Nover

βsNover +Ns,iso

(

1− e−Ng,iso−Nover

) ;

∂ ln tdepl
∂Ns,iso

=
Ng,isoe

−Ns,iso−Nover

βgNover +Ng,iso

(

1− e−Ns,iso−Nover

) −
1− e−Ng,iso−Nover

βsNover +Ns,iso

(

1− e−Ng,iso−Nover

) ; (B8)

∂ ln tdepl
∂Nover

=
βg +Ng,isoe

−Ns,iso−Nover

βgNover +Ng,iso

(

1− e−Ns,iso−Nover

) −
βs +Ns,isoe

−Ng,iso−Nover

βsNover +Ns,iso

(

1− e−Ng,iso−Nover

) .

Together, equations (B1), (B6), (B7) and (B8) defineσsamp in equation (B5).
The terms in equation (B5) accounting for the scatter due to the gas and SF tracer luminosity evolution and the mass spectrum of

independent regions represent errors of the mean. They therefore depend both on the actual numbers of regions containedin the aperture and
on the scatter induced for a single region (σevo,1g , σevo,1s andσMF,1, indicating the scatter for a single region due to the gaseous luminosity
evolution, the stellar luminosity evolution, and the mass spectrum, respectively):

σ2
evo = σ2

evo,1gN
−1
gas + σ2

evo,1sN
−1
star;σMF = σMF,1N

−1/2
tot , (B9)

whereNtot is the total number of star-forming regions in the aperture,Ngas the total number of gaseous regions, andNstar the total number
of stellar regions. Subtracting the disallowed combinations of equation (B2), we obtain

Ntot =
Ng,iso +Ns,iso +Nover − p2Ng,iso

(

1− e−Ng,iso
)−1

− p3Ns,iso

(

1− e−Ns,iso
)−1

1− p1 − p2 − p3

=
Ng,iso

(

1− e−Ns,iso−Nover
)

+Ns,iso

(

1− e−Ng,iso−Nover
)

+Nover

1− e−Ng,iso−Ns,iso−Nover − e−Ns,iso−Nover

(

1− e−Ng,iso

)

− e−Ng,iso−Nover

(

1− e−Ns,iso

) , (B10)

for the total number of regions and likewise

Ngas =
Ng,iso

(

1− e−Ns,iso−Nover
)

+Nover

1− e−Ng,iso−Ns,iso−Nover − e−Ns,iso−Nover

(

1− e−Ng,iso

)

− e−Ng,iso−Nover

(

1− e−Ns,iso

) (B11)

Nstar =
Ns,iso

(

1− e−Ng,iso−Nover
)

+Nover

1− e−Ng,iso−Ns,iso−Nover − e−Ns,iso−Nover

(

1− e−Ng,iso

)

− e−Ng,iso−Nover

(

1− e−Ns,iso

) , (B12)

for the actual numbers of gaseous and stellar regions contained in the aperture. Forlap ↓ 0, we haveσ2
evo → σ2

evo,1g+σ2
evo,1s, σMF → σMF,1

andσsamp ↓ 0, whereσevo,1g, σevo,1s andσMF,1 are free parameters (see§3.2).

APPENDIX C: DERIVATION OF THE RELATIVE CHANGE OF THE GAS DEPL ETION TIME-SCALE

This appendix details the derivation of equations (15) and (16). The gas depletion time-scale measured in a given aperture is defined as
tdepl ≡ Mgas/SFR ∝ Fgas/FSF, whereFgas andFSF indicate the flux emitted within the aperture by gas and SF tracers, respectively.
When focussing apertures of different sizes on gaseous or stellar peaks, the relative change (or bias) of the gas depletion time-scale with
respect to the galactic average[tdepl]gal thus becomes

[tdepl]

[tdepl]gal
=

Fgas

Fstar

Fs,gal

Fg,gal
, (C1)

whereFg,gal andFs,gal indicate the galaxy-integrated flux of the gas and SF tracers, respectively. The fluxes in this equation can be specified
by counting the number of expected regions and multiplying them by the expected flux received from a single region. The expected flux from
a gaseous region is

Fgas,1 =
tgas − tover

tgas
Fg,iso +

tover
tgas

Fg,over =

[

1 +
(βg − 1)tover

tgas

]

Fg,iso, (C2)

whereFg,iso is the mean gas tracer flux of peaks in isolation (i.e. no SF tracer emission is present),Fg,over is that of peaks in the overlap, and
βg ≡ Fg,over/Fg,iso. In the first equality, the ratios(tgas − tover)/tgas andtover/tgas indicate the probabilities that a region is an isolated
gas peak or resides in the overlap, respectively. Analogously, for a stellar region we have

Fstar,1 =
tstar − tover

tstar
Fs,iso +

tover
tstar

Fs,over =

[

1 +
(βs − 1)tover

tstar

]

Fs,iso. (C3)

If we now define a galaxy to contain a total number ofNtot independent regions, a fractiontgas/τ of these will show gas tracer emission and
a fractiontstar/τ will show SF tracer emission. Hence, the galactic flux ratio between gas and SF tracers becomes

Fg,gal

Fs,gal
=

(tgas/τ )NtotFgas,1

(tstar/τ )NtotFstar,1
=

tgasFgas,1

tstarFstar,1
, (C4)
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The above equations hold irrespective of whether the apertures are centered on gas of stellar peaks.
We now consider the gas and SF tracer fluxes emanating from an aperture of sizelap. Given a characteristic separation between regions

λ, the number of random (either gas, stars, or both) regions inthe aperture isNrnd = (lap/λ)
2. When an aperture is focussed on a gas peak,

the total number of gaseous regions thus becomesNgas = 1 + (tgas/τ )Nrnd and we expect a gas flux from the aperture of

Fgas = NgasFgas,1 =

[

1 +
(βg − 1)tover

tgas

][

1 +
tgas
τ

(

lap
λ

)2
]

Fg,iso. (C5)

In the same aperture, there is a probabilitytover/tgas that the central gas peak also contains stars by residing in the overlap. In addition, a
fractiontstar/τ of the random regions in the aperture will show SF tracer emission. The total SF tracer flux from the aperture is therefore

Fstar =
tover
tgas

Fs,over +
tstar
τ

(

lap
λ

)2

Fstar,1 =

{

βs
tover
tgas

+

[

1 +
(βs − 1)tover

tstar

]

tstar
τ

(

lap
λ

)2
}

Fs,iso. (C6)

Substituting equations (C4), (C5) and (C6) into equation (C1) then yields equation (15), i.e. the bias of the gas depletion time-scale in an
aperture focussed on a gas tracer peak:

[tdepl]gas
[tdepl]gal

=
1 + (tgas/τ )(lap/λ)

2

βs(tover/tstar) [1 + (βs − 1)(tover/tstar)]
−1 + (tgas/τ )(lap/λ)2

. (C7)

As lap ↓ 0, the bias becomes entirely set by the term accounting for thepossibility that the central gas tracer peak resides in the overlap. This
is the reason that the bias oftdepl in focussed apertures can be used to derive the time-scales involved in the SF process.

Analogously to the above, an aperture focussed on a stellar peak contains a gas flux of

Fgas =
tover
tstar

Fg,over +
tgas
τ

(

lap
λ

)2

Fgas,1 =

{

βg
tover
tstar

+

[

1 +
(βg − 1)tover

tgas

]

tgas
τ

(

lap
λ

)2
}

Fg,iso, (C8)

and a total SF tracer flux of

Fstar = NstarFstar,1 =

[

1 +
(βs − 1)tover

tstar

] [

1 +
tstar
τ

(

lap
λ

)2
]

Fs,iso. (C9)

Substituting equations (C4), (C8) and (C9) into equation (C1) we obtain equation (16), i.e. the bias of the gas depletiontime-scale in an
aperture focussed on a SF tracer peak:

[tdepl]star
[tdepl]gal

=
βg(tover/tgas) [1 + (βg − 1)(tover/tgas)]

−1 + (tstar/τ )(lap/λ)
2

1 + (tstar/τ )(lap/λ)2
, (C10)

which does not depend on any of the involved fluxes and forlap ↓ 0 becomes entirely set by the term accounting for the possibility that the
central SF tracer peak resides in the overlap.

This paper has been typeset from a TEX/ LATEX file prepared by the author.


	1 Introduction
	2 An uncertainty principle for star formation
	2.1 The general uncertainty principle
	2.2 Specification of key variables

	3 Application to idealised examples
	3.1 The failure of SF relations on small spatial scales
	3.2 The scatter of SF relations
	3.3 How the uncertainty principle constrains SF physics

	4 Discussion
	4.1 Summary
	4.2 Assumptions, observational caveats and biases
	4.3 Implications and future applications

	A IDL and Fortran routines for applying the uncertainty principle
	A1 Code description
	A2 Checklist for observational applications

	B Derivation of the scatter of SF relations
	C Derivation of the relative change of the gas depletion time-scale

