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Abstract—Energy consumption has become a significant issue
for data centres. Assessing their consumption requires precise
and detailed models. In the latter years, many models have been
proposed, but most of them either do not consider energy con-
sumption related to virtual machine migration or do not consider
the variation of the workload on (1) the virtual machines (VM)
and (2) the physical machines hosting the VMs. In this paper, we
show that omitting migration and workload variation from the
models could lead to misleading consumption estimates. Then, we
propose a new model for data centre energy consumption that
takes into account the previously omitted model parameters and
provides accurate energy consumption predictions for paravir-
tualised virtual machines running on homogeneous hosts. The
new model’s accuracy is evaluated with a comprehensive set of
operational scenarios. With the use of these scenarios we present
a comparative analysis of our model with similar state-of-the-art
models for energy consumption of VM Migration, showing an
improvement up to 24% in accuracy of prediction.

I. INTRODUCTION

Recently, Cloud computing has emerged as a new paradigm
by which computational power is hosted in data centres of spe-
cialised providers and rented on-demand to the users based on
their occasional needs. Since power consumption significantly
impacts the profits of these providers [1], they are inclined to
maximise energy efficiency within their data centres. However,
physical machines – the main constituents of data centres – are
often under-utilised [2] leading to inefficient power utilisation.
For this reason, a technique called workload consolidation is
applied. This technique increases energy efficiency by mapping
computational tasks on a subset of the data centre’s machines
and shut down the rest. Since in modern data centres com-
putations are running within virtual machines (VMs), such
mappings refer to running VMs on physical machines.

In order to assess whether a new mapping of VMs is benefi-
cial energy-wise, prediction models are needed for their energy
consumption. Such models should take into account all actors
(e.g., VMs, physical hosts, network hardware) and activities
(e.g., VM migration, powering off physical hosts) of workload
consolidation. Among all activities, VM migration is one of the
most widely used, because it provides the capability of moving
the state of running VMs between physical machines, thus it
allows to dynamically adjust the workload. Despite having a
considerable impact on energy consumption [3], this activity
has usually not been taken into account when building energy
models for data centres and consolidation.

In recent years, several works modelled the energy impacts
of VM migration. For example, [4] proposed a model based on

network traffic generated by VM migration, while [3] focused
on VM’s CPU utilisation. However, past works focused on
VMs only and have not considered other relevant actors
involved in the migration process. For this reason, there is
significant room for improvement in prediction models.

In this paper, we introduce a workload-aware energy con-
sumption model for VM migration called WAVM3. We aim
at improving model precision by considering several previ-
ously neglected actors involved in the migration process. We
also study the impact of different workload types on energy
consumption related to VM migration. First, we identify the
actors mostly involved in migrations. Then, we analyse their
possible impact on data centre level energy consumption while
considering different workloads. Our analysis uses CPU and
memory-intensive workloads representing the most common
and energy-impacting loads in data centres. As a result of our
analysis, we identified several phases of VM migration from
the point of view of energy consumption. Finally, we provided
the model for the consumption of each relevant actor over each
identified phase.

We target the Xen virtual machine monitor used by many
commercial Clouds today such as Amazon EC2. Therefore,
our model is restricted to scenarios with homogeneous source
and target hosts, as Xen prevents execution of VM migra-
tion between machines with incompatible architectures. We
limit our work to CPU and memory-intensive applications, as
our experiments showed negligible energy impacts caused by
network-intensive workloads during migration.

We built our model on measurements taken on a set of
heterogeneous machines from a private Cloud. These measure-
ments allowed us the experimental evaluation of the impact
of different workloads on energy consumption by measuring
the instantaneous power drawn of each involved actor while
they were running benchmarks purposely designed to stress
different physical machine components (e.g. CPU, memory).
Based on the collected measurements for each benchmark, a
new model was derived with linear regression. The regression’s
acceptance criterion was set as its normalised root mean square
error (NRMSE) being notably lower than that of the other
state-of-art models. Finally, we compared our model to other
state-of-the-art models and we also performed preliminary
investigations on a different set of machines showing the
model’s applicability for diverse configurations.

The paper is organised as follows. First, we review related
work in Section II. Then we analyse the power characteristics
of the migration process in Section III. From our analysis,



we derive the theoretical model in Section IV and build a
methodology for its validation in Section V. We present the
results of our experimental validation in Section VI, followed
by a comparison with other state-of-art models in Section VII.
Finally, Section VIII concludes the paper.

II. RELATED WORK

Live VM migration has been proposed by [5] for the
Xen hypervisor. Since then, it has been implemented in many
popular hypervisors, such as Xen, KVM and VMWare. Many
works like [6], [7], [8], [9] exploit live VM migration to
perform energy-aware VM consolidation. However, energy
consumption of VM migration is not taken into account in
these works. Other works like [10], [11], [12] focused on the
cost of live migration for Cloud data centres, but considered
only performance and did not take energy consumption into
account. Further works like [13] implemented a model for VM
migration in a Cloud simulator, but do not provide models
for its energy consumption. Recent works like [14] consider
the time of live migration, but this study consider only CPU-
intensive workloads and does not take energy into account.
Other works like [15] propose a probabilistic approach to
quantify the cost of VM live migration, but this cost does
not take energy into account. First investigations about energy
consumption of VM migration have been done by [16]. One of
the first works that modelled time, energy and performance of
live migration at the same time is [4], which identified a rela-
tionship between network bandwidth and energy consumption
of Xen live migration. This work, however, considers only the
load running on the migrating VM and makes the simplistic
assumption that source and target host have the same energy
consumption for VM migration. A similar work has been done
for KVM live migration by [17]. Another model has been
proposed by [18], but this model considers only CPU load.

In our work, we consider the workload of each actor
involved in the migration process and extract a more accurate
model for both live and non-live VM migration.

III. POWER CHARACTERISTICS OF VM MIGRATION

In this section we provide an overview of the power
characteristics of VM migration. First, we describe the VM
migration process and then the actors involved in this process.
Afterwards, we investigate the workloads impacting the energy
consumption of VM migration and finally, we identify the
phases that occur during a migration.

A. VM migration

Although VM migration can be realised in different ways,
we focus here on the most used approaches: non-live migration
and live migration.

Non-live migration (sometimes referred as suspend-resume
migration) approach consists of: (1) suspending the VM to be
migrated, (2) transferring its state to the target host, and (3)
resuming the VM on the target host.

Live migration has been proposed to reduce the downtime
of the VM during migration. It consists of five steps: (1) mov-
ing the VM state from source to target host while the VM
operates normally; (2) updating the state of target host with

Fig. 1: Summary of the migration process.

the modifications occurred on the source during state transfer;
(3) repeating step (2) until a predefined termination criteria is
reached (e.g., the size of the VM state difference reaches under
a given threshold or maximum number of updates reached);
(4) suspending the VM and transferring its last state changes
to the target; (5) resuming the VM on the target when its state
is consistent with the source; and (6) destructing the suspended
VM on source.

B. Actors

In this section we identify the actors involved in the VM
migration process, as detailed in Figure 1.

a) Consolidation Manager: constantly monitors the
load of the data centre, selects the VM to be migrated and
the target host, and finally initiates the migration. Afterwards,
it returns to its previous operation.

b) Migrating VM: is the virtual machine to be trans-
ferred from the source to the target host, while the VM is also
expected to be running services used by the customers of the
data centre or the service provider utilising the VM.

c) Source host: is the physical machine that runs the
migrating VM at the start of the migration process. The
source establishes the initial connection with the target to
communicate the intention of starting a VM migration.

d) Target host: is the physical machine designated by
the consolidation manager as the destination for the migrating
VM (i.e., the host that will execute the VM after the migration
process completes).

e) Network: refers to the underlying communication
infrastructure responsible for connecting the other actors and
for supporting the VM state transfer.

In the rest of the paper we focus only on three of these
actors: migrating VM, source host, and target host. We do
not consider the consolidation manager because it does not
further interact with the migration after initiating it. We also
ignore the network infrastructure because it will affect the
VM migration only at its maximum utilisation and it can be
safely assumed that a VM migration will never be issued when
the bandwidth between two hosts is fully utilised. Moreover,
according to [19], the energy consumption of network switches
is not proportional to the amount of traffic, therefore we can
safely assume that is constant in this scenario.



Workload Migration type Migrating VM Source host Target host
CPU LIVE Source/target Slowdown Slowdown for VM

intensive NON-LIVE load-dependant for state transfer start/state transfer
MEMORY LIVE Multiple transfers ofSlight performanceSlight performance

VM state degradation degradation
intensive NON-LIVE No influence

TABLE I: Workload impact on VM migration according to the
hosting actor.

C. Workloads

The three selected actors can influence the energy con-
sumption of VM migration in different ways, especially de-
pending on the workloads they are running. We analyse this
aspect in the following paragraphs.

Although there may be different kind of workloads run-
ning in a data centre (e.g. CPU-intensive, memory-intensive,
network-intensive, or mixed), in the following, we focus on
the CPU and memory-intensive ones because they impact
the VM migration process the most. Table I summarises the
workloads’ impact on VM migration. When the migrating VM
is running a CPU-intensive workload, a performance drop may
be experienced if the source and/or target hosts are fully loaded
because the host’s CPU must be shared between the workload
of the hosts and the newly initiated migration process. If the
migrating VM is running a memory-intensive workload that
continuously updates RAM locations, it will highly impact the
performance of the live migration approach since several state
updates are needed to achieve a consistent VM state between
the source and the target hosts. For these reasons, we only
consider in this work (1) CPU intensive workloads running on
source, target and migrating VM, and (2) memory-intensive
workloads running on the migrating VM. We consider as
memory-intensive workloads: (1) workloads using at least 90%
of the memory allocated to the VM and (2) workloads with
a high memory dirty ratio (i.e. a high percentage of memory
pages marked as dirty over a given amount of time).

D. Migration energy phases

As we discussed in the previous sections, both live and non-
live migration go through different phases that could lead to
different energy-wise behaviour for each actor. In this section,
we identify those phases of VM migration that differ from an
energy point of view by collecting and analysing instantaneous
power draw traces of a VM migration (see the traces and
phases in Figure 2).

a) Normal execution: During this phase, every actor
performs its normal operation as there was no migration
decision taken so far. For the sake of simplicity, we ensure
a constant energy consumption over this phase so the acquired
power traces cannot be accounted for anything else but the
migration process discussed in the later phases.

b) Initiation: This phase starts when the migration is
requested by the consolidation manager and ends when the
target host is prepared to receive the VM state. In case of non-
live migration, the source host experiences a strong decrease in
power consumption because the migrating VM is suspended in
the beginning of this phase. In contrast during live migration,
the source host will reach a new peak for energy consumption

(a) Non-live migration

(b) Live migration

Fig. 2: Energy consumption phases of non-live and live mi-
gration.

because of the preparation tasks necessary for sending the mi-
grating VM to the target. The target host will show independent
behaviour from the applied migration approach. It experiences
peaks in its power draw due to checking of resource availability
and acknowledging to the source that the migration can start.

c) Transfer: During this phase, all the state information
of the VM is transferred over the network from the source to
the target host. Compared to the initiation phase, there is an
increase of power drawn introduced by the exchanged VM
state data in both the live and non-live migration approaches.
For live migration, an additional consumption is recorded for
the source because it needs to keep track of the modifications
to the VM state.

d) Service activation: This phase starts after the VM
state is transferred and ends when the VM is running on the
target host. In this phase, the source host frees the resources
that previously belonged to the migrating VM (please note,
before freeing up the resources the source host must shut-down
the migrating VM in case of live migration). The target host
will instead run the VM machine. Finally, each actor returns
to the normal execution phase.

IV. MODEL

In this section, we introduce our model for the energy con-
sumption of each previously described migration phase. The



energy consumption of the complete VM migration process
will be the sum of the energy consumption of each phase.

A. Migration model

In this section we formally define VM migration as trans-
ferring the state of a migrating VM v from a source host S
to a target host T. As we saw in Section III-D, VM migration
goes through different energy consumption phases. To delimit
these phases, for each migration, we define ms as the moment
when the migration starts; ts and te the time instances when
the transfer phase of the migration starts and ends; and me

as the instant when the migration ends. Thus the following
time intervals define our phases: (1) between ms and ts is the
initiation phase, (2) between ts and te is the transfer phase
and (3) between te and me is the activation phase.

B. Resource utilisation model

According to our analysis in Section III, the most impacting
actors for VM migration are the source host (S), the target
host (T) and the migrating VM (v). In this section, for each of
these actors, we present a model for their resource utilisation
to which their energy consumption is directly correlated. Both
hosts and the VM have different types of resource use (e.g.
CPU, memory, network), but according to our analysis in
Table I, the most impacting parameters on migration are: (1)
CPU utilisation of the source CPU(S, t), target CPU(T, t), and
migrating VM CPU(v, t) at time instance t, (2) memory dirtying
ratio DR(v, t) of the VM v expressed in the percentage of pages
marked as dirty at time instance t , (3) the amount of memory
MEM(v) allocated to the migrating VM v, and (4) the available
network bandwidth BW(S, T, t) between the source and target
hosts for transferring the state of the migrating VM.

If the VM is idle or suspended, then CPU(v, t) = 0 and
DR(v, t) = 0. Otherwise, we define the memory dirtying ratio
DR(v, t) as:

DR(v, t) =
DIRTYPAGES(v, t)

MEM(v)
, (1)

where DIRTYPAGES(v, t) is the number of pages marked as
dirty at the time instance t in the memory of VM v and MEM(v)
is the VM memory size in pages.

The parameters CPU(S, t) and CPU(T, t) mainly depend on
three terms: (1) CPU utilisation CPUVMM for arbitrating the
hardware resources shared among the VMs, (2) CPU utilisation
CPU(v, t) of each VM v executed on the host h at the instant t
and (3) CPU load CPUmigr added by migration on both source
and target:

CPU(h, t) = CPUVMM(V(h, t))+
∑

v∈V(h,t)

CPU(v, t)+CPUmigr(h, t),

(2)
where V(h, t) is the complete set of VMs running on the host
h ∈ {S, T} at time instance t other than the migrating VM v.

C. Energy model

For each physical host h ∈ {S, T}, the energy consumption
of the migration is the integral of the instantaneous power

drawn caused by the migration process throughout its duration
[ms,me]:

Emigr(h, v) =

∫ me

ms

P(i)(h, v, t) + P(t)(h, v, t) + P(a)(h, v, t)dt,

(3)
where the power drawn is represented as the sum of the power
consumed over the three phases – identified in Section III-D –,
initiation P(i), transfer P(t), and activation P(a). The following
subsections discuss our model for each of these power drawn
functions. Integrating these values over the migration time, we
obtain the energy consumption over each phase, E(i)(h, v),
E(t)(h, v) and E(a)(h, v), respectively. By adding these values,
we obtain energy consumption of VM migration Emigr:

Emigr(h, v) = E(i)(h, v) + E(t)(h, v) + E(a)(h, v). (4)

1) Initiation phase: In this phase, we expect the power
consumption on both hosts to depend on: (1) the increase in
CPU usage for initiating VM migration and (2) the additional
CPU usage for suspending the VM on the source host. On the
source host, we also need to consider the resource usage of
the VM that will still be running over this phase:

P(i)(h, v, t) = α(i)(h) · CPU(h, t)+
β(i)(h) · CPU(v, t) + C(i)(h) (5)

where α(i)(h) and β(i)(h) model the relationship between
the CPU usage of the two hosts and of the migrating VM
to the power consumption, and C(i)(h) include the power
consumption the for establishing a connection between the two
hosts. We approximate the power consumption with a linear
function, as done in [20]. On the source host, it also includes
the power consumption for suspending the VM. As the target is
not yet involved in the execution of the VM, the CPU(v, t) = 0.

2) Transfer phase: Since transferring the state of the VM
from the source to the target host is a network-intensive pro-
cess, its power consumption is mainly related to the network
bandwidth. In this phase, we also consider the CPU usage
on both hosts proportional to the power consumption, while
we also expect a linear relationship between dirtying ratio
and power consumption due to the increased contention on
memory.

P(t)(h, v, t) = α(t)(h) · CPU(h, t) + β(t)(h) · BW(S, T, t)+
+ γ(t)(h) · DR(v, t) + δ(t)(h) · CPU(v, t) + C(t)(h), (6)

where α(t)(h) models the linear relationship between power
and CPU usage, β(t)(h) the relationship between bandwidth
and power, γ(t)(h) the linear relationship between the dirtying
ratio and power consumption, δ(t)(h) the linear relationship
between the migrating VM’s CPU usage and its power con-
sumption and Ct(h) the power consumption for moving the
state of the migrating VM to the target host. We expect the
latter to be higher on the target host than on the source because
it also needs to load the VM state in memory. The main
difference between live and non-live migration is that during
a live migration, the migrating VM is still running on the
source host and, therefore, we need to consider the power
consumption on the host due to its workload (i.e., DR(v, t) 6= 0
and CPU(v, t) 6= 0). As the VM is not yet on the target, both the
dirtying ratio and the migrating VM’s CPU utilisation becomes
0 while evaluating power consumption on the target host.



3) Activation phase: After the transfer phase is completed,
there are two remaining actions to be performed: resuming
the VM on the target host and deallocating the resources
occupied on the source host. Afterwards, due to the release
of the resources previously owned by the migrating VM, on
the source host, we consider the CPU load and a constant
power consumption C(a)(S) only. Concerning the target host,
we need to consider the power consumed by the migrating
VM that starts its execution, as well as the constant power
consumed by the hypervisor to start the VM C(a)(T):

P(a)(h, v, t) = α(a)(h) · CPU(h, t)+
β(a)(h) · CPU(v, t) + C(a)(h) (7)

where α(a)(h) models the linear relationship between CPU
usage and power consumption, and β(a)(h) models the rela-
tionship between the CPU usage of the starting VM.

V. EXPERIMENTAL METHODOLOGY

After describing our model, we introduce the methodology
to evaluate its accuracy. First, we describe the rationale behind
the experimental design, then introduce the hardware and
software configuration for conducting the measurements.

A. Experimental design

Our experimental settings are summarised in Table IIa, and
the VM and hardware configurations in Tables IIb and IIc. We
used the Xen virtual machine monitor version 4.2.5, including
both xm and xl toolstacks configured to perform the live and
non-live migrations between two physical machines as speci-
fied in Table IIc. The two machines were connected through
a networking switch. We performed the experiments on two
sets of machines (m01-m02 and o1-o2) with different CPUs
and network cards/switch, to allow the validation of our model
on different hardware configurations. For each experiment, we
employed paravirtualized VMs mostly encountered in modern
data centres as they ensure near-native performance. For the
migrating VMs, we chose 4 GBs of memory size to assure a
long enough migration time for the clearly identification of the
energy consumption phases.

According to our analysis in Table I, CPU-intensive work-
loads running on source/target hosts and memory-intensive
workloads running on the migrating VM have the highest
impacts on the energy consumption VM migration. Therefore,
we designed two families of experiments: CPULOAD and
MEMLOAD.

1) CPULOAD: We investigate the impact of VM workload
on live and non-live migration using two types of experiments:

a) CPULOAD-SOURCE: investigates the impact of
CPU-intensive workloads running on the source host by mi-
grating a VM to an idle target host. The load of the source
is progressively increased from idle to 100% CPU utilisation
to quantify its impact on VM migration. We also consider the
case in which the VMs require more CPUs than the host can
offer, to ensure some multiplexing amongst them.

b) CPULOAD-TARGET: investigates the impact of
CPU-intensive workloads running on the target host by mi-
grating a VM from a source host running the migrating VM
only. The load of the target is progressively increased from
idle to 100% CPU utilisation to quantify its impact. Also in
this experiment, we consider the effects of multiplexing on
hardware resources.

For the CPU-intensive workload, we use an OpenMP C
implementation of a matrix multiplication algorithm for two
reasons: it is used by many scientific workloads running on
data centres, and it can be easily parallelised allowing us to
load all virtual CPUs of the VMs taking part in the experiments
with while it introduces only small communication and syn-
chronisation overheads. Concerning the VM configuration, we
select the load-cpu and migrating-cpu type among the
instances described in Table IIb. We employ the load-cpu
VM instance to load the physical host while migrating an
instance of migrating-cpu type. We assign as many CPUs
to these instances as needed to increase the load by 25%
increments.

2) MEMLOAD: experiments study the effect of varying
dirtying ratio (see Equation 1) in the migrating VM on the
migration process. To compare the impact of the memory-
intensive workloads with the CPU-intensive ones, we designed
experiments involving CPU-intensive workloads running on
both source and target, as follows:

a) MEMLOAD-VM: studies the impact of memory-
intensive workloads by increasing the percentage of memory
pages dirtied in the migrating VM. The source host is only
running the migrating VM and the target is idle. This experi-
ment serves as the baseline for the rest of the memory intensive
ones.

b) MEMLOAD-SOURCE: investigates how live migra-
tion is differently impacted by: (1) CPU-intensive workloads
running on the source host and (2) memory-intensive work-
loads running on the migrating VM. We perform a live
migration of a VM running a memory-intensive workload
from a source host running a CPU-intensive workload with
increasing utilisation to an idle target.

c) MEMLOAD-TARGET: investigates how live migra-
tion is differently impacted by: (1) CPU-intensive workloads
running on the target host and (2) memory-intensive workloads
running on the migrating VM. We perform a live migration of
a VM running a memory-intensive workload to a target host
running a CPU-intensive workload with increasing utilisation.
The source host is running the migrating VM only.

These experiments employ live migrations only, since non-
live migrations have DR(v, t) = 0. For this category of
experiments, we chose a memory-intensive workload called
pagedirtier implemented in ANSI C that continuously writes
in memory pages in random order. We fixed the memory
allocated to this application to 3.8 GB to avoid swapping
effects incurring additional VM migration overheads, due to
the continuous writing to the NFS storage and a consequent
reduction of the available bandwidth. We employ again the
load-cpu VM instances for generating load on the hosts
and migrating-mem as the migrating VM (see Table IIb).



.

Experiment Configuration of Configuration of Configuration of
source host target host migrating VM

CPU Memory CPU Memory Instance CPU Memory

CPULOAD-SOURCE [0− 100]% 5% idle 5% migrating-cpu 100% 5%
CPULOAD-TARGET 1×migrating-cpu 5% [0− 100]% 5% migrating-cpu 100% 5%
MEMLOAD-VM idle 5% idle 5% migrating-mem 100% [5− 95]%

MEMLOAD-SOURCE [0− 100]% 5% idle 5% migrating-mem 100% 95%
MEMLOAD-TARGET 1×migrating-mem 5% [0− 100]% 5% migrating-mem 100% 95%

(a) Experimental design.

ID Number of Linux RAM Workload Storage
virtual CPUs kernel size

load-cpu 4 2.6.32 512MB matrixmult 1GB
migrating-cpu 4 2.6.32 4GB matrixmult 6GB
migrating-mem 1 2.6.32 4GB pagedirtier 6GB

dom-0 1 3.11.4 512MB VMM 115GB

(b) VM configurations.

Machine Available Available Gigabit Gigabit Xen
virtual cpus RAM NIC switch version

m01 32 (16×Opteron 8356, 32GB Broadcom Cisco Catalyst 4.2.5
m02 dual threaded) BCM5704 3750
o1 40 (20×Xeon E5-2690, 128GB Intel HP 4.2.5
o2 dual threaded) 82574L 1810-8G

(c) Hardware configuration.

TABLE II: Experimental setup.

B. Energy measurement methodology

We employ two Voltech PM1000+1 power measurement
devices connected to the AC side of the source and target
hosts, measuring their instantaneous power drawn at a fre-
quency of 2 Hz in order to capture the power consumption
of a complete VM migration, including the pre- and post-
migration execution phases. For each experimental run, we
start measuring the hosts’ power consumption and issue a VM
migration only after the measured values stabilise. Similarly,
we stop the measurements after the power consumption of the
hosts stabilises too. We say that the power consumption of
the host stabilises when we read twenty consecutive power
measurements with a difference lower than 0.3%, that is below
our measurement device’s accuracy. Moreover, we repeat each
experiment until the difference in variance between one run
and the previous runs becomes less than 10%, resulting in at
least ten runs for each experiment. From the power readings
and the time intervals, we compute four energy metrics:
initiation, transfer and activation energy of the corresponding
VM migration phases (see Sections III-D and IV-C), and the
total migration energy as the sum of the three metrics. In
addition, we also measure the CPU and memory consumption
during each migration using the dstat tool and average the
values of all executions.

VI. EXPERIMENTAL RESULTS

In this section, we show the results of our experiments
described in Section V. For each experiment we report the
instantaneous power consumption traced every 500 millisec-
onds (according to the resolution of our power measurement
devices) which allows us to easily identify the migration
phases. We extract the energy consumption for each phase by
integrating the power over its length. We average each result
over ten experimental runs to ensure statistical significance.

A. CPULOAD-SOURCE

The results for the CPULOAD-SOURCE experiment dis-
played in Figures 3a and 3b show that the instantaneous power
consumption of a non-live migration follows the same trend
for each CPU workload except the case with eight VMs,

1http://www.voltech.com/products/poweranalyzers/PM1000.aspx

when we have multiplexing on the machine’s CPUs. In this
case, we clearly see that on the source host (Figure 3a) the
power consumption trend follows a constant function, since
it is proportional to the CPU usage that will never exceed
its hardware-imposed limit beyond which the resources are
shared between the VMs. In this case, the migrating VM
is suspended when the migration starts and the load on the
host drops when there is no multiplexing without affecting the
power consumption.

Concerning the target (Figure 3b), we notice a slightly
lower power consumption from the beginning of the transfer
phase when the source host has full CPU utilisation because
of the reduced bandwidth to the target host (due to the 100%
CPU load on the source host). A reduced bandwidth implies
a lower power consumption and a longer transfer phase.

For live migration (Figures 3c and 3d), we observe an
increased power consumption over the transfer phase due to the
running VM because of: (1) the additional power consumption
for network transfers and (2) the increased CPU usage of the
virtualization software to handle the live migration. Concern-
ing the source host, we notice a constant power consumption in
case of CPU multiplexing, for the same reason as in Figure 3a.

Considering the power consumption on the target host
(Figure 3d), we observe no significant differences compared
to the non-live migration, except for a reduced consumption
for the full CPU load with and without multiplexing. This is
because the migrating VM is not suspended over the transfer
phase and thus, it still uses CPU resources on the source
host. Therefore, the source host is not able to exploit the
full bandwidth available between the two hosts, leading to a
scenario similar to the one observed in Figure 3b. We also
notice a strong difference in power consumption before and
after the migration in the 25% load scenario because the
power drawn of the source host returns back to idle after the
migration.

We conclude that CPU-intensive workloads have an impact
on VM migration when running on the source, as bandwidth
decreases when the CPU is fully loaded causing a longer trans-
fer phase and a consequently, a higher energy consumption.
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(a) Non-live source.
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(b) Non-live target.
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(c) Live source.
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(d) Live target.

Fig. 3: CPULOAD-SOURCE results.

B. CPULOAD-TARGET

For the CPULOAD-TARGET experiment, we observe fist
in Figure 4a that the impact on the power consumption of
source host is minimal when changing the load on the target.
Concerning the target measurements in Figure 4b, we can
notice (1) a small increase in power drawn due to the network
transfer of the VM state and (2) a big increase in the power
consumption when the migration is finished and the VM is up
and running on the target. The impact of external load in this
case is visible only when the target host is fully loaded, where
the power resembles a constant trend since the host reached
its CPU limit (see Equation 2).

For the live migration (Figure 4c), we notice for the source
host a small increase in power consumption over the transfer
phase due to: (1) the network transfer of the VM state and
(2) the CPU increase for handling the migration. We do not
notice any impact of the target load on this host except for the
slight difference in case of multiplexing due to the additional
load on the target host that prevents the VMM to use the full
bandwidth. For the target host in Figure 4d, we see similar
trends to the non-live migration except that: (1) the power
drawn is slightly lower in the transfer phase and (2) the live
migration takes at least 60 seconds longer. However, since this
tendency is present also in the idle target case, it seems mostly
related to hardware configuration than the host load.

C. MEMLOAD-VM

For the MEMLOAD-VM experiment, we observe in Fig-
ures 5a and 5b that the power consumption considerably
changes with the dirtying ratio, with the difference that for
the target host it does not go back to the idle level but slightly
increases (since the VM is running on the target afterwards).
On both hosts, the drop in power consumption during the
transfer phase grows with the dirtying ratio because the VM
experiences a longer suspension time to complete the migration
by sending the more dirty memory pages from source to target.
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(a) Non-live source.
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(b) Non-live target.
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(c) Live source.
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(d) Live target.

Fig. 4: CPULOAD-TARGET results.

Model Host NRMSE NRMSE NRMSE NRMSE
(non-live) (live) (non-live) (live)

(m01 – m02) (m01 – m02) (o1 – o2) (o1 – o2)

WAVM3 Source 11.8% 11.8% 12.5% 12.7%
Target 12% 5% 16.3% 17.2%

TABLE V: Normalised root mean square error (NRMSE) of
our model on the two datasets.

D. MEMLOAD-SOURCE

For the MEMLOAD-SOURCE experiment, we observe in
Figure 6a that the transfer phase increases with the CPU load
on the source host and the memory-intensive workload running
on the VM. This slight increase is proportional to the decrease
in bandwidth utilisation due to the increased CPU usage of the
source. This tendency is better seen for high amount of loads
for the target host (Figure 6b), when we notice a considerable
increase in the transfer phase due to the reduced bandwidth.
We also observe that that the CPU load on the source host
has an impact on the energy consumption of migration even
in case of memory-intensive workloads, for which reason we
included it in Equation 6. Finally, we also notice on both hosts
a considerable drop in power consumption towards the end
of the transfer phase because of the VM suspension on the
source due to the high dirtying ratio that transforms the live
migration in a non-live one (i.e. the VMs are not accessible
from the network during this time). The similarity with non-
live migration is clear by looking at Figures 3a and 3b.

E. MEMLOAD-TARGET

For the MEMLOAD-TARGET experiment, we see in Fig-
ure 7a that the transfer phase has a similar length on the source
host, except for the slight difference in case of multiplexing
due to bandwidth limitations on the target. The trends of the
activation phase assume a different shape according to the
amount of load. On the target host (Figure 7b), we observe
a constant trend in power consumption except the idle case,
when live migration becomes a non-live one as we can see by
comparing the highlighted areas in Figures 4a and 4b.



Host Initiation Transfer Activation

α(i) β(i) C1(i) C2(i) α(t) β(t) C1(t) C2(t) α(a) β(a) C1(a) C2(a)
Source 1.71 1.41 708.3 165 2.4 1.08 · 10−6 421.74 200 2.37 0 662.5 150

Target 3.18 0 596.06 162 2.56 5.49 · 10−7 520.214 210 1.88 17.01 499.56 100

TABLE III: Coefficients for non-live migration.

Host Initiation Transfer Activation

α(i) β(i) C1(i) C2(i) α(t) β(t) γ(t) δ(t) C1(t) C2(t) α(a) β(a) C1(a) C2(a)
Source 1.71 1.41 708.3 165 2.4 1.52 · 10−6 1.41 0.4 421.74 200 2.37 0 662.5 150

Target 3.18 0 596.06 162 2.56 7.32 · 10−7 0 0.4 520.214 200 1.88 17.01 499.56 100

TABLE IV: Coefficients for live migration.
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Fig. 5: MEMLOAD-VM results.

F. Regression analysis

In this section we compute the model coefficients α, β, γ, δ
for each phase identified in the theoretical model using regres-
sion analysis based on the Non Linear Least Square algorithm.
We select a training subset of the power readings from each
phase to extract the model coefficients and use them afterwards
as a model to predict the energy consumption. The training
set used for this purpose is the 20% of the readings obtained
by running our experiments on the machines m01 – m02. The
coefficients for non-live migration are summarised in Table III,
while the coefficients for live migration are summarised in
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(a) MEMLOAD-SOURCE source
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Fig. 6: MEMLOAD-SOURCE results
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(a) MEMLOAD-TARGET source
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Fig. 7: MEMLOAD-TARGET results

Table IV. To validate our model, we also used the same
coefficients to predict the energy consumption of non-live and
live migration on a different set of machines (o1 – o2). When
checking the results of our prediction on this new set, we
observed that it was overestimating the measured values by
a constant factor because the bias obtained from the training
phase includes the idle power consumption of the physical
machines. Therefore, we changed the bias by subtracting the
difference in idle power between the two sets of machine. We
will then use C1 as bias for the prediction on (m01 – m02)
and C2 for the prediction on (o1 – o2). The error for our
model in both datasets is shown in Table V. The discussion of
our model’s behaviour is presented in contrast to other state-
of-the-art models in the next section.

VII. COMPARISON

In this section, we compare the accuracy of our model
with three other models available in the literature that take into
account different parameters to model energy consumption of
VM migration: HUANG [3], LIU [4] and STRUNK [17]. Next,
we shortly describe each one of these models.



a) HUANG: The model of Huang et al. [3] is based on
the assumption that the instantaneous power consumption P
of each host is linear with the CPU utilisation of the VM v at
the instant t CPU(v, t) [20]:

P (t) = α · CPU(v, t) + C, (8)

where the istantaneous power P (t) is linear by a factor
of α and C is a hardware-related constant. We obtain the
energy consumption by integrating P over the migration time
[ms,me]. This model perfectly suits scenarios when CPU
utilisation has an impact on VM migration, but does not suit
scenarios that involve other parameters (e.g. memory dirtying
ratio, CPU load on migrating VM).

b) LIU: The model of Liu et al. [4] is based on the
assumption that energy consumption of VM migration Emig

depends only on the amount of data DATA exchanged by the
two hosts during the VM migration:

Emigr = α · DATA+ C, (9)

In their work, the authors compute the amount of data
exchanged during migration as a function of VM memory
size, memory transmission rate and memory dirtying ratio.
Moreover, since they assume transfer is performed in several
rounds, they compute the amount of data as the sum of the
data sent in each round:

DATA =

n∑
r=0

(MEM(v) ∗ PAGESIZE)
BW(S, T, r)

· DR(v, t, r) (10)

Where n is the number of rounds, BW(S, T, r) is the bandwidth
during the round r and DR(v, t, r) the dirtying ratio over
the round r. We use instead the amount of data transferred
measured with our network instrumentation as the DATA value.
In this model, α models the linear relationship between the
transferred data and energy consumption and C is a hardware-
related constant. For this reason, the model is perfectly suitable
for predicting the energy consumption of VMs workloads with
high dirtying ratio. This model, however, does not consider the
CPU load which generates modelling errors in case this has a
high impact on the energy consumption. Moreover, it assumes
that homogeneous hosts have the same consumption during
migration. However, as stated also by [21], such an assumption
could lead to inaccurate results.

c) STRUNK: The model of Strunk [17] considers the
VM memory size MEM(v) and the network bandwidth between
source and target BW(S, T) as parameters in a linear model:

Emigr = α · MEM(v) + β · BW(S, T) + C, (11)

where α and β model, the linear relationship between VM size
and network bandwidth and C is a hardware-related constant.
This model perfectly suits scenarios in which both hosts
and the migrating VM are idle and does not take their load
into account. Even though such conditions are very likely to
happen in data centres [22], many works show the benefits of
consolidating VMs executing tasks to/from hosts that are not
idle [23]. Therefore, having a model able to predict the energy
consumption of VM migration in different conditions can be
helpful to decide whether this is beneficial energy-wise.

We train these models using the same training set used to
train our model and the coefficients obtained for each model

Model Host α β C
HUANG Source 2.27 − 671.92

Target 2.56 − 645.776
LIU Source 2.43 − 494.2

Target 2.19 − 508.2
STRUNK Source 3.35 −3.47 201.1

Target 5.04 −0.5 201.1

TABLE VI: Training phase coefficients for LIU, HUANG and
STRUNK models.

Model Host MAE RMSE NRMSE MAE RMSE NRMSE
(non-live) [kJ](non-live)(non-live)(live) [kJ] (live) (live)

WAVM3 Source 1.8 2558 11.8% 6.3 8432 11.8%
Target 1.7 1789 12% 3.6 4056 5%

HUANG Source 1.8 2587 12% 5.5 9234 15.7%
Target 1.8 2067 12.8% 7.1 9102 12.9%

LIU Source 4.8 5812 26.9% 9.8 12117 36.3%
Target 3.4 4121 25.3% 7 9622 29.4%

STRUNKSource 0.026 3824 17.7% 0.028 4547 35.4%
Target 0.058 5187 30% 0.019 4382 36.2%

TABLE VII: Comparison of WAVM3 with other models on
dataset m01-m02.

are summarised in Table VI. Afterwards, we compute three
error metrics on the test set: Mean Absolute Error (MAE),
Root Mean Square Error (RMSE) and Normalized Root Mean
Square Error (NRMSE). Each metric is summarised in Ta-
ble VII. In the next subsections, we compare the results of
our model named Workload-Aware Virtual Machine Migration
Model (WAVM3) with the other three.

A. Non-live migration

By looking at Table VII, we observe that, among the
analysed models, the one of Huang et al. provides the most
accurate estimation for non-live migration. This is because
non-live migration is mostly influenced by CPU usage which
is the only parameter that this model takes into consideration.
Since our model also takes CPU into account, we do not
expect high variations in most of the scenarios. However, it
can happen that one host is not able to use the full bandwidth
if there is some multiplexing on the CPU. In such situations,
network utilisation drops because CPU is not able to exploit
all the network resources available and, therefore, network
bandwidth cannot be ignored. Since our model also takes
into account network bandwidth, it manages to have better
estimations (−0.2% NRMSE for source host, −0.8% NRMSE
for target host) when there is less network bandwidth available.
Moreover, even though the MAE for the two models is very
similar, we observe that the difference between RMSE and
MAE is slightly higher for the model of Huang et al., showing
that our model’s estimation error has a lower variance too.

B. Live migration

The errors for the live migration are summarised in Ta-
ble VII. Also in this case, the model of Huang et al. performs
considerably better because it considers the CPU of source and
target hosts, ignored by the other two, that has a considerable
impact on energy consumption during VM migration. How-
ever, we notice an 18% increase in NRMSE versus the non-
live migration error for the source host and a 16.2% increase
in NRMSE for target host. This is because live migration



should taken into account the CPU utilisation and the dirtying
ratio of the migrating VM that is still running during the
migration. Our model performs better because these parameters
are instead considered, increasing the accuracy of prediction
of Huang et al. by 3.9% (11.8% vs 15.7% NRMSE) for the
source host and by 7.9% (5% vs 12.9%) for the target host.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we developed a new energy model for VM
migration. We considered the impact of workloads running
on different actors and identified how much their load impacts
the energy consumption of VM migration. Then, we compared
the accuracy of our model versus other state-of-the-art models
that do not consider it. We quantify how much each actor’s
workload influences VM migration energy-wise. Our results
show an improvement up to 24% in accuracy, showing that
workload’s impact on VM migration cannot be ignored when
predicting its energy consumption. As a result, employing
our model can significantly improve more energy efficiency
focused VM consolidation decisions. For example, one may
think not to consolidate a VM with an high dirtying ratio to
a host that is running a lot of CPU intensive workloads since,
as shown in Figure 7, this is going to increase the energy
consumption of VM migration. The other models considered
in this work do not take into account impact of the load running
on the target host and therefore, may not be able to provide
the same accuracy in predictions. Such a model could also be
easily integrated in Cloud simulators to provide more accurate
estimation of energy consumption in data centres. We plan to
extend this work by also considering the impact of network-
intensive workloads.
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[13] Takahiro Hirofuchi, Adrien Lèbre, and Laurent Pouilloux. Adding a
Live Migration Model Into SimGrid, One More Step Toward the Sim-
ulation of Infrastructure-as-a-Service Concerns. In IEEE CloudCom,
2013.

[14] Kateryna Rybina, Abhinandan Patni, and Alexander Schill. Analysing
the migration time of live migration of multiple virtual machines. In
CLOSER 2014 - Proceedings of the 4th International Conference on
Cloud Computing and Services Science, Barcelona, Spain, April 3-5,
2014., pages 590–597, 2014.

[15] W. Dargie. Estimation of the cost of vm migration. In Computer
Communication and Networks (ICCCN), 2014 23rd International Con-
ference on, pages 1–8, Aug 2014.

[16] A Strunk. Costs of virtual machine live migration: A survey. In Services
(SERVICES), 2012 IEEE Eighth World Congress on, pages 323–329,
June 2012.

[17] A. Strunk. A lightweight model for estimating energy cost of live
migration of virtual machines. In Cloud Computing (CLOUD), 2013
IEEE Sixth International Conference on, pages 510–517, June 2013.

[18] Qiang Huang, Fengqian Gao, Rui Wang, and Zhengwei Qi. Power
consumption of virtual machine live migration in clouds. In Com-
munications and Mobile Computing (CMC), 2011 Third International
Conference on, pages 122–125, April 2011.

[19] H. Shirayanagi, H. Yamada, and K. Kono. Honeyguide: A vm
migration-aware network topology for saving energy consumption in
data center networks. In Computers and Communications (ISCC), 2012
IEEE Symposium on, pages 460–467, July 2012.

[20] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao,
and Feng Zhao. Energy-aware server provisioning and load dispatching
for connection-intensive internet services. In NSDI’08, pages 337–350.
USENIX Association, 2008.

[21] A-C. Orgerie, L. Lefevre, and J.-P. Gelas. Demystifying energy
consumption in grids and clouds. In Green Computing Conference,
2010 International, pages 335–342, Aug 2010.

[22] Faraz Ahmad and T. N. Vijaykumar. Joint optimization of idle
and cooling power in data centers while maintaining response time.
SIGARCH Comput. Archit. News, 38(1):243–256, March 2010.

[23] Jyothi Sekhar, Getzi Jeba, and S. Durga. A survey on energy efficient
server consolidation through vm live migration. IJAET, 5:515–525,
November 2012.


