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PID Controller Tuning for a Multivariable Glass Furnace
Process by Genetic Algorithm

Kumaran Rajarathinam J. Barry Gomm DingLi Yu Ahmed Saad Abdelhadi
Mechanical Engineering and Materials Research Centre (MEMARC), Control Systems Group, School of Engineering,

Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK

Abstract: Standard genetic algorithms (SGAs) are investigated to optimise the discrete-time PID controller parameters by three
tuning approaches for a multivariable glass furnace process with loop interaction. Initially, SGAs are used to identify control oriented
models of the plant which are subsequently used for controller optimisation. An individual tuning approach without loop interaction is
considered first to categorise the genetic operators, cost functions and improve searching boundaries to attain the desired performance
criteria. The second tuning approach considers controller parameters optimisation with loop interaction and individual cost functions.
While, the third tuning approach utilises a modified cost function which includes the total effect of both controlled variables, glass
temperature and excess oxygen. This modified cost function is shown to exhibit improved control robustness and disturbance rejection
under loop interaction.

Keywords: genetic algorithms, control optimisation, decentralised control, PID control, modified cost function, multivariable
process, loop interaction.

1 Introduction

Glass manufacturing processes have very long dynamic
response times and are complex processes with high energy
usage. Especially, large furnaces with multiple port burners
cause the glass manufacturing industries to consume high
energies in glass production. Most glass industries are op-
erating at maximum daily throughput to fulfil the market
requirement. Therefore, glass furnace operations are facing
great challenges in reduction of fuel consumption by apply-
ing well tuned control strategies. Apart from high energy
consumption, undesirable emissions from glass industries
are another setback to consider as the entire world is greatly
concerned about green house effects. Tight environmental
regulations are now applied to reduce gases and particles
that are undesirable emissions associated with burning fos-
sil fuels.

Generally, the glass industries are operating within the
emission guideline which is regulated by environmental
agencies [1]. Thus, most glass industries are not empha-
sising on continuous monitoring and control strategies for
emissions. At maximum operating conditions, the likeli-
hood of producing undesirable emission is high. If there is
any occurrence of sudden undesirable disturbances, this can
result in more problems for existing furnaces which may be
already operating in poor thermal conditions around the
world. The control of excess oxygen emissions, as well as
glass temperature, is therefore also considered in this paper.

For such a complex multivariable process, a decentralised
control strategy is generally applied and has always been
in the attention of many researchers for developing a pre-
cise control strategy to enhance the performance of multi-
variable processes. However, difficulties are encountered in
designing the decentralised control due to the loop interac-
tions.

A literature search reveals that there are several classified

Manuscript received date; revised date

tuning methods suggested to tune decentralised controllers
for multivariable processes such as detuning [2], sequential
design [3], independent design [4] and iterative [5] methods.
These tuning methods have achieved a certain degree of suc-
cess in the design approach. However, these tuning meth-
ods do exhibit weaknesses and can suffer in compensating
the couplings between loop interactions of a multivariable
system. To improve the compensation of loop interactions,
the effective open-loop method (EOP) was introduced [6].
The EOP method considers all other loop interactions while
adapting the i-th control parameters for the i-th EOP. But,
the EOP method produces model approximation error due
to mathematical complications as the model dimensions are
increased. Thus, the EOP method is mainly applicable
for low dimension models. Another successful approach is
that of relay auto-tuning, which is a combination of single
loop relay auto-tuning and the sequential tuning method
[7]. This method appears to perform well, but a multivari-
able system with large multiple dead times exhibits poor
performance. In recent years, to improve the entire con-
trol performance and robust stability, a systematical ap-
proach based on the generalised IMC-PID design method
[8] and the reduced effective transfer function (RETF) by in-
verse response behaviour method [9] have been introduced
for multivariable processes. But, both methods involve a
complex mathematical approach to design the decentralised
controllers. In general, a question always arises about the
wellness of control optimisation and the flexibility due to
the application constraints by these design methods.

Standard genetic algorithms (SGAs) are a global search
method by genetics evolution with higher performance in
optimisation over traditional methods [10, 19]. Due to its
superior self-adjustable ability, SGAs have been applied ex-
tensively in tuning the PID parameters for SISO systems
[11], curve fitting [12] and fuzzy optimisation [13]. On the
other hand, application to multiple-input multiple-output
(MIMO) systems is still an open research topic for optimis-
ing control parameters by SGAs. A promising decentralised
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Figure 1 Block diagram of realistic multivariable glass furnace
process model

controller by SGAs was proposed for a multivariable process
[14]. The controller performance was defined by closed-loop
response in terms of time-domain bounds for both reference
following and loop interactions. An integrity theorem with
SGAs to enhance the closed-loop system stability when cer-
tain loops are failing or breaking down was proposed [15].
Recently, improved convergence of genetic algorithms was
achieved by introducing the multi-objective evolutionary al-
gorithm (MOEA) which combines two fitness assignments
methods; global rank and dominance rank [16].

This paper investigates the potential of SGAs in opti-
mising the discrete-time PID controller parameters in a de-
centralised control scheme for a multivariable glass furnace.
The structure of this paper is as follows; first, an intro-
duction is given about the considered multivariable glass
furnace process and models used for the controller optimi-
sation studies. Second, the approach to optimisation by
SGAs of discrete PID controller parameters is presented,
with considerations to boundary constraints and particu-
lar cost functions. Third, investigations are presented of
loop interaction effects and control robustness for the mul-
tivariable glass furnace, with controllers optimised by three
SGAs tuning approaches. The proposed methods are devel-
oped and tested in simulations based on Matlab/Simulink
models.

2 The Multivariable Glass Furnace
Process and Modelling

Fig. 1 illustrates the block diagram of the realistic mul-
tivariable glass furnace considered in this research, which
consists of a 24 state-space furnace model with feedback
loop and excess oxygen model. f1 and f2 are algebraic ex-
pressions, f1 includes controller output and saturation, f2
includes specific heat (Cp) and lower heat value (LHV) for
determining the combustion energy, TSET is primary tem-
perature setting, AFR is air-fuel ratio, Tamb is ambient
temperature, ṁ is fuel flow in mass, Tg is glass tempera-
ture and EO2 is excess oxygen.

The realistic glass furnace model that is identified and
applied for further research here is representing a real plant
combustion chamber from Fenton Art Glass Company, USA
[17]. The furnace model is an extended research work by
Holladay [18] using a radiative zone method to develop the
24 state space variables (zones) model. The linearised en-

ergy balance equations are applied and modified with re-
spect to the 24 state variables for each zone corresponding
to temperatures. For example, the energy balance equation
of combustion zone α1 can be written as,

Caα1
dTaα1

dt
= Qaα1 = Qbwα1 +Qcα1 +Qswα1 +Qaα2

+Qgβ1 +Qgβ2 +Qgχ1 +Qgχ2 (1)

+Qgδ1 +Qgδ2 +Qin

A literature survey reveals that there is no EO2 realistic
model for a glass furnace available for research. The real-
istic EO2 model designed for research here was developed
using collected numerical data from an industrial furnace
by an open-loop step response technique. SGAs were ap-
plied for identification of a higher order transfer function
(3rd order) as a realistic model for EO2, and control ori-
ented models for both Tg and EO2 for control optimisation.
The identified transfer functions by SGAs are;

For EO2 Realistic Model,

∆EO2(s)

∆AFR(s)
=

1.613

50.3s3 + 149.6s2 + 142.7s+ 1
e−173s (2)

For EO2 Control Oriented Model,

∆EO2(s)

∆AFR(s)
= GEO2(s) =

1.6

150s+ 1
e−174s (3)

For Glass Furnace Temperature Control Oriented Model,

∆Tg(s) = GTg1(s)∆ṁ(s) +GTg2(s)∆TSET (s) (4)

=
4488.4

1.992e5s+ 1
∆ṁ(s) +

−0.9834

1.992e5s+ 1
∆TSET (s)

According to the collected data of EO2, the model is
designed based on step input of air-fuel ratio (AFR ratio is
1:17.2 in mass). Any numerical value representation of fuel
in kg/s is in ratio of 1. Thus, there will be no affect on the
EO2 when ṁ is changed. However, any variation in air-fuel
ratio will affect the outputs of f1 and f2 which leads directly
to changes in ṁ and hence, Tg. Therefore, the multivariable
glass furnace process has single loop interaction from AFR
to Tg under closed-loop influences. The identified control
oriented model of the interaction was,

∆Tg(s)

∆AFR(s)
= GAFR(s) =

−61.5

2e5s+ 1
(5)

The dynamics of the glass furnace process are represented
by the following low order 2 × 3 transfer function matrix
which is used for controller optimisation.

"
∆Tg(s)

∆EO2(s)

#
=

"
GTg1 GTg2 GAFR

0 0 GEO2

#264 ∆ṁ(s)

∆TSET (s)

∆AFR(s)

375
(6)

For a more complete control realisation of the EO2 pro-
cess, the realistic model transfer function (2) is associated
with an AFR conversion model and EO2 look-up table as
illustrated in Fig. 2. The AFR conversion model was par-
ticularly designed to convert the real value of AFR(mass) to
respective AFR(volumetric) based on the methane gas law.
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Figure 2 Block diagram of complete realised EO2 model

The transfer function (2) and AFR conversion model are
linear. But, the EO2 look-up table exhibits some nonlinear-
ity effects due to the methane chemical relationship between
the stoichiometric AFR(volumetric) input and EO2(%) out-
put.

3 Discrete PID Parameters Optimisa-
tion by SGAs

In general, a classical PID controller can be described as
an input–output relation expressed as,

u(t) = Kc

„
e(t) +

1

Ti

�
e(t) dt+ Td

de(t)

dt

«
(7)

where u is the control signal, e is the error signal, and Kc,
Ti and Td denote the proportional gain, the integral gain
and derivative gain, respectively. By using finite difference
approximations, (7) is expressed to its discrete equivalent
in positional form. For more accurate approximations, the
trapezoidal and backward rules are applied here to develop
discrete expressions for the integral and derivative terms,
respectively (KI = 1/Ti),

Gc(z) =
U(z)

E(z)
= Kc

„
1 +KI

T

2

(z + 1)

(z − 1)
+ Td

1

T

(z − 1)

z

«
(8)

3.1 Performance Criteria Formulation

The performance criteria for both Tg and EO2 are for-
mulated individually under closed-loop SISO control based
on the following desired response characteristics.

i. For Tg; Overshoot ≤ 2%, Settling time (ts) ≈ 5hrs.

ii. For EO2; Overshoot ≤ 2%, Settling time (ts) ≈ 7min.

iii. For both variables; zero steady state error to a con-
stant set point

3.2 SGAs Configuration

The SGAs approach used for optimisation of the PID
controller parameters is shown in Fig. 3. As illustrated in
the flowchart of the SGAs, at initial state, the chromosomes
of an array of variable values to be optimised are defined
as:

Chromosome =
{(KcKI T d)| {z } , (KcKI Td)| {z }}

Tg EO2

(9)

The binary coding was selected to encode the discrete
controller parameters into binary strings to generate the
initial population randomly in the beginning. The length of
each chromosome (Lind) is determined based on the binary
precision or resolution:

resj =
(bj − aj)
2mj − 1

(10)

Figure 3 Flow chart of control optimisation by SGAs

where mj is the number of bits, bj is the upper bound-
ary and aj is the lower boundary of each individual chro-
mosome’s searching parameter. Each chromosome’s binary
string is converted into an associated real value of PID pa-
rameters to propagate to the discrete PID controller. The
decoding process into a real value is done as:

xj = aj + Dec× (bj − aj)
2mj − 1

(11)

where xj is the respective real value of the chromosome’s
search parameter and Dec is the decimal value of the respec-
tive binary string. A complete simulated system response
of each PID set and its initial fitness value is evaluated by
using a defined objective function.

According to the chromosome’s fitness value by a defined
objective function, a new generation (offspring) is produced
by the process of genetic operators. The genetic operators
manipulate the binary strings of the chromosome directly,
by means of selection rate (Srate), crossover rate (Xrate)
and mutation rate Mrate to produce fitter chromosomes for
the next generation. After completion of the genetic oper-
ator process, the new set of binary strings for each chromo-
some in the population is required to be decoded into real
values and propagated again to the discrete PID controller
to evaluate for a new fitness value. This process is sequen-
tially repeated until a maximum number of generations,
where the optimal fitness is attained. Due to no previous
information available for genetic operator values for both
Tg and EO2 control optimisation, several experiments were
conducted where variations of the genetic operator values
were tested individually for enhancing the searching mech-
anism. Table 1 illustrates the selected genetic operator pa-
rameters for both Tg and EO2.
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Table 1 Genetic Operators of Tg and EO2

Genetic Operators Tg (K) EO2 (%)

No. of individuals 50 50

Max. No. of Generation 30 50

Generation Gap 0.6 0.7

Precision of Binary Rep. 6 6

Selection SUS SUS

Crossover Single Point, 0.6 Single Point, 0.7

Mutation Binary Rep., 0.6/Lind Binary Rep., 0.6/Lind

3.3 Objective Function and Boundary
Constraint Formulation

The control oriented models of both Tg and EO2 were
used individually to identify the optimum objective func-
tion and searching boundaries to achieve the performance
criteria. In the first attempt initial guesses were made for
the search boundaries in the SGAs. Improved boundary
constraints were subsequently introduced. For better se-
lection of improved boundary values, conventional tuning
methods (Ziegler-Nichols and Direct Synthesis) were anal-
ysed to identify PID values. With these identified PID val-
ues, the bj and aj were adjusted accordingly to ensure an
optimal solution for the desired response characteristics.

Two objective functions, integral absolute error (IAE)
and integral squared error (ISE),

Ji (IAE) =

k=maxX
k=0

|e(k)| (12)

Ji (ISE) =

k=maxX
k=0

e2(k) (13)

were used to compare and improve the set-point error for
EO2. Fig. 4 and Table 2 illustrates that the SGAs with pa-
rameter vectors of improved bound PID, Kc ∈ [0, 1], KI ∈
[0, 0.01], Td ∈ [0, 50], of EO2 has better dynamic response
and higher degree of accuracy while reducing the perfor-
mance criterion by adapting the fitness value. Initial op-
timisation of PID parameters by conventional techniques
provides a better suggestion of improved bound ranges than
assigning the ranges randomly or arbitrarily. By limiting
the bj of Kc, the SGA consolidates well within the bound-
ary constraints for KI and Td to converge to the global
minimum.

However, Fig. 5 and Table 3 illustrates, an overshoot
of 10% (1555 K) occurred in the transient response with
long settling time of 30hrs for Tg with improved bound-
aries. SGAs optimised close to the bj to attain the desired
response characteristics, but failed to achieve a global min-
imum. To enhance the searching mechanism for the control
parameters and achieve a global minimum, a modified cost
function is applied. The weighting factor λ applied to the
process input term is added to the cost function to reduce
the fast rising effect of the transient response. The modified
cost function applied for Tg is given by the relation,

Ji (IAE + λISU) =

k=maxX
k=0

|Tg(k)− 1550|+ λu2(k) (14)

Figure 4 SGAs random and improved boundaries of EO2 re-
sponses with conventional techniques.

where k is the sampling number and u is the controller
output. The selection of optimal value of λ is done by trial
and error technique by varying λ in the range [100, 1000].
The weighting factor associated with the desired response
characteristics was set to λ = 400 to give more emphasis to
the set point tracking objectives.

The simulation results in Fig. 5 and Table 3 illustrate
that the SGA with modified cost function, IAE + λISU
(14), has a higher level of optimisation mechanism and bet-
ter dynamic response than the improved searching bound
alone. Application of λ with ISU has suppressed the larger
overshoot behaviour of the glass temperature response by
smoothing the controller output. Overall desired response
characteristics, which are reduction of set-point error, over-
shoot and settling time, are achieved for Tg with the
IAE + λISU cost function.

4 Simulation Results of Decentralised
Control Strategies by SGAs

The optimisation of discrete decentralised control strate-
gies are analysed by three SGAs tuning approaches, associ-
ated with the 2x2 control oriented multivariable glass fur-
nace model as illustrated in Fig. 6. The three SGAs tuning
approaches are applied in closed-loop step input tests. The
three tuning approches are:

SGAs-1 : the discrete PID values of both Tg and EO2

are optimised individually with their respective closed-
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Table 2 PID parameters for EO2 by different tuning methods

Tuning Method Kc KI Td ISE IAE ts (2%)

Ziegler-Nichols 1.38 0.0038 65.88 103.8 268.6 14min

Direct Synthesis 1.137 0.0034 74 92.84 231.7 14.5min

Random Bound SGAs 2 0 36.67 119.8 355.6 35.8 min

Improved Bound SGAs 0.7685 0.0043 32.27 83.26 187.7 7.1min

Table 3 PID parameters for Tg by different tuning methods

Tuning Method Kc KI Td Set-point Error ts(2%)

Direct Synthesis 2.235e-3 5.15e-5 3.563 1.981e5 40hrs

Improved Bound SGA 3.675e-3 2.54e-5 6.322 8.438e4 30hrs

Weighting Factor SGA 9.863e-3 9.46e-6 7.358 7.029e4 4.9hrs

Figure 5 SGAs improved boundaries and λISU of Tg responses
with conventional techniques.

loop control oriented model (independently) without
loop interactions as discussed in section 3.3.

SGAs-2 : the discrete PID values of both Tg and
EO2 are optimised individually with their respective
closed-loop control oriented model with loop interac-
tion. (C1(z) is optimised with respective cost func-
tion; TSET = 1500K → 1550K; EO2(Ref) is constant
(2.45%); C2(z) = default value; and vice-versa).

SGAs-3 : the discrete PID value of both Tg and EO2 are
optimised together by multivariable closed-loop con-
trol oriented model with loop interaction. The opti-
mised cost function is modified to include the total
effect of Tg and EO2 by adding the individual cost
functions for both variables for each test as shown
in (15). (C1(z) and C2(z) are optimised with modi-
fied cost function: TSET = 1500K → 1550K at EO2

= steady-state; EO2(Ref) = 2.45% → 3% at TSET =
steady-state (1550K).

Ji(Tg) = (IAE + λISU)Tg
+ IAEEO2

Ji(EO2) = 0 + IAEEO2 (15)

Tables 4 and 5 compare the optimised PID parameters
by the respective SGA tuning approaches of Tg and EO2,

Figure 6 2-input, 2-output multivariable control oriented model
under closed-loop discrete decentralised PID control

respectively. As discussed in section 2, any variation in
ṁ by TSET and EO2(Ref) step inputs are represented in
ratio of 1. Thus, Fig. 8 reveals that there is no change in
EO2 responses by SGAs-1 and SGAs-2. This can also be
noticed in Table 5, where the PID parameters for these two
approaches barely have a change.

On the other hand, Fig. 7 reveals that the optimised PID
parameters by SGAs-1 are inadequate to achieve the desired
performance criterion of Tg under loop interaction. As a re-
sult of the GAFR(s)’s long dynamic time constant (2e5 s),
the Tg response rise time (tr) is lagged about 24min, hence
the settling time (ts) has increased to 7hrs and produced a
steady-state error of 1K. In contrast, the SGAs-2 method
consolidated better with loop interaction andGAFR(s)’s dy-
namic time constant to maintain the desired performance
criterion by increasing the KP and KI parameters accord-
ingly.

The SGAs-3 tuning approach is tested by applying step
inputs on both set points (Tg and EO2) at two different time
periods in one simulation with the modified (combined) cost
function (14). Thus, the total simulation time has increased
to optimise both sets of PID parameters. The simulation
results of SGAs-3 for Tg are shown in Fig. 9. At t1 =
0hrs; TSET = 1500K → 1550K; EO2 = 2.45% (constant).
At t2= 61.1hrs; TSET = 1550K (constant); EO2 = 2.45%
→ 3%. From t1 to t2, technically the cost function of Tg
(IAE + λISU) is optimising the PID parameters of C1(z)
individually without any effect of the EO2 cost function
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Table 4 Optimised PID parameters for Tg by decentralised techniques

Tuning Approach Kc KI Td IAE+λISU ts (2%)

SGAs-1 9.863e-3 9.461e-6 7.358 7.029e4 4.9hrs

SGAs-2 1.052e-2 1.371e-5 7.211 7.017e4 4.86hrs

SGAs-3 1.108e-2 1.311e-5 7.892 7.007e4 4.84hrs

Table 5 Optimised PID parameters for EO2 by decentralised techniques

Tuning Approach Kc KI Td IAE ts (2%)

SGAs-1 0.7685 0.0043 32.27 187.7 7.1min

SGAs-2 0.7679 0.00427 32.84 188.9 7.1min

SGAs-3 0.7857 0.004313 32.18 178.53 6.9min

Figure 7 Tg responses by three SGAs tuning approaches under
loop interaction

Figure 8 EO2 responses by three SGAs tuning approaches under
loop interaction

Figure 9 Tg responses by SGAs-3 with modified (combined) cost
function

(IAE). Such a long time gap between t1 and t2 is required
in the optimisation considering the effect of GAFR(s)’s long
dynamic time constant (2e5 s). Up to t1 there is no effect
on EO2 as no loop interaction is cancelled by the AFR
relationship inherent in the process.

From t2 the total effect of Tg and EO2 cost functions
(Ji(Tg)) are compound together in further optimisation of
C1(z) and C2(z) PID parameters. According to the Fig. 9,
the Tg is reduced approximately to 1549.2K under loop in-
teraction for the increase in EO2 at t2. To maintain the Tg
response, the KP parameter by SGAs-3 is increased about
5.31% from SGAs-2. But, the KI parameter by SGAs-3
is reduced about 4.58% from SGAs-2. The effect of an
increment and reduction of KP and KI is noticeable in
Fig. 7 where both gain parameters are consolidating well to
achieve a desirable response. Also, the EO2 response and
PID parameters vary insignificantly with modified (com-
bined) cost function (Ji(Tg)) as illustrated in Fig. 8 and
Table 5.

The total set-point error of Ji(Tg) is 7.0249e4. Techni-
cally, as there is no loop interaction from ṁ to EO2, the cost
function of Ji(EO2) (15) is applied to identify the set-point
error of EO2. As a result, the set-point error of Ji(EO2) is
178.53. Also the optimised PID parameters by Ji(Tg) for
EO2 are very much similar to Ji(EO2). Thus, the set-point
error of IAE + λISU(Tg) is 7.007e4 by calculation.
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Figure 10 Loop interaction of multivariable process under closed-
loop discrete decentralised control strategy. Effect of EO2(ref)

(∆1%) on Tg.

As discussed in section 2, a nonlinearity effect may ap-
pear in step input variations due to the methane chem-
ical relationship of stoichiometric AFR(volumetric) with
EO2(%). Thus, the loop stability and control robustness
are investigated further. Fig. 10 illustrates the robust re-
sponses of Tg for the three sets of optimised PID param-
eters (SGAs-1 to SGAs-3) under loop interaction for two
EO2 step input tests. The simulations of the two EO2 step
input tests are elaborated as follows;

i. Tg = 1550K (steady state); EO2, 2.45% → 3.45%;
causes a reduction in Tg, 1550K → 1548.7K (approx-
imately).

ii. Tg = 1550K (steady state): EO2, 2.45% → 1.45%;
causes an increase in Tg, 1550K → 1501K (approxi-
mately).

The observed disturbances in Tg are caused by the changing
AFR as a result of the EO2 set points. To compensate
the feedback error, controller C1(z) varies ṁ accordingly to
sustain Tg. In overall, the SGAs-2 has 17.4% better control
robustness than SGAs-1. While, the SGAs-3 has 4.36%
better control robustness than SGAs-2.

5 Conclusion

According to the desired response characteristics, the
control parameters optimisation by genetic algorithms is
enhanced with an improved cost function and improved
searching boundaries. The loop interaction and control ro-
bustness within the realistic multivariable glass furnace is
compensated with well optimised PID parameters by SGAs
in a decentralised PID control scheme.

References

[1] Scottish Environment Protection Agency (SEPA), “Guid-
ance for Monitoring Enclosed Landfill Gas Flares”, Report
No. GEHO1104BHZI-E-P, 2005.

[2] T.J. Monica, C.C. Yu and W.L. Luyben “Improved Multi-
loop Single-Input/Single-Ouput (SISO) Controller for Mul-

tivariable Process”, Ind. Eng. Chem. Res., vol. 27, pp. 969-
973, 1998.

[3] M. Hovd and S. Skogestad, “Sequential Design of Decen-
tralised Controllers”, Automatica, vol. 30 (10), pp. 1601-
1607, 1994.

[4] T.K. Lee, J. Shen and M.S. Chiu, “Independent Design
of Robust Partially Decentralized Controllers”, J. Process
Control, vol. 11, pp. 419-428, 2001.

[5] J. Lee, W. Cho and T.F. Edger, “Multiloop PI Controller
Tuning for Interacting Multivariable Processes”, Comput.
Chem. Eng., vol. 22 (11), pp. 1711-1723, 1998.

[6] H.P. Huang, J.C. Jeng, C.H. Chiang and W. Pan, “A Direct
Method for Decentralised PI/PID Controller Design”, J.
Process Control, vol. 13 (8), pp. 769-786, 2003.

[7] A.P. Loh, C.C. Hang, C.K. Quek and V.U. Vasnani, “Auto-
tuning of Multi-loop Proportional-Integral Controllers us-
ing Relay Feedback”, Ind. Eng. Chem. Res., vol. 32, pp.
1102-1107, 1993.

[8] P. Grosdidier and M. Morari, “A computer aided method-
ology for the design of decentralised controllers,” Comput.
Chem. Eng., vol. 11, pp. 423-433, 1987.

[9] N.L.V. Truong, H. Seungtaek, and M. Lee, “Analytical De-
sign of Robust Multi-loop PI Controller for Multivariable
Process,” ICCAS-SICE Inter. Joint Conference, pp. 2961-
2966, 2009.

[10] D.E. Goldberg, “Genetic algorithms in search, optimisation
and machine learning,” 1st ed., Addison-Wesley, pp. 7-10,
1989.

[11] P. Wang and D.P. Kwok, “Optimal design of PID pro-
cess controllers based on genetic algorithms,” Control Eng.
Prac., vol. 2 (4), pp. 641-648, 1994.

[12] P.K. Viswanathan, W.K. Toh and G.P. Rangaiah, “Closed-
Loop Identification of TITO Processes Using Time-Domain
Curve Fitting and Genetic Algorithms”, Ind. Eng. Chem.
Res., vol. 40 (13), pp. 2818-2826, 2001.

[13] R. Bandyopadhyay, U.K. Chakraborty and D. Patranabis,
“Autotuning a PID Controller: a fuzzy-genetic approach”,
J. Syst. Architecht., vol. 47, pp. 663-673, 2001.

[14] C. Vlachos, D. Williams and J.B. Gomm, “Genetic ap-
proach to decentralised PI controller tuning for multivari-
able processes,” IEE Proc.-Control Theory Appl., vol. 146
(1), pp. 58-64, 1999.

[15] D. Li, F. Gao, Y. Xue and C. Lu, “Optimisation of Decen-
tralised PI/PID Controllers based on Genetic Algorithm”,
Asian Journal of Control, vol. 3 (3), pp. 306-316, 2007.

[16] M.R. Rani, H. Selamat, H. Zamzuri and Z. Ibrahim, “Multi-
Objective Optimisation for PID Controller Tuning using the
Global Ranking Genetic Algorithm”, Journal of Innovative
Computing, Information and Control, vol. 8 (1A), pp. 269-
284, 2012.

[17] H.A. Morris, “Advanced modelling for small glass fur-
naces,” Master’s Thesis, Department of Mechanical Engi-
neering, West Virginia University, Morgantown, USA, 2007.

[18] A.R. Holladay, “Modelling and control of a small glass
furnace,” Master’s Thesis, Department of Mechanical En-
gineering, West Virginia University, Morgantown, USA,
2005.

Page 7 of 8

http://www.ijac.net  email:ijac@ia.ac.cn

International Journal of Automation and Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

8 International Journal of Automation and Computing X(X), X X

[19] J. Gaffney, D.A. Green and C.E.M. Pearce, “Binary versus
Real Coding for Genetic Algorithm: A False Dichotomy?”,
Journal of Engineering Mathematics and Applications Con-
ference, vol. 51, pp. C347-C359, 2010.

Picture to be supplied and biography up-
dated
Kumaran Rajarathinam is a PhD
student researching Advanced Control
Techniques with the Control Systems
Group in the Mechanical Engineering and
Materials Research Centre (MEMARC) at
Liverpool John Moores University, UK.

E-mail:
K.Rajarathinam@2011.ljmu.ac.uk

Picture to be supplied
J. Barry Gomm received the
BEng(Hons) first class degree in Electrical
and Electronic Engineering in 1987 and
the PhD in process fault detection in 1991
from Liverpool John Moores University
(LJMU), UK. He joined the academic
staff at LJMU in 1991 and is a Reader
in Intelligent Control Systems. He was
co-editor of the book “Application of

Neural Networks to Modelling and Control” (London, UK:
Chapman and Hall, 1993) and has been Guest Editor for several
journal special issues including Fuzzy Sets and Systems and
Transactions of the Institute of Measurement and Control. In
2011, Dr Gomm as co-author received the IFAC award for
most cited paper in the journal Engineering Applications of
Artificial Intelligence. He has published more than 130 papers
in international journals and conference proceedings. Dr Gomm
is a member of the IET and IEEE, and has served on an IET
committee and organising committees of several conferences. His
current research interests include neural networks for modelling,
control and fault diagnosis of non-linear processes; intelligent
techniques for control; system modelling and identification;
adaptive systems and algorithms; analysis, control and stability
of non-linear systems. Applications include automotive engines;
chemical, biochemical and manufacturing industrial processes.

E-mail: j.b.gomm@ljmu.ac.uk (Corresponding author)

Picture to be supplied
DingLi Yu received B.Eng from Harbin
Civil Engineering College, China in 1982,
M.Sc from Jilin University of Technology
(JUT), China in 1986, and the PhD from
Coventry University, U.K. in 1995, all in
Control Engineering. Dr. Yu was a lec-
turer at JUT from 1986 to 1990, a visiting
researcher at University of Salford, U.K. in
1991, a post-doctoral research fellow at Liv-

erpool John Moores University (LJMU) from 1995 to 1998. He
joined LJMU Engineering School in 1998 as a Senior Lecturer and
was promoted to a Reader in 2003, then to Professor of Control
Systems in 2006. He is the associate editor of two journals, In-
ternational Journal of Modelling Identification and Control and
International Journal of Information & Systems Sciences. He or-
ganized two special issues in 2006, “Fault Detection, Diagnosis
and Fault Tolerant Control for Dynamic Systems” and “Intelli-
gent Monitoring and Control for Industrial systems”. He serves
as a committee member of the IFAC SAVEPROCESS Commit-
tee, and has been IPC member for many international confer-
ences. He is a fellow of IET and Senior Member of IEEE. He
leads the Control Systems Research Group at LJMU. His cur-
rent research interests include fault detection and fault tolerant
control of bilinear and nonlinear systems, adaptive neural net-
works and their control applications, model predictive control for
chemical processes and automotive engines and real-time evalua-
tions, in these areas he has published more than 160 journal and

conference papers and these papers haven cited more than 580
times.

E-mail: d.yu@ljmu.ac.uk

Picture to be supplied and biography up-
dated
Ahmed Saad Abdelhadi is a PhD stu-
dent researching Nonlinear System Iden-
tification and Control with the Control
Systems Group in the Mechanical En-
gineering and Materials Research Centre
(MEMARC) at Liverpool John Moores
University, UK.

E-mail: a.s.abdelhadi@2012.ljmu.ac.uk.

Page 8 of 8

http://www.ijac.net  email:ijac@ia.ac.cn

International Journal of Automation and Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


