
One Click Cloud Orchestrator: bringing
Complex Applications Effortlessly to the Clouds?

Gabor Kecskemeti, Mark Gergely, Adam Visegradi, Zsolt Nemeth, Jozsef
Kovacs and Peter Kacsuk

Institute for Computer Science and Control, Hungarian Academy of Sciences.
1111 Budapest, Kende u. 13-17, Hungary.

kecskemeti.gabor@sztaki.mta.hu

Abstract. Infrastructure cloud systems offer basic functionalities only
for managing complex virtual infrastructures. These functionalities de-
mand low-level understanding of applications and their infrastructural
needs. Recent research has identified several techniques aimed at en-
abling the semi-automated management and using applications that span
across multiple virtual machines. Even with these efforts however, a truly
flexible and end-user oriented approach is missing. This paper presents
the One Click Cloud Orchestrator that not only allows higher level of
automated infrastructure management than it was possible before, but
it also allows end-users to focus on their computational problems instead
of the complex cloud infrastructures needed for their execution. To ac-
complish these goals the paper reveals the novel building blocks of our
new orchestrator from the components closely related to infrastructure
cloud to the ways virtual infrastructures are modeled. Finally, we show
our initial evaluation and study on how the orchestrator fulfills the high
level requirements of end-users.

1 Introduction

Infrastructure as a service (IaaS) cloud systems allow automated construction
and maintenance of virtual infrastructures [2]. Such infrastructures exploit the
concept of virtualization and use virtual machines (VMs) as the smallest building
block. Thus, IaaS systems enable the creation, management and destruction of
VMs through a convenient and machine accessible API as their core functional-
ities. Their reliability and the possibility of virtually infinite sized infrastructure
of commercial IaaSs lead to their fast adoption and widespread use.

Unfortunately, even with these IaaS functionalities, setting up and using
complex virtual infrastructures is the privilege of a few due to several reasons:
(i) current IaaS APIs barely manage more than single VMs, but (ii) even if they
do so, they are mostly focused on network management among user controlled

? The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme FP7/2007-2013 under grant agreement no.
608886 (CloudSME)



VMs. Thus, IaaS systems have severely limited applicability because they require
deep knowledge of system administration. This highlights the need for techniques
capable of automating the creation and management of large-scale applications
deployed over potentially thousands of virtual machines without knowing how
particular virtual machines or their networking are set up [17].

Recent research answered these needs with the cloud orchestrator concept
[3,8] that shifts the center of attention from sole VMs to the required function-
alities. To reduce the needed networking knowledge, orchestrators also expect the
description of dependencies between the different functional blocks of a large-
scale application. Although this description greatly reduces the expertise needed
to operate complex infrastructures, there are still several outstanding issues (e.g.,
VM creation conforming to required functionalities, cross VM or cross-cloud er-
ror resilience, autonomous scaling techniques that not only consider application
load but other properties – like cost, energy – as well, high level user interfaces).

In this paper, we propose a new orchestrator technique – called the One
Click Cloud Orchestrator (OCCO) – that targets these issues with novel ap-
proaches. Our technique is based on a virtual machine management technique
independent of infrastructures. Next, OCCO encompasses several software de-
livery approaches from custom and on-the-fly virtual machine construction (e.g.,
with Chef) to supporting user built virtual machine images that are optimized
for a particular purpose. The proposed orchestrator also incorporates a unified
infrastructure state model (which allows the system to determine what func-
tionalities are missing or perform below expectations). Finally, on top of these
components, OCCO offers customizable techniques for automated infrastructure
maintenance (ranging from simple multi-VM infrastructure creation, to highly
available and scalable application management).

To reveal OCCO’s capabilities, we have investigated several academic use case
scenarios that presumably require such advanced orchestrators. We have selected
a scenario that is capable to run parametric study based scientific workflow ap-
plications in a built-to-order virtual infrastructure. Afterwards, we implemented
a prototype system to evaluate the applicability of our findings. We showed that
the prototype is capable of hiding the details of the infrastructure and can man-
age scientific workloads automatically while it also increased the productivity of
scientists with no experience in management of computing infrastructure.

The rest of the paper is organized as follows. First, in Section 2, we shortly
overview the currently available orchestrator solutions. Afterwards, Section 3
provides a discussion on the architecture devised for our One Click Cloud Or-
chestrator. Later, we reveal a prototype implementation of the new orchestra-
tor in Section 4. Then, the last section provides a conclusion with our closing
thoughts and future plans to enhance our orchestrator.

2 Related Works

One type of orchestration tools covers development and operations aspects. Such
tools, also called as configuration management tools, are aimed at automating



development and system administration tasks such as delivery, testing and main-
tenance releases to improve reliability and security but these mechanisms can
also perform orchestration activities such as creating, deploying and managing
virtual machines. These are well known and are briefly listed here: Saltstack [15],
Puppet [14], Chef [4], Docker [7], Juju [16] and Cloudify [5]. These provide lower
level, basic functionalities in comparison to OCCO, but OCCO may include
some of them in its VM Reshaper (a Chef example is provided in Section 3.)

Beyond these general-purpose utilities there is another category of orches-
tration tools with specific aims. Liu et al. [11] propose a data-centric approach
(Data-centric Management Framework, DMF) to cloud orchestration where cloud
resources are modeled as structured data that can be queried by a declarative
language, and updated with well-defined transactional semantics. This data cen-
tric approach is further advanced by an additional Cloud Orchestration Policy
Engine (COPE) in [12]. COPE takes policy specifications (of system wide con-
straints and goals) and cloud system states and then optimizes compute, storage
and network resource allocations within the cloud such that provider operational
objectives and customer SLAs can be better met. In contrast to OCCO, this so-
lution is focused on global policies and system-wide optimisation. In other words,
it is data-center oriented as opposed to the application centered OCCO.

Dynamic orchestration obviously appear in mobile and volatile environments.
Orchestrator [9] is aimed at sensor-rich mobile platforms where it enables multi-
ple, context aware applications that simultaneously run and share highly scarce
and dynamic resources. Applications submit high-level context specifications and
comply with Orchestrator’s resource allocation. Resource selection and binding
is postponed until resources’ availability is sufficiently explored. The major in-
novation of Orchestrator, the notion of active resource use orchestration, is ex-
plored in [10]. Where resource needs are decoupled from the actual binding to
physical resources and can be changed dynamically at runtime. Opposed to pas-
sive resource use orchestration, where the resource needs are programmed in the
application, this approach provides adaptivity via demand based, selective use
of alternative plans for application requests. Merwe at al. define a Cloud Con-
trol Architecture for a ubiquitous cloud computing infrastructure [6]. The Cloud
Control Architecture has a layered design where orchestration is in a separate
layer and connects the Service Abstraction (presents service logic to users) and
Intelligence (gathers information about the cloud infrastructure) and derives ab-
stract knowledge. The Orchestration layer collects both the requests from Service
Abstraction and actual data from Intelligence and makes decision about initial
placements, resource allocation, resource adjustment and movement of resources.
In all these approaches the key idea is to provide fair resource provisioning in a
limited and competitive environment, which is not the case for OCCO.

Lorincz et al. present a very different way or resource orchestration in Pixie:
resource tickets [13]. A ticket is an abstraction for a certain part (capacity) of a
resource and all orchestration actions are mediated via the tickets. Tickets are
generated by resource allocators and managed by resource brokers. A ticket pro-
vides information about the resource, the allocated capacity and the timeframe.



D C C

Cloud 3Cloud 2
CD B A

Cloud 1

Automated Infrastructure
Maintenance

Infrastructure
Deployment
Descriptor

A

D

CBCompiler

Enactor
1

4

32

5

Information
Dispatcher

!

!

Infrastructure Processor

Cloud
Handler

VM Reshaper

A B C D

Fig. 1. Internal behavior of OCCO

Resources can be manipulated by operations on tickets such as join (increasing
resource capacity), split (sharing), revoke or redeem (collecting specific tickets
for a certain operation) just to mention a few. This approach also decouples
actual resources from resource requests and gives a great flexibility in planning,
advance requests and adaptation. The ticketing scheme provides a logic control
of resource orchestration. Due to the entirely different approach, such global
coordination is not applicable in OCCO.

3 Architecture

3.1 The view of an infrastructure maintainer

This sub-section reveals the internal components of our architecture and how
these components interact to automatically operate a virtual infrastructure de-
scribed by an infrastructure maintainer. In the scope of this paper, the term
infrastructure maintainer refers to those users of OCCO who have the capabili-
ties to describe a virtual infrastructure and its expected behavior. To understand
the design considerations of OCCO and the required knowledge of infrastructure



maintainers, Figure 1 shows the main components of our proposed orchestrator.
These components are illustrated as boxes with gray boundaries in the figure.
The behavior of each component is exemplified inside the box through the oper-
ation of a simple virtual infrastructure. In the following we give an overview of
the components, then each component is going to be described in detail using
the examples shown in the component’s boxes.

OCCO has five major components: (i) Automated Infrastructure Mainte-
nance – infrastructure descriptor processing and VM management initiator; (ii) In-
frastructure Processor – internal depiction of a virtual infrastructure (groups
VMs with a shared aim); (iii) Cloud Handler – abstracts IaaS functionality (e.g.,
VM creation) for federated and interoperable use of clouds; (iv) VM Reshaper –
ensures awaited functionalities for VMs; and (v) Information Dispatcher – de-
couples the information producer and consumer roles across the architecture.
Except for Automated Infrastructure Maintenance, these components have in-
ternal interfaces only (e.g., not even offered for an infrastructure maintainer).

Automated Infrastructure Maintenance. This component is the only one
that sees the operated infrastructure with all of its complexity. It basically allows
two major operations: (i) submission of new virtual infrastructure requests and
(ii) destruction of already existing virtual infrastructures.

For the submission interface, OCCO expects an Infrastructure Deployment
Descriptor as an input. Defined by an infrastructure maintainer, the descrip-
tor contains vital information to construct and operate a virtual infrastructure.
First, the descriptor lists the node types needed to build a virtual infrastructure
(in Figure 1 types, such as an Apache server, are shown as capital letters in the
range of A–D). Then, it specifies the functional dependencies (that also imply
ordering) between these types of nodes (directed edges between nodes in the
figure). These dependencies allow the Automated Infrastructure Maintenance
component to determine which node types need to be instantiated first – in
cases when there is a loop in the dependency graph, the infrastructure main-
tainer should specify node types that could be deployed earlier than others.
Finally, the descriptor also includes rules for error resolution (e.g., what to do
when nodes are failing, under- or over-provisioned).

After the submission interface receives the descriptor, it is immediately com-
piled into an internal representation (in Figure 1 shown as a white graph with
annotated node types). In case of compilation failure immediate feedback is pro-
vided to the infrastructure maintainer allowing easy development and debugging
of deployment descriptors. On the other hand, successful compilation leads to
the enactment of the virtual infrastructure.

The enactor subcomponent is the fundamental component within the orches-
trator. During infrastructure construction, the enactor pushes node requests to
the Infrastructure Processor in the sequence determined by dependencies (the
figure shows this sequence as numbers in the nodes within the enactor). After
the sequence is pushed and the requested infrastructure is created, the enac-
tor continuously monitors the state of the infrastructure to detect errors and



resolve them according to the rules specified in the descriptor. As an example,
rules could define the necessary actions – like node re-instantiation, dependency
re-evaluation – when a particular kind of node becomes inaccessible. Such error
resilience is exemplified through the node type D (in Figure 1 step 4 is a faulty
node and step 5 re-instantiates it). The rules also allow the scaling of the de-
scribed virtual infrastructure. Scaling rules define the number of necessary node
instances depending on the state of the virtual infrastructure, expressed as a
function of some properties of a node type (e.g., the CPU load of all instances
of a node) or time (e.g., on workdays we need more resources than on holidays).
Scaling is exemplified in Figure 1 with the node type C (see the multi instance
node configuration behind step 3). It is easy to conceive that such simple condi-
tion – action rules may easily lead to unstable or oscillating states. The enactor
eradicates this behavior via complex rules, i.e. ones that involve some global
parameters in their conditions such as ”stop asking for more instances unless
some time has passed since last changing the number of instances”.

The enactor maintains the virtual infrastructure completely autonomously
unless a change is needed in the Infrastructure Deployment Descriptor. In such
case, first, the infrastructure maintainer updates the descriptor, and then the
Automated Infrastructure Maintenance component compiles a new internal rep-
resentation and finally, the enactor switches to a transitional mode. In this mode,
the enactor checks the differences between the old and the new internal repre-
sentation. If it finds new error resolution rules only, then the enactor ensures the
infrastructure’s conformance with them (e.g., if a new scaling rule needs fewer
instances for the same load then the excess instances are terminated via the
Infrastructure Processor) and it returns to normal operation. If the evaluation
finds new node types and dependencies also, then the currently operated virtual
infrastructure is restructured according to the new deployment descriptor.

Finally, one can order the destruction of a virtual infrastructure. During
destruction, the enactor pushes node destruction requests for previously created
nodes to the Infrastructure Processor. The request order is reversed compared
to node creation so every node can use its dependencies during its existence.

Infrastructure Processor. OCCO creates an abstraction for virtual infras-
tructures with this component. As discussed before, the Infrastructure Processor
receives node creation or destruction requests from the enactor. When the first
creation request is received for a virtual infrastructure, this component prepares
an administrative group for the future virtual infrastructure. Nodes of the virtual
infrastructure can share information between each other through this administra-
tive group (e.g., allowing newly created nodes to retrieve the dynamic properties
– like IP addresses – of existing ones). Depending on the underlying systems uti-
lized by the implementation these administrative groups can be mapped to lower
level concepts (e.g., if Chef is used behind the VM Reshaper component, then
administrative groups can be implemented through Chef’s environments).

Node creation requests are processed as follows. First, the processor ensures
that the VM Reshaper knows the node type that is going to be instantiated. Fol-



lowing the example above, if Chef is behind the VM Reshaper, then the processor
checks for the presence of the type’s recipe. If the recipe is not present, then the
processor pushes the recipe of the type to the reshaper. The pushed recipe could
be retrieved either from another Chef server or from the extended node type def-
inition of the Infrastructure Deployment Descriptor. Once the reshaper knows
the node type, the Infrastructure Processor sends a contextualized VM request
to the Cloud Handler component. Within the contextualization information the
processor places a reference to the previously created administrative group and
the expected node type of the future VM. Figure 1 exemplifies processed re-
quests for creation with gray shaded circles. The example shows various stages
of a virtual infrastructure’s operation (from the initial phases on the left, to the
final developments in the right side of the Infrastructure Processor’s box). These
stages show how an infrastructure is constructed and how it is adopted to errors
and problematic situations identified by the enactor.

In contrast to node creation, node destruction requests are directly sent to the
Cloud Handler. If the last node is destructed in a virtual infrastructure then the
Infrastructure Processor also destroys its administrative group automatically.

Cloud Handler. As its basic functionality, this component provides an abstrac-
tion over IaaS functionalities and allows the creation, monitoring and destruction
of virtual machines. For these functionalities, it offers a plugin architecture that
can be implemented with several IaaS interfaces (currently we aim at support-
ing at least OCCI and EC2 interfaces). These plugins are expected to serve
all concurrently available requests as soon as they can manage. To increase the
throughput and flexibility of the deployed virtual infrastructure, the Cloud Han-
dler also offers VM scheduling across multiple clouds. If this functionality is used,
cloud selection criteria can be either specified by the infrastructure maintainer
– e.g., as a guideline – or by the user who initiated the virtual infrastructure.
The Cloud Handler always expects some selection criteria for each VM (e.g., a
static cloud mapping has to be specified in every deployment descriptor).

Our example in Figure 1 shows VM requests arriving at the handler, ordered
bottom-up (first at the bottom, last at the top, parallel requests side by side).
Cloud to VM request association is shown as arrows between requests and clouds.
At the end of arrows, little squares represent the actual VMs created in the
clouds. Each VM shows its contextualized node type with gray letters (A–D).

VM Reshaper. This component manages the deployed software and its con-
figuration on the node level. This functionality is well developed and even com-
mercial tools are available to the public. Our VM Reshaper component therefore
offers interfaces to these widely available tools – e.g., [4, 5, 7, 14, 15]. These soft-
ware tools use their proprietary node type definitions (e.g., so called recipes
in Chef and manifests in Puppet). The VM Reshaper allows the reuse of these
proprietary definitions for node types already described, even if stored at ex-
ternal – but accessible – locations (thus, regular node type definitions are just
references to these proprietary definitions). On the other hand, new node types



can be defined in the infrastructure deployment descriptor in the extended node
type definition. The form of these definitions allows the Infrastructure Processor
to select a VM Reshaper with matching node management tools behind (e.g., in
case a recipe is given as an extended node type definition then Chef will be the
tool used). It is expected that advanced infrastructure maintainers could create
such node type definitions for custom applications.

Returning to our example in Figure 1, node type definitions are presented as
dotted circles within the VM Reshaper. With arrows between the VMs and type
definitions, the figure also shows how VMs contact the VM Reshaper to retrieve
and apply node type definitions. These activities ensure the presence and correct
configuration of the software components needed VMs to fulfill their role.

Information Dispatcher. In order to make accurate decisions based on the
state of the ordered virtual infrastructure, our proposed architecture has a com-
mon interface to reach the diverse information sources from which the state
can be composed. In order to reduce redundancy and structural bottlenecks,
requests to our dispatcher component are directly forwarded to relevant infor-
mation sources. The minimal processing done inside the dispatcher is limited to
two activities: (i) request transformation and (ii) information aggregation. For
the first activity, the dispatcher transforms the – sometimes abstract or con-
ceptual – requests to the actual information pieces accessible from the various
components and underlying clouds of the OCCO (e.g., request for node D load
can be translated to the CPU utilization of the VM hosted in Cloud 1 or Cloud 3
in Figure 1). The second activity happens when the dispatcher receives requests
to information that is available only as a composite. In such cases, the dispatcher
forwards the request to all relevant OCCO components and if necessary to the
virtual infrastructure. Upon receiving their response, the dispatcher calculates
an aggregated value of the responses and presents this as a response to the orig-
inal request. For example, using our running example of Figure 1, a request for
node C load will be computed as an average of the CPU utilization of all VMs
hosting node type C in Cloud 2 and 3. In OCCO, generic transformation and
aggregation rules can be specified by the deployer of the Information Dispatcher
while specific rules for the particular kind of virtual infrastructure are given in
the Infrastructure Deployment Descriptor by the infrastructure maintainer.

In Figure 1, within the box of Information Dispatcher, we show by three
scenarios how querying this component can help with understanding the state
of the operating virtual infrastructure. We expect that the enactor regularly
queries the dispatcher. In the top graph within the dispatcher’s box, we see
that a query to the dispatcher is sent to check the availability of each node
in the virtual infrastructure. This query is then forwarded to all participating
virtual machines. Unfortunately, in this scenario, the dispatcher is not receiving
node D ’s response, thus it is reported unavailable (represented as striped circle
D). As this would render the virtual infrastructure unusable, the enactor will
immediately request a new node for type D through the Infrastructure Processor.
Similarly, in the middle two graphs we see requests for load of node type C. When



One Click infrastructure 
customizer UI

Customized 
Infrastructure
Deployment
Descriptor

Deployment Descriptor 
Template Store

Virtual 
Infrastructure 

User

Infrastructure State 
Notification Sevice

Virtual 
Infrastructure

Automated Infrastructure 
Maintenance

create &
operate

use
re

po
rt

av
ail

ab
ilit

y

request

bro
wse

select

monitor

in
iti

at
e

m
on

ito
rin

g

cu
st

om
iz

e

de
pl

oy

Fig. 2. User’s relation to OCCO

a single VM performs this type, the dispatcher transforms this request to CPU
load request on that VM. If the load is too high (shown with an exclamation
mark in the respective node of the figure) and it is expected that a single VM
cannot handle the anticipated load, the enactor will increase the node count for
type C. This will make later requests to the dispatcher as composite. In the third
graph it is also shown that even a composite request reports unmanageably high
loads and thus the enactor will again increase the node count of type C.

3.2 The view of a virtual infrastructure user

After infrastructure maintainers complete an infrastructure deployment descrip-
tor, they can publish it in OCCO’s template store. The published infrastructure
templates are going to be available for regular cloud users with the need of de-
ploying complex but easily maintainable virtual infrastructures. Figure 2 reveals
the interfaces and the use case OCCO offers for these regular users.

The figure shows that regular users are expected to interface with OCCO
through a graphical user interface that allows browsing and customizing de-
ployment descriptors. This interface supports the user in the selection of the
appropriate kind of virtual infrastructure based on textual descriptions accom-
panied with templates in the store. Once a template is selected, users receive a
list of customization options that were added as hints for the GUI in the deploy-
ment descriptor by the infrastructure maintainer. These hints could range from
the supported IaaS providers to the possibility to specify an initial size of the
custom infrastructure, but hints could also include pricing and cost allowances.

When the customization is done, users can request the deployment of their
virtual infrastructure via the GUI. After the request is made, the monitoring of
the requested infrastructure is initiated at the notification service. This service
has two purposes: (i) let the user know when the requested infrastructure is com-
pletely available and (ii) monitor the changes – introduced by the infrastructure
maintainer – of the deployment template and propagate them to the Automated
Infrastructure Maintenance component. The first purpose allows users to imme-
diately use the prepared infrastructure when it is ready. The notification service



can trigger automated actions (so the user’s application can react to infrastruc-
ture availability immediately) or it can also send emails to interested parties. The
second purpose ensures that infrastructures are updated transparently to their
latest, most secure and stable versions the particular maintainer can produce.

4 Evaluation

In order to test the concept of the new orchestrator, to perform analysis of
the internal operation and to provide a demonstration platform, we have imple-
mented a prototype of OCCO. It is currently limited to a single Infrastructure
Deployment Descriptor template, and it is publicly available1 for users.

The infrastructure template is aimed at providing a distributed computing
infrastructure (DCI) with a science gateway attached as a front-end. The DCI
is implemented by a BOINC [1] based Desktop Grid project with a molecu-
lar docking simulator called autodock. As an extra functionality, the BOINC
project is associated with a public IP address, therefore the user can attach
his/her own BOINC client to the server. Using automatically deployed and con-
figured BOINC clients in virtual machines, computational resources are auto-
matically attached to this BOINC project. Our descriptor template allows the
customization of the number of computational resources. Computing jobs arrive
to the BOINC project as work units with the help of the WS-PGRADE/gUSE
science gateway (also automatically deployed as a node of the virtual infras-
tructure). Overall, the prototype shows how a complete gateway plus DCI with
resources can be deployed by OCCO and how the components attach to each
other. Detailed description of a similar infrastructure is shown at http://doc.

desktopgrid.hu/doku.php?id=scenario:unidg with a different application.
In the prototype’s welcome- and request submission page (see Figure 3) the

user is requested to fill in the list of customization options, and he/she also must
provide some details for identification and justifying the use of the infrastructure.
After a request is submitted, the prototype first asks for approval by the SZTAKI
cloud administrators (due to local regulations) then initiates the infrastructure’s
creation with the Automated Infrastructure Maintenance component. Once the
infrastructure is created the notification service generates an email with all the
authentication and access details to the new infrastructure (e.g., url of the science
gateway and of the BOINC project plus user/password for login). With these
details, users just need to login to the gateway, submit a prepared autodock
workflow with their inputs and inspect the operation (i.e. how the jobs are flowing
through the infrastructure and processed by the BOINC clients). To prevent
SZTAKI’s IaaS from overloading, virtual infrastructures created by OCCO have
a limited lifetime. Our notification service sends an email to the infrastrucure’s
user before the shutdown procedure is initiated.

As the aim of the prototype implementation is to demonstrate and test the
OCCO concept, we implemented the most crucial components with basic func-
tionalities only. The current Automated Infrastructure Maintenance component

1 http://desktopgrid.hu/oc-public

http://doc.desktopgrid.hu/doku.php?id=scenario:unidg
http://doc.desktopgrid.hu/doku.php?id=scenario:unidg


Fig. 3. Request submission page of the OCCO prototype

provides virtual infrastructure creation and termination facilities only. The sim-
ple VM Reshaper can handle prepared VM images with pre-installed applications
and expects these applications to be configurable through IaaS contextualization
methods. Our Cloud Handler is already capable to support multiple IaaS clouds
as long as they offer EC2 interfaces.

5 Conclusions and Future Work

Through the analysis of this paper we have found several issues with currently
existing scientific and commercial cloud orchestrators. Namely, recent solutions
lack support to functionality oriented VM creation, error resilience across VMs
or even clouds and high level user orientation with such advanced but hidden
features like automatic scaling of entire virtual infrastructures. To remedy these
issues, we have proposed the OCCO architecture that builds on the strengths
of past solutions (e.g. Chef). We have shown the behavior of OCCO from the
point of view of both a regular cloud user and also a maintainer of the virtual
infrastructure template. In the discussions we have shown the way maintainers
can describe virtual infrastructures. Finally, we have presented our initial proto-
type implementation of the architecture which already shows the high potential
of the architecture and available as a public service for the scientific community
with access to the SZTAKI cloud infrastructure.



Other than implementing a more complete and openly downloadable version
of OCCO, we also identified several future research areas. First, error resilience
and scaling are only based on simple reactive rules, in the future we plan to
incorporate proactive approaches combined with learning techniques. Next, de-
cisions on cloud use are made on a per VM request basis. However, in some cases
(e.g. expected significant network activities between particular nodes), it would
be beneficial to make decisions considering more information about the operat-
ing virtual infrastructure. Finally, we are planning to increase the reliability and
failure handling of the internal components by introducing atomic operations
and cross-component transactions.

References

[1] D. P. Anderson. Boinc: A system for public-resource computing and storage. In
Proceedings of the 5th International Workshop on Grid Computing (GRID 2004),
pages 4–10, Pittsburgh, PA, USA, November 2004. IEEE Computer Society.

[2] S. Bhardwaj, L. Jain, and S. Jain. Cloud computing: A study of infrastructure as
a service (iaas). International Journal of engineering and information Technology,
2(1):60–63, 2010.

[3] M. Caballer, I. Blanquer, G. Molto, and C. de Alfonso. Dynamic manage-
ment of virtual infrastructures. Journal of Grid Computing, pages 1–18, DOI:
10.1007/s10723-014-9296-5, 2014.

[4] Chef. http://www.getchef.com/.
[5] Cloudify. http://www.cloudifysource.org/.
[6] J. Van der Merwe, K. Ramakrishnan, M. Fairchild, A. Flavel, J. Houle, H. A.

Lagar-Cavilla, and J. Mulligan. Towards a ubiquitous cloud computing infras-
tructure. In Proceedings of the IEEE Workshop on Local and Metropolitan Area
Networks (LANMAN), 2010.

[7] Docker. https://www.docker.io/.
[8] R. Dukaric and M. B. Juric. Towards a unified taxonomy and architecture of

cloud frameworks. Future Generation Comp. Sys., 29(5):1196–1210, 2013.
[9] S. Kang et al. Orchestrator: An active resource orchestration framework for mobile

context monitoring in sensor-rich mobile environments. In IEEE International
Conference on Pervasive Computing and Communications, 2010.

[10] Y. Lee, C. Min, Y. Ju, S. Kang, Y. Rhee, and J. Song. An active resource orches-
tration framework for pan-scale sensor-rich environments. IEEE Transactions on
Mobile Computing, 13(3), 2014.

[11] C. Liu et al. Cloud resource orchestration: A data-centric approach. In Proceedings
of the biennial Conference on Innovative Data Systems Research (CIDR), 2011.

[12] C. Liu, B. Thau Loo, and Y. Mao. Declarative automated cloud resource orches-
tration. In 2nd ACM Symposium on Cloud Computing, 2011.

[13] K. Lorincz, B. r. Chen, J. Waterman, G. Werner-Allen, and M. Welsh. Resource
aware programming in the pixie os. In SenSys, pages 211–224, 2008.

[14] Puppet. http://puppetlabs.com/.
[15] SaltStack. http://www.saltstack.com/.
[16] Ubuntu. Juju. http://juju.ubuntu.com.
[17] J. Wettinger, M. Behrendt, T. Binz, U. Breitenbücher, G. Breiter, F. Leymann,

S. Moser, I. Schwertle, and T. Spatzier. Integrating configuration management
with model-driven cloud management based on tosca. In 3rd International Con-
ference on Cloud Computing and Service Science, pages 437–446, 2013.

http://www.getchef.com/
http://www.cloudifysource.org/
https://www.docker.io/
http://puppetlabs.com/
http://www.saltstack.com/
http://juju.ubuntu.com

	One Click Cloud Orchestrator: bringing Complex Applications Effortlessly to the Clouds

