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The paper presents axperimental and numerical investigation of the earthquake responseaofe
bridges.The main contributios of the authorsto this field consist in

carrying out an experimental campaign on a model of a crane bridge

x determining a relevant similarity for the seismic testsich preserves the ratios of seismic
forces to friction forces and of seismic forces to gravity forces, without added masses

X interpreting the experimental results by means of numerical analysigdtr low and high
excitation intensities

X proposing a simplified model of the crane bridge which could be @sed part of a bigger
model to account for possible interaicin between the supporting main structure and the
crane bridge
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Abstract

The experimental and numerical response of crane bridges is studied in this work. To this end, an
experimental campaign on a scale model of an overhead crane bridge was carried out on the
shaking table of CEA/Saclay in Frande special similarity law has been used which preserves the
ratios of seismic forces to friction forces and of seismic forces to gravity forces, without added
massesA numerical model, composed of beam elements, which takes into accoutibhaan
effects, especially impact and friction, and simulates the earthquadansesof the crane bridge, is
presented. The comparison of experimental and analytical results gives an overall satisfactory
agreement. Finally, a simplified model of the crane bridge, with only a few degrees of freedom is

proposed.
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Abstract

The experimental and numerical response of crane bridges is studied in this work. To this end,
an perimental campaign on a scale model of an overhead crane bridge was carried out on
the shaking table of CEA/Saclay in Franée special similarity law has been used which
preserves the ratios of seismic forces to friction forces and of seismic fogrewity forces,

without added masse# numericalmodel composed of beam elements, which takes into
account nodinear effects, especially impact and friction, and simulates the earthquake
response of the crane bridge, is presented. The comparison of experimental and analytical
results gives an overall satisfary agreement. Finally, a simplified model of the crane

bridge, with only a few degrees of freedom is proposed.

Keywords: overhead crane bridges, friction, nlimear analysis, seismic tests.

1. Introduction

The earthquake response of crane bridges \igry important issue related to safety
requirements for industrial facilities and, especially, nuclear plants. Actually, a failure of a
component of the crane bridge or of its supports (e.g. supporting steel or concrete runway

beams) should be avoidech addition to the consequences on the handling capacity of the
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facility after the earthquake, a major problem may occur if a part of or the whole crane bridge
IDOOV RQ VHQVLWLYH VWUXFWXUHV RU HTXLSPHQW 6XUSU
experimental and analytical research work in this field has been done in the past. The
dynamics of elastic continua with moving loads has been covered by Fryba [1] and more
recent work presents the approximate analytical solutiofd ghd finite elementautions
[7,8] to similar problems. Regarding the earthquake response of these structures, not many
publications can be found in the literature. Komori et al [9] carried out seismic tests under
horizontal excitation whereas Otani et al. [10] focused orvéntcal earthquake response of
a 1/8 scale model. Schukin et Vayandrakh [11] studied the earthquake behavior of a polar
crane bridge by means of a comprehensive finite element model. Betbeder et al. [12] and
Betbeder and Labbé [13] dealed with simplifim@dels accounting for the reduction of the
crane bridge forces due to sliding. Sarh et al. [14] analyzed the behavior of a simplified scale
model of a crane bridge subjected to random unidirectional excitation and compared it with
experimental testsMore recently, Kenichi et al [15] carried out a shake experimental
campaign on a model of a cehridge focusing on the upliftsponse of the trolley

To have a further insight into the earthquake response of crane bridges an
experimental campaign of a 1/8a¢e model was carried out on one of the shake tables of the
&RPPLVVDULDW j OTeQHUJLH $WRPLTXH HW DX[ eQHUJLHV $
the following we describe the most important features of the model, the experimenial set
and we preg#g the main experimental results. Moreover, we discuss some subtle points
related to the numerical modeling of the magk and we compare the analytical and

experimental results.

2. Experimental tests



The mockup is a simplified 1/5 scale model of a 22a5ong overhead crane bridge.
Given that the shake table is a 6 m x 6 m table, this scale is the biggest scale that could have
been considered. The total mass of the unloaded prototype is of about 100 t. The bridge steel
girders that support the crane tegl have aectangular hollowsection 1050 mm x 2100 mm.
The width of the section flanges and vertical walls are 21 mm and 12 mm respectively. The
runway beams are continuous | type steel beams with a typical span of 10 m. The height of
the section is 1506hm, the flanges width and thickness are 600 mm and 35 mm respectively
and the web thickness is 12 mm. One important issue for the design of the model was the

determination of the similarity law which is presented in the following subsection

2.1 Similarity law

Due to the limitations in the capacities of the experimental facilities, experimental
models are, usuallyreduced scalanodels To be representative of the behavior of the
response of the real structure (prototype3ts on reduced scale models shdoddarried out
following similarity laws A natural way to do this is through dimensional analysis [16, 17,
18, 19]. Let us look at a quantity of interest, for instance, the vector of relative displacement
with respecto the shake table displacement at any point of the bradgmordinate, d(X) .
Assuming a homogeneous, isotropic, rate independent material and a Coulomb dry friction for

the sliding interfaces, this quantity m&yH ZULWWHQ DV D IXQFWLRQ RI WKH \

d L E @Fxt 4g, XL, YW,..L.. (1)

whereE is the Young modulus, is the coefficient of Poisson,is the friction coefficientf

denotes time,! is the mass density,*is the vector of shake table acceleratibnjs a

characteristic length of the structure (e.g. length of the bridge girders). For the sake of



conciseness we limit ourselves only to the above ten varialdlds, @ £x,t, {/g, * L).

However, one must keep in mind that several other variables (e.g. nonlinear material
SURSHUWLHY RWKHU JHRPHWULFDO GLPHQVLRQV OLNH

GLPHQVLRQV HWF SOD\ D UROH LQ WKH V\Vdetstediih UHVSR

WKH *GRW" SDUW LQWR WKH EUDFNHWYV LQ H/JakdatherR Q D

geometrical dimensiorts. In the present case, the rank of the matrix of G PHQVLRQV

exponents of they DULDEOHYV JRYHUQLQJ WKH VA\VWHPTV UHVSRQV
number of fundamental dimensions: mass, time and length). According to the-Vachy
%WXFNLQJKDPYV 3L WKHRUHP HTXDWLRQ FWit) NESH ZUL W\

dimensionlessariables N being the number of the initial variables.

d .8 wu* E JETU* x W L -
= )d Q , ’t ’;,:___’_y’_ ~L . (2)
L "9 Eug’ L ALTETL

A similar relation holds if the quantity of interest is the dimensionless stiéEsnstead of

the dimensionless displacement. The produ8ts & */Eand 3, E/ &g may be seen

as the ratios of seismic excitation forces to elastic forces and of elastic forces to gravity forces
respectively. The latter is the Froude number. The dimensionless3ime/E/ U Lis the

ratio of time to the time needed by sound waves to travel over the lengd) */( A)

accounts for the ratio of the seismic excitation forces to the friction forces.

A complete similitude is achieved if all dimensionless variables treveane values
for both the model and the prototyde. the framework of seismic tests of structures two
similarity laws are widely used: velocity similarity and, even more frequently, Froude or

gravity similarity. Consider a uniforrgeometrical scalingthat is, the coordinates of the



model and of the prototype (scale 1 structure) satisfy the relatio®,, where &denotes the
scaling factor (1/5 in this case) and subscript O denotes, throughout this paper, quantities
referred to the prototyp@éccording to the velocity similarity lawall dimensionless products

in equation (2) are the same for the model and th®tyme, except the Froude numiiy.

If the same materiaE( , !) is used for both the prototype and the model, the above similarity
implies that the time scaling iR L & and the ratios of mass/, stiffness, - and

eigenfrequenciesB of the nodel to those of the prototypee:

| of ,L && 0, L 48B0B L soa 3)

3, and 3;similitude imply thatthe time scaling i« PPR L &and thatthe excitation (table)

accelerationcomponents, , must be amplified by theeciprocalof the scaling factor i.e.
:Bo ,:R; L sed The resulting displacementelocity and acceleration components,

respectively@, Rand = vary as:

@Pe@:B; L @RPeR:R; L s&:Pe=:R; L sea 4)

This law is called velocity similarity because there is no velocity scaling. It is well known that
the main drawback of this similarity law is thatnce he Froude number similitude is not
satisfied the ratio betweedynamic and static stressof the model is not the same as in the
prototyped Moreover, in the present case, where the importance of friction phenomena is
crucial if the same coefficient of friction, is usedfor both the prototype antthie modelit is

not possible to respecB, similarity. Therefore, similarity of the friction forces with respect

to the seismiexcitationforces cannot be achieved unless specific interface materials are used

with a friction coefficientseédtimes the friction coefficient of the prototype. Given that steel



to steel friction coefficient is of about 0.20 this would imply a model friction coefficient of
about 1 which is hardly feasible if not impossible.

The most frequently used similarity law, in experimental earthquake engineering, is
the gravity or Froude similarityin this caseall the dimensionless variables in equation (2),
including the Froude number, are the same for the model and the profdtigpeesults in the
following similarity relations:
éog, L s 4 &0, L a8BoB L so¥aa

PR L Y840, L sA@@ L 4aReR, L so¥A4=ou=, L s (5)

This similitude law respects similarity of the ratiof friction andgravity forces toseismic
excitationforces. However, the necessary condition to meet this requirement is that the mass
density !, should be changeléading to/ =/ , L &instead of/ ©/ , L &. In many cases,

IRU LQVWDQFH EXLOGLQJVY PRGHOV WKLV LV DFKLHYHG
the slabs of the moelp. However, adding masses, all over the crane bridge beams, would be
not only practically complicated, but it would, aldoave a considerable impact on the
stiffness of the crane bridge. Actually, sindd. saw the added masses shouldftier times

the mass of the bridge itself. It is obvious that such rigid heavy blocks, put one next to the
other to increase the mass of theams, would have, inevitably, increased also the bhefm
stiffness, since they should be tightly attached to the beams to avoid sliding.

To bypass this problem, we have decided to follow another similarity law,
specifically determined for these tests. gual is to obtain, as much as possible, the same
similarity relations given by the gravity similarity without adding masses or changing the
material properties of the bridge beams. this end, the hollow section of the model bridge
beams is not just a gmetrically scaled section of that of the prototype. In fact, it can be

considered that the deformability of the bridge girders is governed, mainly, by their bending



flexibility . That is, the governing parameters #reir section moments of inertia. Ofurse
this is true so far as the beamaterial remains elastic. Aswas confirmed, a posteriori, by
the analytical and experimental respiteelding does not occur for the considered excitation

intensities Hence equation (1) may be modified as follows:
d 7, E QPRxt 4g, 5LSl,I,. 6)
where 5denotes the section area a-+dand +denote the section moment of inertia with

respect to axicUand Vrespectively. Applying the Pi theorem, the dimensionless equation

reads:

(@

(il |[=3
- |I><

$§Q BL* BL* ¢£* El, El, t\ﬁ;*
‘o El, " El, ES’ lSIf’g Sy R

y z

If the quantitiesof interest are thbending momerstor reaction forceBl and Rrespectively,

a similar relation holdsfor their dimensionlesscounterpartsM /( 8l°g)and R/( 8Lg) ..

Since equation (6) hatreemore variables than equation (1), there are nine dimensionless
variables in equation (7) instead ik in equation (2). It is worth noting that the ratio of
elastic forces to seisic forces used in eqtian (2), 3,, is, now, replaced byhreeratios,

51 ISL3_*/(E|y), §2 8L */(El,) and §3 4F */(ES). The same holds, also, for the
ratio of elastic forces to gravity forces which is represented by two dimensionless products
3, ElI /(Bg) and3, El,/( 8l%g) instead of one3,, in equation (2). The
dimensionless time is alstefined in a different Way, . t\/gT As already mentioned

we consider thathe deformation of the bridge is governed by bending and phenomena



associated to longitudinal dynamicsedess important.Therefore we do notapply 3,

similitude. To meet the requirements imposed by the prodﬁi;i;s?%2 , ?34 and 55, we seek
a hollow sectionwith height D width > and thicknessA so thatS/s, ¢ (instead of
505, L &), + o+, L #@and +o+, L & The resulting nofinear system was solved with a

NewtonRaphson method and gai2L twrP P >L ssrP Pand AL urPPR

As in thecase of Froude similitudeespect of the dimensionless tinZQ%, implies t/t, Jc

which is consistent with theébending frequencies similarity,/ f, 1/4 C. This time

contraction is smaller than that implied &; is considered (i.et/t, (). Regardinghe two

runway beams, we focused on similarity relateainty to ther horizontalbendingstiffness,
which gives IPN 240 type beams.

The above similarity is equivalent to the gravity similarity as fabexsdingbehavior
is concerned only. In fact, special care has been taken only for bending stiffness but the axial
stiffness does not vanyroportionallyto . However, distortion of thexial stiffness is not a
concern for the structure of interest since motions with considerable axial deformations are
quite high frequency motions, beyond the excitation frequency content. It is, also, worth
noting that though the correct similarity rédet is obtained for bending moment8 &) and
reaction forces B &), stresses in the model are lower tilawsein the prototype. This is due

to the fact that, since/S, ¢, the sections of the model are bigger than those that would

have been obtained lbyiform geometrical scaling%e5, L ).

2.2 Experimental setup
As already mentioned the madip is a simplified 1/5 scale model of the prototype,
made of steel witlyield stress equal to 355 MPahe sections of the bridge girders (beams

supporting the trolley) and of the runway beams, supporting the whole bridge, are described



in the previous subsection. Their lengths are 5 m and 2 m respectively. The distanes& betwe
the central axes of the bridge girders is 50 cm. The beams linking the two main bridge girders
(end truckshave a box type section 110 mm x 320 mm and their length is equal to 0.8 m. The
thickness of the section flanges and vertical walls is 30 mm.trbHey is a rigid mass of

1880 kg. The total mass of the mag, including the runway beams, is about 3.9 t. The
trolley and the bridge are supported by four wheels each. The wheels can be blocked or let
free to roll. Actually, in real crane bridgesettrive wheels (those connected to the motor) are
blocked when the motor is turned off. Several sensors, mainly, accelerometers and
displacement transducers were mounted on the +upchkn figurel a view of the model
mounted on the shake table is depictedether with the axes of the reference frame
considered in the experimental campaign and the work herein. A detailed description of the

model and of the whole experimental-gptcan be found ir2p).

2.3 Experimental Campaign

A comprehensiveexperimental campaign has been performed using the above
described model. Special care was taken to identify step by step the model dynamic properties
which would be useful to the accurate determination of the characteristics of the analytical
model also.To this end, modal analysis tests, with shock hammer, were carried out of the
subassembly composed of the main bridge girders only. This structure was put on very low
stiffness pneumatic springs, resulting in free end boundary conditions. Twenty three
dimensional accelerometers were mounted on this subassembly to obtain its nine first mode
shapes and frequencies. The results of the modal analysis are preségted i

Then, several configurations of the whole crane bridge, corresponding to different
trolley locations and different wheel conditions (braked or free to roll) have been considered.

At the beginning, low intensity white noise acceleration signals were applied to the table. The



aim of these low intensity tests was to identify the charactepsbperties of the model when

the response is, as much as possible, close to linear response. Assuming linear behavior (i.e.
sticking contact conditions for the braked wheels), these low intensity tests were used to
determine the initial eigenmodes of gestem.

Eventually, seismic excitation signals were considered. Seismic signals should be
compatible with the earthquake motions of the crane bridge supports. Actually, the applied
excitations must correspond to the ground excitation filtered by thenssmd the building
housing the crane bridge. Nevertheless, due to the uncertainties related to the computation of
floor motions, ground signals were considered. Though this type of excitation may be
theoretically controversial, the experimental resules still very relevant since they give
useful information on the earthquake response of crane bridges and they can be used to
validate numerical simulation codes and methods. The applied signals were artificially
generated signals compatible with the resgospectrum of the Marcoule nuclear plant site, in
south FranceThe use of artificial signals, matching a given spectrum, is not, in general,
recommended for nonlinear problems as the problem in hand. Nevertheless, such signals were
considered here for ¢hfollowing reasons: a) lack of available real records compatible with
the actual site conditions b) the target spectrum is a spectrum determined after a specific
seismological study of the site. Hence it is narrower than commonly used regulations spectra
and c)it mayreasonably and intuitely, though not mathematically rigoroum expected that
DUWLILFLDO VLIJQDOV ZRXOG EH LQ JHQHUDO PRUH 3VHY
partially or lie under the target spectrum, provided their durasamot too small. In fact,
because of their unrealistic, wider frequency content, artificial signals will have more energy
over the whole frequency range of interest than real records and thus they will be more

demanding for structures exhibiting frequestyft due to nonlinear response



The generated signals were scaled to peak ground accele(@®A$equal to 0.2g,

0.4g and 0.8g. For similitude reasons a time contractio¥wafas applied to all the excitation
signals. Tests under onc-axial, bi-axial (horizontg) and triaxial (horizontal + vertical)
excitations were carried out. In the following, input acceleration signalg, iand V
direction are noted,, ; and ; respectivelyFigure3 shows the time historiesf ;and ;

for the case of a PGA equal to 0.&wr lack of space, only the results of few tests will be

presented herein. The results of all tests can be fouradjin [

3. Numerical model

In most analyses, done by practitioners, beam type elements are usedfonéneal
modeling of crane bridges. Actually, nonlinear dynamic analyses with beam element models
can be run in much shorter time than more complex shell or brick elements models.
Therefore, our goal was to determine a numerical model composed of maenel which
would represent accurately the earthquake response of the crane bridge. Analyses were carried

out with the homemade file element (FE) code CAST3N2]].

3.1Runway beams

The runway beams are IPN 240 beams having a span of 2 m. They arenfittedtable plate

by means of stiffened plates which are deemed to account for clamped end conditions
(figure4). At a first glance, one could think that the important issue is the lateral bending
flexibility of the runway beams which can be accuratakeh into account by classical beam
elements. However, torsion is induced by the horizontal transverse wheel forces which are
applied on the rail, at the top of the beam. Torsion stiffness for this kind of sections is due,
mainly, to warping stiffness (i.éateral bending of the upper and lower flanges). On the other

hand classical beam elements account only for St. Venant torsional stiffness which is much



lower than the warping stiffness in the present case. Moreover, computations revealed that,
contrary to intuition, the boundary plates did not impose purely clamped conditions.
Therefore a brick finite element model was used to determine accurately the flexibility of the
runway beams subject to the wheel forces.

To highlight the influence of the flexibility of the boundary plates the lateral (inTthe
direction) stiffness- RI D UXQzZD\ EHDP VXEMHFWHG WR WZR KRUL]
locatiors was determined by two different static computations. The seguéisented here
FRUUHVSRQG WR FRQILIXUDWLRQV ZKHUH WKH LQLWLDO ZKk
the midspan of the runway beams. For the first analysis, the supports of the beams were
modeled in detail to represent the actual boundaryitions. For the second analysis, the
runway beam was supposed to be perfectly clamped at the two ends of ifEBrepdaformed
shapes of the runway beam, resulting from the two static analyses are sHauneid. An

estimate of the frequencR of the first mode of the bridge in th&direction is:
5 6A
BL- 8% (8)

where / is the total mass of the bridge. Taking into account the boundary flexiesitjted
in a frequency of 9.8z, whereas perfectly clamped conolits leadto a frequency of
11.5Hz. The first result is in accordance with the frequency value obtained experimentally. It
is also observed ifigure4 that the flanges of the runway beam deform so that the usual
assumption of beam theory that sections do not @ximbplane deformation is no longer
valid.

For the above reasons, it is obvious that runway beams cannot be modeled with
classical beam models. To reduce the size of the final problem, assembling all bridge

components, a Guyareduction (static condensation) has been done so that each runway



beam model was reduced tosa H s tmatrix at the two contact points of the wheels with the

rail. Such a reduction assumes that the location of the contact points between the wheels and
the @il will not change significantly during the earthquake response of the bridge. This
assumption is consistent with the small sliding displacements observed experimentally. It has,

also, been verified a posteriori by the analytical results.

3.2Bridge beans connections

At the beginning the bridge was modeled as an assembly of four beams: the two
girders supporting the trolley and the two short transverse beams supporting the wheels (end
trucks). As already mentioned in subsection 2.3, to validate the raahaerodel a modal
identification of this assembly was carried out. Comparison between the experimental and the
analytically computed eigenfrequencies showed that the numerical model based on beam
elements was much stiffer than the magk

To understand #h higher flexibility of the actual model, a shell element model of the
end truck has been done and a rigid body rotation of the nodes at the interface with the beam
girder was imposed. In the case of symmetrical imposed rotations (i.e. zero rotation at the
mid-span of the end truck) a rotational stiffnesss@z s r Nm/rad was found. If , + . are
the Young modulus, the moment of inertia and the length (distance between the axes of the
bridge girders) of the end truck beams respectively, the stifieessding to the beam theory
is t'+a. L tassr Nm/rad. The increased flexibility (reduced stiffness) of the mazk
joint and of the shell element model may be understood with a lolduat 5. In fact, it is
observed that, the longitudinal axial sgeBstribution in the internal wall of the end truck is
consistent with beam theory (constant all over the height of the section wall) only after a
certain distance from the interface with the girder. This observation is in agreement with St.

9 H Q D Q Wifil¥ aBdush@vs that, in the vicinity of the imposed rotation, only a part of the



internal section wall contributes to the bending stiffn&sss joint flexibility cannot be taken
into account by the beam element model. Therefore, on the basis of the aaysis,
rotational springs, in the horizontal plane, have been considered at the joints of the bridge
beams. Their stiffness has been determined either from the shell finite element model or by
trial and error seeking that the first computed eigenaqy of the beam element model is
equal to the first experimental eigenfrequency. It turned out that both methods gave the same
rotational stiffness valuesd z s rr Nm/rad. For the same reasons, torsional springs have also
been inserted between the beamdgis and the end trucks to account for the increased
torsional flexibility of the girders compared to that of a classical beam element model. A very
good agreement with the eigenshapes and eigenfrequencies obtained by hammer tests is
observed for the fitsnine eigenmodes, up to 110 Hz. This illustrated, for the first two
eigenmodes ifigure 2.

The trolley, moving on the crane bridge girders, is modeled as a rigid body having

overall dimensions and mass equal to those of the actual trolley utilizedrobtheup.

3.3 Contact nonlinearities

The finite element model accounts for Horear effects, especially impact and
friction, which are the most important nonlinearities of the problem of interest. In the finite
element model each wheel is representetkiyeas a node of the model. There is no special
finite element mesh or other specific model of the wheels. Impact and friction are modeled by
penalty methods similar to those i82] 23. Normal impact force is proportional to the
penetration of the impéag node multiplied by an interface contact stiffness. A damping
term is also added to account for a restitution coefficient less than one. Regarding friction, the
classical elastoplactic penalty method is usi. [The tangential force varies with respéo

the sliding relative displacement according to an elastic perfectly plastic law. The yielding



force (i.e. sliding force) is equal to the instantaneous normal force multiplied by the friction
coefficient. To simulate possible sticking during impaleg tharacteristic time associated to
the tangential motion must be sufficiently shorter than the characteristic time associated to the
normal motion. This means that the tangential penalty stiffness must be sufficiently higher
(about 10 times) than the moal penalty stiffness. Moreover, to simulate no penetration
conditions, penalty stiffness should be, in general, much higher than the other terms of the
structural stiffness matrix. On the other hand, too high penalty stiffness may cause
convergence diffiglties of implicit algorithms or imply a very small time step in the case of
explicit algorithms. To determine the optimum values of the penalty stiffness, we compared
two linear models. One, assuming fixed connection, between the wheels of the trolteg and
bridge and the supporting bridge girders and runway beams respectively. Another model is
also built, but, this time, the above connections were modeled by means of penalty springs.
7KH PLQLPXP YDOXHV RI WKH SHQDOWL idasNpVvYor ifreg@eHcyV JLYL
of 200 Hz were retained as the optimum penalties stiffness. Actually, compliance with the
DERYH FULWHULRQ GHPRQVWUDWHY WKDW WKH FRQVLGHUF
for sticking conditions in the range of frequeascof practical interest.

Regarding friction, another alternative, which has been used in this work, is the
nonlinear damping penalty method proposed 28].[ The Coulomb dry friction law is

regularized as follows:

ri L FA0B F2X @Y LI>g 06 9)

. LFaoj—g LI>g R6 (10)



where 0 is the normal forceais the friction coefficient> §is the relative tangential velocity.

The adherence friction force is approximatgda nonlinear damping type force for sliding
velocities lower than a small tangential velocity threshaldThe value of 6is a tradeoff
between accuracy and computational time. This parameter should be chosen so that a sliding
velocity equal to 6can be considered as a very low velocity for the problem of interest,
corresponding, practically, to a sticking phase. On the other hand, similarly to penalty
stiffness, too small values ob (high penalty damping) would increase the computational
effort.

The above models are adequate for the modeling of braked wheels. However, the
situation is different for rolling wheels. In fact, when a wheel is rolling, the friction force in
the rolling direction is very low and can be neglected. However, this ithaatase in the
perpendicular direction. One could think that the remedy would be an anisotropic friction
model with two different sliding coefficients ir and y directions. It turns out that such
models cannot give the right solution because they arecomdistent with the physics.
Actually the contact point of a rolling wheel is in adherence (i.e. sticking) phase and its
behavior cannot be simulated considering sliding conditions. To address this issue -a macro
element taking into account the kinematafsa wheel and the correct sticking and sliding
conditions should be used. The development of such a redarent will be done in future

work.

4. Experimental results and interpretation

In this section we focus on the capacity of the above numericall mrwagerpret the
experimental results. In a first step it is checked if the finite element model is capable to
reproduce the experimental results under low intensity excitation i.e. in the case ef quasi

linear behavior of the bridge. Then, the numeris@mhulation of the test at the highest



excitation level was carried out and compared to the measured response. In addition the
sensitivity of the results either to input uncertainties (e.g. value of the actual gap between the
wheels and the rails) or to melthg assumptions (e.g. beam finite model which does not take
into account the additional flexibilities discussed in subsections 3.1 and 3.2) has been
investigated.

In all cases considered here, the initial configuration of the crane bridge was that
preseted infigure 6. The trolley and the end trucks were located at the mid span of the bridge
girders and the runway beams respectively. The braked wheels of the trolley and the bridge

were symmetrical with respect to their respective axes of motion.

4.1 Model validation for quasi-linear behavior

In the case of quadinear behavior, a twstep validation of the numerical has been
done. First, the eigenfrequencies and eigenshep@puted by a linear model (i.e. without
impact/friction nonlinearities, assuming sticking conditions) of the bridge were compared to
those obtained experimentally under low intensity white noise excitation. Regarding the
experimental modal identificatipnthe underlying assumption was that the excitation
amplitude was sufficiently low, so that ntinearities could be neglected. The agreement
between the eigenmodes obtained numerically and experimentally was very satisfactory.
Then, the above results wetempared to those given by a nonlinear analysis of the bridge
subjected to the shake table white noise excitation. A satisfactory agreement was obtained,
demonstrating the capacity of the nonlinear model to capture the essential features of the
responsetahe limit, when the response is qubisear.

The first three eigenmodes and frequencies of the crane bridge model are shown in
figure7. The indicated predominant direction is that corresponding to the higher effective

mass. The analytically and expeemnally determined eigenfrequencies are almost identical



except the first vertical eigenfrequency which is slightly overestimated by the numerical
model. The effective masses of these modes iy, tk@ndz directions are equal to 73%, 98

% and 86% of théotal mass respectively.

4.2 Nonlinear behaviour

To investigate the capacity of the analytical model to predict the nonlinear earthquake
response of the crane bridge experimental and analytical results were compared in the case of
a high excitation intesity. During this test the model was subjected to-axial shake table
excitation with a peak ground acceleration (PGAY &f%o

As for the numerical simulations, titeGHQ fV D QG 0mddiéVwad Mskdwith@
value of the regularization velocity equal tosr’’ « «and the impacpenalty stiffness
values were determined according to the procedure described in the sub8eXtidhe
computations were performed with a friction coefficient equal to 0.23 for the braked wheels,
which is a typical frition coefficient value for steel to steel interfaces. Moreover this friction
coefficient is consistent with the observed experimental results. Actually, the measured
acceleration of the trolley in directionis saturated at about 0.12 g which correspandrt
apparent friction coefficient of 0.12. Since only two of the four wheels are braked, the actual
friction coefficient is about twice the apparent friction coefficient. A very low (0.02) friction
coefficient has been considered for the rolling wheelsrifical damping ratio of 3 % was
considered for all eigenmodes of the crane bridge substructures with free boundary conditions
at their points of contact with the other components (e.g. contact points between the wheels of
the bridge and the runway beam between the girders and the wheels of the trolley). The
measured value of the initial gap between the wheels and the rails was 2 mm.

Particular attention must be drawn to the vkelbwn sensitivity of sliding

displacement to the low frequency contefttlee excitation signal. Irfigure8 the mean



horizontal displacement itddirection of the end trucks is shown for three pairs of horizontal
excitation signals. These excitation signals are identical exc&pt @s Jshift of their time
average valuesAsAand A, AThis shift is consistent with the measurement noise of the
accelerometers. It may be observed that even such a slight offset leads to considerable
discrepancies of the responses. The consequence of the inherent uncertainties, even small, of
the measurements of the low frequency excitation components is that sliding displacements
cannot be predicted accurately. It is, also, worth noting that in the case of a zero mean
excitation signal, the bridge slides more in directiéb) This is due to thasymmetry of the
contact conditionsfigure 6). In fact, because of the moment due to the vertical eccentricity of
the mass, the vertical forces on the braked and on the free to roll wheels are not the same.
When the vertical forces on the free to rollegls are higher than those on the braked wheels,

the friction force opposed to the motion is lower than in the contrary case. This kind of
asymmetric sliding response towards the side of the free to roll wheels was also observed in
real crane bridges. Thghb not shown here, a similar asymmetric sliding behavior of the
trolley in direction FTis also observed. FiguBedemonstrates, also, that, depending on its
sign, the offset of the excitation signal increases further or decreases the above asymmetric
sliding under zero mean excitation.

Because of the above sensitivity, sliding displacement is not a relevant quantity for the
comparison between analytical and experimental results. Therefore, the comparison focuses
on absolute accelerations and onthe ov@ral LU G HU {1V RukhieRde Dcoviip&iQon of
the acceleration time histories would not have been very meaningful, due to thenoveti
VHQVLWLYLW\ RI VOLGLQJ V\VWHPVY UHVSRQVH ,Q RXU RS
is better suited fodrawing, at least, qualitatively conclusions.

Figure9 to figure 11, show the pseudovelocity response spectraputed from the

absolute experimental and analytical accelerations of the Hadgecritical damping ratio of



1%. This kind of spectra haveeen preferred to Fourier spectra of the accelerations to avoid
the highly oscillatory behavior of Fourier spectra. For the sake of completeness, the
pseudovelocity response spectra of the shake table acceleration are also shown in these
figures. It may b observed that the analytical model captures, qualitatively, the essential
features of the experimental results for the different bridge comporegise9 shows that
the analytical model results alower pseudovelocity response spectmintherunwaybeams
in direction T Because of the high rigidity ¢fie runway beam# direction U the agreement
between analytical and experimental results in that direction is much better. In fact, it is
observed that all three spectra are qigesntical, except in the low frequency range.
Regardingthe responsef the girders (figure 10), the analtical model gives satisfactory
results in both horizontal directions. As for the trolliggure 11 shows a very good agreement
between experimental and analytical results in direciomhereas the agreement in direction
Uis less satisfactory, espalty in the frequency range between 7 Hz and 16 Hz. Though not
shown here, for the sake of conciseness, the analytical model gives good results for the
absoluteaccelerations measured on the end trucks also. As a generathieepdeudovelocity
response spectra valuefthe different bridge components, except the trolley, are of the same
order of magnitude as the pseudovelocity response spectrum of the excitation..

The bending moment and stresses in the bridge girders due to horizontal meding
importart quantitiesfor the assessment of the earthquake behavior of crane bhdtesy
were not directly measured during the test. Therefore, the capability of the numerical model to
HVWLPDWH DFFXUDWHO\ WKH JLUGHUY ftheVvaddticelvVany 2ZDV
H[SHULPHQWDO UHODWLYH KRUL]IRQWDO GLVSODFHPHQWYV F
truck displacements. Actually, this quantity characterizes the overall horizontal bending
deformation of the girders. It is worth notingatithe two end trucks do not exhibit the same

displacements. Consequently their mean displacement must be determined. Even though the



time histories of the analytical and experimental displacements are not identical, the
agreement may be considered ass&atiory, especially as far as the maximum relative
displacement is concerned. In fact, the maximum relative displacement amplitudes given by
the analytical model and measured experimentally are, both, about 1.3 mm. Therefore, given
the capability of the raalytical model to predict the correct deflection amplitude, the axial
stresses can be estimated analytically. It is foimadl the maximum axial stressue to both
dynamic and static loadings, is equal to 21.4 MPa. Since the yield stress of the siielas

355 MPa no yielding occurs and the assumption of material linearity is verified.

4.3 Model sensitivity

To have a better understanding of the influence of input uncertainties or of the
numerical modeling approximations, two supplemental analyses were done. First, an analysis
was carried out considering a zero gap between the wheels and the rails. le factyah gap
value may not be known with accuracy. Even more, it could be thought, that, at high
excitation level, the exact gap value is of no importance. Thus, the limit case for which the
gaps are zero has been studied. Another analysis was also duna bgam finite element
model which does not account for the increased local flexibilities discussed in subsections 3.1
and 3.2. In this model each runway beam was modeled as a classical beam clamped at both
ends. However, its torsional constant has badjusted so as to account for the warping
torsion effect. Without this adjustment, the first eigenfrequency in direclisould have
been 14 Hz instead of the actual value of 9.5 fitpuiie 4). No additional rotational springs
were inserted at the connections between the bridge girders and the end trucks. Actually, it is
likely that the finite element models, made by practitioners, will not be tuned as the reference
model, described in subsexts 3.1 and 3.2. Regarding modal analysis of the abovensal

model, the first three frequencies of the eigenmoddg ifand Wirections are 11.0 Hz, 11.7



Hz and 14.5 Hz respectively. Comparison with the values determined either experimentally or
with the reference analytical moddig(ire 7) reveals an overestimation of the frequencies
varying from 11% to 23%.

Regarding the nonlinear test at the 0.8g PGA level, the results of the analyses are
summarized irtablel. These results show that, regas of the model (i.e. reference or no
tuned models), the maxima of the horizontal bending moment, of the relative displacement of
the girder mid span and the sliding displacement inWdeection, are higher when the gaps
are equal to zero. Inthiscess LPSDFW EHWZHHQ WKH WUROOH\ ZKHHOV
much more often and gives rise to higher impact force than in the cdsesofgap. It may,
also be observed that the average horizontal bending moment value is not zero, especially in
the @ase of zero gap. In fact, the horizontal dynamic loading of an individual girder does not
have zero mean because of the unilateral constraints between the trolley and the girder. An
approximate estimate of the average bending moment could be given loyrtiak giving
the bending moment at the mid span of a clargachped beam under a concentrated force,
equal to the average impact force applied at the same poin#(i: @2 AL A : P A ozwhere
/ :Pis the bending momen{; : P is the trolley impact force&¥denotes time average value
and . the length of the bridge girder). This approximation is confirmed by the results of
tablel. Though, as mentioned in the beginning of this subsection, the grosseneio
model, is not very accurate in the case of qtlam@ar behavior, nonlinearities tend to
decrease, to some extent, the differences between the two models.

In addition to the above analyses, related to input uncertainties and modeling
approximations, another agals was also carried out using a linear model of the crane
bridge, assuming sticking contact conditions for the braked wheels, even in the case of high
excitation intensity. The reason is that, even nowadays, the use of linear models for the

assessment dhe earthquake behavior of crane bridge is common practice. The aim of this



analysis was to highlight the differences between linear and nonlinear responses. For this kind
of analysis, a modal critical damping ratio of 0.7 % is considered, instead obr3%ef
nonlinear case. The reason for considering this lower damping value is explained in the
following section, dealing with the simplified modeAs it can be seen ifigure12,
accelerations given by the linear model are much higher than those gitbe hgnlinear

model. This may be readily explained by the fact that sliding acts as a sort of seismic
isolation. Though not shown here, the same holds for stresses, which are overestimated by the
linear modelby about urr™ . It is, also, observed that, agpected, nonlinearities result in

much wider spectra than linear spectra which exhibit amplification in narrow frequency
ranges in the vicinities of the eigenfrequencies of the structure.

Another test at high horizontal excitation level (0.8g PGA) wa® alone but a
vertical excitation (0.5 PGA) was also added. Figut8 compares the experimentally and
DQDO\WWLFDOO\ REWDLQHG UHVSRQVH VSHFWUD RI WKH WU
the peaks on these spectra are slightly shifted asvamwer frequencies if compared to the
eigerfrequencies presented in figufe. The frequency of the peak corresponding to the
analytical model is about 10% higher than that corresponding to the test. This slight
discrepancy is comparable to that between the eigenfrequencies of the analytical and
experimental model. As for the resyse in the horizontal directions, not shown here, for lack

of space, a good agreement is obtained between analytical and experimental results.

5. Simplified model

In this subsection a simplified model of the crane bridge is presented. It aims at giving
a quick estimate of the bridge response undeaxial horizontal excitation. It could also be
used as a part of a model including both the support main structure and the crane bridge to

account for possible interaction between these two structdfiggirel4 shows the



components of this model which has five intertial DOFs. It is composed of the trolley with
mass| 3 the crane girders with massy gstiffness G yand damping?, gand the end trucks
having an equivalent madsg In addtion springs G and damper dashpot represent the
stiffness and damping of the runway beaMass | is not the physical mass of the bridge
girders but it is chosen so thaty (£ | ¢ sis equal to the effective mass of the first horizontal
flexural mode of the crane bridge, considering sticking conditions for the braked wheels of the
end trucks and the trolley. The stiffnesg, yand damping ?;;are chosen so that the
corresponding frequency and critical damping ratio are those of thes diostv horizontal
flexural mode of the crane bridge.

Particular attention must be paid to the determination of the damping value. Actually,
as mentioned in subsection 4.2, the damping taken into account in the finite element model
was a critical dampingatio of 3 % for all eigenmodes of the crane bridge substructures with
free boundary conditions. However, in the case of the simplified model, the first eigenmode
with sticking conditions is considered, thus the damping value will be different. Let udeno
D, and B5thenth of N eigenvectors determined under free boundary conditions and the first

eigenvector under sticking conditions respectivilythe coordinate bas'®; Bsreads:

Efy .
ay

By L Afgs Ey (11)

where y is the mass matrix of the bridge, without the trolley mass I~ 3@ the generalized
mass of thenth eigenmodeunder free boundary conditions. The dissipated power
corresponding to a unit generalized velocity of the first mode under sticking conditions (i.e. a

velocity field equal tc 85 reads:
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where ois the damping matrix, assumed to be diagonalizable in the Bgsisg fiyand | 4
are the critical damping ratio and the circular frequency ofntheeigenmode under free
boundary conditions andg fsand a5 are the critical damping ratio, the circular frequency
and the generalized mass of the first eigenmode under sticking conditions. For the case in
hand, with & L rd&y which was the damping considered in subsection 4.2 for the
eigenmodes with free bodary conditionsthe critical damping ratio of the simpliiemodel,
given by equation (12)s &L r§ ~

The total mass of the bridge, including the masses of the girders, the trolley and the
end trucks isl ¢ L uxv N.JThe equivalent mass of the endcks is not their physical mass
butl gL I ¢ F 1 ggF | ¢c5The trolley (masd 3 can slide with respect to the bridge girders
(mass| g); The friction coefficient is the mean friction coefficient of the four wheels used in
the FE model. Only two over four wheels are braked. Reminding that friction coefficients
equal to 0.23 and 0.02 for braked and free to roll wheels, respectively, éawednsidered
(section 4.2) a mean friction coefficierd L :r&uErdt;ot L r&twis assumed. This
friction coefficient accounts for horizontal friction of the horizontal interface between the
ZKHHOV DQG WKH JLUGHUYV UDLO ,RicaDimsfa@@dcuis,Rlsd, | RQWD
when the gap between the wheels and the rail is zero. The corresponding friction coefficient is
0.23.

The bridge base (end trucks with makg) can slide with respect to the points
representing the runway beams. Regardimgftiction coefficient of the horizontal interface
the same average friction coefficient as for the trolley is considered. In addition, unilateral

horizontal frictional impact conditions are also imposed between mgsasid the springs and



dampers modelg the runway beam. The spring stiffne€s, is such that the frequency in

direction is equal to that obtained by the FE model. The damping con%taistdetermined

WR PDWFK WKH DVVXPHG 1HZW R@§rvihdJéxanvlesnvaked/ hdeQ FRHI I
NL r&is assumed. For this vertical interface, the same friction coefficieht,r &y as in

the FE model is used. The values of the main parameters of the model are summarized in
table2.

The underlying idea of the simplified model is that tdeformation of the bridge in
direction Uis approximated by a generalized degree of freedom corresponding to the first
eigenmode of the bridge under sticking wheel conditions for the braked wheels of the end
trucks and the trolley. This approximation ileg that the higher eigenmodes of the girders
are assumed to have a gustsitic response. Of course, this approximation is less satisfactory
under nodinear behavior since the impact and friction forces excite higher modes also.
However, this simplifiednodel does not aim at giving high accuracy results but rather a
rough but fast estimate of the crane bridge response. Consistent application of the kagrange
Euler equations, using the above kinematic assumption, leads to a system which cannot be
represerdd by a discrete mass system like that fmure 14. Nevertheless, numerical
simulations show that the results of this mathematically more consistent model and the above
SHPSLULFDO® PRGHO DUH TXLWH FORVH 7KDW LVargK\ RQO)
presented here.

The results obtained with the simple model, subjected to thridl excitation at 0.8g
PGA, are shown irfigure 15 and are compared with those of the FE model. For the sake of
better readability the time histories in the time intervar\&y \? where the peak response
occurs, is presentedy construction, the simple model does not account for the different
friction conditions between the braked and the free to roll wheels. Hence it cannot reproduce

the asymmetric sliding response discussed in subsection 4.2. Except the sliding behavior, the



simple model, captures qualitatively the essential features of the bridge response (e.g. same
response characteristic time as the FE model) but results in a mild overestimate of the
response quantities. In fact, the impact forces of the two models esinilir, though not
identical, qualitatively and quantitatively features. Regarding the relative displacement of the
girder midpoint with respect to the end trucks, the simple model gives a displacement which
overestimates the mean displacement of the dgwder beams of the FE modey about
34%.As already mentioned in subsection 4.2, the above relative displacement is a measure of
the deformation of the girders and could be used as a relevant seismic demand index for the
evaluation of their seismic perimance.

This simplified model could be, easily, improved further including rocking and uplift

but at the price of adding supplemental degrees of freedom and higher complexity.

6. Conclusions

In this work the experimental and analytical response of a crane bridge model
subjected to earthquake excitations is investigated.

Earthquake tests on a shake table of a 1/5 scale simple model of a crane bridge were
carried out for different configuratign(trolley location, braked or rolling wheels) under
several excitations signals {&xial, triraxial, growing PGA values). A novelty of the
experimental campaign was the similarity law which was especially adjusted to ensure the
correct ratio of seismiforces to friction forces.

A FE beam model was made. A special care must be given for the analytical model to
obtain the experimentally determined eigenmodes. In particular, additional flexibilities of the
girder end truck connections and of the runwaynseahould be taken into account.

Regarding the response under high intensity excitation, comparison between analytical and

experimental results shows that, despite some discrepancies the FE model reproduces the



essential features of the nonlinear respoifibe. overall agreement is satisfactory, especially
if one recalls the welknown unpredictability of the response of nonlinear systems in the
presence of severe impact/friction nonlinearities. In particular, the FE model gives a good
estimate of the overatieformation of the girders (relative displacement with respect to the
end trucks) which could be used as a relevant quantity, amongst others, to check the
earthquake resistance of the crane bridge. Moreover, the FE model is capable to reproduce the
systematic asymmetric sliding behavior of both the girders and the trolley, observed during
the tests.
A simplified analytical crane bridge model is proposed which gives approximate, yet
satisfactory estimates of the response quantities of interest. This cootttbe used as a part
of a bigger model including both the support (i.e. main) structure and the crane bridge to
account for possible interaction between these two structures. The simplified model cannot
account for the aforementioned asymmetric slidiepavior. An extension of the simplified
model, to account for this effect, could be possible but at the price of a higher complexity.
Future work will address the accurate determination of the reaction forces on the
runway beams and the improvemef theanalytical model. Hencea further extension of
this work would consist of some supplemental tests on shake table: a) using excitations which
are closer to actual crane bridge support motions and b) equipped with suitably designed load
cells to measure #reaction forces on the runway beams. Regarding the analytical model, a
specific macreelement could be developed to better simulate the actual friction forces on the

rolling wheels.
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Table 1 Response quantities of FE modelstfoe biaxial test at 0.8g PGA level (zero mean

excitation)
Model Reference FE model No-tuned FE model
Gaps 2 mm 0mm 2 mm 0 mm
BHVSRQVH TXDQWLWLHY DW WKH JLUGHUTYTV PLC
Max. relative displacementU; 1.3 mm 1.7 mm 1.1 mm 1.4 mm
Mean impact forces U, 196 N 847 N 188 N 868 N
Max. moment: V. 4537 Nm 5314 Nm 3647 Nm 4568 Nm
Mean moment: V, 132 Nm 520 Nm 116 Nm 468 Nm
Max. axial stressesT; 21.4 MPa 23.5 MPa 19.7 MPa 23.3 MPa

Global response quantity
Max. sliding dispacement: U, 35 mm 55 mm 30 mm 45 mm
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Table 1 Parameters of the simplified model

Gaps foe
Bl ¢a UXVZ2%HYY
| ca Szzr %o
| & UXVZE%HtuU"
Corresponding frequency fofg, 9.3 Hz
Corresponding frequency fa& 9.5 Hz
Critical damping ratio for 3; 0.54 %
Restitution coefficients for 0.7
Mean horizontal friction coefficient of horizontal interface rétw
Horizontal friction coefficient of vertical interface

0.23
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Runway beam

Figure 1. Model of the crane litige mounted on the shake table
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Figure 2.First two eigenmodes of the subassembly composed of the main bridge girders based on
the shock hammer test. Experimental results at left and analytical results at righf. £&)
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Figure 4. Deformed shape of the runway beamder static loading. (anodeling of the
{a& ce(b) beam assumed clamped at both erfds,

actual boundary conditionsR
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a) b)

Figure 7. Mode shapes and frequencies of the finite element model of the crane bridge
(frequency of the analytical model vs frequency of the specimen). (a) first mode W the
direction (9.3 Hz vs 9.5 Hz); (b) second mode in frdirection (9.5 Hz for both); (c) third

mode in the\direction (14 Hz vs 13 Hz)
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Figure 9. Pseudovelocityesponse spectra of the runway beam at mid span. (a) diréction
(b) direction U
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Figure 10. Pseudovelocityresponse sxtra of the main bridge girder at mid span. (a)
direction T, (b) directionU
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Figure 15. Comparison between the results of simplified and FE models. (a) mean relative
displacement of the girders; (b) impact forces on the runway beams
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