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Abstract: For coastal radar surveillance, this paper proposes a data-driven approach to estimate a 8 

blip’s collision probability preliminarily based on two factors: the probability of it being a 9 

moving vessel and the collision potential of its position. The first factor can be determined by a 10 

Directed Acyclic Graph (DAG), whose nodes represent the blip’s characteristics, including the 11 

velocity, direction and size. Additionally, the structure and conditional probability tables of the 12 

DAG can be learned from verified samples. Subsequently, the obstacles in a waterway can be 13 

described as collision potential fields using an Artificial Potential Field model, and the 14 

corresponding coefficients can be trained in accordance with the historical vessel distribution. 15 

Then, the other factor, the positional collision potential of any position is obtained through 16 

overlapping all the collision potential fields. For simplicity, moving speeds of obstacles are 17 

considered in this research. Eventually, the two factors are characterised as two pieces of 18 

evidence, and the collision probability of a blip is estimated by combining them with Dempster’s 19 

rule. Through ranking blips on collision probabilities, those that pose high threat to safety can be 20 

picked up in advance to remind supervisors. Particularly, a good agreement between the proposed 21 

approach and the manual work was found in a preliminary test. 22 

Keywords: Collision Probability; Bayesian Network; Artificial Potential Field; Marine Radar; 23 

Nonlinear Optimisation; Dempster’s rule 24 

Highlights: 25 
[1] Novel estimation approach of collision probability for radar blips. 26 

[2] Novel method to evaluate the authenticity of a blip using Bayesian Network. 27 

[3] Novel method to evaluate the positional collision potentials using the APF model. 28 

[4] Novel method to obtain the coefficients of potential fields with historical data. 29 

1 Introduction 30 

Marine radar is an active detection tool of coastal surveillance, which does not require 31 

replies from supervised vessels. As well as that, it is capable of detecting waterfronts, buoys, and 32 

other obstacles. Through marine radar, all the vessels and obstacles are represented as blips on 33 

screen with corresponding characteristics, including shapes, velocities, directions and trajectories. 34 

In daily managements, these characteristics are used for target extraction and identification. 35 

Presently, several other maritime tracking systems have been invented, including the Automatic 36 

Identification System (AIS) and maritime satellites. However, the reporting frequency of AIS is 37 
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too low for real-time tracking (Lin et al., 2007); not many vessels possess satellite transmitters. 38 

Therefore, marine radar is still the kernel of a maritime detecting system.  39 

In fact, a considerable proportion of radar blips or objects are caused by noises or stationary 40 

objects. In inland waterways or ports, such false or stationary objects are even more than real 41 

moving vessels (Ma et al., 2015b). Therefore, supervisors have to identify moving vessels from a 42 

plethora of blips manually. However, even if a blip is confirmed to be a real moving vessel, it 43 

might not need much attention. For instance, a vessel that is far away from piers, rocks, obstacles, 44 

and other vessels is usually safe; in daily management, it does not need much attention. In fact, 45 

only a blip that is probably a real moving vessel and is posing a threat to safety needs close 46 

inspection (Lin et al., 2007). Particularly, the threat to safety here generally means a potential 47 

collision, as the collision avoidance is the main objective of radar surveillance. 48 

Most of radar systems have integrated an Automatic Radar Plotting Aid (ARPA) function to 49 

track moving objects. However, the authenticities or collision potentials of targets cannot be 50 

obtained by an ARPA function directly. For instance, a late-model coastal surveillance radar 51 

system is capable of tracking a 0.5 m
2
 target at a distance of 5 miles. However, its ARPA function 52 

is not capable of determining whether this 0.5 m
2
 target is a real moving vessel, or just a trivial 53 

object floating on the water. Presently, the authenticity or collision probability of a target can 54 

only be inferred by experienced supervisors. Such manual work might be impractical when there 55 

are too many objects in observation. For instance, there are about 20,000 vessels passing through 56 

Nantong waterway, Yangtze River, China in one day. Obviously, it is impossible to inspect them 57 

one-by-one manually. On the basis of the procedures of manual work, this research aims to 58 

develop a data-driven method that helps supervisors identify targets preliminarily so as to 59 

enhance their supervision and management efficiency. 60 

It is worth emphasizing that the collision probability in radar surveillance is different from 61 

the usual sense. In conventional research, a collision probability is determined by the speed, 62 

rotation rate, course, encountered vessels, and environmental factors (Fujii et al., 1974). However, 63 

the course and speed measured by radar are not completely credible (IEC 2013; 2014). False 64 

alarms might be triggered easily when using them in collision estimation (Ma et al., 2015a). 65 

Nevertheless, the positions of targets obtained from radar are comparatively reliable. Therefore, 66 

supervisors always take the position as an important factor in the estimation of a blip’s collision 67 

probability. For example, when a blip or object is located in a dangerous zone, it should attract 68 

much attention without regard to whether it is a noise or not. On contrary, if an object is located 69 

in open water outside the main channel, which poses limited threat to safety, it might be ignored 70 

by supervisors. Particularly, the collision potential of a position is actually determined by 71 

surrounding obstacles and environments, including waterfronts, berths, water depths, piers, buoys, 72 

shoals and encountered vessels. Apparently, these factors are varying all the time. As a result, to 73 

estimate the collision potentials of different positions requires supervisors’ experience. 74 
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Overall, referring to manual work, there are two major underlying factors in the preliminary 75 

identification of a blip that has a high collision probability. The first one is the probability of the 76 

blip being a real moving vessel; the other is the corresponding collision potential of its position. 77 

The first factor can be inferred from its characteristics. For instance, a blip that is moving at 78 

a usual velocity is likely to be a moving vessel. This inference process is based on the speed of 79 

the blip and the experience of the operators. In fact, such experience can be considered as prior 80 

information accumulated from a long-time observation. In this light, a probabilistic model might 81 

be appropriate in this research (Ranganathan et al., 2004). Among different types of probabilistic 82 

models, Bayesian Network (BN) is considered to be efficient and rigorous. Particularly, it is 83 

capable of learning structures and the associated coefficients with verified samples under 84 

uncertainties (Zhang et al., 2013).  85 

The other factor, or the collision potential of a position, is more complicated. Generally, the 86 

term “collision risk” discussed in maritime research is usually considered as the product of a 87 

collision probability and the impact of the collision (Williams, 1996). However, the impact 88 

involves much detailed information of vessels (Fujii et al., 1974), such as the rudder angle, types 89 

of cargo, and the number of people on board the ship. This information is difficult to obtain for 90 

radar surveillance. In fact, the primary objective of supervisors in VTS is to avoid all the possible 91 

collisions without regarding or weighing the collision consequences. Hence, only the collision 92 

probability is investigated in this research.  93 

In relevant research findings, the estimation of the collision probability is generally based on 94 

macro perspectives or ship handling. These macro perspectives include waterway design, port 95 

engineering and policy-making (Eleye-Datubo et al., 2008). The relevant methods are not capable 96 

of describing the successive variation of collision probabilities in microscopic adjacent positions 97 

(Dong and Frangopol, 2015). For instance, these methods can be used to estimate the overall 98 

collision probability of a bridge zone for setting a speed limit; however, they are not capable of 99 

describing the collision probability differences between two points that are 50 meters apart from 100 

each other in the bridge zone. In radar surveillance, such a microscopic estimation is essential. 101 

Another conventional research perspective of studying the collision probability is for ship 102 

handling, which also requires much manoeuvring information of the vessels (Montewka et al., 103 

2012). As described, such information is mostly unknowable for radar surveillance. Therefore, 104 

the conventional collision probability estimation methods might not be very suitable for the 105 

perspective discussed in this research.  106 

Referring to the research conducted in the robot area, the problem can be addressed with an 107 

Artificial Potential Field (APF) model, which does not need detailed information of obstacles, 108 

and describes the collision probabilities as a continuous function (Volpe and Khosla, 1990). For 109 

decades, the APF model has been widely used in robot route planning and manipulation, and it is 110 

believed to be efficient and concise.  111 

In summary, this paper aims to propose an intelligent approach to estimate the collision 112 

probabilities of radar blips preliminarily using BN and the APF model. It is organised as follows. 113 
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Section 2 dedicates to introducing the characteristics of blips and conventional research of 114 

collision probability. Section 3 proposes a novel approach to estimate the collision probabilities 115 

of blips. In Section 4, a case study is conducted. Section 5 concludes this paper. 116 

2 Literature review 117 

2.1 The uncertainties of marine radar blips  118 

By detecting echo signals which bounce off the surroundings, the coastal surveillance radar 119 

can be used to determine the distance, speed, and direction of each moving object in a specific 120 

area. The echo signals can be represented as frequency spectrums or blips on a screen. Generally, 121 

the blip form is more accessible, which is shown as a radar image. The satellite image and the 122 

grey-scale radar image shown in Figure 1 were captured at the same location and surroundings of 123 

Yangtze River, Wuhan, China. In the radar image, waterfronts, vessels, buoys, and bridges have 124 

been represented as blips at the very beginning of target extraction. The speed, course, and 125 

position of targets can be quantified in accordance with the inter-frame differences of 126 

corresponding blips. However, radar images or blips are actually not stable. The graphs of blips 127 

will be affected by the observation angle and radar resolution notably. Moreover, blips often 128 

overlap and connect to each other. Therefore, the direction and speed measured by radar blips are 129 

not completely credible (IEC 2013, 2014). In practice, stationary or noise blips might drift like 130 

moving vessels; moving vessels approaching to berths might move too slowly, and they look like 131 

stationary or noise objects. It is worth noting that each object’s speed can be measured with the 132 

Doppler velocities too. However, most marine radar systems work on a low Repetition Pulse 133 

Frequency (RPF) mode, and the Doppler velocities are ambiguous. Hence, the radar images are 134 

used as the major evidence for further identification.  135 

 136 
Figure 1 Radar and satellite images of Yangtze River, Wuhan, China 137 

To address the problem of uncertainties described above, radar performance appraisals and 138 

improvements have attracted much attention in recent decades (Li et al., 2007; Islam et al., 2012) 139 

Many researchers were dedicated to developing a generic filtering algorithm to obtain more 140 

accurate trajectories of radar objects (Yoo and Kim, 2008). However, it may be argued that all 141 
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these filtering algorithms incorporate some assumptions regarding objects’ states, which are only 142 

applicable in specific conditions.  143 

It is shown in Figure 1 that the marine radar also captured many useless and noise blips, and 144 

operators might take them for moving vessels easily. Hence, some intelligent methods have been 145 

introduced to distinguish moving vessels from false or stationary objects. For marine radar, Ma et 146 

al. (2015) proposed a fuzzy k-means (FCM) based classification method to identify the false 147 

targets among ARPA targets, and reported the accuracy of 91.0%. Zhou et al. (2013) invented a 148 

radar target-recognition method based on fuzzy optimal transformation using high-resolution 149 

range profiles. Although the existing algorithms are shown to be effective for specific case 150 

studies in radar research, they do not constitute a rigorous probabilistic inference process, nor are 151 

they proven to be effective in principle or in general. As such, they are of an ad hoc nature and 152 

might not be as robust as required for real life applications or implementation. In addition to the 153 

identification of a blip, operators of radar also need to know the exact probabilities about the 154 

blip’s states for making appropriate decisions. 155 

2.2 Estimation of collision probabilities 156 

In addition to the authenticity of a blip, its position in a waterway is the other important 157 

factor for estimating the corresponding collision probability. In Figure 1, the collision 158 

probabilities of the blips near bridges or other channel constructions are obviously higher than the 159 

others. To model this phenomenon, the collision probability differences of adjacent positions 160 

should be described appropriately. 161 

In fact, the collision probability of a vessel is affected by many factors, including weather, 162 

navigators, ship handling, ship condition, encountered vessels and others. Hence, collision 163 

probabilities can be modelled from different perspectives (Hänninen and Kujala, 2009) as 164 

described in Section 1. The static collision probability model proposed by Fujii et al. (1974) is 165 

widely used. In such a model, a collision probability is equal to the product of the geometrical 166 

probability of a collision course and the causation probability. Obviously, this model is closely 167 

related to ship handling. For example, Montewka et al. (2010) proposed a new approach for 168 

quantifying the geometrical probability to estimate collision probabilities on the basis of maritime 169 

and aviation experience. Pedersen (2010) presented a paper to review procedures for reducing the 170 

high economic environmental and human costs associated with ship collisions and grounding.  171 

It is worth emphasizing that researchers become increasingly interested in modelling the 172 

characteristics of passing vessels with AIS data records since such records are widely believed to 173 

be both reliable and objective (Montewka et al., 2010). This research also introduces the AIS 174 

records as a fundamental data source in the following discussion. 175 

In summary, the research of collision probability generally starts with a multi-factor 176 

qualitative analysis involving ship handling, human factors, and geometrical collision model 177 

which are originated from ship domains or minimum distance modelling (Montewka et al., 2012). 178 

However, this information is unavailable for coastal radar surveillance, which can only be 179 

confirmed with very high frequency (VHF) radio. In daily management, the verification of VHF 180 
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radio is conducted only when needed; hence, the location of a blip seems to be the only direct and 181 

credible evidence for estimating the corresponding collision probability or potential, which is 182 

closely related to the dynamic navigation environments of waterways. Any change of berths, 183 

piers, buoys and depths might have significant impacts on the distribution of collision probability. 184 

Although many researchers have dedicated to proposing methods to model collision risk based on 185 

these factors individually (Kujala et al., 2009; Qu et al., 2011), a widely acknowledged and 186 

comprehensive modelling method has not been invented yet.  187 

It is worth noting that the collision probability here is not obtained from the frequency 188 

analysis of a random process since collision accidents might not happen often actually. Hence, the 189 

research on collision probability estimation is usually started with a qualitative analysis of 190 

incidents causation (Dong and Frangopol, 2015). It is not illogical to investigate the collision 191 

probability in radar surveillance in a potential field. The potential theory might be applicable in 192 

this research (Dellacherie and Meyer, 2011). 193 

2.3 Obstacle avoidance modelling with the APF model 194 

The potential theory is originated from mathematical physics. Nowadays, it is also intimately 195 

connected with probabilities and the theory of Markov chains (Dellacherie and Meyer, 2011). In 196 

many cases, neighbouring objects might attract or repulse each other. The so-called repulsions or 197 

attractions among them are actually very difficult to be described or quantified, whilst the 198 

distance is the core factor in the attenuation of these forces. By this moment, the potential theory 199 

is considered to be attractive for use (Statheros et al., 2008). 200 

In a waterway, a collision probability or a collision potential can be considered as a special 201 

“repulsion”, which objectively repulses the corresponding vessels away to avoid collision. The 202 

closer to obstacles the vessel is, the higher collision potential there should be. The strength of 203 

“repulsion” is exactly consistent with the collision potential. When there are in-sufficient records 204 

of collision accidents, a collision potential might be quantified by the “repulsions”. For instance, 205 

it is widely believed that narrow channels between the piers of a bridge are dangerous for passing 206 

vessels, or the corresponding collision potentials are high although the accidents that vessels 207 

collide with piers are rare. There are very strict regulations for the operators of vessels when 208 

crossing piers, including speed limit, no overtaking. These regulations reduce collision accidents 209 

objectively. As a result, a collision probability or a collision potential cannot be estimated with a 210 

frequency analysis. However, the high collision probabilities or potentials are objective existence, 211 

which are changing the behaviours of vessels, making them as far as possible away from the piers. 212 

It is not illogical to take the collision potential as “repulsions” that repulse these vessels away 213 

from the piers. In the potential theory, those “repulsions” are caused by the corresponding so-214 

called “repulsive potential fields”, which are exactly produced by the piers (Volpe and Khosla, 215 

1990).  216 

The phenomenon discussed above is illustrated in Figure 2. In this figure, there are several 217 

piers in a waterway. Hundreds of vessels crossed these piers, and vessels’ tracks are represented 218 

with blue circles and lines. In daily management, these historical records of vessel tracks can be 219 
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obtained from an AIS database easily. Particularly, these tracks indicate that vessels were 220 

obviously willing to take routes which were far away from these piers to lower their collision 221 

potentials. On the other hand, such a phenomenon can be regarded as that these vessels were 222 

pushed into a narrow channel by some undetectable “repulsions”. As shown in Figure 2, these 223 

“repulsions” are represented as red arrows. Apparently, the closer to the piers, the greater of the 224 

repulsions there would be; the distance is the core factor in the attenuation of the repulsions. As 225 

mentioned, the strength of the “repulsions” is consistent with the corresponding collision 226 

potential. By analysing the distribution of passing vessels, the corresponding repulsions or 227 

repulsive potentials can be quantified. Therefore, the collision potential or probability of a 228 

position can be obtained indirectly.  229 

 230 
Figure 2 Traffic flow between piers 231 

To describe the ship collision potential as a “force” was firstly proposed by Statheros et al. 232 

(2008). They used a Virtual Field Force (VFF) to describe the collision potential for collision 233 

avoidance in the unmanned surface vessel (USV) research. In fact, similar approaches are 234 

common in robot research, and the most frequently used methodology is the Artificial Potential 235 

Field (APF). The APF model was invented by Khatib (1986), which was designed for the real-236 

time obstacle avoidance of manipulators and mobile robots (Park et al., 2001). With this model, 237 

movements of the robot are governed by potential fields, which are usually composed of two 238 

components, attractive potential and repulsive potential fields. An attractive potential field is 239 

generally a bowl shape to draw the robot towards the goal. A repulsive potential filed is generally 240 

built at the location of an obstacle to push the robot away. As described in Section 1, the collision 241 

potentials can be modelled as continuous functions using the APF model. Therefore, the collision 242 

potential differences of adjacent positions can be described as the change of the values of these 243 

functions.  244 

However, the formulations of the potential fields are different, which are determined by the 245 

corresponding scenarios and requirements. In general, several potential functions are frequently 246 

used, which are mostly in quadratic and conical forms (Park et al., 2001). The following issue is 247 

to determine which potential function is appropriate for modelling collision potential in a 248 
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waterway. In practice, the shape of the repulsive potential field is very important, and it should be 249 

compatible with the influences of corresponding obstacles. In addition, the influence range of the 250 

potential field should conform to reality. Hence, the coefficients of the chosen potential function 251 

should be assigned very carefully.  252 

Presently, many researchers put much effort to address the problems of local minima and the 253 

modelling for arbitrarily shaped obstacles. Research findings that aim to obtain appropriate 254 

coefficients of potential field are very limited. Zhang et al. (2012) developed an evolved APF 255 

method by genetic algorithm, which uses a grid method to generate an obstacle avoidance path to 256 

address the local minimum problem. Montiel et al. (2015) used a bacterial evolutionary algorithm 257 

to address the same issue. Pêtrès et al. (2012) proposed an APF-based reactive navigation 258 

approach for vessels. In their approach, environment and local constraints are represented as 259 

potential fields around the vessels. Moreover, potential fields caused by wind directions and 260 

surrounding obstacles will be updated periodically, ensuring an optimal heading for the 261 

navigation. 262 

Overall, the APF model is an efficient method for modelling collision potentials in waterway 263 

transportation. The problem is how to obtain the appropriate coefficients of potential fields. As 264 

described, the distribution of passing vessels might be a good indication (Ma et al., 2015b). 265 

3 A proposed approach 266 

To reduce the burden of VTS supervisors, this research proposes an approach to identify 267 

targets that have high collision probabilities from a plethora of radar blips preliminarily. 268 

Particularly, this approach consists of two novel methods. The first one is used to estimate the 269 

probability of a blip being a true moving vessel using BN. The other novel method is then used to 270 

estimate the collision potentials of adjacent positions within the collision potential fields. 271 

Eventually, the collision probability of each blip can be considered as the aggregation of 272 

authenticity and the corresponding collision potential of its position. For simplicity, only the 273 

static obstacles are considered in this research. 274 

3.1 Step 1: The inference process of blips’ authenticities using BN 275 

As described, only a small proportion of blips are real moving vessels. In daily management, 276 

operators distinguish them from others in accordance with several graphic characteristics, 277 

including velocity, course, size, colour, width, and length. Obviously, these factors may be 278 

dependent on each other. Therefore, BN is chosen as the basis to establish an identification 279 

process whose advantage is that dependencies among all the factors can be modelled 280 

appropriately (Zhang et al., 2013). Referring to manual work, three types of evidence are selected 281 

in this research: the velocity, motion direction, and blip size, which are presented in Figure 3. 282 

According to the ARPA function requirement IEC 62388 (IEC, 2013; 2014), supervisors are 283 

generally able to identify the authenticity of a blip in 30 seconds or 10 continuous frames. 284 

Therefore, the velocity and direction characteristics are quantified based on the analysis of 10 285 

frames. In this research, the velocity and motion course are quantified as shown in Figure 3. In 286 
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the figure, the velocity is equal to the number of units (pixels) that the blip has moved in 10 287 

frames, which is illustrated in sub-figure 3(a). The direction is quantified as the angle between the 288 

true north and the motion direction, which is illustrated in sub-figure 3(b). It is worth mentioning 289 

that the motion direction values are rounded down to integers. 290 

Generally, for a moving vessel, the size of the corresponding blip varies in an appropriate 291 

range, which is illustrated in Figures 1 and 3. The size can be considered as how many pixels the 292 

corresponding blip is occupying in a radar image after binarization, which is illustrated in sub-293 

figure 3(c). 294 

 295 
Figure 3 Blip characteristics in frames of radar 296 

Based on the quantified characteristics, the BN-based inference process is conducted as 297 

follows: BN is defined by a pair ( , )sS  , where ( , )S E  is a directed acyclic graph (DAG) 298 

with a set of nodes  , and with a set of arcs or nodes {( , ) | , , }i j i j i jE X X X X X X    299 

representing probabilistic dependencies among domain variables (Monti and Cooper, 1998). 
s300 

represents the parameterization of a probability measure   defined over the space of possible 301 

instantiations of  . Given a node 
iX  , Pai is used to denote the set of parents of 

iX in S. 302 

The essential property of BNs is summarized by the Markov property, which asserts that each 303 

variable is independent of its non-descendants given its parents. The application of the chain rule, 304 

together with the Markov property, yields the following factorization of the joint probability of 305 

any particular instantiation x  of all n variables: 306 

𝜌(�⃗⃗� ) = 𝜌(𝑥1,⋯ , 𝑥𝑛) = ∏ 𝜌(𝑥𝑖|𝑷𝒂𝒊, Θ𝑆)
𝑛
𝑖=1                                                                         (1) 307 

Manual work is capable of identifying the authenticity (A) of a blip with three attributes 308 

direction (V), velocity (D), and size (S). Hence, (A), (V), (D), and (S) form a DAG. Subsequently, 309 
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the structure of the DAG can be learned from verified data samples. Presently, the K2 scoring 310 

algorithm is widely accepted for constructing BN from databases or records, proposed by Cooper 311 

and Herskovits (1991).  312 

The principle of the K2 scoring algorithm is to assess the appropriateness of a structure 313 

based on verified records. Under assumptions associated with lack of missing values and 314 

independent coefficients, the K2 scoring algorithm can be further simplified (De Campos and 315 

Castellano, 2006). Subsequently, the best scoring structure can be found with a hill-climbing 316 

heuristic algorithm. More detailed information about the K2 scoring algorithm can be found in 317 

the reference (Cooper and Herskovits, 1991). Presently, the K2 scoring algorithm is fully 318 

supported by the software tools of BN, including Netica, Hugin, and the MATLAB bnt toolbox. 319 

When the structure is determined, the conditional probability tables (CPTs) of the DAG can 320 

be learned from verified samples too. Usually, a maximum likelihood estimation (MLE) is used 321 

to implement CPTs estimation when given training data. In this research, the expectation 322 

maximization (EM) algorithm is adopted, which is an iterative method to carry out a MLE 323 

(Bilmes, 1998). Such a process is also supported by the software tools described above. Hence, 324 

the details of the EM algorithm will not be given here.  325 

Lastly, the probability of a blip being a real moving vessel can be estimated with the new 326 

DAG. 327 

3.2 Step 2: The modelling of collision potential field using the APF model 328 

In addition to the authenticity, the collision potential of the position of the studied blip is the 329 

other important factor in the estimation of collision probability. The APF model is adopted to 330 

describe the collision potential as discussed in Section 2.3. There are many types of APF function, 331 

and the Yukawa function is widely used in collision avoidance potential modelling (Volpe and 332 

Khosla, 1990), which is presented as, 333 

, ( )
K

obs m

e
U K A

K



                                                                                                         (2) 334 

where 
,obs mU  denotes the avoidance or collision potential value to the m

th
 obstacle. A is a constant, 335 

and denotes a maxim value of (collision or avoidance) potential. α is also a constant, and denotes 336 

the rate of decay, which is determined by the boundaries of APF. Variable K denotes the pseudo-337 

distance to the m
th
 obstacle, which is different from the actual distance. It is required to take the 338 

characteristics of obstacles and the environmental factors into consideration to propose an 339 

appropriate formulation of variable K (Volpe and Khosla, 1990), especially in a waterway. Hence, 340 

the formulations of variable K for the corresponding obstacles are different, including buoys, 341 

piers, rocks, shoals and encountered vessels. For simplicity, only two typical static obstacles (i.e. 342 

buoys and piers) are considered.  343 

In Yangtze River, a buoy is generally 1~9 meters long, and a vessel is generally more than 344 

80 meters long. Therefore, a buoy can be considered as a point to a passing vessel. By this 345 

moment, an eclipse model or a point model is appropriate, which is defined as follows. Suppose a 346 
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buoy is located at ( , )b bx y ; the pseudo-distance K of the coordinate ( , )x y  to this buoy is 347 

presented as (Volpe and Khosla, 1990), 348 

2 2( ( )) ( )b b b bK x x y y                                                                                         (3) 349 

where 
b

  denotes a range adjustment coefficient for pseudo-distance. (0,1]   denotes the ratio 350 

between the values of the X and Y axes. Substituting Eq. (3) into Eq. (2), 
bK K , the eclipse 351 

collision potential equipotential lines are presented in Figure 4, and their centres represent the 352 

coordinate of the buoy. In inland rivers, vessels generally sail along the river direction. Therefore, 353 

the X axis is set to be parallel to the river direction in this research. 354 

 355 
Figure 4 A buoy (ellipse) repulsive APF with equipotential lines 356 

Different from a buoy, the pier of the Wuhan Yangtze River Bridge is 60 meters long and 5 357 

meters wide. Hence, the shape and dimensions of a bridge pier should not be neglected, and it is 358 

not appropriate to take it as a point. Therefore, a rectangle model is adopted. Its pseudo-distance 359 

K is presented as follows (Volpe and Khosla, 1990), 360 

2 2min( ( ') ( ') )p p p pK x x y y                                                                              (4) 361 

where 
' , '

( ', ')
' , '

p p p p

p p

p p p p

x x l y y w
x y

y y w x x l

    
 

   

, ( , )p px y  denotes the centre of the pier, l 362 

denotes the length of the pier in the X axis, w denotes the length of the pier in the Y axis. p
 is an 363 

adjustment coefficient of the bridge pier pseudo-distance. Substituting Eq. (4) into Eq. (2), 364 

pK K , the rectangle equipotential lines are presented in Figure 5. It is worth mentioning that the 365 

potential edge rectangle in the centre represents the maximum value of collision potentials. 366 

Generally, the potential edge rectangle is larger than the actual geometrical dimensions of the 367 

corresponding pier. The reason lies in that operators should keep their vessels away from the piers 368 

at a considerable distance to ensure safety (Fujii et al., 1974). In this figure, the dimensions of the 369 

pier are marked as a red dotted rectangle in the centre. The X axis here is also set to be parallel to 370 

the river direction in this research. 371 
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 372 
Figure 5 A pier (rectangle) repulsive potential field with equipotential lines 373 

Using the methods and models discussed above, all the piers and buoys can be modelled as 374 

sources of collision (repulsive) potential fields, which pose threats to passing vessels. Moreover, 375 

in any place of the waterway, the corresponding collision potential can be considered as the 376 

combination of the different collision potential fields, which can be obtained with Eqs. (2), (3) 377 

and (4). 378 

3.3 Step 3: A nonlinear optimisation of the coefficients of potential fields 379 

The prominent problem of the proposed avoidance or collision potential model is that all the 380 

coefficients are unknown. In former research, these coefficients are generally assigned based on 381 

experience or some assumptions (Bing et al., 2011). This research aims to propose a novel 382 

method to address this problem with any available data. 383 

As described previously, the distribution of collision potential can be inferred based on the 384 

behaviours of a large amount of passing vessels, since vessels always take the routes that pose 385 

low threat to their safety. The lower collision potential is, the more vessels there should be. The 386 

IMO (International Maritime Organization) requires every single vessel to be equipped with an 387 

AIS terminal for remote monitoring. As described in Section 1, the AIS is not very suitable for 388 

real-time tracking since its reporting frequency is too low. Nevertheless, the positions from AIS 389 

are credible, which are obtained from a GPS sensor. Therefore, it is possible to find out the 390 

characteristics of vessel distribution in a waterway accurately based on sufficient AIS records.  391 

In a relatively close or isolated scenario, when the collision avoidance is the major concern 392 

for ship manoeuvring and the obstacles are known and relatively stationary, the appropriate 393 

coefficients of collision potential fields should make the distribution of collision potentials 394 

consistent with the distribution of passing vessels in AIS records. In this light, the coefficients can 395 

be obtained in a nonlinear constraint optimisation model as follows.  396 

Suppose there are m piers and n buoys in a relatively close area of a waterway. The 397 

coordinates of the piers are 1 1{( , ), , ( , )}p p p p

m mx y x y , and the coordinates of the buoys are 398 

1 1{( , ), , ( , )}b b b b

n nx y x y . Based on the formulations of Section 3.2, the combined collision potential 399 

of the position ( , )x y  caused by these piers and buoys is presented as, 400 
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1 1

exp( ( , , , , , )) exp( ( , , , , , ))
( , , )

( , , , , , ) ( , , , , , )

p p b bm n
p p i i p b b i i b

p bp p b b
i ip i i p b i i b

a K x y x y a K x y x y
P x y para A A

K x y x y K x y x y

   

    

   
   (5) 401 

where { , , , , , , }p p b bpara a a w l    denotes all the undetermined coefficients of Eqs. (2), (3) 402 

and (4); the functions ( )pK  and ( )bK   are used to calculate the pseudo-distances to buoys and 403 

piers, and their formulations are given in Eqs. (3) and (4). It is worth mentioning that pA  and
bA  404 

denote the maximum values of the collision potentials caused by a pier and a buoy. For simplicity, 405 

they can be considered as equal, or 1p bA A  . 406 

As discussed, the collision potential distribution caused by obstacles should conform to the 407 

real distribution of passing vessels. Suppose a cross profile of a major channel contains L discrete 408 

statistical points or sections
1 1{( , ), , ( , )}L Lx y x y . There is a point ( , )k kx y  on this cross profile, 409 

1≤ k≤L. Its corresponding collision potential is presented as ( , , )k kP x y para , given by Eq. (5). 410 

Therefore, the collision potentials for all the L points of this profile can be presented as 411 

1 1{ ( , , ), , ( , , )}L LP x y para P x y para , and the maximum and minimum collision potentials of the L 412 

points are presented as 
max 1 1max[ ( , , ), , ( , , )]L LP P x y para P x y para ,413 

min 1 1min[ ( , , ), , ( , , )]L LP P x y para P x y para . Therefore, the normalised collision potential of 414 

the point ( , )k kx y  is presented as,  415 

min max min( , ) [ ( , , ) ] / ( )normal k k k kP x y P x y para P P P                                                                        
(6) 416 

Hence, [1 ( , )]normal k kP x y can be regarded as a normalised safety degree of point ( , )k kx y  on 417 

this profile. The normalised safety degree distribution of the L points can be presented as,  418 

*

1 1{1 ( , ), ,1 ( , )}normal normal L LP P x y P x y  
                                                                  

(7) 419 

Suppose the distribution (densities) of the passing vessels of the L points is denoted as a 420 

vector 1{ , }Ld d d , and the maximum and minimum passing vessel numbers of the L points 421 

are presented as 
max 1max( , , )Ld d d , 

min 1min( , , )Ld d d . Hence, the normalised distribution 422 

of vessels on the L points is presented as,
 

423 

*

1 min max min min max min{( ) / ( ), , ( ) / ( )}Ld d d d d d d d d                                                   (8) 424 

As described, the appropriate coefficients para  of the collision potential fields should make 425 

the deviation between *d  and *P  minimum. Therefore, the coefficients can be obtained with a 426 

nonlinear optimisation model, which is presented as, 427 

 min max min

1

{ , , , , , , }

arg min | [1 ( , )] ( ) / ( ) |

p p b b

L

feasiable normal i i i

i

para a a w l

P x y d d d d

  



 

                  

(9) 428 
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Since Eq. (9) is continuously differentiable, the gradient function of Eq. (9) can be obtained 429 

easily. Therefore, the appropriate para  can be obtained with the ‘fmincon’ function of MATLAB 430 

(Liu et al., 2003). Then the collision potential of each point in a waterway can be obtained as the 431 

combination of all the collision potential fields, given by Eq. (5). 432 

3.4 Step 4: The combination of the two factors using Dempster’s rule 433 

A blip’s probability of being a real moving vessel and the collision potential of its position 434 

can be obtained with Steps 3 and 4. The next issue is to estimate the collision probability based 435 

on these two factors, which can be considered as two pieces of evidence. Particularly, they are 436 

based on the AIS and radar blips obtained in the same location. Hence, they are not independent 437 

in a strict sense. However, it is difficult to quantify their dependencies. Considering the 438 

contribution in the risk recognition of manual operation, the two pieces of evidence can be 439 

regarded as being approximately independent of each other for simplicity. Hence, in this research, 440 

Dempster’s rule is applicable in the evidence combination (Li and Pang, 2013), which is given 441 

below. In the future research, methods such a Belief Rule Base (BRB) approach may be 442 

introduced to address this problem in more detail. 443 

Suppose 𝛩 = {𝜃0, 𝜃1} is a set of mutually exclusive and collectively exhaustive propositions 444 

for the collision probability estimation of a blip. 𝜃0 is the Collision state, denoting a situation that 445 

the corresponding blip will collide with an obstacle; 𝜃1  is the Non-collision state, denoting a 446 

situation that the corresponding blip will not collide with any obstacle. Let Ø represent the empty 447 

set. In practice, the Unknown state 𝜃2 can be represented by the frame of discernment 𝛩 itself, 448 

and it means the state that is neither 𝜃0 nor 𝜃1. Thus, the power set of 𝛩 consists of 4 subsets of 𝛩, 449 

and is denoted by 2𝛩 or 𝑃(𝛩), as follows: 450 

𝑃(𝛩) = {∅, 𝜃0, 𝜃1, 𝜃2}                                                                                                            (10) 451 

A Basic Probability Assignment (bpa) is a function p: 2𝛩 → [0, 1] that satisfies, 452 

𝑝(∅) = 0,∑ 𝑝(𝜃) = 1𝜃⊆𝛩                            (11) 453 

where the basic probability 𝑝(𝜃) is assigned exactly to a proposition 𝜃 and not to any smaller 454 

subset of 𝜃. Then, the two factors discussed previously can be transformed to two pieces of 455 

evidence as follows. 456 

There is a blip located at the position ( , )k kx y , and its probability of being a real moving 457 

vessel is estimated as p based on Section 3.1. Apparently, only a real moving vessel might collide 458 

with an obstacle. Hence, based on the authenticity of the blip only, the basic probabilities about 459 

the 𝜃0, 𝜃1, 𝜃2 states can be obtained as follows, or a piece of evidence can be constructed, 460 

𝑒1: {𝑝(𝜃0), 𝑝(𝜃1), 𝑝(𝜃2)} = {𝑝, (1 − 𝑝),0}                                                                         (12) 461 

In the area under investigation, there are M individual points 462 

1 1 2 2{( , ),( , ), , ( , )}M Mx y x y x y . Their collision potentials to obstacles are presented as 463 

1 1{ ( , , ), , ( , , )}M MP x y para P x y para  based on Eq. (5), where para  is obtained with the 464 

method presented in Section 3.3. The maximum collision potential is presented as 465 
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max 1 1' max[ ( , , ), , ( , , )]M MP P x y para P x y para  ; the minimum collision potential is presented as 466 

min 1 1' min[ ( , , ), , ( , , )]M MP P x y para P x y para . Therefore, the normalised collision potential of 467 

position ( , )k kx y is presented as, 468 

min max min' ( , ) [ ( , , ) ' ] / ( ' ' )normal k k k kP x y P x y para P P P                                                         (13) 469 

Based on the collision potential of the blip’s position only, the basic probabilities about the 470 

𝜃0, 𝜃1, 𝜃2 states can be obtained as follows, or the piece of evidence is constructed as, 471 

𝑒2: {𝑝(𝜃0), 𝑝(𝜃1), 𝑝(𝜃2)} = {𝑃′𝑛𝑜𝑟𝑚𝑎𝑙(𝑥𝑘, 𝑦𝑘),1 − 𝑃′𝑛𝑜𝑟𝑚𝑎𝑙(𝑥𝑘, 𝑦𝑘),0}                           (14) 472 

Dempster’s rule can be used to combine the two pieces of evidence, which is presented as 473 

follows: 474 

𝑚(𝜃) = [𝑚1 ⊕ 𝑚2] = {
0                                        𝜃 = ∅

∑ 𝑚1(𝐵)𝑚2(𝐶)𝐵∩𝐶=𝜃

1−∑ 𝑚1(𝐵)𝑚2(𝐶)𝐵∩𝐶=𝜙
     𝜃 ≠ ∅                                                          (15) 475 

where θ is a proposition that can be any subset of a set of hypotheses; m(θ) is the basic 476 

probability for θ; m1(B) is the basic probability for proposition B from the first piece of evidence; 477 

m2(C) is the basic probability for proposition C from the second piece of evidence; lastly, ∅ is the 478 

empty set. Therefore, the basic probability about the Collision state 𝜃0 , or the collision 479 

probability of the blip based on the two pieces of evidence is presented as: 480 

𝑝(𝜃0) = 𝑃′𝑛𝑜𝑟𝑚𝑎𝑙(𝑥𝑘 , 𝑦𝑘) × 𝑝/{1 − 𝑃′𝑛𝑜𝑟𝑚𝑎𝑙(𝑥𝑘, 𝑦𝑘) × (1 − 𝑝) − [1 − 𝑃′𝑛𝑜𝑟𝑚𝑎𝑙(𝑥𝑘 , 𝑦𝑘)] × 𝑝} (16) 481 

4 A case study 482 

4.1 Experimental platforms 483 

To validate the proposed approach, an experiment was conducted. The experimental 484 

platform was placed on a wharf boat, which was 1.5 kilometres upstream of the Wuhan Yangtze 485 

Bridge of the Yangtze River Wuhan waterway. The testing radar was FURUNO FAR 2127S, 486 

working on X-band (9GHZ). In Figure 6, the left-hand side presents the location of the radar and 487 

the scan area, and the right-hand side presents the radar antenna. In this experiment, the radar 488 

intermediate-frequency signal was fetched and converted to grey-scale images using an S3C-3000 489 

radar processor. One of the images is presented on the left hand side of Figure 1. 490 
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 491 
Figure 6 An experimental platform of marine radar in Yangtze River, Wuhan, China 492 

The experiment lasted from 09:00 to 10:55 on the 17th April 2015. In total, 173 targets were 493 

captured, including 119 vessels and 54 stationary targets or noises. In the experiment, all the 494 

targets were verified manually. It is noted that many observations or blips were indeed from the 495 

same target since the radar scanned the area once per 2.4 seconds. In total, 15,286 individual 496 

observations (blips) have been captured. In these observations (blips), 11,958 observations are 497 

from moving vessels and 3,328 observations are from noises or stationary targets. In the 498 

following research, all the stationary and noise targets are treated as noise samples for simplicity. 499 

Particularly, the verified samples are divided into two parts randomly. The first half is used 500 

to obtain the structure and CPTs of BN as discussed in Section 3.1, and the second half is used for 501 

identification validation.  502 

Meanwhile, an AIS receiver was placed in the same area, which received 2,300,000 AIS 503 

messages from 15th March to 12th April 2015. Particularly, all the AIS messages are obtained 504 

from the same area as that of the blip recognition. These records will be used for training the 505 

coefficients of collision potential fields as described in Section 3.3. 506 

4.2 Step 1: Authenticity inference of blips 507 

To implement the proposed approach in this research, a software program is developed and 508 

shown in Figure 7. As shown in this figure, radar images have already been overlapped on the 509 

S57 (A map format defined by the IMO) electronic chart of the waterway. Three typical verified 510 

objects were notified as the red rectangles, and the enlarged images are also shown in Figure 7. 511 

They are buoys No.27, No.55, and a moving vessel No.15. The white circles and orange circles 512 

are the objects' labels. The centres of the objects are also marked accordingly. Especially, the 513 

Scan Area 

Wuhan Yangtze Bridge 



17 
 

white dots are the former centres of the object. Intuitively, the moving vessel objects are different 514 

from noises in terms of the attributes of the velocity, course, and graphic shape. 515 

 516 
Figure 7 The experimental software application program based on VC++ 517 

Using the methods proposed in Figure 3 and Section 3.1, these characteristics are quantified 518 

in the software program. All the blips in sequential images have been transformed to verified 519 

records that are presented in a text form with discrete values. A typical record is presented in 520 

Figure 8. The record contains several fields, which are separated by commas and represent 521 

different types of discrete attribute values. In this way, the course (direction), velocity, and size 522 

are all stored in one record. Moreover, the verified vessel and noise records are saved separately. 523 

 524 

Vessel Graph, No.15 Buoy Graph, No.27 Buoy Graph, No.55 
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Figure 8 Text record definitions 525 
 Velocity (D) 526 

In this research, the authenticity of a blip being a real moving vessel is denoted as two states: 527 

A1 (Noise, a noise or stationary object), A2 (Vessel, a moving vessel). The first half of the verified 528 

samples include 7,643 quantified records, and 20 of them are presented in Appendices A.1. The 529 

vessel and noise velocity distributions are presented in Figure 9, where the X axis represents the 530 

observation values and the Y axis represents the frequencies. It is clear that the moving vessels 531 

are more likely to move at the velocity of 5 to 17 units (pixels) per 10 frames. However, the noise 532 

blips are more likely to move at the velocity of lower than 4 units per 10 frames. In this figure, 533 

there are 25 original observation values. The full interval should be discretised to sub-intervals to 534 

decrease the complexity of the DAG (Monti and Cooper, 1998). In general, a smaller interval in 535 

discretisation makes the model closer to reality. However, smaller intervals will increase the 536 

complexity, especially when modelling joint probabilities in a BN. Based on the method proposed 537 

by Ma et al. (2015b), the full interval can be discretised to 4 sub-intervals or states {D1, D2, D3, 538 

D4} = {{0, 1, 2, 3, 4, 5}, {6, 7, 8, 9, 10, 11, 12}, {13, 14, 15}, {16, 17, 18, 19, 20, 21, 22, 23, 24, 539 

25}}.  540 

 541 
Figure 9 Speed distributions of moving vessel and noise targets 542 

 Course (V) 543 

The motion direction distributions in 10 frames of vessel and noise blips are presented in 544 

Figure 10, where the X axis represents the course values and the Y axis represents the 545 

frequencies. The differences between vessels and noises are distinctive in the distributions. 546 

Following the same procedures for modelling the velocity (D) node, the full interval of direction 547 

values should be discretised to 5 sub-intervals or states {V1, V2, V3, V4, V5} = {{0, …,13}, 548 

{14, …,43}, {44, …,190}, {191, …,228}, {229, …,359}}. 549 
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 550 
Figure 10 Motion course distributions of moving vessel and noise targets 551 

 Size (S) 552 

The size distributions of vessel and noise blips are presented in Figure 11, where the X axis 553 

represents the size values and the Y axis represents frequencies. Following the same procedures 554 

for modelling the velocity (D) node, the full interval should be discretised to 5 sub-intervals or 555 

states {S1, S2, S3, S4, S5} = {{11, …,13}, {14, …,43}, {44, …,190}, {191, …,228}, 556 

{229, …,322}}. 557 

 558 
Figure 11 Blip size distributions of moving vessel and noise targets 559 

 BN inference and the result validation 560 

Subsequently, the DAG structure can be updated with the “learn_struct_k2” function in 561 

MATLAB bnt tool box based on the first half verified samples. The updated structure is shown in 562 

Figure 12. The output of “learn_struct_k2” function is presented in Appendices A.2. According to 563 

the new DAG, the velocity (D) exerts effects on direction (V) and size (S) too. Obviously, these 564 

nodes or attributes are not independent of each other. 565 
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 566 
Figure 12 The DAG for authenticity recognition 567 

The first half of the verified samples can also be used for learning the CPTs with a 568 

‘learn_param’ function in MATLAB bnt tool box, which was described in Section 3.1. Eventually, 569 

the new DAG and CPTs will be used to estimate the probability of a blip being a true moving 570 

vessel in observation. The detailed CPTs are presented in TABLE III~VI of Appendices A.3. 571 

Subsequently, the second half of the verified samples are used for validation. In practice, a 572 

final decision has to be made based on the probability. Referring to manual work, 50% is an 573 

intuitive and reasonable threshold for use. If the reasoning probability of a blip being a moving 574 

vessel is larger than 50%, the blip (observation) is considered as a true moving vessel. Otherwise, 575 

it can be considered as a noise or stationary object.    576 

Table I Results of the analysis of the verified samples using the developed model 577 
 Total Correct identification In-correct identification  Accuracy 

Noises or stationary object 1,648 1,369 279 83.07% 

Moving vessels 5,995 5,631 364 93.93% 

Total 7,643 7,000 643 91.59% 

Table I shows the results obtained from the developed model. As shown in Table I, it can be 578 

seen that there are 5,995 verified observations of being moving vessels and 1,648 verified 579 

observations of being noises or stationary objects in the analysis. The developed model produced 580 

1,369 correct identifications out of 1,648 observations from noises or stationary objects, leading 581 

to the recognition accuracy of 83.07%. As for the 5,995 verified observations of being from 582 

moving vessels, the model produces the recognition accuracy of 93.93%. In total, the global 583 

accuracy reached 91.59%, which proves that the BN-based method here is efficient in the 584 

identification of moving vessels. In fact, recognition mistakes are also easily made by 585 

experienced operators.  586 

Particularly, the BN-based identification is implemented by the software program described 587 

in Section 4.1. As shown in Figure 13, the probabilities of blips being from real moving vessels 588 

are represented as orange numbers (0 - 1) on each corresponding blip’s right-top side. It is worth 589 

mentioning that the BN-based recognition approach can be used for different locations, as the 590 

conditional probability tables and the DAG are learned from the verified samples of the 591 

corresponding locations. 592 
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 593 
Figure 13 Blip authenticity inference 594 

4.3 Step 2: The modelling of collision potential fields 595 

The following issue is to estimate the collision potentials of adjacent positions, which might 596 

be estimated in accordance with the behaviours of passing vessels as described in Sections 3.2 597 

and 3.3. 598 

It is worth emphasising that many factors will affect the behaviours of passing vessels, 599 

including local regulations, fuel saving, weathers, and berths. However, it is too complicated to 600 

take all the factors into consideration. The behaviours of vessels will be determined by the 601 

corresponding collision potentials where the avoidance of collision becomes a major concern for 602 

ship handing as described in Section 3.3. Particularly, the depth of this waterway is only 4.5 603 

meters. Hence, the vessels sailing in this waterway are smaller than 4000t, and their breadths are 604 

most likely smaller than 15 meters. Therefore, every single vessel is considered as a point in the 605 

APF model for simplicity. In the future research, the dimensions and the dynamic characteristics 606 

of a vessel may be taken into consideration. 607 

In this light, a survey region in Figure 13 is chosen and marked as a red dotted rectangle, 608 

which contains three piers, a buoy, and two major channels. In Figure 14, the survey region is 609 

also represented with the S57 e-chart format. In this figure, the small blue circles and lines 610 

represent the passing vessels that crowded in the two channels; the piers are indicated with black 611 

circles; Buoy 1 is represented as a green circle at the bottom; the yellow dotted line between the 612 

centres of Pier 2 and Pier 3 is selected to be the examined cross profile that has been described in 613 

Section 3.3, namely profile K1.  614 

As described in Section 3.2, all the piers and buoys can be modelled as the sources of 615 

collision potential fields with the APF model, and the corresponding collision potential 616 

distribution can be obtained with the Yokawa potential function. The bold red rectangles in Figure 617 
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14 indicate the potential edge rectangles of Pier 2 and Pier 3, defined in Eqs. (2) and (4). The 618 

corresponding collision potential fields are represented as two highlighted red regions. In 619 

addition, the collision potential field of Buoy 1 defined in Eqs. (2) and (3), is represented as a 620 

highlighted green eclipse.  621 

 622 
Figure 14 The survey region 623 

Intuitively, the distribution of passing vessels on profile K1 can be inferred based on the 624 

collision potential fields of Pier 2, Pier 3, and Buoy 1. Apparently, the vessel distribution should 625 

be symmetrical on profile K1 if Pier 2 and Pier 3 are the only obstacles. However, Buoy 1 626 

produces an extra collision potential field on the right side; in other words, Buoy 1 “repulses” 627 

passing vessels from the right side. Therefore, a conjecture can be made that the peak value of the 628 

vessel distribution on profile K1 should be slightly shifted to the left hand side duo to the 629 

corresponding collision potential. 630 

With the help of the software program described in Section 4.1, profile K1 is analysed with 631 

35 statistical individual points or sections in Figure 14. In this figure, each point or section 632 

denotes 3.55 meters which is the maximum resolution of the electronic-chart. In other words, the 633 

space discretization is of 3.55 meters. Based on the AIS records described in Section 4.1, the 634 

distribution of passing vessels on profile K1 can be normalised with Eq. (8) and presented in 635 

Figure 15, where the X-axis represents the distance to Pier 2, and the Y-axis represents the 636 

normalised densities. Apparently, the densities follow a normal distribution, and the peak value is 637 

situated in the left side of profile K1 between pier 2 and pier 3 as expected. 638 
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 639 
Figure 15 The normalised distribution of passing vessels on profile K1  640 

4.4 Step 3: The training of the coefficients using AIS records 641 

 coefficient training 642 

With Step 2, the collision potential fields of piers and buoys are established. The next task is 643 

to obtain the coefficients of these potential fields. Take profile K1 as an example, the coefficients 644 

should make the collision potentials consistent with the distribution of passing vessels. Therefore, 645 

the coefficients can be obtained in a nonlinear optimisation model, as Eq. (9). In this occasion, i = 646 

35, the coefficients are obtained as 647 

𝑝𝑎𝑟𝑎⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = {𝛼𝑏 , 𝜉, 𝜎𝑏 , 𝛼𝑏 , 𝑤, 𝑙, 𝜎𝑝} = {0,18.8142,0.5208, 0,12.3944,63.3068,0.3710}  using the 648 

‘fmincon’ function of MATLAB 2013b. 649 

Subsequently, the collision potential distribution of profile K1 can be calculated, and the 650 

normalised “safety distribution” is presented in Figure 16, which is defined in Eq. (7). The X-axis 651 

represents the profile positions, and Y-axis represents the normalised “safety degree”. By 652 

comparing Figures 15 and 16, a good agreement can be found. In other words, the distribution of 653 

collision potentials is consistency with the distribution of passing vessels on profile K1.  654 

 655 
Figure 16 The normalised distribution of safety degree on profile K1 656 

In addition, the Bhattacharyya distance is introduced to measure the similarity between 657 

Figures 15 and 16, which is widely used to quantify the difference between discrete distributions 658 

(Kailath, 1967). For discrete distributions p(x) and q(x), where x is the discrete variable, the 659 

Bhattacharyya distance is defined as follows: 660 

𝐷𝐵(𝑝, 𝑞) = − ln(𝐵𝐶(𝑝, 𝑞))                                                                                                 (17) 661 

where 𝐵𝐶(𝑝, 𝑞) = ∑ √𝑝(𝑥)𝑞(𝑥)𝑥∈𝑋 . 𝐷𝐵(𝑝, 𝑞) ∈ [0,1] , 0 denotes that there is no distance 662 

between p and q, or p is exactly the same as q; 1 denotes that q is completely different from q. 663 

Obviously, the formulations of 𝑝(𝑥) and 𝑞(𝑥) are probably unknown in practice. Figures 15 and 664 

16 approximately follow a normal distribution. Then, the Bhattacharyya distance can be 665 

calculated by extracting the mean and variances of p and q distributions (Coleman and Andrews, 666 

1979), presented as, 667 

Y 

X 

Y 
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where σ𝑝 and σ𝑞are the variance of the p and q distributions, 𝜇𝑝 and 𝜇𝑞are the means of the p and 669 

q distributions. Hence, the Bhattacharyya distance between Figures 15 and 16 is 0.015, proving 670 

that the collision potentials are highly consistent with the real vessel distribution, and the 671 

coefficients obtained from the optimisation model are appropriate. 672 

Then, a global distribution of collision potentials can been obtained and represented as a 673 

heat map with 𝑝𝑎𝑟𝑎⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = {𝛼𝑏 , 𝜉, 𝜎𝑏, 𝛼𝑏 , 𝑤, 𝑙, 𝜎𝑝} , which is shown in Figure 17. The red colour 674 

represents the maximum value of collision potential, the blue colour represents the minimum, and 675 

the transition colours between red and blue represent the continuous variation of collision 676 

potential. Apparently, such a heat map is consistent with the intuitive judgements of human. 677 

 678 
Figure 17 The heat map of collision potentials in the survey region after a nonlinear optimisation 679 

 Coefficient validation in another typical scenario 680 

Moreover, another scenario or examined profile is introduced to validate the APF model. In 681 

Figure 14, there is another examined profile K2 between Pier 1 and Pier 2, which is also relatively 682 

close and isolated. Hence, the collision avoidance is also the major concern for ship handling on 683 

this profile. Using the coefficients 𝑝𝑎𝑟𝑎⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = {𝛼𝑏 , 𝜉, 𝜎𝑏, 𝛼𝑏 , 𝑤, 𝑙, 𝜎𝑝} obtained previously, the heat 684 

map of collision potential fields for profile K2 is presented in Figure 18. Based on Eq. (7), the 685 

normalised safety degree of profile K2 is presented in Figure 19. Based on Eq. (8), the actual 686 

normalised vessel distribution of profile K2 is presented in Figure 20. Obviously, a high 687 

agreement can also be found between Figures 19 and 20. Furthermore, the Bhattacharyya distance 688 

between collision potential distribution and the vessel distribution is 0.011 based on Eqs. (17) and 689 

(18), proving that the coefficients 𝑝𝑎𝑟𝑎⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = {𝛼𝑏 , 𝜉, 𝜎𝑏 , 𝛼𝑏 , 𝑤, 𝑙, 𝜎𝑝} and the APF model are also 690 

reasonable and applicable.  691 

The examined  
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Buoy 1 
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 692 
Figure 18 The heat map of collision potentials in the other survey region 693 

 694 
Figure 19 The normalised distribution of safety degree on profile K2 695 

 696 
Figure 20 The normalised distribution of passing vessels on profile K2 697 

Furthermore, 7 other scenarios or profiles are introduced to validate the coefficients and the 698 

APF model, which have been marked in Figure 21 as red dotted lines. It is worth noting that only 699 

the profiles located at the four major archways are selected, where vessels might pass through, 700 

otherwise no vessel distributions can be obtained.  701 
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 702 
Figure 21 The presumed collision potential distribution using the APF model 703 

The Bhattacharyya distances between the collision potential distributions from the APF 704 

model and the vessel distributions from the AIS records on these profiles are presented in Table II. 705 

Table II Distances between the predicted collision potential distribution and vessel distribution 706 

 Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6 Profile 7 

Bhattacharyya 

distances (0-1) 
0.012 0.013 0.019 0.027 0.232 0.152 0.120 

According to Table II and Figure 21, it can be inferred that the closer to obstacles profile is, 707 

the more accurate APF model and corresponding coefficients will be. It is reasonable that the 708 

closer to obstacles vessels are, the more attention on the obstacles ship operators will pay. 709 

Overall, the APF model is an efficient model in the quantification of collision potentials.  710 

4.5 Step 4: Collision probability estimation 711 

The collision potential of any position in the waterway can be obtained with the APF model 712 

as discussed in Sections 4.3 and 4.4. Then, a global distribution of collision potentials in the 713 

waterway can be represented as a heat map in Figure 21. It is worth mentioning that the heat map 714 

has been overlapped on the application program. In this figure, the red colour represents the 715 

maximum collision potential, the blue colour represents the minimum, and the transition colours 716 

between red and blue represent the continuous variation of collision potential. 717 

As discussed, the probability of a blip being a real moving vessel, and the collision potential 718 

1 

2 

3 

4 

5 

6 7 
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of its position are the two factors in determining whether it needs much attention in manual work. 719 

In this research, the two factors are combined with Dempster’s rule as described in Section 3.4. 720 

For instance, the object 17 is enlarged on the right hand side of Figure 21; the text “3.6:0.99:0.37” 721 

on its right-top side denotes that its speed is 3.6 pixels/units per 10 frames based on Section 3.1, 722 

its probability of being a moving vessel is 0.99 (99%) given by Section 4.3, and the normalised 723 

collision potential of this position is 0.37 (37%) given by Eq. (13).  724 

The two pieces of evidence are presented as 𝑒1: {𝑝(𝜃0), 𝑝(𝜃1), 𝑝(𝜃2)} = {0.99,0.01,0} , 725 

𝑒2: {𝑝(𝜃0), 𝑝(𝜃1), 𝑝(𝜃2)} = {0.37,0.63,0}  based on Eqs. (14) and (15). Then, the basic 726 

probabilities about the 𝜃0 ,  𝜃1  and 𝜃2  states can be obtained as {𝑝(𝜃0), 𝑝(𝜃1), 𝑝(𝜃2)} =727 

{0.98,0.02,0} by combining 𝑒1 and 𝑒2 based on Eq. (16). The collision probability of the target 728 

can be considered as 𝑝(𝜃0) = 0.98. In fact, 𝑝(𝜃0) here represents a large belief degree about the 729 

Collision state for reminding the supervisors that the blip needs attention.  730 

The efficiencies of the BN-based method and the APF model have been proved individually 731 

in Sections 4.1 and 4.4. Eventually, the proposed approach was tested with the verified samples, 732 

in order to prove its validity and reliability preliminarily. 3 officers from local maritime 733 

administrations, Wuhan, China, were invited to rank blips’ threats to piers and buoys manually. 734 

The validation samples are the same as those of the BN validation in Section 4.2. At last, the 735 

approach identified 35 objects that had the highest collision probability, and 32 of these objects 736 

were also inferred to be most dangerous by manual work. In other words, the accuracy can be 737 

considered as 91.43%, and a high agreement has been found. Moreover, in the testing, the ones 738 

that were close to the piers and buoys could be identified accurately; the ones that were far away 739 

from obstacles were incorrectly identified occasionally. As discussed in Section 4.4, if the vessels 740 

are close to the obstacles, and the collision avoidance becomes a major concern for ship handling, 741 

the APF model becomes more efficient. 742 

5 Conclusion and Discussions 743 

Coastal surveillance radar is the kernel sensor in port management. To lower the burden of 744 

supervisors, this paper proposed a BN and APF-based approach to estimate the collision 745 

probabilities to obstacles of blips preliminarily with sequential radar images and AIS records. The 746 

conclusions are given below. 747 

1) With inter-frame differences in frames, including the velocity, course and size of blips, the 748 

BN-based method is capable of estimating the probability of a blip being a true moving 749 

vessel, whilst updating the structure and coefficients from verified samples, and high 750 

accuracy was achieved in a field test. 751 

2) The APF model can be introduced to describe the collision potentials caused by obstacles. 752 

Moreover, the coefficients can be trained in a nonlinear optimisation model using AIS data 753 

records. According to manual work, the collision probability of a blip can be considered as 754 

the synthesis of the collision potential and the authenticity probability, and a high agreement 755 

has been found in the preliminary test. Particularly, the case study is conducted in a 756 

relatively narrow waterway. Hence, the space discretisation is based on the maximum 757 
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resolution of the corresponding electronic-chart. In other scenarios, the space discretisation 758 

can be also based on different distances in accordance with the distribution of collision 759 

potential fields generated by the obstacles and the traffic characteristics. 760 

While the proposed approach is aimed to serve as a rigorous assessment process so that the 761 

inferred results could be used to form a sound basis for further analysis and decision making, 762 

other issues, such as the following, need to be investigated in future research for the more robust 763 

and wider application of the approach.  764 

1) Stationary vessels were treated as noises in this research for simplicity. However, a new 765 

method may be needed to distinguish them from general noises. In manual judgments, for 766 

example, the continuous characteristics of a target are used as important evidence 767 

2) Waterfronts or other encountered vessels may also need to be modelled in a similar way; this 768 

will make the collision potential more accurately estimated.  769 

3) The concept of potential fields may need to be further investigated in order to fully realise 770 

the APF model’s potential in ship collision assessment. This may be particularly useful for 771 

studying collision risks associated with berths and recommended channels.  772 

4) The authenticity and collision potential of a blip were considered to be independent of each 773 

other and of equal weight in this research for simplification purposes. Further work may be 774 

useful to investigate how their dependency and their different weights would affect collision 775 

probability estimation.  776 

5) In many circumstances, neighbouring vessels might take influences on the distribution of the 777 

collision potential. Therefore, neighbouring vessels are also needed to be modelled as the 778 

sources of collision potentials.   779 

6) In this research, the APF model is only used to describe the collision potential distribution 780 

caused by static obstacles. However, it is widely acknowledged that there is coupling among 781 

static obstacles, neighbouring traffic and moving vessels in collision assessments. In other 782 

words, to model the collision potential comprehensively, the behaviours and the predicted 783 

route of the vessel are also essential. As discussed in this paper, a VTS operator might not be 784 

capable of obtaining such information of a ship when it is passing through the monitoring 785 

area directly. To address this problem, in the future research, not only the authenticity 786 

recognition investigated in this paper, but also the behaviour recognition and the route 787 

prediction may be considered. 788 
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Appendices 793 

A.1 794 

As described, there are 7,643 verified samples captured in the first two hour. These samples 795 

are saved as a text form presented in Section 4.2 and Figure 8. It is worth mentioning that there 796 
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are about 10 to 100 records for a blip, as it usually stay in the observation area for about 20 to 300 797 

seconds. 20 verified samples in the text form are presented as follows.  798 

10 selected observations from verified vessel blips are presented as: 799 

178,12,4,135,549.5-479.5,5,11,33,0.3 800 

178,12,4,135,549.5-479.5,5,11,33,0.3 801 

301,0,0,240,629.0-611.0,16,8,81,0.3 802 

301,10,3,246,589.5-597.5,15,9,72,0.3 803 

770,14,4,244,590.5-592.0,19,10,86,0.2 804 

770,9,3,214,518.5-534.0,3,4,12,0.6 805 

962,0,0,270,624.5-610.5,13,7,74,0.4 806 

962,5,2,270,624.0-610.5,14,7,74,0.4 807 

1206,8,8,338,564.0-296.5,6,13,59,0.4 808 

1206,9,8,338,563.5-297.5,7,15,62,0.3 809 

10 selected observations from verified noise blips are presented as: 810 

0,1,0,225,533.0-181.5,23,10,94,0.2 811 

0,1,0,225,533.0-181.5,23,10,94,0.2 812 

1,0,0,0,521.0-189.5,10,9,56,0.4 813 

1,1,0,90,521.0-189.5,10,9,55,0.4 814 

1524,1,0,270,571.0-512.0,38,106,343,0.0 815 

1524,0,0,270,571.5-512.0,39,106,343,0.0 816 

2086,5,2,355,517.0-312.5,6,3,25,0.7 817 

2086,6,2,355,517.0-312.5,6,3,25,0.7 818 

2837,4,1,300,559.5-286.5,9,7,28,0.3 819 

2837,4,1,326,561.0-287.5,6,9,25,0.3 820 

A.2 821 

 822 
Figure 22 The output of the ‘learn_struct_K2’ function in the MATLAB 2013b 823 

The learning procedure is implemented with the ‘learn_struct_K2’ function in the MATLAB 824 

2013b bnt toolbox, and the output is presented in Figure 22 where the nodes named 1, 2, 3 and 4 825 

denotes the Velocity (D), Direction (V), Size (S), and Authenticity (A). Hence, the updated DAG 826 

structure is shown in Figure 12. 827 

A.3 828 

Table III. The CPT of node Velocity (D) 829 
D1 D2 D3 D4 
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0.257  0.132  0.593  0.018  

Table IV. The CPT of node Direction (V) 830 

 V1 V2 V3 V4 V5 

D1 0.257  0.132  0.593  0.018  0.257  

D2 0.257  0.132  0.593  0.018  0.257  

D3 0.257  0.132  0.593  0.018  0.257  

D4 0.257  0.132  0.593  0.018  0.257  

Table V. The CPT of node Slenderness (S) 831 
 S1 S3 S4 S4 S5 

V1 V2 V3 V4 V1 V1 V2 V1 V2 V3 V4 V5 V3 V4 V5 V1 V2 V3 V4 V5 V1 V2 V3 V4 V5 

D1 0.024  0.057  0.102  0.049  0.315  0.048  0.018  0.043  0.052  0.047  0.008  0.080  0.062  0.115  0.060  0.315  0.320  0.289  0.418  0.213  0.605  0.526  0.503  0.366  0.539  

D2 0.133  0.007  0.109  0.096  0.089  0.100  0.031  0.065  0.062  0.079  0.011  0.007  0.065  0.144  0.087  0.089  0.182  0.109  0.356  0.198  0.667  0.773  0.652  0.343  0.508  

D3 0.040  0.011  0.058  0.067  0.103  0.008  0.005  0.041  0.089  0.037  0.087  0.008  0.031  0.076  0.011  0.103  0.219  0.157  0.337  0.177  0.762  0.756  0.714  0.430  0.701  

D4 0.000  0.070  0.111  0.006  0.000  0.000  0.070  0.111  0.076  0.000  0.000  0.116  0.056  0.045  0.050  0.000  0.302  0.222  0.191  0.000  0.000  0.442  0.500  0.682  0.950  

Table VI. The CPT of node Authenticity (A) 832 
 A1 

S1 S3 S3 S4 S5 

V1 V2 V3 V4 V1 V1 V2 V1 V2 V3 V4 V5 V3 V4 V5 V1 V2 V3 V4 V5 V1 V2 V3 V4 V5 

D1 0.667 0.762 0.920 1.000 0.922 0.667 0.600 0.906 0.933 0.818 0.000 0.843 0.882 1.000 0.971 0.615 0.577 0.876 0.867 0.968 0.347 0.278 0.606 0.571 0.924 

D2 0.000 0.000 0.867 0.500 0.313 0.000 0.000 0.111 0.778 0.200 0.000 0.100 0.667 0.429 0.182 0.250 0.124 0.067 0.423 0.680 0.183 0.015 0.078 0.180 0.656 

D3 0.000 0.226 0.529 0.000 0.950 1.000 0.000 0.083 0.110 0.900 0.000 0.000 0.000 0.180 1.000 0.000 0.048 0.000 0.110 0.563 0.010 0.006 0.000 0.036 0.263 

D4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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 A2 

S1 S3 S3 S4 S5 

V1 V2 V3 V4 V1 V1 V2 V1 V2 V3 V4 V5 V3 V4 V5 V1 V2 V3 V4 V5 V1 V2 V3 V4 V5 

D1 0.333 0.238 0.080 0.000 0.078 0.333 0.400 0.094 0.067 0.182 1.000 0.157 0.118 0.000 0.029 0.385 0.423 0.124 0.133 0.032 0.653 0.722 0.395 0.429 0.076 

D2 1.000 1.000 0.133 0.500 0.688 1.000 1.000 0.889 0.222 0.800 1.000 0.900 0.333 0.571 0.818 0.750 0.876 0.933 0.577 0.320 0.817 0.986 0.922 0.820 0.344 

D3 1.000 0.774 0.471 1.000 0.050 0.000 1.000 0.917 0.890 0.100 1.000 1.000 1.000 0.821 0.000 1.000 0.952 1.000 0.890 0.438 0.990 0.994 1.000 0.964 0.737 

D4 0.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 
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