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 

Abstract—Performance of conventional digital current 

controllers is constrained by transport delays within the feedback 

acquisition chain, as well as by delays inherent to the pulse width 

modulation. In this paper, we introduce a novel current 

controller which provides a very high closed-loop bandwidth, 

improves the robustness and disturbance rejection, and 

eliminates the noise and sampling errors in the feedback path. In 

order to achieve these goals, we suppress the transport delays by 

introducing an improved execution schedule of the control 

interrupt and by inserting a cascaded multiplier of differential 

character. With the novel gain setting rule, the closed loop 

bandwidth reaches 17% of the sampling frequency, disturbance 

rejection capability is doubled, the step response has a negligible 

overshoot, and the robustness is characterized by the vector 

margin of 0.65. Experimental verification is performed using an 

experimental setup with a three-phase inverter, digital controller, 

and a permanent magnet synchronous motor.  

 
Index Terms—Ac motor drives, High-performance control, 

Signal acquisition, Delay lines, Control design 

I. INTRODUCTION 

IGITAL current controllers are used in inner control 

loops of electrical drives [1] and grid-connected power 

converters, and their characteristics have considerable impact 

on the overall performance [2], [3]. Desirable features of 

current controllers [4] include a high closed loop bandwidth in 

tracking of the current references, and also the capability to 

suppress the impact of the voltage disturbances on the 

controlled current.  

Most contemporary current controllers include proportional, 

integral and axis-decoupling actions, and they operate in the 

synchronous reference frame [4], [5], [6]. Well established 

parameter setting procedures [3], [5], [7] contribute to a fast 

step response with the closed loop bandwidth fBW up to 10% of 

the sampling frequency fS. By reducing the crossover 
frequency from 9.3% to 4% of the sampling frequency, the 

gain setting of [4] achieves the step response with no 

overshoot.  

The closed loop bandwidth of high-performance current 

controllers is limited by transport delays [3], [6] which include 

computation delays, digital sampling delays and PWM-

process delays. A number of important contributions [3], [4], 

[8] deal with the current controller in s-domain, where the 
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transport delays are modeled by Pade rational approximation, 

while the s-domain controllers and/or integrators are replaced 

by Tustin approximation. In the frequency range of the desired 

bandwidth, the s-domain models of discrete-time processes are 

less accurate, while Pade approximation introduces the right 

half-plane zeros and a false non-minimum phase modes. The 

PI controller of [5] applies the internal-model-control (IMC) 

concept in z-domain with exact model of transport delays and 
discrete-time phenomena, and it provides complete decoupling 

even at very high fundamental frequencies fe. With the gain of 

k = 0.25∙fS, the closed loop bandwidth reaches fBW = 0.1∙fS even 

at very large fe/fS ratios. Fast response is also available with 

dead-beat and predictive controllers [9], but their sensitivity to 

parameter changes reduces their practical use.  

 The sampling at the center of the voltage pulses [5] is 

widely used in an attempt to acquire the current feedback at 

instants when the PWM-related ripple crosses zero. The zero-

crossing instants are shifted by the lockout time, by gating 

delays and also by the phase shift of the anti-aliasing filters, 

thus introducing the sampling errors [10], [11]. The errors are 

further increased by the switching-excited oscillations caused 

by the power cable parasitic inductances and capacitances 

[12]. An error-free measurement that overcomes the above 

listed problems can be obtained by using the oversampling 

technique and calculating the average of the output current 

over the past PWM period [11]. This averaging over one 

PWM period increases the transport delays from 1.5/fS up to 

2.5/fS and further constrains the closed loop performance.  

 In this paper, we adopt the error-free feedback acquisition 

approach of [11], and we propose the control enhancements 

which reduce the impact of delays and result in the closed loop 

bandwidth that outperforms the similar contemporary 

solutions. The two essential modifications include a novel 

approach to scheduling of the control interrupt routines, suited 

to reduce the overall transport delays, and the introduction of a 

series connected differential multiplier. Operability of the 

novel interrupt scheduling is thoroughly examined by a series 

of experimental runs. We also develop a novel gain-setting 

procedure with an optimization criterion that considers the 

closed loop bandwidth and disturbance rejection, while 

maintaining the required robustness against the parameter 

variations.  

 In Section II, the conventional digital current controller is 

revisited first, including the standard interrupt scheduling and 

feedback averaging over one PWM period. The relevant pulse 

transfer functions are summarized next, both for the conven-

tional controller and for the controller enhanced by the 

addition of a differential multiplier, on the basis of [11].  

In Section III, the new interrupt schedule is introduced as  
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the means of reducing the overall transport delay within the 

system. The schedule proposed in subsection III.A arranges 

the data acquisition, pulse width modulation and calculation 

processes and reduces delays by TS - tEXE, where TS is the 

sampling period while tEXE is the calculation delay. It should 
be noted that the idea of this modified scheduling has been 

floated for the first time by the authors in [13]. However, the 

concept was applied only to the simplest PI current controller 

with no decoupling, with the load transfer function WOBJ 
derived in the stationary reference frame, and with the 

experimental waveforms representing the stationary frame 

currents. The validity of the key hypothesis (tEXE/TS << 1) 
was not tested at all. In contrast to [13], a synchronous 

reference frame current controller with IMC designed 

decoupling is considered here and the validity of the key 

hypothesis of the new scheduling is thoroughly verified later 

on in the paper by experiments. The change of the delay 

affects the pulse transfer function of the load, as well as the 

closed loop transfer and disturbance transfer functions. In 

subsection III.B, the relevant transfer functions are derived for 

the controller with the new schedule and without the 

differential compensator. In subsection III.C, the improved 
scheduling is used in conjunction with the enhanced 

controller, which uses the differential multiplier.  

A novel parameter setting procedure is introduced in 

Section IV, suited to achieve a quick response, high 

disturbance rejection and an adequate robustness. Simulation 

comparison of the developed controllers is given in Section V, 

with experimental verification provided in Section VI. 

Conclusions are given in Section VII.  

II. STANDARD INTERRUPT ROUTINE SCHEDULING AND 

TRANSFER FUNCTIONS 

A. Classical Interrupt Routine Scheduling 

 The voltage actuator of digital current controllers is the 

three-phase inverter, which outputs the train of pulse-width-

modulated (PWM) voltage pulses uA, uB, and uC. The position 

of commutation instants - (Fig. 1) coincides with the 

intersection of the PWM carrier and the voltage commands 

un-2 ... un+1. There are two commutations in each PWM period 

(TPWM). Each commutation affects the average voltage within 

the ongoing sampling period TS = TPWM/2. The control 

interrupts are triggered both by the zero count and by the 

period count of the PWM carrier, and they execute twice in 

each PWM period.  
 In Fig. 1, the voltage reference un+1 is calculated within the 

control interrupt triggered at (n+1)TS. The value of un+1 is 

loaded into the pulse-width registers of the PWM peripheral 

unit at (n+2)TS, and it affects the commutation  and the 

average output voltage between (n+2)TS  and (n+3)TS. The 

interrupt (n+1) uses the feedback sample iF
n+1, obtained by the 

averaging over one PWM period [11], representing the 

average output current in the interval [(n-1)TS ... (n+1)TS]. 

Thus, the consequential transport delay corresponds to 2.5TS, 

and it restrains the closed loop bandwidth of the digital current 

controller. In order to reduce the impact of the delays, it is 
possible to reschedule the control interrupt, as discussed in 

Section III.  

 
Fig. 1. The sequence of control actions in a conventional digital current 

controller. Computation is performed in control interrupts (EXE). Each TS= 

TPWM/2, the averaging over one PWM period provides the feedback sample 

(iF
n+1), used to calculate a new voltage command (un+1).  

 The closed loop transfer function WSS(z) and the disturbance 

transfer function Y(z) are derived next for the conventional 

schedule of Fig. 1. The functions WSS(z) and Y(z) are 

formulated first for the controller without the differential 

multiplier (subsection II.B), and then for the controller that 

includes the multiplier (subsection II.C). The subsequent 

developments are based on results published in [5] and [11]. 

Therefore, some considerations are shortened or omitted.  

B.  The Load and Closed Loop Transfer Functions 

 The PWM inverter voltages uA, uB, and uC are fed to the 

three phase load. The per-phase load can be represented by the 

series connection of a resistance R, inductance L, and the 

electromotive force e. The load currents iA, iB, and iC can be 

transformed into the stationary - frame, along with the 
voltages and electromotive forces. Adopting the complex 

vector notation [14]-[15], the current vector in - frame can 

be defined as is = i + ji. Considering the schedule of Fig. 1, 
the load current is described by the difference equation  

 
 

 3 2 1 2

1 exp
exp ,s s s s

n n n ni i u e
R


   

 
       (1) 

where  = RTS/L, R and L are the load parameters, isn+2 and 
is

n+3 are the current samples, while es
n+2 represents the average 

value of the electromotive force from (n+2)TS to (n+3)TS. 

Due to L/R >> TS, the gain (1-exp-)/R is very close to TS/L.  
 In the d-q frame, the complex vectors of currents and 

voltages are ie = id + jiq and ue
 = ud + juq. The vectors in - 

frame are obtained by multiplying the d-q frame vectors by 

exp(j), where is the position of the d-q frame (is
n = 

ie
n exp(jn)). The change of the d-q frame speed  within a 

single sampling period TS is negligible. Therefore, the position 

n+1 is close to TS + n.  The d-q frame equivalent ee
n+2 of the 

electromotive force average over the interval [(n+2)TS ... 

(n+3)TS] is obtained as es
n+2exp(-j(n+2+n+3)/2). By 

transforming (1) into the d-q frame, by dividing the result by 

exp(jn+2), and then transforming the difference equation into z 
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domain, relation between the complex vectors ie(z) and ue(z) of 

currents and voltages becomes  

       3 2exp j expe e

Si z z T i z z            (2) 

        2exp -j exp j / 2e eS
S S

T
u z z T e z z T

L
       . 

 The pulse transfer of the load WS1
OBJ(z) is calculated from 

(2) as the ratio ie(z)/ue(z), obtained with ee(z) = 0,  

 
     

1 /

exp j exp j exp

S S
OBJ

S S

T L
W z

z T z T  


     

. (3) 

 The block diagram of the digital current controller is shown 

in Fig. 2. The transfer function WFB(z) represents the feedback 

subsystem with averaging over one PWM period, introduced 

in [11] and illustrated in Fig. 1. The feedback sample iF
n+1 can 

be approximated by (in+1 + 2in + in-1)/4. Thus, the transfer 

function in the feedback path becomes  

         2 2/ 2 1 / 4F e

FBW z i z i z z z z     .   (4) 

 The current controller WREG(z) in Fig. 2 is obtained by 

applying the IMC concept [5], where the inverse model of the 

load WOBJ  is multiplied by an integrator z/(z-1). In order to 
obtain a causal controller for the schedule of Fig. 1, it is 

necessary to divide the result z/(z-1)/(WOBJ) by z2,  

     

 
1

exp j exp j exp

1

e S e SS

REG

S

L T z T
W

T z

        


. (5) 

 Corresponding closed loop transfer function WS1
SS(z), where 

f1(z) is the characteristic polynomial, is given with:  

 

   

2 2
1

* 4 3 2
0 1

4 4

4 4 2e

e

S

SS

e

i z z z
W

i z z z z z f z

 

  

  
   

.(6) 

 Disturbance transfer function YS1(z) is obtained next as: 

 
 

 

   

     *

3

1

0 1

4 1 exp j / 2 /

exp j exp

e

S SS

e
i S

i z T z z T L
Y

e z z T f z



 

  
 
      

.(7) 

C.  Conventional Schedule with Differential Multiplier 

 The impact of transport delays can be reduced by 

introducing a series-connected differential multiplier WDIF(z) = 
1 + d(1-z-1) [11], thus resulting in an enhanced controller,  

     1 1S S

REGD REG DIFW z W z W z  .          (8) 

 The closed loop transfer function of the system in Fig. 2, 

obtained with the current controller schedule of Fig. 1 and 

with the controller transfer function of (8), is given with:  

   

     

1 1

1

1 11

S S

REGD OBJS

SSD S S

REGD OBJ FB

W z W z
W

W z W z W z


 

  
      (9) 

 

     

3 2

5 4 3 2

4 1 4

4 4 1 2 1

d z dz

z z d z d z d z d

 

   

 


       
. 

 Corresponding disturbance transfer function YD
S1(z) is given 

with (f2(z) represents denominator of (9)): 

   

   

4

1

2

4 1 exp j / 2 1

( )exp j exp

SS S
D

S

z z TT
Y

L f zz T



 

 
  

    

.    (10) 

 
Fig. 2. The block diagram of the digital current controller in the d-q frame.  

III. IMPROVED INTERRUPT SCHEDULING AND 

CORRESPONDING TRANSFER FUNCTIONS  

Rescheduling of [13], as mentioned already, applies to the 

PI controller with no decoupling and with the load transfer 

functions derived in the stationary reference frame. 

Experimental results were also obtained with current control 

located in the stationary frame. In contrast to this, in 

subsection III.A we describe the new interrupt schedule and 

then apply it to the synchronous frame IMC structure. The 

same transfer functions as in subsection II.B are derived next 

for the modified scheduling in subsection III.B. In subsection 
III.C, the improved scheduling is used in conjunction with the 

enhanced controller, which uses the differential multiplier. A 

parameter setting procedure for the rescheduled IMC 

structure, which considers both the disturbance rejection 

capability and the reference tracking, will be further developed 

in Section IV. The procedure also relies on the hypothesis that 

the execution time tEXE is negligible when compared to the 
sampling time. With the gain settings of Section IV, the 

controller of III.C performs with unparalleled closed loop 

bandwidth and disturbance rejection, as will be proved by 

experiments in Section VI.  

A. Improved Interrupt Routine Scheduling 

In Fig. 3, the scheduling is improved by triggering the 

control interrupts tEXE before the corresponding zero/period 
counts of the PWM carrier. In this way, the interrupt triggered 

at [(n+1)TS  tEXE] calculates the voltage command un+1 
which gets loaded into the PWM peripheral unit at (n+1)TS. 

As a result, un+1 controls the commutation  and sets the 

average voltage on the interval [(n+1)TS ... (n+2)TS], thus 

reducing the transport delay by TS. The time shift tEXE has to 
be sufficient for the control interrupt to complete before the 

loading instant (n+1)TS of PWM registers. Thus, the value of 

tEXE has to be slightly larger than the worst-case execution 
time of the current control tasks. 

In Fig. 3, the same interrupt event uses the feedback iF
n+1, 

obtained by oversampling and averaging consecutive current 

samples acquired on the interval that extends from [(n-1)TS  

tEXE] to [(n+1)TS  tEXE]. Related train of samples is shown 
in the upper left part of Fig. 3. Compared to the corresponding 

feedback sample in Fig. 1, the feedback sample iF
n+1 in Fig. 3 

gets delayed by tEXE. Proposed reduction of the transport 
delay relies on the crucial assumption that the feedback delay 

tEXE does not have any meaningful impact on the closed loop 
dynamics, and therefore can be neglected. This assumption is 

thoroughly tested in subsection VI.A for the range of time 

shifts tEXE that include and exceed most typical execution 
times of current control tasks on typical DSP controllers.   
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 The schedule proposed in Fig. 3 affects both the closed-loop 

transfer function WSS(z) and the disturbance transfer function 

Y(z). The transfer functions obtained with the new schedule 

are derived next for the controller without the differential 

multiplier (subsection III.B), and for the controller that 

includes the multiplier (subsection III.C).  

B.  The Load and Closed Loop Transfer Functions 

 In schedule of Fig. 3, the application of the voltage com-

mands takes place one sampling period earlier than in Fig. 1. 

This affects the transfer function of the load, which becomes 

 
 

     
2

0

/

exp j expe

e

S S
OBJ e

e S

i z T L
W z

u z z T 

 
  

.  (11) 

 The current controller WS2
REG, suitable for the load transfer 

function of (11), is obtained by applying the IMC concept [5]. 

The IMC design z/(z-1)/(WOBJ) is obtained with WOBJ of 
(11), and it has to be divided by z in order to meet the 

causality requirement. The resulting current controller WS2
REG 

is  

 

   2

2

exp j exp

1 1

SS

REG S

OBJ S

z TL
W

z W T z

     
 

 
. (12) 

 Corresponding closed loop transfer function WS2
SS is  

 

   

2 2
2

* 3 2
0 3

4 4

4 4 2 ( )e

e

S

SS

e

i z z z
W

i z z z z f z

 

  

  
   

, (13) 

where f3(z) is the characteristic polynomial. Disturbance 

transfer function YS2(z), obtained with WS2
REG (12) and with 

WS2
OBJ of (11) is calculated from the block diagram of Fig. 2,  

 

 

   

     *

2

2

0 3

4 1 exp j / 2 /
.

exp j exp

e

S SS

e
i S

i z T z z T L
Y

e z z T f z



 

  
 
      

 (14) 

C.  Improved Schedule with Differential Multiplier 

 The current controller of (12) can be enhanced by adding a 
series connected differential multiplier WDIF(z) = 1+ d(1-z-1) 

[11], thus resulting in an enhanced controller, obtained by 

multiplying the transfer function WS2
REG of (12) by WDIF,  

      
 

2
1 exp j exp

.
1

SS

REGD

S

d z d z TL
W

T z z

        


  (15) 

 The closed loop transfer function WS2
SSD of the system in 

Fig. 2, obtained with the current controller schedule of Fig. 3, 

and with the controller transfer function of (15) is  

 
   

     

2 2

2

2 21

S S

REGD OBJS

SSD S S

REGD OBJ FB

W z W z
W z

W z W z W z


 

  
     (16) 

 

     

3 2

4 3 2

4 1 4

4 1 4 2 1

d z dz

z d z d z d z d

 

   

 


         

. 

 Corresponding disturbance transfer function YD
S2(z) is 

obtained as -ie(z)/ee(z), calculated under the assumption that 

the reference current i* is equal to zero. It is given with (f4(z) 

represents denominator of WS2
SSD in (16)):  

 
   

     

3

2

4

4 1 exp j / 2 / 1

exp j exp

S SS

D

S

T z z T L
Y z

z T f z



 

   


  
.   (17) 

 
Fig. 3. Modified schedule of control actions for digital current controllers. 

Control interrupts are triggered tEXE before each zero-count and period-count 

of the PWM carrier. Compared to Fig. 1, delay in applying the new voltage 

command (un+1) is reduced by TS. 

 

 Four different controllers and four sets of relevant transfer 

functions (WSS, Y) have been derived in subsections II.B, II.C, 

III.B, and III.C. It is of interest to find the optimum gains for 
each set, and to compare the resulting performances. The 

criteria for the optimum gain set include the closed loop 

bandwidth, the robustness and the disturbance rejection 

capability.  

IV. THE OPTIMUM SETTING OF THE FEEDBACK GAINS 

 Digital current controller is expected to track the input 

reference i* quickly with the least possible error, and to 

suppress the impact of the voltage disturbances on the output 

current. Digital current controllers designed in II.B and III.B 

have a single gain parameter , while the controllers designed 

in II.C and III.C have a pair of gains, d and . In all of the four 

closed loop transfer functions WSS, both  and d are relative 
numbers. Differential gain d appears in the compensator 

function WDIF(z) = 1+ d(1-z-1), where its role is relative and 

unrelated to the application-specific parameters. The gain  
originates in the IMC concept, where the design goal is the 

open loop transfer function z/(z-1). An IMC-designed 
controller cancels out dependence on the application-specific 

parameters and yields a single, generic parameter , unrelated 
to the application. Closed loop transfer functions - such as the 
one in (16) - are the same for any application, and depend on 

 and d parameters only. Hence their optimum values do not 
change with the actual parameter values in an application 

(please note however, that the practical implementation of the 

controllers given with (5), (12), (15) of course does require the 

sampling period Ts, the load inductance L and the parameter β 

(i.e., the load resistance)). For each of the four controllers, it is 

necessary to find the optimum gain α (or d and α) setting(s) 

which improve both the step response and the disturbance 

rejection.  

A.  Criterion Function 

 The speed of the step response is characterized by the 

settling time t01 [4], defined by the instant when the output 
error subsides below 1%. The input-step response is obtained 

from the closed loop transfer functions in (6), (9), (13), and 
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(16). The settling time is expressed as a multiple of the 

sampling periods, t01 = N01TS.  

 Disturbance rejection capability can be characterized by 

IE1, which is the integral of the current error |ie| caused by 
the unit step change of the voltage disturbance ee [4]. 

Response to the voltage disturbance is obtained from the 

admittances Y(z) in (7), (10), (14), and (17). In order to avoid 

impact of the application specific parameters on the optimum 

relative gains  and d, the factors TS/L are removed from Y(z) 

expressions, while the speed  is set to zero. Thus, the value 

of IE1 is obtained by (i) deriving the pulse-train of the unit-
step-response for each transfer function (L/TS)∙Y(z), and then 

(ii) finding the sum of absolute values of the pulse-train 

samples. The criterion function Q is calculated by assigning 

the same weight to N01 and IE1 performance metrics, as 

1
01

100

IE
Q N  .                 (18) 

Selection of the same weights for two components of (18) is 

justified because the two terms in (18) are always of the same 
order of magnitude and of similar values for any well-tuned 

controller response. 

Finding the optimum gains by analytical means would be 

difficult, since the relevant transfer functions include up to 

five closed loop poles (9), while the calculation of the criterion 
Q includes some nonlinear operations. Instead, the optimum 

gains for the controllers of II.B and III.B are found by 
performing a numerical search for the optimum along the axis 

. For the controllers of II.C and III.C, the optimum pair of 

gains (, d) is found by searching the -d plane.  

B.  Optimisation Constraints  

In addition to meeting the performance requirements of 

(18), the current controller is also required to be robust against 

the parameter changes, and to perform without any significant 

overshoot. The robustness of the controller (which here relates 

to the capability of the system to maintain the response quality 

and/or stability in the presence of parameter changes, i.e. 

variations in R and L) can be quantified by the vector margin 

VM [5]. The values of VM lower than 0.5 are usually 

associated with elevated sensitivity to parameter changes and 

with consequential oscillatory response. Therefore, the 
parameter search excludes any solution where the vector 

margin falls below 0.6, and it also excludes solutions where 

the overshoot exceeds 2%.  

C.  The Search Results 

 The search for the optimum gains is performed for the four 

controller structures described in II.B, II.C, III.B, and III.C. In 

the first two cases (Case 1 and Case 2 further on), the current 

controller uses conventional schedule of Fig. 1. The latter two 

cases (Case 3 and Case 4) have the novel schedule of Fig. 3. In 

cases 2 and 4, the controller structure is enhanced by adding 

the series differential multiplier WDIF. The search results are 

summarized in Table I. They include the optimum gain 
settings which meet the constraints of IV.B while minimizing 

the criterion (18). The Table also includes the corresponding 

closed loop bandwidth, the vector margin, the overshoot, and 

the integral of the current error (IE1) caused by the unit-step 

voltage disturbance and calculated as described in IV.A.  

For the four optimum gain settings of Table I, the ratio 

between the factor N01 and the factor (IE1/100) in (18) is equal 

to 1.34, 1.04, 1.377 and 1.08, respectively. The difference in 

values stems from the fact that the optimum gains are found 

by searching for the best value of Q in (18), rather than 
considering the individual terms of (18). This proves that the 

proposed composition of the criterion function attributes a 

similar weight to the input step response and to the 

disturbance rejection. The optimum gains (, d) are generic, 
and they do not change with the application parameters, as 

already explained in the beginning of Section IV. Thus, there 

is no need to repeat the search in other applications.  

 The following conclusions are drawn from Table I: 

 By adding the multiplier WDIF, the bandwidth fBW(-3dB) is 

increased more than twice, and the factor IE1 is reduced 

by 30% (Case 2 vs. Case 1, Case 4 vs. Case 3);  

 By introducing the new interrupt schedule, the bandwidth 

fBW(-3dB) is increased 1.5 times, and the factor IE1 

decreased by 36% (Case 3 vs. Case 1, Case 4 vs. Case 2);  

 Introduction of the new schedule increases the vector 

margin by 3% in Case 3, and by 7% in Case 4;  

 When both the new schedule and the multiplier WDIF are 

used, the bandwidth fBW(-3dB) is increased 3.14 times and 
the factor IE1 reduced 2.2 times (Case 4 vs. Case 1).  

The best results are obtained in Case 4, where the 

bandwidth fBW(-3dB) reaches 17.6% of the sampling frequency 

(35.2% of the switching frequency), keeping at the same time 

the vector margin at VM = 0.655, and maintaining stability 

even with the inductance L enlarged or reduced 3.5 times.  

V. SIMULATION RESULTS 

 The closed loop step response and the disturbance rejection 

of the four digital current controllers are tested by means of 

computer simulation. The simulation is based on the 

assumption that tEXE in Fig. 3 is considerably smaller than the 

sampling interval TS, and it is therefore negligible (tEXE = 0).  
Simulated step responses of the four current controllers are 

given in Fig. 4. The responses are mutually shifted for an easy 

comparison. The responses obtained with conventional 

schedule (Fig. 1) have the rise time some 50% larger than the 

responses obtained with the new schedule (Fig. 3). The rise 

time is nearly halved when using the multiplier WDIF.  

 Disturbance rejection capability of the four current 

controllers is explored by simulating the unit-step response of 

the pulse-transfer-functions (L/TS)∙Y(z), given in (7), (10), 
(14), and (17). Corresponding traces are given in Fig. 5. They 

represent the response of the scaled current error to the step 

change of the electromotive force by 1 V. In order to obtain 

the actual peak of the current error, the reading from Fig. 5 has 

to be multiplied by (TS/L) and by the amplitude of the voltage 

disturbance. The response obtained with the Case 4 has the 

current peaks reduced more than two times.  

 These performance improvements come as the result of the 

new scheduling, the use of WDIF multiplier, and the improved 

parameter setting procedure. It is of interest to compare the 

bandwidth fBW(-3dB) obtained with Case 2 of Table I with the 
corresponding bandwidth obtained in [11] (please see Table 
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VI). The latter uses the same controller structure, but with a 

different gain setting. With the gain setting proposed here, the 

ratio between the bandwidth fBW(-3dB) and the sampling 

frequency fS is increased by 11%. 

VI. EXPERIMENTAL VERIFICATION 

 The experimental verification is performed with the setup 

comprising a three-phase permanent magnet (PM) synchron-

ous motor, an industrial PWM-controlled IGBT inverter [16], 

and a DSP controlled platform. The experimental rig is 

illustrated in Fig. 6 and full setup data are given in [11]. The 

switching frequency used in the experiments is set to 10 kHz. 

The current controller with conventional schedule has been 

thoroughly tested in [11], both in its original form [5] and with 

the multiplier WDIF. Therefore, the experimental runs 
described in this section are focused on the two current 

controllers with the new schedule, described in III.B and III.C, 

and denoted as Case 3 and Case 4 in Table I.  

 The experimental verification has the following goals: 

 To explore the impact of tEXE on the dynamic 
performances of the controllers with the new schedule, 

and to establish viable limit for the ratio tEXE/TS; 

 To compare simulated and experimental step responses; 

 To compare simulated and experimental responses to the 

voltage disturbance; and  

 To check the performance of the current controller in 

operation with elevated fundamental frequencies. 

 To verify the robustness to parameter uncertainties.  

 The subsequent experimental waveforms comprise the 
current response in the d-q frame, and they represent the 

feedback signal iF in Fig. 2. The samples of iF are logged into 

the internal RAM, written off-line on an SD card (Fig. 6, (c)), 

and plotted in the subsequent figures. The samples of iF are 

spaced by TS = 50s. The signal iF is obtained by averaging 
the actual current ie over one PWM period. The process is 

modeled in (4). Therefore, iF waveforms are slightly different 

from the actual d-q current ie. The actual noise-free samples in, 

taken at instants nTS, are not available. The feedback transfer 

function WFB of (4) is taken into account when generating the 

reference Trace 1 in Figs. 7 and 8, as well as in simulated 

traces of Fig. 10.  

A.  The Impact of The Time Shift tEXE 

The crucial hypothesis introduced with the new scheduling 

is that delay tEXE of the feedback signal iF
n+1 in Fig. 3 does 

not have any meaningful effect on the dynamic behavior. This 
hypothesis is experimentally tested and verified by performing 

the step response test and varying tEXE over a wide range. 
With conventional controllers such as the DSC 

TMS320F28335, the current control tasks complete in less 

than 4 s. During the test runs, tEXE is varied from 2.4 s up 

to 12 s.  
Corresponding step responses of the q-axis current are 

given in Fig. 7 for the controller of III.B (Case 3), and in Fig. 

8 for the controller of III.C (Case 4). The measurements were 

repeated for tEXE set to 2.4s, 4s, 8s, and 12s. In Figs. 7 
and 8, the reference Trace 1 is obtained by simulation, and it 

corresponds to    tEXE = 0  (i.e. it is obtained with the simulation  

TABLE I 

THE OPTIMUM GAINS AND CORRESPONDING CLOSED LOOP PERFORMANCES  

Case 



Gain 



Gain 

d 
fBW(-45o) fBW(-3dB) VM 

Over- 

shoot 
IE1 

1 0.172 × 0.026 fS 0.056 fS 0.686 .0098 817 

2 0.244 0.735 0.041 fS 0.116 fS 0.612 .0081 577 

3 0.277 × 0.048 fS 0.087 fS 0.711 .0096 508 

4 0.380 0.444 0.080 fS 0.176 fS 0.655 .0067 370 

 
Fig. 4. Simulated step responses of the four digital current controllers. 

Conventional schedule is used in cases 1 and 2, while the new schedule is 

used in cases 3 and 4. In cases 2 and 4, the controller is enhanced by the 

differential action.  

 

Fig. 5. The step response of the admittance transfer function (L/TS)∙Y(z) 

obtained at zero speed and with the unit voltage disturbance (1 V).  

 
Fig. 6. Experimental setup with two permanent magnet synchronous motors: 

(a) Main power supply unit providing the dc-bus voltage EDC; (b) Two 3-

phase IGBT inverters with control circuits [16]; (c) SD-card slot used for data 

logging; (d) The motor under the test; (e) The motor used as the load; (f) PC-

based GUI connected over the EtherCat link.  

 

code which includes the crucial hypothesis). The remaining 

traces are obtained from the experimental setup. Trace 2 with 

tEXE = 2.4s was obtained with time-optimized code that 
includes some assembler sequences and excludes the 

unnecessary routines. Trace 3 is obtained with tEXE= 4s, and 
with the full-featured interrupt routine. In traces 4 and 5, the 
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value of tEXE is deliberately increased first to 8s, and then to 

12s.  
 Compared to the reference Trace 1, traces 2 and 3 in Figs. 7 

and 8 are practically unaffected by tEXE. The step response is 

noticeably changed in Trace 5 of Fig. 7, where tEXE exceeds 
0.2TS. Similarly, the response significantly deteriorates in Fig. 

8 for Traces 4 and 5, where tEXE equals 8s and 12s, 
respectively. With only a minor difference between reference 

Trace 1 and experimental Trace 3, we conclude that the time 

shift tEXE of 0.08TS does not have any meaningful impact on 
the closed loop dynamics. This corroborates the assumption 

introduced in III.A and Fig. 3. 

B.  The Step Response at the Rated Speed 

 The step response of the q-axis current is tested at the rotor 

speed of 628 rad/s, with fe= 300Hz, and with the back-
electromotive force close to the rated voltage. The traces 1 and 

2 of Fig. 9 correspond to the controller of III.B (Case 3), while 

the traces 3 and 4 correspond to the controller of III.C (Case 

4). Time axis covers 400TS = 20ms. At instants of q-axis 

current transients, d-axis currents remain unchanged, thus 

proving the decoupling capability of both controllers. The iq 

traces of Fig. 9 are redrawn in Fig. 10, focusing on the rise 

time of the step response. Along with the experimental traces, 

Fig. 10 also includes the simulation traces used as a reference. 

Similarity between the traces obtained by simulation, with 

tEXE = 0, and the experimental traces obtained with tEXE 

=4s confirms the hypothesis tEXE <<TS, introduced in III.A 
and tested in VI.A.  
 

 

Fig. 7. Step responses of the q-axis current obtained with the current controller 

of III.B (Case 3 in Table I). Trace 1 is the result of simulation, and it serves 

for the reference. For the experimental traces 2-5, the time shift tEXE of the 

execution of the control interrupt is set to 2.4s, 4s, 8s, and 12s.   

 
Fig. 8. Step responses of the q-axis current obtained with the current controller 

of III.C (Case 4 in Table I). Trace 1 is the result of simulation, and it serves 

for the reference. For the experimental traces 2-5, the time shift tEXE of the 

execution of the control interrupt is set to 2.4s, 4s, 8s, and 12s.   

 

Fig. 9. Step response of the iq at the fundamental frequency of fe = 300Hz. The 

traces 1 and 2 correspond to the controller of III.B (Case 3) while the traces 3 

and 4 correspond to the controller of III.C (Case 4).  

 

Fig. 10. Comparison of the simulated traces 2 and 4 and the experimental step 

responses given with traces 1 and 3. The experimental traces 1 and 3 are 

obtained by scaling and redrawing the traces 2 and 3 of Fig. 9. 

C. Disturbance Rejection Capability 

 The capability to suppress the voltage disturbance ee of Fig. 

2 is tested in the operating conditions that correspond to 

simulations given in Fig. 5. The actual change of the back-

electromotive force ee could not be initiated. It is therefore 

emulated by the abrupt change of the q-axis voltage command 

[4] by EDC/4. Corresponding experimental traces are shown in 
Fig. 11, along with the traces predicted by simulation. The 

difference between the experimental results and simulated 

traces is lower than 2%. This confirms the conclusions drawn 

in IV.C from Table I, which claim that the controllers with the 

multiplier WDIF have an improvement of 30% in disturbance 

rejection, while the new schedule contributes to a further 

improvement of 36%. Compared to the performances obtained 

with Case 1, simultaneous use of both WDIF and the new 

schedule (Case 4) improves disturbance rejection by 

approximately two times.  

 

Fig. 11. Simulated and experimental traces that illustrate disturbance rejection. 

Traces 1 and 2 are obtained with the current controller of III.B, while the 

traces 3 and 4 correspond to the current controller of III.C.  
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D. Operation with Very High Fundamental Frequencies 

 The capability to maintain decoupled operation with very 

high fundamental frequencies fe is proved in Figs. 12 and 13. 

Comparable current controllers maintain their performance 

even with fe/fS= 0.083 [5]. Therefore, the step response is 

tested with fe/fS = 0.071 in Fig. 12, and with fe/fS =  0.1 in Fig. 
13. Corresponding motor speeds were not achievable and the 

inverter is therefore connected to a suitable passive load with 

three chokes. The step response of the q-axis current in Figs. 

12 and 13 demonstrates the capability of the proposed 

controllers to provide decoupled operation even at very high 

fe/fS ratios.  

 

Fig. 12. Step response of the iq at the fundamental frequency of fe= 0.071fS. 

The three phase inverter is loaded with three star-connected inductances. 

Traces 1 and 2 are obtained with the controller of III.B. Traces 3 and 4 are 

obtained with the controller of III.C.  

 

Fig. 13. Step response of the current controller at the fundamental frequency 

of fe= 0.1fS. The three phase inverter is loaded with the three star-connected 

inductances. The two uppermost traces are obtained with the current controller 

of III.B. The bottom two traces correspond to the current controller of III.C.  

E. Robustness to Parameter Uncertainties  

 With the gain settings of Table I, the vector margin VM 

exceeds 0.6. For Case 3 and Case 4, stability limit is reached 

with the parameter mismatch of 4.8 and 3.4 times, 

respectively. The step responses obtained with a large 

mismatch are poorly damped and of little use. Therefore, we 

performed an experimental investigation of the step response 

changes obtained with parameter changes that could be 

encountered in a practical application.  

 The load resistance affects the pulse transfer functions by 

altering the factor exp(-) = exp(-RTS/L). The factor remains 
close to 1 for all the reasonable fluctuations of the load 

resistance. Significant changes of the step response are 

observed only in cases where the load resistance changes by 

more than 10 times. The impact of the load inductance is 

considerably more emphasized, as it changes the closed loop 

gain. In electrical drives, the load inductance varies due to 

magnetic saturation within the stator and rotor magnetic 

circuits, and these variations can exceed 20%.  

 In Figs. 14 and 15 we studied the impact of the load 

inductance changes from 60% up to 150% of the nominal 

value. The step responses are given for the Case 3 (Fig. 14) 
and for the Case 4 (Fig. 15). The experimental results 

demonstrate the robustness of the proposed control structure 

and the parameter setting procedure with respect to the 

parameter variation effects.  
 

 

Fig. 14. Step response of the iq at the fundamental frequency of fe = 300Hz. 

The test is carried out for the Case 3. The ratio between the actual motor 

inductance and the design parameter Lnom is varied from 0.6 up to 1.5.  

 
Fig. 15. Step response of the iq at the fundamental frequency of fe = 300Hz. 

The test is carried out for the Case 4. The ratio between the actual motor 

inductance and the design parameter Lnom is varied from 0.6 up to 1.5.  

VII. CONCLUSION 

In this paper, we considered a digital current controller with 

the PWM inverter as the voltage actuator, and with the ripple 

and noise suppression of the feedback signal obtained by 
introducing the ‘averaging over one PWM period technique’ 

into the feedback chain. The closed loop performance is 

limited by the PWM process delays, computation delays and 

the feedback acquisition delays. In order to suppress the 

impact of transport delays, we introduced an improved 

scheduling of the control interrupt, along with the insertion of 

a series differential compensator.   

The crucial hypothesis of the improved interrupt scheduling 

has been verified by a series of experimental runs, proving that 

the use of conventional digital signal controllers with the 

novel scheduling reduces the transport delays by one sampling 
period.  

A novel gain setting procedure is proposed, suited to 
provide an optimum step response, disturbance rejection and 

robustness. The optimum gains are generic in nature, and they 

do not change with the application-specific parameters. With 
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the optimum setting, digital current controller performs with 

the closed loop bandwidth exceeding 17% of the sampling 

frequency (34% of the switching frequency). Disturbance 

rejection is doubled, the step response has a negligible 

overshoot, while the vector margin of 0.65 ensures stability 

even with the load inductance reduced or enlarged 3.5 times.  
The current controller has been verified on an experimental 

setup with a three-phase inverter, digital controller, and a 

synchronous permanent magnet motor. The experimental 

results confirm the analytical findings and simulation results. 

Decoupling of d-axis and q-axis transients is maintained even 

with very large fundamental frequencies, up to 10 % of the 

sampling frequency. The paper comprises analytical 

considerations, implementation details, an optimum parameter 

setting procedure, and a comprehensive description of 

experimental results.  
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