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Abstract

Integration of multiple technologies greatly increases the spatial and temporal scales 

over which ecological patterns and processes can be studied, and threats to protected 

ecosystems can be identified and mitigated. A range of technology options relevant to 

ecologists and conservation practitioners are described, including ways they can be 

linked to increase the dimensionality of data collection efforts. Remote sensing, 

ground-based, and data fusion technologies are broadly discussed in the context of 

ecological research and conservation efforts. Examples of technology integration 

across all of these domains are provided for large-scale protected area management 

and investigation of ecological dynamics. Most technologies are low-cost or open-

source, and when deployed can reach economies of scale that reduce per-area costs 

dramatically. The large-scale, long-term data collection efforts presented here can 

generate new spatio-temporal understanding of threats faced by natural ecosystems 

and endangered species, leading to more effective conservation strategies.
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1. Introduction 

Ecologists and conservation practitioners have proven themselves adept at 

incorporating emerging technologies into field data collection efforts (Pimm et al., 

2015). The innovative use of technology is expanding the bounds of traditional 

ecological inference and conservation strategies (Snaddon et al., 2013). Continuing to 

expand efficient data collection in both time and space is crucial in the face of the 

enormous pressure that global changes are exerting on natural ecosystems (Rockström

et al., 2009). Rapid habitat and biodiversity losses (Pimm et al., 2014), illegal wildlife 

harvest and trade (Milner-Gulland and Bennett, 2003), and climate change (IPCC, 

2014) all affect ecosystems across the globe and increasingly require more than just 

field surveys to understand, monitor, and report on their effects. 

Traditional field inventory plots and other sampling strategies are, and will 

continue to be, a crucial tool in the arsenal of ecologists for understanding local-scale 

processes and the functioning of ecosystems. Yet field surveys are costly to set up and

maintain over many years (Berenguer et al., 2015), and they are extremely difficult to 

utilize in remote regions of the world. Just as concerning, in heterogeneous 

ecosystems field plots may actually provide biased estimates of ecological properties 

and processes (Marvin et al., 2014). The technologies we discuss here can help to 

overcome many of these shortcomings, especially when used in combination. Smart 

deployment and use of these technologies can open up new ecological scales to 

investigate the assembly, competition, dispersal, and migration of organisms and their 

interactions with the surrounding environment. Additionally, combating illegal 

activities such as poaching/hunting, logging, and encroachment require efficient 

monitoring and tangible evidence for investigating and prosecuting offenders. 
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Preventing human-wildlife conflict, especially with large animals that can cause 

serious injury or death, often requires similar deployment of these technologies.

 Here we provide descriptions and a synthesis of multiple technologies that can

be deployed at different scales, with two hypothetical examples of how they can be 

integrated to increase the scale (both temporal and spatial) and dimensionality of 

ecological and conservation research. Increasing the resolution and area over which 

data are collected is important for identifying and mitigating threats to protected 

ecosystems, as well as understanding and uncovering ecological patterns and 

processes. Moreover, these data can be better integrated into dynamic global 

vegetation models (DGVMs) when the spatial and temporal scales accurately 

represent the process of interest (e.g., productivity, mortality). Most of the 

technologies discussed here or their associated data are low-cost, open-source, or 

freely available, and have proven applications for ecologists and conservation 

practitioners alike. The economies of scale achievable by these technologies can make

any upfront expense for their purchase or development cost-effective. In Table 1, we 

provide example studies from each of the six main technologies that are described in 

more detail below. Our aim is simply to provoke discussion among researchers about 

the potential for integrating multiple technologies into their work, rather than 

providing a comprehensive critique of each emerging or established technology. 

2. Remote sensing technology 

2.1. Satellite

Satellite remote sensing platforms offer widespread geospatial coverage and, in many 

cases, long temporal records of Earth’s biomes. However, most satellites (especially 

those satellite data providers offering free data access) lack the spatial resolution for 

organismic-level analysis, and often have limited spectral ranges, constraining their 
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potential applications (Asner, 2015). While this is rapidly changing with the recent 

revolution in the way Earth-observing satellites are designed, built, and deployed (see 

discussion of cubesats below), the traditional large-platform satellites still have many 

advantages. An interactive overview of many operational satellites can be found at 

satsummit.github.io/landscape.

 Government-sponsored satellite sensors have the longest temporal data archive

of earth-observing images and are often freely available to the public. NASA’s 

Landsat program just passed its 44th year of continuous operation, providing an 

incredible opportunity to analyze ecological and land use dynamics over very large 

areas (e.g., Hansen et al., 2013). There are many other optical multispectral and active

sensors (e.g., radar, laser) that produce data at spatial resolutions ranging from 30 m 

to 1 km, offering data products for understanding vegetation dynamics and biomass, 

climate and weather patterns, and biophysical variables like surface temperature, soil 

moisture, and CO2 flux (e.g., Goetz et al., 2009). Increased cooperation between the 

ecology and remote sensing communities could lead to improved biodiversity and 

ecosystem monitoring opportunities through publically-funded satellites and sensors

(Skidmore et al., 2015). 

Commercially operated sensors onboard traditional large satellite platforms 

typically offer much higher spatial resolution data (1-5 m), but at high cost. A typical 

archived (previously acquired) multispectral scene will cost at least $20 km-1 with a 

minimum purchase of 25 km2, making large or frequent acquisitions of images 

prohibitively expensive for many researchers. Commercial images are limited in their 

spectral resolution, often composed of four to eight band images, also known as 

multispectral images. Similar to government satellite sensors, these spectral ranges 

5

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

5



allow for visual analysis and the development of basic vegetation indices, but at (or 

near) organismal spatial resolutions. 

The ‘cubesat’ (also known as small satellite or smallsat) revolution currently 

underway is providing new means to conduct earth observation and analysis. Cubesats

weigh less than 10 kg (often only 1 kg), are about the size of a shoebox (Fig. 1), and 

are cheap (relative to large satellites) to design, build, and deploy. This allows for 

large constellations (orbitally-synchronized satellites) to be put into low-earth orbit, 

covering much larger areas of the globe simultaneously, but with less advanced 

sensors than those on large satellite platforms. One such company, Planet (San 

Francisco, CA, USA), is deploying a cubesat constellation with the goal of imaging 

the entire Earth once per day at <5 m resolution. Another smallsat company, Skybox 

Imaging (Mountain View, CA, USA), has HD video capability as well as multispectral

imagery at 2 m resolution, but presently on a much smaller constellation. With the 

rapid advancement of smallsat technology and decreases in associated costs, the 

potential for more advanced sensors on larger satellite constellations will undoubtedly

be realized over the coming years. Nearly real-time monitoring and analysis of 

research and conservation sites is not far off. 

Accessing government and free commercial data has become much easier with

new, web-based platforms that host these data. Almost all NASA-sponsored satellite 

data can be accessed through earthexplorer.usgs.gov at no charge. A more advanced 

image archive and search platform is Google Earth Engine (GEE), capable of rapid 

and sophisticated analysis of satellite imagery using the Google’s cloud computing 

systems at no cost. Many necessary preprocessing steps (e.g., atmospheric correction, 

orthrorectification) have already been applied to the imagery catalogue, and there are 

even derived composite products (e.g., NDVI) available. While utilization of satellite 
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imagery traditionally required specialized technicians to process and interpret, the 

continued maturation of these platforms allows almost anyone to incorporate satellite 

imagery into their projects on some level. 

2.2. Airborne

Over the past several decades airborne platforms have begun to fill a critical gap 

between the measurements provided in field studies and those by satellite-based 

sensors. At one extreme, field plots provide highly detailed measurements of the 

physiology, taxonomy, growth, and mortality of individual organisms (Gentry, 1988), 

while at the other extreme Earth observing satellites provide wall-to-wall coverage of 

ecosystem type, structure, and land-cover change (e.g., Friedl et al., 2002). 

Advancements in sensor technology, image processing and analysis, and mission 

planning now allow measurement of ecosystem properties in plot-level detail at 

landscape-to-regional scales previously only possible with satellites, and at steadily 

decreasing cost. 

While airborne remote sensing has long been used in forestry and agriculture

(Colwell, 1964), a shift from basic analogue and digital photography to high-fidelity 

hyperspectral, active radar and laser, and passive thermal instrumentation has changed

the field dramatically. The proliferation of these modern sensors mounted on aircraft 

operated by government, commercial, and non-profit entities has revealed ecological 

processes in great detail across spatial scales that have long eluded ecologists. Some 

of these data or resulting products are made available to the public (e.g., 

earthexplorer.usgs.gov, cao.carnegiescience.edu). 

One such system, the Carnegie Airborne Observatory (CAO) Airborne 

Taxonomic Mapping System (AToMS, cao.carnegiescience.edu), is an airborne 
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platform that fuses data collected simultaneously by three different sensors (Asner et 

al., 2012). Two optical hyperspectral imagers (also known as imaging spectrometers) 

and a waveform light detection and ranging (LiDAR) scanner are a powerful 

combination. Together they have been used to reveal forest canopy chemistry, 

biological diversity, carbon stocks, ecosystem structure, and even elephant and lion 

behavior (Dahlin et al., 2013; Féret and Asner, 2014; e.g., Loarie et al., 2013). Other 

airborne platforms are being developed for temperate ecosystem monitoring 

(neoninc.org) and snow mapping (aso.jpl.nasa.gov). The economies of scale achieved 

by airborne remote sensing are reducing the per-area cost tremendously. For example, 

in a recent project fusing CAO airborne data with satellite imagery, the cost (including

aircraft, sensors, logistics, and data processing) to map forest aboveground carbon 

stocks throughout 132 million ha of Perú was less than $0.01 USD per ha (Asner et 

al., 2014).  

2.3. Unmanned Aircraft Systems 

The use of unmanned aircraft systems (UAS, also know as drones) is gradually 

gaining popularity and acceptance by the environmental community (e.g., Koh and 

Wich, 2012; Whitehead and Hugenholtz, 2014). The mainstreaming of this technology

is partly driven by an increasingly challenging funding climate in the environmental 

sector: UAS present excellent cost-saving opportunities (compared with manual 

labor) in field-based applications such as the detection, monitoring and mapping of 

wildlife, their habitats and the wider landscape (Koh and Wich, 2012; Wich, 2015). 

These applications are relevant to species conservation, habitat protection and 

restoration, pest eradication, and watershed management. In addition, UAS can 

provide data at previously unavailable resolutions (e.g., ≤5 cm), allowing for 
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increasingly fine-grained analyses of ecological questions (Anderson and Gaston, 

2013).

Most UAS are fully autonomous aircrafts, with an on-board guidance system 

flying the UAS along pre-programmed waypoints over an area of interest (Fig. 1). 

They can be equipped with different camera systems for taking still RGB 

photographs, RGB video footage, thermal images, multi-band images, and even 

hyperspectral and LiDAR (Watts et al., 2012). UAS have monitored large mammals 

with UHF (Ultra High Frequency) or RFID (Radio Frequency Identification 

Technology) devices, substantially reducing costs compared to satellite and ground-

based collaring and tracking operations (South African National Parks, unpublished 

data). UAS can be purchased off the shelf, or assembled from scratch as demonstrated

by Koh and Wich (2012) for an array of conservation issues, allowing considerable 

flexibility in the choice of UAS. The latter approach is less-costly and allows 

malfunctioning or damaged parts to be replaced in the field, which is essential for 

remote areas. Some of the applications of conservation drones include mapping land 

use, surveying biodiversity, and monitoring illegal activities (for a review see Wich, 

2015). 

For example, the photographs captured by a UAS can be stitched together to 

produce a mosaic that provides detailed information on the type of land use, 

agriculture, and settlements in the landscape (e.g., Whitehead et al., 2014). These 

images can also be processed to produce three-dimensional models of the landscape, 

such as terrain relief and forest canopy height (Dandois and Ellis, 2010) or they can 

be used to obtain data on species diversity and forest gap size (e.g., Getzin et al., 

2012). Each photograph is automatically tagged with the UAS location coordinates 

when the picture was taken, allowing accurate (1-2 m) geopositioning of the final 
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imagery. The area mapped during one flight is a function of the ground resolution 

required and the flight duration of the UAS. Covering an area of ~500 ha in a one 

hour flight is feasible with a ground resolution of ~5 cm per pixel. Several small UAS

can now fly for approximately an hour, with increasing flight durations allowing 

mapping of progressively larger areas, with several flights per day to expand the total 

area mapped.

The use of UAS could lead to significant savings in terms of time, manpower, 

and financial resources for conservation workers and researchers, but more 

assessments of the total costs of using UAS need to be made (e.g., Vermeulen et al., 

2013). Such analyses should include the costs of personnel, computer hard and 

software, and UAS maintenance. These potential cost savings would increase the 

efficiency of monitoring and surveying forests and wildlife in the developing tropics. 

UAS are a potential game-changer and could become a standard item in the toolbox of

field biologists everywhere. 

3. Ground deployed technology

3.1 GPS telemetry

Animal movement and the ecological and evolutionary processes driving such 

behavior are fundamental characteristics of animal ecology and, when understood, 

enable insight into many biological phenomena. Animals move in attempts to find 

resources or to avoid risks, concurrently providing ecosystem services such as seed 

and nutrient dispersal (Côrtes and Uriarte, 2012) and acting as vectors for diseases 

and parasites (Altizer et al., 2011). Data on animal movement provides insight into the

placement and maintenance of conservation corridors (Chetkiewicz et al., 2006) and 

movement itself facilitates connectivity between patches of fragmented landscapes

(Mueller et al., 2014).
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Technology to track animals and study their movement has undergone 

enormous advancement over the last several decades. Early reliance on VHF (very 

high-frequency) technology that required researchers to be in the field and in close 

proximity to tagged animals, possibly influencing their behavior, has being largely 

replaced with satellite telemetry using global positioning systems (GPS) that enable 

remote tracking and higher location accuracy (Cagnacci et al., 2010). Whereas before,

telemetry data from wild animals were considered too sparse and inaccurate to enter 

the realms of cutting edge ecological research, smaller tags with longer battery life 

and vastly improved GPS technology (Fig. 1) have enabled large volumes of data to 

be collected from many more individuals and species (Kays et al., 2015). Recently, 

animal tags are being fitted with additional secondary sensors, allowing collection of 

physiological and environmental data. Accelerometers are being built into tags to 

measure fine-scale body movements, providing insight into energetics and behavior

(e.g., Williams et al., 2014), while other electronic devices can be attached to record 

physiological measurements such as heart rate and internal temperature (e.g., Signer 

et al., 2010).

By making use of satellite or cell-phone communication networks, data from 

animal tags can be downloaded remotely in real time using mobile devices, 

circumnavigating difficulties around tag and data retrieval (and loss) and facilitating 

immediate responses to changes in animal locations (Kays et al., 2015). This provides 

much needed assistance to conservation managers who can receive alerts when 

problem animals leave predefined areas or acquire real time locations on endangered 

species that frequently come into contact with people (Wall et al., 2014). As the 

quality and type of tracking data have improved, so has the ability to measure the 

environment through which animals move. Remote sensing techniques provide 
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extensive and continually improving measurements of ecosystems, and when 

combined with high resolution telemetry data can be a powerful tool to understand 

animal movement and habitat preference (Davies and Asner, 2014).

Further improvements to animal tracking technology can still be made, and 

some caution is required in the use of the technology (Hebblewhite and Haydon, 

2010). Tag size is still too large for placement on many small birds and mammals

(Kays et al., 2015), and although some studies have tracked insects (e.g., Ovaskainen 

et al., 2008), they are largely excluded from animal movement studies. There are also 

challenges around location accuracy, especially when attempting to match telemetry 

data with high resolution remote sensing. Ethical considerations and potential 

behavioral adjustments induced by tagging also need continual attention with 

concerted efforts to reduce adverse effects. However, the knowledge that has been 

gained through animal telemetry and the prospects for future discovery are enormous. 

Kays et al. (2015) suggest that we are moving into a ‘golden age’ of animal tracking 

science and are beginning to use animals to inform us about crucial changes to the 

planet and to make predictions of future change, moving from simply studying 

animals, to using animals to study the planet.

3.2 Camera-trapping

One of the most pressing problems faced by animal ecologists is choosing the most 

appropriate method for surveying and monitoring populations (Breck, 2006). 

Traditional methods such as live-trapping may increase the risk of injury to an animal 

and cause behavioral avoidance (or attraction) to the traps. Direct observations at 

points and along transect lines may also affect behavior due to the physical presence 

of the researcher, and are often difficult due to dense vegetation or clumped 

distributions of the target species. Terrain, remoteness, or weather conditions may 
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preclude repeat visits by survey teams, making it difficult to replace baits or conduct 

replicate counts.

Camera-traps solve many of these issues by collecting animal movements in 

space and time through time-stamped photographs. Camera-traps do not require the 

researcher to be present and can be hidden or camouflaged to produce relatively 

unbiased samples. They can be established in any terrain or habitat and operate for as 

long as the power source allows. Camera-trapping can be more efficient than other 

survey methods, especially for rapid assessment of biodiversity (Silveira et al., 2003).

Modern digital camera-traps are remotely triggered by infrared sensors and are

much less obtrusive, although sound and light produced by cameras vary by make and

model (Meek et al., 2014). Camera traps can be set to take multiple photographs at 

desired time intervals, thus allowing multiple records of individual animals, and 

detection of family groups moving together. They can rapidly record and store 

hundreds to thousands of digital images on a single SD card, thus facilitating rapid 

sharing of data.

There is now a wide range of commercial camera-traps available to 

researchers, varying in detection angle and distance, field of view, trigger speed, 

recovery time, resolution, and price (Trolliet et al., 2014). There are a number of 

considerations when choosing a particular camera-trap device (see Glen et al., 2013; 

Kelly and Holub, 2008; Rovero and Zimmermann, 2013 for more detail). For 

example, if the study objective is to generate a rapid inventory of species presence, a 

low-cost ($40-100) model that takes photographs sufficient to identify species should 

suffice, although a non-intrusive infrared flash camera is preferable. However, if the 

objective is to enumerate populations of marked individuals, a much more 

sophisticated device with a high-resolution infrared camera is required.
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The ecological applications of camera-trap data are diverse. Photos from 

single camera-traps can produce information on sex, age, breeding status and identity 

of individual animals, as well as other demographic parameters, and determine their 

activity patterns (e.g., Lynam et al., 2013). Photos from arrays of camera-traps can be 

used to measure movement and home range, and where individuals have identifiable 

coat patterns, camera-traps can be used to estimate population size (e.g., Burton et al., 

2015). Using species detection/non-detection records and an occupancy modeling 

approach, it may be possible to predict the occurrence of rare species in a 

conservation area (MacKenzie et al., 2005). Camera-traps can help identify habitat 

preferences (e.g., Gray and Phan, 2011), although camera trap placement can bias 

results for different species (Harmsen et al., 2009), for example, if animals respond to 

human scent left on a device. Camera-traps have also been used for the study of 

ecological processes such as nest predation and plant-animal interactions (e.g., Pender

et al., 2013).

An adaptation of the camera-trap design can make it possible to transmit 

images or video in real time via SMS or MMS across local 3G telephone networks. 

Such wireless cellular camera-traps can detect individual animals such as problem 

elephants, or poachers, alerting park authorities who can then respond appropriately.

3.3 Wireless Sensor Networks

Wireless Sensor Networks (WSN) – composed of interconnected but spatially 

distributed autonomous monitoring devices – have great potential to aid in 

understanding ecological dynamics and protecting endangered species (Benson et al., 

2010). Specially designed sensor networks can detect motion, sound, smell, and 

external environmental variables (e.g., temperature, humidity, light, etc.) in a non-

invasive manner and in remote regions (Fig. 1). Distributed computing in WSN 
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enables information to be collected remotely while processing only relevant data at a 

specific location, reducing data storage overhead or allowing increased sampling 

frequency. WSN have already been successfully used in military, industry, 

commercial, civil, and healthcare applications (Arampatzis et al., 2005). 

Recent research on sensor networks has focused on networking techniques and

networked information processing suitable for highly dynamic environments and 

resource-constrained sensor nodes. Sensor nodes have decreased in size and are much 

cheaper, resulting in the emergence of many new civilian applications from 

environment monitoring to vehicular and body sensor networks. Sensors are routinely 

deployed in very harsh conditions such as glaciers, on animals, or in very remote 

locations (e.g., Martinez et al., 2005). Low-cost, off-the-shelf sensor parts can be 

integrated with microcontrollers (e.g., Arduino) and microSD cards to create 

standalone sensor nodes that can communicate (via radio transmitters) with each other

and/or a network hub. Soil moisture, tree growth, photosynthetically active radiation, 

water flow, and animal activity are just a few variables that can be continuously 

monitored remotely (Collins et al., 2006). 

WSN technology is used not only to monitor remote locations but also to 

locate where events occur (Fig. 2). This is crucial for gathering evidence for illegal 

activity or uncovering subtle ecological interactions. WSN technology can be used for

creating virtual fences, focal area monitoring, and/or behavior-specific surveillance. 

In a virtual fence set-up, a series of sensors are placed around the protected boundary 

of a target area and can identify an intrusion and its location, instantly communicating

this to network monitors. A WSN exploits the capabilities of fiber optics, passive 

infrared, doppler radar, and other specialized sensor devices to create the virtual 

fence. Although the application of WSN in wildlife research and management is still 
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in its infancy, they have become successful in the establishment of early warning 

systems and studying animal behavior. Alternatively, events such as gunfire 

(poaching), felling of trees, human or animal trespassing, and vehicle movement, 

among others, require monitoring of a focal area. This is best achieved with a WSN 

capable of sensing the target event, processing the signal to identify and locate the 

event, and communicating the event to a control station for initiation of a response if 

necessary. Finally, behavior specific surveillance is possible, for example by 

deploying sensor systems on natural trails for animal species that frequent trail 

networks for hunting and movement. 

WSN technology functions best when integrating camouflage, low power-

consuming devices, sophisticated signal processing software and hardware, and 

suitable packaging that can withstand hostile environmental conditions. WSN is a fast 

emerging field and ecologists and conservation practitioners alike can benefit 

significantly from new understanding of their target species or environments. Once 

deployed, this technology is a non-invasive method of wildlife research and 

conservation, without the need to physically capture animals, as required for radio 

collaring and tracking. WSN can provide important technological support for 

managing wildlife populations, including reduction in human-wildlife conflict, and 

uncovering the ecological dynamics of remote habitats. WSN tools have yet to be 

fully integrated in many real world applications for wildlife management and 

ecological research, partly due to lack of complete knowledge of such technology. 

However, there has recently been appreciable change in the exploration of WSN for 

conservation and research purposes, and a few experiments have already been taken 

up in India and Africa (pers. comm., R Krishnamurthy). 

4. Data fusion and processing
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4.1 Mobile devices and apps

The explosion of smartphones, tablets, and their innumerable associated software 

applications (“apps”) has already revolutionized many industries and scientific fields 

around the world; the field of ecology is no exception. In their most basic form, these 

devices can be used to record data in the field more efficiently and without the added 

burden and mistakes associated with manual data re-entry – the device is simply 

synced with a computer or cloud network for further viewing and analysis. Whether 

using voice-to-text features or simply inputting numbers into a spreadsheet, 

smartphones and tablets undoubtedly give a field ecologist an advantage. Most current

generations of phone and tablet devices have built in satellite navigation capability, 

but have only half the accuracy of standalone satellite navigation (e.g., GPS, GNSS) 

units (Olson et al., 2014), with further accuracy degradation in closed-canopy forests. 

However, using a standalone satellite navigation receiver allows work in remote areas 

and greatly increases positional accuracy under most conditions. These GPS (e.g., 

Bad Elf, Garmin GLO) and GNSS (e.g., EOS Arrow) receivers can link directly to the

device through Bluetooth or a direct physical connection, providing precise 

navigation in the field. It may seem risky to expose an expensive piece of electronics 

to harsh outdoor conditions, but either a simple plastic bag or a more expensive water-

and shock-proof case will adequately protect most devices. Some manufacturers even 

offer ‘ruggedized’ versions of their products specifically for outdoor use. 

However, navigating to and within field sites is just part of the task. Data 

collection and organization are greatly enhanced by a number of apps, many of which 

are free to download and use on multiple device platforms. The free app iGIS allows 

caching of Google maps imagery for later use offline, uploads of custom base imagery

(e.g., topographic maps, orthophotos, high-resolution satellite images, classification 
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maps), creation of shapefiles (point, line, and polygon vector files), and linking 

photographs to geolocational data. While iGIS has a learning curve before the full 

functionality is unlocked, other options might be worth the price given their 

simplicity. GISpro may be expensive compared to most apps, but it unlocks a suite of 

easy-to-use features that turns a device into a mobile GIS unit. Undoubtedly, as these 

and other spatial data apps (e.g., WolfGIS, iGeoTrack) gain more usage among 

ecologists, field data collection will be transformed. 

Myriad other apps are available to field ecologists that go beyond the 

collection of spatial data: real time weather and environmental conditions (e.g., 

Marine Weather Plus, RiverFlows), species identification (e.g., Plant-o-Matic, Map of 

Life), and, with a separate sensor, plant water content and molecular identification 

(SCiO). Numerous other apps are designed to enhance classroom learning, field 

education, and citizen science (e.g., iNaturalist) (see Palumbo et al., 2012). A more 

comprehensive list of apps relevant to field ecology can be found at 

brunalab.org/apps, and custom apps can even be built to enhance the productivity of 

field ecologists (Teacher et al., 2013).

4.2 Computation

Data collection is only the first step; processing and analyzing many gigabytes of data

from disparate sources requires new tools and techniques before ecological inference 

or conservation planning can begin. Increasingly, scientists are finding it difficult to 

avoid learning at least one programming language, and while the learning curve may 

be steep, the flexibility and efficiency benefits can be enormous (see software-

carpentry.org for tutorials). As the scale of a project increases and the size of its 

associated data soars, knowing which software language and computational tools to 

rely on is important. 
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While the R language (cran.r-project.org) has become the de facto standard for

data analysis and visualization among many ecologists, it is neither built for handling 

and processing very large datasets, nor does it have full geospatial functionality. 

While there are packages that can speed up processing (‘renjin’, ’Riposte’), improve 

memory management (‘bigmemory’), and smartly handle geospatial data (‘raster’, 

‘rgdal’), there are alternatives that are worth the time to learn. The Python language 

(python.org) offers increased speed, better memory management, and can function as 

an integration tool for your entire workflow. Extremely rapid processing and analysis 

of geospatial data can be accomplished with GDAL (gdal.org) and SAGA (saga-

gis.org) commands called from Python. Moreover, while many of the following 

computational resources can be used within R, they interface with Python far more 

readily.

Machine learning (ML) algorithms (e.g., random forests, support vector 

machine, neural networks) are a powerful approach for analyzing large datasets with 

many (hundreds to thousands) dimensions. Rather than assuming a data model as in 

traditional statistical modeling, supervised ML techniques use algorithms to uncover 

relationships in the data through a learning process (Breiman, 2001). The advantages 

of ML algorithms include less reliance on statistical assumptions, no need for data 

reduction, and greater predictive accuracies while still generating inferences about the

data (Hastie et al., 2009). The open source platform H2O (h2o.ai) has a broad range of

ML algorithms with highly efficient memory handling and the ability to easily scale-

up analyses with parallel processing. 

As the size and scale of a dataset increases, running analyses on a single 

computer processer becomes increasingly difficult. Most computers have multiple 

processors (CPUs) that are left idle when running an analysis. Parallel processing is a 
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technique that dramatically cuts processing time by using all available CPUs on a 

computer, or hundreds to thousands of CPUs on a computing cluster. Whether 

utilizing a personal computer or purchasing time on a high performance computing 

cluster (e.g., Amazon Web Services), the packages ‘foreach’ for R and 

‘multiprocessing’ or ‘mpi4py’ for Python are good starting points. 

5. Integrated technologies for project scalability

5.1. Protected area management 

Protected areas are critical for long-term conservation of endangered species but their 

effectiveness depends on how well they are managed (Watson et al., 2013). Many 

parks suffer from funding shortages and insufficient numbers of rangers and guards, 

leaving them unable to adequately manage encroachment, fire, hunting/poaching, and 

other unsustainable resource harvesting (Bruner, 2001). However, even parks with 

relatively large staff may not meet targets set for reducing threats and protecting 

populations of endangered species (Venter et al., 2014). More must be done than 

simply putting extra boots on the ground. Here, we provide an example of an open-

source software tool for improving effectiveness of protected areas through an 

adaptive management approach.

The primary form of field‐based monitoring in parks around the world is 

ranger/staff patrols. Ranger patrols have various mandates including research and 

monitoring, community engagement, and implementing law enforcement. In each role

ranger teams collect data using combinations of notebooks, datasheets, mobile 

devices, GPS and digital cameras. Patrol-based monitoring works by setting up a flow

of data from the field useful for park management and patrol planning (Stokes, 2010). 

A new technology that facilitates this process is the Spatial Monitoring and 

Reporting Tool (SMART), open-source software developed through collaboration 
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among conservation agencies and organizations concerned with improving site-based 

conservation area effectiveness (Fig. 3). Patrol teams can collect field data via an 

Android or Windows Mobile-enabled smartphone, tablet or PDA, and upload and 

manage the data through the SMART software. Users can create spatial queries and 

summaries about patrol movements, human activities, wildlife, or significant habitat 

features, and create custom reports. For example, how many foot patrols by a 

particular team resulted in encounters with people involved in illegal timber cases? 

Where did law enforcement teams record illegally killed elephant carcasses? A 

planning module allows target setting for patrols, teams, stations, or the entire 

conservation area, and monitor their progress towards achieving targets in real-time. 

Observations of animal carcasses or other evidence of illegal activity derived from 

local informants, researchers, tourists or the public can be added to the database and 

linked to patrol plans. As of August 2015, SMART has been implemented at 213 sites 

in 40 countries, with a number of national governments adopting SMART as a 

standard for law enforcement monitoring (smartconservationtools.org).

Remote sensing tools can supplement SMART data, particularly where forest 

loss or conversion is a primary threat. Landsat satellites acquire the same scene every 

16 days, allowing images to be mosaicked to obtain cloud-free scenes. Each scene can

then be directly compared with scenes from the same or earlier seasons. When areas 

of recent change are identified, the georeferenced image can be sent to law 

enforcement teams to enable field inspection and follow up actions. These approaches

are useful for detecting deforestation on a range of scales from small (<10ha) to very 

large (>10,000ha), and for certain kinds of degradation. They are, however, not 

suitable for detecting low intensity forms of degradation such as firewood collection, 

highly selective logging, or the gradual effects of over-burning in deciduous forest. If 
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the suspected areas are very remote, a fixed-wing UAS can be sent to capture high-

resolution aerial photographs, helping authorities track down illegal loggers in 

national parks and provide evidence for their conviction. Furthermore, UAS equipped 

with a video camera can provide park rangers with real-time detection of wildlife 

poacher campfire many kilometers away. Using a UAS facilitates rapid responses to 

remote areas and a more comprehensive survey of the site than can be done from the 

ground. 

Dry season fires are a common feature of the ecology of tropical dry forests, 

but are rare in denser evergreen and semi‐evergreen forests. Therefore a cluster of fire

locations in a dense forest area may indicate fire being used during forest clearance. 

FIRMS (Fire Information for Resource Management System) integrates remote 

sensing and GIS technologies to deliver global MODIS (MODerate Resolution 

Imaging Spectroradiometer) hotspot/active fire locations to natural resource managers

and other stakeholders. MODIS Rapid Response makes the data available on the web 

within a few hours of satellite overpass (≥4 times per day), while GEE provides daily 

1 km resolution FIRMS maps.

These data can be downloaded and queried so that fire locations are only 

shown within the areas previously mapped as dense forest, and far enough from the 

nearest area of open forest or non‐forest to account for low data resolution. The data 

are then inspected to identify clusters of fires in the interior of dense forest, and 

mobile ranger teams are directed to make an inspection and appropriate interventions 

(Fig. 4). 

 WSN can provide significant support for surveillance and monitoring of 

protected areas. They can be used to create virtual fences to detect intrusions by 

humans, which can be covertly detected and reported to rangers who can decide on 
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the appropriate response. WSN can also provide an early warning system for detecting

the movement of animals and allowing managers to potentially avoid human-animal 

conflicts. This can build trust between protected area managers and local people, who 

are often at odds with various management practices. Road networks in protected 

areas can disrupt animal movement and lead to animal mortality from vehicle 

collisions. WSN can be used as an early warning system to travelling vehicles, 

avoiding or minimizing collisions. Finally, WSN can profile forest health and 

potentially be used for population estimation if combined with other technologies.

Combining patrol and remote sensing monitoring tools, along with intelligence

derived from local informants is a model for protected area management that is 

replicable and scalable across conservation sites. The core of the system is to conduct 

regular field patrols with clearly defined strategic priorities, using local informant 

networks to help guide activities. Camera-traps used by monitoring teams, especially 

wireless models with capacity to instantly send recorded images of human intruders as

MMS or email attachments, can identify threat hotspots in order to optimally position 

protection teams. Data on patrol activity should be analyzed using SMART to enable 

effective management oversight of staff performance, patrol targeting, and threat 

levels. Frequent inspection and comparison of Landsat images, while MODIS fire 

hotspot data, are also recommended.

5.2 Ecological dynamics

Collection of long-term data is critical to uncovering patterns and processes in 

ecology, but is usually limited in spatial scale, frequency, and/or duration. If 

integrated properly, the technologies discussed in this article provide a way to begin 

overcoming spatial and temporal limitations in ecological data collection. Here we 
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provide a generalized example of integrating each piece of technology to collect data 

from a remote forested ecosystem. 

For a regional context, the surrounding land cover can be assessed using GEE 

to pull together a cloud-free mosaic of recent MODIS imagery. The GEE platform has

built-in algorithms for creating a land-cover map that can set the broader context and 

assess potential threats for the area of study. A function could be built to examine 

forest gap dynamics by utilizing the long-running Landsat time-series. The 30 m 

resolution Landsat data (available as far back as 1982) can pick up large treefall gaps 

and storm blowdowns. The deployment of an airborne imaging system such as the 

CAO or the ASO (Airborne Snow Observatory), allowing an enormous improvement 

in spatial and spectral resolution, would be ideal for producing a detailed baseline 

understanding of the area. Plant functional and chemical diversity can be mapped via 

airborne imaging spectroscopy, while airborne LiDAR can produce 3D vegetation 

structure and accurate digital elevation models (Fig. 5). A combination of targeted 

deployment of a UAS and regular analysis of cubesat imagery provide additional 

platforms for temporal investigation. A UAS can be programmed to fly close to the 

forest canopy for increased imagery resolution. Forest phenology, tree species 

identification, and certain types of wildlife surveys could be accomplished with these 

technologies at far greater spatial scales and temporal frequencies than ground-based 

surveys alone. In fact, researchers have been able to detect orangutans and their nests, 

elephants, rhinoceros, forest buffaloes, and even turtle nests in UAS-acquired images

(e.g., Wich, 2015). 

The high upfront expense of airborne imaging makes it challenging to 

implement, but becomes cost-effective at scales around 103 – 106 ha. Similarly, any 

decision to deploy or utilize a remote sensing platform is context specific, and 
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depends on the required scale, frequency, location, and type of data. In each case, the 

relatively low cost of traditional field data collection should be calculated and 

weighed against the generally more expensive but higher data yields of remote 

sensing technology. Linking multiple platforms across different scales is an active 

area of research (Joshi et al., 2016) that needs further development before wide 

implementation by field ecologists and conservation practitioners.

With the exception of LiDAR, the sole use of remote sensing technologies will

not provide great insight into the below-canopy dynamics of a forest. Instead, ground-

based technologies can supplement remote sensing data across similar spatial and 

temporal scales through innovative deployments. Using a mobile device equipped 

with a GPS receiver, spatial features can be recorded in the field (e.g., hydrological 

and geomorphological boundaries) and features identified in remote sensing imagery 

can be verified (Barbosa et al., 2016; Marvin et al., 2016). Having multiple sources of 

preprocessed imagery available on a mobile device streamlines the collection of notes,

the creation of vector (i.e., point, line, and polygon) data, and the capturing of 

geotagged photos on fundamental characteristics of a site. 

Once the basic spatial layout and features of a site are catalogued, 

environmental data (e.g., rainfall, soil moisture, temperature, humidity, light) can be 

captured using cheap sensors, allowing for a large, low-cost network of environmental

monitoring nodes. Even illegal logging can be detected in real time using re-purposed 

cellphones (Gross, 2014). The extremely low power requirements for such sensors 

may allow long-term, continuous operation via small solar panels – even in the forest 

understory. More advanced sensors such as those with camera, audio, or video 

capabilities might be more difficult to deploy in large numbers due to increased 

expense and power requirements. When used in combination with camera traps and/or
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GPS tags on animals, these larger sensors can conduct wildlife community/population

surveys or acquire detailed data on species-specific behavior. 

The deployment of sensors under a forest canopy, especially in closed canopy 

tropical forests, makes remote acquisition of data difficult. Developing these sensors 

as a WSN and using a UAS to periodically collect their data is a potential solution. In 

this setup, the WSN transmits data among the sensors to a central data collection hub 

placed either in a forest opening or in the forest canopy. A UAS could be dispatched 

to fly over each hub and acquire the data, and programmed to transmit instructions 

and code updates back to the WSN. Wider deployments of camera traps may be 

enabled by using a UAS to download the pictures remotely. This approach would 

drastically lessen the need for arduous trips to each sensor location for manual 

downloads, with the added advantage of less human disturbance in sensitive areas. 

All of the above examples allow for long-term (months-to-years) data 

collection and observation of a single area of study. The lost-cost and distributed 

nature of a WSN combined with multi-resolution remote sensing data products allow 

for a large (102-105 ha) area of study to be monitored in sufficient detail to offer new 

insights into remote habitats. 

6. Conclusion

We offer a look at a range of established and emerging technologies that can be used 

by ecologists and conservation practitioners to increase the spatial and temporal scales

at which they work. The spatial links between the data at each scale allows 

researchers to increase the dimensionality of their datasets and perform spatially 

explicit analyses and predictions. Most of the technology is low-cost and can be 

readily used with some time investment into training and building. Collaborations 
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with existing users and developers can speed up the process and lead to novel 

applications or even altogether new technologies. 

Of course, all of these technologies come with their obvious trade-offs and 

challenges. Many advanced and high-resolution satellite sensors will be inaccessible 

or remain very expensive to access. Airborne remote sensing of any type is not an 

endeavor to be easily and quickly undertaken, and will likely require developing 

partnerships with existing operators. UAS are often limited in their applications by the

payloads they can carry or the amount of time and/or distance they can fly. Lack of 

access to reliable power sources will reduce the utility of any device that needs to 

operate for very long periods while deployed in remote areas. The continued advance 

in the performance of underlying technologies will solve many of these problems, 

while other technologies may become less expensive as governments invest more in 

technology research, commercialization, and transfer. It is critical for those 

researchers and conservation practitioners new to these technologies to spend time 

familiarizing themselves with all potential drawbacks. Every research and 

conservation project is different, and it may be more cost-effective to invest in 

additional personnel training and retention than a new technology deployment. 

Finally, we do not mean to suggest that traditional field-based data collection 

using transects or plots are no longer necessary or useful. Rare plant species 

identification, soil and foliar chemical profiling, and microbial and genetic sampling 

are all examples of crucial pieces of information needed to fully understand an 

ecosystem, but are not currently accessible without manual, on-the-ground collection 

by researchers. We encourage researchers to continue fully embracing and integrating 

the technologies discussed here as a compliment to traditional methods when 

designing their fieldwork. Deployment and refinement of these technologies will 
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continue revolutionizing ecological and behavioral sciences, as well as conservation 

management of natural systems and endangered species.
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Fig 1. Images of some of the described technologies. (Clockwise from top-left). 

One type of fixed-wing UAS during a hand-held launch (Image: Jeff Kirby). Another 

type of fixed-wing UAS being prepared for deployment (Image: Sander van Andel). A

multirotor UAS being inspected before deployment (Image: Jeff  Kirby). A Planet 

cubesat with body measuring 10cm x 10cm x 10cm (Image: Planet). A tiger with GPS 

collar in India (Image: Ramesh Krishnamurthy). One node of a wireless sensor 

network used to detect illegal logging (Image: Rainforest Connection). 

Fig 2. Components and function of a hypothetical Wireless Sensor Network in 

Addo National Elephant Park, South Africa. An event is detected by a single 

sensor in the network, processed locally, and transmitted by radio among the network 

to a network hub. From there the event is sent to local users and a web server for 

remote users to monitor or analyze. Map data: Google, Digital Globe (2015). 

Fig 3. The SMART approach for turning ranger-based data into information 

useful for park management and patrol planning. Using an example from 

Cambodia, SMART creates flows of data in the form of point-based locations and 

observations from ranger patrols. After initial processing (debriefing and data entry), 

queries and data summaries, progress assessments, and reports can be output. Reports 

are interpreted by the site manager and fed-back to field enforcement teams. 

Fig 4. Deforestation in and around the Seima Protection Forest, Cambodia, from 

Landsat analysis (1998-2011). Forest fire locations in the buffer zone indicated by 

FIRMS (orange stars). Routes of ranger patrols that were conducted to investigate 

encroachment are indicated in black. 

Fig 5. Imagery from a variety of remote sensing platforms and sensors. a) True 

color Landsat (source: Google Earth) image of a forested landscape in Madre de Dios,
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Peru. b) Same as in a) but with CAO imaging spectroscopy overlay. c) Same as in a) 

but with a CAO digital elevation model (elevation gain: blue to red) overlay. d) 

Example true color image of Landsat 8 (30 m pixel resolution) from a forest in 

Gabon. e) Example image of tree canopy chemical diversity derived from CAO 

imaging spectroscopy (2 m pixel resolution) from a forest in Peru. f) Example true 

color image from a UAS (10 cm pixel resolution) from a forest in Panama.
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Table 1. Summary of select studies by technology type. 

Technology
Country/
Region

Taxa/
Ecosystem

Application Reference

Satellite Global Forests Forest cover change
(Hansen et al., 

2013)

Airborne Peru Forests Whole-country carbon density (Asner et al., 2014)

UAS Germany
Canopy 

trees

Assessment of flowering tree 

diversity

(Getzin et al., 

2012)

GPS telemetry
South Africa 

& Kenya
Elephants

Real-time monitoring of 

elephant movements
(Wall et al., 2014)

Camera traps Cambodia Mammals
Habitat preference and activity 

patterns of 23 mammal species

(Gray and Phan, 

2011)

WSN
New Mexico,

United States
Shrubs

Microclimate variation in 

desert shrubs

(Collins et al., 

2006)
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Figure 4. a) True color Landsat (source: Google Earth) image of a forested landscape in Madre de Dios, Peru. b) same as a) but with CAO 
imaging spectroscopy overlay. c) same as a) but with a CAO digital elevation model (elevation gain: blue to red) overlay. d) example true color 
image of Landsat 8 (30 m pixel resolution) from a forest in Gabon. e) example image of tree canopy chemical diversity derived from CAO 
imaging spectroscopy (2 m pixel resolution) from a forest in Peru. f) example true color image from a UAS (10 cm pixel resolution) from a forest 
in Panama. 
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