

LJMU Research Online

Hermida-Carrera, C, Kapralov, MV and Galmés, J

Rubisco catalytic properties and temperature response in crops.

http://researchonline.ljmu.ac.uk/id/eprint/3863/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Hermida-Carrera, C, Kapralov, MV and Galmés, J (2016) Rubisco catalytic properties and temperature response in crops. Plant Physiol. ISSN 0032-0889

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

- 1 Short title: Variability of Rubisco kinetics in crops

3	Corresponding author details: Jeroni Galmés, Research Group on Plant Biology							
4	under Mediterranean Conditions. Universitat de les Illes Balears, Ctra. Valldemossa							
5	km. 7.5; 07122 Palma, Balearic Islands, Spain; Tel: +34971259720; Fax:							
6	+34971173168; e-mail: jeroni.galmes@uib.cat							
7								
8	Article title: Rubisco catalytic properties and temperature response in crops							
9								
10	All author names and affiliations: Carmen Hermida-Carrera ¹ , Maxim V. Kapralov ² ,							
11	Jeroni Galmés ¹ *							
12	¹ Research Group on Plant Biology under Mediterranean Conditions. Universitat de les							
13	Illes Balears, Balearic Islands, Spain.							
14	² School of Natural Sciences and Psychology, Liverpool John Moores University,							
15	Byrom Street, Liverpool, L3 3AF, United Kingdom							
16	*Corresponding author; Research Group on Plant Biology under Mediterranean							
17	Conditions. Universitat de les Illes Balears, Ctra. Valldemossa km. 7.5; 07122 Palma,							
18	Balearic Islands, Spain; Tel: +34971259720; Fax: +34971173168; e-mail:							
19	jeroni.galmes@uib.cat							
20								
21	One sentence summary:							
22	Variability in Rubisco kinetic parameters and their temperature dependency determine							
23	differences in the photosynthetic efficiency in the most important crops worldwide.							

25	List of author contributions: J.G. conceived the project; C.H-C. and J.G. designed
26	the experiment; C.H-C. performed the experiments; C.H-C., M.V.K. and JG analyzed
27	the data and wrote the article.
28	
29	Funding information: This study was financed by the Spanish Ministry of Science
30	and Innovation (MICINN) - projects AGL2009-07999 and AGL2013-42364R
31	awarded to JG. CH-C was supported by a FPI Fellowship of the Spanish Ministry of
32	Education – BES-2010-030796.
33	
34	Corresponding author, e-mail: jeroni.galmes@uib.cat
35	
36	
37	ABSTRACT
38	Rubisco catalytic traits and their thermal dependence are two major factors limiting
39	the CO ₂ assimilation potential of plants. In this study, we present the profile of
40	Rubisco kinetics for twenty crop species at three different temperatures. The results
41	largely confirmed the existence of significant variation in the Rubisco kinetics among
42	species. Although some of the species tended to present Rubisco with higher thermal
43	sensitivity (e.g., Oryza sativa) than others (e.g., Lactuca sativa), interspecific
44	differences depended on the kinetic parameter. Comparing the temperature response
45	of the different kinetic parameters, the Rubisco Michaelis-Menten constants for CO_2
46	(K_c and K_c^{air}) presented higher energy of activation (ΔH_a) than the maximum
47	carboxylation rate (k_{cat}^{c}) and the CO ₂ compensation point in the absence of

48 mitochondrial respiration (Γ^*). The analysis of the Rubisco large subunit sequence 49 revealed the existence of some sites under adaptive evolution in branches with

50 specific kinetic traits. Because Rubisco kinetics and their temperature dependency 51 were species-specific, they largely affected the assimilation potential of Rubisco from 52 the different crops, especially under those conditions (i.e., low CO₂ availability at the 53 site of carboxylation and high temperature) inducing Rubisco-limited photosynthesis. 54 As an example, at 25 °C, Rubisco from Hordeum vulgare and Glycine max presented, 55 respectively, the highest and lowest potential for CO₂ assimilation at both high and 56 low chloroplastic CO_2 concentrations. In our opinion, this information is relevant to 57 improve photosynthesis models and should be considered in future attempts to design 58 more efficient Rubiscos.

59

60

61 **INTRODUCTION**

62 The reported stagnation in the annual gains of cereal yields in the last decade clearly 63 indicates that the expected demand for increased yield - at least 50% by 2050 (FAO 64 forecasts) - will not be met by conventional breeding (Zhu et al., 2010). Future 65 improvements will come from novel bioengineering approaches specifically focussed 66 on processes limiting crop productivity that have not been addressed so far (Parry et 67 al., 2012; Ort et al., 2015). A number of specific modifications to the primary 68 processes of photosynthesis that could increase canopy carbon assimilation and 69 production through step changes include the modification of the catalytic properties of 70 Rubisco (Murchie et al., 2009; Whitney et al., 2011; Parry et al., 2013; Ort et al., 71 2015). First, biochemical models indicate that CO₂ fixation rates are limited by 72 Rubisco activity under physiologically relevant conditions (Farquhar et al., 1980; von 73 Caemmerer, 2000; Rogers, 2014). Second, Rubisco's catalytic mechanism exhibits 74 important inefficiencies which compromise photosynthetic productivity: it is a slow

catalyst – forcing plants to accumulate large amounts of the protein – and unable to distinguish between CO_2 and O_2 – starting a wasteful side reaction with oxygen that leads to the release of previously fixed CO_2 , NH₂ and energy (Roy and Andrews, 2000). These inefficiencies not only limit the rate of CO_2 fixation, but also the capacity of crops for an optimal use of resources, principally water and nitrogen (Flexas et al., 2010; Parry et al., 2012).

81 Rubisco kinetic parameters has been described in vitro at 25 °C for about 250 82 species of higher plants, of which only c.a. 8% are crop species (e.g., Yeoh et al., 83 1981; Sage, 2002; Bird et al., 1982; Ishikawa et al., 2009; Prins et al., 2016). This 84 amount of data revealed the existence of significant variability in the main Rubisco 85 kinetic parameters both among C₃ (Yeoh et al., 1980, 1981; Bird et al., 1982; Jordan 86 and Ogren, 1983; Parry et al., 1987; Castrillo, 1995; Delgado et al., 1995; Kent and 87 Tomany, 1995; Balaguer et al., 1996; Bota et al., 2002; Galmés et al., 2005, 2014a, 88 2014c; Ghannoum et al., 2005; Ishikawa et al., 2009) and between C₃ and C₄ species 89 (Kane et al., 1994; Sage, 2002; Kubien et al., 2008; Perdomo et al., 2014). The 90 existence of Rubiscos with different catalytic performance implies that the success -91 in terms of photosynthetic improvement – of Rubisco engineering approaches in crops 92 will depend on the specific performance of the native enzyme from each crop species. 93 Nevertheless, our knowledge on the actual variability in Rubisco kinetics is still 94 narrow, not only because of the limited number of species that have been examined so 95 far, but mainly because complete Rubisco kinetic characterization (including the main 96 parameters) has been performed in very few species.

Recent modelling confirmed that Rubisco is not perfectly optimized to deliver
maximum rates of photosynthesis, and indicated that Rubisco optimization depends
on the environmental conditions under which the enzyme operates (Galmés et al.,

100 2014b). In particular, Rubisco catalytic parameters are highly sensitive to changes in 101 temperature. For instance, the maximum carboxylase turnover rate (k_{cat}^{c}) increases 102 exponentially with temperature (Sage, 2002; Galmés et al., 2015). However, at 103 temperatures higher than the photosynthetic thermal optimum, the increases in k_{cat}^{c} 104 are not translated into increased CO₂ assimilation because of the decreased affinity of 105 Rubisco for CO_2 , i.e., higher Michaelis-Menten constant for CO_2 (K_c) and lower 106 specificity factor ($S_{c/o}$), and the decreased CO₂/O₂ concentration ratio in solution (Hall 107 and Keys, 1983; Jordan and Ogren, 1984). These changes favour the RuBP 108 oxygenation by Rubisco relative to carboxylation, increasing the flux through 109 photorespiration and, ultimately, reducing the potential growth at high temperatures 110 (Jordan and Ogren, 1984).

111 Beyond the discernment of the existing variability in Rubisco kinetics at a 112 standard temperature, the knowledge on the temperature dependence of Rubisco 113 kinetics, and the existence of variability in the thermal sensitivity among higher plants 114 is of key importance for modelling purposes. The number and diversity of plant 115 species for which Rubisco kinetic parameters have been tested in vitro at a range of 116 physiologically relevant temperatures are still very scarce (e.g. Laing et al., 1974; 117 Badger and Collatz, 1977; Badger, 1980; Monson et al., 1982; Hall and Keys, 1983; 118 Jordan and Ogren, 1984; Lehnherr et al., 1985; Uemura et al., 1997; Zhu et al., 1998; 119 Sage et al., 2002; Galmés et al., 2005; Haslam et al., 2005; Yamori et al., 2006; 120 Perdomo et al., 2015; Prins et al., 2016), and mostly restricted to a few kinetic 121 parameters – actually, there is no study examining the temperature dependencies of 122 the main kinetic constants on the same species. The limited number of data reported 123 so far suggests the existence of interspecific differences in the temperature 124 dependence of some Rubisco kinetic parameters, like k_{cat}^{c} (Chabot et al., 1972; Weber et al., 1977; Sage, 2002) or $S_{c/o}$ (Zhu et al., 1998; Galmés et al., 2005). Actually, differences in the energy of activation of k_{cat}^{c} and $S_{c/o}$ seems to be ascribed to the thermal conditions typically encountered by the species in their native habitat (Galmés et al., 2005), as well as to the photosynthetic mechanism (Perdomo et al., 2015).

130 The variability in the response of Rubisco kinetics to changes in temperature, 131 if confirmed, is of paramount importance. The mechanistic models of photosynthesis 132 at leaf, canopy and ecosystem levels are based on the kinetic properties of Rubisco 133 (Farquhar et al., 1980; von Caemmerer, 2000; Bernacchi et al., 2002) and the 134 accuracy of these photosynthetic models depends on knowing the Rubisco kinetic 135 parameters and their species-specific equations for the Rubisco-temperature 136 dependencies (e.g. Niinemets et al., 2009; Yamori and von Caemmerer, 2009; 137 Bermúdez et al., 2012; Díaz-Espejo, 2013; von Caemmerer, 2013; Walker et al., 138 2013). The need for estimations of the temperature dependencies of Rubisco kinetic 139 parameters becomes timely as modellers try to predict the impact of increasing 140 temperatures on global plant productivity (Sage et al., 2008; Gornall et al., 2010). 141 Ideally, surveying variations in Rubisco kinetics and their temperature dependence 142 should incorporate a correlative analysis with variations in the L- and/or S-subunit 143 amino acid sequence. Such a complementary research would permit deciphering what 144 residue substitutions determine the observed variability in Rubisco catalysis.

In the present study, we examined Rubisco catalytic properties and their temperature dependence in twenty crop species, thereby constituting the largest published data set of its kind. The aims of this work were: i) to compare the Rubisco kinetic parameters among the most economically important crops, ii) to search for differences in the temperature response of the main kinetic parameters among these

150 species, iii) to test whether crop Rubiscos are optimally suited for the conditions 151 encountered in plant chloroplasts, and iv) to unravel key amino acid replacements 152 putatively responsible for differences in Rubisco kinetics in crops.

- 153
- 154
- 155 **RESULTS**

156 The variability in Rubisco kinetics at 25 °C among the most relevant crop species When considering exclusively the 18 C_3 crop species, at 25 °C, the Rubisco 157 Michaelis-Menten constant for CO₂ under non-oxygenic (K_c) and 21% O₂ (K_c^{air}) 158 159 varied c.a. two-fold and three-fold, respectively, and the maximum rates of Rubisco carboxylation (k_{cat}^{c}) varied c.a. two-fold (Table 1). For K_{c} and K_{c}^{air} , Manihot esculenta 160 presented the lowest values ($K_c = 6.1 \mu M$, and $K_c^{air} = 10.8 \mu M$) and Spinacia oleracea 161 the highest ($K_c = 14.1 \mu M$, and $K_c^{air} = 26.9 \mu M$). Values for k_{cat}^c varied between 1.4 s⁻ 162 ¹ (Manihot esculenta) and 2.5 s⁻¹ (Ipomoea batatas). The Rubisco CO₂/O₂ specificity 163 $(S_{c/o})$ was the kinetic parameter with the lowest variation among the C₃ species (Fig. 164 S1), and ranged between 92.4 mol mol⁻¹ (Solanum lycopersicum) and 100.8 mol mol⁻¹ 165 ¹ (Beta vulgaris and Manihot esculenta) (Table 1). Brassica oleracea and Glycine 166 167 max presented the lowest value for the Rubisco carboxylase catalytic efficiency, calculated as k_{cat}^{c}/K_{c} (0.17 s⁻¹ μ M⁻¹), and *Coffea arabica* presented the lowest value 168 for the k_{cat}^{c}/K_{c}^{air} ratio (0.08 s⁻¹ μ M⁻¹). With regard to the oxygenase catalytic 169 170 efficiency (calculated as k_{cat}°/K_{o}), Spinacia oleracea displayed the lowest value (1.76 s⁻¹ nM⁻¹). *Hordeum vulgare* presented the highest values for the Rubisco carboxylase 171 and oxygenase catalytic efficiencies ($k_{cat}^{c}/K_{c} = 0.28 \text{ s}^{-1} \mu \text{M}^{-1}$, $k_{cat}^{c}/K_{c}^{air} = 0.17 \text{ s}^{-1} \mu \text{M}^{-1}$ 172 and $k_{\text{cat}}^{\text{o}}/K_{\text{o}} = 3.01 \text{ s}^{-1} \text{ nM}^{-1}$). 173

When data from the two C₄ species (*Saccharum* × *officinarum* and *Zea mays*) were included in the comparison at 25 °C, the range of variability increased for all parameters (Table 1). Rubisco from the two C₄ species presented higher k_{cat}^{c} but lower affinity for CO₂ (i.e., higher K_c and K_c^{air} , and lower $S_{c/o}$) than Rubisco from C₃ crops. On average, k_{cat}^{c}/K_c and k_{cat}^{o}/K_o of C₄ Rubiscos were 62 % and 70 % of those of C₃ crop Rubiscos, respectively.

180

181 The temperature response of Rubisco kinetics in crops and trade-offs between 182 catalytic traits

183 Both the range of variation and the species showing the extreme values of Rubisco 184 kinetics at 15 °C and 35 °C were similar to those described at 25 °C, with some exceptions. As at 25 °C, among the C₃ crops, Rubisco from Manihot esculenta 185 presented the lowest values for K_c and K_c^{air} at 15 °C and 35 °C, while the highest 186 187 values were measured on Rubisco from Spinacia oleracea (Table S1). The lowest and highest values for k_{cat}^{c} at 15 °C were those of Rubisco from *Cucurbita maxima* and 188 189 Hordeum vulgare, respectively. The degree of dispersion of the data and the range of variation between the maximum and the minimum values for K_c , K_c^{air} and k_{cat}^{c} 190 191 increased with the increment in the assay temperature (Table S1 and Fig. S1). Regarding $S_{c/o}$, values ranged between 116.1 mol mol⁻¹ (*Brassica oleracea*) and 132.2 192 193 mol mol⁻¹ (*Cucurbita maxima*) at 15 °C, and between 74.2 mol mol⁻¹ (*Oryza sativa*) 194 and 85.0 mol mol⁻¹ (*Manihot esculenta*) at 35 °C (Table S1). As for $S_{c/o}$, the range of variation for k_{cat}^{c}/K_{c} and k_{cat}^{o}/K_{o} was also narrowed with the increase in the assay 195 196 temperature (Table S1 and Fig. S1).

197 Integrating all data across three assay temperatures, k_{cat}^{c} correlated positively 198 with K_c for both C₃ (r² = 0.82, p < 0.001) and C₄ species (r² = 0.94, p < 0.001), with

199 Rubisco from C₄ species showing higher K_c for a given k_{cat}^c than that from C₃ species 200 (Fig. 1A). The low interspecific variability in $S_{c/o}$ within each assay temperature 201 determined a non-linear relationship between k_{cat}^{c} and $S_{c/o}$ when considering data from 202 all temperatures together (Fig. 1B). At each temperature individually, Pearson's correlations between k_{cat}^{c} and K_{c} and $S_{c/o}$ were highly significant (Table 2) when 203 204 considering both C_3 and C_4 together. The results from the Phylogenetically 205 Independent Contrasts (PICs) analyses were in general more conservative compared 206 to Pearson's correlations (Table 2), and some significant correlations were lost with PICs (e.g., $S_{c/o} vs. K_c$ or K_c^{air} at 25 °C). Notably, when excluding the two C₄ species, 207 208 PCCs decreased in almost all correlations (Table 2). Hence, the PCC between k_{cat}^{c} and K_c was no longer significant at 15 °C, and the PCC between k_{cat}^c and $S_{c/o}$ was 209 210 significant only at 15 °C. Furthermore, when considering only C₃ species, the unique 211 significant PICs between k_{cat}^{c} and K_{c} and $S_{c/o}$ were those found between k_{cat}^{c} and $S_{c/o}$ at 15 °C and 25 °C. 212

213 The energy of activation (ΔH_a) for K_c varied between 38.2 kJ mol⁻¹ (Solanum tuberosum) and 83.1 kJ mol⁻¹ (Oryza sativa; Table 3). Ipomoea batatas (40.7 kJ mol⁻ 214 215 ¹) and *Manihot esculenta* (75.4 kJ mol⁻¹) were the species showing the lowest and highest values for ΔH_a of K_c^{air} . As for k_{cat}^c , ΔH_a varied between 27.9 kJ mol⁻¹ 216 (Hordeum vulgare) and 60.5 kJ mol⁻¹ (Medicago sativa). Although the range of 217 218 variation across C_3 species was similar for the energies of activation of both K_c and k_{cat}^{c} (2.2-fold), non-significant correlation was observed between ΔH_{a} for K_{c} and ΔH_{a} 219 for k_{cat}^{c} in both conventional and phylogenetically independent analyses ($r^2 = 0.11$ and 220 221 0.15, respectively; P > 0.05). The lowest and highest values for ΔH_a of the CO₂ 222 compensation point in the absence of mitochondrial respiration (Γ^* , calculated from $S_{c/0}$) were measured in *Beta vulgaris* (19.8 kJ mol⁻¹) and *Glycine max* (26.5 kJ mol⁻¹), 223

respectively. On average, Rubisco from C₃ crops presented significantly higher ΔH_a for K_c (60.9 ± 1.5 kJ mol⁻¹) and k_{cat}^c (43.7 ± 1.5 kJ mol⁻¹) than Rubisco from C₄ species ($K_c = 52.4 \pm 5.0$ kJ mol⁻¹, $k_{cat}^c = 30.6 \pm 1.6$ kJ mol⁻¹). By contrast, nonsignificant differences were observed in the average ΔH_a for Γ^* between C₃ (22.9 ± 0.4 kJ mol⁻¹) and C₄ species (25.0 ± 0.7 kJ mol⁻¹).

229

230 The CO₂ assimilation potential of Rubisco kinetics in crops

231 The CO₂ assimilation potential of Rubisco (A_{Rubisco}) was modelled at varying 232 temperature and CO_2 availability at the catalytic site (C_c) using the species-specific 233 kinetic data measured at each temperature (from Tables 1 and S2). The simulated 234 value of $C_{\rm c} = 250 \,\mu \text{bar}$ is representative of that encountered in the chloroplast stroma 235 of C₃ species under well-watered conditions (e.g., Bermúdez et al., 2012; Scafaro et 236 al., 2012; Galmés et al., 2013). Under mild to moderate water stress, when no 237 metabolic impairment is present, the decrease in the stomatal and leaf mesophyll 238 conductances to CO₂ provokes a decrease in the concentration of CO₂ in the 239 chloroplast (Flexas et al., 2006). We selected a value of 150 µbar to simulate the 240 chloroplastic CO₂ concentration in water stressed plants.

241 Differences in A_{Rubisco} across species were largely dependent on the 242 temperature and the availability of CO₂ for carboxylation (Fig. 2). This fact was due 243 to the different prevalence of RuBP-saturated (A_c) and RuBP-limited (A_j) rates 244 governing A_{Rubisco} under the contrasting temperature and C_c , assuming an invariable 245 concentration of active Rubisco sites of 25 µmol m⁻² for all species. At 15 °C, A_c 246 limited A_{Rubisco} at C_c of 150 µbar in nine species (indicated by asterisks in Fig. 2). At 247 15 °C and C_c of 250 µbar, only six species were A_c limited (*Capsicum annuum*, 248 Cucurbita maxima, Medicago sativa, Oryza sativa, Solanum tuberosum and Spinacia

249 *oleracea*). At 25 and 35 °C, A_{Rubisco} was A_c-limited in all C₃ species irrespective of C_c.

At 25 °C, the best Rubisco was that from Hordeum vulgare at both C_c, while 250 251 Rubisco from *Glycine max* yielded the lowest A_{Rubisco} (Fig. 2). Rubisco from *Beta* 252 vulgaris presented the best performance at 35 °C irrespective of the CO₂ availability, 253 while Capsicum annuum and Saccharum × officinarum Rubisco gave the lowest 254 A_{Rubisco} at C_c of 250 and 150 µbar, respectively. At 15 °C and C_c of 250 µbar, the 255 highest potential for CO₂ assimilation was found in Rubisco from *Glycine max*, 256 Manihot esculenta and Triticum aestivum, while Rubisco from Manihot esculenta 257 gave the highest A_{Rubisco} at 15 °C and C_c of 150 µbar. Rubisco from Cucurbita maxima 258 displayed the lowest A_{Rubisco} at 15 °C, regardless of the CO₂ availability. It is 259 interesting to note that Rubisco from the two C₄ species, in particular from 260 Saccharum \times officinarum, performed better than the average C₃ Rubiscos when 261 A_{Rubisco} was simulated according to the photosynthesis model for C₃ leaves (Farquhar et al., 1980), at 15 °C and 25 °C under C_c of 250 µbar (Fig. 2A). At lower C_c (150 262 263 µbar), the C₄ Rubiscos yielded higher A_{Rubisco} values than the average C₃ Rubiscos at 264 15 °C, and lower values at 35 °C, being similar at 25 °C (Fig. 2B).

265 To test the performance of the different Rubiscos in the context of C4 photosynthesis, A_c was also modelled assuming C_c of 5000 µbar and E of 15 µmol m⁻ 266 267 ². Under these conditions, the advantage of C₄-type Rubisco kinetics of Saccharum \times officinarum and Zea mays - characterised by higher k_{cat}^{c} and K_{c}^{air} - became evident as 268 269 providing higher A_c values at the three temperatures (data not shown). On average, at saturating CO₂ and lower concentration of Rubisco catalytic sites, C₄ Rubiscos 270 yielded A_c of 35, 49 and 60 µmol m⁻² s⁻¹ at 15, 25 and 35 °C, respectively, compared 271 to C₃-Rubiscos average (10, 23 and 42 μ mol m⁻² s⁻¹, respectively). 272

274 Positively selected L-subunit residues: relationship with Rubisco kinetics

275 The phylogeny obtained with *rbcL*, *matK* and *ndhF* genes matched currently accepted

angiosperm classification (Fig. S2) (Bremer et al., 2009).

277 When considering all species together, 10 L-subunit residues were under 278 positive selection: 94, 262, 281, 309, 439, 446, 449, 470, 477 and amino acid insert 279 between residues 468 and 469. Moreover, positive selection was identified in specific L-subunit residues along branches leading to species with high and low K_c , high k_{cat}^{c} 280 and low $S_{c/o}$ at 25 °C and low ΔH_a for K_c (Table 4). The residues under positive 281 282 selection were located at different positions within the Rubisco tertiary structure and 283 included functionally diverse sites participating in L-subunit intradimer and dimer-284 dimer interactions, interactions with small subunits (S-subunit) and with Rubisco 285 activase (Table 4). No residue under positive selection was associated with ΔH_a for $K_{\rm c}^{\rm air}$, $\Delta H_{\rm a}$ for $k_{\rm cat}^{\rm c}$ or $\Delta H_{\rm a}$ for $S_{\rm c/o}$. 286

287

288

289 **DISCUSSION**

290 Main crops possess Rubiscos with different performance at 25 °C

The kinetic data reported in the present study are consistent with the range previously reported for higher plants at 25 °C (e.g., Yeoh et al., 1980, 1981; Bird et al., 1982; Jordan and Ogren, 1983; Kent and Tomany, 1995; Galmés et al., 2005, 2014a, 2014c; Ishikawa et al., 2009; Prins et al., 2016) (Table 1), and showing the existence of significant variation among species in the carboxylase catalytic efficiency under nonoxygenic (k_{cat}^{c}/K_{c}) and atmospheric conditions (k_{cat}^{c}/K_{c}^{air}). Recent reports related k_{cat}^{c}/K_{c} variation with the growth capacity in a group of closely related species with

similar ecology (Galmés et al., 2014a), suggesting that improving this ratio would be 298 299 an effective way to engineer a better Rubisco. Nevertheless, such an improvement 300 becomes constrained by the trade-offs between k_{cat}^{c} , K_{c} and $S_{c/o}$ (Tcherkez et al., 2006; 301 Savir et al., 2010; Galmés et al., 2014a, 2014c). Here, we demonstrate that these 302 trade-offs, in particular k_{cat}^{c} vs. K_{c} , are hold when considering C₃ and C₄ species 303 together, even after accounting for the phylogenetic signal in the data, and that they 304 generally strengthen at increasing assay temperatures (Table 2). However, most of 305 these trade-offs were lost when considering exclusively the C_3 species (Table 2), 306 indicative that the broad-scale patterns of covariation between the Rubisco kinetic 307 parameters may not hold at smaller scales, as previously observed in other 308 angiosperm species (Galmés et al., 2014c).

The maximum carboxylase turnover rate of Rubisco (k_{cat}^{c}) from *Zea mays* and *Saccharum* × *officinarum* was 2-fold higher than that of the C₃ species, albeit at the expenses of 3 times less affinity for CO₂ (Table 1). This finding agrees with previously described trends between C₃ and C₄ species (Kubien et al., 2008; Ghannoum et al., 2005; Ishikawa et al., 2009), and with the fact that C₄ species present lower k_{cat}^{c}/K_{c} (Kubien et al., 2008; Perdomo et al., 2015).

315 Unlike other reports (Sage 2002; Ishikawa et al., 2009), the observed variation 316 in the kinetic parameters at 25 °C among C₃ species was apparently not related to the 317 thermal climate of their respective domestication regions (data not shown). It should 318 be noted that the origin, and hence the climatic conditions, of the selected varieties 319 could be different to the species centre of domestication, and that the different crop 320 varieties may have accumulated adaptive changes to local conditions by means of 321 artificial selection (Meyer et al., 2012). Intraspecific variability in Rubisco catalytic 322 traits has been reported in Triticum aestivum (Galmés et al., 2014c) and Hordeum

vulgare (Rinehart et al., 1983), but how this variability among genotypes is related to
adaptation of Rubisco to local environments remains elusive.

325

326 The Rubisco kinetic parameters of the main crops present different thermal 327 sensitivity

The observed temperature response of the Rubisco kinetics parameters confirms welldescribed trends consisting in increases in k_{cat}^{c} and K_{c} and a decrease in $S_{c/o}$ with increasing assay temperature (Table 1 and Table S1) (Jordan and Ogren, 1984; Brooks and Farquhar, 1985; Uemura et al., 1997; Galmés et al., 2005; Prins et al., 2016).

333 The temperature dependency of full Rubisco catalytic constants was first 334 provided for Nicotiana tabacum, using in vivo-based leaf gas exchange analysis 335 (Bernacchi et al., 2001). After this report, all studies dealing with the temperature 336 response of photosynthesis assumed the temperature dependency parameters of 337 tobacco Rubisco, irrespective of the modelled species, from annual herbs to trees, and 338 from cold to warm adapted species (e.g., Pons et al., 2009; Keenan et al., 2010; 339 Yamori et al., 2010; Galmés et al., 2011; Bermúdez et al., 2012; Scafaro et al., 2012). 340 Importantly, the present dataset constitutes the most unequivocal confirmation that 341 different temperature sensitivities of Rubisco kinetic parameters exist among different 342 species, and that extrapolating the temperature response of a unique model species to 343 other plants induces errors when modelling the temperature response of 344 photosynthesis. In this sense, the *in vitro* results of the present study support *in vivo* 345 data showing different temperature dependency of Rubisco catalytic constants in 346 Arabidopsis thaliana and Nicotiana tabacum (Walker et al., 2013).

In general, the Rubisco constant affinities for CO_2 (K_c and K_c^{air}) were more 347 348 sensitive to changes in assay temperature (i.e., presented higher energies of activation, 349 ΔH_a) than k_{cat}^c and Γ^* (Table 3), in agreement with a recent study (Perdomo et al., 350 2015). This fact is explained by the increase in the oxygenase catalytic efficiency 351 (k_{cat}°/K_{o}) at increasing temperature. However, it should be remarked that k_{cat}°/K_{o} ratio 352 was calculated from the measured parameters K_c , k_{cat}^c and $S_{c/o}$, and that direct 353 measurements of the oxygenase activity of Rubisco, e.g., by mass spectrometry 354 (Cousins et al., 2010), should be undertaken to confirm this trend.

As at 25 °C, the differences in the temperature dependencies of Rubisco kinetic parameters among C_3 species were not related to the thermal environment of the species' domestication regions (data not shown). This finding contrasts with previous evidences suggesting that the temperature sensitivity of Rubisco kinetic properties have evolved to improve the enzyme's performance according to the prevailing thermal environment to which species are adapted (Sage, 2002; Galmés et al., 2005, 2015).

Although only two C₄ species were included in the present study, they presented lower ΔH_a for K_c and for k_{cat}^c than most of the C₃ species, in close agreement with trends recently observed by Perdomo et al. (2015) in *Flaveria* species (Table 3). A larger number of C₄ species need to be surveyed to verify the existence of differences in the temperature dependence of Rubisco kinetics between C₃ and C₄ species.

368

369 How do the species-specific properties of Rubisco kinetics and their temperature
370 sensitivity impact the potential capacity of Rubisco to assimilate CO₂?

371 Modelling the effect of the species-specific Rubisco kinetics and temperature 372 dependencies of Rubisco kinetics resulted in significant differences in the Rubisco CO_2 assimilation potential ($A_{Rubisco}$) among the studied C_3 crops (Fig. 2). This 373 374 modelling exercise highlighted which species would mostly benefit from the genetic 375 replacement of their native version of Rubisco by other foreign versions with 376 improved performance. Notably, the modelling results clearly indicate that the 377 performance of specific Rubiscos cannot be evaluated without considering the 378 environmental conditions during catalysis, specifically the temperature and the CO_2 379 availability at the site of carboxylation (C_c). This fact results from the different 380 temperature dependence of Rubisco kinetics among crops, and from the different 381 impact that Rubisco kinetics have on the RuBP-saturated (A_c) and RuBP-limited (A_i) 382 rates governing A_{Rubisco}. Hence, at 15 °C and C_c of 250 µbar, A_{Rubisco} was limited by A_i 383 in most of the C_3 species (twelve out of eighteen), while it was limited by A_c in all C_3 384 species at 25 and 35 °C irrespective of the C_c value.

Detailed examination of modelled A_{Rubisco} suggests that future efforts to
enhance Rubisco efficiency should be directed on the following C₃ species displaying
the poorest performance: *Cucurbita maxima* and *Medicago sativa* at 15 °C and both *C_c*, *Glycine max*, *Capsicum annuum* and *Coffea arabica* at 25 °C and 250 µbar; *Glycine max*, *Spinacia oleracea*, *Capsicum annuum* and *Coffea arabica* at 25 °C and
µbar; *Capsicum annuum*, *Solanum lycopersicum* and *Lactuca sativa* at 35 °C and
µbar; and *Capsicum annuum* and *Solanum lycopersicum* at 35 °C and 150 µbar.

In order to focus on the Rubisco catalytic traits, the modelling assumed invariable values for the concentration of active Rubisco sites ($E = 25 \ \mu mol \ m^{-2} \ s^{-1}$) and specific values for the rate of photosynthetic electron transport (*J*) and *C*_c. However, species adapt and plants acclimate to the prevailing thermal environment 396 through changes in the concentration and/or activation of Rubisco and the rate of 397 photosynthetic electron transport (Yamasaki et al., 2002; Yamori et al., 2011). 398 Similarly, stomatal (g_s) and leaf mesophyll (g_m) conductances to CO₂ also vary in 399 response to temperature (von Caemmerer and Evans, 2015). Considering the growth 400 temperature effects on these parameters would have altered the equilibrium between 401 $A_{\rm c}$ and $A_{\rm i}$, and indirectly, the consequences of different Rubisco kinetic traits on the 402 CO₂ assimilation potential. In the next future, we aim to increase the accuracy of the 403 present simulation by examining and including the species-specific values for g_s , g_m , 404 *E* and *J* at varying environmental conditions.

405

406 The analysis of positive selection in branches leading to specific Rubisco traits 407 may reveal lineage specific amino acid substitutions

408 We found ten Rubisco L-subunit residues under positive selection (94, 262, 281, 309, 409 439, 446, 449, 469, 470, and 477; Table 4). With the exceptions of residues 469 and 410 477, these residues have been reported previously in other groups of plants, implying 411 a relatively limited number of residues responsible for the Rubisco 'fine-tuning' 412 (Kapralov and Filatov, 2007; Christin et al., 2008; Iida et al., 2009; Kapralov et al., 413 2011; Kapralov et al., 2012; Galmés et al., 2014a, 2014c). However, despite 414 widespread parallel evolution of amino acid replacements in the Rubisco sequence, 415 solutions found in particular groups of plants may be quite different. For instance, 416 there are only two common residues under positive selection out of ten between this 417 study and methodologically similar work with different sampling design published 418 earlier (Galmés et al., 2014c). This fact raises questions of epistatic interactions and 419 residue co-evolution within Rubisco (Wang et al., 2011) as well as residue co-420 evolution and complementarity between Rubisco and its chaperones (Whitney et al., 421 2015), which both may prevent evolution of identical amino acid replacements422 because of different genetic backgrounds.

423 We have not examined the species differences in the sequence of the Rubisco 424 small subunit (S-subunit). Some of the species included in the present survey, like 425 Triticum aestivum, possess a large number of S-subunit genes (rbcS) encoding 426 different S-subunits (Galili et al., 1998). Previous reports have showed that species 427 with identical L-subunits might have different Rubisco kinetics (Rosnow et al., 2015) 428 as well as directly demonstrated that differences in the S-subunits might affect 429 Rubisco catalytic traits (Ishikawa et al., 2011; Morita et al., 2014). Therefore, we 430 cannot discard that the observed differences in Rubisco kinetics, and their temperature 431 dependence, among the studied crops are partially due to differences in the S-432 subunits.

433

434 Conclusions

435 The present study confirms the significant variation in carboxylation efficiency and 436 parameters that contribute to it among plant species, and for the first time provides 437 full Rubisco kinetic profiles for the twenty most important crop species. Our dataset 438 could be used as an input for the next generation of species-specific models of leaf 439 photosynthesis and its response to climate change, leading to more precise forecasts 440 of changes in crop productivity and yield. These data could help to decide in which 441 crops CO₂ assimilation potential and carboxylation efficiency of Rubisco might be 442 improved via re-engineering of native enzymes or by replacement with foreign ones 443 as there is no a one size fits all solution. The design of future attempts of Rubisco 444 engineering in crops should be based on surveys of Rubisco catalytic and genetic 445 diversity with a particular stress on the relatives of crops in question. Growing knowledge of the Rubisco catalytic spectrum combined with the existing engineering
toolkits for Rubisco (Whitney and Sharwood 2008) and its chaperones (Whitney et
al., 2015) give us a hope that Rubisco efficiency and hence photosynthetic capacity of
crops could be improved in a near future.

- 450
- 451

452 MATERIALS AND METHODS

453 Species selection and growth conditions

454 The following twenty crop species were selected for study: Avena sativa L. cv. 455 Forridena, Beta vulgaris L. cv. Detroit, Brassica oleracea L. var. italica cv. Calabres, 456 Capsicum annuum L. cv. Picante, Coffea arabica L. cv 'Catuai' Vermelho IAC 44, 457 Cucurbita maxima D. cv. Totanera, Glycine max (L.) Merr cv. Ransom, Hordeum 458 vulgare L. subsp. vulgare cv. Morex, Ipomoea batatas (L.) Lam var. Rosa de Málaga, 459 Lactuca sativa L. cv. Cogollo de Tudela, Manihot esculenta C., Medicago sativa L. 460 cv. Aragón, Oryza sativa L. cv. Bomba, Phaseolus vulgaris L. cv. Contender, 461 Saccharum \times officinarum (hybrid between Saccharum officinarum and S. 462 spontaneum), Solanum lycopersicum L. cv. Roma VF, Solanum tuberosum L. cv. 463 Erlanger, Spinacia oleracea L. cv. Butterfly, Triticum aestivum L. cv. Cajeme, Zea 464 mays L. cv. Carella. These species represent the most important crops in terms of 465 worldwide production (FAOSTAT, 2010). Coffea arabica was selected as being the 466 most important commodity in the international agricultural trade (DaMatta 2004). 467 Plants were grown from seeds under natural photoperiod in a glasshouse at the 468 University of the Balearic Islands (Spain) during 2011 and 2012. Plants were grown 469 in soil-based compost supplemented with slow-release fertilizer and frequently 470 watered to avoid water stress. The air temperature in the glasshouse during the growth

471 period was maintained between 15°C and 30°C.

472

473 Determination of the Rubisco Michaelis-Menten constant for CO₂ (K_c) and the 474 maximum carboxylase turnover rate (k_{cat}^c)

475 The Rubisco Michaelis-Menten constant for CO_2 under 0% O_2 (K_c) and 21% O_2 476 (K_{c}^{air}) were determined in crude extracts obtained as detailed in Galmés et al., (2014a). Rates of ¹⁴CO₂-fixation were measured at 15 °C, 25 °C and 35 °C using 477 activated protein extracts in 7 mL septum capped scintillation vials containing 478 479 reaction buffer (100 mM Bicine-NaOH pH 8.0, 20 mM MgCl₂, 0.4 mM RuBP and 480 about 100 W-A units of carbonic anhydrase) previously equilibrated either with nitrogen (N₂) or a mixture of O₂ and N₂ (21:79). Nine different concentrations of 481 $H^{14}CO_3^{-}$ (0.1 to 9.4 mM, each with a specific radioactivity of 3.7×10^{10} Bq mol⁻¹) 482 483 were prepared in the scintillation vials as described previously (Galmés et al., 2014a). 484 Assays at 35 °C using Rubisco from C₄ species required increasing $H^{14}CO_3^{-}$ up to 485 17.7 mM to reach saturating CO₂ concentration in the aqueous-phase. Assays were 486 started by the addition of 10 µL of protein extract and stopped after 1 min by injection of 0.1 mL 10 M formic acid. Acid-stable ¹⁴C was determined by liquid scintillation 487 488 counting (LS 6500 Multi-Purpose Scintillation Counter, Beckman Coulter, USA) following removal of acid-labile ¹⁴C by evaporation. The Michaelis-Menten constants 489 for CO₂ under 0% O₂ (K_c) and 21% O₂ (K_c^{air}) were determined from the fitted data as 490 491 described elsewhere (Bird et al., 1982). Replicate measurements (n = 3-6) were made 492 using different biological replicates for each species.

493 To obtain k_{cat}^{c} , the maximum rate of carboxylation was extrapolated from the 494 Michaelis-Menten fit and divided by the number of Rubisco active sites in solution, 495 quantified by [¹⁴C] CABP binding (Yokota and Canvin 1985).

Additional control assays undertaken as detailed in Galmés et al. (2014a)
confirmed that the observed acid stable ¹⁴C signal was uniquely the result of Rubisco
catalytic activity.

499

500 Determination of the Rubisco specificity for CO₂/O₂ (S_{c/o})

501 The Rubisco CO_2/O_2 specificity ($S_{c/o}$) was measured on purified extracts obtained as 502 in Gago et al., (2013). On the day of $S_{c/o}$ measurement, highly concentrated Rubisco 503 solutions were desalted by centrifugation through G25 Sephadex columns previously 504 equilibrated with CO₂-free 0.1 M Bicine (pH 8.2) containing 20 mM MgCl₂. The desalted solutions were made 10 mM with $NaH^{14}CO^3$ (1.85×10¹² Bq mol⁻¹) and 4 mM 505 506 NaH₂PO₄, to activate Rubisco by incubation at 37.5°C for 40 min. Reaction mixtures 507 were prepared in oxygen electrodes (Oxygraph, Hansatech instruments Ltd., Norfolk, 508 UK) by first adding 0.95 mL of CO₂-free assay buffer (100 mM Bicine pH 8.2, 20 509 mM MgCl₂, containing 0.015 mg of carbonic anhydrase). After the addition of 0.02 mL of 0.1 M NaH¹⁴CO₃ (1.85×10^{12} Bq mol⁻¹), the plug was fitted to the oxygen 510 511 electrode vessel and enough activated Rubisco (20 µL) was added. The reaction was 512 started by the injection of 10 µL of 25 mM RuBP to be completed between 2 and 7 513 min depending on the assay temperature. RuBP oxygenation was calculated from the 514 oxygen consumption and carboxylation from the amount of ¹⁴C incorporated into 515 PGA when all the RuBP had been consumed (Galmés et al., 2014a). Measurements 516 were performed at 15 °C, 25 °C and 35 °C, with 3-9 biological replicates per each 517 species and assayed temperature.

For all Rubisco assays, pH of the assay buffers was accurately adjusted at each temperature of measurement. The concentration of CO_2 in solution in equilibrium with HCO_3^- was calculated assuming a pK_a for carbonic acid of 6.19, 6.11 and 6.06 at 15 °C, 25 °C and 35 °C, respectively. The concentration of O_2 in solution was assumed to be 305.0, 253.4 and 219.4 (nmol mL⁻¹) at 15 °C, 25 °C and 35 °C, respectively (Truesdale and Downing 1954).

524

525 Temperature dependence parameters of Rubisco kinetics

526 To determine the temperature response of the Rubisco kinetic parameters from each species, values for K_c , K_c^{air} and $S_{c/o}$ were first converted from concentrations to partial 527 528 pressures. For this, solubilities for CO₂ were considered to be 0.0450, 0.0340 and 0.0262 mol L⁻¹ bar⁻¹ at 15 °C, 25 °C and 35 °C, respectively. In turn, solubilities for O₂ 529 530 of 0.0016, 0.0013 and 0.0011 mol L⁻¹ bar⁻¹ were used at 15 °C, 25 °C and 35 °C, 531 respectively. The CO₂ compensation point in the absence of mitochondrial respiration 532 (Γ^*) was obtained from $S_{c/0}$ as in von Caemmerer (2000) using the above solubilities 533 for O₂. Thereafter, values of K_c , Γ^* and k_{cat}^c at the three temperatures were fitted to an 534 Arrhenius-type equation (Badger and Collatz 1977; Harley and Tenhunen 1991):

535
$$Parameter = \exp\left[c - \frac{\Delta H_{a}}{RT_{k}}\right]$$

536 where *c* is a scaling constant, ΔH_a is the energy of activation, R is the molar gas 537 constant (8.314 J K⁻¹ mol⁻¹) and T_k is the absolute assay temperature.

538

539 CO₂ assimilation potential of crop Rubiscos at varying temperatures and CO₂ 540 availability

541 According to the biochemical model of C₃ photosynthesis (Farquhar et al., 1980), the

- 542 Rubisco CO₂ assimilation potential (A_{Rubisco}) is defined as the minimum of the RuBP-
- 543 saturated (A_c) and RuBP-limited (A_j) CO₂ assimilation rates:

544 (1)
$$A_{\text{Rubisco}} = \min(A_{c}, A_{j}),$$

545 (2)
$$A_c = \frac{k_{cat}^c \cdot E \cdot (C_c - \Gamma^*)}{C_c + K_c^{air}}$$

546 (3)
$$A_j = \frac{(C_C - \Gamma^*) J}{4C_C + 8\Gamma^*}$$

547 A_{Rubisco} was obtained for each species at three different temperatures, 15 °C, 25 °C and 35 °C, and two different concentrations of CO_2 in the chloroplast stroma (C_c), 548 549 150 and 250 µbar, simulating situations of moderate water-stress and well-watered 550 conditions in C₃ plants, respectively (Flexas et al., 2006). The Rubisco catalytic traits k_{cat}^{c} , Γ^{*} and K_{c}^{air} were taken from the species- and temperature-specific data obtained 551 552 in the present study. The concentration of active Rubisco sites (E) was assumed invariable at 25 µmol m⁻². Values of the CO₂-saturated photosynthetic electron 553 transport rates (J) were assumed 60, 150 and 212 µmol m⁻² s⁻¹ at 15 °C, 25 °C and 35 554 °C, respectively, for all species. At 25 °C, $J = 150 \text{ }\mu\text{mol }\text{m}^{-2} \text{ s}^{-1}$ matches very well with 555 a $J/(k_{cat}^{c} \cdot E)$ ratio of 1.5 (Egea et al., 2011). Values for J at 15 °C and 35 °C were 556 557 obtained from the J temperature response described for tobacco in Walker et al. 558 (2013).

559

560 Analysis of Rubisco L-subunit sites under positive selection

Full length DNA sequences of the Rubisco large subunit (L-subunit) encoding gene, *rbcL* (Fig. S3), and two additional chloroplast genes (*matK* and *ndhF*) were obtained
from GenBank (<u>http://www.ncbi.nlm.nih.gov/genbank/</u>) for the twenty studied
species. Accession numbers information is given in the Table S2.

565 DNA sequences were translated into protein sequences for alignment using 566 MUSCLE (Edgar 2004). The software MODELTEST 3.7 (Posada and Crandall 1998, 567 Posada and Buckley 2004) was used to check for the best model before running the 568 phylogenetic analyses. The species phylogeny was reconstructed using concatenated 569 alignment of all three chloroplast genes and maximum-likelihood inference conducted 570 with RAxML version 7.2.6 (Stamatakis 2006).

571 Amino acid residues under positive selection were identified using codon-572 based substitution models in comparative analysis of protein-coding DNA sequences 573 within the phylogenetic framework (Yang 1997). Given the conservative assumption 574 of no selective pressure at synonymous sites, codon-based substitution models assume 575 that codons with the ratio of nonsynonymous/synonymous substitution rate (d_N/d_S) 576 less than one evolve under purifying selection to keep protein function and properties, 577 while codons with $d_N/d_S > 1$ evolve under positive Darwinian selection to modify 578 properties of the given protein (Yang 1997).

579 The codeml program in the PAML v4.7 package (Yang 2007) was used to 580 perform branch-site tests of positive selection along pre-specified foreground 581 branches (Yang et al., 2005, Yang 2007). The codeml A model allows $0 \le d_N/d_S \le 1$ 582 and $d_N/d_S = 1$ for all branches. The $d_N/d_S > 1$ is permitted only along pre-specified 583 foreground branches and $0 \le d_N/d_S \le 1$ and $d_N/d_S = 1$ on background branches. 584 Branches leading to species with high or low K_c , k_{cat}^c , $S_{c/o}$ and ΔH_a were marked as 585 foreground branches. For the purpose of these tests, high or low K_c , k_{cat}^c and $S_{c/o}$ 586 ranges were taken only at 25 °C because of high correlation between values for these 587 kinetic parameters obtained at three different temperatures. ΔH_a for these kinetic 588 parameters were also considered. The A model was used to identify the amino acid sites under positive selection and to calculate the posterior probabilities of an amino 589

590 acid belongs to a class with $d_N/d_S > 1$ using the Bayes empirical Bayes (BEB) 591 approach implemented in PAML (Yang et al., 2005).

The Rubisco L-subunit residues were numbered based on the spinach sequence. The location of sites under positive selection was done using Rubisco protein structure from spinach (*Spinacia oleracea* L.) obtained from the RCSB Protein Data Bank (http://www.rcsb.org; file 1RCX; Karkehabadi et al., 2003).

596

597 Statistical analysis

Statistical analysis consisted of one-way ANOVA and correlation for linear 598 599 regressions. For all the parameters studied, a univariate model of fixed effects was 600 assumed. The univariate general linear model for unbalanced data (Proc. GLM) was 601 applied and significant differences among species and groups of species were 602 revealed by Duncan tests using IBM SPSS Statistics for Macintosh, Version 21.0. 603 (Armonk, NY: IBM Corp software package). The relationships among the kinetic 604 parameters and the temperature dependence parameters were tested with the square of 605 the correlation coefficient observed for linear regressions using the tool implemented 606 in R 3.1.1 (R Development Core Team 2014, http://www.R-project.org). All 607 statistical tests were considered significant at p < 0.05.

The Pearson correlation coefficient was calculated between pairwise combinations of the kinetic parameters K_c , K_c^{air} , k_{cat}^c and $S_{c/o}$ at the three temperatures of measurement. However, correlations arising within groups of related taxa might reflect phylogenetic signal rather than true cause-effect relationships, because closely related taxa are not necessarily independent data points and could violate the assumption of randomized sampling employed by conventional statistical methods (Felsenstein 1985). To overcome this issue, tests were performed for the presence of

615 phylogenetic signal in the data and trait correlations were calculated with 616 phylogenetically independent contrasts using the AOT module of PHYLOCOM 617 (Webb et al., 2008) using the species phylogeny based on the three chloroplast genes 618 (see below). All these tests were considered significant at p < 0.05.

619

620

621 ACKNOWLEDGEMENTS

622 Trinidad Garcia is acknowledged for her technical help and organization of the 623 radioisotope installation at the Serveis Científico-Tècnics of UIB while running these 624 experiments. We would like to thank Mr. Miquel Truyols and collaborators of the 625 UIB Experimental Field and Greenhouses, which are supported by the UIBGrant 626 15/2015. We would like to thank Dra. Arantxa Molins for her experimental help. We 627 are also very grateful to Dr. Cyril Douthe, Dr. Josep Cifre, Mrs. Patricia González and 628 Dr. Jorge Gago for their help in improving different parts of the manuscript. Mr. 629 Jaume Jaume and Dr. Sebastià Martorell are acknowledged for providing some plant 630 material used in this experiment.

631

632 Supplemental Material

Table S1. The Rubisco kinetic parameters measured at 15 °C and 35 °C for theselected crop species.

Table S2. List of crop species and GenBank accession numbers for *rbcL*, *matK* and*ndhF*.

637 **Figure S1.** Box plots depiction of Rubisco kinetic parameters (K_c , K_c^{air} , k_{cat}^c and $S_{c/o}$) 638 at 15 °C, 25 °C and 35 °C when considering the 18 C₃ species alone.

639	Figure S2. Maximum likelihood phylogeny created using <i>rbcL</i> , <i>matK</i> and <i>ndhF</i> for
640	the selected crop species.
641	Figure S3. Rubisco L-subunit amino acid alignment for the 20 crops species used in
642	this study.
643	
644	
645	

Table 1. Kinetic parameters of crop Rubiscos measured at 25 °C: the Michaelis-Menten constants for CO₂ under non-oxygenic (K_c) and 21% O₂ (K_c^{air}), the maximum carboxylation rate (k_{cat}^{c}), the specificity factor ($S_{c/o}$), and the carboxylation (k_{cat}^{c}/K_c and k_{cat}^{c}/K_c^{air}), and the oxygenation catalytic efficiencies (k_{cat}^{o}/K_o). The k_{cat}^{o}/K_o ratio was calculated as [(k_{cat}^{c}/K_c)/ $S_{c/o}^*$ 1000]. For each species, data are mean ± standard error (n = 3-9). Group averages were obtained from individual measurements on each species. Different letters denote statistical differences (p < 0.05) by Duncan analysis between C₃ and C₄ groups.

	$K_{ m c}$	$K_{ m c}{}^{ m air}$	$k_{\rm cat}{}^{\rm c}$	$S_{ m c/o}$	$k_{\rm cat}^{\rm c}/K_{\rm c}$	$k_{\rm cat}^{\rm c}/K_{\rm c}^{\rm air}$	$k_{\rm cat}^{\rm o}/K_{\rm o}$
Species	(μM)	(µM)	(s ⁻¹)	(mol mol ⁻¹)	$(s^{-1} \mu M^{-1})$	$(s^{-1} \mu M^{-1})$	(s ⁻¹ nM ⁻¹)
C ₃ species							
Avena sativa	10.8 ± 0.9	18.1 ± 2.0	2.3 ± 0.3	99.9 ± 3.0	0.21 ± 0.01	0.13 ± 0.03	2.14 ± 0.06
Beta vulgaris	10.8 ± 1.2	18.6 ± 1.1	2.0 ± 0.3	100.8 ± 2.0	0.19 ± 0.02	0.10 ± 0.01	1.94 ± 0.31
Brassica oleracea	11.8 ± 0.1	19.2 ± 0.3	2.1 ± 0.3	96.2 ± 1.3	0.17 ± 0.03	0.11 ± 0.02	1.81 ± 0.28
Capsicum annuum	9.6 ± 0.3	19.8 ± 1.5	1.9 ± 0.1	96.0 ± 4.5	0.20 ± 0.01	0.10 ± 0.01	1.98 ± 0.15
Coffea Arabica	11.0 ± 0.4	22.9 ± 2.4	2.1 ± 0.2	98.7 ± 3.8	0.19 ± 0.02	0.08 ± 0.01	1.98 ± 0.18
Cucurbita maxima	9.0 ± 0.5	19.2 ± 1.0	2.2 ± 0.2	98.4 ± 0.4	0.25 ± 0.04	0.12 ± 0.01	2.45 ± 0.31
Glycine max	8.6 ± 0.2	16.2 ± 0.7	1.5 ± 0.1	97.0 ± 1.1	0.17 ± 0.02	0.09 ± 0.01	1.76 ± 0.21
Hordeum vulgare	9.0 ± 0.6	14.9 ± 1.6	2.4 ± 0.2	99.2 ± 3.8	0.28 ± 0.02	0.17 ± 0.03	3.01 ± 0.19
Ipomoea batatas	12.0 ± 0.7	21.1 ± 1.0	2.5 ± 0.1	98.5 ± 6.6	0.20 ± 0.00	0.12 ± 0.01	1.96 ± 0.08
Lactuca sativa	11.1 ± 0.3	18.2 ± 1.4	2.2 ± 0.1	94.0 ± 1.9	0.19 ± 0.00	0.12 ± 0.01	2.06 ± 0.07

	Manihot esculenta	6.1 ± 0.2	10.8 ± 0.6	1.4 ± 0.1	100.8 ± 0.9	0.23 ± 0.02	0.13 ± 0.01	2.24 ± 0.17
	Medicago sativa	9.7 ± 1.6	16.4 ± 1.9	1.7 ± 0.1	95.6 ± 2.2	0.20 ± 0.02	0.11 ± 0.01	2.23 ± 0.36
	Oryza sativa	8.0 ± 0.4	17.3 ± 2.4	2.1 ± 0.3	93.1 ± 1.2	0.26 ± 0.04	0.14 ± 0.03	2.73 ± 0.43
	Phaseolus vulgaris	7.8 ± 0.3	14.0 ± 1.0	1.7 ± 0.2	99.7 ± 2.7	0.22 ± 0.02	0.13 ± 0.02	2.11 ± 0.17
	Solanum lycopersicum	9.7 ± 0.4	16.6 ± 1.4	2.3 ± 0.2	92.4 ± 2.3	0.24 ± 0.02	0.14 ± 0.01	2.48 ± 0.20
	Solanum tuberosum	9.6 ± 0.2	18.0 ± 0.8	2.0 ± 0.3	95.4 ± 2.3	0.22 ± 0.05	0.12 ± 0.03	2.32 ± 0.46
	Spinacia oleracea	14.1 ± 0.8	26.9 ± 0.8	2.4 ± 0.1	97.0 ± 1.2	0.18 ± 0.01	0.09 ± 0.01	1.76 ± 0.13
	Triticum aestivum	11.3 ± 0.4	16.0 ± 0.6	2.2 ± 0.2	100.1 ± 1.8	0.20 ± 0.02	0.14 ± 0.01	2.08 ± 0.24
	C_3 average	10.0 ± 0.3^a	18.0 ± 0.5^a	2.1 ± 0.1^a	97.5 ± 0.6^a	0.21 ± 0.01^a	0.12 ± 0.01^a	2.17 ± 0.07^a
C ₄ s _I	pecies							
	Saccharum $ imes$ officinarum	26.3 ± 4.0	31.7 ± 2.1	3.9 ± 0.3	82.2 ± 1.8	0.15 ± 0.02	0.13 ± 0.01	1.82 ± 0.35
	Zea mays	31.6 ± 1.8	42.0 ± 2.8	4.1 ± 0.6	87.3 ± 1.4	0.11 ± 0.02	0.07 ± 0.01	1.22 ± 0.20
	C4 average	27.6 ± 2.3^{b}	36.1 ± 2.6^b	4.0 ± 0.5^b	84.4 ± 1.5^{b}	0.13 ± 0.02^{b}	0.10 ± 0.01^a	1.52 ± 0.23^{b}

Table 2. Phylogenetically independent contrasts (PICs, upper part of the diagonals) and Pearson's correlation coefficients (PCCs, lower part of the diagonals) between the Rubisco kinetic parameters (K_c , K_c^{air} , k_{cat}^c and $S_{c/o}$) at 15 °C, 25 °C and 35 °C when considering the 20 C₃ and C₄ species together and the 18 C₃ species alone. Significant correlations are marked: *** p < 0.001, ** p < 0.01, * p < 0.05.

	Data from C_3 and C_4 species analysed together													
		15 °C					25 °C			35 °C				
	Kc	$K_{ m c}{}^{ m air}$	$k_{\rm cat}{}^{\rm c}$	$S_{ m c/o}$		$K_{ m c}$	$K_{ m c}{}^{ m air}$	$k_{\rm cat}{}^{\rm c}$	$S_{ m c/o}$		Kc	$K_{ m c}{}^{ m air}$	$k_{\rm cat}{}^{\rm c}$	$S_{ m c/o}$
Kc		0.826***	0.502*	-0.314	Kc		0.913***	0.819***	-0.202	Kc		0.960***	0.710***	-0.775***
$K_{ m c}{}^{ m air}$	0.927***		0.036	-0.099	$K_{ m c}^{ m air}$	0.946***		0.683***	0.037	$K_{ m c}^{ m air}$	0.962***		0.707***	-0.660**
$k_{\rm cat}{}^{\rm c}$	0.810***	0.645**		-0.660**	$k_{\rm cat}{}^{\rm c}$	0.941***	0.890***		-0.450*	$k_{\rm cat}^{\rm c}$	0.894***	0.858***		-0.634**
$S_{ m c/o}$	-0.498*	-0.361	-0.673**		$S_{ m c/o}$	-0.772***	-0.699***	-0.749***		$S_{ m c/o}$	-0.806***	-0.737***	-0.736***	
	Data from C ₃ species alone													
		15 °C					25 °C					35 °C		
	Kc	$K_{ m c}{}^{ m air}$	$k_{\rm cat}{}^{\rm c}$	$S_{ m c/o}$		$K_{ m c}$	$K_{ m c}{}^{ m air}$	$k_{\rm cat}{}^{\rm c}$	$S_{ m c/o}$		Kc	$K_{ m c}{}^{ m air}$	$k_{\rm cat}{}^{\rm c}$	$S_{ m c/o}$
Kc		0.900***	0.194	0.120	Kc		0.646**	0.256	0.057	Kc		0.907***	0.363	-0.357
$K_{ m c}^{ m air}$	0.892***		-0.118	0.394	$K_{ m c}^{ m air}$	0.829***		0.173	-0.006	$K_{ m c}^{ m air}$	0.816***		0.401	-0.155
$k_{\rm cat}{}^{\rm c}$	0.268	0.137		-0.787**	$k_{\rm cat}{}^{\rm c}$	0.698***	0.587*		-0.470*	$k_{\rm cat}^{\rm c}$	0.613**	0.476*		-0.285
$S_{ m c/o}$	0.025	0.145	-0.496*		S _{c/o}	-0.049	-0.162	-0.083		$S_{ m c/o}$	-0.386	-0.157	-0.259	

Table 3. The energy of activation (ΔH_a , kJ mol⁻¹) and *c* (dimensionless) values of the Rubisco Michaelis-Menten constants for CO₂ under non-oxygenic (K_c , µmol mol⁻¹) and 21% O₂ (K_c^{air} , µmol mol⁻¹), the maximum carboxylation rate (k_{cat}^c , s⁻¹) and the CO₂ compensation point in the absence of mitochondrial respiration (Γ^* ,µmol mol⁻¹) for the twenty crop species. For each species, data are mean ± standard error (n = 3-9). Group averages were calculated from individual measurements on each species. Different letters denote statistical differences (p < 0.05) by Duncan analysis between C₃ and C₄ groups. Parameter concentrations of K_c (µM) and K_c^{air} (µM) in liquid phase (Table 1 and S2) were converted to gaseous phase partial pressures [K_c and/or K_c^{air} (µmol mol⁻¹) = parameter (µM) × K_h × Air Volume (L) / RT]. K_h is the hydrolysis constant (15 °C = 22.2, 25 °C = 29.4, 35 °C = 38.2). For the Air Volume (L): 15 °C = 23.7, 25 °C = 24.5, 35 °C = 25.4. The term Γ^* (µmol mol⁻¹) is derived from 0.50/ $S_{c/o}$.

	K	ζ _c	Ka	air	kc	at ^c	1	*
Species	С	$\Delta H_{ m a}$	С	$\Delta H_{ m a}$	С	$\Delta H_{ m a}$	С	$\Delta H_{\rm a}$
C ₃ species								
Avena sativa	31.3 ± 0.7	63.4 ± 2.0	26.0 ± 0.4	48.9 ± 1.2	17.6 ± 2.2	41.5 ± 5.5	13.3 ± 0.5	23.6 ± 1.4
Beta vulgaris	28.7 ± 1.7	57.0 ± 4.4	27.2 ± 0.7	51.8 ± 1.8	21.5 ± 3.7	51.2 ± 9.6	11.7 ± 0.4	19.8 ± 1.0
Brassica oleracea	28.1 ± 1.1	55.3 ± 2.8	26.5 ± 0.9	50.1 ± 2.4	18.8 ± 2.6	45.7 ± 6.5	12.6 ± 0.2	21.8 ± 0.5
Capsicum annuum	26.6 ± 1.5	51.8 ± 3.7	27.0 ± 1.6	51.2 ± 3.7	16.3 ± 2.8	39.2 ± 6.9	13.4 ± 0.7	24.1 ± 1.8
Coffea arabica	34.7 ± 0.3	71.5 ± 0.9	27.6 ± 1.8	52.2 ± 4.3	16.5 ± 2.6	39.0 ± 6.1	13.1 ± 0.5	23.4 ± 1.1
Cucurbita maxima	28.6 ± 0.8	57.0 ± 1.8	29.2 ± 1.1	56.8 ± 2.8	20.2 ± 1.0	48.7 ± 2.7	12.2 ± 0.9	21.1 ± 2.2

	Glycine max	34.2 ± 0.5	71.1 ± 1.4	28.4 ± 1.2	55.3 ± 2.9	22.7 ± 2.5	55.2 ± 5.8	14.4 ± 1.7	26.5 ± 4.1
	Hordeum vulgare	31.1 ± 1.1	63.4 ± 3.0	30.7 ± 1.9	60.9 ± 5.0	12.2 ± 1.6	27.9 ± 4.0	12.3 ± 0.2	21.2 ± 0.6
	Ipomoea batatas	23.0 ± 0.7	42.4 ± 1.6	22.7 ± 1.2	40.7 ± 3.1	14.3 ± 1.5	33.4 ± 3.8	13.0 ± 0.3	22.8 ± 0.8
	Lactuca sativa	28.3 ± 1.3	55.8 ± 3.2	29.0 ± 2.1	56.5 ± 5.2	14.1 ± 0.7	33.3 ± 1.7	12.3 ± 0.3	21.2 ± 0.9
	Manihot esculenta	33.7 ± 1.4	70.8 ± 3.4	36.1 ± 1.1	75.4 ± 2.8	19.8 ± 1.6	47.4 ± 4.1	12.2 ± 0.2	21.1 ± 0.5
	Medicago sativa	29.2 ± 1.3	58.8 ± 3.6	26.1 ± 0.4	49.5 ± 1.0	24.8 ± 1.1	60.5 ± 2.8	11.8 ± 0.2	20.1 ± 0.4
	Oryza sativa	38.9 ± 0.8	83.1 ± 1.8	30.5 ± 1.2	60.5 ± 3.1	19.2 ± 1.8	46.4 ± 4.7	13.7 ± 0.5	24.6 ± 1.3
	Phaseolus vulgaris	31.5 ± 0.8	64.6 ± 2.0	30.9 ± 2.7	61.7 ± 6.8	19.8 ± 2.1	47.7 ± 5.3	13.4 ± 0.6	24.1 ± 1.5
	Solanum lycopersicum	30.8 ± 2.5	62.1 ± 6.3	36.0 ± 2.5	73.8 ± 6.4	14.7 ± 1.4	34.6 ± 3.6	12.5 ± 0.2	21.8 ± 0.5
	Solanum tuberosum	21.1 ± 0.2	38.2 ± 0.5	24.4 ± 0.8	44.9 ± 1.9	19.2 ± 0.5	46.2 ± 1.1	13.7 ± 0.9	24.7 ± 2.2
	Spinacia oleracea	34.3 ± 0.8	69.9 ± 2.2	25.1 ± 0.5	45.6 ± 1.1	20.2 ± 0.7	48.0 ± 1.8	13.5 ± 0.3	25.2 ± 1.0
	Triticum aestivum	30.1 ± 0.5	60.4 ± 2.2	34.4 ± 2.2	70.1 ± 5.4	17.4 ± 1.7	41.2 ± 4.3	13.5 ± 0.2	24.2 ± 0.4
	C_3 average	30.2 ± 0.6^a	60.9 ± 1.5^a	28.8 ± 0.6^a	55.9 ± 1.5^a	18.3 ± 0.6^{a}	43.7 ± 1.5^a	13.0 ± 0.2^{a}	22.9 ± 0.4^a
C ₄ spe	cies								
	Saccharum imes officinarum	30.2 ± 1.9	58.3 ± 5.0	32.0 ± 1.0	62.3 ± 2.7	13.6 ± 1.5	30.2 ± 3.5	14.3 ± 0.6	25.8 ± 1.4
	Zea mays	24.7 ± 3.4	44.5 ± 8.5	24.7 ± 3.4	44.5 ± 8.5	14.0 ± 0.9	31.0 ± 1.9	13.6 ± 0.1	24.3 ± 0.2
	C4 average	27.9 ± 2.0^{a}	52.4 ± 5.0^b	28.9 ± 0.8^a	53.7 ± 1.9^{a}	13.7 ± 0.7^{b}	30.6 ± 1.6^b	14.0 ± 0.3^a	25. 0 ± 0.7^{a}

- 666 Table 4. Amino acid replacements in the Rubisco large subunit (L-subunit) identified under
- 667 positive selection by the Bayes Empirical Bayes (BEB) analysis implemented in the PAML
- 668 package (Yang et al., 2005; Yang 2007) along branches of the phylogenetic tree leading to
- 669 species with particular Rubisco properties.

672

Residue ^a	Amino acid changes	Location of residue	Interaction
Branches le	ading to species with $K_c \ge 26.0 \ \mu M$ and $k_{cat}^c \ge 3$.9 s ⁻¹ at 25 °C (C ₄ species)	
94**	D, E, K \rightarrow P		ID, RA
446**	$R \rightarrow K$	C-terminus	
469**	Insert of G or T before resi 469	C-terminus	ID
Branches le	ading to species with $k_{\text{cat}}^{c} \ge 2.5 \text{ s}^{-1}$ at 25 °C		
281**	$A \rightarrow S$	Helix 4	DD, SS
Branches le	ading to species with $K_c \ge 10.8 \ \mu\text{M}$ at 25 °C		
439***	$A \rightarrow T, V$	Helix G	
469*	Insert of G or T before residue 469	C-terminus	ID
470*	$A, E \to K, P, Q$	C-terminus	ID
477**	$S \to E, G, P, Q$	C-terminus	
Branches le	ading to species with $S_{c/o} \leq 94.0 \text{ mol mol}^{-1}$ at 25	5 °C	
309**	$\mathrm{M} \to \mathrm{I}$	βF Strand	ID
Branches le	ading to species with ΔH_a for $K_c \leq 56.0$ kJ mol ⁻	1	
262**	$V \rightarrow A, T$	Loop 3	S-subunit
439*	$R \rightarrow T, V$	Helix G	
	$C, S, T \to A$	C-terminus	
449**			

673 ^b Interactions in which the selected residues and/or residues within 5 Å of them are involved. ID –

674 intradimer interactions; DD – dimer-dimer interactions; RA – interface for interactions with Rubisco

- 675 activase; SS interactions with small subunits; interactions based on literature survey only are given in
- 676 italics; after (Spreitzer and Salvucci 2002; Ott et al., 2000; Du et al., 2003).

678 Figure legends

Figure 1. The relationship between the turnover rate for the Rubisco carboxylase reaction (k_{cat}°) with (A) the Michaelis–Menten affinity constant for CO₂ (K_c) and (B) the CO₂/O₂ specificity factor ($S_{c/o}$). Filled symbols correspond to C₃ species at 15 °C (\bigstar), 25 °C (\blacklozenge) and 35 °C (\blacktriangledown); open symbols correspond to C₄ species at 15 °C (\bigtriangleup), 25 °C (\bigcirc) and 35 °C (\bigtriangledown). Each symbol represents the average value of a single species per temperature interaction.

685

686 **Figure 2.** Simulated CO₂ assimilation potential of Rubisco ($A_{Rubisco}$) for the C₃ and C₄ 687 species at 15 °C, 25 °C and 35 °C and at values for the chloroplastic CO2 688 concentration (C_c) of (A) 250 µbar and (B) 150 µbar. Equations used to calculate 689 A_{Rubisco} were those described in the biochemical model of C₃ photosynthesis (Farquhar 690 et al., 1980), as explained in Materials and Methods. The bars represent the minimum 691 value of A_c - and A_i -limited $A_{Rubisco}$. Asterisks (*) above the bars indicate A_c -limited A_{Rubisco} (absence of * indicate A_{i} -limited A_{Rubisco}). The rate of electron transport was 692 considered 60, 150 and 212 µmol m⁻² s⁻¹ at 15 °C, 25 °C and 35 °C, respectively. The 693 concentration of active Rubisco sites was assumed invariable at 25 µmol m⁻² for all 694 695 the species and environmental conditions. The values used for the Rubisco kinetic parameters (k_{cat}^{c} , Γ^{*} and K_{c}^{air}) are those shown in Tables 1 and S2. 696

697

698 **REFERENCES**

Badger MR, Collatz GJ (1977) Studies on the kinetic mechanism of ribulose-1,5bisphosphate carboxylase and oxygenase reactions, with particular reference to
the effect of temperature on kineticparameters. Carnegie Inst Wash Year b
702 76:355–361

703	Badger	MR	(1980)	Kinetic	e propert	ies of	ribulo	ose1,5-bisp	hosphate
704	С	arboxylas	e/oxygena	se from	Anabaena	variabilis.	Arch	Biochem	Biophys
705	2	201: 247-2	254						

- 706 Balaguer L, Afif D, Dizengremel P, Dreyer E (1996) Specificity factor of ribulose
 707 bisphosphate carboxylase/oxygenase of *Quercus robur*. Plant Physiol Bioch
 708 34: 879–883
- 709 Bermúdez MA, Galmés J, Moreno I, Mullineaux PM, Gotor C, Romero LC
- (2012) Photosynthetic adaptation to length of day is dependent on Ssulfocysteine synthase activity in the thylakoid lumen. Plant Physiol 160: 274–
 288
- 713 Bernacchi CJ, Singsaas EL, Pimentel C, Portis Jr AR, Long SP (2001) Improved
 714 temperature response functions for models of Rubisco-limited
 715 photosynthesis. Plant Cell Environ 24: 253–259
- Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002)
 Temperature response of mesophyll conductance. Implications for the
 determination of Rubisco enzyme kinetics and for limitations to
 photosynthesis *in vivo*. Plant Physiol 130: 1992–1998
- Bird IF, Cornelius MJ, Keys AJ (1982) Affinity of RuBP carboxylases for carbon
 dioxide and inhibition of the enzymes by oxygen. J Exp Bot 33:1004–1013
- 722 Bota J, Flexas J, Keys A J, Loveland J, Parry MAJ, Medrano H (2002) CO₂/O₂
- specificity factor of ribulose-1,5-bisphosphate carboxylase/oxygenase in
- grapevines (*Vitis vinifera* L.): first *in vitro* determination and comparison to *in vivo* estimations. Vitis 41: 163.

726	Bremer B, Bremer K, Chase M, Fay M, Reveal J, Soltis D, Stevens P (2009) An
727	update of the Angiosperm Phylogeny Group classification for the orders and
728	families of flowering plants: APG III. Bot J Linn Soc 161: 105-121
729	Brooks A, Farquhar GD (1985) Effect of temperature on the CO ₂ /O ₂ specificity of
730	ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in
731	the light. Planta 165: 397–406.
732	Castrillo M (1995) Ribulose-1,5-bis-phosphate carboxylase activity in altitudinal
733	populations of Espeletia schultzii Wedd. Oecologia 101: 193-196
734	Chabot BF, Chabot JF, Billings WD (1972) Ribulose-1,5-diphosphate carboxylase
735	activity in arctic and alpine populations of Oxyria digyna. Photosynthetica 6:
736	364–369
737	Christin PA, Salamin N, Muasya AM, Roalson EH, Russier F, Besnard G (2008)
738	Evolutionary switch and genetic convergence on <i>rbcL</i> following the evolution
739	of C ₄ photosynthesis. Mol Biol Evol 25: 2361–2368
740	Cousins AB, Ghannoum O, von Caemmerer, S, Badger MR (2010) Simultaneous
741	determination of Rubisco carboxylase and oxygenase kinetic parameters in
742	Triticum aestivum and Zea mays using membrane inlet mass spectrometry.
743	Plant Cell Environ 33: 444–452
744	DaMatta FM (2004) Exploring drought tolerance in coffee: a physiological approach
745	with some insights for plant breeding. Braz J Plant Physiol 16: 1-6
746	Delgado E, Medrano H, Keys AJ, Parry MAJ (1995) Species variation in Rubisco
747	specificity factor. J Exp Bot 46: 1775–1777
748	Díaz-Espejo A (2013) New challenges in modelling photosynthesis: temperature
749	dependencies of Rubisco kinetics. Plant Cell Environ 36: 2104–2107

- Du YC, Peddi SR, Spreitzer RJ (2003) Assessment of structural and functional
 divergence far from the large subunit active site of Ribulose-1,5-bisphosphate
 carboxylase/oxygenase. J Biol Chem, 278: 49401–49405.
- For the sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797
- 755 Egea G, González-Real MM, Baille A, Nortes PA, Díaz-Espejo A. (2011)
- Disentangling the contributions of ontogeny and water stress to photosynthetic
 limitations in almond trees. Plant Cell Environ 34: 962–979
- FAO (Food and Agriculture Organization of the United Nations) Available at
 http://www.fao.org/economic/ess/ess-home/es/
- 760 FAOSTAT (2010) Available at <u>http://www.faostat.fao.org/</u>
- Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of
 photosynthetic CO₂ assimilation in leaves of C₃ species. Planta 149: 78–90
- 763 Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125: 1–15
- Flexas J, Ribas- Carbó M, Bota J, Galmés J, Henkle M, Martínez- Cañellas S,
 Medrano H (2006) Decreased Rubisco activity during water stress is not
 induced by decreased relative water content but related to conditions of low
 stomatal conductance and chloroplast CO₂ concentration. New Phytol 172: 7382.
- Flexas J, Galmés J, Gallé A, Gulías J, Pou A, Ribas-Carbó M, Tomás M,
 Medrano H (2010) Improving water use efficiency in grapevines: potential
 physiological targets for biotechnological improvement. Aust J Grape Wine
 Research, 16: 106–121

- 773 Gago J, Coopman RE, Cabrera HM, Hermida C, Molins A, Conesa MÀ, Galmés
- **J, Ribas-Carbó M, Flexas J** (2013) Photosynthesis limitations in three fern
 species. Physiol Plantarum 149: 599–611
- Galili S, Avivi Y, Feldman M (1998) Differential expression of three *RbcS*subfamilies in wheat. Plant Sci, 139: 85-193
- 778 Galmés J, Flexas J, Keys AJ, Cifre J, Mitchell RAC, Madgwick PJ, RP Haslam,
- Medrano H, Parry MAJ (2005) Rubisco specificity factor tends to be larger
 in plant species from drier habitats and in species with persistent leaves. Plant
 Cell Environ 28: 571–579
- Galmés J, Ribas-Carbó M, Medrano H, Flexas J (2011) Rubisco activity in
 Mediterranean species is regulated by the chloroplastic CO₂ concentration
 under water stress. J Exp Bot 62: 653–665
- Galmés J, Perdomo JA, Flexas J, Whitney SM (2013) Photosynthetic
 characterization of Rubisco transplantomic lines reveals alterations on
 photochemistry and mesophyll conductance. Photosynth Res 115: 153-166.
- 788 Galmés J, Andralojc PJ, Kapralov MV, Flexas J, Keys A J, Molins A, Parry
- MAJ, Conesa MÀ (2014a) Environmentally driven evolution of Rubisco and
 improved photosynthesis and growth within the C₃ genus *Limonium*(Plumbaginaceae). New Phytol 203: 989–999
- Galmés J, Conesa MÀ, Díaz-Espejo A, Mir A, Perdomo JA, Niinemets Ü, Flexas
 J. (2014b) Rubisco catalytic properties optimized for present and future
 climatic conditions. Plant Sci 226: 61–70
- Galmés J, Kapralov MV, Andraloj P, Conesa MÀ, Keys AJ, Parry MAJ, Flexas
 J. (2014c) Expanding knowledge of the Rubisco kinetics variability in plant

797 species: environmental and evolutionary trends. Plant Cell Environ 37: 1989–
798 2001

799 Galmés J, Kapralov MV, Copolovici LO, Hermida-Carrera C, Niinemets Ü

- 800 (2015) Temperature responses of the Rubisco maximum carboxylase activity
 801 across domains of life: phylogenetic signals, trade-offs, and importance for
 802 carbon gain. Photosynth Res 123: 183–201.
- 803 GenBank database. Available at <u>http://www.ncbi.nlm.nih.gov/genbank/</u>

804 Ghannoum O, Evans JR, Chow WS, Andrews TJ, Conroy JP, von Caemmerer S.

- 805 (2005) Faster Rubisco is the key to superior nitrogen-use efficiency in NADP806 malic enzyme relative to NAD-malic enzyme C₄ grasses. Plant Physiol 137:
 807 638–650
- 808 Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, Wiltshire A (2010)
- 809 Implications of climate change for agricultural productivity in the early
 810 twenty-first century. Philos T Soc B 365: 2973–2989
- Hall NP, Keys AJ (1983) Temperature dependence of the enzymic carboxylation and
 oxygenation of ribulose 1,5-bisphosphate in relation to effects of temperature
 on photosynthesis. Plant Physiol 72: 945–948
- Harley PC, Tenhunen JD (1991) Modeling the photosynthetic response of C₃ leaves
 to environmental factors. In: Boote KJ, Loomis RS, eds. Modeling crop
 photosynthesis—from biochemistry to canopy. Madison: Crop Science
 Society of America, Inc. and American Society of Agronomy, Inc. pp 17–39.
- 818 Haslam RP, Keys AJ, Andralojc PJ, Madgwick PJ, Inger A, Grimsrud A,
- 819 Eilertsen HC, Parry MAJ (2005) Specificity of diatom Rubisco. In: Omasa
- 820 K, Nouchi I, De Kok LJ, eds. Plant Responses to Air Pollution and Global
- 821 Change. Springer Japan. pp 157–164

- BM SPSS Statistics for Macintosh, Version 21.0. Armonk, NY: IBM Corp. Released
 2012
- 824 Iida S, Miyagi A, Aoki S, Ito M, Kadono Y, Kosuge K (2009) Molecular adaptation
 825 of *rbcL* in the heterophyllous aquatic plant Potamogeton. PLoS One, 4: e4633
- Ishikawa C, Hatanaka T, Misoo S, Fukayama H (2009) Screening of high k_{cat}
 Rubisco among Poaceae for improvement of photosynthetic CO₂ assimilation
 in rice. Plant Prod Sci 12: 345–350
- 829 Ishikawa C, Hatanaka T, Misoo S, Miyake C, Fukayama H (2011) Functional
- 830 incorporation of sorghum small subunit increases the catalytic turnover rate of831 Rubisco in transgenic rice. Plant Physiol 156: 1603–1611.
- **Jordan DB, Ogren WL** (1983) Species variation in kinetic properties of ribulose 1,5-
- bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 227: 425–433
- Jordan DB, Ogren WL (1984) The CO₂/O₂ specificity of ribulose 1,5-bisphosphate
 carboxylase/oxygenase. Planta 161: 308–313
- Kane HJ, Viil J, Entsch B, Paul K, Morell MK, Andrews TJ (1994) An improved
 method for measuring the CO₂/O₂ specificity of ribulosebisphosphate
 carboxylase-oxygenase. Funct Plant Biol 21: 449–461
- Kapralov MV, Filatov DA (2007) Widespread positive selection in the
 photosynthetic Rubisco enzyme. BMC Evolutionary Biology 7: 73
- Kapralov MV, Kubien DS, Andersson I, Filatov DA (2011) Changes in Rubisco
 kinetics during the evolution of C₄ photosynthesis in *Flaveria* (Asteraceae) are
 associated with positive selection on genes encoding the enzyme. Mol Biol
 Evol 28: 1491–1503
- Kapralov MV, Smith JAC, Filatov DA (2012) Rubisco Evolution in C₄ Eudicots:
 An Analysis of Amaranthaceae *Sensu Lato*. PloS One 7 (12): e52974.

Karkehabadi S, Taylor TC, Andersson I (2003) Calcium supports loop closure but
not catalysis in Rubisco. J M Biol 334: 65–73

- Keenan T, Sabate S, Gracia C (2010) Soil water stress and coupled photosynthesis–
 conductance models: Bridging the gap between conflicting reports on the
 relative roles of stomatal, mesophyll conductance and biochemical limitations
 to photosynthesis. Agr Forest Meteorol 150: 443–453
- Kent SS, Tomany MJ (1995) The differential of the ribulose 1,5-bisphosphate
 carboxylase/oxygenase specificity factor among higher plants and the potential
 for biomass enhancement. Plant Physiol Biochem 33: 71–80
- Kubien DS, Whitney SM, Moore PV, Jesson LK (2008) The biochemistry of
 Rubisco in *Flaveria*. J Exp Bot 59: 1767–1777
- Laing WA, Ogren WL, Hageman RH (1974) Regulation of soybean net
 photosynthetic CO₂ fixation by the interaction of CO₂, O₂, and ribulose 1,5diphosphate carboxylase. Plant Physiol 54: 678–685
- Lehnherr B, Mächler F, Nösberger J (1985) Influence of temperature on the ratio
 of ribulose bisphosphate carboxylase to oxygenase activities and on the ratio
 of photosynthesis to photorespiration of leaves. J Exp Bot 36: 1117–1125
- Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop
 domestication: an historical review and quantitative analysis of 203 global
 food crops. New Phytol 196: 29–48
- Monson RK, Stidham MA, Williams GJ, Edwards GE, Uribe EG (1982)
 Temperature dependence of photosynthesis in *Agropyron smithii* Rydb. I.
 Factors affecting net CO₂ uptake in intact leaves and contribution from
 ribulose-1,5-bisphosphate carboxylase measured *in vivo* and *in vitro*. Plant
 Physiol 69: 921–928

- Morita K, Hatanaka T, Misoo S, Fukayama, H (2014) Unusual small subunit that
 is not expressed in photosynthetic cells alters the catalytic properties of
 Rubisco in rice. Plant Physiol 164: 69–79
- 875 Murchie EH, Pinto M, Horton P (2009) Agriculture and the new challenges for
 876 photosynthesis research. New Phytol 181: 532–552
- 877 Niinemets Ü, Wright IJ, Evans JR (2009) Leaf mesophyll diffusion conductance in
- 878 35 Australian sclerophylls covering a broad range of foliage structural and
 879 physiological variation. J Exp Bot 60: 2433–2449
- 880 Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R,
- 881 Hanson MR, Hibberd JM, Long SP, Moore TA, Moroney J, Niyogi KK,
- 882 Parry MAJ, Peralta-Yahya PP, Prince RC, Redding KE, Spalding MH,
- van Wijk KJ, Vermaas WFJ, von Caemmerer S, Weber APM, Yeates TO,
- 884 Yuan JS, Zhu XG (2015) Redesigning photosynthesis to sustainably meet
 885 global food and bioenergy demand. P Natl Acad Sci USA 112: 8529–8536
- Ott CM, Smith BD, Portis AR Jr, Spreitzer RJ (2000) Activase region on
 chloroplast Ribulose-1,5-bisphosphate carboxylase/oxygenase. J Biol Chem
 275: 26241–26244
- 889 Parry MAJ, Schmidt CNG, Cornelius MJ, Millard BN, Burton S, Gutteridge, S,
- Byer TA, Keys AJ (1987) Variations in properties of ribulose-1, 5bisphosphate carboxylase from various species related to differences in amino
 acid sequences. J Exp Bot 38: 1260–1271
- 893 Parry MA, Hawkesford MJ (2012) An Integrated Approach to Crop Genetic
 894 Improvement. J Integr Plant Biol 54: 250–259

895 Parry MA, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva AE, Alonso H,

- 896 Whitney SM (2013) Rubisco activity and regulation as targets for crop
 897 improvement. J Exp Bot 64: 717–730
- Perdomo JA, Conesa MÀ, Medrano H, Ribas-Carbó M, Galmés J (2014) Effects
 of long-term individual and combined water and temperature stress on the
 growth of rice, wheat and maize: relationship with morphological and
 physiological acclimation. Physiol Plantarum doi: 10.1111/ppl.12303
- 902 Perdomo JA, Cavanagh AP, Kubien DS, Galmés J (2015) Temperature
 903 dependence of *in vitro* Rubisco kinetics in species of *Flaveria* with different
 904 photosynthetic mechanisms. Photosynth Res124: 67–75
- 905 Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbó M,
- 906 Brugnoli E (2009) Estimating mesophyll conductance to CO₂: methodology,
 907 potential errors, and recommendations. J Exp Bot doi:10.1093/jxb/erp081
- 908 Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution.
 909 Bioinformatics 14: 817–818
- 910 Posada D, Buckley TR (2004) Model selection and model averaging in
 911 phylogenetics: advantages of Akaike information criterion and Bayesian
 912 approaches over likelihood ratio tests. Syst Biol 53: 793–808
- 913 Prins A, Orr DJ, Andralojc PJ, Reynolds MP, Carmo-Silva E, Parry MAJ (2016)
- Rubisco catalytic properties of wild and domesticated relatives provide scope
 for improving wheat photosynthesis. J Exp Bot doi: 10.1093/jxb/erv574
- 916 R Core Team (2014) R: A language and environment for statistical computing
 917 (version 3.1.1). R Foundation for Statistical Computing, Vienna, Austria.
 918 Available at http://www.R-project.org/.

919	RCSB	Protein	Data	Bank.	Available	at
920	<u>http</u>	://www.rcsb.org/I	odb/explore.do	?structureId=1R	<u>CX</u>	
921	Rinehart (CA, Tingey SV, A	Andersen WR	(1983) Variabil	ity of reaction kinet	tics for
922	ribu	lose-1,5-bisphosp	hate carboxyl	ase in a barley	population. Plant F	Physiol
923	72:	76–79				
924	Rogers A	(2014) The use an	nd misuse of V	C,max in Earth S	ystem Models. Phot	osynth
925	Res	119: 15–29				
926	Rosnow JJ,	Evans MA, Kapi	ralov MV, Cou	sins AB, Edward	ls GE, Roalson EH	(2015)
927	Kra	nz and single-cel	l forms of C ₄	plants in the sub	family Suaedoideae	e show
928	kine	etic C ₄ convergen	nce for PEPC	and Rubisco w	vith divergent amin	o acid
929	subs	stitutions. J Exp B	Sot 66: 7347–7	358.		
930	Roy H, Ai	ndrews TJ (2000)) Rubisco: as	sembly and mec	chanism. In: Leegoo	od RC,
931	Sha	rkey TD, von	Caemmerer S	, eds. Photosy	nthesis: Physiolog	y and
932	Met	abolism. Dordrec	ht: Kluwer. pp	53-83		
933	Sage RF ((2002) Variation	in the k_{cat} of	Rubisco in C ₃	and C ₄ plants and	some
934	imp	lications for phot	tosynthetic per	formance at hig	sh and low tempera	ture. J
935	Exp	Bot 53: 609–620				
936	Sage RF,	Cen Y, Meirong	L (2002) The	activation state	of Rubisco directly	limits
937	pho	tosynthesis at lov	v CO ₂ and low	O ₂ partial pres	sures. Photosynth R	les 71:
938	241	-250.				
939	Sage RF, V	Way DA, Kubien	DS (2008) Ru	bisco, Rubisco a	ctivase, and global c	climate
940	chai	nge. J Exp Bot 59	: 1581–1595			
941	Savir Y,	Noorb E, Milol	b R, Tlustya	T (2010) Cro	ss-species analysis	traces
942	adaj	ptation of Rubisc	o toward optim	mality in a low-	-dimensional landsc	ape. P
943	Nat	l Acad Sci USA 1	07: 3475–3480)		

944	Scafaro AP, Yamori W, Carmo- Silva AE, Salvucci ME, von Caemmerer S,
945	Atwell B J (2012) Rubisco activity is associated with photosynthetic
946	thermotolerance in a wild rice (Oryza meridionalis). Physiol Plantarum 146:
947	99–109
948	Spreitzer RJ, Salvucci ME (2002) RUBISCO: structure, regulatory interactions, and
949	possibilities for a better enzyme. Annu Rev Plant Biol 53: 449–475.
950	Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic
951	analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-
952	2690
953	Tcherkez GG, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and
954	confused substrate specificity, all ribulose bisphosphate carboxylases may be
955	nearly perfectly optimized. P Natl Acad Sci USA 103: 7246–7251
956	Truesdale GA, Downing AL (1954) Solubility of oxygen in water. Nature, Lond
957	173: 1236
958	Uemura K, Miyachi S, Yokota A (1997) Ribulose-1,5-bisphosphate
959	carboxylase/oxygenase from thermophilic red algae with a strong specificity
960	for CO ₂ fixation. Biochem Bioph Res Co 233: 568–571
961	von Caemmerer S (2000) Biochemical models of leaf photosynthesis. Collingwood,
962	Australia: CSIRO Publishing. ISBN 0 643 06379 X
963	von Caemmmerer S (2013) Steady- state models of photosynthesis. Plant Cell
964	Environ 36: 1617–1630
965	von Caemmerer S, Evans JR (2015) Temperature responses of mesophyll
966	conductance differ greatly between species. Plant Cell Environ 38: 629-637
967	Walker B, Ariza LS, Kaines S, Badger MR, Cousins AB (2013) Temperature
968	response of in vivo Rubisco kinetics and mesophyll conductance in

- 969 Arabidopsis thaliana: comparisons to Nicotiana tabacum. Plant Cell Environ
 970 36: 2108–2119
- Wang M, Kapralov MV, Anisimova M (2011) Coevolution of amino acid residues
 in the key photosynthetic enzyme Rubisco. BMC Evolutionary Biology 11:
 266
- 974 Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of
 975 phylogenetic community structure and trait evolution. Bioinformatics 24:
 976 2098–2100
- 977 Weber DJ, Andersen WR, Hess S, Hansen DJ, Gunasekaran M (1977) Ribulose-
- 978 1,5-bisphosphate carboxylase from plants adapted to extreme environments.
 979 Plant Cell Physiol 18: 693–699
- 980 Whitney SM, Sharwood RE (2008) Construction of a tobacco master line to
 981 improve Rubisco engineering in chloroplasts. J Exp Bot 59:1909–1921
- 982 Whitney SM, Houtz RL, Alonso H (2011) Advancing our understanding and
 983 capacity to engineer nature's CO₂-sequestering enzyme, Rubisco. Plant
 984 Physiol 155: 27–35
- 985 Whitney SM, Birch R, Kelso C, Beck JL, Kapralov MV (2015) Improving
 986 recombinant Rubisco biogenesis, plant photosynthesis and growth by
 987 coexpressing its ancillary RAF1 chaperone. P Natl Acad Sci USA 112: 3564–
 988 3569.
- 989 Yamasaki T, Yamakawa T, Yamane Y, Koike H, Satoh K, Katoh S (2002)
 990 Temperature acclimation of photosynthesis and related changes in
 991 photosystem II electron transport in winter wheat. Plant Physiol 128: 1087–
 992 1097

- 993 Yamori W, Suzuki K, Noguchi KO, Nakai M, Terashima I (2006) Effects of
 994 Rubisco kinetics and Rubisco activation state on the temperature dependence
 995 of the photosynthetic rate in spinach leaves from contrasting growth
 996 temperatures. Plant Cell Environ 29: 1659–1670
- 997 Yamori W, von Caemmerer S (2009) Effect of Rubisco activase deficiency on the
 998 temperature response of CO₂ assimilation rate and Rubisco activation state:
 999 insights from transgenic tobacco with reduced amounts of Rubisco activase.
 1000 Plant Physiol 151: 2073–2082
- Yamori W, Noguchi K, Hikosaka K, Terashima I (2010) Phenotypic plasticity in
 photosynthetic temperature acclimation among crop species with different
 cold tolerances. Plant Physiol 152: 388–399
- Yamori W, Nagai T, Makino A (2011) The rate- limiting step for CO₂ assimilation
 at different temperatures is influenced by the leaf nitrogen content in several

1006C3 crop species. Plant Cell Environ 34: 764–777

- 1007 Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum
 1008 likelihood 13: 555–556
- Yang Z, Wong WS, Nielsen R (2005) Bayes empirical Bayes inference of amino
 acid sites under positive selection. Mol Biol Evol 22: 1107–1118
- 1011 Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol
 1012 Evol 24: 1586–1591
- 1013 Yeoh HH, Badger MR, Watson L (1980) Variations in Km (CO₂) of ribulose-1,5-
- 1014 bisphosphate carboxylase among grasses. Plant Physiol 66: 1110–1112
- Yeoh HH, Badger MR, Watson L (1981) Variations in kinetic properties of
 ribulose-1,5-bisphosphate carboxylases among plants. Plant Physiol 67: 1151–
- 1017 1155

1018	Yokota A, Canvin DT (1985) Ribulose bisphosphate carboxylase/oxygenase content
1019	determined with [¹⁴ C]carboxypentitol bisphosphate in plants and algae. Plant
1020	Physiol 77: 735–739

- 1021 Zhu XG, Jensen RG, Bohnert HJ, Wildner GF, Schlitter J (1998) Dependence of
- 1022 catalysis and CO_2/O_2 specificity of Rubisco on the carboxy-terminus of the
- 1023 large subunit at different temperatures. Photosynth Res 57: 71–79
- 1024 Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater
 1025 yield. Annu Rev Plant Biol 61: 235–261