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Abstract—the rapid advance of the Internet of Things (IoT) 

technology offers opportunities to monitor lifelogging data by a 

variety of IoT assets, like wearable sensors, mobile apps, etc. But 

due to heterogeneity of connected devices and diverse life patterns 

in an IoT environment, lifelogging personal data contains much 

uncertainty and are hardly used for healthcare studies. Effective 

validation of lifelogging personal data for longitudinal health 

assessment is demanded. In this paper, it takes lifelogging physical 

activity as a target to explore the possibility of improving validity 

of lifelogging data in an IoT based healthcare environment. A rule 

based adaptive lifelogging physical activity validation model, 

LPAV-IoT, is proposed for eliminating irregular uncertainties and 

estimating data reliability in IoT healthcare environments. In 

LPAV-IoT, a methodology specifying four layers and three 

modules is presented for analyzing key factors impacting validity 

of lifelogging physical activity. A series of validation rules are 

designed with uncertainty threshold parameters and reliability 

indicators and evaluated through experimental investigations. 

Following LPAV-IoT, a case study on an IoT enabled personalized 

healthcare platform MHA [38] connecting three state-of-the-art 

wearable devices and mobile apps are carried out. The results 

reflect that the rules provided by LPAV-IoT enable efficiently 

filtering at least 75% of irregular uncertainty and adaptively 

indicating the reliability of lifelogging physical activity data on 

certain condition of an IoT personalized environment. 

 
Index Terms—Internet of things, physical activity, personalised 

healthcare, data validation. 

 

I. INTRODUCTION  

 

he concept of “Internet of Things” (IoT) has become an 

increasingly growing hot topic within both academia and 

industry [1-6]. The fundamental idea of IoT is to build up a 

globally interconnected continuum of a variety of objects in the 

physical environment. Today, with the pervasive utilization of 

heterogeneous sensors - such as accelerometers, gyroscopes, 

altimeters, temperature, pressure, humidity, UV radiation, 

Radio-Frequency Identification (RFID) tags and other portable 

low-cost devices, significant advancements in the IoT have 

generated a large amount of opportunities in industrial areas [6-

11], particularly in healthcare field [10-18]. 

 Due to the exponential growth of commercial wearable 

devices [11-20] and mobile apps [29-31], it has become 

increasingly possible to remotely monitor a patient or citizen’s 

health by connecting heterogeneous medical devices into an 

IoT platform [18-20]. A promising trend in healthcare fields 

appears that the IoT enabled technology is transforming 

traditional hubs of healthcare, such as clinics and hospitals, to 

personalized healthcare systems and especially mobile 

environments. Continuing monitor patients’ conditions outside 

the hospital environment enables future healthcare to be 

delivered faster, safer and at lower cost, with enhanced 

sustainability. Unfortunately though, using IoT enabled 

technology in healthcare systems is challenging considering 

non-standardized IoT system architectures and lack of 

interoperability, heterogeneity of connected wearable devices, 

high volume of generated multi-dimensional personal health 

data, and privacy and security issues. Also, these issues lead to 

a great uncertainty in personal health information. Effective 

validation of these high volume and multi-dimensional health 

data becomes a major demand on IoT based personalized 

healthcare systems. 

  Technically and functionally sophisticated wearable 

devices and mobile applications [29-31] enable recording a 

variety of lifelogging personal health information; including 

physical activity, weight, sleep quality, heart rate, blood 

pressure, etc. Among this data, physical activity is mostly well-

observed due to the maturity of microelectromechanical 

systems (MEMS) based accelerometer technology as well as 

easily and openly accessible Global Position System (GPS). 

Numerous research works [21-28] and commercial products 

[29-31][33] have attempted to accurately monitor physical 

activity and access activity patterns and intensity level, by using 

either dedicated wearable sensors [29-31] or advanced machine 

learning algorithms [22-25]. But these studies mostly depend 

on performance optimization of single sensor or a combination 

of GPS and accelerometer by analyzing raw sensors’ signals. In 

IoT based personalized healthcare environments, physical 

activity data is discretely daily basis from globally 

heterogeneous third party devices. Traditional physical activity 

validation methods hardly deal with these scattered and 

heterogeneous data. Also, due to diversity and change of 

personal lifestyles and environmental impacts, lifelogging 

physical activity data in IoT enabled personalised healthcare 

systems has remarkable uncertainties. Effective validation of 

these data from heterogeneous devices is an essential but highly 

demanding task. The requirements of customization and 

longitudinal study in an IoT healthcare environment make this 

task ever harder. Our study in this paper attempts to take 

lifelogging physical activity as a target to explore the possibility 

of improving validity of lifelogging data in an IoT based 

healthcare environment. 
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This paper investigates the problem of effectively validating 

lifelogging physical activity in a heterogeneous devices based 

IoT enabled personalized healthcare environment. A rule based 

adaptive lifelogging physical activity validation model, LPAV-

IoT, is proposed for eliminating irregular uncertainties and 

estimating physical activity data reliability in IoT enabled 

personalized healthcare systems. It enables data validation 

procedure in IoT environments to be a dynamic standardized 

empirical analysis workflow with four layers including factors, 

methodologies, knowledge and actions. The factors impacting 

the validity of physical activity are categorized into device, 

personal and geographic. Each factor defines a longitudinal data 

analysis based investigation strategy. The validation rules are 

represented with a set of uncertainty threshold parameters and 

reliability indicators, which can be initiated by historical data 

and adaptively updated regarding the needs of an IoT enabled 

personalized healthcare system. The effectiveness of LPAV-

IoT is verified by carrying out a case study on an IoT enabled 

healthcare platform MHA [38] with state-of-the-art wearable 

devices and mobile apps are carried out. The results reflect that 

the validation rules and action criteria delivered by LPAV-IoT 

effectively improve the validity of lifelogging physical activity 

data in the MHA system. LPAV-IoT provides an efficient and 

adaptive solution for the validation of IoT environment based 

lifelogging physical activity data. The main contributions are 

below:  

1. A rule based adaptive lifelogging physical activity 

validation model, LPAV-IoT, is proposed for effectively 

eliminating irregular uncertainties and estimating physical 

activity data reliability in IoT enabled personalized healthcare 

systems. 

2. A series of validation rules representing with uncertainty 

threshold parameters and reliability indicators are designed and 

evaluated through a set of experimental investigation. These 

rules are capable of being adaptively and dynamically updated 

regarding the needs of an IoT enabled personalized healthcare 

system. 

3. A case study on an IoT enabled healthcare platform MHA 

[38] with heterogeneous devices is provided to evaluate the 

proposed validation rules and action criteria. A discussion and 

analysis on experimental results are given.  

  The rest of the paper is structured as follows. Section II 

reviews related work. Section III presents the description of 

LPAV-IoT model. Section IV gives experimental investigation 

with LPAV-IoT model. Section V reports a case study that 

applies the proposed LPAV-IoT model in MHA platform [38]. 

Section VI provides the conclusions and future work.  

II. RELATED WORK 

    The concept of IoT based personalized healthcare systems 

[14] uses a set of interconnected devices to create an IoT 

network devoted to healthcare assessment, including patients 

and automatically detecting situations. In Fig.1, the general 

system collects personalized health information from different 

wearable sensing devices through a middleware that provides 

interoperability and security needed in the context of IoT for 

healthcare. These wearable devices are capable of recording 

multiple type health data, including physical activity, weight, 

sleep, heart rate and blood pressure. Among this data, due to the  

  
Fig. 1 IoT personalized healthcare systems (adopted from 

[14]) 

technical and functional maturity of MEMS accelerometer 

technology and GPS, physical activity is mostly well-observed. 

    As a major risk measure for chronic diseases, daily physical 

activity recognition and monitoring with wearable sensors have 

been investigated by a number of researchers [21-28] [29-34]. 

In [22-23], authors carry out a study on recognizing and 

classifying physical activity by analyzing signal features from 

3D (triaxial) accelerometers on hip and wrist and GPS data with 

a hybrid classifier of custom decision tree and neural networks. 

The results are reported a classification accuracy up to 89% for 

detecting 10 daily actions. ProeTex [24] project develops an 

algorithm that combines features of ECG and triaxial 

accelerometer in smart garments for detecting nice classes of 

physical activity with overall classification accuracy up to 

88.8%. In [27-28], researchers have integrated on-body sensors 

in a wireless network for the purpose of activity recognition and 

lifestyle monitoring. Authors in [27] utilize a network of five 

accelerometers to classify a sequence of 20 daily activities with 

accuracy of 84%. The system in [28] that uses seven different 

sensors embedded in a single node, including microphone, 

phototransistor, 3D accelerometer, 2D compass, barometer, 

ambient light and digital humidity, to classify 12 movements 

with accuracy up to 90%. The outstanding achievement of all 

aforementioned work on daily physical activity recognition is 

high classification accuracy of recognizing multiple daily 

activity actions. But all of these studies rely on a collection of 

physical activity data as a raw accelerometers’ signals. In IoT 

based personalized healthcare systems, physical activity data 

comes mostly from globally heterogeneous third party devices. 

The traditional classification methods [21-28] are infeasible to 

handle these scattered and heterogeneous physical activity data.  

Recently, many commercial wearable products [29-30] and 

mobile applications [31-32] [36] have been released for the long 

term record and collection of personal lifelogging physical 

activity. The most famous mobile apps, such as Moves, are 

based on smartphone 3D accelerometer data and GPS 

information which allows tracking user movement activities 

including location, distance and speed. The wearable products, 

such as Fitbit Flex, Nike+ Fuelband , Withings, are all 

wristband devices that record steps count, distance, and calories 

burnt. These wearable devices communicate with mobile phone 
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via Bluetooth employing relevant mobile applications. While 

above products have been proven its popularity among general 

users, their majority usages are limited in the fitness fields. It is 

due to diversity of life pattern and environmental impacts; 

personal physical activity data from individual wearable device 

exhibits remarkable uncertainty. The validating of these 

physical activity data in longitudinal healthcare cases is very 

challenging. Also, as the exponential growth of mobile 

healthcare market, numerous similar wearable products have 

been developed, which will significantly increase the 

heterogeneity and diversity of devices connected in IoT based 

personalized healthcare systems. Effective validation of 

physical activity data from heterogeneous devices in IoT 

enabled personalized healthcare environments becomes more 

difficult. 

III. PAV-IOT MODEL 

A. LPAV-IoT Ecosystem 

    The ecosystem for LPAV-IoT is the theoretical cornerstone 

of validating of physical activity in an IoT environment, as 

shown in Fig.2. In terms of the concept of IoT, personal health 

data are accumulated and measured as a cube in three 

dimensions (3D): Persons, Devices and TimeLine. The 

increment in any dimension results in an expansion of the health 

data grid. The products like Fitbit or Moves [29] occur on a 2D 

plane (Persons × TimeLine), which refer to scenarios that single 

device is used by increasing population over time. Similarly, 

physical activity recognition with sensor fusion [21-28] appears 

on a 2D plane (Devices × TimeLine) for classifying individual 

person’s activities with historical health data. To distinct from 

the above two categories of studies, the target of LPAV-IoT 

model is a cube of rapid-growth lifelogging physical activity. 

 

Fig. 2 Concept of IoT personalized healthcare systems 

    The workflow of LPAV-IoT model for validating physical 

activity is a dynamic recurrence by duration along the timeline. 

The validation rules are initiated by feeding a set of historical 

raw physical activity data in the LPAV-IoT model; and then are 

used to validate the current physical activity. After a period, 

historical raw physical activity data is expanded with more 

users or devices over time. The validation rules have to be 

dynamically changed and updated by feeding new historical 

physical activity data into the LPAV-IoT model. Also, LPAV-

IoT model provides a configuration to register the information 

on person and devices dimensions. It adaptively supports the 

need from different users or groups. 

 The concept of LPAV-IoT model is to firstly identify the key 

influencing factors with detailed issues causing uncertainty of 

lifelogging physical activity; and design a series of benchmarks 

and experimental study methods for qualitatively evaluating 

these influencing factors. Through these experiments, LPAV-

IoT model enables delivering a practically efficient validation 

strategy containing a series of validation principles, rules and 

actions. Fig.3 shows a conceptual diagram of LPAV-IoT model. 

LPAV-IoT model has three main objectives: 

 Uncertainty Reduction: LPAV-IoT offers methods, which 

enables filtering errors and reducing uncertainty of lifelogging 

physical activity data.     

    Reliability Estimation: LPAV-IoT provides an indicator to 

estimate the reliability of lifelogging physical activity data on     

certain IoT condition.  

 Adaptivity: LPAV-IoT is a generic conceptual model for 

supporting a variety of heterogeneous devices. The validation 

rules of this model have to be adapted to fit to the IoT healthcare 

application situations.  

    Additionally, LPAV-IoT is desirably extendible and scalable 

for supporting emerging technological possibilities of devices 

in an IoT healthcare environment. New unidentified influencing 

factors can be added in the LPAV-IoT model and investigated 

with a similar evaluation methodology. 

B. Uncertainty Classification 

 LPAV-IoT model is built upon a theoretical classification of 

impacting factors leading to uncertainty of lifelogging physical 

activity data by specifying four layers and three components in 

an IoT healthcare environment. The uncertainty of lifelogging 

physical activity here is categorized into two types: 

Irregular uncertainty: Irregular Uncertainty (IU) occurs 

randomly and accidently in lifelogging physical activity data. 

The causes of these uncertainties include device malfunctions 

or faults, breakdown of third party server, misuse of mobile 

apps, sudden change of personal circumstance. The occurrence 

of irregular uncertainty will appreciably impact the efficiency 

and accuracy of assessing personal health.   

     Regular uncertainty: Regular Uncertainty (RU) occurs 

frequently and persistently in lifelogging physical activity data. 

The causes resulting in these uncertainties are mainly from 

some regular influencing issues, like intrinsic sensors’ errors, 

differentiation of personal physical fitness and changes of 

environment. The occurrence of regular uncertainty in physical 

activity data is inevitable so that it is impossible to completely 

eliminate these uncertainties.  

    LPAV-IoT model aims at delivering methods for eliminating 

the impact of irregular uncertainty and managing the impact of 

regular uncertainty. 



 

4 

 

4 

Fig. 3 Diagram of LPAV-IoT Model 

C. Impacting Factors Analysis and Matrix 

 While irregular uncertainties occur accidently and are hardly 

quantified by impacting factors, their occurrence frequency is 

relatively low over time. A statistical analysis in historical data 

can detect threshold parameters to filter them. Daily physical 

activity is mainly measured as daily steps (Sd), daily walking 

distance (Ddw) and daily average walking speed (Vdaw) as it is 

shown in Table 1. It is believed that the majority of daily steps 

and daily average walking speed have to be in a specific range. 

Two threshold parameters (Ts and Tv) are defined to filter the 

irregular uncertainties regarding a probabilistic distribution.  

 For regular uncertainties, the impacting factors in LPAV-IoT 

are categorized into three modules, which are device factors, 

personal factors and geographic factors. In the device factors 

module, existing popular wearable devices or mobile apps are 

classified by sensory technique into three types: GPS based, 

Accelerometer based, a combination of sensors based. The 

accuracy of these three sensory techniques for measuring step 

count and distance are quantified by Mean of relative error and 

Standard Deviation of relative error though a series of 

experiments. 

 The personal factors module studies if the differences of 

human demographic, anthropometric and fitness data give 

regular uncertainties to physical activity data. These differences 

usually include the age, gender, height, weight and medical 

history, etc. The information relies on users’ efforts of manual 

input, which maybe incomplete. There is a need for a 

benchmark to represent a person’s physical fitness from 

completed data sources. Here a walking speed related score is 

defined to represent a person’s physical fitness, named as Daily 

Activity in Physical Space (DAPS). This score is inspired from 

work [34] that proposes a Movement and Activity in Physical 

Space (MAPS) score as a functional outcome measurement for 

encompassing both physical activity and environmental 

interaction. Currently, most of wearable devices or mobile apps 

have provided the third party APIs to assess the intensity of 

physical activity regarding walking speed. For instance, Fitbit 

classifies the intensity of daily activities into Very Active, 

Moderately Active, Lightly Active and Sedentary; Moves 

records a series of walking segments containing duration, 

distance and speed. Here, we classify the intensity of daily 

physical activity into N levels in terms of the ranges of walking 

speeds (V1, V2 …Vn). The DAPS formula is created by 

summing these different level walking speeds: 

1

N

tDAPS V                                    (1) 

For understanding the impact of personal factors on measure 

of daily physical activity, we give two hypothesis tests that:  

1) Person’s physical fitness has a strong relationship with his 

daily physical activity. A person with strong physical fitness 

shall have a high value of daily physical activity. 

2) For a group of population having similar lifestyle, regular 

uncertainties raised by personal factors are supposed to follow 

a linear relationship with Daily Steps. A person walks more 

steps or distances, regular errors will be increased linearly in 

daily steps. A proportional function (2) is defined for 

representing their relationship, where β is a proportion ratio.  

Errp =  𝛽 × 𝑆𝑑                                        (2) 

In order to testing our hypothesis, Pearson’s correlation 

coefficient (r) is simply used in a group of persons to measure 

the strength of the association between Errp and daily physical 

activity (Sd or Ddw). If personal factor (physical fitness) has a 

strong impact on regular uncertainties, all persons’ Pearson 

figure r will be close to 1 or -1. 
It is noteworthy that the motivation of LPAV-IoT model 

aims at providing an investigation approach for improving the 

validity of generic lifelogging physical activity in an IoT     
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Table 1. Listing of Parameters and Indicators in LPAV-IoT Model  

environment. It does not only aim at dealing with the intensity 

of physical activities (IPA), and can be extended to apply into 

more complex physical activity related subjects. But most 

available mobile apps or wearable devices only release API to 

access limited type of physical activity data, which is the 

intensity of physical activity. Thus, LPAV-IoT model aims at 

building up a set of investigation methods for some data, which 

are able to be collected and evaluated by experiments. IPA 

being improved by LPAV-IoT model may be not remarkable to 

the index based representation for users. 

The geographic factors module aims at investigating the 

impacts of location specific information related contextual data 

on the accuracy of daily physical activity. This information can 

include Time (time of day, life events, i.e.), Location (country, 

part of city, “at work” etc.), Environmental factors (weather 

conditions, etc.). Considering the difficulty of establishing and 

recording completed user life and environment profiles, we 

only list three items in geographic factors: weather, hourly-

change of physical activity, and weekly-change of physical 

activity. The changes of daily physical activity over these three 

issues are measured with statistical analysis in historical data. 

A few range and type of parameters are defined in Table 1. A 

reliability indicator (R) for estimating the overall impact of 

above three impacting factors is formulated below:   

R D P E                                              (3) 

Where:  

D: Reliability of device factors on physical activity  

P: Reliability of personal factors on physical activity 

    E: Reliability of geographic factors on physical activity 

A. Data Validation Strategy  

Data validation strategy of the LPAV-IoT model aims at 

conducting a set of validation rules for eliminating irregular 

uncertainties and reducing the impacts of regular uncertainties 

on lifelogging physical activity data. This strategy is designed 

by using a combination of statistical analysis methods on 

longitudinal studies and experimental analysis approaches. The 

workflow of data validation strategy is presented as 4-layers 

structure in Fig.2. 

 Investigation Level: provides analysis and classification of 

detailed influencing items in each impacting factor module, also 

establishes corresponding uncertainty measurement matrix. A 

notable feature of influencing items level is extendibility which 

means that it may add more items into the LPAV-IoT for further 

investigation. 

 Methodology Level: designs a set of investigation approaches 

for each impacting factor module regarding identified items and 

established matrix. The investigation approaches include 

statistical longitudinal data analysis and experimental based 

empirical analysis methods.  

 Knowledge Level: conducts a series of validation rules and 

principles following the investigation approach. These rules 

and principles aim at quantitative removal of irregular 

uncertainties, and qualitative exploration of the relationship 

between impacting factors and regular uncertainty. 

 Action Level: contains the options of executed actions on 

physical activity data regarding validation rules. Three main 

types of actions are given in the model: to abandon data, to keep 

data and to revise data. The main purpose of LPAV-IoT model 

is to validate and verify physical activity data, so the action of 

revising data is not considered in this paper.  

    Following the four layers described above, the steps of data 

validation strategy in the LPAV-IoT model are described 

below: 

For removing irregular uncertainty:  

1. To configure the information related to impacting factors and 

collect certain type of raw historical physical activity data.  

2. To calculate the parameters Sd, Ddw, Vdaw with raw data. 

3. To plot the data of Sd, Ddw, Vdaw in line and calculate the value 

of Ts and Ty with eclipse filtering equation to cover data with 

a confidence interval of 95%. 

 Parameters Descriptions 

 

Raw Physical Activity Data 

Sd Daily walking steps  

Ddw Daily walking distance  

Vdaw   Average daily walking speed  

C Confidence interval for filtering historical data distribution  

Irregular Uncertainty  Ts  Threshold parameter for filtering incorrect daily steps data 

Tv Threshold parameter for filtering incorrect  average daily walking speed 

 

 

Regular 

Uncertainty 

 

 

 

 

Devices  

ES_mean Mean of step count relative error  

ES_std Standard Deviation of step account relative error 

ED_mean Mean of measured distance relative error  

ED_std Standard Deviation of measured distance relative error 

Personal  DAPS Daily Activity in Physical Space score 

V1, V2 …Vn Average Walking Speed regarding intensities of daily physical activity. 

 

Geographic 

Sh(morning, afternoon, night) Daily steps range in morning, afternoon and night  

Dh( morning, afternoon, night ) Daily walking distance range in morning, afternoon and night 

Swk(working, weekend) Daily steps range in working days and weekend  

Dwk(working, weekend) Daily walking distance range in working days and weekend 

 

Reliability Indicator 

D Reliability dependent on device factors 

P Reliability dependent on personal factors 

E Reliability dependent on geographic factors 

R Reliability Indicator for estimating physical activity data 
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4. To use Ts and Ty for removal of irregular uncertainty physical 

activity data.  

5. To circulate the above process in another period with updated 

raw data.  

The rules are concluded below: 

 Following eclipse filtering equation, we can get the value 

of Ts  and Ty .  

 For a daily physical activity data, if daily walking steps is 

lower than Ts, or average daily walking speed is lower than 

Ty, we will abandon this data.  

For device factors:  

1. To list and classify typical wearable devices and mobile 

applications for physical activity data recording.  

2. To design a set of evaluation experiments including daily 

activities, such as walking for measuring accuracy parameters 

of the devices: Es_mean, Es_std, Ed_mean and Ed_std (see 

Table 1 for definitions). 

3. To conduct the experimental findings as validation rules and 

establish the equation for device reliability indicator D. 

4. To circulate the above process with new types of devices.  

The rules are concluded below: 

 Following designed experiments including N subjects; we 

can get the device reliability indicator Dn for each subject.  

 The overall reliability of the device can be formulated as a 

combination of these separate reliability indicators (4): 


n

nkDD                                   (4) 

Where:  

D : overall reliability of the device for physical activity; 

Dn : reliability of one subject; 

k : weight of each parameter reliability. 

For personal factors:  

1. To calculate the value of V1, V2 …VN with raw historical 

physical activity data by individual person. 

2. To calculate the value of DAPS by summing up V1, V2 …VN. 

3. To calculate the value of Pearson Correlation r between 

DAPS and Sd or Ddw by individual person. 

4. To conduct the experimental findings as validation rules and 

establish the formula for personal reliability indicator P. 

5. To circulate the above process with more subjects.  

The rules are concluded below: 

 On the condition that we get every individual’s Pearson 

Correlation.  

 If the Pearson Correlation r from individuals is diverse, it 

means that no strong impact of daily speed or MAPS on 

daily steps. Personal factors (for normal people) will not 

generate significant errors in physical activity data.  

 If the Pearson Correlation r from individuals is nearly 

identical, it means that Personal Factors (for normal people) 

will generate significant errors in physical activity data.  

 The reliability of estimating personal factors on physical 

activity can be measured by the difference of individual 

person’s DAPS and a standard DAPS in a group M of 

populations. If it is assumed that M subjects’ DAPS data is 

recorded in the platform, the reliability of estimating 

personal factors on physical activity is formulated below: 

1

M

m
m

DAPS

DAPS
M




                       (5) 

        

2

1 iDAPS DAPS
P

DAPS

 
    

 
             (6) 

Where:  

P : overall reliability of personal factors for physical 

activity; 

DAPS : Daily Activity in Physical Space Score 

M :  Total number of persons in the group. 

For geographic factors:  

1. To classify and categorize physical activity data regarding 

weather, hourly-change and weekly-change parameters. 

2. To plot the data of Sd, Ddw, Vdaw in line and calculate the range 

value of parameters to cover a confidence interval of 95%.   

3. To conduct the experimental findings as validation rules and 

establish the formula for personal reliability indicator E.  

4. To circulate the above process in another period with updated 

raw data.  

The rules are concluded below: 

 The reliability of estimating geographic factors on physical 

activity can be measured by the difference between 

individual daily steps and average daily steps in weekdays 

by devices. If it is assumed that M person wears one type 

device, his / her steps data in weekdays are recorded as 

Swkt (t =1,..,7), the reliability of estimating geographic 

factors on physical activity is formulated below:   

1

( 1,..,7)

( 1,...,7)

M
t
m

t

Swk t

Swk t
M



 


                   (7) 

2( 1,...,7) ( 1,...,7)
1 ( )

( 1,...,7)

t t
i

t

Swk t Swk t
E

Swk t

  
 


      (8) 

Where:  

           t : represents weekdays from Monday to Sunday.   

         Swk : walking steps on certain day in a week.  

B. Adaptability and Extendibility  

 The design of LPAV-IoT model aims at generic utilization in 

IoT enabled personal healthcare systems. Configuration is 

defined here in the LPAV-IoT model for registering the 

information regarding devices factor, personal factor or 

geographic factor. By using this information, LPAV-IoT model 

is capable of adaptively adjusting the values of parameters in 

validation rules to account for different needs. LPAV-IoT 

model is able to adapt itself efficiently; it is fast in responding 

to changed settings or needs in an IoT enabled healthcare 

environment. Also, more extended feature of LPA-IoT model 

are discussed in section VI.  
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IV. EXPERIMENTAL INVESTIGATION 

 In theory, LPAV-IoT model aims at validating lifelogging 

physical activity in an IoT healthcare environment with any 

population, for any devices and at any time periods. This paper 

takes two EU healthcare projects: MHA [38] [35] and CARRE 

[37] as case studies to verify the effectiveness of LPAV-IoT 

model. This section presents the establishment of validation 

rules with LPAV-IoT model by MHA and CARRE projects. 

The evaluation of device factors modules include 7 typical 

physical activity recorders used in CARRE project: Fitbit Flex, 

Fitbit One, iHealth AM3, Medisana Vifit Connect, Withings 

Pulse O2, Jawbone UP24 and Moves. The evaluation and 

validation of irregular uncertainty, personal and geographic 

factors are based on MHA platform, which is an IoT enabled 

personal healthcare experiment platform connecting Moves, 

Fitbit and Withings. This platform enables user to transfer their 

physical activity data from these third party providers into 

MHA server, and then to be able to visualize and analyse this 

information for a better user understanding and experiences.  

A. Irregular Uncertainty  

 Eliminating irregular uncertainties is the primary step of data 

validation strategy in LPAV-IoT model. On MHA platform, we 

initially collect daily physical activity (Steps, Distance and 

Calories) of 7 users over 6 months by 3 types of wearable 

devices of recorders (Withings, One and Moves). All these 7 

users (1 female and 6 male) are researchers in university, and 

their ages are in the range of 30-50 years old. The features of 

this raw activity data are: 1) All 7 people use Moves, 2 of them 

additionally use Withings, and another 3 people use Flex. 2) 

Missing data occurs frequently in Withings and Flex, because 

users easily forget wearing them. 3) Some data in Flex shows 

lower steps, which is probably because users take off their 

wearable devices some time, or devices are out of battery. 4) 

Moves data are more completed than Flex or Withings, but with 

relatively high errors. Following data validation strategy in 

section V.D, we calculate Vdaw , and plot Sd and Vdaw in 2D 

diagram as in Fig.4.  

 

Fig. 4 Distribution of Irregular Uncertainty 

Fig.4 demonstrates that:     

 Daily steps of individual by Moves are about 4000 – 7000,  

 Flex or Withings give daily steps about 6000 – 13000.  

 Moves gave a lower measurement of daily steps than Flex 

or Withings on the same condition.  

 Normal people should have a daily steps in the range 1000– 

20000.  

 Flex and Withings sometimes show daily steps below 1000.  

 In order to measure Ts and Ty to remove irregular uncertainty 

physical activity data [30], we use an eclipse equation (9) to 

cover 95% of data (C = 0.95). 

2 2

2 2

( ) ( )
1

x h y k

a b

 
                                    (9) 

Where:  

h : Average daily walking speed 

k : Average daily walking steps 

a : Error range of average daily walking speed 

b : Error range of average daily walking steps 

 A noticeable issue here is that we only consider the lower 

limits of walking steps and the upper limits of walking speeds 

as threshold parameters. On some days users might walk 

distinctly more steps than usually, while the other days might 

be more sedentary. The threshold parameters are represented in 

equation (10): 

y

s

T h a

T k b

 

 
                                      (10) 

The rules are concluded below: 

 Following equation 4, we can get Ts = 68, and Ty = 0.56 for 

Moves, and Ts = 1329, and Ty = 1.67 for Flex.  

 For a daily physical activity data recorded by Moves, if 

daily walking steps is lower than 68, or average daily 

walking speed is lower than 0.56, we will abandon this data.  

 For a daily physical activity data recorded by Fitbit, if daily 

walking steps is lower than 1329, or average daily walking 

speed is lower than 1.67, we will abandon this data.  

B. Device Factor 

 The characteristic evaluation of device factors in LPAV-IoT 

model presents design and results of experimental investigation 

that carried out in order to evaluate the accuracy of wearable 

equipment. A total of 6 devices were included in this study: 

Flex, One, iHealth, Vifit, Withings, Jawbone. All these devices 

are classified as an “accelerometer only” based physical activity 

trackers. They were chosen from the market as the suitable 

devices for long term physical activity monitoring due to low 

price, long battery life, compatibility with Android and the most 

importantly – API availability. The Moves app was included in 

the evaluation as it is the only piece of equipment employing 

both GPS and accelerometer technology with available API. 

Two more apps were included in the study as the “GPS only” 

equipment: Endomondo and Google MyTracks. The same main 

criterion – API availability– was applied when choosing the 

GPS enabled apps. 

 The study was performed in two stages: the primary and final 

investigations. In both parts, some of the physical activity 
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parameters available from the selected devices were measured 

on healthy volunteers and compared to the reference 

parameters. Some of the devices are suitable to wear on the 

wrist, others – on the waist or in the pocket and some provide 

the ability to choose how to wear them. The wrist wearing site 

was preferred during the experimentation since it allows easy 

and unobtrusive non-stop physical activity tracking. In the 

primary investigation, three variables were measured – steps 

taken, distance travelled and calories burned. All accelerometer 

based devices output these three parameters, while Moves 

outputs only the step count and the distance and the “GPS only” 

apps output only the distance and the calories. The reference 

method for measuring the step count consisted of raw 

accelerometer signals acquired by the custom physiological and 

kinematical signal recorder KTU BMII Cardiologer v6  

attached to the waist, and a semi-automatic peak detection 

algorithm implemented in Matlab. The reference method for 

measuring calories was indirect calorimetry implemented in 

portable calorimeter Cosmed K4b2. Since this calorimeter is 

enabled with a GPS module, it also was used as a reference 

method for measuring travelled distance. 4 healthy volunteers 

participated in this part.  

    The aim of this primary study was to define preliminary 

accuracy/error ranges for selected commercial devices. The 

experimentation protocol was below for each participant: 

1. A short walk within fixed distance of 160 m (80 meters back 

and forth with stopping) where only the step count was 

measured. “GPS only” devices were not included. 

2. Calculation of the average step length using the distance and 

the step count from the reference method. 

3. Update of the devices with personal information, such as birth 

date, height, weight, step length, running step length. 

4. The approximate of 1000 meters long casual walking exercise 

via fixed rounded route. The participant was able to choose 

his/her own walking pace. 

5. Jogging exercise of 200 m (100 m back and forth without 

stopping). “GPS only” devices not included. 

6. Slow walking exercise of 200 meters (100 m back and forth 

without stopping). “GPS only” devices not included. 

7. Stair climbing exercise (5 floors). “GPS only” devices not 

included. 

 
Table 2. The error ranges for walking exercises  

 Error range (min – max), % 

Device type Steps Distance Calories 

Accelerometer 0,0 – 82,5 0,1 – 68,1 0,2 – 93,3 

Accelerometer + 

GPS 

4 – 56,4 N/A N/A 

GPS N/A 0 – 5,4 2,4 – 45,8 

Table 3. The error ranges for less frequent exercises  

 Error range (min – max), % 

Device type Steps Distance Calories 

Accelerometer 0,0 – 74,6 0,7 – 72,4 6,4 – 80,6 

Accelerometer + 

GPS 

6,9 – 94,2 N/A N/A 

GPS N/A N/A N/A 

 The protocol includes two parts. One part includes the most 

frequent physical activity – walking (exercises 1, 4 and 6). The 

other part includes less frequent physical activity (exercises 5 

and 7). The results from this primary evaluation are also divided 

into two parts respectively. The error ranges for each type of 

devices are presented in Table 2 and Table 3.  

While Moves app output the distance information, it was not 

accurately recorded by the operator. So this data was discarded 

from the investigation. GPS devices data was not acquired 

during the less frequent exercises. These results present only the 

preliminary error ranges of the devices, but they create some 

guidance for further experimentation. The calories estimation 

from the accelerometer devices shows the worst performance, 

while accelerometer plus GPS devices do not output such 

information at all. Cosmed K4b2 calorimeter is also very 

complicated for the participants to work with. So the calories 

estimation comparison was excluded from the further 

experimentation. On the other hand, the GPS devices showed 

very good performance in measuring distance. It was decided 

to replace the reference GPS device with the GPS enabled app 

in the smartphone (Tracks). In order to simplify the exercises in 

the experimentation and due to some limitations (GPS not 

working inside the building), it was decided to exclude the less 

frequent exercises from the experimentation. The reference 

method for counting steps remained the same as in the primary 

investigation. 6 healthy volunteers participated in the second 

investigation. A new simplified experimentation protocol was 

established as the following: 

1. A short walk within fixed distance of 100 m (50 meters back 

and forth with stopping) where only the step count was 

measured. 

2. Calculation of the average step length using the distance and 

the step count from the reference method. 

3. Update of the devices with personal information, such as birth 

date, height, weight, step length, running step length. 

4. The approximate of 1000 meters long casual walking exercise 

via fixed rounded route. The participant was able to choose 

his/her own walking pace. Step count and distance was 

measured. 

 The first short experiment shows the ability of the devices to 

accurately capture short episodes of physical activity (e.g. 

walking in the office). The long walk experiment shows the 

ability to accurately record the most frequent daily physical 

activity – casual walking (e.g. walking to/from work). The 

results as a mean of error and the STD of error are presented in 

Table 4 for each device and each measured variable separately. 

Table 4.  The accuracy of the devices 

Device 

Error in steps 

100 m 

Error in steps 

1000 m 

Error in 

distance 

1000 m 

Mean STD 
Mea

n 
STD Mean STD 

Flex -6,6% 
17,7

% 

-

8,5% 

14,2

% 
-6,6% 26,3% 

One 0,2% 1,5% 0,0% 0,4% -4,9% 8,2% 

iHealth 
-

11,4% 

19,9

% 

-

0,8% 
2,4% -8,1% 6,4% 

Vifit 
-

10,3% 

11,7

% 

-

2,8% 
5,6% -9,2% 4,3% 

Withing

s 
-1,3% 2,0% 

-

0,6% 
2,0% 5,1% 9,8% 
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Jawbon

e 
-7,8% 

14,7

% 
4,7% 

11,3

% 
-7,2% 20,5% 

Moves -7,2% 
25,2

% 

-

0,2% 
3,0% -5,6% 1,4% 

These results show that devices based on the same 

accelerometer technology perform differently and could not be 

used interchangeably. It may seem that the wrist wearing site 

can cause problems as the Flex tracker has lower accuracy than 

One. On the other hand, we can see that Withings performs 

similarly to the One while also worn on the wrist. The error 

ranges were updated according to the results of the final 

investigation and are presented in Table 5. 

Table 5.  The updated error ranges for walking exercises  

 Error range (min – max), % 

Device type Steps Distance 

Accelerometer 0,0 – 47,5 1,0 – 41,2 

Accelerometer + GPS 0,0 – 37,1 3,8 – 7,4 

 We can see that the actual ranges are lower than in primary 

investigation. Another observation is that Accelerometer + GPS 

devices have slightly lower error range for step count and 

significantly lower error range for distance estimation. 

 We propose that the device reliability factor should be 

separately calculated for each of the measured parameters. In 

this particular case with two parameters, the following two 

equations are introduced: 

    
    1000,100,

1000,100,

115.0

115.0

STDSTD

meanmeans

ESES

ESESD




                (11) 

     1000,1000, 15.015.0 STDmeand EDEDD         (12) 

Where:  

Ds : reliability of step counting for physical activity devices; 

Dd : reliability of distance estimation for physical activity 

devices; 

ESmean,100 : mean of error in step count in 100 m walk; 

ESmean,1000 : mean of error in step count in 1000 m walk; 

EDmean,1000 : mean of error in distance estimation in 1000 m 

walk; 

ESSTD,100 : STD of error in step count in 100 m walk; 

ESSTD,1000 : STD of error in step count in 1000 m walk; 

EDSTD,1000 : STD of error in distance estimation in 1000 m walk. 

 

 Following the defined equation (3), the calculated reliability 

factors (with the weight k = 0,5) are presented in Table 6. We 

observe that One is the most reliable while Withings shows only 

slightly lower performance. The only GPS + Accelerometer 

equipment Moves performs similarly to Accelerometer only 

trackers worn on the wrist. 

Table 6.  The reliability factors of the devices 

Device Ds Dd D 

Flex 0,781 0,879 0,830 

One 0,990 0,968 0,979 

iHealth 0,830 0,860 0,845 

Vifit 0,853 0,896 0,874 

Withings 0,971 0,964 0,968 

Jawbone 0,818 0,891 0,854 

Moves 0,826 0,846 0,836 

C. Personal Factor 

 In terms of the definition of DAPS in LPAV-IoT model, a 

person’s physical fitness can be represented by a walking speed 

related score. Moves does not classify the intensity of physical 

activity regarding the walking speed, so its DAPS is equal to 

the Average Daily Walking Speed. Fitbit Flex physical activity 

data has been classified into the intensity of four types as so 

DAPS and its related walking speeds are measured. Each 

person has different physical activity characteristics, such as 

walking speed. The issue here is that individual physical 

characteristics will impact the accuracy of collected raw data. 

We measure the parameters like MAX, MIN, AVER and 

STDEV of users historical raw data. In order to ensure the 

diversity of data, we allow MHA platform to be used by 28 

users from 4 project partners (2 universities, 2 companies) 

within the EU. We collect daily physical activity (Steps, 

Distance and Calories) of these 28 users over 6 months by 3 

types of wearable devices of recorders (Withings, One and 

Moves). All these users are professionals with age in the range 

of 20-60 years old. Then we choose 2 persons physical activity 

data from each partner as representations, and in total 8 person 

for investigation, as shown in Table.7. The features of these raw 

activity data are:     

 In Moves, 8 people average walking speed is 0.69 m/s ~ 

1.26 m/s; 8 people average step speed is 1.18 step/s ~ 1.60 

step/s; the figure using Moves segment (minute-by-minute) 

data is slightly lower than Moves summary (daily).  

 In Flex, 4 people DAPS is 1.72 m/s ~ 2.07 m/s; active 

average step speed is 1.30 m/s ~ 1.50 m/s; moderate 

average step speed is 0.48 m/s ~ 5.07 m/s; slightly average 

step speed is 0.14 m/s ~ 0.16 m/s. Each person has different 

physical activity, but their daily speed or DAPS are in a 

similar range.   

    Regarding the international standard of human walking 

cadence and speed, female walking is roughly 1.95 steps/s in 

cadence and 1.85 m/s in speed; male waking is about 1.95 

steps/s in cadence, and his average speed is 1.43 m/s. It appears 

that both Flex and Moves underestimate users’ walking speed. 

    Pearson Correlation Coefficient (r) is used for measuring the 

relationship between DAPS or walking speeds and Errp, as 

shown in Table 3. The Pearson Correlation results reflect 

variability among individual subjects, for instance, in One 

(DAPS vs Err), the physical fitness of Subject P1 may have a 

strong relationship with irregular errors, which gives a value up 

to 0.73; but for subjects P2 and P3, this relationship has only a 

value lower to 0.12. Similarly, in Moves, the value of Pearson 

Correlation differs among subjects in the range 0.173-0.589. 

So, the findings indicate that differences in physical fitness of 

personal factors will not generate significant regular errors in 

physical activity data. The rules are concluded below: 

 Pearson Correlation Coefficient (r) between Daily Speed 

and Daily Steps for individual is diverse. 

 No strong impact of daily speed or MAPS on daily steps. 

While each subject has different physical activity ability, 

but their speed or MAPs are within a range, and no 

correlation with daily steps was observed. 
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 Personal factors (for normal people) will not generate 

significant errors in physical activity data.  

Table 7. Personal Factors Investigation 

Moves P1 P2 P3 P4 P5 P6 P7 P8 

 

Daily Walking Speed ( 

Vdaw )  (m/s) 

MAX 0.98 1.19 1.10 1.00 1.50 1.58 1.09 1.15 

MIN 0.50 0.29 0.69 0.51 0.69 0.82 0.50 0.68 

AVER 0.68 1.00 0.99 0.85 1.26 1.09 0.84 1.03 

STDEV 0.14 0.13 0.10 0.10 0.16 0.17 0.19 0.12 

 

Walking Cadence  

(steps/s) 

MAX 1.86 1.85 1.78 1.44 1.95 1.84 1.82 1.91 

MIN 0.67 1.13 1.12 0.82 1.35 1.13 0.67 1.15 

AVER 1.24 1.54 1.50 1.18 1.60 1.53 1.31 1.54 

STDEV 0.29 0.15 0.16 0.10 0.14 0.14 0.27 0.21 

Fitbit 

 

 

DAPS  (m/s) 

MAX 2.17 2.18 2.40 1.93 

MIN 0.17 0.55 0.62 1.82 

AVER 1.72 1.88 2.07 1.88 

STDEV 0.62 0.28 0.40 0.08 

 

Active Speed (m/s) 

MAX 1.42 1.53 1.82 1.30 

MIN 1.22 1.10 1.25 1.22 

AVER 1.30 1.27 1.50 1.25 

STDEV 0.05 0.12 0.13 0.06 

 

Moderate Speed (m/s) 

MAX 0.67 0.65 0.65 0.50 

MIN 0.33 0.41 0.46 0.47 

AVER 0.57 0.52 0.56 0.48 

STDEV 0.08 0.05 0.05 0.03 

 

Slightly Speed (m/s) 

MAX 0.18 0.17 0.18 0.15 

MIN 0.13 0.13 0.13 0.13 

AVER 0.16 0.14 0.15 0.14 

STDEV 0.01 0.01 0.01 0.001 

Pearson Correlation 

 

Fitbit Errp  (regular 

error by personal 

factors) 

DAPS 0.74 0.12 0.380 0.23  

Active -0.16 -0.16 -0.20 -0.14 

Moderate -0.07 0.47 0.09 0.21 

Slightly 0.17 -0.07 0.07 0.12 

Moves Errp  (regular 

error by personal 

factors) 

DAPS (Daily Walking Speed) 0.51 0.17 0.50 0.38 0.14 0.03 0.59 0.23 

Walking Cadence 0.19 0.12 0.09 0.19 0.11 -0.07 0.44 0.11 

 

D. Geographic Factors 

Following validation strategy in Section III.D, the impact of 

geographic factor on irregular uncertainties is estimated by 

using empirical analysis methods on observed data of a small 

group of daily physical activity. We analysed Day-of-Week 

differences in this dataset including all three devices (Fitbit One, 

Moves and Withings) for both groups and individual. Fig.5 and 

Fig.6 respectively illustrate the distribution of Day-of-Week 

difference on group and individual daily physical activity. In 

Fig.6, the lines of (P1_m,..,P7_m) represent Moves users; the 

lines of (P1_f,…,P3_f) represents Fitbit One users; and the lines 

of (P4_w, P5_w) represent Withings users. Also, Moves provide 

time based walking segments data, we conduct the distribution 

of Time-of-Day difference on group based physical activity in 

Fig.7. In Fig.7, the physical activity at certain time-slot in a 

group of 7 users is summed as Distance, Steps and Durations. 

The features of this data are: 

 For Day-of-Week difference, a similar trend line of group 

physical activity occurs in three devices. It shows that daily 

step appears stable in weekdays but decreases dramatically 

on weekend. 

 

 

 

 

 The trend line of individual physical activity is fluctuated 

widely, but approximately follows the same trend of group 

physical activity. 

 For Time-of the Day difference, the highest intensity of 

physical activity occurs from 7 am to 10 am. Then the 

intensity of physical activity keeps stable and slightly 

decreases in the Afternoon. At the night from 11 pm-12 pm, 

the intensity of physical activity increases bit. But it may be 

because users use their smartphone before sleep.  

 

The rules are concluded below: 

 People normally have stable physical activity in working 

day, but have much less physical activity on Sunday. 

 People normally have an intensive physical activity in the 

morning session (7-10 am), and have moderate physical 

activity in other time of the day.  
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Fig. 5 Distribution of Day-of-Week difference on group based 

daily physical activity  

 
Fig. 6 Distribution of Day-of-Week difference on individual 

based daily physical activity 

 
Fig. 7 Distribution of Time-of-Day difference on group based 

physical activity 

V. CASE STUDY AND PERFORMANCE EVALUATION 

 In this section, we discuss the performance evaluation of 

LPAV-IoT model in a case study on MHA platform [38], which 

is an IoT based healthcare project. MHA platform enables users 

to record, store and visualize their multi-dimensional health 

data by connecting wearable devices or mobile apps, like Fitbit 

Flex, Moves, Withings, Twitter and Facebook. The criteria of 

verifying LPAV-IoT are based on their performance of using 

its rules for: irregular uncertainties filtering, reliability 

estimation and model adaptivity. We collected the empirical 

dataset by using MHA platform. The dataset includes 12 

months long daily physical activity of 28 persons from 4 project 

partners (2 universities, 2 companies) within EU acquired with 

three devices: Moves was used by 28 users for 12 months; Flex 

was used by 10 users for 12 months; Withings was used by 8 

users for 6 months. These people are healthy in the age range of 

20-60 years. The evaluation methodology for verifying the 

efficiency of proposed model will interview the participants, 

and collect feedbacks on reflecting users’ experiences on 

physical activity uncertainties through different devices. The 

feedbacks are used as a standard benchmark to compare the 

correctness of model.    

A. Filtering Irregular Uncertainties (UI) 

 In order to validate the accuracy of identifying IU, we follow 

equation (4) with a confidence interval of 95% to filter data 

from three different devices. We use the values (130, 1784, 884) 

of threshold parameter Ts respectively in Moves, One and 

Withings, for filtering incorrect daily steps data. The results are 

shown in Table 8.  

Table 8. Removing irregular uncertainties (IU) by LPAV-IoT  

 Moves Flex Withings 

Ts   Daily Steps 130 1784 1267 

TY   DAPS Speed (m/s) 0.5  1.50 NA 

Total number of People 14 5 3 

Percentage of people with IU 43% 100% 100% 

Number of IU occurrence 40 17 8 

IU confirmed by User 40 15 6 

Average number of IU occurrence 

per person (User Feedback) 

6.6 5.4 2.7 

Accuracy of identifying IU 

(95%) 

100% 88.2% 75% 

Moves has much lower threshold parameters of Daily Steps 

and DAPS speed than Flex and Withings which are 130 and 0.5 

m/s respectively (Table 8). This is because Moves has larger 

device uncertainties than Withings and Flex as we observed in 

section IV.C. Thus the GPS and smartphone internal sensors 

based App is not as accurate as accelerometer only based wrist 

wearable device. In terms of percentage of people having IU, 

Moves is much lower than Withings and Flex. It is probably 

because most of uncertainties from Moves have been classified 

into regular uncertainties, so its irregular uncertainties became 

less than for other two devices Withings and Flex. However, for 

average IU occurrence per subject, Moves has higher 

performance than other two devices (Table 8). The accuracy of 

identifying IU appears that on the condition with a confidence 

interval of 95%, the related value of threshold parameter Ts can 

successfully filter irregular uncertainty in Moves. So Moves 

have the best IU identification accuracy up to 100%, which 
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means that the incorrect daily steps detected by LPAV-IoT 

model in Moves have been all approved by users. Flex and 

Withings have accuracy up to 88.2% and 62.5% respectively, 

which implies that some correct daily steps are eliminated by 

LPAV-IoT model. 

The increase of confidence interval will affect on filtering 

accuracy of IU in LPAV-IoT. If we increase the confidence 

interval up to 98%, and recalculate threshold parameters, the 

accuracy of identifying IU of three devices would increase to 

100%. But, a noticeable issue here is that if we increase the 

confidence interval, some IU might be ignored and put into the 

procedure of dealing with regular uncertainties in LPAV-IoT 

model. Similarly, in Moves, a high accuracy of identifying IU 

does not mean all the IU have been removed, probably some of 

IUs are considered as regular uncertainties in LPAV-IoT model.  

Table 9. Removing irregular uncertainties (IU) by LPAV-IoT with 

increasing confidence interval  

 Moves Flex Withings 

Total number of People 14 5 3 

Percentage of people with IU 43% 100% 100% 

Number of IU occurrence 40 17 8 

Average number of IU occurrence 

per person (User Feedback) 

6.6 5.4 2.7 

Accuracy of identifying IU 

(95%) 

100% 88.2% 75% 

Accuracy of identifying IU 

(96%) 

100% 92.4% 87.5% 

Accuracy of identifying IU 

(97%) 

100% 96.5% 87.5% 

Accuracy of identifying IU 

(98%) 

100% 100% 100% 

B. Reliability Estimation  

 For validating reliability indicator of regular RU, we follow 

the strategies of LPAV-IoT model and equations in Section IV 

to process the above dataset for getting average figures of the 

group of 14 people. Then we choose the data of one person (P1 

in Table 7) who has three devices for estimating reliability 

indictor. The feedback from this person will assess the 

efficiency of our proposed reliability indictor.  

The criteria of interpreting the feedbacks contain five levels 

of agreement (Almost perfect, Substantial, Moderate, Fair, 

Slight).  The results are shown in Table 10.  

Table 10.  Regular uncertainties Indicator by LPAV-IoT  

Reliability 

Indicator 

Moves Flex Withings 

D 83.6% 83.0% 96.8% 

P 87.6% 96.7% 95.6% 

E 78.6% 83.4% 87.4% 

R 57.5% 66.7% 80.9% 

User Feedback Moderate Substantial Almost perfect 

Table 9 reflects that using the regular reliability indicator of 

LPAV-IoT model, the reliability estimation of collected 

physical activity data by three devices were approximately 

following the users’ feedback. The data from Moves is 

estimated as reliability of 57.7%, and user believes this data are 

moderately accurate. The data from Flex and Withings are both 

more reliable than Moves regarding user’s feedback. Especially, 

Withings is recognized by user as “almost perfect”, which has a 

reliability value up to 80.9%. Flex is slightly less reliable than 

Withings, it is mainly from the difference of device factors. 

Above figures imply that the proposed reliability indicator of 

LPAV-IoT model can be used as a quantitative analysis tool to 

estimate the reliability of personalized physical activity data 

collected from an IoT environment. 

C. Model Adaptivity 

 For validating the adaptivity of LPAV-IoT model, we 

consider the whole group of 14 subjects as one group due to the 

similar professions and backgrounds. We estimate the change 

of daily steps Ts and DAPS with different periods (from 1 

month to 12 months) with a confidence interval of 95%. The 

results are shown in Fig.8 and 9.   

 Fig.8 shows the parameter Daily Steps as the function of time 

period duration. The value of this parameter is lower for shorter 

time periods than for longer time periods. The value of this 

parameter also varies with different devices. For Moves and 

Withings, the value of this parameter over different periods is 

slightly growing, but for Fitbit, this parameter dramatically 

increases after 6 months. This effect may be influenced by the 

setting of confidence interval. 

Fig. 9 shows little variation of parameter DAPS in the LPAV-

IoT model when time period duration is changed. There are 

some mirror fluctuations of DAPS on both Moves and Fitbit. 

But in a long term, the value of DAPS is quite stable, which 

indicates that personal physical fitness does not have significant 

changes within this group of 14 people.   

 

Fig. 8 Average of daily steps   as the function of time period 

duration 

 
Fig. 9 DAPS as the function of time period duration 
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VI. DISCUSSION AND FUTURE WORK 

While LPAV-IoT model addresses a pioneered investigation 

on effectively validating lifelogging physical activity data for 

IoT enabled personalized health systems, it has several issues 

to discuss and consider in future.  

A. Extendibility  

Current LPAV-IoT model has mainly considered the impacts 

of personal, device and geographic factors on the validity of 

lifelogging physical activity. But in a practical IoT ecosystem, 

there are other issues influencing the measures of lifelogging 

physical activity, e.g. social events in calendar, diverse subjects 

of daily activities. LPAV-IoT model is capable to be extended 

by either detailing a key impacting issue into several specific 

items or adding new representative blocks for rising issues, for 

supporting the quantified investigations of their impacts. For 

instance, social events in calendar like bank holiday in the UK 

is treated as a specific item in Timeline dimension; longitudinal 

data analysis methodology in Fig.3 is directly applied into this 

item for conducting validation rules. The diverse subjects of 

daily activities requires adding a new block “activity subject” 

into LPAV-IoT model. The data analysis methodology in this 

block will include typical classification approaches in activity 

recognition, e.g. decision tree. The conducted validation rules 

from new blocks may be not directly useable in the reliability 

equations in LPAV-IoT model, but will be benefit to users for 

removing uncertainties of physical activities on specific cases. 

Similarly, other new considerable factors can be extended into 

our proposed LPAV-IoT model.   

B. Human-in-the-loop  

   LPAV-IoT model is designed as Human-in-the-loop since the 

validation rules is supposed to be adaptively altered regarding 

the properties of its human factor, like age, gender, group or 

interaction, etc. For instance, section V.C gives a performance 

comparison of individual and group population (14 persons 

with similar professions and backgrounds) on removing 

irregular uncertainties. We estimate the change of daily steps Ts 

and DAPS with different periods (from 1 month to 12 months) 

with a confidence interval of 95%. The results shown in Fig.8 

and 9 indicate that the rules of LPAV-IoT model will be altered 

in terms of different setting of human factors. However, this 

experiment only deals with a nature increment of life-logging 

physical activity on timeline and population dimensions. It is 

not a strict performance evaluation of human-in-the-loop in the 

proposed model by considering a human interaction with model. 

The involvement of collecting user feedbacks as a step of the 

validation algorithm is not hard to be implemented in the model, 

but requires a long period of time on re-designing experimental 

strategies and collecting relevant life-logging data. Thus, it will 

be put as one of key future works in LPAV-IoT model, which 

is to continue a formal human-in-the-loop validation of the 

model by involving users’ feedbacks for updating validation 

rules.  

C. Limitations  

    First, the scalability of LPAV-IoT model for dealing with  

increased volume and types of health data is not yet considered 

in this paper. In practical IoT enabled personalized healthcare 

environment, personal health information will be a life-long 

collection, also include other medical data, such as ECG or 

blood pressure, etc. While LPAV-IoT model can be extended 

into improving accurate measures of physical activity related 

health data, like calories estimation, the practical efficiency on 

multi-type health data in a long term collection needs a further 

evaluation. Second, the evaluation of data validation efficiency 

and regular uncertainty indicator for LPAV-IoT model is 

subject to only few users’ feedbacks. The standardized criteria 

of judging correctness and efficiency of LPAV-IoT model on 

removing and estimating uncertainties requires more users’ 

feedbacks. Also, for different targeted groups, the adaptability 

of LPAV-IoT model needs to be verified by more users.  

D. Practical Value 

LPAV-IoT model provides a pioneered investigation approach 

for improving the validity of lifelogging physical activity in an 

IoT environment. While lifelogging techniques have been seen 

as a hot topic in research in the last twenties years, it recently 

becomes more accessible and practically significant with the 

recent prevalence of mobile devices connecting in IoT systems. 

In the healthcare field, due to significant population aging in the 

coming decades, IoT enabled technology is evolving healthcare 

from conventional hub based system to personalised healthcare 

system. The successful utilization of LPAV-IoT model into 

practical will enable more accurate measure and monitoring of 

daily physical activity with low cost devices, further lead to 

faster and safer preventive care for chronic diseases.  

While LPAV-IoT model has above further future work, we 

believe that the benefit of LPAV-IoT model outweighs its 

limitations. LPAV-IoT model has provided a new approach to 

validate physical activity data in an IoT environment, also has 

been verified by a rich set of personal health data in real 

experiments. The research outcome is extremely valuable and 

benefit.    

VII. CONCLUSIONS 

In this paper, a rule based adaptive physical activity 

validation model, LPAV-IoT, is proposed for eliminating 

irregular uncertainties and estimating data reliability in an IoT 

enabled personalized healthcare environment. It specifies four 

layers and three modules for evaluating the factors impacting 

the validity of physical activity. The validation rules are 

represented by defining a set of uncertainty threshold 

parameters and reliability indicators, which are initiated by 

historical raw data and adaptively updated regarding the needs 

of an IoT enabled personalized healthcare system. Following 

this model, a case study on an IoT enabled healthcare platform 

MHA [38] connecting three state-of-the-art wearable devices 

and mobile apps was carried out. The results reflect that LPAV-

IoT model provides an efficient, adaptive and extendable 

solution for the validation of IoT environment based physical 

activity data. 
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