
Lord, R, George, KP, Somauroo, J, Stembridge, M, Jain, N, Hoffman, MD, 
Shave, R, Haddad, F, Ashley, E, Jones, H and Oxborough, D

 Alterations in Cardiac Mechanics Following Ultra-Endurance Exercise: 
Insights from Left and Right Ventricular Area-Deformation Loops.

http://researchonline.ljmu.ac.uk/id/eprint/3867/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Lord, R, George, KP, Somauroo, J, Stembridge, M, Jain, N, Hoffman, MD, 
Shave, R, Haddad, F, Ashley, E, Jones, H and Oxborough, D (2016) 
Alterations in Cardiac Mechanics Following Ultra-Endurance Exercise: 
Insights from Left and Right Ventricular Area-Deformation Loops. Journal of

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Page 1 

 

Alterations in Cardiac Mechanics following Ultra-endurance Exercise: Insights from Left and 

Right Ventricular Area-Deformation Loops 

 

 

Rachel Lord1, Keith George1, John Somauroo1,2, Mike Stembridge3, Nikhil Jain4, Martin D. Hoffman5, 

Rob Shave3, Francois Haddad4, Euan Ashley4, Helen Jones1, David Oxborough1 

 

1 Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly 

Building, Byrom Street, Liverpool, UK  

2 Countess of Chester Hospital, NHS Trust, Chester, UK 

3 Cardiff School of Sport, Cardiff Metropolitan University, Cardiff  

4 Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, CA, USA  

5 Department of Physical Medicine & Rehabilitation, Department of Veterans Affairs, Northern 

California Health Care System, and University of California Davis Medical Center, Sacramento, CA, 

United States 

 

 

 

Address for Correspondence:  

Dr David Oxborough,  
Reader in Cardiovascular Physiology 
Research Institute for Sport and Exercise Sciences, 
Tom Reilly Building, 
Liverpool John Moores University,  
Liverpool,  
L3 3AF 
Email: d.l.oxborough@ljmu.ac.uk    
Tel:  0151 904 6231 

mailto:r.lord@2009.ljmu.ac.uk


Page 2 

 

Abstract 

Objective: The aim of this study was to utilise novel area-deformation (ε) loops to interrogate the 

interaction between the right and left ventricular mechanics following a 100 mile endurance run.  

 

Methods: Fifteen participants (body mass 70.1 ± 8.8 kg, age 40 ± 8 years) were recruited for the 

study. Echocardiograms were performed pre-race, post-race and 6 hours into recovery. Right 

ventricular (RV) and left ventricular (LV) area and longitudinal ε were assessed using standard and 

speckle tracking echocardiography. Following cubic spline interpolation these variables were obtained 

across the same cardiac cycle and used to derive area-ε loops.  

 

Results: The RV area-ε loop demonstrated a rightward shift post-race with increased RV area (26.0 

to 27.1 cm2) and reduced peak RV ε (-28.6 to -25.8%). The recovery RV area-ε loop was similar to 

post-race. A leftward shift was observed in the LV area-ε loop post-race secondary to reduced LV 

area (35.8 to 32.5 cm2 respectively) and reduced peak ε (-18.3 to -16.6% respectively). In recovery, 

LV ε values returned towards baseline.  

 

Conclusion: A 100 mile ultra-marathon resulted in a rightward shift in the RV area-ε loop as a result 

of RV dilatation. There was a concomitant leftward shift in the LV area-ε loop as a result of under-

filling of the LV. At 6 hr post-exercise there was a partial recovery of the LV whilst RV function 

remained depressed. It appears that changes in RV function do not have a serial impact on the LV 

during recovery from ultra-endurance activity.  

 

Keywords: echocardiography, endurance exercise, strain imaging, area-deformation loops, cardiac 

mechanics 
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Introduction 

The impact of prolonged strenuous exercise on cardiac function has received significant attention (1) 

with evidence of a transient, negative impact on both the right (RV) and left (LV) ventricles. A number 

of theories describing the possible mechanisms responsible for these findings have been proposed 

including beta-adrenergic receptor desensitization, oxidative stress and impaired calcium metabolism 

(2), however these have yet to be substantiated. A new theory has suggested that RV function may 

be depressed post-exercise due to the disproportionate changes in RV wall stress, subsequent to an 

increased pulmonary vascular resistance encountered during prolonged activity (3). In this instance, 

the RV is unable to maintain contractile force against an elevated afterload and to sustain stroke 

volume (SV), the RV dilates. A reduction in RV SV would have the effect of reducing blood volume 

through the pulmonary system reducing preload to the left atrium (LA). This in turn would impact on 

overall LV filling.   

 

Echocardiographic techniques such as strain (ɛ) imaging have allowed a more comprehensive 

assessment of LV and RV function and these have recently been employed in the post-prolonged 

exercise setting (4-7). These studies have reported a reduction in peak LV and RV ε alongside 

alterations in chamber dimensions, but the impact of ultra-endurance exercise on temporal cardiac 

mechanics remains largely unknown. In this setting, the interaction of RV and LV structure and 

function has received limited attention and a comprehensive evaluation of simultaneous structure and 

ε throughout the cardiac cycle has not been attempted. The combination of echocardiographic 

modalities may help to reveal mechanical changes in cardiac function whilst offering a more 

comprehensive understanding of exercise-related structural and functional adaptation. The concept of 

assessing area-ε relationships (loops) within the ventricles is novel and provides the potential for 

determining the contribution of longitudinal deformation to area change in both ventricles.  

 

In view of this, the current study utilises a novel approach by assessing echocardiographic derived 

temporal area-ε loops in conjunction with conventional 2D and Doppler indices, in order to establish 

any serial impact of changes in RV structure and function on and LV structure and function as well as 

any ventricular interaction following prolonged strenuous exercise (100 mile endurance run). 
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Furthermore, the study aims to establish whether any changes in cardiac mechanics persist 6 hours 

into recovery from the exercise bout.  

 

Materials and methods  

Sample Population  

Fifteen elite runners (14 males, 1 female, body mass 70.1 ± 8.8 kg, height 179 ± 6 cm, age 40 ± 8 

years) at the 2013 Western States 100 mile Endurance Run (Squaw Valley to Auburn, CA) were 

recruited and volunteered to take part in the study. Participants self-reported: no known 

cardiovascular disease, no prescribed medications and no comorbidities or family history of 

cardiovascular disease. The current training status (training days 6 ± 1 per week, 65 ± 12 miles/ 12 ± 

3 hours per week) and number of completed ultra-marathons (38 ± 32) were documented. Written 

informed consent was obtained and ethics approval granted by the Liverpool John Moores University 

Ethics Committee.  

 

Protocols 

Participants were assessed pre-race (24 - 48 hours prior to the race) and immediately post-race 

(within 30 minutes of race completion). A sub-sample (n = 9) also returned for a recovery data 

collection at 6 hours post-race completion. Height, body mass, resting blood pressure (BP), a resting 

12-lead electrocardiogram (ECG) and a supine echocardiogram were recorded at each time point. For 

the pre-race assessments, participants were requested to avoid vigorous training, alcohol for a 

minimum of 24 hours prior to the initial assessment and caffeine 4 hours prior to this time point. 

Throughout the race the participants were permitted to consume food and fluid ad libitum and 

temperature ranged from 73 to 102 °F. Race finishing time ranged from 18:55 to 23:55 hours.  

 

Echocardiographic Assessments 

All echocardiographic images were acquired using a commercially available ultrasound system (Vivid 

Q, GE Medical, Horten, Norway) with a 1.5-4 MHz phased array transducer. Images were obtained by 

a single experienced sonographer with the participant in the left lateral decubitus position. Images 

were recorded to DVD in raw DICOM format and data were analysed offline using commercially 
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available software (EchoPac version 7, GE Medical, Horten, Norway). A minimum of three cardiac 

cycles were averaged for all peak indices.  

 

Conventional 2D, Doppler and Tissue Doppler Echocardiography 

The RV was assessed in accordance with ASE guidelines (8) providing structural and functional 

indices at the outflow tract (RVOTplax, RVOT1 and RVOT2) and at the inflow (RVD1, RVD2, RVD3). RV 

diastolic area (RVDarea) and systolic area (RVSarea) were measured and the fractional area change 

calculated (RVFAC). RV SV was calculated from conventional pulsed wave Doppler using the 

volumetric equation 𝑅𝑉𝑆𝑉 = (𝜋𝑟2). 𝑅𝑉𝑂𝑇2𝑉𝑇𝐼 where (r = RVOT2(systole) / 2) and velocity time integral 

(VTI) is obtained sub-valvular. A pulsed wave TDI sample positioned at the tricuspid annulus allowed 

the assessment of RV S’, E’ and A’ myocardial velocities. RV systolic pressure was derived from the 

tricuspid regurgitant jet using continuous wave Doppler.  Pulmonary artery (PA) systolic pressure 

(PASP) was calculated as (PASP (mmHg) = RVSp + 5mmHg). RV and LV end-systolic wall stress was 

calculated using the formula ES-σ = Pr/2h as previously described (3). 

 

 

A comprehensive assessment of LV structure and function was undertaken in accordance with 

American Society of Echocardiography (ASE) guidelines (9). LV end diastolic (EDV) and systolic 

(ESV) volumes were estimated using Simpsons biplane methodology allowing the calculation of 

stroke volume (SV) and ejection fraction (EF). LV diastolic function was assessed using trans-mitral 

Doppler providing peak velocities in early (E) and late diastole (A) and their ratio (E/A). Pulsed wave 

tissue Doppler imaging (TDI) assessment of the lateral and septal annulus provided peak myocardial 

velocities in systole (S’), early diastole (E’) and late diastole (A’) and the average of both walls 

reported. E/E’ was calculated as a non-invasive surrogate of left atrial (LA) pressure.  

 

A full assessment of LA and RA structure and volumetric function was assessed using a Simpson 

biplane method as previously described (6). LA and RA volumes at end systole (VOL ES), end 

diastole (VOL ED) and pre A (VOL pre A) were calculated allowing the derivation of reservoir (RES), 

LA conduit (CON) and booster (BOO) volumes.  
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2D Myocardial Speckle Tracking 

A focused apical four chamber orientation was acquired for assessment of the LV whilst a modified 

image with lateral transducer movement was acquired for assessment of the RV.  For the assessment 

of LV circumferential function, rotation and torsion, images of the LV were acquired from a parasternal 

short axis view at the base, mid and apex. For all images the system was optimised as previously 

described (5). Offline analysis allowed the assessment of peak global longitudinal RV ε calculated as 

an average of 3 myocardial segments from base to apex of the RV lateral wall. LV global longitudinal 

ε  is based on a 6 segment model from the four-chamber view only in order to allow the construction 

of simultaneous area-strain loops. Peak global LV circumferential ε was calculated as an average of 6 

myocardial segments at basal mid and apical levels. Peak basal and apical rotation and rotation rates 

in systole and early and late diastole were obtained to allow the calculation of peak twist and twist rate 

as the net difference between basal and apical rotation and rotation rate respectively 

 

Area-Deformation Loops 

In order to standardise for variable heart rates (HR), temporal data was obtained throughout the entire 

cardiac cycle using cubic spline interpolation in Microsoft Excel (2010) to provide 300 data points for 

both systole and diastole as previously described (10). The splined data of longitudinal RV and LV ε 

were used to derive time points for the simultaneous area and ε calculations. Both systole and 

diastole were divided into 10% increments, essentially providing 20 time points and subsequent ε 

values across the full cardiac cycle. The original image and cardiac cycle that was used to derive the 

ε values was then re-analysed for RV/LV area in 2D at each corresponding time point, hence 

providing a simultaneous RV/LV ε and RV/LV area (see Figure 1). This was undertaken for each 

individual participant and the mean area-ε at percentage increments were calculated across the 

cohort. Data was plotted as area against ε (area-ε loop) for the whole cohort for RV and LV 

longitudinal motion using commercially available software (GraphPad Prism). 

   

Polynomial regression analysis of the order y=mx2+mx+c was performed on each individual 

participants area-ε loops for systole and diastole independently at pre, post and post 6 hours. Using 

the polynomial equation ε values in systole and diastole were calculated for 10% increments of the 

chambers end diastolic area (EDA) within the range  40-90% for the LV and 60-90% for the RV to 
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reflect physiological functional area change in each ventricle. The difference between the same 

percentage of EDA in systole and diastole was calculated and termed systolic-diastolic strain 

gradient. 

 

Reliability data for the RV and LV area-ε loops was assessed by a single operator constructing and 

analysing individual loops in a separate sample of 20 healthy control subjects on two separate 

occasions. Data from the RV and LV were similar across EDA ranges (40 to 80%) with coefficient of 

variation values ranging from 7-21% for simultaneous ε, area and systolic-diastolic gradient.   

Comprehensive reliability data for each 10% change in EDA is provided in Supplementary Tables 1-

3).   

 

Statistical Analysis 

Due to the reduced sample size from post-race to post 6 hour data collection, pre-race versus post-

race data were compared using Student’s Paired T-tests and recovery data reported for descriptive 

purposes only.  All statistical tests were performed using commercially available software (IBM SPSS 

version 21). Previous studies on a similar sample size have set alpha as P < 0.05 with no correction 

for multiple comparisons, in the current study  alpha was set at P < 0.01 as a sensible balance 

between the likelihood of producing type I and II statistical errors. 
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Results  

Demographics 

Systolic and diastolic BP were significantly reduced post-race.  Heart rate and body mass were not 

different at pre and post-race assessments (see Table 1). 

 

Conventional 2D, Doppler and Tissue Doppler Echocardiography 

There was a post-race increase of 13% in RV outflow and inflow dimensions (P = 0.004 and 0.002, 

respectively, see Table 2) whilst there was an 18% reduction in RV S’ (P = 0.005; Table 2). RV SV 

was maintained with no significant reduction observed post-race as were RV FAC and RV E’. RV wall 

stress was elevated compared to baseline immediately post-race and in recovery and PAP was 

reduced post-race compared to pre-race measures albeit not significantly. There was an 11% 

decrease in LV EDV post-race (P = 0.005, see Table 2).  There was an 18 % decrease in trans-mitral 

E (P = 0.001) and a subsequent 19% decrease in the E/A velocity ratio (P = 0.003). LV S’, E’ and A’ 

were reduced by 10% post-race (P < 0.006). LV wall stress was reduced post-race and in recovery 

compared to pre-race values, albeit not significantly. LA VOL ES, pre A, ED and RES volumes were 

not different post-race (P > 0.01). There was no change in RA VOL ES, pre A, ED, RES and BOO 

volumes pre to post-race (P > 0.01).  

 

Myocardial ε Imaging 

Peak RV longitudinal ε was reduced by 10 % pre to post-race (P = 0.007). LV longitudinal ε was 

reduced by 9% post-race (P = 0.01). LV basal, mid and apical circumferential ε were all reduced (19, 

14 and 15%, P = 0.001, 0.008 and 0.01 respectively) pre to post-race as were basal and apical 

rotation, twist and systolic and diastolic twist rates (39, 46 and 46%, P = 0.007, 0.002, <0.001, 0.004 

and <0.001 respectively, see Table 3). 

 

Area-Deformation Loops 

 

The RV area-ε loop demonstrated a rightward shift immediately post-race with increased RV area and 

reduced peak RV ε dictating that RV ε was elevated for any given area. That aside the polynomial 

regression equations were similar compared to baseline and the systolic-diastolic strain gradient was 
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unchanged reflected by the similar shape of the loop (see Table 4). The RV area-ε loop at 6 hr 

recovery was almost identical to the post-race loop (see Figure 2). 

 

A leftward shift was observed in the LV area-ε loop post-race, secondary to reduced LV area and 

reduced peak ε.  Hence for any given area, absolute ε values were lower. There was a change in LV 

longitudinal systolic-diastolic strain gradient post-race at 80, 70 and 40% EDA (see Table 4). This is 

also corroborated by the change in shape of the LV post-race area-ε loop. In recovery, the systolic-

diastolic strain gradient returned close to baseline values, however the LV loop remained shifted to 

the left (see Figure 2).    
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Discussion 
 
This is the first study to determine simultaneous area and ε relationships in the RV and LV in 

response to prolonged strenuous exercise. We observed that, 1) prolonged strenuous exercise 

resulted in RV dilatation and a reduction in contractility reflected by the rightward shift in the area-ε 

loop, although RV SV was maintained, and 2) post-exercise there is reduced filling in the LV as 

demonstrated by the leftward shift in the area-ε loop. The lack of change in the RV loop in the 

presence of a return towards baseline of the LV systolic-diastolic gradient at 6 hours recovery 

indicates an intrinsic reduction in relaxation that does not appear to be primarily driven by changes in 

RV structure and function such that there appears to be no serial impact of the RV on the LV. 

 

Impact of Prolonged Strenuous Exercise 

Previous studies on the LV and RV following prolonged strenuous exercise using conventional 2D 

and Doppler indices have reported a decrease in both LV and RV systolic and diastolic function (4, 5, 

7). The data in the current study supports these findings with a depression in LV and RV systolic and 

diastolic function evident post-exercise. LV and RV structural indices in the current study are also in 

support of exercise-induced adaptation previously reported with a reduction in LV and increase in RV 

size previously documented (5-7).  

 

The data from area-ε loops describe detailed changes in cardiac mechanics following prolonged 

endurance exercise whilst illuminating potential mechanisms. The visual representation of temporal 

cardiac mechanics provides further understanding of the ventricular interaction. The area-ε loops 

identify a post-exercise increase in RV size without any change in longitudinal contribution to area 

change. In view of an unchanged area-ε relationship and no change in the longitudinal systolic-

diastolic strain gradient it is likely that the reduced peak contractility observed post-exercise is a 

consequence of the larger volume. Our findings of a maintained RV SV and no change in LA end 

systolic volume suggest a lack of intrinsic dysfunction of the RV myocardium. The LV area-ε loop data 

demonstrates post-exercise reduced filling of the LV with a concomitant reduction in peak longitudinal 

ε. Although systolic ε is lower at any given area post-exercise, it is clear the area-deformation 

relationship in systole is similar to baseline and is therefore likely to be a consequence of reduced 

filling. LV wall stress and blood pressure are both reduced post-race and therefore LV afterload is 
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reduced. In this instance, myocardial ε should increase due to a relative reduction in myocardial 

workload (11), in contrast we observed a reduction in post-race ε providing further support for an 

intrinsic reduction in function. There is a significant change in the longitudinal contribution in diastole 

post-race as demonstrated by an increased LV loop systolic-diastolic strain gradient. These changes 

in diastolic mechanics are in the presence of a reduced LA conduit volume and therefore may be 

partly responsible for the under-filling observed post-exercise. This is further evidenced by a 

maintenance of LA preload / volume and RV SV. These changes in the LV loop are supported by a 

reduction in circumferential strain, basal and apical rotation, twist and early diastolic untwist rate.  

 

RV dilatation and dysfunction has been suggested to be secondary to a sustained exposure to a 

relatively elevated wall stress (3) and therefore the dysfunction observed in the post-exercise setting 

is likely to be a ‘fatigue’ of the myocardium resulting in a reduced stroke volume (5) with a serial 

negative impact on LV filling (6). Data from the current study significantly develops our knowledge of 

the post-prolonged exercise structure / function relationship of the RV but with only partial support of 

previous theories and no evidence indicating a serial impact of the RV on LV filling. Post-exercise wall 

stress in the current study is elevated, however the pulmonary artery pressure is reduced in recovery 

and therefore the increase in wall stress is likely as a result of the RV dilatation seen in recovery from 

prolonged strenuous exercise.  The mechanistic theories postulated for LV dysfunction following 

prolonged endurance exercise are plentiful and include oxidative stress (12), myocardial damage 

(13), beta-receptor desensitization (14) as well as the impact from an enlarged, dysfunctional RV (3). 

The recovery loops provide further insight into the mechanisms underpinning LV dysfunction. Whilst 

the RV area-ε relationship remains similar to immediately post-exercise, the systolic-diastolic strain 

gradient of the LV loop returns to baseline level and provides strong evidence that the changes in 

longitudinal contribution to area change in diastole are intrinsic in nature and not secondary to a serial 

impact from the RV. That aside, the LV is still under-filled and therefore we must also speculate that 

there is an additional mechanism at play leading us to consider the multifactorial nature of LV post-

exercise dysfunction. 

 

A major contributing factor in LV filling is the ability of the ventricle to untwist, generating a sharp 

decline in LV pressure during early diastole (10). LV untwist is ultimately driven by its preceding twist 
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as potential energy is stored within the compressed titin molecule during ventricular systole (15) but 

also by the maintenance of LV structural integrity. It is apparent that any disruption to twist mechanics 

will impact on overall LV filling. Our data demonstrates a reduced twist and untwist immediately post-

exercise which persists 6 hours into recovery. This may contribute to reduced LV filling immediately 

post-race and throughout the recovery period.  

 

An alternative mechanism for the reduction in LV twist is a parallel RV impact on LV function, 

indicative of ventricular interdependence. This has been observed in the presence of increased RV 

volume/pressure and results in septal displacement in both systole and diastole (16). The displaced 

septum in diastole impacts on LV circumferential and torsional mechanics reducing the ability of the 

LV to fill to capacity, thereby highlighting the interaction between the ventricles (17).  Septal 

displacement has been observed in a few post-exercise studies (5, 7) as well as a recent case-report 

(18). The current data highlights an increased eccentricity index immediately post-exercise and 

theoretically, it could be argued that a ‘parallel RV impact’ has some influence on LV filling in the 

current study independent of any intrinsic reduction in LV relaxation. 

 

Implications 

Taking the current data, together with previous research, it is suggested that there is a possible 

cascade of cardiovascular events that result in changes in function. This cascade appears to be 

multifactorial, starting with diastolic filling abnormalities of the LV and RV at marathon level (6, 7, 19, 

20) or moderate intensity shorter duration exercise (21). As exercise duration and/or intensity 

progress, this culminates in a combination of intrinsic LV and RV dysfunction and structural 

adaptation (3, 4, 5, 7, 22) alongside evidence of ventricular interdependence (3,5). Our data highlights 

the impact of extreme endurance exercise on RV and LV function and supports the notion of an 

interdependence between the RV and LV due to a displaced interventricular septum, due to RV 

overload, and the subsequent impact on LV mechanics.  Previous data from our group have also 

demonstrated a negative correlation between finishing time and magnitude of RV enlargement at the 

inflow and dysfunction (5, 22)(24). This raises the likelihood of exercise intensity being an important 

driver in acute RV adaptation and may also apply with respect to the LV. The relationship between 

increased previous experience and a reduced acute response is equally intriguing. This would imply 
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that RV remodeling through repeated exposure to an ultramarathon results in chronic adaptation that 

may well be protective when faced with an acute exercise stimulus. What this means for the ‘weekend 

warrior’ is debatable but it would be sensible to consider this spectrum and the heterogeneous effects 

based on individual training, experience and race completion time. These findings lead us to consider 

that the magnitude of acute RV adaptation is very likely to be related to exercise volume (i.e. intensity 

x duration) particularly in those athletes that are less experienced.   

 

 

Limitations  

A 3 dimensional (3D) technique would overcome potential geometric limitations of the current 2D 

imaging, however the current frame-rates for real-time acquisition of 3D volume and ε are low and 

provide limited scope for detecting small changes in function. Global longitudinal  in the current study 

was derived using a 6 segment model and therefore does not represent inferior, anterior, posterior or 

anterior septal function. The 6 segment model from the apical 4 chamber view provides global 

longitudinal strain that is representative of global function in athletes. RV and LV area-ε loops were 

only assessed in the longitudinal plane and therefore construction of circumferential area-ε loops may 

provide additional insight. The assessment of ventricular function and area-ε loops during exercise 

may reveal the timing of RV dilatation and determine whether LV intrinsic relaxation occurs prior to 

recovery. It would also be pertinent to assess the time course of RV and LV response in recovery 

from prolonged endurance exercise. The recovery time point in the current study indicates a partial 

recovery of the LV but not the RV and it is unclear how long these exercise-induced responses may 

persist for. Periodic assessments over the 24-48 hours following prolonged endurance exercise is an 

important consideration for future studies and has implications for sufficient recovery periods between 

training session and/or races.  Due to the nature of this field based study, we were only able to 

assess a small sample of athletes and therefore the statistical power of the study is limited. In 

addition, six of the fifteen athletes assessed prior to and immediately following the race did not return 

for the 6 hour recovery time point, therefore recovery data could only be provided for descriptive 

comparison and is not included in any statistical analysis.  
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There are alterations is loading from pre to post-race, indicated by elevated heart rate and reduced 

blood pressure immediately following the race. A correlation between the change in heart rate and 

changes in the variables assessed in this study did not reveal any significant relationship. This 

indicates that the significant differences seen pre to post race are occurring independent of heart rate 

mediated loading conditions. Furthermore, previous studies have demonstrated that when afterload is 

reduced (as with a lower BP) then strain would be expected to increase as it is working against a 

lower afterload and therefore wall stress is reduced (11, 23). Our data reflects the opposite response 

with a reduction in strain when afterload is slightly altered suggesting that the changes in loading 

conditions are not solely responsible for these changes. In the event of reduced preload, strain may 

be reduced as a result of the Frank-Starling law. If there is reduced filling in the left ventricle (indicated 

by a reduction in EDV), then stroke volume and contractility are reduced. 

 

Cardiac biomarkers were not measured during this study, however the inclusion of brain natriuretic 

peptide and/or cardiac troponins may aid the understanding of post-exercise changes in cardiac 

structure and function. Previous studies have linked post-exercise cardiac biomarker release to LV 

and more specifically RV dysfunction and investigating this relationship further may expose a 

mechanistic link. Blood sampling in our participants would also help to exclude perturbations to blood 

rheology such as rhabdomyolysis and hyponatremia, which could impact on cardiac function. That 

said, all participants were all self-ambulatory, had no physical signs and symptoms of sodium 

disturbance and all had voided their bladder during or after the race with no blood content.  

 

Conclusion 

There is evidence of a persistent post-exercise shift in the RV area-ε loop indicating RV dilatation with 

reduced contractility that is likely a consequence of RV structural adaptation rather than any intrinsic 

dysfunction. The LV area-ε loop is shifted left immediately post-exercise and the LV is under filled, 

likely as a result of intrinsically reduced longitudinal relaxation and impaired LV twist/untwist. The 

former mechanism is transient and returns to normal following 6 hours of recovery whilst LV 

twist/untwist remains depressed which could explain a persistent LV under-filling, perhaps due to an 

RV/LV interaction. Importantly from a mechanistic insight, at 6 hr post-exercise there appears to be no 
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obligatory serial impact of reduced RV function on LV mechanics.  It may be that mechanical changes 

with prolonged exercise in the LV and RV are independent.  
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Table and Figure Legends 

 

Table 1 – Participant demographics pre and post-race and after 6h of recovery 

 
Table 2 - Left and right ventricular and atrial structural and functional data pre-race, post-race 
and after 6 hours of recovery 

 
Table 3 - Left and right ventricular ε data pre-race, post-race and after 6 hours of recovery 

 

Table 4 - Systolic-diastolic strain gradients for right and left ventricles pre-race, post-race and 
after 6 hours of recovery 

 

Figure 1 – Systematic methodology for generation of area-deformation loops 
 

Figure 2 – Right and left ventricular area-deformation (ε) loops pre to post-race and post-race 
to recovery. Pre and post-race loops derived from n = 15, recovery loops derived from n = 9. 

 



Page 20 

 

Table 1 – Participant demographics pre and post-race and after 6 hours of recovery 

Parameter Pre (n = 15) Post (n = 15) Recovery (n = 9) 

Body mass (kg) 70.1 ± 8.8 68.8 ± 7.8* 66.1 ± 7.9 

Systolic BP (mmHg) 134 ± 11 114 ± 12* 117 ± 12 

Diastolic BP (mmHg) 84 ± 10 76 ± 8* 77 ± 8 

Heart rate (bpm) 63 ± 10 70 ± 10 71 ± 12 

* indicates statistical significance pre to post race (P<0.01. Data analysed using paired t-tests and 
presented as mean±SD
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Table 2 - Left and right ventricular and atrial structural and functional data pre-race, post-race 
and after 6 hours of recovery 

Parameter Pre (n = 15) Post (n = 15) Recovery (n = 9) 

Right Ventricle 

RVOTplax (mm) 30 ± 4 33 ± 3* 33 ± 4 

RVOT1 (mm) 32 ± 4 36 ± 4* 35 ± 5 

RVOT2 (mm) 25 ± 2 28 ± 2 27 ± 3 

RVD1 (mm) 43 ± 4 48 ± 5* 47 ± 6 

RVD2 (mm) 32 ± 3 37 ± 3* 36 ± 3 

RVD3 (mm) 84 ± 6 83 ± 7 82 ± 6 

RVFAC (%) 54.1 ± 5.8 48.8 ± 4.7 50.3 ± 8.2 

TAPSE (mm) 24 ± 4 23 ± 4 26 ± 3 

RV S’ (cm/s) 17 ± 3 14 ± 3* 16 ± 1 

RV E’ (cm/s) 17 ± 2 14 ± 4 14 ± 3 

RV A’ (cm/s) 13 ± 5 12 ± 3 13 ± 3 

RV SV (ml) 92 ± 25 89 ± 25 102 ± 35 

PASP (mmHg) 25 ± 4 22 ± 8 23 ± 2 

RV Wall Stress 
(kdynes/cm2) 

3.97 ± 1.93 4.39 ± 1.30 2.94 ± 2.24 

Left Ventricle 

LV EDV (ml) 123 ± 15 109 ± 16* 112 ± 17 

LV ESV (ml) 41 ± 5 47 ± 9* 39 ± 8 

LV SV (ml) 82 ± 11 63 ± 11* 73 ± 11 

LV EF (%) 66 ± 3 58 ± 6* 65 ± 3 

MV E (m/s) 0.84 ± 0.17 0.69 ± 0.18* 0.74 ± 0.17 

MV A (m/s) 0.50 ± 0.09 0.51 ± 0.11 0.53 ± 0.08 

MV E/A 1.70 ± 0.38 1.37 ± 0.37* 1.38 ± 0.26 

LV S’ (cm/s) 13 ± 2 12 ± 1* 13 ± 2 

LV E’ (cm/s) 16 ± 2 13 ± 3* 15 ± 2 

LV A’ (cm/s) 10 ± 1 9 ± 2* 9 ± 2 

E/E’ 5.29 ± 1.01 5.20 ± 1.05 5.11 ± 1.26 

EI Diastole 1.16 ± 0.11 1.22 ± 0.10 1.14 ± 0.08 

EI Systole 1.09 ± 0.07 1.15 ± 0.12 1.14 ± 0.08 

LV Wall Stress 
(kdynes/cm2) 

16.82 ± 2.34 14.42 ± 2.40 12.83 ± 1.66 

Left Atrium 

LA VOL ES (ml) 55 ± 8 57 ± 11 60 ± 12 

LA VOL pre A (ml) 33 ± 5 34 ± 8 37 ± 10 

LA VOL ED (ml) 17 ± 3 21 ± 5 22 ± 6 

LA RES (ml) 38 ± 6 36 ± 6 38 ± 8 

LA CON (ml) 44 ± 13 26 ± 8 35 ± 5 

LA BOO (ml) 16 ± 74 13 ± 4 15 ± 6 

Right Atrium 

RA VOL ES (ml) 62 ± 23 62 ± 14 58 ± 22 

RA VOL pre A (ml) 42 ± 14 46 ± 13 40 ± 13 

RA VOL ED (ml) 28 ± 9 29 ± 11 27 ± 8 

RA RES (ml) 34 ± 15 33 ± 9 31 ± 15 

RA BOO (ml) 14 ± 7 17 ± 8 14 ± 7 

*indicates statistical significance pre to post race (P<0.01). Data analysed using paired t-tests and 

presented as mean±SD 
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Table 3 –Right and left ventricular ε data pre-race, post-race and after 6 hours of recovery 

Parameter Pre (n = 15) Post (n = 15) Recovery (n = 9) 

RV longitudinal ε (%) -28.6 ± 3.8 -25.8 ± 2.8* -27.4 ± 4.1 

LV longitudinal ε (%) -18.3 ± 1.5 -16.6 ± 2.7* -18.5 ± 2.4 

LV basal circumferential ε (%) -22.7 ± 2.0 -18.5 ± 3.7* -21.2 ± 2.4 

LV mid circumferential ε (%) -20.4 ± 3.3 -17.6 ± 3.6* -21.1 ± 2.7 

LV apical circumferential ε (%) -39.1 ± 8.1 -33.2 ± 6.6* -35.9 ± 7.3 

Basal rotation (0) -8.7 ± 3.5 -5.3 ± 3.1* -5.2 ± 3.2 

Apical rotation (0) 16.5 ± 6.0 9.0 ± 5.0* 11.7 ± 3.2 

Twist (0) 24.8 ± 6.6 13.5 ± 6.3* 16.5 ± 3.7 

Systolic twist rate (0/s) 121.7 ± 25.9 90.1 ± 25.8* 120.3 ± 16.3 

Early diastolic twist rate (0/s) -150.6 ± 26.1 -83.8 ± 33.6* -149.3 ± 38.5 

Late diastolic twist rate (0/s) -79.0 ± 20.9 -78.5 ± 41.3 -81.9 ± 33.1 

* indicates statistical significance pre to post race (P<0.01). Data analysed using paired t-tests and 
presented as mean±SD 
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Table 4 – Systolic-diastolic strain gradients for right and left ventricles pre-race, post-race and 
after 6 hours of recovery 

% EDA Pre Race (n = 15) Post Race (n = 15) Recovery (n = 9) 

Right Ventricle 

90 -4.2 -4.2 -4.4 

80 -5.8 -6.3 -6.4 

70 -5.7 -6.2 -6.8 

60 -4.1 -4.0 -5.4 

Left Ventricle 

90 -1.0 -1.8 -0.7 

80 -0.9 -2.8* -0.9 

70 -0.7 -2.4* -0.9 

60 -0.3 -0.5 -0.6 

50 0.2 2.8 -0.2 

40 0.8 7.5* 0.5 

* indicates statistical significance pre to post race (P<0.01). Data analysed using paired t-tests. 

 

 

 

 


