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Abstract 

Mindfulness-based meditation practices involve various attentional skills 

including the ability to sustain and focus ones attention. During a simple mindfulness 

based breath awareness meditation, sustained attention is required to maintain focus on 

the breath while meta-cognitive awareness and executive control is required to detect 

and correct mind wandering. The purpose of this thesis was to investigate whether a 

simple, mindfulness based breath awareness meditation, administered over a short 

period to meditation naïve individuals could modulate core attentional functions and 

associated task related neural activity. Two longitudinal randomised control studies 

were conducted. The aim of the first study was to establish if said modulations were 

possible in a sample of healthy adults, meeting a current research need for longitudinal 

evidence in this field and providing important information regarding a potential 

mechanism for the salutary effects widely observed from the use of mindfulness based 

interventions. It was found that short term engagement with a mindfulness based breath 

awareness meditation can modulate core attentional functions and task related neural 

activity, with specific modulations found in electrophysiological markers of sustained 

attention to the goal/task at hand and perceptual stimulus discrimination. In line with 

current theoretical models it is argued that modulations to such core attentional 

processes following short term training may provide a platform upon which mindfulness 

related salutary effects are built. The second study was designed to establish if such 

modulations were possible in older adults. It is argued that mindfulness training may 

have utility for increasing cognitive reserve, a potential mechanism by which age 

related declines in cognitive functions may be mitigated. It was found that both 

behavioural and electrophysiological markers of core attentional functions were 

modulated following 8 weeks mindfulness training but not following a matched active 

control group condition (simple brain training exercises). The reviewed extant evidence 

and findings of this study suggest that mindfulness meditation may enhance cognitive 

reserve through the repeated activation of attentional functions and associated neural 

activity during practice and are consistent with recent theoretical models of cognitive 

reserve. The potential for mindfulness training to positively modulate core attentional 

functions in older adults and to potentially impact cognitive ageing demands further 

investigation.  
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Chapter 1. Overview of Thesis 

This Chapter provides a brief overview of each Chapter of this thesis. This thesis 

consists of 2 randomised longitudinal studies. The first longitudinal study was 

conducted to establish whether a singular, brief mindfulness training exercise would 

lead to modulations of attentional functions and task related neural activity, meeting a 

current research need for longitudinal evidence in this field and providing important 

information regarding a potential mechanism for the salutary effects widely observed 

from the use of mindfulness based interventions. The second study was designed to 

establish if such modulations were possible in older adults, providing information 

regarding the use of mindfulness training to strengthen cognitive reserve and positively 

influence attentional functions in old age.  

Chapters 2-8 are concerned with longitudinal study 1. Chapter 2 introduces the 

concept of mindfulness and discusses its link to attentional functions. Chapter 3 reviews 

the extant literature concerning mindfulness and attentional functions. First, studies that 

examined the use of attentional functions and associated neural networks during 

mindfulness meditation are introduced, establishing that said functions and networks are 

engaged during meditation. Second, cross sectional studies which compare expert 

meditators to controls are discussed, with the available evidence suggesting that long 

term mindfulness meditation may modulate said functions and networks. A review of 

the longitudinal evidence follows, including a review of studies which assessed 

modulations following brief mindfulness inductions, mindfulness based interventions 

and retreats. It is established that although the available evidence suggests that 

mindfulness training may modulate attentional functions, direct links between specific 

mindfulness training techniques and such modulations are problematic as extant studies 

typically included multiple meditations and a number of potentially active ingredients. 

Chapter 4 introduces the electrophysiological techniques that were used to generate 

dependent variables throughout this thesis. Chapter 5 provides an overview of the 

design and methods of the first longitudinal study whilst Chapters 6 and 7 present the 

theoretical background, associated hypotheses and outcome measures and the detailed 

analysis and results obtained from the use of the Stroop task and Attention Network 

Test respectively. Chapter 8 reviews the findings of longitudinal study 1, which 

establish that short term engagement in a simple mindfulness based breath awareness 
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meditation can modulate electrophysiological and behavioural markers of core 

attentional processes.  

Chapters 9-14 are concerned with the second longitudinal study. Chapter 9 

presents the theoretical background to the study of mindfulness training and attentional 

modulations in older adults. Age related declines in executive and sustained attention 

are identified and discussed. Further, older adults typically exhibit enhanced task related 

neural activity which may reflect compensatory mechanisms that attempt to utilise 

adaptive plasticity to improve or maintain performance despite age-related 

neurodegenerative modulations. It is established that methods for increasing cognitive 

reserve, a potential mechanism by which the ageing brain produces said compensatory 

activity, are much needed and that mindfulness training may be an ideal mental activity 

to increase cognitive reserve due to the repeated use of attentional functions and 

associated neural activity during practice. Chapter 10 provides an overview of the 

design and methods of the second longitudinal study whilst Chapters 11, 12 and 14 

present the theoretical background, associated hypotheses and outcome measures and 

the detailed analysis and results obtained from the use of the Continuous Performance 

Task, the Emotional Counting Stroop task and the Attentional Blink task respectively. 

Chapter 14 reviews the findings of longitudinal study 2, which establish that short term 

engagement in a simple mindful breathing meditation can modulate electrophysiological 

and behavioural markers of core attentional processes in older adults.  

The final Chapter is a general discussion which brings together the results of 

both longitudinal studies. Chapter 15 evaluates the implications of the findings of this 

thesis with respect to the observed salutary effects of mindfulness based interventions 

and the potential for mindfulness training to positively influence cognitive ageing.   
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Chapter 2. Mindfulness 

2.1 What is Mindfulness? 

The word ‘mindfulness’ has become common place in western psychology 

during the past decade. However, a recent review (Chiesa & Malinowski, 2011) found 

marked differences as to how mindfulness is understood and practiced. Mindfulness has 

been referred to as a psychological construct, as a mental state and as the practices 

designed to achieve said state. This lack of consistency makes it difficult to understand 

whether one is referring to the process of developing mindfulness skills or to the state of 

mindfully attending to one’s own experiences.  

Historical descriptions suggest that mindfulness is best understood as a ‘state’ 

that is different from usual ‘wakefulness.’ Whilst ‘wakefulness’ characteristically 

involves several biases, defences, or ruminative thinking (Brown, Ryan, & Creswell, 

2007), mindfulness does not. The word mindfulness itself is translated from the Pāli 

word ‘sati’ which is frequently described as a state of ‘presence of mind.’ Whilst in this 

‘state’ both internal and external phenomena are seen as transient, allowing the 

individual to view arising thoughts and emotions as mental events rather than true 

representations of reality. Consequently, mindfulness is said to provide an awareness of 

what is occurring, before or beyond conceptual and emotional classifications about what 

is or has taken place. Unfortunately, such descriptions are not easily operationalised for 

use in psychological and neuroscientific studies into mindfulness. As such, the majority 

of such studies adopt an operational definition put forward by Jon Kabat-Zinn, who 

proposed that ‘mindfulness’ describes “the awareness that emerges through paying 

attention on purpose, in the present moment, and non-judgmentally
1
 to the unfolding of 

experience moment by moment” (Kabat-Zinn, 2003, p.145). Herein, it is this definition 

that is used to describe ‘mindfulness’.  

Other authors use similar rhetoric when describing mindfulness. Grossman et al. 

(2004) characterized mindfulness as a dispassionate, non-evaluative, and sustained 

                                                
1 This non-judging awareness requires the practitioner to take the position of an impartial witness to their 

own ongoing streams of consciousness, thus it refers to the attitude and orientation that the practitioner 

applies to their practice. Specifically, it requires the awareness of arising streams of consciousness and the 

ability to step back from them, and to simply observe them. Non-judgmental awareness requires the 

practitioner to refrain from habitual patterns of positive and negative categorizations and to allow an 

experience to be as it is without any attempts to avoid, escape or change it (Baer, Smith & Allen, 2004). 
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moment to moment awareness of perceptual mental states and processes; including a 

continuous, immediate awareness of physical sensations, perceptions, affective states, 

thoughts and imagery. Additionally, Brown et al. (2007) describe mindfulness as a 

receptive attention to and awareness of present events and experience. Consistent across 

descriptions is the importance of attention and a ‘receptive/non-evaluative’ attitude. The 

development of these skills are said to underpin improvements in mindfulness. 

Importantly, as detailed in the following section, these skills may be learnt and 

developed through specific training.  

2.2 Mindfulness Training 

It is generally accepted that a clearly formulated mental training, usually referred 

to as ‘meditation’, is required for developing and improving levels of mindfulness 

(Chiesa & Malinowski, 2011). Lutz et al. (2008) distinguished two main components of 

meditation practices, focused attention (FA) and open monitoring (OM), by using 

traditional meditation texts and modern neuroscientific conceptions. Mindfulness 

meditations, herein referred to as mindfulness training (MT), involve components of FA 

and OM. Initially the FA component is required to develop attentional stability, clarity, 

and awareness of the current mental state. Building upon this attentional stability, which 

allows the meditator to remain in the ‘present moment’, it is possible to meaningfully 

engage in OM practice which is characterised by an open, nonjudgmental awareness of 

the sensory and cognitive fields. OM incorporates a meta-awareness or observation of 

the entire field of awareness, including the ongoing contents of thoughts. During MT, 

practitioners are instructed to maintain a curious, open, nonjudgmental attitude to 

arising fluctuations in the mind, regardless of their content. The practitioner is 

instructed to simply observe any experienced distractions whilst refraining from 

judgment, avoidance or elaboration (Bishop et al., 2004; Chiesa & Malinowski, 2011; 

Malinowski, 2008, 2013; Shapiro et al., 2006). In this respect, MT and OM are in stark 

contrast to concentrative forms of meditation that emphasize the restriction of attention 

to one particular stimulus and the immediate dismissal of distracting/arising thoughts, 

feelings and emotions. 

Mindful breathing practices form the backbone of MT. They are the basic 

components of various traditional Buddhist meditations, ranging from early Buddhist 

sources like the Anāpānasati Sutta or the Satipatthāna Sutta (Bhikkhu Bodhi, 1995) to 
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classical Tibetan Buddhist instructions (Karmapa Wangchug Dorje, 2009). More 

recently, they are also employed as part of contemporary mindfulness based 

interventions (MBIs) such as Mindfulness Based Stress Reduction (MBSR; Kabat-Zinn, 

1990) and Mindfulness Based Cognitive Therapy (MBCT; Segal, Williams, & Teasdale, 

2002). Mindful breath awareness meditations require the meditator to focus their 

attention on the sensations accompanying their breathing, either attending to the 

experience at the nostrils, around the diaphragm or the movement of the abdomen when 

in-and exhaling, without manipulating the breath in any form. Whenever attention slips 

or wanders off, the task is to become aware of it and, without further elaboration, to 

redirect the focus of attention back to the sensation of breathing. This process represents 

a basic FA component. In addition to this focusing of attention, an OM component is 

included as meditators are instructed to observe other mental experiences, arising 

thoughts, feelings or sensations, trying not to judge or evaluate them, and maintain a 

curious, non-elaborating attitude toward them. With extensive practice, OM practice 

will become less reliant on FA to a singular focus and can eventually be maintained 

without focusing on the breath or any other explicit object. However, FA will always be 

a central part of MT, even for expert meditators as it is FA that allows the practitioner to 

remain in the present moment. 

Mindfulness may be cultivated through the described interplay between FA and 

OM during breath awareness techniques. However, it is important to note that 

mindfulness, as described by Jon Kabat-Zinn, is not confined to occurring during MT. 

Through MT, a ‘trait’ like mindfulness will be developed which enables the practitioner 

to apply mindfulness in everyday situations. Being ‘mindful’ in daily life, allows the 

practitioner to engage in ‘mindful behaviours’ and apply mindfulness to ongoing 

experience. Whereas historical descriptions of mindfulness emphasize qualities of 

awareness, it’s these ‘mindful behaviours’ and the manifestation of mindfulness in 

experience that current self report measures of mindfulness describe (Chambers, 

Gullone, & Allen, 2009; Rapgay & Bystrisky, 2009). 

In addition to the cultivation of mindfulness, the development of attentional 

skills is considered a central part of MT (Hölzel, Carmody, et al., 2011; Lutz et al., 

2008; Tang & Posner, 2009; Wallace & Shapiro, 2006). Findings from a wide range of 

studies have suggested that attentional processes become more efficient through training 

(e.g. Newman, Keller, & Just, 2007; N. B. Sarter, Mumaw, & Wickens, 2007; Slagter, 
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Giesbrecht, et al., 2007; Vidnyanszky & Sohn, 2005). As MT requires that a variety of 

attentional skills are utilised in order for attention to remain focussed in the present 

moment (e.g. to focus on the breath), it may be expected that MT will strengthen and 

develop attentional skills. Extant research is moving in this direction with MT related 

improvements in attentional functions repeatedly observed (see Chiesa, Calati, & 

Serretti, 2011 for review). Accordingly, most modern conceptions position attention as 

a core component of mindfulness and as a potential mechanism for the observed effects 

of MT (Bishop et al., 2004; Hölzel, Lazar, et al., 2011; Malinowski, 2013; Shapiro et 

al., 2006; Wallace & Shapiro, 2006). As will be detailed in Chapter 3, the majority of 

findings related to attention and MT stem from either cross sectional studies which 

compared expert meditators to controls or from studies examining the effects of MBIs 

which typically include a variety of different meditations (examples include: breath-

awareness, body scanning, open monitoring, walking meditations and physical exercises 

such as yoga) and a variety of didactic and group elements in addition to MT. 

Consequently, it is difficult to attribute the observed attentional improvements to 

specific MT techniques. This limitation must be overcome in order to better understand 

the active ingredients of modern MBIs and what is causing the observed improvements 

in attentional functions.   

The following Chapters will highlight that there is a current need for research 

that longitudinally examines whether a singular MT can influence attentional functions 

in meditation naïve individuals. A mindful breathing MT is chosen as the examined 

singular practice herein as it is the basic component of traditional Buddhist meditations, 

is employed as part of modern MBIs and because it can be undertaken by meditation 

naïve individuals following minimal instruction. Confirming the relationship between a 

specific MT and modulation of attentional functions will enable researchers to better 

understand the role of attentional improvements in the increasingly observed positive 

effects of MT, providing valuable information to health care practitioners who 

administer MT as part of MBIs, to those practitioners who are interested in disorders 

that involve attentional dysfunction (e.g. ADHD and Schizophrenia) and to any 

individual who may be considering incorporating MT into their daily lives. Establishing 

this link is the main objective of the first longitudinal study that will be presented in this 

thesis.  
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Building upon the results of this first study, the overall objective of this thesis is 

to assess whether a singular MT may positively modulate attentional functions in older 

adults. A second longitudinal study was designed and conducted to meet this overall 

objective, the results of which provide valuable information for researchers and health 

care practitioners interested in the prevention, management and treatment of age related 

cognitive declines. The theoretical background to this study will be detailed in Chapter 

9. Firstly, the following Chapter reviews the extant literature regarding MT and 

attention in order to establish the theoretical background upon which the first 

longitudinal study was conceived. 
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Chapter 3. Theoretical Background to Longitudinal Study 1: The 

Effects of Mindfulness Training on Attentional Functions 

Research into mindfulness, its associated processes and its potential positive 

effects has grown increasingly popular during the past two decades. A wide variety of 

studies have assessed the efficacy of self reported mindfulness as a predictor/mediator 

and MT as an intervention, with extant studies covering a wide range of conditions and 

pathologies. A literature search will find a diverse cross section of topics including 

stress and anxiety (e.g. Kabat-Zinn et al., 1992), chronic pain (e.g. McCracken, 

Gauntlett-Gilbert, & Vowles, 2007) and substance abuse (e.g. Alterman et al., 2004). A 

main objective of this thesis, and specifically of longitudinal study 1 (LS1), is to 

establish whether a singular MT can modulate behavioural and electrophysiological 

markers of attentional functions. Therefore this literature review focuses on studies that 

detail the engagement of attentional functions during MT and studies examining the 

effects of MT on attentional functions.  

In order to provide a structure for this review, mindfulness research studies will 

be grouped loosely as follows: 1) Examinations of the meditative state; studies of this 

nature examine the attentional skills and brain regions involved during meditation.  2) 

Cross sectional studies that compare expert meditators to novices; such studies attempt 

to examine the long term effects of MT. 3) Longitudinal studies which examine the 

effects of participation in MT; this group of studies includes research that seeks to 

examine the effects of both short and long term MT on predefined dependent variables.  

Firstly, a recently published model of mindfulness is introduced in order to 

position the current thesis in relation to other ongoing streams of mindfulness research. 

3.1 The Liverpool Mindfulness Model 

The Liverpool Mindfulness Model (Malinowski, 2013; Figure 1) captures and 

integrates the core components involved in MT and provides a framework for how MT 

may produce positive effects. Consistent with the previous research and traditional 

descriptions discussed in Chapter 2, the Liverpool Mindfulness Model gives the 

development of attentional skills a central role in the overall process. The model 

structures the process into five main tiers: the driving motivational factors (tier 1) 



15 

 

determine whether and how an individual engages in MT (tier 2). Regular engagement 

in MT develops and refines the mental core processes (tier 3), primarily based on the 

refinement of attentional functions that interact with and facilitate regulatory processes 

of emotions and cognitions. Improvements in these core processes result in a changed 

and more balanced mental stance or attitude (tier 4), that will result in a positive 

outcome (tier 5) in terms of physical and mental well-being, and the quality of 

behaviour.  

 

Figure 1: The Liverpool Mindfulness Model (Malinowski, 2013) 

 With reference to the presented model this thesis is concerned with providing 

information regarding how MT may influence the core process of attention. Such 

information will help to establish the role of attention modulation as a mechanism for 

MT related positive outcomes at tiers 4 and 5 and whether MT may have utility as a 

strategy for improving attentional functions in older adults. Thus, improvements to 

attentional processes themselves would be considered a positive outcome of the 

experiments detailed in this thesis, irrespective of changes to mental stances and other 

outcomes. Other ongoing streams of mindfulness research are concerned with how tiers 

4 and 5 are influenced by MT and attempt to seek out the mechanism/mediators of 

action. Therefore, in keeping with the presented model, Chapter 15 will discuss how the 



16 

 

empirical results detailed in this thesis may relate to the changes in tiers 4 & 5 that have 

been found to result from MT. 

3.2 Mindfulness Training and Attentional Functions 

 In cognitive neuroscience, ‘attention’ is commonly referred to in terms of three 

main functions that are subserved by three different though often overlapping networks 

(Corbetta & Shulman, 2002; Fan et al., 2005; Posner & Petersen, 1990; Posner & 

Rothbart, 2007; Raz & Buhle, 2006): (1) The modulation of arousal, alertness, and 

attentional engagement. These functions are carried out by the alerting network which 

is thought to consist of the right frontal and right parietal cortex and the thalamus. (2) 

The function of stimulus selection which involves an orienting network consisting of 

the superior parietal cortex, temporal parietal junction, frontal eye fields, and superior 

colliculus. (3) Attentional/Executive control processes that rely upon an executive 

network consisting of the anterior cingulate cortex (ACC), lateral ventral cortex, 

prefrontal cortex (PFC), and basal ganglia. Two further networks are relevant to the 

discussion of attentional networks and MT. Firstly, the salience network, a subdivision 

of the executive network that is thought to comprise of the dorsal ACC, the ventrolateral 

PFC, and the neighbouring anterior insula. This network provides an attentional 

monitoring function and has been implicated in the immediate, present moment 

processing/detection of goal relevant/salient events across modalities (cognitive, 

homeostatic and/or emotional) and the subsequent signalling of the executive network 

to act in line with ongoing/current goals (Dosenbach et al., 2007; Dosenbach et al., 

2006; Seeley et al., 2007; Sridharan, Levitin, & Menon, 2008). The default mode 

network, which has been shown to become active when individuals involuntarily 

engage in task-unrelated cognitions or mind wandering (Buckner, 2004; Mason et al., 

2007; Schooler et al., 2011), is the final network relevant to this discussion. Functional 

neuro-imaging suggest that this network entails the posterior cingulate cortex (PCC), 

the medial prefrontal cortex (MPFC), the posterior lateral parietal/temporal cortices, and 

the parahippocampal gyrus (Buckner, 2004; Hasenkamp et al., 2012; Mason et al., 

2007).   

 Malinowski (2013) produced a schematic representation (Figure 2) depicting 

how the phenomenological experience of a meditator may be linked to the 

aforementioned attentional processes and associated networks. Using a simple mindful 
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breathing based MT as an example, the meditation process may be outlined as follows. 

At the phenomenological level the meditator will engage with the training by focusing 

on the somatosensory sensation that accompanies the breath. This phase of focussed 

attention relies upon the alerting network. Once focus on the breath is lost, the default 

mode network will become more active. As is the task of the meditator, sooner or later 

the meditator will recognise this mind wandering by means of the attention monitoring 

function of the salience network. During MT the meditator observes this task irrelevant 

fluctuation of the mind without judgment or evaluation whilst maintaining a curious 

open attitude. The meditator is now tasked with letting go by means of attentional 

disengagement and the involvement of the executive network. Shifting the focus of 

attention back to the breath is accomplished by a combination of the executive and 

orienting networks. An increase in periods of sustained attention to the breath would be 

indicative of improved attentional stability. Such improvements are expected as the 

individuals level of expertise increases (Wallace & Shapiro, 2006), whereas beginners 

often allow the mind to wander unnoticed for long periods.  

 

Figure 2: A schematic representation of the meditation process (Malinowski, 2013). 

The inner circle outlines the phenomenological layer, presenting the typical sequence 

(clockwise) a meditator will go through. The middle circle represents the attentional 

processes that lie underneath, while the outer circle states the different brain networks 

that are involved in carrying out these functions. The different attentional processes and 

the brain networks are represented as partially overlapping to indicate that in many 

instances more than one process/network is involved. 
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As Malinowski notes, these attentional functions and networks may overlap 

during MT. This assertion appears valid when viewed with respect to a commonly used 

model of executive attention. Miyake and colleagues (2000) model of executive 

attention proposed that executive functioning may be broken down into three key 

constructs: 1) mental set shifting, 2) information updating and monitoring, and 3) the 

inhibition of pre-potent responses. Successfully sustaining attention to the breath during 

breath awareness MT requires effective use of each of these key constructs. Firstly, the 

breath is selected as the mental set which is the selected focus of attention. Secondly, 

the meditator must monitor for slips of attention, shifting attention back to the breath 

once such slips are noticed. Finally, the meditator must not elaborate or get caught up in 

arising thoughts, feelings and sensations, thus they are inhibiting the typical response of 

engaging with whatever arises. The salience network is believed to play a key role in 

this kind of attentional monitoring and thus is likely to be engaged throughout even a 

simple breath awareness MT. The executive network is also likely to play a crucial role 

during MT as it is involved in the inhibition of pre-potent and/or habitual responses. 

The executive network will also play an important role in enabling the practitioner to 

disengage from distractions during MT. The repeated activation of these functions 

during MT suggests that the executive and salience networks are key candidates for 

improvement with extended MT. 

At this juncture it is important to clarify how the term sustained attention will be 

used within this thesis. Often the terms ‘selective attention’, ‘concentrative attention’ 

and ‘focussed attention’ are used interchangeably with ‘sustained attention’, however, 

said terms are best used to describe a singular focus of attention (e.g. the breath). 

Typically, sustaining attention, i.e. sustaining the focus of attention over extended 

periods of time, will require a multitude of attentional skills and networks. Using the 

mindful breathing exercise as an example, wherein the task is to sustain attention to the 

breath, all five of the discussed networks would be utilised at some stage, and often 

concurrently, in order for an individual to engage in the task for extended periods. 

Therefore, within this thesis, sustained attention will be used to describe the ‘task of 

sustaining attention,’ i.e. sustaining attention to current/ongoing goals. If ‘sustaining 

attention’ required a multitude of attentional skills and networks they will be detailed as 

fully as possible. A link between this definition of sustained attention and mindfulness 

can be seen in Robertson and Garavan (2004) conception that failures of sustained 
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attention occur when there is a transient decrease in mindful, endogenous control of 

behaviour, leaving one prone to goal neglect and distraction by irrelevant stimuli. 

Consistent with Malinowski’s schematic of the meditation process, a growing 

body of research has evidenced the use of attentional skills and networks during MT 

and meditation in general. Brefczynski-Lewis et al. (2007) obtained functional magnetic 

resonance imaging (fMRI) recordings whilst participants engaged in a form of 

concentrative meditation (a fixation dot presented on a screen in front of the participant 

was used as the object of meditation). They found that both expert Tibetan buddhist
2
 

meditators and novice meditators (1hour per day practice for 7 days prior to the 

recordings) were able to activate multiple attention-related brain regions during 

meditation, specifically regions related to the alerting, executive and salience networks 

(including frontal parietal regions, lateral occipital, insula, multiple thalamic nuclei, 

basal ganglia, and cerebellar regions). Interestingly, expert meditators displayed more 

sustained activation in attention networks and were able to reach maximum activation 

quicker than novice meditators. Hölzel et al. (2007) recorded fMRI during breath 

awareness meditation and an arithmetic control task, finding greater activation during 

meditation in a number of regions implicated in attentional processing such as the left 

precuneus, left PCC, and bilaterally in the MPFC and ACC. It is important to note that 

this contrast between MT and arithmetic included both expert Vipassana meditators
3
 

and matched non-meditators thus it is feasible to suggest that the PCC and MPFC 

activation, which may be linked to the default mode network, may be related to mind 

wandering in the non-meditators as experts self reported greater levels of sustained 

attention to the breath and less boredom during meditation than the non-meditators.   

                                                

2 In Tibetan Buddhism, mainly based on the Abhidhamma and its commentaries, mindfulness is classified 
and defined as one of the ascertaining mental factors that are responsible for all mental activities (Rabten, 

1992). Mindfulness is referred to as a ‘state’ that is both used as an antidote to deal with forgetfulness 

encountered during the practice of single-pointed concentration practice (Londro, 1992), and as a practice 

of introspective awareness as a part of a larger body of practices known as the 37 altruistic practices 
(Berzin, 2002). 

3
 Vipassana meditation: In this common style of meditation, one starts by focusing or stabilizing 

concentration on an object such as the breath. Then one broadens one’s focus, cultivating a non-reactive 

form of sensory awareness or bare attention. This form of attention is non-reactive in the sense that, 

ideally, one does not become caught up in judgments and affective responses about sensory or mental 

stimuli. 
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A number of other studies, focussed solely on expert meditators, have provided 

further evidence for the activation of attentional networks during meditation. Baron 

Short et al. (2007) examined expert meditators whose practice routinely involved breath 

awareness techniques. During meditation, as compared to a control condition which 

involved identifying the colour of geometric shapes, said experts had sustained activity 

in regions associated with the executive and salience networks, specifically in the dorsal 

lateral prefrontal cortex (DLPFC) and the ACC. This finding suggests that brain regions 

associated with attentional monitoring are engaged during meditation as the ACC has 

previously been said to support the process of monitoring current behaviour in relation 

to a desired goal, before feeding the outcome of this comparison to the DLPFC for 

action (Kerns et al., 2004). Support for this assertion can be found in the results of a 

further study. Hasenkamp et al. (2012) obtained fMRI recordings during breath 

awareness meditation from expert meditators in order to assess the activation of the 

salience, executive and default mode networks during meditation. Participants were 

instructed to press a button when they noticed that their mind had wandered from the 

breath during meditation. Based on this button press, approximations of activity related 

to 4 intervals in a cognitive cycle where obtained: 1) periods when attention was 

focussed on the breath
4
, 2) mind wandering, 3) awareness of mind wandering and 4) 

shifting of attention (back to the breath). It was found that brain regions associated with 

the default mode network (PCC, MPFC, posterior parietal/temporal cortex and 

parahippocampal gyrus) were activated during mind wandering, the salience network 

(bilateral anterior insula and dorsal ACC) was activated during awareness of mind 

wandering and the executive network (ventral and DLPFC, and lateral inferior parietal 

cortex) was active during shifting and focussed attention. Further, Farb, Segal, and 

Anderson (2013) recorded fMRI during tasks of interoceptive (breath monitoring) and 

exteroceptive (cognitive suppression and working memory maintenance
5
) attention. 

Contrasting interoceptive and exteroceptive activation patterns, they found that 

graduates of a MBSR program, as compared to wait list controls, had reduced activity in 

the dorsomedial prefrontal cortex (DMPFC) during interoceptive attention. Whilst the 

                                                

4 Hasenkamp et al. define this period as sustained attention, however, this period is referred to as focussed 
attention herein, consistent with the predefined description of sustained attention in Chapter 2. 

5
 For the cognitive suppression task, participants were asked to read foveally presented words while 

inhibiting any cognitive or emotional response, keeping their minds blank while attending to the word 

stimulus. For the working memory maintenance task, participants were asked to press a key whenever a 

word was repeated in a visually presented sequence (a ‘1-back’ task). 
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authors primary objective was to examine the role of interoceptive attention as a 

mediator for positive change following MBSR, the finding of lower DMPFC activity 

during breath awareness for MBSR graduates suggests greater levels of sustained 

attention to the breath, as compared to controls, as the DMPFC has been implicated in 

the default mode network which becomes active during mind wandering (Hasenkamp & 

Barsalou, 2012; Schooler et al., 2011; Smallwood et al., 2012).  

A final subset of studies used electrophysiological recordings to gain insights 

into the meditative state. Cahn and collaborators have reported 3 findings utilising the 

same group of expert Vipassana meditators. Cahn and Polich (2009) found reduced 

automated reactivity and evaluative processing of task irrelevant attention-demanding 

stimuli during meditation, as compared to a control condition which involved 

generating neutral thoughts. In light of Hasenkamp et al. findings, the finding of 

reduced automated reactivity and reduced evaluation of non-goal related stimuli is most 

likely resultant from consistent salience and executive network activation during 

meditation. Further, Cahn, Delorme, and Polich (2010) utilised time frequency analysis 

and found increased sensory awareness during Vipassana meditation, as compared with 

a control condition (mind-wandering), evidenced by increased oscillation over parieto-

occiptal brain areas in the gamma frequency range (35–45 Hz). Lastly, Cahn, Delorme, 

and Polich (2013) used a three-stimulus auditory oddball to probe meditation versus 

mind wandering, finding 1) decreased evoked delta (2–4 Hz) power to distracter stimuli 

concomitantly with a greater event-related reduction of late (500–900 ms) alpha-1 (8–10 

Hz) activity, 2) standard stimuli were associated with increased early event-related 

alpha phase synchrony (inter-trial coherence) and evoked theta (4–8 Hz) phase 

synchrony, and 3) during meditation there was a greater differential early-evoked 

gamma power to the different stimulus classes. The observed pattern of results lead the 

authors to propose that, relative to mind wandering, meditation evokes a brain state of 

enhanced perceptual clarity and decreased automated reactivity. In a similar study 

Berkovich-Ohana, Glicksohn, and Goldstein (2012) found that, relative to a resting 

state, short, intermediate and long term mindfulness meditators demonstrate higher 

posterior gamma power during meditation, indicative of enhanced attention and sensory 

awareness.  

The abovementioned studies suggest that various attentional networks are 

activated during meditation. Importantly, both expert meditators and novice meditators 
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(Brefczynski-Lewis et al., 2007; Hölzel et al., 2007) activate similar networks during 

MT. Despite differences in strength and consistency of activation, this suggests that 

attentional networks are utilised during MT. As the activation of these networks likely 

reflects the engagement of attentional functions during MT, these findings are 

consistent with both traditional and modern conceptions of mindfulness which consider 

attention a central component of MT (Bishop et al., 2004; Hölzel, Lazar, et al., 2011; 

Lutz et al., 2008; Malinowski, 2013; Shapiro et al., 2006; Tang & Posner, 2009; 

Wallace & Shapiro, 2006). It must be acknowledged that a general weakness of the 

evidence pool in this research area is that the utilised expert meditator samples lack 

consistency across studies, especially regarding their meditative traditions and length of 

experience (see Table 1). Nonetheless, all of the studies detailed herein utilised expert 

meditators who are likely to have had extensive practice in breath awareness meditation, 

thus the discussed findings demonstrate that attentional functions are utilised during 

MT. 
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Table 1: Summary of Meditative State Studies. Previous experience and ongoing 

practice are mean values. Experience and ongoing practice values are group means 

unless stated otherwise. 

Study 

Meditative 

Tradition 

Previous 

Experience  

Ongoing 

Practice  

Comparison 

Group 

Brefczynski-

Lewis et al., 

2007 

Tibetan Buddhist 

meditation 

10,000-54,000 hrs n/s Novice meditators 

who meditated for 

1hour per day for 7 

days prior to 

examination. 

Hőlzel et al., 

2007 

Vipassana 7.9 yrs n/s Age, gender and 

education matched 

non-meditators 

Baron-Short et 

al., 2007 

Varied. Included 

Tibetan Buddist, 

Zen and open 
monitoring yoga 

4 yrs 30 mins per day n/a 

Hasenkamp et 

al., 2012 

Shamatha, 

Tibetan and 

Vipassana. All 

incorporate 

breath-focus 

meditations 

1386 hrs n/s n/a 

Farb et al., 

2013 

MBSR graduates 8 wks n/a Waitlist controls 

matched for age and 

gender. 

Cahn & Polich 

2008; Cahn, 
Delorme & 

Polich, 2010; 

Cahn, 

Delorme & 

Polich, 2013 

Vipassana 20 yrs n/s n/a 

Berkhovich-

Ohana et al. 

2011 

States only that 

participants were 

mindfulness 

practitioners 

 

Short Term:  

894hrs 

Intermediate: 

2570hrs 

Long Term: 

7556hrs 

n/s n/a 
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3.3 Cross Sectional Studies: The Effects of Long Term Mindfulness and/or 

Open Monitoring Based Training 

Recent research has been building towards a consensus view that MT is 

beneficial for attentional functions (Chiesa et al., 2011; Lutz et al., 2009). The following 

sections contain an overview of the current knowledge base concerning the positive 

effects of MT on attentional functions. The review will establish the theoretical 

background upon which the experiments detailed in this thesis were conceived. 

Precedence is given to studies assessing executive and sustained attention skills as the 

studies discussed in section 3.2 implicate the salience and executive networks as playing 

a key role and that a state of enhanced sensory awareness and reduced automated 

reactivity is present during meditation.  

This section will detail the findings from cross sectional studies which compared 

expert meditators to matched controls. Whilst this cross sectional approach inherently 

involves a number of limitations (discussed in section 3.5), including issues related to 

causality, these studies have provided first insights into how attentional skills may differ 

between meditators and controls, with long term meditation practice the proposed 

primary source of differences. Herein, the included studies had to include meditators 

from mindfulness based traditions and/or elements of OM, which is considered an 

integral part of mindfulness practices. Of note, an overview of the cognitive tasks 

introduced in this section and over the course of the remaining Chapters of this thesis is 

contained in Appendix A. However, pertinent task details needed for understanding the 

ongoing discussion will be presented as necessary. A summary of the meditative 

traditions and experience of the expert meditator samples for the studies detailed in this 

section is contained in Table 2 at the end of this section. 

Differences between expert meditators and controls have been found in a wide 

range of attentional skills. In an earlier study conducted by our group (Moore & 

Malinowski, 2009), experienced meditators were compared to matched controls on 2 

measures of attention, the Stroop Task (Stroop, 1935) and the d2-test of attention 

(Brickenkamp & Zilmer, 1998). The experts significantly outperformed controls on 

both tasks suggesting that MT may be associated with an enhanced ability to 

focus/sustain attention and with improved conflict monitoring and inhibition skills, all 

of which are indicative of enhanced executive attention. Chan and Woollacott (2007) 
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provide further evidence for enhanced executive functions, with expert meditators 

displaying less Stroop interference than matched controls. Additionally, an exploratory 

analysis, including just the experts, found that the amount of daily ongoing practice, but 

not total overall experience was associated with higher levels of performance. Although 

the experts in this study came from predominantly OM based meditative backgrounds 

which would typically involve mindfulness meditations (30 of 50 meditators from OM 

backgrounds), generalising the results to MT is difficult as FA based concentrative 

meditators were also included. Other studies have drawn closer links between MT and 

executive measures of attention. Utilising a computerised Stroop task, Teper and 

Inzlicht (2013) found that experienced mindfulness meditators committed less Stroop 

errors compared to a control group. In a further study which included a different 

executive measure, Jha, Krompinger, and Baime (2007) found lower levels of executive 

and inhibitory control, as measured by the Attention Network Test (ANT, Fan et al., 

2002), when comparing experts to controls with no prior meditation experience.  

A number of authors have hypothesised that MT and OM based meditations may 

improve sustained attention since these meditations are built upon a foundation of FA. 

Valentine and Sweet (1999) found that meditators outperformed controls on a test of 

focussed sustained attention (Wilkins Counting Test; Wilkins, Shallice, & McCarthy, 

1987). An exploratory analysis of just the meditators found that long term (mean 

experience ≥ 25months) outperformed short term (mean experience ≤ 24months) 

meditators. In a further analysis, meditators were split into concentrative or mindfulness 

meditators respectively based on whether they had a singular or open focus
6
 during 

meditation, with mindfulness meditators performing better when the stimulus was 

presented at an unexpected rate. Whilst these results suggest better sustained attention 

based on meditation experience and less expectancy effects for mindfulness vs 

concentrative meditators, they should be interpreted cautiously as the analysis involved 

small group sizes. van Leeuwen, Muller, and Melloni (2009) provided further evidence 

for enhanced sustained attention in expert meditators using the attentional blink task 

(ABtask), which requires participants to sustain focus to a rapidly presented stream of 

                                                

6 The distinction between meditators with a singular focus and those with an open focus is analogous to 
the previously discussed distinction between FA and OM. Meditators with a singular focus use an object 

(e.g. the breath) to sustain their attention during meditation, thus this is akin to FA meditation. Meditators 

with an open focus are able to sustain attention to all ongoing experience and are able to maintain present 

moment awareness without the need for an anchor, thus they are engaging in OM. 
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visual stimuli in order that 2 temporally close target stimuli may be identified. Expert 

meditators, who routinely engaged in meditations that included elements of FA and 

OM, outperformed both age matched and younger controls. In addition to suggesting a 

difference between meditators and non-meditators, these results also suggest that age 

related performance decrements may be mitigated by long term meditative practice. 

In a recent study Greenberg, Reiner, and Meiran (2012) utilised a water jug 

paradigm (based on Luchins, 1942) designed to measure the Einstellung effect
7
, finding 

that experienced mindfulness meditators displayed less cognitive rigidity than matched 

controls. Hodgins and Adair (2010) found that current meditators performed better than 

non-meditators on measures of concentration derived from a change blindness paradigm 

(Simons & Chabris, 1999), demonstrated more flexible visual processing by identifying 

more alternative perspectives in an ambiguous images perspective switching task, and 

displayed less interference from invalid cues on a Posner cuing task designed to 

measure selective attention (Posner, 1980). Taken together these findings suggest that 

meditators have more flexible executive attention, enabling them to adapt cognitive 

processing strategies to current goals. 

A smaller subsection of studies have utilised Electroencephalography (EEG) in 

an attempt to ascertain the underlying neural mechanisms that may produce these 

positive effects. The aforementioned study by Teper and Inzlicht (2013) found that 

expert meditators produced a larger error related negativity (ERN) event related 

potential (ERP) component than controls. As the ERN had previously been shown to be 

generated by the ACC (Dehaene, Posner, & Tucker, 1994), the authors reasoned that 

their results were indicative of greater executive control and attentional monitoring. 

Using a global-to-local task, van Leeuwen, Singer, and Melloni (2012) found that expert 

buddhist meditators, with training in FA and OM meditation, displayed higher mean 

amplitude N1, N2 and P3 ERP components than matched controls. Concurrently, it was 

found that the experts had a significantly reduced global precedence effect
8
. The authors 

suggest that taken together, these results represent a greater depth of information 

                                                

7
 The Einstellung effect is a term used to describe rigid thought patterns, formed through experience, that 

prevent the identification of more adaptive approaches and solutions. 

8 The global precedence effect describes quicker detection of targets at a global compared to a local level. 
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processing and increased speed at which attention can be allocated and reallocated for 

the experts compared to controls.  

A final subgroup of studies have utilised structural brain imaging, typically 

using magnetic resonance imaging (MRI), in an attempt to determine structural changes 

in the brain related to long term meditation practice. As the findings of these studies are 

more pertinent to a discussion regarding MT and the ageing brain, they are reviewed in 

more detail in Chapter 9. In short, it has been found that mindfulness meditators display 

greater grey matter density than controls in various attention related brain regions 

(Hölzel et al., 2008), whilst similar findings have been found from expert samples that 

included a mixture of mindfulness and other practices (Luders et al., 2009) and from 

closely linked meditation practices such as Zen (Pagnoni & Cekic, 2007), which 

normally involve breath focused meditation. Additionally, cortical thickness has been 

shown to be increased in attention related areas for expert insight meditators (Lazar et 

al., 2005) whose meditation typically involves training to improve present moment 

awareness and mindfulness. This pattern of results suggests that the repeated activation 

of attention networks during meditation may strengthen these networks and the neural 

substrate which supports them. The implications of these findings are discussed in 

Chapter 9. 

In sum, long term MT and/or OM practice may result in improvements to 

various attentional skills with long term meditators able to evoke more consistent levels 

of sustained attention and more flexible executive attention, characterised by a reduction 

in habitual responding, interference and rigidity. These findings are consistent with the 

previously reviewed meditative state literature which suggested consistent activation of 

attentional networks, enhanced sensory awareness and reduced automated reactivity 

during meditation. They are also commensurate with findings from a wide range of 

studies that have suggested plasticity in attentional functions, with attentional processes 

becoming more efficient through training (e.g. Newman et al., 2007; N. B. Sarter et al., 

2007; Slagter, Giesbrecht, et al., 2007; Vidnyanszky & Sohn, 2005). However, given 

that skill learning is usually very task-specific and does not easily generalise beyond the 

specific tasks, stimuli, or contents (Green & Bavelier, 2008), it is encouraging to see 

these positive results across a wide range of tasks that were completed outside of the 

meditative state. This suggests that the attentional improvements developed through 

long term MT may be utilised to complete other tasks as the employed tasks were very 
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different from what is practiced during MT. The findings of enhanced activation of 

attentional networks and structural changes in attention related brain areas provide 

further encouragement. Taking together the reviewed literature concerning the 

meditative state and the effects of long term meditation, the overall pattern of results is 

consistent with the assertion that attention is critically involved in MT and OM practices 

and that it may be enhanced through long term meditative practice, supporting its 

central position in the Liverpool Mindfulness Model and other modern conceptions of 

mindfulness.  
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Table 2: Summary of relevant participant details for studies introduced in section 3.3. 

Experience and ongoing practice values are group means unless stated otherwise. 

Study 

Meditative 

Tradition 

Previous 

Experience  

Ongoing 

Practice  Comparison Group 

Moore & 

Malinowski 

2009 

Not recorded Minimum of a 

6 weeks 

beginners MT 

course  

 

Not recorded Age and gender 

matched controls. 

Chan & 
Woolacott, 

2007 

30 of 50 meditators 
were from OM 

backgrounds including 

Vipassana and Tibetan 

Buddhist. The 

remaining meditators 

were concentrative and 

included some 

Vipassana, 

Transcendental 

meditation and Sufi 

meditation 
 

Ranged from 
82 to 19,200 

hrs 

Ranged from 
6-150mins 

per day 

Age, gender and 
education matched 

controls. 

Teper & 

Inzlicht, 

2013 

States only that 

‘participants were from 

various meditation 

backgrounds 

Vipassana, Shambhala, 

concentrative etc’ 

 

3.2 yrs n/s Non-meditators. No 

details given regarding 

demographics of 

comparison group. 

Jha et al., 

2007 

Not stated but as 

participants had signed 

up to a mindfulness 
retreat it may be 

speculated that they 

were from mindfulness 

backgrounds 

 

5yrs n/s Non-meditators. It was 

not confirmed if the 

groups differed with 
respect to demographic 

variables. 

 

Valentine & 

Sweet, 1999 

Split into concentrative 

and mindfulness 

groups but no details 

given regarding 

traditions other than 

they were recruited 

from a Buddhist centre. 

n/s but 

meditators 

were split 

above and 

below 

24months of 

experience for 
an explanatory 

analysis, thus 

24months may 

be a mean or 

median value 

 

n/s Controls. States 

‘comparable’ but no 

details given. 

van 

Leeuwen et 

al., 2009 

Shamatha and Zen. Range from 1 

to 29yrs 

n/s 1) Age, gender and 

education matched 

controls.  

2) Younger controls, 

n/s if matched for 
gender or education. 
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Study 

Meditative 

Tradition 

Previous 

Experience  

Ongoing 

Practice  Comparison Group 

Greenberg et 

al., 2012 

Vipassana 8.4 yrs 3.2 hrs Controls matched for 

age, gender and 

academic ability. 

 

Hodgins & 

Adair, 2010 

States only that 

participants were 

recruited from 2 

meditation centres, 

MBSR classes and the 
local community 

n/s Meditators: 

9.95 hrs per 

week. 

Non-

meditators: 
0.38 hrs per 

week 

 

Non-meditators, 

classed as individuals 

who meditated very 

little or not at all. 

Matched for age and 
income. 

  

van 

Leeuwen et 

al., 2012 

Buddhist monks and 

nuns recruited from a 

Vietnamese Zen centre 

5 yrs n/s Age and education 

matched controls. 
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3.4 Longitudinal Studies: The Relationship between Mindfulness Training 

and Attentional Functions 

Whilst the reviewed cross sectional approach has provided first information 

regarding the relationship between MT and attention, the attribution of attentional 

improvements to MT cannot be causally argued using this approach. For example, it 

may be that expert meditators already had well developed attentional functions which 

enabled them to quickly master FA, allowing them to meaningfully engage in OM and 

increasing the likelihood of them to continue practice, whereas individuals with poorly 

performing attentional functions may have quickly lost interest in MT and ceased 

practice. Furthermore, whether MT can produce positive change in the short to medium 

term is likely to be a major consideration for both health care professionals who may 

wish to employ MT as an intervention or treatment and for individuals who may be 

looking to take up MT, i.e. if improvements were only to occur after years of practice 

and/or required changes to established daily routines in order to incorporate hours of 

daily practice, MT may not be considered a valid proposition for these individuals. 

Thus, whilst it is positive that the aforementioned studies suggest attentional 

improvements following long term MT, longitudinal examinations of MT are required 

in order to 1) confirm that MT produces these changes and 2) that they occur within a 

timescale that is ecologically relevant for health care professionals and individuals 

interested in MT. Accordingly, longitudinal studies that examine the effects of MT are 

considered a priority for mindfulness research (Chiesa et al., 2011). 

During the past decade a wide range of longitudinal studies, using varied 

methodologies, have begun to provide evidence for the effects of MT. This section 

contains a review of the studies relevant to attentional functions. The included studies 

are grouped into 2 main categories: 1) brief mindfulness inductions and 2) studies that 

examine the effects of MBIs and retreats. The former category includes studies that 

employ pre and post induction testing in an attempt to assess the effects of a) inducing a 

state of mindfulness or b) engaging in short term MT. The latter category includes 

studies that involve a longer exposure to MT and includes MBIs that ranged in length 

from 4 to 8 weeks and retreats that lasted from 4 days to 3 months.  
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3.4.1 The Effects of Brief Mindfulness Inductions 

 A number of studies have investigated whether brief mindfulness inductions can 

produce immediate positive effects on attentional functions. Rather than examining trait 

changes to attentional functions, such studies are interested in assessing whether 

inducing a mindfulness state produces state like changes to attentional functions. 

Encouragingly, positive results have been found with as little as 5 minutes of MT. 

Friese, Messner, and Schaffner (2012) found that 5 minutes of mindfulness meditation 

was able to improve self control following an experimental manipulation designed to 

deplete self control through emotion suppression (Hagger et al., 2010). The authors 

instructed two groups of participants to suppress emotions during a 5 minute video clip, 

whilst a final group was instructed to watch the video normally. Next, one of the 

suppression groups engaged in a 5 minute mindful breathing exercise whilst the 

remaining two groups engaged in a neutral task (line-drawing). The participants self 

control was then measured using the d2-test of attention (Brickenkamp & Zilmer, 1998) 

which measures two hall marks of self control, attention and inhibitory control 

(Baumeister, Schmeichel, & Vohs, 2007; Baumeister, Vohs, & Tice, 2007). The group 

that engaged in the brief MT performed similarly to the group who had not suppressed 

emotions, whilst the suppression group who had not engaged in MT performed 

significantly worse. These results suggest that improvements in sustained attention and 

executive functions are possible following the induction of a state of mindfulness.  

Two further studies found positive effects of similar mindfulness based 

inductions that were also employed to induce a state of mindfulness. McHugh, Simpson, 

and Reed (2010) found that older adults who engaged in 10 minutes of focussed breath 

awareness were able to reduce emergent over-selectivity
9
 compared to a matched group 

who engaged in 10 minutes of mind wandering. This finding is indicative of an 

improvement in goal directed attention
10

. In another study (Wenk-Sormaz, 2005), a 20 

                                                

9 Over-selectivity typically occurs when behaviour is controlled by a limited number of the available 
stimuli in the environment. Habitual patterns of behaviour can cause over-selectivity to occur. For 

example, an individual may rely on information from a select number of stimuli that they may habitually 

attend to rather than adapting to current demands and seeking out additional information. Thus reductions 

in over-selectivity may evince improvements in present moment awareness and goal directed attention. 

10 Given the relevance of these results to the discussion regarding ageing and MT, these results and their 
implications are discussed in greater length in Chapter 9. 
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minute focussed breath awareness meditation
11

 reduced Stroop interference as 

compared to rest and a cognitive control task (mnemonics). Additionally, the group who 

meditated were able to produce more atypical items in a word production task. Taken 

together, these results suggest a reduction in habitual responding, a hallmark of 

improved executive control, following the induction of a state of mindfulness.  

It is important to note that the techniques utilised to induce a mindfulness state 

in the abovementioned studies relied mostly on FA, with participants simply instructed 

to maintain focus on the breath and redirect attention back once a slip had been noted. 

Given that it has been proposed that a well functioning FA is required in order to 

meaningfully engage in OM (Lutz et al., 2008), the hallmark of MT, it is logical that 

such short inductions attempt only to engage FA rather than attempt to incorporate the 

more difficult OM. However, it also means that they are unlikely to truly reflect the 

engagement of a mindfulness state, with the observed improvements in attentional 

performance most likely resultant from FA related state effects of meditation. 

Regardless of this, the abovementioned findings are still positive as they provide a link 

between attentional functions being engaged during FA and subsequent improvements 

in attentional performance during completion of a very different task.  

A number of other studies have assessed the effect of short term MT 

administered over multiple sessions with attentional testing completed without the 

induction of a mindfulness state. A summary of the interventions and comparison 

groups used in these studies is contained in Table 3 presented at the end of this section. 

Zeidan et al. (2010) compared the effects of a 4 day, 4 session Shamatha breath 

awareness induction to an active control condition (listening to a recorded book). 

Compared to the controls, the meditators improved performance on measures of verbal 

fluency (The Controlled Oral Word Association Test; Benton, 1989) and working 

memory (The Symbol Digit Modalities Test; A. Smith, 1982). Additionally, meditators 

had more extended hit runs on an n-back task, which Zeidan et al. propose is indicative 

of improved sustained attention as said extended hit runs rely on accurate and sustained 

working memory discriminations. In a study of similar duration, Tang et al. (2007) 

utilised the ANT to examine the effects of 5 days of either integrative body-mind 

                                                

11 This meditation procedure was based on a Zen meditation on breathing. Attention is focussed on the 
sensations of breathing and re-oriented back to the sensations of breathing if the mind wanders. 
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training (IBMT) or progressive relaxation training (Bernstein & Borkovec, 1973). As 

compared to relaxation training, IBMT led to a reduction in ANT conflict scores, 

indicative of improved executive attention. Whilst each of these short term training 

inductions incorporated elements of OM, the results of these studies are still most likely 

to be caused by improvements to FA as FA is likely to be repeatedly engaged during the 

early stages of training in order to anchor attention in the present moment.  

It must be noted that results from short term inductions are not universally 

positive. Polak (2009) found no differences in task performance on the ANT or Stroop 

task following a 2 x 15 minute mindfulness based focussed breathing induction (both 

sessions within 2 days) as compared to both active (muscle relaxation) and non active 

(neutral thought induction) control groups. However, there are a number of potential 

reasons for the null results. Firstly, the training was administered via audio recording 

only, thus there was no way of knowing if the participants had understood what the MT 

involved. Secondly, testing was conducted immediately after the second session of 

training, meaning that the tasks were being performed immediately after the participants 

had been required to attend to an audio recording in order to engage in a described task. 

Thus it is feasible that participants in each of the groups may have engaged FA during 

completion of the assigned task which may in turn have resulted in the null between 

group results. Lastly, Polak reported poor test-retest reliability across task 

administrations for both the ANT and Stroop tasks with performance increasing for all 

three groups, suggesting that practice effects resultant from such close administrations 

of the task may influence the null findings.  

Further, whilst not explicitly related to the discussion of MT related attentional 

improvements, Zeidan et al. (2010) found no effect of meditation on a 

forward/backward digit span task, taken from the Wechsler Adult Intelligence Scale-

Revised (Weschler, 1981), or in terms of overall accuracy on the 2 back n-back task, 

suggesting no improvement to working memory following a short MT induction. Also, 

Tang et al. (2007) did not find any positive effects on the alerting or orienting networks 

of attention, following their short IBMT induction. However, given that brain regions 

implicated in the executive network are the most active during MT, even when 

individuals engage in MT for the first time (Brefczynski-Lewis et al., 2007; Hölzel et 

al., 2007), it is unsurprising that only this network was affected by short term MT. 
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In conclusion, various attentional skills, including both sustained and executive 

attention, appear to be improved following breath awareness meditations designed to 

induce a state of mindfulness and following short term MT based inductions. However, 

as mentioned these positive findings should be interpreted with caution given that they 

most likely reflect state related effects of FA. Taken together with the results from the 

meditative state literature, and the wide range of studies that have suggested that 

attentional processes become more efficient through training (e.g. Newman et al., 2007; 

N. B. Sarter et al., 2007; Slagter, Giesbrecht, et al., 2007; Vidnyanszky & Sohn, 2005), 

the results discussed in this section suggest that improvements in attentional functions 

and/or FA aspects of MT are an achievable short term goal of MT. This assertion is in 

line with Lutz et al. (2008) proposal that FA must first be trained in order for the 

individual to remain in the present moment and consistently engage a non-reactive and 

non-judgmental OM state. Whilst the consistent engagement of a non-reactive and non-

judgmental OM state, both during and outside of MT, may ultimately lead to long 

lasting state and trait positive change, attentional improvements developed through the 

repeated activation of attentional functions and the neural substrate that subserves them 

during meditation appears to be a key mechanism for this to occur. 
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Table 3: Summary of short term intervention study details. 

Study 

Type and 

Amount of MT MT Intervention details 

Comparison Group 

Details 

Zeidan et al., 

2010 

Type: Shamatha 

breath awareness 

meditation. 

 

Amount: 4days, 4 

sessions. Session 

length not stated. 

Basic Shamatha breath 

awareness meditation. 

Attention was focused on the 

flow of breath occurring at 

the tip of the nose while 

arising thoughts were 

passively noticed, 

acknowledged and let go. 

Thus the practice involved 

both FA and OM 

components. 

 

Type of intervention: 

4days, 4 sessions of 

listening to an audio 

book. 

Demographics matched: 

Age and gender 

Tang et al., 

2007 

Type: Integrative 

Body Mind 

Training (IBMT) 

 

Amount: 5 days x 

20mins 

IBMT involves several 

body–mind techniques 

including: (i) body 

relaxation, (ii) breath 

adjustment, (iii) mental 

imagery, and (iv) 

mindfulness training, 

accompanied with selected 

music background. 

 

Type of intervention: 

Progressive relaxation 

training of matched 

duration. 

 

Demographics matched: 

States ‘matched’ but 

specific details not given. 

Polak et al., 
2009 

Type: Mindfulness 
based mindful 

breathing induction 

 

Amount: 2 x 15 

minute sessions 

completed within 2 

days. 

Recorded instructions were 
given via CD. The 

meditation was a breath 

focussed sitting meditation 

typically included in MBSR. 

Type of intervention:  
1) Progressive relaxation 

training 

2) Neutral task, e.g. 

make a list of places 

visited yesterday. 

 

Demographics matched: 

Not recorded 

 

 

3.4.2 The Effects of Mindfulness Based Interventions and Mindfulness Retreats on 

Attentional Functions 

As evidence regarding the potential efficacy of long term MT and OM practice 

grew, researchers increasingly incorporated such practices into MBIs in an attempt to 

ascertain their potential efficacy in a wide range of milieus. The two most common and 

widely used MBIs are MBSR and MBCT. Both MBSR and MBCT incorporate MT via 

a number of different meditations, although mindful breathing awareness meditations 

are the most prominent. As both MBSR (Kabat-Zinn, 1990) and MBCT (Segal et al., 

2002) were designed as 8 week programs, they provide an opportunity to measure the 

positive effects of MT that may be derived in the short term. However, because MBSR 
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and MBCT were designed as interventions for specific conditions, stress and major 

depression respectively, the majority of studies assessing their efficacy predictably do 

so in relation to improvements in said conditions. Nonetheless, as such studies have 

often provided positive results (for examples of the efficacy of MBSR see Grossman et 

al., 2004 and Chiesa & Serretti, 2009; for MBCT see Segal et al., 2002 and Fjorback et 

al., 2011), a number of recent studies have attempted to ascertain the mechanisms by 

which MBIs may produce positive change. Perhaps unsurprisingly given the literature 

reviewed thus far and the proposed central importance of attention to MT, changes to 

attentional functions are one of the proposed mechanisms for change. Accordingly, a 

number of MBI studies have incorporated measures of attention. Mindfulness based 

retreats provide a further opportunity to examine the effects of a relatively short term 

MT. Retreats ranging from as little as 1 week up to 3 months have been found to 

produce positive effects, including reductions in depressive symptoms and reduced 

rumination (e.g. Chambers, Lo, & Allen, 2007). Improvements to attentional functions 

have also been found and are discussed herein. This section reviews the extant evidence 

from longitudinal studies that have examined modulations of attentional functions 

following short term MBIs and retreats. Table 4 contains an overview of important 

details relating to the administered interventions and comparison conditions. A number 

of limitations are identified and will be discussed in more detail in section 3.5. 

Utilising a longitudinal 3 arm design, Jha et al. (2007) assessed attentional 

network performance, using the ANT, prior to and following either an 8 week MBSR 

course, an intensive 1 month vipassana retreat (10-12hrs of MT daily) or a wait list 

control period. Baseline findings were discussed previously (section 3.2), with the 

retreat participants (expert mindfulness meditators) demonstrating lower conflict 

monitoring scores at baseline than the MBSR and wait list groups combined (meditation 

naïve at baseline). Somewhat surprisingly, no between groups differences in the 

executive network were found at T2. In light of the retreat participants having 

significantly lower executive network scores at T1, it is plausible that the expert 

meditators that make up this group had already reached a performance ceiling based on 

a well functioning executive network developed through repeated activation of said 

network during their ongoing MT. However, this would not explain why the MBSR 

group did not significantly improve executive network scores by T2. Thus, it is possible 

that practice effects resultant from repeated task administrations may influence this null 
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finding, an assertion given weight by an overall main effect of Time which evidenced an 

overall improvement in RTs across groups from T1 to T2. However, following MBSR 

but not the retreat, orienting network scores were reduced in comparison to controls, 

suggesting more efficient use of valid spatial cues. This result suggests that MBSR was 

related to improvements in voluntary attention as the orienting network relies on top-

down attentional control. The MBSR and waitlist control groups both demonstrated no 

change in alerting network scores from time 1 (T1) to time 2 (T2), thus they were 

pooled to examine the hypothesis that retreat participation may improve exogenous 

stimulus detection. Consistent with this hypothesis, the retreat participants significantly 

reduced alerting network scores as compared to the MBSR + wait list control group. 

This finding suggests that the retreat participants were able to detect targets more 

efficiently when no information was provided as to when targets would appear, 

suggesting they were in a more readied attentional state. Such attentional readiness 

following the intensive practice engaged in during retreat participation is in line with the 

proposal that through extensive MT, OM will become less reliant on FA to a singular 

focus (Lutz et al., 2008), with present moment attention maintained without the need for 

a particular focus (e.g. the breath). Given that the retreat was associated with such an 

improvement it may be considered surprising that no concurrent improvements were 

found in the orienting network. However, the retreat participant’s improvement in 

attentional readiness is likely to similarly influence conditions with both spatial and 

non-spatial cues, leading to no reduction in orienting network scores which are 

calculated by subtracting the reaction times (RTs) of trials with spatial cues from the 

RTs of trials with non-spatial cues. The fact that no difference in the alerting network 

was observed between the experts (retreat group) and meditation naïve participants 

(MBSR + Control) at T1 suggests that retreat participation had an effect on the experts 

alerting network that was not obtained from their ongoing daily practice prior to the 

retreat. This is somewhat surprising as engaging in daily practice may be expected to 

produce the same kind of improvements in the alerting network that were observed 

following the retreat. One plausible explanation for this pattern of results is that the 

intensive practice (10-12hrs) that retreat participants engaged in during the month long 

retreat may have caused transient state like changes in the alerting network. It is 

important to note that T2 testing occurred immediately after the retreat for the retreat 

participants, thus it is likely that the attentional states that they were employing during 

their daily MT would be similarly engaged during task performance, as was seen in the 



39 

 

aforementioned studies in which a mindfulness state was induced (Friese et al., 2012; 

McHugh et al., 2010; Wenk-Sormaz, 2005).  For the MBSR group T2 testing occurred 

up to 10 days after the end of the MBSR intervention (equivalent period for waitlist 

controls) thus any transient effects of the intervention may be expected to have worn 

off. This suggests that the modulation of the orienting network that was observed for the 

MBSR group at T2 and the more efficient executive network scores observed for the 

retreat participants at T1 may reflect trait attentional change whereas the alerting 

network may be more susceptible to transient state change. However, this conclusion is 

tentative as it is not possible to know whether the alerting difference observed at T2 for 

the retreat group would have remained robust if T2 testing had occurred after a cooling 

off period rather than immediately after the retreat. The results of Jha et al. study are 

further confounded by the fact that the test retest interval was different between the 

retreat group (30days) and both the MBSR and waitlist groups (mean = 59days). Whilst 

this study produced a number of positive findings it must be concluded that further 

research is required to better understand the effects of MT on attentional networks. 

 In another study, Gaden Jensen et al. (2012) attempted to isolate MBSR related 

attentional effects by utilising three comparison groups and a variety of measures of 

attention. MBSR was compared to a non-mindfulness based stress reduction (NMBSR), 

and an inactive control group which was further split into incentive (offered $50 to 

improve performance compared to baseline) and non-incentive subgroups at post test 

sessions in order to control for attentional effort. As compared to all other groups, the 

MBSR group significantly reduced the amount of errors committed on the d2 test of 

attention (Brickenkamp & Zilmer, 1998). As the majority of errors were omission 

errors, this result suggests that MT improved sustained attention to a degree that was not 

achieved by stress reduction or attentional effort alone. The MBSR participants also 

produced less Stroop errors than the non-incentive controls at T2. However, the 

incentivised group also outperformed the non-incentive controls, and no group 

significantly improved performance from T1 to T2 despite the between group 

differences that emerged at T2. Based on this finding, the authors argue that attentional 

effort may account for attentional improvements seen in other studies, citing Jha et al. 

(2007) acknowledgement that increased attentional effort from their own MBSR group 

(as compared their waitlist controls) could not be ruled out. However, similar 

performance for the MBSR and incentivised controls does not objectively show that the 
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MBSR group improvement in Stroop performance was caused by attentional effort. The 

addition of an incentivised MBSR group may have provided a better explanation, had 

an incentivised and non-incentivised MBSR group performed similarly it may have 

been concluded that the MBSR group were already applying as much attentional effort 

as participants offered a financial reward for improved performance. Null results were 

also found between the MBSR group and all other groups on three further attentional 

tasks, the dual attention to response task (Dockree et al., 2006), the spatial and temporal 

attention network task (SPAN; Coull & Nobre, 1998), and the CombiTVA paradigm 

(see Vangkilde, Bundesen, & Coull, 2011). The null findings on the SPAN task were 

particularly surprising given Jha et al. (2007) finding of improvements to the orienting 

network following MBSR. However, the SPAN task uses non-valid cues to assess re-

orienting, whereas the orienting network of the ANT assesses the orienting benefit of 

valid spatial information, thus the two tasks are likely to involve relatively distinct 

skills. Of note, the stress-reducing effects of MBSR were supported because only those 

in the MBSR group showed significantly less perceived and physiological stress, while 

concurrently increasing their self-reported mindfulness levels (the mindfulness, 

attention and awareness scale; MAAS, Brown & Ryan, 2003) significantly. 

Another recent study looked at executive processes related to habitual 

responding. As discussed previously (section 3.2), Greenberg et al. (2012) found 

differences in cognitive rigidity between expert mindfulness meditators and non-

meditators. In the same paper the authors present the findings of a longitudinal study 

that was conducted to determine whether the differences in cognitive rigidity related to 

long term mindfulness training could be trained via a short term MBI. A waitlist control 

period was compared to a MBI that was based on MBCT. Also, in order to avoid 

practice related effects, cognitive rigidity was assessed using an alphabet-maze task 

(Cowen, Wiener, & Hess, 1953) at T1 and a Water Jug Task (see Appendix A) at T2. 

The intervention group performed significantly better than the waitlist control group on 

the water jug task at T2, with both groups performing similarly on the alphabet-maze 

task at T1. This result is suggestive of a reduction in cognitive rigidity following the 

intervention and further confirms the proposal that modulation of executive functions is 

an achievable short term goal of MT.  

 As intimated by the partial null findings presented thus far, the relationship 

between MBIs and attentional improvement is not entirely clear. Anderson et al. (2007) 
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compared an MBSR program to a wait list control period and found no difference 

between the groups on a number of measures of attentional control, including a Stroop 

paradigm, a continuous performance task (CPT) and a switching task. However, these 

results should be interpreted in light of the following potential confounds. Firstly, the 

Stroop paradigm was included to measure the inhibition of elaborative processing and 

was dissimilar to the Stroop paradigms that have been discussed thus far. In addition to 

the neutral (e.g. general) and incongruent (e.g. blue) words that are typically used, the 

task included both negative and positive words (5 most negatively and positively rated 

adjectives said to be self-characteristic), and words that are semantically suggestive of 

colours (e.g. sun). Accordingly, data were analysed using a Time (2) x Group (2) x 

Condition (5) ANOVA. Whilst these null results should not be easily dismissed, they 

should be interpreted as distinct from the other Stroop findings discussed herein as the 

task, and the statistical method used, will have incorporated both attentional and 

affective regulation rather than attentional regulation alone. Floor effects may also have 

played a part in this null finding as overall RT’s did not improve from T1 to T2. 

Secondly, whilst CPT performance, which was utilised to assess sustained attention, 

displayed the expected drop in performance (increased errors and RT’s) from block to 

block during task administration, errors surprisingly increased significantly across both 

groups from T1 to T2. Given that the task included 1600 total stimuli and only 160 

potential responses (10%) over the course of the 2 testing sessions, the sheer monotony 

of the task may confound results. A final, and potentially the most problematic 

confound, is that the authors requested the MBSR participants to ‘invoke’ mindfulness 

during task completion at T2. Although the authors do not elaborate further, it is likely 

that they instructed participants to approach the tasks with a mindful attitude (MBSR 

typically involves instruction on how to approach everyday situations with a mindful 

attitude that can be engaged without meditation) rather than to meditate. However, as 

the evocation of mindfulness is unlikely to come easy to relative beginners with only 8 

weeks practice, the overall task difficulty for the MBSR participants may have been 

increased as they now had the additional difficult task of attending mindfully in addition 

to the attentional tasks which are already difficult in themselves. Thus the two groups 

actually had slightly different tasks at T2. Interestingly, outside of task engagement 

MBSR was related to positive effects in the direction of better well being on a wide 

range of self report measures. In addition to increases in self reported mindfulness (10 

item version of the Toronto Mindfulness Scale; Bishop et al., 2003), larger changes 
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were seen in the MBSR group than the control group on measures of depression, 

anxiety, anger, positive affect, general rumination, anger rumination and anger 

sensitivity.  Thus, whilst not engaged in a concurrent attentional task the ability to 

evoke a mindful attitude may well be improved by MBSR, leading to the observed 

positive effects on the self report measures. Further, an improved ability to evoke 

mindfulness may result in more frequent engagement in mindful experiences and 

behaviours, which together may evidence improved present moment awareness which is 

a potential cause of these positive findings. Possible evidence for this assertion may be 

seen in the results of the final task employed in this study. Whilst no overall differences 

in accuracy or errors were found between the groups on an object detection task 

(Hollingworth & Henderson, 1998), changes in self reported mindfulness were 

associated with reduced consistency effects
12

 in the MBSR group, but not the waitlist 

group. The authors propose that reduced consistency effects may be interpreted as an 

improvement in non-focused attention, thus an improved ability to evoke mindfulness 

appears to be related to an enhancement of present moment awareness. An alternative 

explanation may be that attention was more consistently directed to the goal of the task 

(object present/absent) than to non-goal directed aspects of the display (scenes), this 

interpretation suggests that changes in self reported mindfulness may be linked to 

improved goal directed attention and salience network functioning. Of note, the object 

recognition task had no upper temporal limit before the next trial was presented, thus it 

may have been easier to invoke a mindful attitude during this task as opposed to the 

previously discussed tests of attentional control which inherently impose temporal 

limits on each trial. 

The above finding of reduced consistency effects with increased mindfulness is 

positive when taken together with Jha et al. (2007) aforementioned finding of reduced 

alerting network scores following an intensive 1 month mindfulness retreat. Regardless 

of whether these findings are interpreted as improved attentional readiness, improved 

non-focussed attention or improved goal directed attention, they are indicative of greater 

control over the limited amount of available attentional resources. A further retreat 

study that assessed the temporal limits of attention provides insight into how MT may 

modulate this attentional resource allocation. Slagter, Lutz, et al. (2007) incorporated 

                                                

12 Consistency effects are evident as an increased reaction time being needed to identify objects in 
inconsistent vs. consistent scenes. 
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both behavioural and electro-physiological methods to assess the changes in sustained 

attention resultant from a 3 month intensive vipassana retreat (approx. 8hours daily 

practice). A group of expert meditators were tested on the ABtask, both prior to and 

immediately after the retreat, with performance compared to that of a matched control 

group. Both groups were instructed to complete the task in a non-meditative state. The 

so called ‘attentional blink effect’, occurs when 2 targets (Tar1 and Tar2) embedded in a 

rapid stream of events are presented in close temporal proximity, which often causes the 

second target to be missed. Improvements in behavioural performance were seen for 

retreat participants only, evidenced by a reduced attentional blink size (reduced 

difference between performance on temporally close and distant Tar2 in relation to 

Tar1). In addition, a well established electrophysiological marker of attentional resource 

allocation (P3 ERP component elicited by Tar1) was shown to reduce in the retreat 

group. Given the concurrent increase in performance in the temporally close Tar2 

condition, this reduction in P3 mean amplitude suggests greater top down control over 

limited attentional resources, resulting in resources being split across both targets rather 

than being wholly exhausted by Tar1. This assertion was supported by a significant 

correlation between reduced blink size and reduced P3 amplitude. A decrease in the 

cross-trial variability of oscillatory theta-band activity after successfully identified tar2 

was also found for those individuals who showed the greatest reduction in P3 to tar1 

(reported in Slagter et al., 2009), suggesting that MT resulted in more efficient 

allocation of available attentional resources which enabled resources to become 

available more quickly to process new target information. Additionally, an increase in 

phase consistency of theta-band oscillatory neural responses over anterior scalp regions, 

to target stimuli only, was found using a dichotic listening task (reported in Lutz et al., 

2009). Importantly, this change in cortical signal stability predicted an observed 

reduction in reaction time variability. Taken together, the findings from both tasks 

suggest improvements in attentional resource allocation and an improved ability to 

sustain attention following the retreat. 

 The results of two studies examining short, intensive retreats provide further 

evidence of the potential benefits of short term MT. As presented earlier, van Leeuwen 

et al. (2012) found evidence for faster allocation and reallocation of attention (reduced 

global precedence effect) in the expert meditators as compared to matched controls. In a 

follow up longitudinal study, the authors assessed the performance of expert FA 
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meditators following a 4 day OM based intensive retreat, by comparing their 

performance to matched controls. At baseline, a robust global precedence effect was 

observed in both groups. However, the FA experts experienced a significant reduction 

in the global precedence effect following the OM retreat, whereas no difference was 

found in controls. Taking together the results of both studies, and consistent with the 

literature presented in this section thus far, OM based MT appears to uniquely alter the 

allocation of attentional resources. Nevertheless, a specific effect of intensive retreats 

themselves cannot be ruled out as both Jha et al. (2007) and Slagter, Lutz, et al. (2007) 

found no differences in non-focussed/temporal attention between expert meditators and 

non-meditators at baseline. In a further study (Chambers et al., 2007), meditation naïve 

participants were given an intensive 10 day vipassana meditation course analogous to an 

intensive retreat (11hrs daily practice), with their performance compared to that of 

matched controls on an internal switching task (detailed in Appendix A) designed to 

assess sustained attentional focus and attention switching. Reductions in overall RTs on 

the internal switching task, indicative of improved sustained attention, were observed in 

the mindfulness meditation group but neither group improved switch costs, thus MT 

was not associated with improvements in attention switching. Of note, improvements in 

mindfulness (MAAS) were associated with improvements on self report measures of 

depressive symptoms, rumination and positive affect. Additionally, the mindfulness 

meditation group significantly improved digit span backward scores (Digit Span 

backward subscale of Wechsler Adult Intelligence Scale; The Psychological 

Corporation, 1997) following the course, indicative of improvements in working 

memory capacity, whereas no change was observed in the control group 

Whilst positive findings were observed in all of the retreat studies discussed thus 

far, the results of Chambers et al. study are particularly relevant for a number of 

reasons. Firstly, the participants were meditation naïve at baseline, thus the positive 

findings in comparison to controls are more easily attributable to participation in the 

meditation course. The other retreat studies discussed herein have measured the impact 

of retreat participation on participants who were already experts, thus retreat 

participation may have capitalised on previously well trained attentional skills in order 

to produce positive results. Secondly, the follow up testing sessions were completed 7-

10 days after the course. Therefore the participants should have readjusted back into 

their daily routines, causing the more transient effects of the retreat to diffuse and 
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meaning that results are more likely to reflect trait attentional improvements. The other 

retreat studies discussed herein had tested participants at the end of the respective 

retreats, meaning transient state like changes to attention may have influenced results. 

Lastly, as the course was only 10 days long the study evidences attentional benefits after 

short term exposure to MT. This is important as a 10 day course is more accessible to 

the majority of people, particularly those in full time employment, than the intensive 1 

to 3 month retreats discussed herein. 

 Moving on, a number of studies have found functional differences in brain 

activity following MBIs. In a recent fMRI study, Goldin et al. (2013) found that MBSR, 

administered to individuals with social anxiety disorder, was associated with increased 

activity in attention related parietal cortices (right anterior inferior parietal lobe, right 

posterior inferior parietal lobe and right superior parietal lobe) during a cognitive 

reappraisal task (Goldin et al., 2009), as compared an active control intervention 

(aerobic exercise). Whilst the main aim of this study was to assess the impact of MBSR 

on emotional regulation, the authors concluded that enhanced recruitment of parietal 

attentional regions may reflect greater attentional engagement (rather than avoidance or 

distraction) because similar brain regions have previously been implicated in attentional 

alerting to a stimulus (Fan et al., 2005). A further fMRI study (Kilpatrick et al., 2011), 

comparing MBSR participation to a waitlist control period, found significant changes 

related to a more consistent attentional focus, enhanced sensory processing and 

reflective awareness of sensory experience. Structural changes have also been found 

following participation in MBSR. Hölzel, Carmody, et al. (2011) found increased grey 

matter concentration in a number of brain areas following MBSR, compared to a 

waitlist control group, including the left hippocampus, PCC, the temporo-parietal 

junction, and the cerebellum. Given that these regions are associated with learning and 

memory processes, emotion regulation, self-referential processing, and perspective 

taking, the potential effects of MBSR are wide reaching. Further, taken together said 

functional and structural changes suggest that long lasting trait like change may result 

from MBSR. However, studies with long term follow up schedules are required to 

confirm this assertion.  

Finally, a small group of studies have attempted to explore the relationship 

between MT, emotion regulation and cognitive/attentional functions. On the whole 

these studies have demonstrated that MT has a positive effect on affective regulation 
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with improvements in attentional functions a likely mechanism of change (e.g. Allen et 

al., 2012). As these findings are most relevant to a discussion regarding the implications 

of the findings of LS2, wherein a measure of affective processing was included, these 

studies are discussed more fully in Chapter 14. 

 Summing up, the longitudinal studies reviewed in this section suggest that 

MBIs and intensive retreats may positively influence attentional skills, with 

improvements observed in non-focussed, goal directed, sustained, and executive 

attention. Additionally, improvements in the allocation of limited attentional resources, 

and functional and structural changes in attention networks were also observed. These 

findings are positive as they suggest that the use of attentional functions during MT may 

result in trait changes to said functions, which in turn enables improved performance on 

tasks very different from the practiced meditation. This is consistent with the proposal 

that attentional processes become more efficient through training and further establishes 

the potential link between MT and attention. Moreover, as with the findings from 

mindfulness inductions, it is positive that engagement in MT may influence attentional 

functions in the short term, which is consistent with both traditional and modern 

conceptions of mindfulness that suggest attentional development, and FA, provide the 

building blocks for meaningful OM (Lutz et al., 2008) and its related improvements in 

mindfulness. Said short term gains are likely to be of major importance to both health 

care practitioners interested in employing MT and for individuals looking to take up 

MT.  

However, whilst these results appear to be consistent with the cross-sectional 

findings of enhanced attentional performance in expert meditators, the direct attribution 

of the observed improvements to specific MT practices remains problematic as a 

number of potentially active ingredients are incorporated into both MBIs and retreats. 

MBIs typically include multiple meditation techniques (completed both in group 

sessions and at home) and involve non mindfulness instruction (e.g. dealing with daily 

stress). The variety of MBI content is evident from the descriptions provided herein 

(Table 4) and the inconsistent results are likely to stem from the variety of different 

components, durations and comparison groups utilised in the extant literature. Retreats 

similarly include a variety of meditation techniques and other potential active 

ingredients such as changes in the sleep-wake cycle, mood and arousal, long periods in 

silence and with eyes closed, spending a large amount of time away from home and 
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daily life, and spending a large amount of time with limited social interaction. Further, 

given that Jha et al. (2007) found differing effects of MBSR and retreats, retreat 

participation appears to have unique effects due to the intensive MT involved. Also, as 

retreat studies typically involved expert meditators it is unknown whether retreat 

participation produces attentional improvements or capitalises upon and boosts already 

well developed attentional functions. It must be noted that as retreat participation has 

consistently produced positive effects on attentional functions (e.g. Jha et al., 2007; 

Lutz et al., 2009; Sahdra et al., 2011; Slagter, Lutz, et al., 2007; van Leeuwen et al., 

2012) and improved socio-emotional functioning (Sahdra et al., 2011), their utility is 

not in question. However, the discussed confounds mean that retreats may be unsuitable 

for identifying improvements in attentional functions that may be attributed to specific 

MT practices. The varying depth of information regarding MBI and retreat content that 

was disclosed by authors provides a further problem in attributing attentional change to 

specific practices, making it even more difficult to critically assess the observed 

findings.  

In conclusion, whilst phenomenological accounts (e.g. Lutz et al., 2008; Wallace 

& Shapiro, 2006), the findings from the meditative state literature (e.g. Hasenkamp et 

al., 2012), findings from expert meditators (e.g. Chan & Woollacott, 2007) and findings 

from brief inductions (e.g. Tang et al., 2007) all suggest that MT may develop 

attentional functions, the MBI and retreat findings discussed in this Chapter are unable 

to conclusively confirm this relationship. Thus, there is a stark need for longitudinal 

studies that assess a singular MT in order that 1) the development of attentional 

functions resulting from MT may be better understood and 2) we may improve our 

understanding of the potential mechanisms by which MT may exert positive effects. 
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Table 4: Summary of the reviewed intervention studies, including details relating to the 

type and amount of MT utilised, specific intervention content and comparison group 

information. Studies are presented in the order they appeared in the discussion. 

Study 
Type and 

Amount of MT 

MT Intervention 

Details 

Comparison 

Group Details 

Jha et al., 

2007 

Type: 

1) MBSR 

2) Vipassana 

Retreat. The retreat 

participants were 

expert meditators 

(see table 2 for 

details). 

Amount:  

1) 8 wks, 8 x 3hr 

group sessions. 30 
Mins of daily take 

home practice. 

2) 1 month, 10-12 

hrs of daily practice 

1) The mindfulness 

meditation instruction 

mostly emphasized 

attention to a single focus. 

For most concentrative 

exercises this focus was on 

the breath, however, a 

number of other exercises 

were included that had 

separate objects as the 

meditative focus, including 
bodily sensations during a 

body scan exercise and the 

sensations of walking 

during walking meditation. 

Elements of receptive 

attention introduced from 

wk 5. 

2) The retreat included 

sitting and walking 

meditation and instruction, 

although minimal, 

emphasised concentrative 
attention to the out-breath. 

 

Type of intervention: 

Waitlist controls. 

Demographics 

matched: No. 

Gaden Jensen 

et al., 2012 

Type: MBSR 

 

Amount: 8 wks, 8 x 

2.5hr group 

sessions, 45mins of 

daily take home 

practice. 7hr 

intensive retreat 

held in wk 6. 

As the MBSR conducted 

in Jha et al., 2007 (detailed 

above). 

Type of intervention:  

1) Non-mindfulness 

based Stress 

reduction. Resembled 

the MBSR but did not 

include meditation or 

training in a non-

judgemental attitude. 

 
2) Inactive Control. 

 

Demographics 

matched: The 3 

groups were matched 

for gender, age, 

education, marital 

status and perceived 

stress. 
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Study 
Type and 

Amount of MT 

MT Intervention 

Details 

Comparison 

Group Details 

Greenberg et 

al., 2012 

Type: MBCT 

 

Amount: 6 wks, 7 x 

2hr group sessions, 

20 mins of daily 

take home practice. 

MBCT was adapted to 

include the handling of 

general stress and 

everyday difficulty rather 

than a specific focus on 

depression. Various 

meditations such as 

breathing meditation, body 

scan, open awareness, 
walking meditation and 

compassion meditation) 

were included, as were 

stories and group 

discussions designed to 

foster an understanding of 

mindfulness. 

 

Type of intervention: 

Waitlist controls. 

 

Demographics 

matched: Age, 

gender and academic 

ability. 

Anderson et 

al., 2007 

Type: MBSR 

 

Amount: 8 wks, 8 x 

2hr group sessions. 
Daily practice not 

stated. 

Formal meditation 

practices such as body 

scan, mindful stretching, 

mindfulness of breath/ 
body/ sounds/ thoughts 

were included. Informal 

practices, which 

encouraged the application 

of mindfulness skills in 

everyday life (e.g., eating a 

meal mindfully) in order to 

cope more effectively with 

stress and anxiety were 

also included. 

 

Type of intervention: 

Waitlist controls. 

 

Demographics 
matched:  

Age, education and 

marital status. 

Slagter et al., 

2007 

Type: Vipassana 

Retreat. Participants 

were expert 

meditators (mean = 

2967 hrs) from 

varied traditions 

including Zen, 

Theravada and 

Tibetan that all 

included 

mindfulness 

techniques.  
 

Amount: 3Months, 

10-12 hrs of daily 

practice. 

 

The retreat training 

included Vipassana 

meditation and metta, a 

loving kindness and 

compassion meditation. 

 

Type of intervention:  

Matched controls. 

who were given a 1 

hr mindfulness 

meditation class, 1 

wk before each 

testing session and 

were instructed to 

meditate 20 mins 

daily during the 

intervening week 

 
Demographics 

matched: Age and 

education. 

 

van Leeuwen 

et al., 2012 

Type: OM based 

retreat 

 

Amount: 4 days. No 

other detail given. 

Participants were expert 

Zen meditators (mean = 3 

yrs). 

 

No specific details given 

regarding retreat content. 

Type of intervention: 

Matched controls. 

 

Demographics 

matched: Age, 

gender and education. 
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Study 
Type and 

Amount of MT 

MT Intervention 

Details 

Comparison 

Group Details 

Chambers et 

al., 2007 

Type: Vipassana 

Mindfulness Course 

(analogous to a 

retreat). Participants 

were meditation 

naïve at baseline.  

 

Amount: 10 days, 

11hrs per day. 

The taught vipassana 

meditation emphasised 

developing mindful 

awareness of body 

sensations. This is thought 

to anchor the individual in 

the present moment, 

helping them to recognise 

their emotional state. This 
practice is designed to 

insight into the nature of 

mind through mindful 

awareness of the present 

moment. 

 

Type of intervention: 

Matched controls. 

 

Demographics 

matched: Age, 

gender and education. 

Goldin et al., 

2013 

Type: MBSR. 

Participants had 

social anxiety 

disorder. 

 

Amount: 8wks, 8 x 
2.5hr group 

sessions. 1 day 

retreat. Daily 

practice amount 

was not detailed. 

 

Authors report that 

participants were trained in 

formal meditation; 

including breath-focus, 

body scan and open 

monitoring 

Type of intervention: 

Aerobic exercise. 8 

wks, 1 group session 

per wk and at least 2 

individual sessions. 

 
Demographics 

matched: Age and 

education. 

Kilpatrick et 

al., 2011 

Type: MBSR 

 

Amount: 8 wks. 8 x 

2.5hrs group 

sessions. 30 mins 
daily take home 

practice. 7hr retreat 

(6th or 7th wk).  

States that the group 

sessions included different 

guided meditations, 

awareness exercises, 

mindful movement, and 
group discussions, with the 

intent of fostering mindful 

awareness of how one 

responds to stress. 

 

Type of intervention: 

Waitlist control. 

 

Demographics 

matched: Not 
reported. 
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Study 
Type and 

Amount of MT 

MT Intervention 

Details 

Comparison 

Group Details 

Hőlzel et al., 

2011 

Type: MBSR. 

Participants were 

seeking stress 

reduction. 

 

Amount: 8 wks, 8 x 

2.5hr group 

sessions, 6.5hr 

retreat. Instructed to 
undertake 45mins 

daily take home 

practice. 

The program included 

formal mindfulness 

training exercises 

aimed at developing the 

capacity for mindfulness  

such as awareness of 

present-moment 

experiences with a 

compassionate, non-
judgmental stance, 

including a body scan, 

mindful yoga, and 

sitting meditation. Open 

monitoring meditation was 

introduced later in the 

course, with participants 

instructed to expand their 

field of awareness to 

include anything that 

appears in consciousness. 

 

Type of intervention:  

Matched controls. 

 

Demographics 

matched: Age and 

education. 
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3.5 Summary of Reviewed Literature and the Identified Limitations of 

Extant Research 

The reviewed literature establishes the importance of attentional functions to 

MT. Attentional functions, and the neural networks that subserve them, were observed 

to be engaged during mindfulness meditation using both fMRI and EEG recordings. 

Engaging in even a simple mindfulness of breathing meditation, a fundamental 

mindfulness based meditation, requires a number of attentional functions, including 

sustained attention functions that allow the meditator to remain focussed on and re-

orient back to the breath, and executive functions that allow the meditator to monitor for 

distractions and to disengage from said distractions. The alerting, orienting, executive, 

salience and default mode networks are all thought to be engaged during the meditation 

process. Whilst phenomenological accounts (Lutz et al., 2008) and recent findings 

(Brefczynski-Lewis et al., 2007) suggest that said skills and networks may be required 

less following extensive MT, the importance of FA and attentional development to MT 

is acknowledged in all modern conceptions of mindfulness (Bishop et al., 2004; Hölzel, 

Lazar, et al., 2011; Malinowski, 2013; Shapiro et al., 2006; Wallace & Shapiro, 2006). 

Further, as attention is central to MT, attentional development through MT has been 

proposed as a key mechanism for mindfulness related positive effects (Malinowski, 

2013). 

Cross sectional research found that expert meditators outperformed non-

meditators on a variety of attentional tasks. As these tasks were completed outside of a 

meditative state they are suggestive of a crossover of skills learnt during meditation into 

very different tasks. Additionally, structural and functional differences in brain regions 

and networks associated with attention were observed in experts, as compared to non-

meditators. The pattern of results suggests that long term MT may produce significant 

changes to attentional skills and the neural networks subserving them. However, the 

cross-sectional approach utilised in these studies has a number of inherent limitations. 

Firstly, results may be affected by a self-selection bias and a non-randomised design. 

Comparisons of experts and controls provide no information regarding why experts may 

have taken up MT in the first place. Therefore, such studies cannot rule out that 

meditators may possess better cognitive and attentional abilities independent of their 

engagement with meditation. It is feasible that pre-existing abilities may facilitate an 

individuals’ positive perception of MT, which in turn may keep them engaged with MT 
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over the long term. Secondly, the intention and motivation of the experts are 

uncontrolled in such studies. As proposed by the Liverpool Mindfulness Model 

(Malinowski, 2013), motivational factors play a key role in determining how an 

individual may engage in MT. Also, it is possible that expert meditators may be more 

motivated during testing sessions, their alertness and attentional focus may be 

heightened by their wish to prove that the time and energy they invested in meditation 

was worth the while. Thirdly, descriptions of prior and ongoing MT were varied and 

limited (see Table 2). Without explicit detail regarding prior and ongoing MT 

techniques, and/or the meditative traditions upon which they are based, attribution of 

positive effects to specific MT techniques is not possible. Lastly, whilst the cross 

sectional approach provides the most logical way to assess the effects of extensive MT, 

as it may be considered unfeasible to run a longitudinal study that incorporates such 

vast amounts of MT, this approach does not provide definitive information as to how 

attention may be developed through MT. 

Next, the effect of brief mindfulness inductions and short term MT were 

discussed. The longitudinal design, with a pre and post testing schedule, that such 

studies employ exerts more control over such extraneous variables and provides the 

most appropriate way of assessing the development of attentional functions through 

MT. Overall, the general pattern of results suggests that short term exposure to MT may 

produce attentional changes similar to those observed in expert meditators. However, a 

number of issues were identified with the extant studies reviewed herein. The brief 1 to 

2 session induction studies represented an attempt to assess the effect of a singular MT 

on attentional functions. However, the assessed MT typically involved FA rather than a 

combination of FA and OM and also did not include elements of a non-judgmental 

and/or non-evaluative awareness of ongoing experience. Thus the MT utilised in these 

studies may not actually include a number of the core elements of mindfulness and may 

be more closely linked to concentrative forms of attention. Thus the observed positive 

effects most likely evince transient state induced changes in attentional functions 

resultant from FA being invoked during the utilised MT, rather than the findings being 

caused by the participant invoking mindfulness. These findings are still positive as they 

demonstrate that techniques utilised to invoke a particular way of relating to experience 

can be useful even before they result in trait change. Attentional improvements were 

also seen following inductions of slightly longer duration (4-5 days) and MBIs, when 
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testing was not completed immediately after the induction of a mindfulness state, 

suggesting that short term exposure to MT may result in trait like change. The findings 

of functional and structural changes in attention related brain areas following MBSR 

further suggests that short term exposure to MT may produce lasting changes. A 

number of limitations specific to the MBI studies were identified. As MBIs are typically 

based on well described, well defined programs, they may superficially appear to 

provide an ideal way in which to assess MT related attentional development. However, 

as mentioned earlier MBIs were specifically designed to treat certain conditions. Thus, 

they include various potential active ingredients on top of MT, making it difficult to 

directly attribute attentional change to specific MT practices. Further, the design of the 

studies reviewed herein was not entirely consistent with differing levels of group work 

and group content, differing MT techniques and take home practices (see Table 4). The 

descriptions of the included content were also varied and often lacked sufficient depth, 

making it even more difficult to critically assess the observed findings.  

The mindfulness retreat studies also utilised a longitudinal design with a pre and 

post testing schedule, with improvements to attentional functions observed post retreat. 

However, such intensive retreats may capitalise on transient state attentional change 

from large amounts of daily MT (typically >8hrs daily). Further, as such studies 

typically examined expert meditators it is unclear whether retreat participation produces 

attentional improvements or capitalises upon and boosts already well developed 

attentional functions. Encouragingly, positive effects were seen when meditation naïve 

participants completed a mindfulness course that was analogous in intensity to a retreat, 

with testing occurring 7-10 days following course completion.  

It must be noted that not all the reviewed studies found positive effects. Whilst 

the discussed limitations may account for part of this observed inconsistency, the 

variety of comparison groups utilised in longitudinal examinations of MT provide a 

further reason for inconsistent results. A representative review of 25 longitudinal studies 

from a wide range of study areas (Appendix B) revealed comparison groups ranging 

from no practice and waitlist control groups to active control groups including 

relaxation techniques, listening to music or stories, mind wandering exercises, learning 

exercises (e.g. mneumonics) and treatment as usual. For future research, the selection of 

an appropriate control or comparison condition is essential in longitudinal studies of 
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MT (Chiesa et al., 2011; Tang & Posner, 2013) in order that the results of such studies 

may be comprehensively interpreted.  

Overall, the reviewed literature establishes a sound theoretical basis for the 

study of MT and attentional functions. Future research must now attempt to establish 

clear links between specific MT techniques, the core attentional processes they involve 

and how they may develop over time. Such research will enable the potential 

mechanisms and positive effects of MT to be better understood. The following sections 

discuss how the design of longitudinal studies included in this thesis attempt to 

overcome the limitations of extant studies in order to address this clear research need. 

Further, the global aim of this thesis will be discussed. 

3.6 Current Study:  Objectives, Hypotheses and Overcoming Past 

Limitations.  

3.6.1 Objectives and Hypotheses 

The global objective of this thesis was to investigate the potential for MT to 

positively modulate attentional functions and their associated neural mechanisms in 

older adults. However, before this investigation could take place it was first necessary to 

conclusively establish the link between attentional development and MT. Thus, this 

thesis includes 2 longitudinal studies with distinct objectives. The objectives and related 

hypotheses for each of these studies are detailed below. 

Longitudinal Study 1 

The main objective of longitudinal study 1 (LS1) was to investigate whether a 

singular, brief, MT technique, carried out regularly for 18 weeks, would lead to 

modulations of attentional functions and task related neural activity. A singular MT 

technique (described in detail in section 5.2.3) is used so that attentional improvements 

may be directly attributable to a specific MT. In short, the technique is a simple mindful 

breathing meditation whereby the task is to sustain attention to the breath, without 

manipulating it, if/when attention slips the task is to become aware of said slip and 

without further elaboration to re-direct attention back to the breath. Arising thoughts, 

feelings and sensations are observed with a curious non-judgmental attitude during this 

meditation. Thus the meditation includes key elements of MT such as FA, OM and the 
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emphasis on a non-judgmental, curious attitude. As discussed in Chapters 2 and 3, this 

kind of meditation requires a variety of attentional functions, most notably sustained 

and executive functions, and engages five attentional networks. Further, as mindful 

breathing meditations are incorporated into both traditional buddhist meditations and as 

part of contemporary MBIs, the assessment of this technique will provide valuable 

information regarding a potential mechanism for the improved attentional skills found 

in expert meditators and regarding a possible active ingredient of MBIs.  

Given that the prior research discussed in this thesis has demonstrated the 

importance of attentional functions and their associated networks during meditation, and 

the potential for both to be improved following MT, it was hypothesised that a singular, 

brief, MT technique would positively modulate attentional functions. Specifically, it 

was hypothesised that MT would lead to improvements in sustained and executive 

attention. Additionally, it was expected that MT would lead to changes in task related 

neural activity associated with attentional resource allocation. EEG and the ERP 

technique were employed to measure task related neural activity. Further details 

regarding the inclusion of this technique are detailed in the following sections.  

The specific hypotheses and outcome measures (behavioural and 

electrophysiological) relevant to each of the two experimental tasks administered for 

LS1 are detailed in their own respective Chapters (6 and 7).  

Longitudinal Study 2 

The main objective of longitudinal study 2 (LS2) was to investigate the potential 

for MT (the same MT was used in LS1 and LS2) to positively modulate attentional 

functions and task related neural activity in older adults. Chapter 9 contains the 

theoretical background for investigating the effects of MT in older adults. In sum, it is 

generally accepted that systematic age-related cognitive declines occur with increasing 

age; yet said declines may be influenced by non-biological factors such as education, 

diet, exercise and other life style choices (Hedden & Gabrieli, 2004; National Research 

Council, 2000). It has been suggested that such factors help build up a cognitive reserve 

that allows the brain to compensate for age related cognitive declines. The cognitive 

reserve hypothesis proposes that higher cognitive ability, and the factors associated with 

higher cognitive ability, lower the risk of dementia (Stern, 2003; Whalley et al., 2004).  
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As stated, it was expected that LS1 would demonstrate that even a singular, 

brief, MT would improve attentional functions. Furthermore, a number of cross 

sectional studies that compared older expert mindfulness meditators to age matched 

controls have observed that older expert meditators had better attentional performance 

(Pagnoni & Cekic, 2007; van Leeuwen et al., 2009) and potentially positive structural 

differences in brain regions relevant to cognitive declines (Kang et al., 2013; Lazar et 

al., 2005; Leung et al., 2013; Pagnoni & Cekic, 2007). Accordingly, a strong case can 

be made for investigating the potential for MT to positively influence attentional 

functions in older adults, especially so when these findings are taken together with the 

previously reviewed literature that suggests MT may improve behavioural performance 

(e.g. Jha et al., 2007) and produce functional (e.g. Goldin et al., 2013) and structural 

(e.g. Hölzel, Carmody, et al., 2011) changes within attention related brain regions. It 

was hypothesised that administering MT to a sample of older adults would improve 

behavioural performance and task related neural activity associated with core attentional 

functions. Similarly to LS1, it was specifically expected that MT would lead to 

improvements in sustained and executive attention and to changes in task related neural 

activity associated with attentional resource allocation. The specific hypotheses and 

outcome measures relevant to each of the 3 experimental tasks administered for LS2 are 

detailed in their own respective Chapters (11-13). 

A secondary objective of LS2, specific to the use of an emotional counting 

Stroop task (Chapter 12), was to examine whether a singular MT may modulate the 

attentional processing of emotional stimuli. Recent research has begun to suggest that 

MT related improvements in attention may foster improvements in emotion regulation 

(e.g. Allen et al., 2012). Thus it was hypothesised that MT would concurrently lead to 

improvements in attentional functions and the attentional processing of emotional 

stimuli.  

Key Objectives For both LS1 and LS2 

As the general pattern of results emerging from MT studies suggests that 

engaging in MT may produce positive attentional (see Chiesa et al., 2011) and 

emotional (see Chiesa, Serretti, & Jakobsen, 2013 for review) effects, it is becoming 

clearer that MT may be useful for a wide range of individuals. However, the extant 

literature has mostly assessed extensive MT and MBIs. Extensive MT may not be 
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appropriate for most people due to ongoing daily commitments (e.g. work, family) and 

MBIs are typically only administered to individuals with ongoing psychological 

conditions. Thus, research that assesses an easily accessible MT is much needed. 

Accordingly, a key objective of this thesis, that was consistent across both studies, was 

to ensure that the examined MT was highly accessible and easily incorporated into daily 

life without change or disruption to established daily routines. In order to meet this 

objective the administered MT involved only 10-15mins of practice, 5 days per week, 

and a minimal amount of group contact time. In LS1participants engaged in MT for 18 

weeks, whilst participants in LS2 engaged in MT for 8 weeks. Thus both studies 

examine short term and highly accessible exposure to MT.  

 A further objective was to ensure that the findings of LS1 and LS2 could be 

linked to trait, rather than state, attentional improvements. In order to establish that MT 

produces trait attentional improvements it was necessary that the induction of a 

mindfulness state and/or engaging in MT did not precede task completion. Thus, all of 

the experimental tasks detailed herein were completed in a non-meditative state by all 

participants. Further, the experimental tasks that are utilised in LS1 and LS2 are able to 

assess whether attentional functions developed through MT may crossover and improve 

performance on other tasks as all of the employed tasks are very different from the task 

of meditation. 

3.6.2 Overcoming Past Limitations 

Section 3.6.1 briefly introduced how LS1 and LS2 were designed with specific 

objectives to overcome the main limitations of previous research. The current section 

details how the design of these studies overcomes some of the more general limitations 

of prior research. 

Comparison Groups 

The attribution of attentional improvements to specific MT practices is difficult 

when assessing extant studies as they have incorporated a wide range of control and 

comparison groups (see Table 4 and Appendix B). In order to comprehensively assess 

the attentional effects of MT, LS1 and LS2 incorporated comparison groups that allow 

for the control of a wide range of extraneous variables. 
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LS1 incorporated a waitlist control design. Wait list control periods are the most 

widely used control condition in longitudinal research. Comparing MT to a waitlist 

control condition allows the experimenter to control for a range of extraneous variables 

such as intention and motivation for enrolment, as well as for repeated administrations 

of self report measures and cognitive tasks, whilst demographic variables are typically 

controlled via random group allocation (discussed briefly below). As such, a wait list 

control design provides an appropriate comparison group for first empirical explorations 

of a singular MT technique and attentional performance. It must be noted that there are 

a number of potential non-specific effects of even a singular MT technique, such as 

group and instructor contact time. Thus, in LS1 it was decided that only a minimal 

amount of group and instructor contact time would be incorporated (3hours).  

As a logical next step, LS2 incorporated an active control condition in order to 

provide a more robust exploration of the effects of MT. The selection of an active 

control condition is discussed in section 10.2.4. In short, the selected active control 

condition allowed for an even wider range of extraneous variables to be controlled 

including group contact time, daily exercise time, experimenter contact and motivation, 

group allocation, learning new information, participants’ intention and motivation, and 

exercise environment. Additionally, all advertising for LS2 described the study as an 

“investigation into the effects of two cognitive training exercises.” Thus, participants’ 

intention and motivation were controlled between groups as they were not aware that 

they may be asked to engage in MT and consequently they were not primed to 

incorporate MT into their daily routines.  

Meditation Naïve Participants and Randomisation  

In section 3.5 a number of limitations were discussed concerning the cross 

sectional and retreat studies that included expert meditators. In order to overcome these 

limitations, both LS1 and LS2 explored the effects of MT in meditation naïve 

participants. This ensures that the findings of this study are generalisable to anybody 

who is interested in taking up MT. Further, group allocation was randomised for both 

studies in order to prevent systematic differences between groups at enrolment, 

including differences that can occur due to allocation and self selection bias. 

Self Reported Mindfulness 
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 The use of self report measures of mindfulness is very inconsistent across 

mindfulness studies with a large number of longitudinal studies omitting such measures. 

This inconsistency is likely to stem from uncertainty regarding whether such measures 

are measuring mindfulness or mindful behaviours (Chambers et al., 2009; Rapgay & 

Bystrisky, 2009). Despite such uncertainty it was decided to include a measure of self 

reported mindfulness in both LS1 and LS2 to ensure that no differences existed between 

groups at baseline and to assess if self reported mindfulness was modulated following 

MT. Herein self reported mindfulness was measured using the Five Factor Mindfulness 

Questionnaire (FFMQ; Baer et al., 2006). The FFMQ was expected to provide the most 

comprehensive assessment of different facets of mindfulness as the questionnaire was 

derived from an exploratory factor analysis of 6 existing self- report measures of 

dispositional mindfulness. More details regarding the FFMQ may be found in section 

5.3.2. 

Electrophysiological methods 

A key objective of both LS1 and LS2 was to examine the neural mechanisms 

that subserve the observed attentional improvements associated with MT. Accordingly, 

EEG and the ERP technique were employed to measure the neural activity produced 

during task completion.  

EEG is a procedure that measures the electrical activity of the brain over time 

using electrodes placed on the scalp. The recorded EEG reflects thousands of 

simultaneously ongoing brain processes, meaning the brains response to a single 

stimulus or event is usually not visible in the EEG recording of a single trial. However, 

repeatedly administering the same event allows an experimenter to average out the 

random activity that does not result from the examined event, providing a useful 

estimate of the activity related to said event, namely, the ERP. 

The ERP technique is one of the most widely used methods for studying the 

neural activity that is linked to perceptual, motor and cognitive processes. ERPs provide 

insight into how the human brain processes signals and prepares for action. A major 

advantage of ERP’s is that they offer the opportunity to examine changes to the 

underlying processes that produce behavioural and emotional responses, whereas 

behavioural measures only allow us to examine the outcome of this underlying neural 
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activity. A further major advantage of ERP’s is that they offer excellent temporal 

resolution (typically in the 1ms range). Therefore ERP’s provide a continuous measure 

of the processing that occurs between a stimulus and a response, making it possible to 

determine which stage(s) of processing may be affected by a specific experimental 

manipulation. Importantly, such changes may occur even in the absence of any 

observable behavioural change. 

Over many decades researchers have identified specific components within 

ERP’s that are associated with specific neural processes. A number of these ERP 

components have been implicated in stages of attentional processing. Thus, said ERP 

components are examined herein to provide information regarding the effects of a 

singular MT on attentional processing. As the ERP components that are analysed herein 

represent ongoing neural activity during stages of attentional processing, they provide 

information regarding the allocation of attentional resources during task completion. 

Furthermore, as ERP’s have been shown to be sensitive to age related change (Onofrj et 

al., 2001), ERP analyses provide an appropriate method for assessing MT related 

changes in underlying attentional processes in older adults. The ERP components of 

interest and related hypotheses are presented separately for each task in the relevant 

theoretical backgrounds as they are somewhat distinct across tasks. 
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Chapter 4. General Experimental Procedure and Data Analysis 

Strategies 

Five experiments (two LS1 and three LS2) detailed in this thesis involved the 

use of EEG recordings during task completion. The EEG setup, data processing and 

data analysis techniques were largely consistent across tasks. Chapter 4 provides details 

of these procedures. The Spatial Short Term Memory task (SSTM), which was a strictly 

behavioural experiment used to control for working memory capacity between groups, 

did not involve EEG recordings. However, the SSTM had a similar set up to the other 

tasks detailed in this section and is referred to as required. 

4.1 Visual Stimulation Software 

The Stroop task, ANT, ABTask and Emotional Counting Stroop (ECStroop) 

task were all controlled by the Cogent 2000 toolbox
13

 (v1.25) running in the Matlab 

environment (Mathworks, http://www.mathworks.com). The SSTM was also run in the 

Matlab environment but was controlled by the Psychophysics Toolbox v2.54 (Brainard, 

1997).The CPT was run using E-Prime version 2.0 (Sneider, Eschman, & Zuccolotto, 

2012).  

4.2 Equipment 

Whilst the participants completed the computerised tasks, their EEG was 

recorded continuously from 64 active Ag/AgCl electrodes with a BioSemi Active-Two 

amplifier system (BioSemi, Amsterdam, Netherlands). The electrode caps used by this 

system ensure that the electrodes are placed in locations according to an extended 

version of the 10-20 system (Figure 3). In addition, horizontal and vertical electro-

oculogram were recorded to monitor for eye movements and blinks with supra and 

infra-orbital electrodes on the left eye and two electrodes placed next to the external 

canthi. Participants were instructed to refrain from blinking and all stimuli were 

presented centrally on the monitor in order to minimise ocular artifacts. EEG and EOG 

were sampled at 512Hz.Two additional electrodes (Common Mode Sense and Driven 

                                                
13 Cogent 2000 Acknowledgement: This experiment was realised using Cogent 2000 developed by the 

Cogent 2000 team at the FIL and the ICN and Cogent Graphics developed by John Romaya at the LON at 

the Wellcome Department of Imaging Neuroscience 

http://www.mathworks.com/
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Right Leg) were used as reference and ground (for details see www.biosemi.com/faq/ 

cms&drl.htm).  

 

Figure 3: Extended 10-20 electrode locations 

4.3 Stimulus Presentation 

Each task was presented on a 21 inch CRT monitor with a 100Hz vertical 

refresh rate and 1024 × 768 screen resolution. Participants viewed the monitor from a 

distance of approximately 90cm through an electrically shielded window. An adjustable 

chair allowed the centre of the monitor to be aligned with the participants’ eye level. For 

each of the tasks involving EEG recordings the participants responded using pre-

specified keys on a standard QWERTY keyboard which was placed on a desk in front 

of the participant. SSTM responses were input via a mouse which was similarly placed 

on a desk in front of the participant. The participants were sat in an electrically shielded 

chamber throughout the EEG recording sessions whilst the experimenter monitored the 

recordings from a computer terminal situated immediately outside. 
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4.4 EEG Pre-Processing and Artifact Rejection  

The standardized EEG pre-processing and artifact rejection procedure that was 

used for each of the ERP experiments is outlined below. All of the analyses described in 

this thesis were conducted using stimulus onset locked event related potentials. 

EEGLAB (Delorme & Makeig, 2004), ERPLAB (http://erpinfo.org/erplab) and the 

Fully Automated Statistical Thresholding for EEG artifact Rejection procedure 

(FASTER, Nolan, Whelan, & Reilly, 2010) were employed during the pre-processing of 

data. ERPLAB and FASTER are plugins that run using EEGLAB functions. ERPLAB 

was utilised for epoching, low and high pass filtering of EEG data, automated and 

manual artifact rejection of EEG data, generating averaged ERPs, plotting ERP 

waveforms and topographies, and for exporting data for statistical analysis. FASTER 

was employed to remove or correct artifacts in the data using built in automated artifact 

detection processes and independent components analysis (ICA). The pre-processing of 

data was conducted as follows: 

Step 1: Epoching 

The continuous EEG recordings were segmented offline into epochs starting 

200ms prior to and ending 800ms post stimulus onset. 

Step 2: Removal of epochs containing blinks that occurred during stimulus presentation 

Blinks occurring during stimulus presentation fundamentally change the 

processing of the stimulus (especially if the stimulus is not seen or only part seen 

because of the blink). As such, epochs containing said blinks were excluded from 

further processing rather than simply being corrected and included. ERPLABs moving 

window peak to peak function (100 µV amplitude threshold, 200ms window, 50ms 

steps) was used to exclude epochs with blinks that occurred around the time of stimulus 

presentation (-200ms to 200ms post stimulus) prior to the data being run through 

FASTER.  

Step 3: Automated artifact identification and correction using FASTER 

FASTER was utilised as a first step for artifact detection and to correct for 

stereotyped ocular artifacts as it contains automated routines for artifact detection and 
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correction that have been shown to perform better than visual artifact detection by 

experts (Nolan et al., 2010). FASTER was run using a predefined rejection threshold of 

±3 z-scores for each parameter. Artifacts were detected and corrected regarding single 

channels
14

, epochs
15

, independent components
16

 (based on the infomax algorithm, Bell 

& Sejnowski, 1995) and single-channel single-epochs
17

. Data were baseline corrected 

prior to ICA (-60 to 0ms for LS1 Stroop task and -100 to 0ms for all other tasks). Fz 

was used as reference during pre-processing as per instructions detailed in the FASTER 

manual. The output from FASTER produces data that is algebraically re-referenced to 

average reference. 

Step 4: Filtering 

ERPLAB was used to low pass filter the data in order to exclude high frequency 

noise (eg. muscle tension). A 16Hz low pass filter was used for the data acquired during 

LS1 and a 30Hz low pass filter was used for the data acquired during LS2. An 

analogous 0.16hz online high pass filter was applied during data acquisition. For LS2 no 

further high pass filter was used whilst a 1Hz high pass filter was used for LS1. 

                                                

14 Artifactual activity within specific channels: Potential causes include movement of electrode during 
recording, poor contact with the scalp or mechanical fault. Specific channels were classified as artifactual 

based on their correlation with neighbouring channels and the variance of the channels signal over time. 

Bad channels were removed from further analysis and replaced with data reconstructed by interpolating 

from neighbouring electrodes. 

15 Artifactual activity within specific epochs: The most likely cause would be participant movement 

which physically moves the electrodes and causes all channel noise within an epoch. FASTER identifies 

such artifactual epochs by examining the amplitude range and variance within an epoch and the deviation 

from the channels average. Artifactual epochs were removed from further analysis. 

16 Artifactual independent components (IC): ICA was used to identify artifactual independent 

components. ICA is a computational method that separates time series data into statistically IC 

waveforms. ICA outputs a matrix that transforms EEG data to IC data, and its inverse matrix to transform 

IC data back to EEG data. These matrices give information about an IC’s spatial properties, and the data 
gives information about the IC’s temporal activity. Data recorded from scalp electrodes can be considered 

summations of EEG data and artifact, which are independent of each other. ICA may thus be used to 

separate artifact from EEG signal. FASTER contains algorithms for unsupervised removal of artifactual 

IC’s and was mostly used herein to correct for eye blinks. Removed IC’s can be and were viewed to 

ensure that they were indeed artifactual. 

17 Artifacts in single channels in single epochs: The above 3 methods remove a high percentage of 
artifacts, however, small transient artifacts may remain on single channels, within single epochs. For 

example, short bursts of white noise due to transient electrical faults, or electrodes that lost contact during 

a recording and were not sufficiently noisy to be detected as bad channels. Such artifacts were corrected 

by interpolating the single channel within the single epoch. 
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Step 5: Additional automated artifact rejection 

Three of ERPLABs built in artifact detection functions were used to exclude any 

epochs containing artifacts that had been missed by FASTER. These functions were 

applied to the entire epoch. The simple voltage threshold function was used to exclude 

epochs with voltages that exceeded -100 and +100 µV. The step function was used to 

remove epochs with saccadic eye movements using a 60 µV threshold, 400ms wide 

window and 10ms steps. Finally, the moving window peak to peak function was used 

twice, firstly to identify any remaining blinks using  a 100 µV threshold, 200ms window 

and 20ms steps and secondly to identify slow drifts using a 75 µV threshold, 400ms 

window and 20ms steps. 

Step 6: Visual inspection of EEG data and manual artifact rejection  

As a final step the EEG data were inspected visually. This served 2 purposes. 

Firstly, to identify any epochs containing artifacts that had been missed by the rigorous 

pre-processing strategy. Secondly, to ensure that the epochs being excluded by the 

automated routines were being excluded correctly. No issues with the automated 

rejection and correction routines were identified during the visual inspection. 

Outcome of artifact rejection and correction procedures 

The stringent artifact detection and artifact correction procedures detailed above 

resulted in an average trial loss of 11.8 % per task, across the 5 tasks, for the 

participants who are included in the final ERP analyses (see Table 5). Importantly, t-

tests computed for each time point for LS1 and LS2 found that the amount of available 

data was comparable across groups, for all tasks, at all time points (all p >.05).  

Individual data sets with more than 30% loss of data were considered candidates 

for exclusion. The most common reason for data set exclusion was an excessive loss of 

trials due to movement related artifacts. This problem was more severe in LS2 as the 

sample included a large number of participants who had limited prior computer use, 

with unfamiliarity of computers being the most likely cause of excessive movement 

during task completion. 
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Table 5: Summary of trial loss due to artifact rejection procedures. Includes only the 

participants who were included in the final statistical ERP analyses. 

 Time  Trial Loss Per Task (%) 

Longitudinal Study 1  Stroop Task (N= 28) ANT (N= 28)  

 T1 9.4 6.0  

 T2 8.2 7.7  

 T3 9.0 8.6  

      

Longitudinal Study 2  CPT (N= 44) ECStroop (N= 43) ABTask (N= 45) 

 T1 15.7 13.8 14.5 

 T2 19.7 17.6 10.9 

4.5 ERP Component Identification Strategy 

A standardized procedure for identifying and analysing ERP components was 

employed for each of the experiments described in this thesis. The procedure was as 

follows: 

Step 1: Grand mean evoked potential 

To ensure that task relevant ERP components were identified based on the 

largest amount of available data, time 1 (T1) data for all subjects who completed the 

task were pooled to create a grand mean evoked potential.  

Step 2: Identification of potential ERP components and time windows of interest 

The grand mean evoked potential was used to generate instantaneous amplitude 

spherical spline interpolated scalp topographies. Said topographies allow for the 

inspection of the amplitude at all electrode sites at the chosen moment in time. This 

method allows identification of time windows during which ERP components appear to 

be occurring. Topographies were generated in 10ms intervals, from stimulus onset to 

800ms post stimulus, depicting time-dependant amplitude changes across electrode 

sites. Figure 4 provides an example of topographies that clearly illustrate a positive 

central posterior ERP component developing from 350ms onwards, peaking around 

540ms and then slowly fading away. 
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Figure 4: Example instantaneous amplitude spherical spline scalp topographies 

displayed in 10ms steps from left to right for a time window of 350ms to 640ms 

Step 3: Identification of electrode sites of interest 

 The next step was to identify electrode sites that were representative of the 

maxima of the identified ERP component. This step was completed by using the grand 

mean evoked potential to produce two further plots. Firstly, a mean amplitude spherical 

spline topography was produced based on the time window that was identified in step 2 

(Figure 5). Secondly, a topographical arrangement of ERP waveforms was produced 

(Figure 6). 

 

Figure 5: Example mean amplitude spherical spline interpolated topography for 350 to 

640ms time window 
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Figure 6: Example topographical arrangement of ERP waveforms 

 Visual inspection of the mean amplitude spherical spline scalp topographies 

allowed the general area of important electrode sites to be identified and guided the 

visual inspection of the topographical arrangement of ERP waveforms. It is clear that 

the identified ERP component’s maximum was best represented by electrode site Pz for 

the examples shown in Figure 5 and Figure 6. In certain instances, if the topography of 

a particular component was widespread across multiple electrode sites, the data from 

adjacent electrode sites were averaged to best capture the maxima of an ERP 

component. This process often provides a more robust reflection of the maxima of a 

component in instances where the topography of an ERP component may vary slightly 

between participants. 

Step 4: Finalise time window 

The ERP waveform of the identified electrode site (or cluster of sites) was 

visually inspected to precisely identify the time window that best captured the 

component of interest. 
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Step 5: Data exported for statistical analysis 

The ERP component of interest was measured by calculating the mean 

amplitude, at the chosen electrode site (or cluster of sites), for the chosen time window. 

Said mean amplitudes were exported to SPSS and used as dependent variables for 

statistical analysis. 

Additional information 

Time windows, ERP components and electrode sites of interest often vary across 

conditions. Thus, the specific time windows, ERP components and electrode sites that 

were used during data analysis will be reported in the relevant outcome measures and 

hypotheses sections. Each of these sections will discuss the identified ERP components 

in the context of prior research. 

4.6 Statistical Analysis Procedures 

The employed statistical analysis procedures were similar across LS1 and LS2. 

The main analyses utilised either Mixed ANOVAs or Repeated Measures ANOVAs to 

explore both behavioural and electrophysiological changes over time. As both studies 

are longitudinal examinations of MT, Group x Time interactions were the focus of each 

analysis as said interactions would evince differential changes over time between 

groups. Planned contrasts and Paired Samples t-tests were used in certain instances to 

further qualify observed Group x Time interactions. Effect size r was calculated for 

significant focussed effects only, e.g. significant Group x Time interactions between 2 

time points. Potential baseline differences between groups were analysed using 

independent samples t-tests.  

Throughout this thesis degrees of freedom (df) were corrected using 

Greenhouse-Geisser estimates of sphericity on the rare occasions that Mauchly’s test 

indicated that the assumption of sphericity had been violated. Similarly, if Levene’s test 

for equality of variances was violated df were adjusted and the corresponding ‘equality 

of variances not assumed’ value was reported. Whenever the above occurs it is clearly 

denoted throughout. 
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Chapter 5. Longitudinal Study 1: The Effect of Mindfulness Training 

on Attentional Functions and Task Related Neural Activity  

5.1 Longitudinal Study 1 Overview 

Contents of Chapters 5-8 

Chapter 5 describes the study design, methods and materials utilised in LS1. 

Chapter 5 also contains the results of the analyses concerning the administered self 

report measures and from the tests for baseline differences between groups. Chapters 6 

and 7 are the empirical Chapters related to LS1, detailing the use of the Stroop task and 

ANT respectively. Each of these Chapters contains the theoretical background for the 

use of the respective experimental task, the associated hypotheses and outcome 

measures, the task design and the empirical results. Chapter 8 contains a discussion 

regarding the implications of the findings from LS1. 

Longitudinal Study 1 summary 

LS1 was conducted to meet a main objective of this thesis, to investigate 

whether a singular, brief, MT technique, carried out regularly for approximately 18 

weeks, would lead to detectable changes in attentional functions and their associated 

neural mechanisms. To this end, 40 participants were randomised to a mindfulness 

training group (MTG) or wait list control group (WCG) prior to completing two 

different tests of attentional functions (Stroop Task and ANT), at three time points, 

approximately nine weeks apart.  

A series of Mixed ANOVAs, planned contrasts and paired samples t-tests 

demonstrated that even a singular, brief, MT technique is able to modulate neural 

processes related to attentional and object recognition processes (Stroop Task), to 

improve behavioural performance associated with improved sustained and executive 

attention (ANT) and to increase self reported mindfulness (FFMQ). The results detailed 

in Chapters 5-8 lay the empirical foundations for LS2 and an examination of the 

potential for MT to positively modulate attentional functions and their associated neural 

activity in older adults. 
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5.2 Methods 

5.2.1 Design and Procedure 

LS1 was a randomised wait list control group study. The study design 

incorporated a number of key features in order to more directly attribute improvements 

in attentional functions and their associated neural activity to MT. First and foremost, a 

singular MT technique was used (described in section 5.2.3), making it easier to 

demonstrate MT related change. Second, an approach with a minimum of group contact 

time (3 hours) and limited amount of daily MT (10-15 minutes) was employed, ensuring 

the assessed MT was a viable option for people who may consider integrating 

mindfulness practice into daily life without change or disruption to established daily 

routines. Lastly, as all of the enrolled participants would eventually be offered MT (post 

study in the wait list control group), participants’ intention and motivation for enrolment 

were controlled. 

Participants were tested at 3 time points. For the participants who were included 

in the statistical analyses the average time between T1 and T3 was 18.4 weeks, with 9.8 

weeks occurring between T1 and T2 and 8.6 weeks from T2 to T3
18

. Importantly, these 

times were controlled across groups (t-tests all p > .3). The inclusion of T2 midway 

through the study allowed for a more complete assessment of the trajectory of change. 

Prior to T1 participants were randomised to MTG or WCG. Participants were pre-

screened to ensure they were meditation naïve (no previous meditation experience), had 

normal or corrected to normal visual acuity, confirmed no ongoing or recent mental 

health problems or neurological disorders (e.g., epilepsy) and confirmed they were not 

receiving any psychopharmacological treatments.  

LS1 employed two well established tasks in order to assess a wide range of 

attentional functions and their associated neural mechanisms. A computerised version of 

the Stroop task was employed to examine the behavioural and electrophysiological 

changes related to the processing of conflicting stimulus material that may occur 

following MT. The ANT was employed to assess behavioural and electrophysiological 

modulations of attentional functions related to the alerting, orienting and executive 

                                                

18 The logistics of conducting such a vast amount of testing sessions dictated the detailed time frames. 
The initial idea had been for testing sessions to occur at baseline and after 8 and then 16 weeks. 
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networks of attention. At each time point, participants first completed the self-report 

questionnaires (see 5.3 Materials) before completing the ANT followed by the Stroop 

Task. The participants’ EEG was recorded during task completion. Testing sessions 

were approximately 2 hours long.  

5.2.2 Participants 

The flow of participants through the study is detailed in Figure 7. In total, 40 

healthy adults (13 males; mean age 35.4 years) were recruited via a combination of 

online advertisements and from a psychology participant panel maintained at Liverpool 

John Moores University (LJMU). Of these participants, 38 described themselves as 

“White” or “White/British,” 1 as “White/Irish” and 1 as “White/Caribbean.” The 

majority of participants stated no religion, of the remaining participants 15 classed their 

religious background as Christian (Christian, Roman Catholic, Church of England), 1 as 

Atheist and 1 as Agnostic. The sample was mostly made up of working adults who were 

in full-time/part-time employment or in voluntary work. The sample only included 3 

students. The majority of participants were educated to at least undergraduate level and 

11 participants held postgraduate qualifications. All participants provided written, 

informed consent and were reimbursed with £10/h for time spent attending LJMU. 
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The study was carried out in line with the ethics guidelines of the British 

Psychological Society and was approved by the LJMU Research Ethics Committee. 

 

Figure 7: Flow of participants through the study 
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5.2.3 Mindfulness Training 

Prior to T1 testing, the MTG received an introductory 2 hour MT session. In 

order to obtain accurate baseline data the MTG were instructed not to begin practicing 

meditation until after T1 testing was complete. A follow up 1 hour meditation training 

session was given to the MTG prior to T2. Throughout the study the participants had an 

experienced meditation teacher available to answer questions or give further instruction 

at all times. Only one participant made use of this opportunity, on one occasion. 

The MT involved a simple mindfulness based breath awareness meditation 

taught by a meditation teacher with more than 15 years of teaching experience. In this 

meditation the meditator is required to focus their attention on the sensations 

accompanying their breathing, either attending to the experience at the nostrils, around 

the diaphragm or the movement of the abdomen when in-and exhaling, without 

manipulating the breath in any form. Whenever attention would slip or wander off, the 

task would be to become aware of it and, without further elaboration, to redirect the 

focus of attention back to the sensation of breathing. In addition to this focusing of 

attention, participants were instructed to observe other mental experiences, arising 

thoughts, feelings or sensations, trying not to judge or evaluate them, and maintain a 

curious, non-elaborating attitude toward them. This meditation instruction is in line with 

common psychological mindfulness conceptualisations that emphasise the development 

of attentional abilities combined with a specific, non-judgmental and non-evaluative 

attitude toward the different mental experiences that may arise (e.g., Bishop, 2002; 

Chiesa & Malinowski, 2011; Malinowski, 2008; Shapiro et al., 2006). For the period 

between T1 and T3 (18 weeks) participants were asked to meditate regularly for a 

minimum of 10 minutes per day, at least 5 days per week and to record frequency and 

duration in their meditation log (section 5.3.3) on a weekly basis.  

The participants did not receive any particular instructions regarding body 

posture beyond the emphasis of trying to sit in an upright, relaxed position with a 

straight back. They had the liberty to meditate on a chair, meditation stool, or cushion. 

Given the low dosage of meditation it was not expected that the specific meditation 

posture would produce a discernible effect and thus these details were not recorded. 
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5.3 Materials  

5.3.1 Global Well-Being  

The Subjective Happiness Scale (SHS, Lyubomirsky & Lepper, 1999) was used 

to assess the global, subjective assessment of participants’ own happiness and well-

being. The SHS is a brief four-item questionnaire scored on a seven-point Likert scale 

(range: 4-28) and includes items like “In general I consider myself a very happy 

person.” High total scores reflect high levels of global well-being/happiness. The SHS 

has been successfully used in different community-based and college-student samples, 

showing Cronbach’s alpha values between 0.79 and 0.94 (Lyubomirsky & Tucker, 1998 

Lyubomirsky & Lepper, 1999).  

5.3.2 Mindfulness  

The FFMQ was used to assess different aspects of mindfulness that were 

expected to be influenced by MT. This 39-item questionnaire was derived from an 

exploratory factor analysis of 6 existing self- report measures of dispositional 

mindfulness (Baer et al., 2006). Validation on 2 samples (Baer et al., 2006; Baer et al., 

2008) suggests a 5 factor structure: (1) Non-reactivity to inner experience (FFMQ-NR; 

7 items), e.g., “I watch my feelings without getting lost in them”; (2) Observing  

internal and external sensations including thoughts, emotions, sights, sounds, and smells 

(FFMQ-O; 8 items) e.g., “I intentionally stay aware of my feelings”; (3) Acting with 

awareness describes attending to one’s actions in the present moment and can be 

contrasted with automatic, impulsive, or habitual behaving (FFMQ-A; 8 items), e.g., “It 

seems I am running on automatic without much awareness of what I’m doing”; (4) 

Describing involves labelling internal experiences with words (FFMQ-D; 8 items), e.g., 

“When I have a sensation in my body, it’s hard for me to describe it because I can’t find 

the right words”; (5) Non-judging of experience means refraining from value judgments 

or self-criticism (FFMQ-NJ; 8 items) “I tend to evaluate whether my perceptions are 

right or wrong.” The response format comprises a 5-point Likert scale (1 = never or 

very rarely true, rarely true, sometimes true, often true, and 5 = very often or always 

true). After reversing the scores for the 19 negatively worded items, scores between 1 

and 5 are summed to produce totals for each subscale and a total scale score (range: 39–

195). The FFMQ has been shown to have good internal consistency and significant 

relationships in the predicted directions with a variety of constructs related to 
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mindfulness. The internal consistencies (Cronbach α) for these facets have been 

reported as 0.75 for FFMQ-NR, 0.83 for FFMQ-O, 0.87 for FFMQ-A, 0.91 for FFMQ-

D, and 0.87 for FFMQ-NJ (Baer et al., 2006).  

5.3.3 Meditation Log  

On a weekly basis participants in the meditation group completed a brief 

meditation diary (online or paper-pencil version), which recorded how often they 

meditated in a given week and the average length of the meditation sessions.  

5.4 Overall Results 

 This section contains a brief summary of the results that are applicable to LS1 as 

a whole. Included are the results of tests for baseline differences between the groups and 

the self report questionnaire results.  

5.4.1 Test for Baseline Differences Between Groups 

Importantly, as summarised in Table1, there were no baseline differences 

between the MTG and WCG in terms of age, dispositional mindfulness and subjective 

happiness.  

Table 6: Summary of tests for baseline differences, with mean values (standard 

deviations) and respective statistical values (all two tailed) for the comparison between 

MTG and WCG. Includes only the participants who are included in the statistical 

analyses 

 MTG (N=14) WCG (N=18) Statistical Values 

Age (years) 36.2 (12.4) 35.4 (11.1) t(30) = .185,  p = .885 

FFMQ-total 126.9 (14.6) 134.8 (13.2) t(30) = -1.594,  p = .121 

SHS-total 22.0 (2.9) 21.3 (3.4) t(30) = .618,  p = .542 

5.4.2 Self Report Results 

Mindfulness  

Total mindfulness score (all 5 subscale scores combined) and the scores for each 

of the 5 FFMQ subscales were subjected to separate Time (3) x Group (2) Repeated 

Measures ANOVAs. For the total mindfulness score (FFMQ-total), which combines the 
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scores on the 5 FFMQ subscales, a significant main effect of Time [F(2,60) = 6.167,      

p = .006] was observed, indicating that overall the mindfulness scores increased from 

T1toT3 (T1:131.3, T2:134.1, T3:136.7). The significant Group x Time interaction 

[F(2,60) = 5.302, p =.008] indicated that MTG and WCG had modulated mindfulness 

scores differently. Planned contrasts revealed significant interactions when comparing 

MTG and WCG scores from T1-T3 [F(1,30) = 6.067, p = .020, r = .410] and T1-T2 

[F(1,30) = 7.730 p = .009, r = .453], but no significant interactions were found when 

comparing MTG and WCG totals from T2-T3 [F(1,30) = .031 p = .862]. The 

mindfulness increase from T1 toT3 was more pronounced in MTG (T3–T1: 10.9 points, 

t(13)= -3.039, p = .009) than WCG (T3–T1:1.1 points, t(17)= -.486, p = .633).  

The analysis of the FFMQ subscales revealed a stronger increase in MTG than 

WCG in FFMQ-O [Group x Time, F(2,60) = 4.252, p = .019] and FFMQ-NR [Group x 

Time, F(2,60) = 4.562, p = .015]. No other significant effects emerged from the analysis 

of the FFMQ subscales.  

Meditation time  

In general, the participants in the meditation group managed to adhere to the 

required meditation schedule. Based on the meditation logs, the mean time spent 

meditating during each session was 11.3min (range: 6.2–21.5mins) and the average 

number of meditations per week was 5.0 sessions (range: 2.6–8.7).  

Subjective Happiness 

SHS scores were subjected to a Time (3) x Group (2) Repeated Measures 

ANOVA, revealing a significant main effect of Time [F(1.55, 46.35) = 6.353,  p = .007] 

which indicated that mean scores pooled across groups (N=32) changed slightly 

throughout the study (T1 = 21.7, T2 = 20.7, T3 = 22.0). No significant between group or 

interaction effects were found. 
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Chapter 6. Mindfulness Training and Executive Functioning: The 

Stroop Task 

6.1 Theoretical Background 

The literature reviewed in Chapters 2 and 3 provided the theoretical background 

for the study of MT and attention, establishing the importance of both executive and 

sustained attention. Section 3.6.1 detailed that a main objective of LS1 was to examine 

the effect of a singular, breath awareness MT technique on executive and sustained 

attention functions and their associated neural activity. To this end the Stroop task 

(Stroop, 1935), a canonical measure of executive attention was employed. This Chapter 

discusses the detailed analysis and results obtained by using the Stroop task as well as 

the reasons for why this task was chosen, the tasks design, its associated outcome 

measures and specific hypotheses.   

The Stroop Task, Executive Attention and Mindfulness Training 

The Stroop task (Stroop, 1935) was chosen for use in LS1 as it is a canonical 

measure of executive attention. During the Stroop task participants are asked to name 

the colour in which words are presented. When this colour is incongruent to the words 

semantic meaning, e.g. BLUE, the participant must deliberately engage executive 

functions in order to inhibit the automatic/habitual response of word reading. The 

successful completion of the Stroop task requires an ongoing monitoring of attention for 

conflict in order that the goal of attending to the salient/goal directed aspect of the 

stimulus (i.e. ink colour) may be accomplished via the inhibition of automatic/habitual 

responses. As word reading is highly automatic in proficient readers, participants’ 

responses are significantly slower and less accurate in the incongruent condition 

compared to when the word meaning is semantically congruent or neutral to the ink 

colour (C. M. MacLeod, 1991). The so called ‘Stroop Effect’ is the decrement in 

reaction time or increase in error rates found for incongruent as compared to congruent, 

or neutral, words. A number of EEG studies have identified a late negative ERP 

component (LN) that is associated with this behavioural Stroop effect (Hanslmayr et al., 

2008; Liotti et al., 2000). Further, these studies have identified the ACC as the generator 

of the LN. Given the ACC’s involvement in the executive and salience networks and its 

proposed function in 1) monitoring current behaviour in relation to a desired goal 
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(Kerns et al., 2004) and 2) the anticipatory regulation of attention (Aarts, Roelofs, & 

van Turennout, 2008; Roelofs, van Turennout, & Coles, 2006), ACC activation during 

Stroop task completion suggests that the task provides an effective measure of executive 

functions and their related neural mechanisms.  

The Stroop task may be especially effective as a measure of MT related 

executive improvements as it taps key attentional processes that have been implicated 

during meditation. A number of studies have observed executive and salience network 

activation whilst meditators and non-meditators meditated (Baron Short et al., 2007; 

Hasenkamp et al., 2012; Hölzel et al., 2007), with the salience network carrying out an 

attentional monitoring function (Hasenkamp et al., 2012). Furthermore, as previous 

studies (e.g. Greenberg et al., 2012; Jha et al., 2007) have observed enhanced executive 

functioning in expert meditators when they completed tasks outside of and very 

different from meditation, it appears that MT may capitalise on the plasticity of 

attentional functions and produce changes that crossover out of meditation into other 

tasks. Moreover, a number of studies observed greater Stroop task performance in 

expert meditators as compared to controls (Chan & Woollacott, 2007; Moore & 

Malinowski, 2009; Teper & Inzlicht, 2013), suggesting that executive attention as 

measured by the Stroop task may be modulated through long term MT. However, the 

improvements in executive functions that have been found following short MT 

inductions (Friese et al., 2012; Tang et al., 2007; Wenk-Sormaz, 2005) have not been 

replicated over longer periods of time (Anderson et al., 2007; Polak, 2009). The design 

of LS1 overcomes the limitations of previous studies (detailed in Sections 3.5 and 3.6.2) 

and allows for a more direct examination of the effect of MT on executive functions 

through the use of a singular MT technique and the concurrent examination of 

behavioural and electrophysiological data. Based on the evidence detailed in Chapter 3 

and the abovementioned prior results it was hypothesised that MT would improve both 

behavioural and electrophysiological markers of attentional functions. The specific 

behavioural and electrophysiological outcome measures and associated hypotheses are 

detailed below. 
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Behavioural Outcome Measures & Hypotheses 

Mean RTs, the behavioural Stroop effect (incongruent RTs – congruent RTs) 

and response accuracy (in terms of hit rates
19

; HRs) were the focus of the behavioural 

analyses. It was hypothesised that MT would be linked to improvements in all markers 

of behavioural performance. It was expected that the behavioural Stroop effect may be 

reduced following MT as reduced behavioural Stroop effects (Chan & Woollacott, 

2007) and reduced conflict effects (ANT, Jha et al., 2007) have been found in expert 

meditators and following brief mindfulness inductions (Tang et al., 2007; Wenk-

Sormaz, 2005). Said reduction would be indicative of improved executive attention. 

Reductions in mean RTs and error rates were also expected. As such reductions would 

rely on improved attentional focus to the goal relevant aspect of the presented stimulus 

(i.e. ink colour naming) they would likely evince improvements in sustained attention.  

Electrophysiological Outcome Measures & Hypotheses 

The use of EEG recordings and the ERP methodology allowed for an 

examination of the attentional processing that occurs between the presentation of a 

Stroop stimulus and the behavioural response. The ERP component identification 

strategy detailed in section 4.4 resulted in the identification of 4 main ERP components 

of interest to be used as outcome measures. 

Two components were identified in the 160 to 240ms post stimulus time 

window in small clusters of parietal-occipital (PO) electrode sites of the left (PO7, PO3 

and O1) and right (PO8, PO4 and O2) hemispheres, for both the congruent and 

incongruent conditions (see Figure 12and Figure 13). These PO components are 

typically labelled N2 components when they appear around 150ms post stimulus onset 

and are typically seen in lexical decision making tasks
20

 (Cohen & Dehaene, 2004; 

Cohen et al., 2002; Shaywitz et al., 2004). N2 components (elicited by visual stimuli) 

with posterior scalp distributions have been implicated in attentional processes (Folstein 

& van Petten, 2008). As a moment to moment monitoring of attention is engaged during 

                                                

19 Throughout this thesis accuracy is measured using hit rates, i.e. % correct. Hit rates rather than errors 
were chosen to represent accuracy as hit rates reflect positive task performance and provide a closer link 

to sustained attention to salient/goal directed information. 

20 Lexical decision making tasks require the semantic categorisation of words and non-words. 
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MT (Hasenkamp et al., 2012), it is proposed that MT may influence early stimulus 

discrimination processes that are relevant to the goal of the task (i.e. ink colour naming). 

It was hypothesised that MT may result in increased N2 mean amplitude across 

conditions. As ERP components of this latency and topography have previously been 

shown to be influenced by semantic category (Adorni & Proverbio, 2009), increased N2 

mean amplitude would be indicative of enhanced attentional processing of the Stroop 

word stimuli.  

A further ERP component was observed in the 310 to 380ms time window, 

peaking at electrode site Pz (see Figure 15 and Figure 16). ERP components of this 

latency and location are typically labelled P3 or P3b and have been linked to various 

attentional processes depending on the task at hand. In paradigms such as the Stroop 

task, where conflicting stimulus information is present, P3 ERP components are 

typically linked to inhibition processes and attentional resource allocation that is 

generated when perceptual stimulus discrimination occurs (Polich, 2007), i.e. during 

object recognition processes. First electrophysiological examinations of attention effects 

in mindfulness meditators have reported reductions in the P3 component in response to 

distracter sounds (Cahn & Polich, 2009) and as an indicator of improved resource 

allocation in the ABtask (Slagter, Lutz, et al., 2007). Thus, it was hypothesised that MT 

may lead to less resource intensive object recognition processing when conflicting 

stimulus information was present (i.e. the incongruent condition), evinced by a 

reduction in P3 mean amplitude. 

A final ERP component, peaking at electrode site POz, was observed in the 400 

to 600ms time window (see Figure 18). In order to confirm that this final component 

was the LN component observed in previous Stroop studies (Hanslmayr et al., 2008; 

Liotti et al., 2000) the T1 POz mean amplitudes for the incongruent and congruent 

conditions were pooled across groups and subjected to a Paired Samples t-test. A 

significant difference between these conditions (t(27)=2.785, p = .010) demonstrated a 

robust electrophysiological Stroop effect. Given that the behavioural Stroop effect was 

expected to reduce following MT, it was concurrently hypothesised that the LN ERP 

component would be similarly modulated following MT. 
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6.2 Task Design and Stimuli 

 

Figure 9: Stroop task trial design and timings 

Stimuli consisted of 4 colour words (red, blue, green and yellow) presented in 

the same colour as the written word in congruent trials (e.g. ‘RED’) and in different 

colours in incongruent trials (e.g. ‘BLUE’). Words were presented in Arial font (size 

48pt) against a black background. Each incongruent stimulus appeared in each of the 3 

colours not matching its meaning an equal number of times. The participants’ task was 

to report the colour in which the word was printed, ignoring the words meaning. 

Responses were mapped to the “a” (red, left middle finger), “x” (blue, left index finger), 

“.” (green, right index finger), and “ ’ ” (yellow, right middle finger) keys of a standard 

QWERTY keyboard. The keys were colour-coded and chosen to provide optimum 

comfort for the participant whilst responding. Participants were instructed to respond as 

quickly and accurately as possible. 

Each trial began with the presentation of a fixation cross for 500ms, followed by 

the colour word for 1500ms. The stimulus always appeared centrally, replacing the 

fixation cross. There was a variable inter-trial interval of between 850 and 1100ms (see 

Figure 9). The experiment began with a colour to key acquisition phase which consisted 

of 48 trials that were similar to those used in the experimental blocks. Mistakes were 

highlighted by an audible tone during this phase only. The experimental phase consisted 

of 3 blocks of 48 trials (50% of trials congruent and 50% incongruent) for a total of 144 

trials (72 trials per condition). Each trial block lasted approximately 3 minutes and was 
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followed by a 20 second break before the subsequent block. The experiment took 

approximately 12 minutes in total. 

6.3 Results 

One participant was removed from both the behavioural and ERP analyses due 

to failure to follow task instructions.  

6.3.1 Behavioural Analyses 

Importantly, no differences in behavioural performance were found between 

MTG and WCG at baseline (Table 7). 

Table 7: Summary of tests for baseline differences, with mean values (standard 

deviations) and respective statistical values (all 2 tailed) for the comparison between 

MTG and WCG. Only participants who completed the study are included in this 

analysis 

 MTG (N=14) WCG (N=18) Statistical Values 

Stroop RT Overall (ms) 781 (115) 747 (124) t(30) = .817,  p = .420 

Stroop RT Congruent (ms) 730 (109) 691 (113) t(30) = .987,  p = .332 

Stroop RT Incongruent (ms) 836 (129) 806 (145) t(30) = .613,  p = .544 

Stroop Effect (ms) 106 (63) 115 (66) t(30) = -.384,  p = .703 

Stroop HR Overall (%) 95.1 (4.1) 94.7 (6.2) t(30) = .209,  p = .836 

Reaction Times 

RTs were subjected to a Time (3) x Congruency (2) x Group (2) Mixed ANOVA 

(Table 8) to examine between group differences. Significant main effects of Time and of 

Congruency were observed. The significant main effect of Congruency confirms the 

efficacy of the behavioural manipulation, with incongruent trials producing slower RTs 

than congruent trials (795 vs. 688ms) when RTs were pooled across groups and time 

points. The significant main effect of Time was caused by an overall (pooled across 

groups and congruencies) decrease in RTs from T1 (762ms) to T2 (731ms) and again to 

T3 (729ms). A series of planned contrasts revealed a significant difference between RTs 

at T1 and T2 [F(1,30) = 7.162,  p = .012, r = .439] and T1 compared with T3 [F(1,30) = 

8.177, p = .008,  r = .463], however, there was no significant change between T2 and T3 

[F(1,30) = .087, p = .770].  
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Table 8: Summary of Mixed ANOVA results for RT mean (Time (3) x Congruency (2) 

x Group (2)) and the Stroop Effect (Time (3) x Group (2)) 

 Effect Statistical Values 

RT mean    

 Time F(1.52, 45.65*) = 6.456,  p = .006 

 Group x Time F(1.52, 45.65*) = .843,  p = .436 

 Group F(1,30) = .334,  p = .567 

 Congruency F(1,30) = 129.318,  p < .001 

 Congruency x Group F(1,30) = .003,  p = .960 

 Time x Congruency x Group F(1.66, 49.74*) = .790,  p = .438 

 Time x Congruency F(1.66, 49.74*) = .346,  p = .669 

    

Stroop Effect     

 Time F(1.66, 49.74*) = 346,  p = .709 

 Group x Time F(1.66, 49.74*) = .790,  p = .438 

 Group F(1,30) =.003,  p = .960 

* Mauchly’s test indicated that the assumption of sphericity had been violated, therefore degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity 

Figure 10 depicts the RT change over time and includes the per group change in 

RTs (pooled across congruencies) for information. This pattern of results suggests that 

T1 to T2 changes reflect a general practice related improvement and that no further 

change occurred following T2. The non-significant Group x Time interaction confirms 

that MTG did not modulate RT differently to WCG, most likely due to a performance 

ceiling being reached by both groups at T2. 
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Figure 10: Change in RTs (pooled across congruencies) from T1 to T3. Error bars 

depict standard error of the mean. 

A Repeated Measures ANOVA (Table 8) was computed to examine the 

behavioural Stroop Effect (incongruent RTs – congruent RTs). However, no significant 

effects were observed as the behavioural Stroop Effect, pooled across groups, remained 

robust throughout (T1 = 111ms, T2 = 104ms, T3 = 106ms). 
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Accuracy 

HRs were subjected to a Time (3) x Congruency (2) x Group (2) Mixed 

ANOVA (Table 9), revealing no between group differences. A significant main effect of 

Congruency was observed, reflecting differences in HRs between the incongruent and 

congruent conditions across groups (94.4 vs 97.4%) and further evidencing the 

difficulty of overcoming Stroop interference in the incongruent condition. Additionally, 

a significant Time x Congruency interaction was found, caused by HRs improving 

significantly in the incongruent condition from T1 to T3 [t(31) = -2.267, p = .031]. A 

series of planned contrasts revealed that this interaction effect was significant for T1 

compared to T2 [F(1,30) = 4.741, p = .037, r =.369] and T1 compared with T3 [F(1,30) 

= 4.722, p = .038, r =.369], however, there was no significant effect between T2 and T3 

[F(1,30) = .055, p = .816], reflecting the fact that incongruent HRs were not improved 

from T2 to T3[t(31) = .117, p = .908]. HRs in the congruent condition were already high 

at T1 and were not improved further. Figure 11 depicts the change in HRs overall 

(pooled across congruencies) and separately for the congruent and incongruent 

conditions. The overall bars (pooled across groups) demonstrate the significant Time x 

Congruency interaction, with observable improvements from T1 to T2 found in the 

incongruent condition only, whilst the individual group values are included for 

additional information only. The observed pattern of results is consistent with the 

assertion that performance ceiling effects prevented improvements beyond the general 

practice effects caused by repeated administration of the task. 

Table 9: Summary of Mixed ANOVA results for Stroop HRs (Time (3) x Congruency 

(2) x Group (2)) 

Effect Statistical Values 

Time F(1.58, 47.46*) = 2.965, p = .073 

Group x Time F(1.58, 47.46*) = .599, p = .516 

Group F(1,30) = .003, p = .954 

Congruency F(1,30) = 32.448, p < .001 

Congruency x Group F(1,30) = 1.291, p = .265 

Time x Congruency x Group F(2,60) = 1.398, p = .255 

Time x Congruency F(2,60) = 3.489, p = .037 

* Mauchly’s test indicated that the assumption of sphericity had been violated, therefore degrees of 
freedom were corrected using Greenhouse-Geisser estimates of sphericity 
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Figure 11: Change in HRs from T1 to T3. Error bars depict standard error of the mean. 

 

6.3.2 ERP analyses 

As displayed in Table 10 there were no baseline differences between the groups 

in any of the ERP components that were analysed. 

Table 10: Summary of tests for baseline differences in Stoop ERP components, with 

mean values (standard deviations) and respective statistical values for the comparison 

between MTG and WCG 

 MTG 

(N=12) 

WCG 

(N=16) 

Statistical Values 

N2 PO Left Congruent (µV)  -5.00 (1.88) -4.25 (2.27) t(26) = -.927,  p = .363 

N2 PO Left Incongruent (µV) -5.07 (1.91) -4.00 (2.06) t(26) = -1.412,  p = .170 

N2 PO Right Congruent (µV) -3.26 (1.69) -3.34 (2.02) t(26) = .117,  p = .908 

N2 PO Right Incongruent (µV)  -3.40 (1.77) -3.36 (1.88) t(26) = -.067,  p = .947 

P3 Pz Congruent (µV) .96 (1.25) .70 (2.00) t(25.34*) = .401,  p = .691 

P3 Pz Incongruent (µV) 1.10 (1.20)  1.00(1.48)  t(26) = .178,  p = .860 

LN POz Congruent (µV) .67 (.54) .92 (1.10) t(26) = -.713,  p = .482 

LN POz Incongruent (µV) .17 (.45) .65 (.81) t(26) = -1.844,  p = .077 

* Levene’s test for equality of variances violated, therefore degrees of freedom were adjusted accordingly 
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 N2 ERP component 

 

Figure 12: Pooled T1 data (N=28). A time lapse topographical view of the N2 ERP 

component displayed using instantaneous amplitude spherical spline interpolated scalp 

topographies from 140ms to 260ms (30ms steps from left to right). Mean Amplitude 

spherical spline interpolated scalp topography is included for the N2 time window (160 

to 240ms). The pooled electrode sites are included for illustration and apply to both the 

congruent and incongruent conditions. 

 

Figure 13: Grand mean evoked potential, from pooled T1 data (N=28), for the 

congruent and incongruent conditions for a cluster of left PO electrodes (PO7, PO3 and 

O1), and right PO electrodes (PO8, PO4, O2) displayed from left to right respectively.  

Using pooled T1 data (N=28), Figure 12 displays the time course and 

topography of the PO N2 ERP component for the congruent and incongruent conditions. 

The maxima of the PO left (PO7, PO3 and O1) and right (PO8, PO4 and O2) N2 ERP 

components were best captured by a time window of 160 to 240ms (Figure 13). 

PO left and right N2 mean amplitudes were subjected to separate Time (3) x 

Congruency (2) x Group (2) Mixed ANOVAs (Table 11) to examine between groups 

differences. 



90 

 

Table 11: Summary of Mixed ANOVA (Time (3) x Congruency (2) x Group (2)) 

results for PO N2 mean amplitude from the left and right PO clusters 

 Effect Statistical Values 

N2 (PO Left )    

 Time F(2,52) = .020,  p = .980 

 Group x Time F(2,52) = 3.862,  p = .027 

 Group F(1,26) = 3.711,  p = .065 

 Congruency F(1,26) = 1.858,  p = .184 

 Congruency x Group F(1,26) = .029,  p = .865 

 Time x Congruency x Group F(2,52) = 1.163,  p = .321 

 Time x Congruency F(2,52) = .692,  p = .505 

    

N2 (PO Right)    

 Time F(2,52) = 1.129,  p = .331 

 Group x Time F(2,52) = 4.273,  p = .019 

 Group F(1,26) = 1.181,  p = .287 

 Congruency F(1,26) = .018,  p = .895 

 Congruency x Group F(1,26) = .099,  p = .755 

 Time x Congruency x Group F(2,52) = .248,  p = .781 

 Time x Congruency F(2,52) = .428,  p = .654 

Significant Group x Time interaction effects were observed for both PO left and 

PO right, indicating that MTG and WCG had modulated N2 mean amplitude differently 

from T1 to T3. Figure 14 illustrates how N2 was modulated differently by MTG and 

WCG from T1 to T3. Group x Time planned contrasts revealed that a relative increase in 

mean amplitudes from T1 to T3 for the MTG contrasted with a relative decrease for 

WCG for both PO left and PO right. For PO left, between group differences manifested 

gradually over the 3 testing sessions and were only significant overall from T1 to T3 

[F(1,26) = 6.421, p = .018, r = .445], not for T1 to T2 [F(1,26) = 1.531, p = .227] or T2 

to T3 [F(1,26) = 2.776, p = .108]. For PO right, between group differences manifested 

already between T1 and T2 [F(1,26) = 6.235, p = .019, r = .440], and were significant 

overall from T1 to T3 [F(1,26) = 4.987, p = .034, r = .401], with no between group 

differences observed from T2 to T3 [F(1,26) = .051, p = .824].  
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Figure 14: MTG and WCG differences in N2 (pooled across both congruencies) for PO 

left cluster (panel A) and PO Right cluster (panel B) from T1 to T3, displaying a 

relative increase for MTG and relative decrease for WCG. 
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P3 ERP component 

 

Figure 15: Pooled T1 data (N=28). A time lapse topographical view of the P3 ERP 

component displayed using instantaneous amplitude spherical spline interpolated scalp 

topographies from 310ms to 380ms (35ms steps from left to right) 

 

Figure 16: Grand mean evoked potential at Pz for both the congruent and incongruent 

conditions, from pooled T1 data (N=28). P3 (310-380ms) is highlighted. 
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Using pooled T1 data (N=28), Figure 15 displays the topography of the P3 ERP 

component. The maxima of the P3 ERP component was best captured by a time window 

of 310 to 380ms at electrode site Pz (Figure 16). 

P3 mean amplitudes were subjected to a Time (3) x Congruency (2) x Group (2) 

Mixed ANOVA (Table 12), revealing a significant main effect of Congruency and a 

significant Time x Congruency x Group interaction.  

Table 12: Summary of Mixed ANOVA (Time (3) x Congruency (2) x Group (2)) 

results for P3 mean amplitude at Pz 

Effect Statistical Values 

Time F(2,52) = .877,  p = .422 

Group x Time F(2,52) = 1.665,  p = .199 

Group F(1,26) = .068,  p = .797 

Congruency F(1,26) = 8.083,  p = .009 

Congruency x Group F(1,26) = .630,  p = .435 

Time x Congruency x Group F(2,52) = 4.711,  p = .013 

Time x Congruency F(2,52) = .807,  p = .452 

The main effect of Congruency was caused by higher P3 mean amplitudes, 

pooled across groups, for the incongruent condition as compared the congruent 

condition over time (1.09 vs. 0.79 µV). This finding suggests that incongruent stimulus 

information requires more resources to be allocated during object recognition processes.  

The significant Time x Congruency x Group interaction suggests that MTG and 

WCG had modulated P3 mean amplitude differently, from T1 to T3, in either the 

congruent or incongruent condition. Figure 17 panels A and B illustrate that there was 

little to no change to P3 mean amplitude in the congruent condition for either group. 

However, panels C and D illustrate that the MTG decrease incongruent P3 mean 

amplitude from T1 to T3, whereas there is a relative increase for the WCG. Incongruent 

P3 mean amplitudes were subjected to a Time (3) x Group (2) Repeated Measures 

ANOVA to explore this apparent between groups difference, revealing a significant 

Group x Time interaction [F(2,52) = 4.887, p = .011]. A series of planned contrasts 

revealed that this interaction was significant overall from T1 to T3 [F(1,26) = 9.267,     

p = .005, r = .513] and from T2 to T3 [F(1,26) = 6.905, p = .014, r = .458], but not from 

T1 to T2 [F(1,26) = .001, p = .979]. This pattern of results suggests that the MTG were 
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able to reduce the amount of resources allocated to object recognition processes when 

presented with incongruent stimulus information following MT. 

 

Figure 17: Difference in P3 at Pz from T1 to T3 for the MTG and WCG for both the 

congruent (panels A and B) and incongruent (panels C and D) conditions. The figure 

displays a relative decrease in P3 for MTG in the incongruent condition. 
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LN ERP component 

 

Figure 18: Grand mean evoked potential at POz for both the congruent and incongruent 

conditions, from pooled T1 data (N=28). N400 is highlighted. A mean amplitude 

spherical spline interpolated scalp topography for the 400 to 600ms time window is 

included to depict the difference between the 2 conditions across all sites during this 

time window. 

As the LN (see Figure 18) has been linked to the behavioural Stroop effect, the 

lack of a behavioural between groups’ effect suggested that no differences would be 

found in the LN. Unsurprisingly, a Time (3) x Congruency (2) x Group (2) Mixed 

ANOVA found only a main effect of Congruency [F(1,27)= 5.554, p = .026] with 

incongruent trials producing a smaller mean amplitude for the LN time window than 

congruent trials (.528 µV vs. .762 µV). As no between group effects were found for the 

LN, results are not fully presented herein. However, the implication of this finding is 

discussed in Chapter 8. 
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Chapter 7. Mindfulness Training and Attentional Networks: The 

Attention Network Test 

7.1 Theoretical Background 

Chapter 7 details the use of the ANT, a measure of attention based on the 

attention network theory proposed by Posner and Petersen (1990). This Chapter 

discusses the detailed analysis and results obtained by using the ANT as well as the 

reasons for choosing this task, its design, the associated outcome measures and specific 

hypotheses.   

The Attention Network Task, Attentional Networks and Mindfulness Training 

The ANT (Fan et al., 2002) was developed to provide a measure of the 

efficiency of three relatively distinct attentional networks, namely the alerting, orienting 

and executive networks. Said networks, their associated functions, their proposed neural 

substrates and their engagement during MT were introduced and discussed in Chapter 2 

and will only briefly be elaborated upon further herein.  

The ANT measures the efficiency of the three networks by combining cued 

detection (Posner, 1980) with a flanker type paradigm (Eriksen & Eriksen, 1974). In 

order to measure the efficiency of the alerting network warning cues are utilised to vary 

alertness by providing temporal information regarding the appearance of targets. 

Subsequently, performance in warning cue trials is compared to no warning cue trials to 

measure the alerting effect. The use of warning cues in the ANT means that alerting in 

the context of the ANT refers to the ability to phasically increase response preparation 

in reaction to an external warning stimulus (Neuhaus et al., 2010). Measurement of the 

orienting network is accomplished via the use of spatial cues. The benefit of spatial 

cueing to task performance was reported in a seminal study more than three decades ago 

(Posner, 1980) with spatial cues providing a significant RT improvement. For the ANT, 

trials with spatial cues that indicate where in space a target is likely to occur, and 

thereby directing attention to the cued location, are compared to trials that utilise 

warning cues with no spatial information. Finally, the ANT taps executive functions by 

requiring it to resolve a flanker compatibility conflict. Efficiency of the executive 

network is measured by comparing trials wherein the target stimulus (a left or right 
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facing arrow) is flanked by conflicting/incongruent stimuli (arrows facing the opposite 

way to the target) to trials wherein the target is flanked by congruent stimuli (arrows 

facing the same direction as the target), with RTs and accuracy typically diminished 

when conflicting/incongruent stimuli are presented (Fan et al., 2002). Key to the 

successful completion of the ANT are attentional monitoring functions, in order to 

identify conflict, and conflict resolution/response inhibition functions, in order to 

resolve flanker incompatibility and prevent automatic responses.  

The acceptance of the ANT as a tool for measuring attention network 

performance is evinced by its use in a wide range of populations, including normal 

children (Mezzacappa, 2004; Rueda et al., 2004) and those with disorders (Bish et al., 

2005; Kratz et al., 2011; Sobin et al., 2004), adults with borderline personality disorder 

(Klein, 2003; Posner et al., 2002), patients with schizophrenia (K. Wang et al., 2005) 

and older adults with Alzheimer’s disease (Fernandez-Duque & Black, 2006). As 

presented in Chapter 3, the ANT has also been used with mixed results in a number of 

studies that were designed to assess the effect of MT on attentional network 

performance. In short, executive differences were found between expert mindfulness 

meditators and controls (Jha et al., 2007) and following 5 days of MT compared to 

relaxation training (Tang et al., 2007), alerting differences were found following an 

intensive 1 month mindfulness retreat (Jha et al., 2007) and orienting differences were 

found following an 8 week MBSR course that focussed on elements of FA during MT 

(Jha et al., 2007). Differences in the flexibility of the orienting network have also been 

found recently between experienced mindfulness meditators and matched controls (van 

den Hurk, 2011) but only after the experienced mindfulness meditators had completed 

an intensive mindfulness retreat. However, no significant differences were found 

following a brief 2 x 15mins MT induction (Polak, 2009).  

Importantly, recent functional imaging studies have established the anatomical 

differentiation of the three attentional networks by utilising the ANT. The alerting 

network has been associated with activity in thalamic, frontal and parietal regions 

(Coull, Nobre, & Frith, 2001; Fan et al., 2005), the orienting network to activation of 

the parietal lobe and frontal eye fields (Fan et al., 2005) and the executive network to 

the ACC and lateral PFC (Bush, Luu, & Posner, 2000; Fan, Kolster, et al., 2007; Fan et 

al., 2005). The activation of the ACC and lateral PFC in resolving the flanker 

compatibility conflict suggest that the ANT activates brain regions associated with core 
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attentional processes and thus is likely to prove an effective measure of MT related 

attentional improvements. 

Herein EEG recordings and the ERP analysis technique are utilised in an attempt 

to obtain temporal information regarding the underlying task related neural activity, 

specifically regarding the time period from target presentation to response. Whilst the 

ANT is typically used for behavioural analysis only, a small number of recent studies 

have recorded EEG during ANT completion. Neuhaus et al. (Neuhaus et al., 2010) 

found that the ANT produced a robust target locked P3 ERP component that peaked 

300-600ms after target onset. As stated in Chapter 6, P3 ERP components are typically 

linked to inhibition processes when perceptual stimulus discrimination occurs and 

attentional resource allocation (Polich, 2007). For the ANT, perceptual stimulus 

discrimination would occur during the resolution of the flanker compatibility conflict. 

Neuhaus et al. found that the P3 ERP component was significantly reduced at a 

posterior electrode site (Pz) in the incongruent as compared to the congruent condition. 

Thus, the P3 ERP component is likely to be a key electrophysiological marker for 

executive network modulations following MT. A further study which utilised time 

frequency analysis (Fan, Byrne, et al., 2007) found that the executive control network 

showed an early increase in gamma-band power following incongruent as compared 

congruent flanked targets. Fan, Byrne et al. linked this finding to the time course of the 

electrical activity of the ACC (Abdullaev & Posner, 1997; Snyder et al., 1995) and 

proposed that their findings may evince the effect of attention on the integrative process, 

given that early latency gamma-band power increase in medial-frontal channels has 

been found to be related to the effect of attention on the integrative process in previous 

studies (Herrmann, Mecklinger, & Pfeifer, 1999; Senkowski et al., 2005). This finding 

is consistent with the proposal that the ACC plays a major role involving response 

selection and monitoring (Botvinick et al., 2001; Fan et al., 2003) and is commensurate 

with the neuroimaging findings regarding the ACC’s activation during the ANT (Bush 

et al., 2000; Fan et al., 2003; Fan, Kolster, et al., 2007; Fan et al., 2005).  

As stated throughout, the executive network and its salience sub section are key 

candidates for improvement following extended MT and are the primary focus of LS1. 

Herein the ANT is primarily used to provide a further assessment of the performance of 

these networks following MT. Additionally, it was initially envisaged that the ANT may 

provide both behavioural and electrophysiological evidence for the modulation of the 
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alerting and orienting networks following MT. However, a task manipulation check 

utilising the T1 data (section 7.3) resulted in the modification of the specific hypotheses 

that may be tested by the ANT. The hypotheses related to the analyses that were 

conducted are detailed in the following section. 

Behavioural Outcome Measures and Hypotheses. 

Mean RTs (for incongruent and congruent trials) were the focus of the 

behavioural analyses. As improvements in RTs would rely on improved attentional 

monitoring in order to promptly identify and overcome flanker incompatibility, and an 

improved focus to the goal relevant aspect of the presented stimulus array (centre 

arrow), it may be said that they would evince improvements in sustained attention to the 

task. It was hypothesised that MT would improve goal directed attention and attentional 

monitoring, thus MTG were expected to significantly improve RTs. It was also 

expected that the MTG may reduce the RT difference between the incongruent and 

congruent conditions, evincing improved conflict resolution, following MT as reduced 

executive network scores have been found in expert meditators (ANT, Jha et al., 2007) 

and improved executive functioning has been found following brief mindfulness 

inductions (Tang et al., 2007; Wenk-Sormaz, 2005). However, rather than specifically 

calculating the executive effect as part of a separate analysis, RT differences between 

congruencies over time were analysed as part of an overall Time (3) x Congruency      

(2; incongruent vs. congruent) x Group (2) Mixed ANOVA. Thus interactions with 

Congruency would evince modulations of the executive network. 

Overall accuracy on the ANT is typically >98% (e.g. Fan et al., 2005; Fan et al., 

2002), suggesting that despite the well established RT decrement caused by the flanker 

incompatibility, participant responses are generally very accurate and unlikely to be 

modulated further following MT. The analysis of accuracy data is presented in section 

7.4.1, demonstrating that no between group differences were found. 

Electrophysiological Outcome Measures and Hypotheses. 

Based on issues identified with the centre cue condition (a significant alerting 

effect was not seen due to the limited alerting benefit gained from the centre cue 

condition, see section 7.3 for full details) it was decided that the ERP analyses would 

focus solely on target locked ERPs and thus on modulations of ERPs related to 
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executive functions only. The ERP component identification procedure detailed in 

section 4.4 resulted in the identification of 3 ERP components of interest.  

A robust posterior P3 ERP component (See Chapter 6 for brief explanation) was 

observed in the 300 to 430ms time window, peaking at electrode site PO4 (see Figure 

22 and Figure 23). The P3 ERP component was the main focus of the ERP analyses. It 

was hypothesised that the P3 ERP component would be modulated following MT and 

specifically that MT may lead to a reduction in P3 mean amplitude resulting from 

improved attentional monitoring and more efficient conflict resolution. 

For consistency with the Stroop ERP analyses, and to rule out the influence of 

early stimulus processing, two further components were analysed in the 160 to 220ms 

post stimulus time window in small clusters of left (PO7, PO3 and O1) and right (PO8, 

PO4 and O2) PO electrodes. The results of this analysis are not presented here as no 

between groups effects were found and neither group modulated mean amplitudes to 

either congruency, at either location, across testing sessions. 

7.2 Task Design and Stimuli 

 

Figure 19: ANT trial design and timings 

Stimuli consisted of a row of five visually presented horizontal black lines, with 

arrowheads pointing left or right against a white background (total 3.27 degrees of 
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visual angle). The target is a left or right arrowhead at the centre. To introduce a 

conflict-resolution component the central arrow is ‘flanked’ on either side by 2 arrows 

in the same (congruent condition) or opposite direction (incongruent condition). The 

participants’ task was to identify the direction of the centrally presented arrow by 

pressing the left or right arrow key on a standard QWERTY keyboard when the central 

arrow pointed left or right respectively. To introduce attentional orienting and alerting 

components to the task, the row of five arrows were presented in 1 of 2 locations 

outside the point at which the participant was fixating, either 1.06 degrees of visual 

angle above or below the fixation point, and there were 3 possible warning cue 

conditions, a centre cue, no cue, and a spatial cue, for a total of 6 possible cue-target 

conditions.  

Figure 19 provides an outline of the trial design and timings.  Each trial 

consisted of 5 events. First, there was a fixation period for 400ms. Then, a warning cue 

for 100ms (in no cue trials the fixation cross was displayed for an extra 100ms). A 

variable cue target interval of 700-1000ms separated cue from target. Next, the target 

and flankers appeared simultaneously and were presented for 800ms. This was followed 

by a variable inter-trial interval of 600-1200ms before the next trial and sequence of 5 

events began again. The fixation cross appeared at the centre of the screen during the 

whole trial (except in centre cue trials were it was replaced by a cue for 100ms) and 

participants were instructed to attend to the cross until they oriented attention to the 

target location to respond or until they were cued otherwise. The spatial cues were 

always valid (appeared at the correct location of the target). The variable duration of the 

cue-target and inter-trial intervals was used to produce additional uncertainty about cue 

and target onset. 

At each testing session participants completed a 24 trial practice block (during 

which auditory feedback was given to highlight mistakes) and 8 experimental blocks of 

48 trials (3 cue conditions  x  2 target locations x 2 target directions x 2 flanker 

conditions x 2 repetitions). The trial order was random. The experimental blocks were 

separated by a 2 minute break. The experiment took approximately 40 minutes to run. 
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7.3 Task Manipulation Check 

Pooled T1 data (N=39) revealed a robust executive effect of 78ms, indicating 

that the task manipulation designed to engage executive functions was working as 

incongruent trials were producing higher RTs than congruent trials. A robust orienting 

effect of 84ms suggested that participants were able to derive a RT improvement from 

valid spatial information as compared a non-spatial alerting cue. However, the task did 

not produce a robust alerting effect, with only a 13ms difference in RTs found between 

the no cue and centre cue trials. This suggests that the centre cue was providing a very 

limited ‘alerting’ benefit and may have been difficult to identify. The orienting effect of 

84ms is over 30ms higher than that found in previous studies (e.g. Fan et al., 2002 = 

51ms; Neuhaus et al., 2010 = 52ms), further suggesting that the centre cue was 

providing limited benefit, thus causing a greater than expected difference between 

centre and spatial cue conditions.  

The alerting effect reported in Fan et al. original paper (Fan et al., 2002) was 

47ms. However, the original study design utilised a double cue (used to diffuse attention 

between the two possible target locations), rather than the centre cue, to calculate the 

alerting network. The same study found redundancy between the double and centre cue 

conditions and as such the double cue was removed in future ANT studies (e.g., Fan et 

al., 2005), leading to its omission in the current study. Studies utilising the centre cue 

for the alerting network calculation have found a significant alerting benefit from its 

use, although the benefit has varied (e.g. Fan et al., 2005 = 60ms; Fan, Byrne, et al., 

2007 = 20ms). A recent review paper (J. W. Macleod et al., 2010), published after data 

collection had begun for LS1, reviewed the psychometric properties of the ANT and 

found that only 15 of 39 studies utilising the ANT produced a significant alerting effect 

whilst only 12 of 39 found a significant orienting effect. For completeness, 31 of 39 

found an executive effect. Of importance, it should be noted that the majority of these 

studies included clinical populations (e.g. schizophrenia, bipolar, depression) or 

populations selected to answer specific research questions (e.g. older adults, smokers, 

heavy caffeine users), thus they may be expected to display deficits in the different 

attentional networks. 

 Fan et al. (2002) found that the raw RTs have better test-retest reliability (.87) 

than the executive (.77), orienting (.61) and alerting (.52) network scores. J. W. 
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Macleod et al. (2010) note that these reliability findings bear a striking resemblance to 

the frequency at which significant network effects were observed (detailed above). 

Taking this finding and the above stated problems with the centre cue condition into 

account, the main behavioural analysis of the ANT was focussed on the raw RTs, 

pooled across cue conditions and split by flanker congruency, and the different cue 

conditions were not entered as factors into the analysis. It should be noted that the raw 

RTs would have allowed for the best estimate of sustained attention to the task and 

improvements in goal directed attention regardless of the abovementioned issues. As the 

pooled T1 RTs suggest that the centre cue condition was not producing an alerting 

benefit it was decided that ERP analyses should focus on an analysis of ERPs related to 

executive functions. Thus the ERP analyses were restricted to target locked ERPs with 

data pooled across cue conditions and split by flanker congruency.  

7.4 Results 

One participant was removed from both the behavioural and electro-

physiological analyses due to failure to follow task instructions. As summarised in 

Table 13, direct comparisons at T1 revealed no significant differences between the 

MTG and WCG, confirming that MTG and WCG had comparable baseline behavioural 

performance. 

Table 13: Summary of tests for baseline differences, with mean values (standard 

deviations) and respective statistical values (all 2 tailed) for the comparison between 

MTG and WCG. Only participants who completed the study are included in this 

analysis. 

 MTG (N=14) WCG (N=18) Statistical Values 

ANT RT Overall (ms) 654 (83) 623 (75) t(30) = 1.089,  p = .285 

ANT RT Congruent (ms) 617 (78) 585 (75) t(30) = 1.178,  p = .248 

ANT RT Incongruent (ms) 693 (94) 663 (76) t(30) = .984,  p = .333 

ANT Executive (ms) 75 (42) 78 (22) t(18.20*) = -.201,  p = .843 

ANT HR Overall (%) 97.7 (2.5) 97.2 (2.5) t(30) = .537,  p = .595 

* Levene’s test for equality of variances violated, therefore degrees of freedom were adjusted accordingly 

  



104 

 

7.4.1 Behavioural Analyses 

Reaction Times 

RTs were subjected to a Time (3) x Congruency (2) x Group (2) Mixed ANOVA 

(Table 14) to examine between groups differences in behavioural performance.  

Significant main effects of Congruency and of Time, and significant Group x 

Time and Time x Congruency interactions were observed. The significant main effect of 

Congruency confirms the efficacy of the executive behavioural manipulation, with 

incongruent trials producing slower RTs than congruent trials across groups and time 

points (640 vs. 575ms). The significant main effect of Time was caused by a reduction 

in overall RTs (pooled across both congruencies) from T1 (637ms) to T2 (598ms) and 

again to T3 (586ms). Planned contrasts revealed that this reduction was significant from 

T1 to T2 [F(1,30) = 43.786,  p < .001, r = .770] and continued from T2 to T3 [F(1,30) = 

9.629,  p = .004, r= .493].  

Table 14 Summary of Mixed ANOVA, Time (3) x Congruency (2) x Group (2), results 

for RT mean. 

Effect Statistical Values 

Time F(1.49, 44.65*) = 41.87,  p < .001 

Group x Time F(1.49, 44.65*) = 4.51,  p = .025 

Group F(1,30) = .199,  p = .659 

Congruency F(1,30) = 232.99,  p < .001 

Congruency x Group F(1,30) = .174,  p = .680 

Time x Congruency x Group F(2,60) = .759,  p = .473 

Time x Congruency F(2,60) = 22.761,  p < .001 

* Mauchly’s test indicated that the assumption of sphericity had been violated, therefore degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity 

The significant Group x Time interaction suggests that MTG and WCG 

modulated RTs differently over the course of the study. A series of planned contrasts 

revealed that this interaction was only significant when MTG and WCG scores were 

compared from T1 to T3 [F(1,30) = 5.913,  p = .021, r = .406], showing only a non-

reliable trend for between group differences from T1 to T2 [F(1,30) = 3.08, p = .090] 

and T2 to T3 [F(1,30) = 3.10,  p = .089].  
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Table 15: Summary of means (standard deviations) and paired samples t-tests 

displaying RT differences for all trials from T1 to T3 for MTG and WCG. 

 MTG (N=14) WCG (N=18) 

 T1: 654 (83) T1: 623 (75) 

 T2: 603 (79) T2: 594 (65) 

 T3: 582 (76) T3: 588 (70) 

Paired Samples t-test T1vsT3 t(13)= 5.338, p < .001 t(17)= 4.201, p = .001 

Paired Samples t-test T1vsT2 t(13)= 5.239, p < .001 t(17)= 3.761, p = .002 

Paired Samples t-test T2vsT3 t(13)= 2.841, p = .014 t(17)= 1.141, p = .270 

To explore this interaction data were pooled across congruencies (as there was 

no Time x Congruency x Group interaction) and a T1 to T3 Paired Samples t-test (Table 

15) was conducted for each group. However, this analysis revealed that both groups had 

significantly reduced RTs from T1 to T3 and was thus unable to explain the Group x 

Time interaction. In order to further explore the cause of the Group x Time interaction 

T1 to T3 difference scores (T1 minus T3) were calculated for each participant and were 

subjected to an independent samples t-test. This further analysis resulted in a significant 

between groups difference (t(30) = 2.400, p =.023) which was caused by a greater 

reduction in RTs for the MTG (71ms) as compared the WCG (35ms). Thus, the 

observed pattern of results suggests that MTG were able to significantly improve RTs 

above and beyond the level that could be associated with general practice effects (see 

Figure 20). 
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Figure 20: Change in RTs, pooled across congruencies, from T1 to T3 for MTG and 

WCG. Error bars represent standard error of the mean. 

However, despite there being no statistically significant differences between 

groups at T1 there was a 31ms between groups baseline difference in overall RT mean 

(pooled across congruencies). Thus, as a purely exploratory step, further Paired Samples 

t-tests (Table 15) were conducted to examine if ceiling effects may have influenced 

these findings. Whilst MTG and WCG both improved RTs significantly from T1 to T2, 

only the MTG improved further from T2 to T3 suggesting that WCG may have reached 

a performance ceiling at T2. However, given the ease of the ANT it is unlikely that one 

group would be able to reach a performance ceiling quicker than the other. Figure 21 

depicts the changes in RT mean (pooled across congruencies) from trial block to trial 

block over the course of each of the 3 testing sessions. The level of improvement clearly 

reduces for both groups after only 5 blocks of trials during the first testing session (240 

trials). A significant main effect of Block
21

 at T1 [F(3.47,107.54)=11.515, p< .001] 

provides evidence for improved performance across trial blocks. It should be noted that 

despite the stated T1 difference there was very little difference between the MTG and 

WCG at T2, and no per block improvement occurred across groups during T2 [Block, 

F(4.50,139.42) =.664, p = .636], suggesting that a performance ceiling may have 

already been reached in both groups. Therefore, the additional T2 to T3
22

 difference in 

                                                

21 Overall RTs were split by block and pooled across groups before being subjected to a Repeated 

Measures ANOVA. 

22 A non significant main effect of Block was still observed at T3 [F(4.01,124.32) = 1.420, p = .231]. 
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the MTG may reflect a change in the upper boundary of performance following MT. 

However, as the Group x Time T2 to T3 planned contrast only reached the non-reliable 

trend value (p =.089) further study is required in order to establish if upper boundaries 

in performance can be modulated following MT.  

 

Figure 21 Per block RT means, pooled across congruencies, displayed for MTG and 

WCG from T1 to T3  

The significant Time x Congruency interaction is caused by a reduction in the 

difference between incongruent and congruent conditions (executive effect) from T1 

(77ms) to T2 (63) and again to T3 (54ms), and reflects a general practice related effect, 

suggesting that the difficulty of the task reduces following repeated administrations. 

However, the non-significant Time x Congruency x Group interaction demonstrates that 

the executive effect was not modulated differently between the groups, suggesting that 

the observed between groups differences were not specific to improvements in conflict 

monitoring and conflict resolution. The observed Group x Time interaction was most 

likely caused by overall improvements in attentional monitoring and an improved focus 

to the goal relevant aspect of the presented stimulus array (centre arrow), enabling the 

MT to respond faster across congruencies. Thus, MT resulted in improvements to goal 

directed attention, i.e. sustained attention to the task. 

As a final manipulation check the RT analyses were re-run excluding trials that 

included the centre cue condition. This was in order to ensure that the observed 

between-groups differences were not caused by differential processing of the 
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problematic centre cue condition. The same pattern of results were observed with or 

without the centre cue included. Lastly, the RT data were entered into a Time (3) x Cue 

(3; centre cue, spatial cue, no cue) x Congruency (2) x Group (2) Mixed ANOVA to 

ensure that differential processing of the centre cue over time was not the cause of the 

between groups differences in RTs. Importantly, non-significant interactions were 

observed for Cue x Group, Congruency x Cue x Group, Time x Cue x Group, and Time 

x Congruency x Cue x Group (all p >.500). Thus it may be concluded that differential 

processing of the centre cue condition between groups did not cause the observed 

between groups differences.  

Accuracy 

HRs were subjected to a Time (3) x Congruency (2) x Group (2) Mixed 

ANOVA (Table 16), revealing no between groups differences. Only a significant main 

effect of Congruency was found, indicating that HRs to congruent trials were higher 

than HRs to incongruent trials across groups and time points (99.4 vs. 96.4 %), further 

confirming that the executive element of the task were working. 

Table 16: Summary of Mixed ANOVA (Time (3) x Congruency (2) x Group (2)) 

results for HRs. 

Effect Statistical Values 

Time F(1.31, 39.34*) = 3.491,  p = .058 

Group x Time F(1.31, 39.34*) = .934,  p = .399 

Group F(1,30) = .036,  p = .851 

Congruency F(1,30) = 32.459,  p < .001 

Congruency x Group F(1,30) = .042,  p = .839 

Time x Congruency x Group F(1.36, 40.93*) = 2.138 ,  p = .145 

Time x Congruency F(1.36, 40.93*) = .368,  p = .613 

* Mauchly’s test indicated that the assumption of sphericity had been violated, therefore degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity 
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7.4.2 ERP analyses 

As displayed in Table 17, there were no baseline differences between the groups 

in any of the identified ERP components. 

Table 17: Summary of tests for baseline differences in ERP components on the ANT, 

with mean values (standard deviations) and respective statistical values for the 

comparison between MTG and WCG 

 MTG (N=12) WCG (N=16) Statistical Values 

P3 PO4 Congruent (µV) 1.81 (1.42) 1.93 (1.36) t(26) = -.229,  p = .820 

P3 PO4 Incongruent (µV)  1.63 (1.03) 1.78 (1.45) t(26) = -.310,  p = .759 

N2 Pos Left Congruent (µV)  -3.17 (2.78) -3.50 (1.63) t(16.56*) = .362,  p = .722 

N2 Pos Left Incongruent (µV)  -2.85 (2.57) -3.42 (1.67) t(26) = .717,  p = .480 

N2 Pos Right Congruent (µV)  -3.31 (2.54) -3.26 (1.41) t(26) = -.069,  p = .945 

N2 Pos Right Incongruent (µV) -3.03 (2.54) -3.18 (1.40) t(26) = .217,  p = .830 

* Levene’s test for equality of variances violated, therefore degrees of freedom were adjusted accordingly  

P3 ERP component  

 

 

Figure 22: Pooled T1 data (N=28). A time lapse topographical view of the P3 ERP 

component displayed using instantaneous amplitude spherical spline interpolated scalp 

topographies from 300ms to 450ms (50ms steps from left to right) 

Figure 22 displays the time course and topography of the P3 ERP component for 

both congruent and incongruent conditions using pooled T1 data (N=28). As shown in 

Figure 23, the P3 maximum was best captured by a time window of 300 to 430ms at 

PO4. P3 mean amplitudes were subjected to a Time (3) x Congruency (2) x Group (2) 
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Mixed ANOVA (Table 18), revealing significant main effects of Time and of 

Congruency. 

 

Figure 23: Grand mean evoked potential at PO4 for both congruent and incongruent 

conditions, from pooled T1 data (N=28). P3 (300-430ms) is highlighted 

The significant main effect of Time is caused by increases in P3 mean 

amplitudes across congruencies and groups from T1 to T3 (T1 = 1.80µV; T2 = 2.32µV; 

T3 = 2.40µV). Planned contrasts revealed that the main effect of Time was significant 

overall from T1 to T3 [F(1,26) = 19.512,  p <.001, r = .655] and from T1 to T2   

[F(1,26) = 13.074,  p = .001, r = .578], but not for T2 compared with T3 [F(1,26) = 563,  

p = .460]. These results confirm that no further modulations of P3 occurred after T2 

(Figure 24). The ERP modulation from T1 to T3 across groups and congruencies is 

depicted in Figure 25.  
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Figure 24: Difference in P3 (P04), pooled across groups and congruencies from T1 to 

T3. Error bars represent standard error of the mean. 

The increase in P3 mean amplitude across groups (group waveforms included 

for information in Figure 26) was surprising as it had been predicted that the MTG 

would improve the efficiency of conflict monitoring and conflict resolution processes, 

thus a reduction had been predicted for the MTG. Given that both groups also improved 

RTs, it was thought that the P3 increase may enable improved task performance. 

However, change (T3-T1) in P3 mean amplitude pooled across congruencies and groups 

was not significantly correlated with change in RTs pooled across congruencies and 

groups (N=28, r = .012, p = .475). This pattern of results suggests that P3 mean 

amplitude changes are most likely caused by practice effects resultant from repeated 

administrations of the task, with an optimum amount of resources applied to conflict 

resolution and attentional monitoring processes by T2. Thus, the electrophysiological 

data are unable to explain the MTGs T2 to T3 improvement in RTs. This finding is 

discussed further in Chapter 8. 
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Table 18: Summary of Mixed ANOVA (Time (3) x Congruency (2) x Group (2)) 

results for P3 mean amplitude at PO4 

Effect Statistical Values 

Time F(1.64,42.66*) = 13.241,  p < .001 

Group x Time F(1.64,42.66*) = .642,  p = .502 

Group F(1,26) = .003,  p = .960 

Congruency F(1,26) = 10.430,  p = .003 

Congruency x Group F(1,26) = .148,  p = .704 

Time x Congruency x Group F(2,52) = 1.882,  p = .163 

Time x Congruency F(2,52) = 1.825,  p = .171 

* Mauchly’s test indicated that the assumption of sphericity had been violated, therefore degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity. 

The significant main effect of Congruency was surprising given that a Paired 

Samples t-test, conducted using the pooled T1 data (N=28), found no P3 difference 

between congruencies (t(27)= 1.276,  p =.213), which suggested that P3 had not been 

modulated by flanker interference. However, pooling the data across time points and 

groups there is a significant difference in P3 mean amplitude between congruent and 

incongruent trials (2.27 vs 2.09 µV; t(83) = 4.293, p < .001), suggesting that the flanker 

incompatibility produces a negative deflection in the P3 ERP, similar to that observed 

by Neuhaus et al. (2010). 
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Figure 25: Difference in P3 mean amplitude (PO4), pooled across groups and 

congruencies from T1 to T3 

   

Figure 26: MTG and WCG difference in P3 mean amplitude (PO4), pooled across 

congruencies, from T1 to T3  
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Chapter 8. Discussion 1: Implications of Longitudinal Study 1 

 Chapter 8 contains a discussion of the specific implications of LS1. A broader 

discussion of the findings of LS1 in relation to the overall implications of this thesis is 

contained in Chapter 15.  

8.1 The Positive Effect of Mindfulness Training on Core Attentional Skills 

and Associated Neural Activity 

The use of the Stroop task produced a number of significant electrophysiological 

findings. Firstly, as hypothesised the lateral posterior N2 ERP component was 

modulated differently between MTG and WCG. Whereas a relative increase in N2 mean 

amplitude was observed for MTG from T1 to T3 for both congruencies, a relative 

decrease was observed for the WCG. Source localisation was carried out by external 

collaborators in order to localise the cortical generators of the N2 ERP component 

(Moore et al., 2012, see Appendix D)
23

. Source localisation suggested that the changes 

in the MTG were primarily driven by increased activity in the left medial and lateral 

occipito-temporal areas for congruent stimuli, contrasted by decreased activity in 

similar brain areas in WCG. These left-hemispheric areas of the ventral processing 

stream have previously been identified as being selectively involved in lexical tasks 

(Cohen & Dehaene, 2004; Cohen et al., 2002; Shaywitz et al., 2004), with a similar 

posterior N2 component as observed here. The posterior N2 has also been shown to be 

influenced by semantic category (Adorni & Proverbio, 2009), thus it seems plausible 

that this effect reflects more successful or consistent attentional amplification of the 

word stimuli that were used in this task. This interpretation is in line with the time 

course of enhanced stimulus processing when attending to non-spatial features of a 

stimulus, wherein enhanced negative posterior ERP amplitudes typically appear from 

around 100 to 150ms after stimulus onset (Hillyard & Anllo-Vento, 1998; Hillyard, 

Vogel, & Luck, 1998). Moreover, the posterior N2 has been shown to be particularly 

enlarged when attending to the colour as compared to the form of a stimulus (Eimer, 

                                                

23 Variable Resolution Electromagnetic Tomography (VARETA; Bosch-Bayard et al., 2001) was 
completed post hoc by external collaborators and is thus not detailed herein with respect to any specific 

hypotheses. Details regarding the VARETA analysis can be found in Moore & Malinowski, 2012. Of 

note, the presented VARETA findings relate to differences between T1 and T3 only. The VARETA 

findings are presented herein as they are peer reviewed and provide additional information regarding the 

interpretation of the Stroop findings. 



115 

 

1997). Thus, while the WCG have exhibited a habituation effect over the course of the 

study (and 3 × 144 trials), expressed by a reduction of the ERP amplitudes and the 

related cortical source strengths, MTG showed the opposite pattern as increased 

activation of task relevant cortical areas developed following MT.  

The pattern of results observed for the N2 suggest that the MTG were able to 

more consistently attend to the goal relevant dimension of the Stroop stimuli (ink 

colour). Results from a number of other studies may be similarly interpreted as 

improvements in goal directed attentional processing. van Leeuwen et al. (2012) finding 

of a reduced global precedence effect in expert meditators, and following a brief 

intervention, may be interpreted as more consistent goal directed attention with 

participants more consistently directing attention to the target, i.e. the goal directed 

aspects of the presentation, than the level at which the target was presented (local vs. 

global). Additionally, Anderson et al. (2007) finding of reduced consistency effects in 

an object recognition task may evince enhanced attentional amplification of the object 

to be detected (goal) irrespective of the presented scene (non-goal). Further, van den 

Hurk et al. (2010) found that expert mindfulness meditators (Table 19) demonstrated 

attenuated inter-sensory facilitation
24

 (IF) effects in a choice RT task as compared to 

controls. As IF effects are considered to reflect involuntary, automatic processing 

(Kirchner & Colonius, 2005; R. A. Schmidt et al., 1984), their reduction would suggest 

a reduced reactivity in bottom up processing that would likely be caused by improved 

top down control of attention, i.e. improved focus on current goal would reduce 

reactivity to non-goal related stimuli across modalities. Thus enhanced control over 

bottom up processing is a further mechanism by which the MTG in the current study 

may have been able to enhance processing of task relevant stimulus dimensions. An 

alternative potential cause of the N2 findings relates to a further interpretation of van 

den Hurk et al. findings. The meditators in their study may have employed an enhanced 

alert state during the task and thus received no further alerting/arousing benefit from the 

auditory stimulus. This explanation is in line with Jha et al. (2007) finding of a reduced 

                                                

24 IF are the reduction in RT to a stimulus presented in one modality when it is accompanied, close in 
time, by the presentation of a stimulus in another modality (Keuss, van der Zee, & van den Bree, 1990; 

Kirchner & Colonius, 2005; R. A. Schmidt, Gielen, & van den Heuvel, 1984; Stoffels, Van der Molen, & 

Keuss, 1985). For example, Keuss et al. (1990) demonstrated that non-informative sounds (auditory 

accessories) of low to moderate intensity reduce RT to a visual stimulus. Even more, they showed that 

visual choice reactions become faster with increasing intensity of the auditory accessory, which is 

remarkable since the auditory stimulus does not provide any information about the correct response. 



116 

 

alerting effect following an intensive Vipassana retreat which was interpreted to evince 

a more readied attentional state. Thus it is equally feasible that such an enhanced alert 

state may have resulted in the observed enhancement of early stimulus processing for 

the MTG herein. A similar interpretation is also possible for the observed results in 

Anderson et al. and van Leeuwen et al. studies with enhanced top down attention 

ensuring that early attentional processing was maintained on goal directed aspects of the 

presentation. 

The second difference between MTG and WCG was observed in the P3 ERP 

component. P3 changes were primarily observed for incongruent stimuli with the MTG 

decreasing P3 mean amplitude from T1 to T3 whilst an increase was observed for 

WCG. Source localisation revealed that the MTG P3 decrease in the incongruent 

condition was accompanied by significantly decreased signal strength in lateral 

occipito-temporal and inferior temporal regions of the right hemisphere. These areas 

have been implicated in object recognition processes (Schendan & Kutas, 2002; 

Schendan & Stern, 2007). In addition, the temporal/parietal P3 component is considered 

to reflect attentional resource activation that is generated when perceptual stimulus 

discrimination occurs and is linked to related inhibition processes that are required 

when conflicting stimulus information is present (Polich, 2007). Thus, the P3 findings 

suggest that through MT the perceptual processing of incongruent stimuli becomes less 

resource demanding. This interpretation is in line with Cahn and Polich (2009) finding 

that during meditation experienced meditators had reduced P3 amplitude to a distracter 

tone to auditory oddball stimulation. Therefore, the reduced P3 observed herein during 

non-meditative task completion suggests that state effects that develop and are present 

during meditation practice appear to generalise to different tasks performed when not 

meditating. This assumption underlies the idea that meditation practice generalises into 

daily activities and extends to contexts separate from meditation practice itself (Hodgins 

& Adair, 2010; Slagter, Davidson, & Lutz, 2011). As described in Chapter 3, Slagter, 

Lutz, et al. (2007) similarly found a reduction in P3 mean amplitude outside of 

meditation following an intensive 3 month mindfulness retreat, a result that when taken 

with a reduced cross-trial variability in oscillatory theta activity (Slagter et al., 2009) 

was considered to indicate that the deployment of attention was more consistent and that 

through MT attentional resources become more rapidly available to process additional 

information (Slagter, Lutz, et al., 2007). Further, a recent fMRI Stroop study (Kozasa et 
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al., 2012) also demonstrated reduced activity in various attention related brain areas in 

expert meditators (Table 19) as compared to controls, despite similar behavioural 

performance. The authors proposed that their findings evince enhanced attentional 

efficiency in meditators that may result from improved sustained attention and impulse 

control. 

The findings of increased N2 and decreased P3 amplitudes and source strengths 

for the MTG appeared to be complimentary. Thus, as an exploratory post hoc step 

differences (T1 minus T3) in N2, pooled across groups and congruencies for PO left and 

PO right, and P3 for the incongruent condition were submitted to a correlational 

analysis. It was found that change in N2 mean amplitude was significantly correlated 

with change in P3 mean amplitude at both PO left (r = .479, p = .005, 1 tailed) and PO 

right (r = .452, p = .008, 1 tailed) sites. Therefore, it is feasible that the more successful 

attentional amplification of the colour word stimuli evidenced by increased N2 

amplitudes/source strengths had the subsequent effect that fewer resources were needed 

during object recognition processes, especially when incongruent stimulus information 

was processed, indexed by the decrease in P3 amplitudes/source strengths. Conversely, 

the WCG may have needed to increase P3 amplitude to maintain task performance 

following a habituation related decrease in N2. Kozasa et al. (2012) similarly speculated 

that their finding of lower activation in attention related areas during Stroop task 

completion may have resulted from meditators maintaining focus on naming the colour 

(goal), causing less interference with naming the word and subsequently requiring less 

effort for conflict monitoring.  
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Table 19: Summary of relevant participant details for studies introduced in Chapter 8. 

Experience and ongoing practice values are group means unless stated otherwise. 

Study 

Meditative 

Tradition 

Previous 

Experience  

Ongoing 

Practice  

Comparison 

Group 

van den 

Hurk et al., 

2010 

 

Vipassana 14 yrs 

 

n/s Age and gender 

matched controls. 

Kozasa et 

al., 2012 

States only that the 

expert meditators 
engaged in a variety of 

FA and OM practices 

such as Zazen, mindful 

breathing and mantra 

meditation. 

 

8.5 yrs At least 3 times 

weekly but 
duration not 

stated 

Age, gender and 

education 
matched controls. 

An unexpected result of this study was the concurrent null behavioural and LN 

ERP component findings. This finding is at odds with the results of several studies that 

showed better performance of expert mindfulness meditators, as compared controls, on 

similar measures of executive attention and conflict resolution (Chan & Woollacott, 

2007; Jha et al., 2007; Moore & Malinowski, 2009). There are a number of potential 

explanations for these null findings. Firstly, the longitudinal design of the current study 

dictated that the Stroop task be administered repeatedly whereas experts and controls 

were only compared after one administration of the task in cross sectional studies. 

Herein, overall RTs did not improve from T2 to T3 and accuracy was above 95% for 

incongruent trials, suggesting that a performance ceiling may have been reached. 

Secondly, the role of the ACC during Stroop completion may influence results. The 

ACC has been shown to be the generator of the LN and to be involved in performance 

monitoring and response selection (Hanslmayr et al., 2008; Liotti et al., 2000). 

However, two recent event-related fMRI studies suggest that the role of the ACC is 

more related to anticipatory regulation of attention rather than the specific selection of 

responses itself (Aarts et al., 2008; Roelofs et al., 2006). The lack of differential effects 

in the LN might thus reflect that with repeated exposure to the Stroop task anticipatory 

regulation was perfected in both groups, resulting in the observed ceiling effect. Herein 

it appears MT has improved earlier stages of processing (indexed by N2 and P3 

changes) that reflect more fundamental changes in attentional processing and are less 

amenable to simple task repetition effects. Although speculative, this would explain 

why clear behavioural differences are found when meditators encounter the Stroop task 
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for the first time (Chan & Woollacott, 2007; Jha et al., 2007; Moore & Malinowski, 

2009), while they did not develop on repeated presentation of the same task herein (see 

also Anderson et al., 2007; Polak, 2009). Lastly, the large disparity between the levels 

of MT undertaken during the current study (18wks), as compared to studies of expert 

meditators with vast amounts of prior MT experience (see Table 2), may account for 

these differential results. However, as executive improvements have been reported 

following short term MT (e.g. Tang et al., 2007; Wenk-Sormaz, 2005) and the MT used 

herein appears to modulate core attentional processing, the potential benefits from short 

term MT are still apparent. 

As hypothesised, a between groups difference in RT demonstrated that the MTG 

improved RTs above and beyond the level that may be associated with practice effects 

resultant from repeated administrations of the task (i.e. WCG performance). Whereas 

both groups improved RTs from T1 to T2, only MTG improved further from T2 to T3. 

This raises the question ‘why did MT produce additional improvements in ANT 

behavioural performance and not in the Stroop task?’ Differences in task difficulty are 

the most likely explanation for the differential findings across tasks. Although both 

tasks purport to measure executive function by requiring conflict monitoring and 

inhibitory control to deal with conflicting stimulus information, the source of conflict is 

different for each task. For the ANT the conflict is caused by flanker incompatibility, 

thus the conflict comes from additional stimuli as part of a stimulus array, whereas 

Stroop conflict is caused by competing aspects of the same stimulus (word meaning vs. 

ink colour). As evidenced by the robustness of the Stroop effect across 3 

administrations of the task, the integrative nature of the Stroop conflict is very difficult 

to overcome. Conversely, ANT executive scores reduced significantly following 

repeated administrations (Time x Congruency interaction). Unsurprisingly, overall RTs 

for the Stroop task were more than 130ms slower than for the ANT across all 3 time 

points, further demonstrating the difficulty of the Stroop task. The added difficulty of 

the Stroop task may provide a further explanation of the null between groups 

behavioural differences on said task and for why differences are only seen between 

experts with vast amounts of experience and controls, whereas the lower task difficult of 

the ANT may have made the task more susceptible to improvements following short 

term MT. Potentially, MT may have enabled the MTG to focus attention more 

consistently to the target stimulus during ANT completion, ignoring the flanker stimuli, 
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thus improving RT more so than the WCG improvements which was most likely caused 

by repeated administrations of the task. This interpretation is consistent with the 

proposal that MT improved electrophysiological markers of goal directed attention on 

the Stroop task. 

The electrophysiological examination of the ANT was limited to target locked 

ERPs and thus limited to neural activity related to the attentional processing of 

conflicting stimulus information. No between groups differences were observed. 

However, P3 mean amplitude, pooled across groups and congruencies did increase over 

the course of the study. This finding is in opposition to the hypothesised reduction in P3 

that was expected for the MTG. This leads to a further question ‘Why was Stroop P3 

but not ANT P3 differentially modulated following MT?’ A plausible explanation is 

that the P3 ERP component may reflect different neural processes on the ANT and 

Stroop task. Whereas the P3 has been shown to be modulated by flanker congruency on 

the ANT (Neuhaus et al., 2010), a finding which only developed over the course of 

repeated administrations of the task in this study, it is the LN that is typically modulated 

by conflict in the Stroop task. Thus, the null P3 ANT findings are best associated with 

the null LN Stroop findings and may relate to anticipatory regulation being perfected in 

both groups by T2. However, whereas the null LN findings on the Stroop were 

consistent with the null behavioural findings, the MT related behavioural performance 

improvements found from T2 to T3 for the ANT cannot be explained by the 

electrophysiological findings. Interpreting ERP modulations on the ANT is difficult due 

to the dearth of extant studies utilising ANT and ERP methods. However, a recent ANT 

study
25

 (Kratz et al., 2011) which did include both behavioural and ERP measures found 

that children with inattentive ADHD had lower P3 mean amplitude and higher RT 

variability (assessed using RT standard deviation) than matched controls. The 

inattentive subtype of ADHD is characterised by difficulties in directing and 

maintaining goal directed attention and P3 reductions have been said to reflect a 

reduced amount of attention being allocated to stimulus processing and evaluation 

(Banaschewski et al., 2003). Whilst speculative, it may be suggested that P3 was not 

modulated further after T2 as an optimum amount of attentional resources were already 

available to participants of both groups for task completion. Herein, the observed 

                                                

25 This study was published after data collection for LS1 had completed and thus had no bearing on 
hypotheses herein. 
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increase in P3 across groups is in line with the observed reduction in RTs across groups, 

although changes in P3 mean amplitude were not correlated with changes in RTs. The 

aforementioned reduction in task difficulty over time is a possible reason for this 

modulation occurring across groups rather than being specific to MTG. Thus as 

suggested above, rather than a further enhancement of attentional resource allocation, 

MT related improvements in goal directed attention may best explain the observed 

between groups behavioural difference.  

Finally, for the ANT no N2 modulations were found within or between groups 

over the course of the study. Again this is in opposition to the MT related modulation on 

the Stroop task. However, differences in N2 mean amplitude were less likely on the 

ANT as the stimuli (words vs. arrows) and sources of conflict are very different for each 

task. As stated previously, conflict in the ANT is produced by incompatible flanker 

stimuli, thus unlike in the Stroop task, there is no need for attentional amplification of 

different aspects of the same stimulus during early stages of stimulus processing. 

Additionally, overcoming the automaticity of word reading is a much more difficult task 

than ignoring incongruent flanker stimuli (as evinced by the aforementioned robustness 

of the Stroop effect and reduced executive network scores), thus ANT performance is 

less reliant on attentional control over early stimulus categorisation and recognition 

processes than the Stroop.  

In conclusion, it must be recommended that the ANT is not an ideal tool for use 

in longitudinal research due to the clear reduction in task difficulty following repeated 

administrations of the task, evinced by the strong main effect of Time and the Time x 

Congruency interaction. Thus whilst the observed between groups difference in RTs is a 

positive result it must be interpreted cautiously. 

8.2 Mindfulness Based Breath Awareness Meditation and Self Reported 

Mindfulness 

As hypothesised, MTG increased self reported mindfulness from T1 to T3, 

whereas no difference was found in the WCG. This finding suggests that even a singular 

MT technique, completed over a brief period, may improve the frequency with which 

one may engage in mindful behaviours and apply mindfulness in ongoing experience. 
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This suggests that mindfulness based breath awareness meditation plays a fundamental 

role in increasing mindfulness.  

In addition to an overall improvement in mindfulness, increases were 

specifically found in the FFMQ-O and FFMQ-NR facets of mindfulness. FFMQ-O is 

purported to measure behaviours that involve the observation of one’s internal and 

external sensations (e.g. thoughts, emotions, sights, sounds, and smells) whilst FFMQ-

NR measures non-reactivity to inner experience. These facets bare close relation to two 

key elements of the mindful breathing MT, the ability to observe/focus on one’s breath 

and the ability to not react to arising thoughts, feelings, emotions and sensations. Thus, 

increases in mindful behaviours related to these two facets of mindfulness suggest that 

techniques learnt during meditation are being applied outside of meditation with 

increased frequency following MT. Interestingly, Paul et al. (2013) recently found that 

FFMQ-NR scores, in a non-meditating sample, were inversely correlated to insula 

activation
26

 during the inhibition of negative stimuli following a 5 minute mindful 

breathing task, leading the authors to suggest that non-reactivity to inner experience is a 

key facet of mindfulness that may reduce automatic emotional processing and protect 

individuals from psychological risk for depression. Said reduction in insula activation 

suggests that the individuals scoring highly in FFMQ-NR were able to focus on the goal 

directed aspect of the stimulus (i.e. was it a go or no go stimulus) rather than the non-

goal directed aspect of the stimulus (i.e. its emotional valence) as the insula is typically 

engaged during emotional processing. This finding is consistent with the assertion that 

MT led to improved attentional amplification of goal relevant aspects of a Stroop 

stimulus in the current study and that increased control over bottom up processing may 

be possible through MT. Thus the increase in non-reactivity that appears to have been 

fostered by the MT herein may be a key factor in the observed improvements to core 

attentional processes. 

                                                

26 Higher FFMQ-NR score was related to lower insula activation during an emotional Go/No-go task that 
required participants to respond only to certain kinds of emotional faces during each trial block. Enhanced 

insula activation is typically seen during the processing of affective stimuli.  
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8.3 Summary 

In sum, short term exposure to a singular MT technique positively modulated 

core attentional processes and increased self reported mindfulness in a sample of 

meditation naïve individuals. The design of LS1 ensured that MT related changes were 

measured outside of a meditative state, meaning that the observed improvements seem 

to generalise from the specific situation of a meditation exercise to the processing of 

visual stimuli and into everyday behaviours. Slagter et al. (2011) proposed that MT, 

developed over longer periods of time, should lead to the enhancement of cognitive core 

processes including the sustained monitoring of one’s own mental states, the ability to 

disengage from distracting objects and the skill to redirect attention back to the chosen 

focus. The observed changes in the N2 and P3 on the Stroop task and the improved 

behavioural performance on the ANT may partially reflect the enhancement of such 

core processes, and more specifically to processes related to sustaining attention to the 

goal/task at hand. Further, the increases in self reported mindfulness suggest that said 

improvements may lead to positive effects outside of the laboratory environment.  

Whilst the current study was not specifically designed to assess the potential 

mechanism by which MT produces positive effects, the pattern of results observed 

herein suggest that attentional functions are amenable to change following short 

durations of MT and that they may be a potential mechanism for MT related positive 

effects. In line with the Liverpool Mindfulness Model (Malinowski, 2013), it may be 

proposed that improvements in attentional control, fostered through MT, may provide 

the platform upon which cognitive and emotional flexibility may be improved, leading 

to a myriad of potential positive outcomes. In support of this assertion, a number of 

recent studies have begun to link the attentional improvements obtained through MT to 

improvements in emotion regulation (Allen et al., 2012; Paul et al., 2013; Sahdra et al., 

2011). Thus, the findings observed from LS1 and LS2 will be discussed with reference 

to this potential mechanism for MT related positive effects in Chapter 15. 

It is important to note that a general weakness of the waitlist control group 

design of LS1 is that it cannot rule out an alternative explanation for the observed 

results, that the observed results may be related to the fact that meditators engaged in a 

novel regular activity per se, rather than being specific to MT. However, given that the 

observed effects are in line with the results of several other studies, appear to have 
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generalised into activities outside of the laboratory and were observed outside of the 

meditative state, the effects appear to be related to the MT. Whilst LS1 utilised a 

waitlist control group as a practical first step in investigating MT related changes, LS2 

incorporated an active control comparison condition to provide a more complete 

assessment of MT related changes. Thus this weakness is recursively addressed in LS2.  
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Chapter 9. Theoretical Background to Longitudinal Study 2: Cognitive 

Ageing and the Potential Positive Effect of Mindfulness Training.  

9.1 Ageing and the Increasingly Important Problem of Age Related 

Cognitive Declines 

It is generally accepted that systematic age-related declines occur in cognitive 

functioning in midlife and older age, including deficits in executive function, problem 

solving, decision making, verbal and visuo-spatial memory and working memory. The 

term ‘cognitive ageing’ describes this pattern of impairments in cognitive functions with 

increasing age. Moreover, as cognitive function is a fundamental component of health 

and well being, cognitive impairments, even those not reaching the threshold for 

dementia diagnosis, are associated with a loss of quality of life, increased disability, and 

higher health-related expenditures (Albert et al., 2002; DeCarli, 2003; Ernst & Hay, 

1997; Lyketsos et al., 2002; Salthouse, 2004; Tabert et al., 2002). These potential 

problems have come to the forefront of public and policy makers’ consciousness in 

recent times as a major demographic shift is occurring. For example, in Europe the 

percentage of people aged 65 years or over is projected to increase from 17.1% 

(84.6million) in 2008 to 30.0% (151.5 million) in 2060 (Eurostat, 2008). If future ‘aged’ 

generations experience similar patterns of cognitive development to previous 

generations the prevalence of cognitive impairments, including dementia and 

Alzheimers disease (AD), will increase markedly over the coming years. Thus, the 

ageing population presents a great health, social and economic challenge. 

Encouragingly, research over the past two decades has suggested that the adult 

brain has much greater capacity for plasticity
27

 than previously believed, that the 

structure of the brain can change in response to training (Colcombe et al., 2006; 

Draganski et al., 2004; Driemeyer et al., 2008; Gage, 2002) and that age related 

cognitive declines may be influenced by non-biological factors such as education, diet, 

exercise and other life style choices (Hedden & Gabrieli, 2004; National Research 

Council, 2000). Such positive findings have led to somewhat of a paradigm shift with 

                                                

27 Brain plasticity refers to changes in neural pathways and synapses which are due to changes in 

behaviour, environment and neural processes, as well as changes resulting from bodily injury. 
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researchers increasingly interested in the causes of healthy brain ageing as opposed to 

the causes of dysfunction/impairment. However, before discussing the potential causes 

of healthy brain ageing it is necessary to discuss the extant literature regarding what 

declines and why. Accordingly, the following sections detail the declines that are seen 

in core cognitive functions, modulations in brain activity associated with ageing, why 

these modulations may occur, the theory of cognitive reserve and the potential for MT 

to capitalise on cognitive reserve and thus positively influence brain ageing. 

9.2 Ageing and Decline in Sustained and Executive Attentional Functions  

 Most conceptualisations of cognitive ageing distinguish between 3 main kinds of 

cognitive abilities: effortful, automatic and crystallised. The classic pattern is one of age 

declines in tasks requiring effortful processing versus age invariance in tasks relying 

predominantly on automatic processes, with growth occurring across the life span in 

crystallised abilities such as vocabulary and knowledge (see Salthouse, 2004 for 

review). The focus herein is on two core effortful cognitive functions, sustained and 

executive attentional functions. The evidence presented in this section will demonstrate 

that both of these functions decline with age and the potential mechanisms by which 

these declines occur will be discussed. As a rule of thumb the term ‘older adults’ is 

utilised within this section to describe groups of participants that have a mean age of 65 

or above whilst ‘younger adults’ refers to groups who are 30 or younger. Any 

significant deviations from this will be explicitly stated. As a reminder, an overview of 

the details of cognitive tasks introduced in this and the remaining Chapters of this thesis 

can be found in Appendix A. 

 A number of studies employing a wide range of paradigms have suggested that 

older adults’ exhibit age related declines in sustained attention. The majority of studies 

that have sought to examine said declines have used paradigms that require attention to 

be sustained over extended periods of time in order to respond to rarely presented 

stimuli. In this approach, sustained attention is typically defined as a state of readiness 

to detect and respond to certain changes in the environment, occurring at random time 

intervals over prolonged periods of time (e.g. D. R. Davies & Parasuraman, 1982). 

Performance is measured by two key indicators: 1) the vigilance decrement, which is 

typically observed as an increase in RTs and/or errors with time on task and 2) overall 

vigilance, which refers to performance measures that typically involve outcome 
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measures such as RTs, HRs or errors derived from overall performance on the task. 

Differences in each of these indicators have been found between old and young adults. 

Using a digit discrimination task (Nuechterlein, Parasuraman, & Jiang, 1983) Deaton 

and Parasuraman (1993) found a vigilance decrement in older vs younger adults, with 

older adults exhibiting a greater decrease in HR and a greater increase in false alarms 

with time on task. Further, Thackray and Touchstone (1981) found decrements in a task 

that was designed to mimic air traffic control, with older adults increasing errors (both 

commission and omission) and RTs after a shorter amount of time than younger adults. 

Overall vigilance has also been shown to decrease with older, compared to younger, 

adults producing slower RTs on a CPT paradigm (Hammerer et al., 2010). A. D. M. 

Davies and Davies (1975) also reported a lower HR in an older vs. younger group and 

Mani, Bedwell, and Miller (2005) reported a reduction in HR and more false alarms 

with increasing age (age range 19-82yrs). Differences have even been found between 

older adults aged 50-69 and those aged 70-79 with the later requiring longer to complete 

a digit cancellation task (Filley & Cullum, 1994), suggesting that performance continues 

to worsen in old age. It must be noted that some mixed findings have also been 

reported. Using a 60 minute Mackworth Clock Test Giambra and Quilter (1988) found 

that whilst RTs increased from middle to older age, vigilance decrements (HRs) with 

time on task did not. Giambra (1997) found that older and young adults had similar 

overall HRs on a 30 minute sensory vigilance task although false alarms did increase 

with time on task for the older adults only. Other studies have reported that with time on 

task older adults do exhibit a greater decrease in HRs but comparable RTs (Surwillo & 

Quilter, 1964). The somewhat inconsistent findings across these studies may be 

explained by differences in task difficulty, task duration and reported outcome measures 

(e.g. HRs vs RTs and overall performance vs time on task) as these factors vary widely 

across studies. The overall pattern of results suggest that sustained attention deficits 

manifest with increasing age with older adults exhibiting vigilance decrements and 

deficits in overall vigilance across paradigms. 

 Sustained attention performance decrements may appear with advancing age due 

to a decrease in the availability of attentional resources. It has been proposed that the 

continuous nature of the effortful mental work that is required during a sustained 

attention task does not allow for attentional resources to be replenished and eventually 

leads to a decline in performance (e.g. Grier et al., 2003; Warm, Parasuraman, & 
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Matthews, 2008). Evidence for this assertion comes from studies that have shown that 

greater performance decrements accompany higher task demands (Helton et al., 2004; 

Sebastian, Baldermann, et al., 2013 ) and that the vigilance decrement is accompanied 

by a parallel decline in cerebral blood flow velocity, a possible indicator of the supply 

of physiological resources that is thought to provide a metabolic index of the utilisation 

of information processing resources during task performance (Hitchcock et al., 2003; T. 

H. Shaw et al., 2009). Thus if older adults have less available attentional resources to 

begin with, they are likely to be exhausted faster leading to worse performance both 

overall and with time on task. This explanation is consistent with the abovementioned 

vigilance decrements and decreases in overall vigilance reported in older adults. 

The efficient temporal allocation of attentional resources also appears to decline 

with age. Evidence for this assertion comes from studies utilising the ABtask, an 

effortful task that requires participants to sustain attention to a rapidly presented stream 

of visual stimuli in order that two temporally close target stimuli may be identified. A 

number of studies have observed that the AB increases with age (Georgiou-Karistianis 

et al., 2007; Maciokas & Crognale, 2003; van Leeuwen et al., 2009). The increase in 

blink is two-fold. Firstly, older participants miss the second target more frequently. This 

increase may be explained by a reduction in overall attentional resource capacity, with 

too few resources left available for processing the second target when it appears during 

the time window in which the first target is still being processed (AB time window 

<500ms post first target). Secondly, older adults miss the second target for longer 

periods of time following detection of the first target. This suggests that older adults 

take longer to process the first target meaning attentional resources for processing the 

second target are unavailable for longer. A reduction in inhibitory control in older adults 

may also explain this pattern of results, with non-targets gaining access to and taking up 

a proportion of the limited available attentional resources if they are not inhibited from 

further processing. Age related deficits in executive functions such as inhibitory control 

are introduced and discussed below. 

Evidence from a wide range of paradigms suggests that older adults experience 

declines in top down attentional control mechanisms, i.e. executive functions. Staying 

with tasks of sustained attention for the moment, said functions are required in order to 

modulate the processing of task specific information, to maintain task goals online, 

monitor performance and error, filter distracting information and suppress habitual pre-
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potent and conflicting responses (e.g. Carter et al., 1998; Matsumoto & Tanaka, 2004; 

M. Sarter & Paolone, 2011; van Veen & Carter, 2006). In a recent study, McAvinue et 

al. (2012) found that older adults had slower RTs and produced more errors (both 

commission and omission) than younger adults on the Sustained Attention to Response 

Task (SART; Robertson et al., 1997), a commonly used Go/No-Go paradigm which 

requires participants to utilise executive functions to inhibit pre-potent responses to 

rarely presented stimuli. Whilst the SART RT decrement in older vs. young adults has 

been replicated in other recent studies (Carriere et al., 2010; Jackson & Balota, 2012), 

errors are not typically found to be increased in older adults on said task, in fact both 

Carriere et al. (2010) and Jackson and Balota (2012) observed less errors in older as 

compared younger adults. Of importance, a closer inspection of Carriere et al. (2010) 

data, wherein participants were grouped based on decade of life (e.g. 3
rd

 = age 20-30), 

highlights that adults aged between the 3
rd

 and 7
th
 decade committed less than 5% errors 

(3
rd

 decade = 4.8%, 7
th

 decade = 4.0%), suggesting that the lack of old vs. young 

accuracy deficits in these studies may be accounted for by a lack of task difficulty. This 

explanation is feasible considering Go/No-go tasks typically only involve 1 response 

mapping and no conflict between perceptual and motor processes. A more careful 

response criterion, prioritising accuracy over response speed, may explain the slower 

RTs that were observed for older adults across studies and would account for why more 

errors of omission but not commission have been found as a function of age (Sebastian, 

Baldermann, et al., 2013).  

Slower RTs on trials that follow an error have also been observed for old vs. 

young adults (Band & Kok, 2000; Jackson & Balota, 2012), a finding suggestive of a 

more careful response criterion and increased recruitment of top-down attentional 

control (i.e. attentional monitoring) to improve accuracy (Kerns et al., 2004). Findings 

from neuro-imaging and ERP studies support this assertion. A number of fMRI studies 

have observed increased activation of the ACC, a region implicated in attentional 

monitoring, for older vs. younger adults on the SART (Hester, Fassbender, & Garavan, 

2004) and other tasks that require the inhibition of pre-potent responses (e.g. Milham et 

al., 2002; Nielson, Langenecker, & Garavan, 2002). A decrease in the difference 
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between ERN
28

 and the correct related negativity (CRN
29

) has also been found in old vs 

young adults (Endrass, Schreiber, & Kathmann, 2012). Recent studies utilising ICA 

have found that the ERN and CRN map on to a single IC with amplitude modulations 

found for errors and correct responses (Hoffmann & Falkenstein, 2010; Roger et al., 

2010), thus the reduced difference between the ERN and CRN in older adults may 

reflect an increase in general monitoring of responses in the absence of errors. It is 

feasible that this increased use of top down resources over time may deplete attentional 

resources, which would explain why vigilance decrements with time on task were 

observed in a number of the earlier mentioned studies. Unfortunately, performance 

decrements with time on task were not reported in the abovementioned SART and 

Go/No-go studies, thus further research is required to determine whether the older 

adults were slower throughout the task or whether the mean overall RTs are lower due 

to a progressive slowing with time on task, potentially caused by the depletion of 

available attentional resources over time. 

The inhibitory deficit hypothesis (Hasher, Zacks, & May, 1999), a leading 

hypothesis for observed age related declines in cognitive performance affords a 

plausible explanation for why older adults may employ a more careful response 

criterion and enhanced top down attentional control during tasks of even minimal 

difficulty. The inhibitory deficit hypothesis proposes that the ability to inhibit irrelevant 

information is impaired in older adults. Thus older adults may employ a more careful 

response criterion and/or require more top down attentional control in order to 

compensate for the fact that they find it more difficult to inhibit irrelevant information 

that may otherwise affect responses. A number of recent findings continue to 

demonstrate that older adults have impaired inhibitory control. A further finding of the 

aforementioned study by Hammerer et al. (2010) was that older vs. younger adults had a 

pronounced no-go P3a ERP component to infrequent non-cue stimuli, a finding that the 

authors interpreted as evidence of attentional distraction, which may be considered 

analogous to a failure to inhibit task irrelevant information. Similarly, in a series of 

                                                

28 The ERN is a negative deflection in the ERP that is seen after an error. It is assumed to reflect the 
adjustment of cognitive control to prevent future errors (Kerns et al., 2004; Ridderinkhof et al., 2004). 

This is supported by several reports revealing an association of ERN amplitude with post-error slowing 

(Debener et al., 2005; West & Travers, 2008). 

29 The CRN is a negative deflection in the ERP that appears after a correct response. Typically the ERN is 
a larger amplitude negative deflection than the CRN.  
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studies utilising Go/No-go paradigms Vallesi and colleagues found that older vs. 

younger adults had more difficulty ignoring both high (Vallesi, 2011) and low conflict 

(Vallesi et al., 2009) no-go stimuli, evidenced by a larger P3 ERP component to said 

stimuli. Consistent with the earlier mentioned SART studies, RTs to go stimuli were 

also slower for older adults across both of Vallesi and colleagues studies, suggesting 

that difficulty in inhibiting the attentional processing of no-go stimuli may lead to 

slower responses.  

Nigg (2000) proposed that inhibition is made up of both automatic and executive 

components, with inhibition tasks requiring varying amounts of executive control. 

Automatic inhibition occurs without awareness, i.e. when irrelevant information that is 

automatically and simultaneously activated in conjunction with relevant information is 

suppressed prior to cognitive awareness (S. P. Wilson & Kipp, 1998). Conversely, 

executive inhibition relies on controlled suppression of irrelevant stimuli or responses 

and is likely to be utilised during more difficult tasks of inhibition. Andres et al. (2008) 

found that negative priming
30

, a form of automatic inhibition, was not influenced by 

ageing whereas executive inhibition, as measured by performance on the Stroop task 

and Stop signal task, was significantly worse for old vs. young adults. This finding 

remained significant when speed of processing was controlled for, suggesting that age 

related deficits in executive inhibition cannot simply be explained by a general slowing 

account of ageing. Other studies have also observed deficits in executive inhibition in 

older adults using the Stop-signal task (Hu et al., 2012; B. R. Williams et al., 1999) and 

deficits have also been observed using the Simon task (Kubo-Kawai & Kawai, 2010; 

Maylor, Birak, & Schlaghecken, 2011; van der Lubbe & Verleger, 2002; West & Alain, 

2000). Whereas the Go/No-go tasks discussed thus far typically involve action 

withholding aspects of inhibition, i.e. the withholding of a pre-potent response in no-go 

conditions, the Stop signal task and the Simon task involve action cancellation and 

interference inhibition respectively (see Sebastian, Pohl, et al., 2013 for a recent review 

of these sub components of inhibition). The added difficulty of these forms of executive 

                                                

30
 The ignored word on any 1 trial became the attended colour on the next trial, relative to sequences 

wherein successive words and colours were unrelated. Negative priming arises due to inhibition of the 

ignored distracter on trial n that results in a longer time to reach the activation necessary to permit 

accurate response production for the same stimulus when it appears as the target on trial n + 1 (Tipper, 

2001). 
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inhibition may explain why age related declines are often more readily observable on 

such tasks (Sebastian, Baldermann, et al., 2013). 

In addition to Andrés study, a number of other studies that employed the Stroop 

paradigm further suggest an age related decline in executive inhibition and conflict 

monitoring. Differences in Stroop interference (RTs) have been found between young 

and older participants (Cohn, Dustman, & Bradford, 1984; Mayas, Fuentes, & 

Ballesteros, 2012; Panek, Rush, & Slade, 1984; West & Alain, 2000; West & Bell, 

1997), between young and middle aged (mean age = 50.9yrs) participants (Mager et al., 

2007) and in a study that utilised normative data to correlate age with Stroop 

interference (Van der Elst et al., 2006). Further, modulation of ERP components has 

also been found with a greater P3 (West & Moore, 2005) and LN (Mager et al., 2007) 

mean amplitude observed in older vs. younger adults, suggesting more attentional 

resources are required by older adults to complete the Stroop task. Interestingly, 

increases in Stroop interference scores have also been associated with age related 

declines in dopamine activity (Volkow et al., 1998), a catecholamine neurotransmitter 

that is thought to modulate the executive network of attention (Posner & Rothbart, 

2007). Recently, links between executive network declines, declining prefrontal lobe 

function and the dopaminergic system have also been found using the ANT (Zhou et al., 

2011) and a negative effect of age on performance was also found using a colour 

version of the Eriksen flanker task (Waszak, Li, & Hommel, 2010) in a population 

based sample of 263 adults (age range 6-89). In sum, the converging evidence suggests 

that deficits in sustained attention and executive functions, most notably for executive 

inhibition, may play a crucial role in age related cognitive declines. 

The majority of findings discussed thus far have utilised behavioural dependent 

variables (e.g. RTs and HRs). Such measures provide only part of the picture as they are 

indicative of the outcome of a series of complex and very rapid mental processes and 

give little information regarding the sub-processes that may be impaired. Thus ERPs 

that provide information regarding the processing that occurs between the presentation 

of a stimulus and a response and neuro-imaging recordings that provide information 

regarding active brain regions during task completion may provide valuable information 

regarding what is occurring in the ageing brain.  
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A number of ERP findings have been briefly mentioned thus far with older 

adults displaying ERPs that are indicative of more effortful attentional monitoring 

(Endrass et al., 2012), increases in attentional resources to task irrelevant information 

(Hammerer et al., 2010; Vallesi, 2011; Vallesi et al., 2009) and increases in attentional 

resources during response conflict (Mager et al., 2007) and for inhibition (West & 

Moore, 2005). Taken together these findings are indicative of older adults enhancing 

top down attentional control and requiring more attentional resources to complete tasks.  

Research utilising neuro-imaging techniques goes in the same direction. Both 

Langenecker and Nielson (2003) and Nielson et al. (2002) found that older, not 

younger, adults exhibited bilateral activation patterns during the completion of Go/No-

go tasks whilst the former study also found that these activation patterns remained 

stable over task repetitions. The primary areas of activation were highly comparable 

across both of these studies and included a variety of regions that have been implicated 

in inhibitory control such as the bilateral inferior and middle frontal gyri, IP areas, 

anterior cingulate gyri, supplementary motor area, as well as the left insula, claustrum, 

and putamen. These findings further suggest that older adults recruit additional neural 

resources to complete tasks involving inhibition. Similar findings have also been found 

during the completion of a working memory task (Piefke, Onur, & Fink, 2012) with 

older adults activating the PFC bilaterally whilst younger adults only activated left 

hemispheric regions. Enhanced activation of primary task related cortical areas have 

also been observed. Vallesi, McIntosh, and Stuss (2011) found that whilst old and 

young adults activated a similar extensive set of fronto-parietal regions in response to 

high conflict no-go stimuli, the older adults had greater activation in these regions, 

suggesting they had to over recruit to perform the same task. Similarly, Langenecker, 

Nielson, and Rao (2004) found comparable activation patterns for young and old adults 

during Stroop task completion with the later exhibiting enhanced activation in regions 

implicated in inhibition (inferior frontal gyrus). The general pattern of results emerging 

suggests that older adults require enhanced activation of task related cortical areas 

and/or activation of additional areas in order to perform the same task as younger adults.  

A deficit in attentional control mechanisms has been proposed to account for age 

related activation differences. Milham et al. (2002) found that younger, but not older 

adults, exhibited increased activity in attentional control regions (e.g. DLPFC) in 

response to increased demand across task conditions (incongruent activity > congruent 
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and neutral) during the Stroop task. Further, only older adults had both bilateralised 

activation patterns in regions associated with the inhibition of task relevant information 

and increased activation in regions associated with response monitoring (ACC). Taking 

these results together it was proposed that a lack of efficiency for attentional control 

mechanisms to respond to increased demand may result in additional resources being 

required for the inhibition of task irrelevant information if it was not dampened at 

earlier processing stages. This may ultimately lead to an increased need for response 

monitoring. However, more recently Lague-Beauvais et al. (2013) found DLPFC 

activation even on the neutral, non-executive condition, of the Stroop task for older but 

not younger adults, whilst task switching was also associated with more widespread 

frontal activation in older adults. Therefore, as older adults exhibit bilateralised and 

enhanced activation across a variety of paradigms, including those of relatively low 

difficulty, attentional control may manifest differently in older adults. Enhanced top 

down attentional control itself may result in this pattern of bilateralised and enhanced 

activation which may be required to manage demand across tasks and task conditions 

owing to a loss of neural specificity and efficiency with ageing (Colcombe et al., 2005). 

Recent ERP findings (Haring et al., 2013) support this assertion with older, as compared 

to younger, adults displaying an enhanced neural response when asked to attend to, as 

well as ignore colour letters, even when executive capacity
31

 was controlled for between 

groups, suggesting that older adults attempt to meet task demands by enhancing top 

down resources across task conditions. Thus, an alternative explanation for the 

aforementioned findings of enhanced activation in no-go conditions (Vallesi et al., 

2009) and to non-cue stimuli (Hammerer et al., 2010) may be that older adults are 

allocating more resources across conditions to meet task demands, rather than reflect 

enhanced attentional distraction. 

If as suggested by the findings presented herein, deficits in sustained and 

executive attention are a natural part of ageing, then the enhanced activation and 

recruitment of additional neural resources detailed herein may reflect compensatory 

mechanisms that attempt to utilise adaptive plasticity to improve or maintain 

performance despite age-related neurodegenerative modulations (see Buckner, 2004; 

                                                

31 A composite score of executive capacity was generated from a variety of executive measures including: 
the digit span backward subtest of the Wechsler Adult Intelligence Scale-IV (WAIS-IV; Weschler, 2008), 

Controlled Oral Word Association Test (Ivnik et al., 1996), WAIS-IV Letter-Number Sequencing, WAIS-

IV Digit-Symbol Coding, and the Trail-Making Test Parts A and B (Reitan & Wolfson, 1985) 
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Cabeza et al., 2002). For this assertion to hold true individuals who continue to perform 

well in old age would be expected to display enhanced and/or bilateralised activation 

whereas poorly performing adults may display reduced and/or asymmetric activation 

patterns. Whilst extant evidence for this assertion is limited the findings of a number of 

studies indeed go in this direction. Cabeza et al. (2002) found that high performing 

older adults had bilateral activation patterns whereas asymmetric patterns were observed 

in both younger and poorly performing older adults. Further, Vallesi and colleagues 

found that in older adults, increased no-go P3 mean amplitude was associated with 

decreased RTs to go stimuli (Vallesi, 2011) and over recruitment of resources was 

associated with reduced errors (Vallesi et al., 2011). In line with the resource theory of 

sustained attention decrements, this enhanced need for attentional resources may be 

expected to deplete available resources and cause performance decrements with time on 

task and thus may account for some of the earlier discussed vigilance decrements. 

However, as enhanced and bilateralised activation have been linked to improved 

performance, such modulations may top up attentional resource capacity rather than 

cause an additional drain on available resources, with performance likely to be worse in 

their absence (e.g. Cabeza et al., 2002). 

The evidence reviewed thus far in this Chapter highlights that identifying 

methods that can improve sustained attention, executive control functions and in 

particular inhibitory control, and increase attentional resources in older adults should be 

considered a priority for researchers. Herein it will be argued that MT may facilitate 

such improvements given the evidence presented in Chapter 3 and the findings of LS1. 

First, it is pertinent to introduce a potential mechanism by which MT may facilitate 

positive brain ageing, namely the concept of reserve. The following sections will 

introduce the concept of reserve, how it relates to the compensatory activity discussed in 

the current section and the factors that may influence it. 

9.3 Cognitive Reserve: Definition and Proposed Mechanism 

 The concept of reserve has been proposed to account for differences that are 

often observed between clinical outcomes and degrees of brain damage. With respect to 

cognitive ageing, reserve may account for differences observed between individuals 

with age related pathology or disease. For example, Ince (2001) reported that 25% of 

older adults met full pathological criteria for AD at post mortem despite 
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neuropsychological test performance being unimpaired prior to death. This suggests that 

the level of pathology does not invariably result in clinical dementia and that certain 

individuals may have a reserve that enables them to maintain function.  

The extant literature provides a number of somewhat overlapping definitions 

regarding what constitutes reserve. According to Stern (2002, 2009), reserve is best 

described in terms of both passive and active models. Brain reserve (e.g. Katzman, 

1993) is an example of a passive model, which refers to neuro-protective brain capacity 

whereby reserve derives from brain size or neuronal count. In the simplest of terms, this 

model postulates that larger brains can sustain more insult before clinical deficits 

emerge because sufficient neural substrate remains to support normal function. Passive 

models such as this assume that individuals differ only in their overall brain reserve 

capacity. Thus, clinical or functional deficits will emerge once brain reserve capacity is 

depleted beyond a critical threshold. For example, in AD synapses may be depleted 

beyond this threshold resulting in clinical dementia. Critically, threshold models such as 

this do not account for how the brains of different individuals process cognitive or 

functional tasks following brain damage and its resultant disruption to established 

networks and processes. Cognitive reserve (CR) postulates that individual differences in 

the cognitive processes or neural networks underlying task performance allow certain 

individuals to cope better with brain damage than others (Stern, 2009). Active models 

such as CR propose that the brain may enlist compensatory processes (Stern, 2002) 

and/or utilise pre-existing cognitive networks and processes to cope in the face of brain 

damage. Hypothetically, two patients may display different levels of clinical 

impairment despite possessing the same amount of brain reserve capacity. Therefore, 

CR may allow individuals to maintain function and compensate for structural loss and is 

a mechanism that has the potential to produce positive effects for older adults. 

Importantly, as the brain ultimately controls all cognitive function, the 

differences in CR must have a physiological basis. The line between CR and brain 

reserve is thus not clear cut as factors associated with CR (discussed below) are likely to 

have a direct effect on the brain. Stern (2009) suggests that the physiological variability 

subsumed by CR is at the level of variability in synaptic organisation, or in relative 

utilisation of specific brain regions. Thus, CR implies anatomic variability at the level 

of brain networks, while brain reserve implies differences in the quantity of available 
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neural substrate. Steffener and Stern (2012) suggest that on a neural level CR may take 

two forms: neural reserve and neural compensation.  

Neural reserve posits that there is inter-individual variability in brain networks 

and/or performance on cognitive paradigms that measure the functions associated with 

these networks. Said variability may be due to differences in network efficiency, 

capacity or flexibility. Thus, neural reserve may be the mechanism by which healthy 

individuals cope with both increased difficulty of ongoing task demands and to cope 

with brain pathology, i.e., an individual whose brain networks are more efficient, have 

greater capacity, and/or are more flexible is likely to cope better with the disruption 

caused by brain pathology. With respect to cognitive ageing, Stern & colleagues have 

shown that older vs. younger participants have less efficient
32

 neural networks (Zarahn 

et al., 2007) and have less network capacity
33

 available for task performance (Holtzer et 

al., 2009).  

Neural Compensation refers to the process by which individuals suffering from 

brain pathology use brain networks and structures not normally used by individuals with 

intact brains in order to compensate for brain damage. This alternative compensatory 

network is not engaged in performing a task until demands exceed the neural capacity 

level of the primary networks. Said alternative networks may potentially be recruited to 

compensate for age-related neural changes and allow those who are more capable of 

recruiting them to perform better in the face of neural change. This assertion is 

consistent with the hemispheric asymmetry reduction in old adults model (HAROLD) 

proposed by Cabeza et al. (2002), which detailed that older adults who recruited 

additional PFC areas (bilateralised as opposed to asymmetric activation patterns) had 

better performance than those older adults who never recruited additional brain regions. 

The findings of bilateral or additional areas of activation (Cabeza et al., 2002; Piefke et 

al., 2012; Nielsen et al., 2002; Langenecker et al., 2003), enhanced activation of task 

                                                

32 Efficiency refers to the change in neural activity occurring with a change in task demand. For an equal 

increase in task demand, someone with greater efficiency requires less of an increase in neural activity 

than does someone with less efficiency. 

33 Better performance by the younger subjects was accompanied by increased expression of the 
underlying brain network. This suggests a capacity difference, with the younger subjects able to activate 

the common network to a greater degree than the older subjects. 
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relevant brain regions (Langenecker et al., 2004; Milham et al., 2002; Vallesi et al., 

2011) enhanced ERPs (Endrass et al., 2012; Mager et al., 2007; West & Moore, 2005) 

and increased allocation of attentional resources across task conditions (Hammerer et 

al., 2010; Haring et al., 2013; Lague-Beauvais et al., 2013; Vallesi, 2011; Vallesi et al., 

2009) that were discussed in the previous section are suggestive of age related neural 

compensatory mechanisms. However, performance is not always maintained to the 

levels of younger adults when compensatory activity is required. A number of studies 

have shown that compensatory resources may be recruited when primary neural 

networks are no longer adequately able to support successful task performance (e.g. 

Reuter-Lorenz, 2002; Steffener et al., 2009). In such instances the compensatory 

activity may be seen as enabling the individual to continue to perform the task, 

however, performance may not be as high as in individuals who have an intact, 

efficient, high capacity primary network. In AD, this compensatory activity may allow 

the individual to continue to perform despite pathology to the primary network. 

Compensation in this case is associated with maintenance of function as opposed to 

improved function.  

It is important to stipulate that neural compensation is not limited to instances of 

brain pathology and/or to older adults. For example, younger adults have been shown to 

both enhance activation of primary networks and/or to recruit additional resources (e.g. 

bilateralised activation) when they are presented with increased demand on inhibitory 

control (e.g. Sebastian, Baldermann, et al., 2013) or attentional control (e.g. Milham et 

al., 2002). 

In sum, CR may serve two main functions in older adults. Firstly, it may 

increase the efficiency and capacity of primary networks to enable cognitive 

performance to be maintained. Secondly, it may enable compensatory activation to 

support primary networks in the face of age related pathology or disease. Thus, 

improving CR has the potential to positively influence cognitive performance in older 

adults. Consequently, an ever increasing body of research is attempting to answer the 

question, ‘how may CR be increased?’ The following section discusses the main factors 

that appear to influence CR and provides the theoretical background for why CR is a 

potential mechanism by which MT may improve cognitive performance in older adults.  
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9.4 Key Factors in Cognitive Reserve 

 The potential for CR to positively influence the cognitive ageing process has 

resulted in somewhat of a paradigm shift in recent times. Rather than explicitly looking 

for the causes of declines, researchers are increasingly looking for the causes of healthy 

ageing. The main factors currently thought to improve CR are discussed below. Whilst 

the majority of early research in this area was focussed on animal models and 

environmental enrichment studies (see Frick & Benoit, 2010 for review), herein the 

focus is on the potential benefits of mental activity and cognitive training as this is 

where MT is positioned. 

Education and Occupation 

 Based on epidemiological evidence, variables reflecting lifetime experience such 

as education and occupation appear to positively influence CR. Greater levels of 

education have been shown to have a protective effect against dementia and cognitive 

decline in a wide range of studies (see the following for reviews: Fratiglioni & Wang, 

2007; Valenzuela & Sachdev, 2006a, 2006b). Further, the findings of a recent study 

(Foubert-Samier et al., 2012) suggest that education may be related to brain reserve as 

education was significantly associated with cerebral volume (including both grey and 

white matter) in a sample of non-demented over 65’s.  Beyond the brief period spent in 

education, occupational environment and intellectually stimulating occupations in 

particular, have similarly been associated with greater levels of CR in healthy adults 

(Andel et al., 2005; Potter, Helms, & Plassman, 2008; Potter et al., 2006; Staff et al., 

2004) and with the attenuation of AD symptoms (Stern et al., 1994).  

Whilst both education and occupation may be key factors in determining the 

level of CR with which individuals enter old age, the rate of cognitive decline may not 

be mitigated by these factors. R. S. Wilson et al. (2009) found that prior education was 

not linked to the rate of cognitive decline, concluding that reduced cognitive decline in 

well educated individuals is likely to be in part due to the well established correlation of 

education with cognitive test performance at all ages, i.e. individuals with higher levels 

of education, relative to those with less, are likely to enter old age at a higher level of 

cognitive function and would thus require a greater level of decline before reaching a 

significant level of impairment (e.g. meeting criteria for dementia or AD). Thus whilst it 
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is important to enter old age with as much CR as possible as a buffer for potential 

pathology, other factors may play a more vital role in slowing the rate of cognitive 

decline during the period that follows retirement.  

Mental Activity and Cognitive Training 

 Ongoing and prior mental activity appears to play a crucial role in mitigating 

CR. Mental activity may come from a variety of sources including education, 

occupation, leisure activities or even from specific cognitive training regimens. 

Retirement may play a crucial role in depleting CR as individuals may engage in 

reduced levels of mental activity following the inevitable changes to daily routines that 

result from occupational retirement, leading to what Rohwedder and Willis (2010) 

termed mental retirement. Accordingly, a number of recent reviews have argued that 

retirement has a negative impact on cognitive functioning (Bonsang, Adam, & 

Perelman, 2012; Mazzonna & Peracchi, 2010; Rohwedder & Willis, 2010) whilst other 

authors have shown that retirement may accelerate cognitive decline (Adam et al., 

2007). Importantly, mental activity derived from leisure activities and cognitive training 

provides a potential mechanism for increases in CR over which individuals may exert a 

level of control, as opposed to mental activity through occupational factors which are 

temporally limited due to the inevitability of retirement.  

 A number of high profile observational studies have reported positive effects of 

mentally stimulating leisure activities. The Einstein Ageing Study (Verghese et al., 

2003) found that a number of cognitively stimulating leisure activities (including 

reading, playing board games such as chess, and playing a musical instrument) were 

associated with a reduced risk of dementia. Similarly, the Religious Orders Study (R. S. 

Wilson et al., 2002) found that engaging in mental activities was associated with a 33% 

reduced risk of developing AD at a 4 year follow up and with a 47% reduced risk of 

developing general cognitive problems.   

 A number of clinical trials have been designed to address whether mental 

activity administered via cognitive training techniques can have a similar positive effect 

in healthy older adults. Valenzuela and Sachdev (2009) conducted a systematic review 

which resulted in seven such trials being assessed, concluding that cognitive training in 

healthy older adults produces persistent protective effects on longitudinal 
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neuropsychological performance. The reviewed literature included the largest trial to 

date, the ACTIVE (Advanced Cognitive Training for Independent and Vital Elderly; 

Ball et al., 2002) study, which found that cognitive training in 1 of 3 domains (memory 

strategy, reasoning, and speed of processing) lead to improvements in said domains at a 

2 year follow up with no crossover of improvements across domains being found. This 

lack of cross over effects into global cognitive domains and into tests of everyday 

functioning is consistent with the literature suggesting that skill learning is usually very 

task-specific and does not easily generalise beyond the specific tasks, stimuli, or 

contents (Green & Bavelier, 2008). However, the findings of a more recent study 

suggest that such cross over effects are possible by training core cognitive functions 

which are called upon during many varied tasks. The IMPACT (Improvement in 

Memory with Plasticity-based Adaptive Cognitive Training; G. E. Smith et al., 2009) 

study utilised a broadly-available brain plasticity–based computerised cognitive training 

program which included elements that relied upon core cognitive functions. For 

example, conflict monitoring skills were required to discriminate between confusable 

syllables, working memory functions were required to reconstruct sequences of verbal 

instructions and selective attention was required to identify details from a verbally 

presented story. Completing this training for a total of only 40hours (1hour per day, 5 

days per week for 8weeks) was able to significantly improve performance on measures 

of attention and memory that were not specifically trained, in comparison to an active 

control condition
34

. Thus cognitive training techniques that are able to improve core 

cognitive functions are likely to have wide reaching effects in older adults.  

In line with the CR hypothesis the training of core cognitive functions is likely 

to enhance CR by increasing both the efficiency and capacity of primary neural 

networks and/or enabling the recruitment of additional compensatory resources. As 

mentioned earlier, such increases may be expected to not only have benefits in healthy 

older adults who may be experiencing age-related brain pathology and/or cognitive 

declines, but also in those individuals who suffer disease related pathology from 

conditions such as AD. In addition to the improvements in the former group detailed 

above, a number of recent findings have begun to suggest that cognitive training 

interventions may have utility in the latter group also. Whilst cognitive training is yet to 

                                                

34 The active control condition employed a learning-based training approach in which participants used 
computers to view DVD based educational programs on history, art, and literature. 
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prevent incident dementia in an appropriately designed trial (Valenzuela & Sachdev, 

2009), a number of smaller trials have shown efficacy in slowing the progression of 

cognitive declines in early stages of mild cognitive impairment (Cipriani, Bianchetti, & 

Trabucchi, 2006; Rozzini et al., 2007; Talassi et al., 2007) and AD (Galante, Venturini, 

& Fiaccadori, 2007; Tarraga et al., 2006) whilst a number of trials have shown that 

combining cognitive training with medication has greater efficacy than medication 

alone (Loewenstein et al., 2004; Rozzini et al., 2007, Yesavage et al., 2008). Caution is 

advised when interpreting these results as this field is very much in its infancy and a 

number of methodological flaws have been noted. For example, a major criticism of the 

majority of the trials conducted thus far is that they do not have adequate follow up 

periods and lack active control and/or placebo conditions (see Papp, Walsh, & Snyder, 

2009 for critique). Such criticisms largely extend to the earlier mentioned studies 

conducted with healthy older adults, however a number of trials have shown that the 

positive effects of training are maintained at follow up of up to 5 years (Oswald et al., 

2006; Willis et al., 2006), thus cognitive training techniques may have long-lasting 

positive effects.  

To summarise, CR may play a pivotal role in positive brain aging and cognitive 

training techniques that train core cognitive skills may provide a way in which older 

adults can exert some control over age related cognitive outcomes, even in the face of 

age and disease related pathology. Identifying easily accessible cognitive training 

techniques that older adults can engage in is thus a priority for ongoing research. Thus 

far previous research has mostly focused on preventing or slowing AD and clinical 

dementia. Whilst this is understandable given the likely increase in prevalence of said 

conditions, the impending rise in retirement age and the potential deleterious effects of 

cognitive declines in the absence of disease means that any cognitive training technique 

that can improve core cognitive skills in older adults is likely to have great utility in 

improving occupational efficacy pre retirement and cognitive ability post retirement, 

regardless of whether it is able to delay/prevent or compensate for disease. The 

following section presents the theoretical argument for why MT may be positioned as a 

form of cognitive training that may influence CR, and consequently cognitive 

performance, in older adults. 
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9.5 Mindfulness Training, Cognitive Ageing and Cognitive Reserve 

Despite empirical evidence for the effect of MT in older adults being limited, the 

findings of a number of studies suggest positive effects may be achieved. Hölzel et al. 

(2008) found that long term mindfulness meditators displayed greater grey matter 

density than controls in the left inferior temporal gyrus, the right anterior insula and the 

right hippocampus, key regions in the default and salience networks. This finding may 

be interpreted as an increase in neural reserve and suggests that brain networks 

associated with attentional functions are strengthened by MT. Pagnoni and Cekic (2007) 

also found grey matter differences between expert meditators and controls with only the 

latter displaying the expected negative correlation of both grey matter volume and 

attentional performance with age. In this study the effect was most pronounced in the 

putamen, a part of the basal ganglia’s corpus striatum which has been implicated in 

cognitive flexibility and attentional processing (Nieoullon, 2002), further suggesting 

that engagement in meditations such as MT may positively modulate neural reserve in 

attention related brain regions. Greater grey matter density has also been found in expert 

meditators in the right hippocampus, left temporal lobe, right thalamus and right orbito-

frontal cortex (Luders et al., 2009). Whilst these regions are mostly associated with 

emotional stability and the generation of positive emotions, they have also been 

implicated in response control, suggesting that long term meditation may significantly 

modulate neural reserve in regions associated with emotional and cognitive control. 

Additionally, as compared matched controls, cortical thickness has been observed to be 

thicker for long term insight meditators in regions associated with attention, 

interoception and sensory processing (Lazar et al., 2005), including the PFC and right 

anterior insula which are key parts of the salience and executive networks. Between 

groups differences in PFC thickness were most pronounced in older participants, 

suggesting that MT might offset age-related cortical thinning. The aforementioned 

studies involved meditators with many years meditation experience. However, increased 

availability of neural substrate may be possible after a short duration of MT considering 

that increases in grey matter have previously been found following 8 weeks of MBSR 

(Hölzel, Carmody, et al., 2011) whilst as little as 11 hours of IBMT (see Chapter 3 for 

details regarding IBMT) has been shown to improve white matter integrity in ACC 

(Tang et al., 2010).  
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The emerging pattern of results is particularly encouraging as it is generally 

assumed that increased grey matter results from repeated activation of a brain region 

(Ilg et al., 2008; A. May et al., 2007). Thus repeated activation of attention networks 

during meditation may strengthen these networks and the neural substrate which 

supports them, leading to increased brain and neural reserve. Of note, a wide range of 

cross sectional studies have established that differences in regional grey matter are 

associated with a variety of attentional problems, including those observed in ADHD 

(e.g. Batty et al., 2010; Seidman et al., 2011) and schizophrenia (e.g.Rusch et al., 2007), 

and with decreased attentional performance (e.g. Takeuchi et al., 2012). Thus it may be 

hypothesised that MT related increases in grey matter may result in improved cognitive 

performance in older meditators. Whilst evidence for this hypothesis is scarce, the few 

behavioural studies that have been conducted with older adults have reported results in 

this direction. Recently (van Leeuwen et al., 2009), a reduced AB has been found for 

expert mindfulness meditators as compared to both age matched and younger controls. 

Given that AB size typically increases with age (Georgiou-Karistianis et al., 2007; 

Maciokas & Crognale, 2003), this finding suggests that MT may help to overcome age-

related attentional deficits in the temporal domain by improving the efficiency of neural 

networks in older adults, a finding significant with regards to CR. The induction of a 

mindfulness state has also been shown to have efficacy in older adults with a simple 10 

minute mindfulness induction, as compared to mind wandering, shown to reduce over-

selectivity (McHugh et al., 2010). Over-selectivity typically occurs when behaviour is 

controlled by a limited number of the available stimuli in the environment. Prior 

research has suggested that older adults may seek less information due to well 

established rules of thumb or intuitive decisional styles gained through experience, 

rather than by adapting to current demands (Finucane et al., 2005; McHugh & Reed, 

2007). Thus McHugh et al. findings suggest that state effects of even a short MT 

induction can improve present moment awareness and may facilitate goal focussed 

attention in older adults in a way that allows habitual patterns of responding to be 

overcome.  

A major limitation of the limited available evidence is that it is mostly cross-

sectional and only involved expert meditators. Further, different meditative traditions 

(and thus various meditations) have often been pooled together and the length of 

previous and ongoing practice is varied and often not fully reported (see section 3.5 for 



145 

 

discussion of the limitations of cross sectional expert meditator studies). It is also 

important to state that because brain reserve and cognitive performance have been 

shown to dissociate, with brain reserve not able to fully predict cognitive performance 

(Buckner, 2004), the above discussed findings of increased brain reserve and better 

cognitive performance in older meditators must be interpreted cautiously. As a next 

step, future research needs to demonstrate that change in CR is associated with 

improvements in cognitive performance over time. Thus longitudinal evidence is much 

needed to allow a more comprehensive assessment of the efficacy of MT to produce 

positive effects in older adults. A summary of relevant details for the samples involved 

in the studies introduced in this section is contained in Table 20 for information. 

Table 20: Summary of relevant participant details for studies introduced in section 9.5. 

Experience and ongoing practice values are group means unless stated otherwise. 

Study 

Meditative 

Tradition/ 

Intervention 

Previous 

Experience  

Ongoing 

Practice  

Comparison 

Group 

Hőlzel et al., 

2008 

Vipassana 8.6 yrs 2hrs per day Age, gender and 

education matched 

non-meditators 

 

Pagnoni and 

Cekic, 2007 

Zen >3 yrs n/s Age, gender and 

education matched 

non-meditators 

 

Luders et al., 

2009 

Vipassana, 

Samatha, Zazen 

and others 

24.2 yrs 10-90 mins per 

day 

Age and gender 

matched non-

meditators 
     

Lazar et al., 

2005 

Insight meditators 

(typically 

involves training 

of present 
moment 

awareness and 

mindfulness) 

 

9.1 yrs 6.2 hrs per week Age, gender, race 

and education 

matched non-

meditators 

Hőlzel et al., 

2011 

MBSR 8 wks 27 mins per day Waitlist matched 

for age and gender 

 

Tang et al., 

2012 

IBMT 11 hrs (30 mins x 

22 sessions over 1 

month) 

n/a Relaxation training. 

Per group 

demographics were 

not stated 
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A strong argument for conducting a longitudinal study to assess the impact of 

MT on attentional functions can be made when all of the evidence presented throughout 

this thesis is taken together. Chapters 2 & 3 presented the theoretical background to 

MT, with the reviewed literature suggesting that MT is an effortful mental activity that 

involves core attentional skills and networks. Chapter 3 presented the behavioural, 

electrophysiological and functional evidence for MT positively influencing said skills 

and networks, with repeated activation of core attentional skills and networks during 

MT the proposed cause of said positive effects. The results of LS1 confirmed that even 

a singular MT technique, completed for a short duration and with minimal daily 

practice, may positively influence both behavioural and electrophysiological markers of 

attention. The findings presented in the current Chapter suggest that long term MT may 

produce structural changes indicative of increases in CR in brain regions associated 

with attentional function.  

Taken together, the available evidence suggests that the longitudinal 

examination of MT in older adults is warranted. Further, the repeated activation of 

attentional networks and core attentional functions during MT make it an ideal 

candidate for use as a cognitive training technique to increase CR and strengthen core 

cognitive functions in older adults. Thus it is proposed that MT may strengthen 

attentional functions in older adults by utilising CR mechanisms such as neural reserve 

and neural compensation to alter the efficiency, capacity and functional connectivity of 

neural networks. As a first step for research in this area, LS2 was designed to provide 

the first longitudinal examination of the effect of a single practice MT on core 

attentional functions in older adults, utilising both behavioural and electrophysiological 

measures to concurrently assess improvements in attentional performance and 

modulations of associated task related neural activity.  
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Chapter 10. Ageing, Mindfulness Training and Cognitive 

Performance: Longitudinal Study 2 

The following Chapters detail the design of LS2, the theoretical background to 

the included experimental paradigms and the empirical results ascertained.  

10.1 Longitudinal Study 2 Overview 

Contents of Chapters 10 to 14 

Chapter 10 describes the study design, methods and materials utilised in LS2. 

Chapter 10 also contains the results of the analyses concerning the administered self 

report measures and from the tests for baseline differences between groups. Chapters 

11-13 are the empirical chapters related to LS2, detailing the use of the CPT, ECStroop, 

and ABtask. Each of these chapters contains the theoretical background for the use of 

the respective experimental task, the associated hypotheses and outcome measures, the 

task design and the empirical results. Chapter 14 contains a discussion regarding the 

implications of the findings from LS2. 

Longitudinal Study 2 summary 

To our knowledge LS2 is the first empirical study of its kind and was conducted 

to meet the overall objective of this thesis, to assess the utility for MT to positively 

influence attentional functions in older adults. Chapter 9 identified that sustained and 

executive attention skills appear to decline with age. Further, the evidence reviewed 

suggests that MT may capitalise on CR mechanisms in order to improve said skills in 

older adults. To assess this hypothesis, a randomised, longitudinal, active control group 

EEG study was conducted to compare MT to simple brain training (BT) exercises 

(arithmetic calculations). A sample of 56 older adults were recruited and randomised to 

either receive 8 weeks MT (MTG; N=28) or BT (BTG; N=28). 

A comprehensive assessment of attentional functions was carried out pre and 

post intervention with a series of Mixed ANOVAs and Paired Samples t-tests 

demonstrating that MT modulated both behavioural and electro-physiological markers 

of sustained attention and executive functions. The observed pattern of results suggests 

that MT may increase the capacity and efficiency of neural networks and utilise both 
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neural reserve and neural compensation. Thus MT may be considered an ideal candidate 

for use as a cognitive training technique to positively influence CR mechanisms in older 

adults. The findings of LS2 lay the foundations for developing targeted mindfulness 

based interventions that aim to improve attentional functions and improve well-being in 

aged individuals. 

10.2 Method 

10.2.1 Design and Procedure 

LS2 was a randomised active control group study designed to provide the first 

rigorous longitudinal examination of MT and attentional functions in older adults. 

Participants completed three tests of attentional functions at two time points over the 

course of approximately 8weeks (T1, T2), their EEG was recorded during each testing 

session. Prior to enrolment, participants were screened to ensure they were meditation 

naïve (no previous meditation experience), had no diagnosed dementia, had normal or 

corrected to normal visual acuity, confirmed no ongoing or recent mental health 

problems or neurological disorders (e.g., epilepsy) and confirmed they were not 

receiving any psychopharmacological treatments.  

At each testing session, participants first completed the self report questionnaires 

(demographics only taken at T1) before completing the CPT, ECStroop, ABTask and 

SSTM
35

. The order of administration was constant across all participants at both time 

points. The dependent variables utilised for each task are presented and discussed in 

their respective chapters. Following T1, participants were randomised to either receive 

MT (MTG) or BT (BTG). The MTG and BTG were instructed to continue the assigned 

intervention until the date of their second testing session. Importantly, the time elapsed 

from T1 to T2 testing [MTG = 66.8 days, BTG =67.8 days; t(48)= -.319, p =.751] and 

from the start of the intervention to T2 [MTG = 57.0 days, BTG =56.7 days; t(48)= 

.118, p =.906] was controlled between MTG and BTG. 

As in LS1, the MT intervention involved a low amount of group contact time 

(6hours) and a limited amount of daily meditation (10-15minutes) to ensure it could be 

                                                

35 The SSTM was completed at both T1 and T2 in order to control for working memory capacity between 
groups. 
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easily incorporated into established daily routines. As detailed in section 10.2.4, the BT 

intervention was designed to control for a number of extraneous variables including 

group contact time, group session content, daily exercise time, experimenter contact and 

motivation, learning new information, participants’ intention and motivation, and 

exercise environment. Additionally, the wide range of self report data and administered 

baseline tasks demonstrated that both intervention groups had comparable age, 

dispositional mindfulness, computer ability, years of education, health, speed of 

processing, self efficacy, mental well being, ongoing/current cognitive and physical 

activity, and working memory capacity (see Table 21 and section 10.4.3 for details).  

All advertising and participant information sheets described LS2 as “an 

investigation into the effects of two cognitive training exercises that may affect our 

cognitive performance, in particular focussing on the aspects of our cognitive 

performance that weaken as we grow older.” Thus, intention and motivation for 

enrolment were controlled between groups and participants remained naïve to the fact 

that an assessment of MT was the objective of the study. This offers an advantage over 

previous studies as participants were less likely to be enrolling due to a prior interest in 

meditation practice, limiting the possibility for an interest in meditation to influence self 

selection biases.  
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10.2.2 Participants  

 

Figure 27: Flow of participants through the study 
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The flow of participants through the study is detailed in Figure 27. Fifty-six 

older adults (15 males; mean age 64.5 years) were recruited via a combination of online 

and newspaper advertisements, and from a psychology participant panel maintained at 

LJMU. Thirty-eight participants were retired whilst the remaining 18 were still in 

employment. The sample had a varied educational background with 27 educated to 

foundation degree level or higher (includes HNC, undergraduate degree and 

postgraduate degree), 21 with GCSEs, a-levels or equivalent, and 8 with no formal 

qualifications. The mean time spent in education for the sample was 13.0 years. All 

participants provided written, informed consent and were reimbursed with £40 worth of 

shopping vouchers upon completion of the study. 

The study was carried out in line with the ethics guidelines of the British 

Psychological Society and was approved by the LJMU Research Ethics Committee. 

10.2.3 Mindfulness Training 

The administered MT and meditation teacher were the same as in LS1 (see 

section 5.2.3). The amount of training sessions offered and duration of intervention 

were changed with the MTG being offered 4 training sessions of 90 minute length over 

8 weeks. As the experimenter was delivering the healthy ageing lecture series (detailed 

10.3.4) the experimenter was also present during each of the MT sessions to control for 

experimenter contact time between the intervention groups. 

10.2.4 Brain Training Group 

 As discussed in Chapter 3, the selection of an appropriate control or comparison 

condition is essential in longitudinal studies of mindfulness interventions (Chiesa et al., 

2011; Tang & Posner, 2013). To ensure the results of LS2 could be comprehensively 

interpreted, a matched active control condition was selected for comparison with MT. 

As MT involves active, effortful cognitive processes, it was deemed important to select 

an active control condition that involved active cognitive components. Consequently, 

relaxation training was deemed an incompatible active control condition, also because it 

has already been shown to not fully account for the non-specific effects of MT (Ortner, 

Kilner, & Zelazo, 2007; Polak, 2009; Tang et al., 2007).  
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Simple BT exercises (mental arithmetic) and healthy ageing group lectures were 

chosen as the most appropriate matched active control condition. Mental arithmetic 

calculations were chosen because they involve effortful cognitive processing and 

activate a wide range of frontal and parietal brain regions implicated in attention (Fehr, 

Code, & Herrmann, 2007; Kong et al., 2005; Rickard et al., 2000). Additionally, they 

are included in various commercially available BT packages that claim to improve 

cognitive performance in older adults. Thus, the use of arithmetic calculations as an 

active control condition allowed for the concurrent assessment of the impact of both MT 

and simple BT exercises on cognitive performance in older adults, whilst 

simultaneously enabling a wide variety of confounding variables to be controlled. 

Participants in the BTG attended a healthy ageing lecture series that was 

produced specifically for use in this study. The lecture series matched the MTG group 

sessions for frequency (4 sessions) and duration (6 hours total). Similar to the MT group 

sessions, the lectures included elements of learning, discussion and active practice (BT 

exercises). In short, the lecture series comprised information regarding what happens to 

the brain during normal and non normal ageing and the effects of lifestyle choices 

(nutrition, mental and physical exercise) on the ageing brain. 

In addition to attending the healthy ageing lecture series, participants in the BTG 

were given BT exercise booklets to complete at home. The booklets contained 100 

arithmetic calculations to be completed 5 days per week, for 8 weeks. The amount of 

calculations was finalised following a pilot test (N=6), with 100 calculations providing 

approximately 10-15minutes of practice. The booklets included additional calculations 

that the participant could complete if they had finished the set calculations within 10 

minutes. As with MT, participants were instructed to complete the daily exercises whilst 

sat upright in a quiet area. 

To summarise, the selected active control condition allowed for a wide range of 

extraneous variables to be controlled including group contact time, group session 

content, daily exercise time, experimenter contact and motivation, learning new 

information, participants’ intention and motivation, and exercise environment. 
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10.3 Materials 

10.3.1 Demographics 

 A short self report demographic questionnaire was devised and administered to 

ascertain the following information: Age, gender, handedness, state of employment 

(retired y/n), years spent in education, highest qualification, computer ability (1 to 10 

scale, where 1 = No ability at all, 10 = Very able) and current health (1 to 10 scale, 

where 1 = Very poor health, 10 = Excellent health). 

 As a general slowing in processing speed has previously been proposed as a 

cause for age related cognitive declines (Salthouse, 2000), a very short and simple RT 

task was administered at T1 to confirm that speed of processing was comparable 

between groups. The task was setup as follows: A white dot was displayed in the middle 

of a computer screen a total of 20 times, with the participant having to press the letter 

‘P’ on a standard QWERTY keyboard as quickly as possible in response to seeing the 

dot. The first 5 trials were ignored with the final 15 trials averaged to give a mean 

reaction time for each participant that could be utilised to approximate speed of 

processing. 

10.3.2 Mindfulness  

As in LS1, the FFMQ was used to assess different aspects of mindfulness that 

were expected to be influenced by mindfulness practice (see section 5.3.2).  

10.3.3 Self Efficacy 

Self efficacy was measured using the Generalized Self-Efficacy Scale (GSE; 

Schwarzer & Jerusalem, 1995). The GSE is a self administered 10 item scale designed 

to assess a general sense of perceived self efficacy. Each item is scored from 1 (not at 

all true) to 4 (exactly true) with a possible score range of 10 to 40. Items are all of 

positive valence, e.g. “I can usually handle whatever comes my way.” Higher scores 

indicate stronger perceived self efficacy. The GSE has high reliability and construct 

validity (Leganger, Kraft, & Roysamb, 2000; Schwarzer, Meuller, & Greenglass, 1999) 

and Cronbach alpha ranges from 0.75 to 0.94 across a number of different language 

versions (Luszczynska, Scholz, & Schwarzer, 2005). 
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The GSE was used to ensure that any positive behavioural or 

electrophysiological between group differences could not simply be attributed to an 

increase in self efficacy. Such increases in self efficacy may feasibly be gained from 

positively attempting to address cognitive decline via enrolment in the study. 

10.3.4 Mental Well Being 

Mental well being was measured using the Warwick-Edinburgh Mental Well-

Being Scale (WEMWBS; Tennant et al., 2007). The scale contains 14 positively worded 

items (e.g. I’ve been dealing with problems well) scored from 1 (none of the time) to 5 

(all of the time) for a range of scores between 14 and 70. Confirmatory factor analysis 

has supported the single factor structure (Cronbach’s alpha 0.91) of the WEMWBS and 

criterion validity and test retest reliability are strong (0.83; Tennant et al., 2007).  

The WEMWBS was used to ensure that any between-groups behavioural or 

electrophysiological differences could not be attributed to changes in mental well being 

over the course of the study.  

10.3.5 Cognitive and Physical activity 

Levels of cognitive and physical activity were measured using an adapted 

version of a widely used scale (Verghese et al., 2003), which was devised for use in a 

retired population. As such, the items only account for leisure activities that are 

typically carried out in free time. As retired individuals inherently have more free time 

than working peers, the scale is biased towards retired individuals reporting greater 

cognitive and physical activity, which is intrinsically untrue as the majority of jobs 

contain both cognitive and physical elements.  

The recruited sample for LS2 included both retired and working individuals, 

rendering the original scale unsuitable. As such, 12 items were added to the original 

scale to attempt to provide a more comprehensive assessment of current/ongoing 

cognitive and physical activity. The revised scale included 29 items in total, 14 related 

to cognitive activities and 15 related to physical activities. As in the original scale, 

participants reported frequency of participation as “daily,” “several days per week,” 

“once weekly,” “monthly,” “occasionally,” or “never.” Responses were coded to 

generate a scale with 1 point corresponding to participation in 1 activity, for 1 day per 
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week. The units of the scales are thus activity-days per week. For each activity, subjects 

received 7 points for daily participation; 4 points for participating several days per 

week; 1 point for participating once weekly; and 0 points for participating monthly, 

occasionally, or never. The activity-days for each activity were summed to generate a 

cognitive-activity score, ranging from 0 to 98, and a physical-activity score, ranging 

from 0 to 105. 

This revised scale (see Appendix C) has not been tested previously so results 

should be interpreted with caution. Use of the scale herein was not to provide a 

comprehensive review of the relationship between cognitive and physical activity and 

cognitive performance. The scale is used to provide a broad assessment of 

current/ongoing cognitive and physical activity and to ensure that MTG and BTG were 

matched for both.  

10.3.6 Training Logs  

MTG and BTG both completed brief weekly training logs, recording how many 

days they had completed cognitive training that week and the amount of time they had 

spent on average each day completing the cognitive training exercises. The respective 

diaries were not intended to produce data that could be used for a between groups 

statistical comparison of adherence or to assess dose related effects on behavioural or 

electrophysiological markers of performance. They did however provide adequate 

amounts of data to ascertain if the interventions had been followed as instructed.  

Further, it was reasoned that a less rigorous diary would aid the incorporation of 

cognitive training into daily life without the added burden of additional paperwork.  

10.3.7 Working Memory 

 Working memory (WM) may be best understood as a theoretical construct that 

defines our ability to maintain and manipulate information in mind, for brief periods of 

time, in order to guide subsequent behaviour (Baddeley, 2003). Whilst WM has 

traditionally been seen as a distinct cognitive domain, modern conceptions suggest an 

extensive overlap with attention (see Gazzaley, 2011 for recent review). It has been 

shown that selective attention, herein considered the ability to focus cognitive resources 

on goal relevant information, influences WM at multiple stages of processing. This 

includes the preparatory period before a memory task (Bollinger et al., 2010; B. K. 
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Schmidt et al., 2002), the selection and encoding of stimuli when encountered (Vogel & 

Machizawa, 2004; Vogel, McCollough, & Machizawa, 2005), the maintenance of 

relevant information in mind (Jha, 2002; Postle et al., 2004) and memory retrieval 

(Theeuwes, Kramer, & Irwin, 2011). WM capacity has been linked to reasoning ability 

(Kyllonen & Christal, 1990; Süß et al., 2002) and to fluid intelligence (Engle et al., 

1999), and it is among the best predictors of individual differences in a variety of 

complex cognitive activities such as text comprehension (Daneman & Merikle, 1996), 

learning of complex skills (Shute, 1991), and arithmetic (Bayliss et al., 2003). Thus 

WM must be deemed a fundamental aspect of human cognition. Interestingly, a number 

of recent studies have observed improved WM following MT (Chambers et al., 2007; 

Jha et al., 2010). 

It is well established that human ageing is associated with declines in WM 

function (Craik & Salthouse, 2000) and that said deficits may be linked to reductions in 

brain activity, particularly in the frontal and parietal cortices (Cabeza et al., 2002; 

Persson & Nyberg, 2006; Rypma & D'Esposito, 2000). Given the close links between 

attention and WM it was deemed important that WM capacity was controlled between 

groups in the current study so that any observed improvements in performance may be 

attributed to modulations of attentional functions and the neural mechanisms that 

subserve them, rather than to a pre-existing deficit or modulation of WM.  

However, incorporating a full WM task battery into LS2 was beyond the scope 

of this thesis and would have placed an additional cognitive demand on the participants 

and vastly increased the testing session duration. Thus a single task from a pre-existing 

WM task battery was chosen to approximate WM capacity across groups. The SSTM 

(Lewandowsky et al., 2010) was chosen as it has been shown to have high loadings on 

WM capacity factors and is highly correlated with measures of reasoning and general 

fluid intelligence (Lewandowsky et al., 2010; Oberauer, 2005; Oberauer et al., 2003; 

Oberauer & Suss, 2000). WM tasks involving digit and operational span were 

specifically avoided due to a conflict with the arithmetic calculations included in the 

BTG take home training booklets.  

In short, the SSTM consists of trials wherein 1 to 6 dots are consecutively 

displayed into cells of a 10x10 grid, with only 1 dot appearing on the screen at a time. 

Participants are instructed to remember the spatial relations between dots and to then 
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reproduce the overall pattern of dots, using a standard mouse, into a blank grid 

following a brief mask at the end of the stimulus presentation. The dependent variable, 

SSTM total score, is calculated based on points awarded for how closely the participant 

reproduces the overall pattern (2 points awarded for reproducing a dot exactly and 1 

point for a deviation of 1 cell in any direction). The full set up and calculation of scores 

for the SSTM are described in detail elsewhere (Lewandowsky et al., 2010).  

10.4 Overall Results 

This section contains a brief summary of the results that are applicable to LS2 as 

a whole. Included are the results of tests for baseline differences between the groups and 

the self report questionnaire results. 

10.4.1 Test for baseline differences between intervention groups 

Importantly, as summarised in Table 21, no significant differences between 

MTG and BTG were present when direct comparisons at T1 (t-tests) were calculated for 

the participants who are included in the final statistical analyses. The groups are 

comparable in terms of age, dispositional mindfulness, computer ability, years in 

education, health, speed of processing, self efficacy, mental well being, and 

ongoing/current cognitive and physical activity. Control over so many extraneous 

variables ensures that between group differences can be strongly interpreted as a 

consequence of the cognitive training interventions. 
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Table 21: Summary of tests for baseline differences, with mean values (standard 

deviations) and respective statistical values (all 2 tailed) for the comparison between 

MTG and BTG. Only participants who completed the study are included in this 

analysis. 

 MTG (N=25) BTG (N=25) Statistical Values 

Age (years) 65.3 (6.0) 64.0 (6.7) t(48) = .691,  p = .493 

FFMQ-total 134.8 (17.6) 137.6 (18.6) t(48) = -.546,  p = .587 

Computer Ability 6.0 (2.5) 6.4 (2.5) t(48) = -.644,  p = .523 

Years in education (years) 13.2 (2.7) 13.3 (3.1) t(48) = -.147,  p = .883 

Health** 8.0 (1.3) 7.6 (2.0) t(47) = .849,  p = .400 

Speed of Processing (ms) 288 (46) 300 (46) t(48) = -.956,  p = .344 

GSE 31.1 (4.2) 33.2 (4.0) t(48) = -1.830,  p = .073 

WEMWBS 54.1 (7.0) 54.6 (9.8) t(48) = -.199,  p = .843 

Cognitive Activity 42.8 (11.4) 50.6 (18.8) t(39.42*) = -1.764,  p = .084 

Physical Activity 32.5 (11.5) 33.6 (11.0) t(48) = -.351,  p = .727 

* Levene’s test for equality of variances violated, therefore degrees of freedom were adjusted accordingly 

** Only 24 participants from the MTG were included in this analysis due to missing data 

10.4.2 Self Report Results 

Training logs  

In general, the participants in both intervention groups managed to adhere to the 

required exercise schedule. Based on the training logs, the approximate time spent 

completing daily exercises was 13 minutes for the MTG and 11minutes for the BTG. 

The average number of days per week spent engaging in daily exercises was 5 for both 

the MTG and BTG.  

Mindfulness  

Total mindfulness score (all 5 subscale scores combined) and the scores for each 

of the 5 FFMQ subscales were subjected to separate Time (2) x Group (2) Repeated 

Measures ANOVAs. For the total mindfulness score, no significant main or interaction 

effects were found. Analysis of the FFMQ subscales revealed a significant Group x 

Time interaction [F(1,48) = 15.907, p <.001, r = .499] for FFMQ-O with MTG 

significantly increasing FFMQ-O from T1 to T2 [t(24)= -3.642, p=.001], whilst there 

was a non-reliable trend for BTG to reduce FFMQ-O from T1 to T2 [t(24)=1.945, 
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p=.064]. A significant main effect of Time [F(1,48) = 4.438,  p = .040, r = .291] was 

found in FFMQ-A. Surprisingly, this effect was caused by a relative decrease in FFMQ-

A from T1 to T2 (T1=27.4, T2=26.1). No other significant effects emerged from the 

analysis of the FFMQ subscales.  

Self Efficacy 

GSE total scores were subjected to Time (2) x Group (2) Repeated Measures 

ANOVA, revealing a significant main effect of Time [F(1,48) = 5.617,  p = .022,            

r = .324] which indicated that overall (N=50) mean scores changed from T1 to T2 

(T1=32.2, T2=33.2). This small albeit significant overall difference may illustrate that 

being a part of the study helped raise self efficacy, potentially as the participants may 

have thought they were doing something positive by taking part. No significant between 

group or interaction effects were found. 

Mental Well-Being 

WEMWBS total scores were subjected to Time (2) x Group (2) Repeated 

Measures ANOVA, revealing no significant main or interaction effects.  

10.4.3 Working Memory Task Results 

SSTM data were only recorded in 54 participants at T1 due to computer saving 

errors. Consequently, data from 1 MTG and 1 BTG participant were not available for 

baseline or longitudinal analysis. In addition, the data of 1 further MTG participant was 

unavailable as they had asked for the SSTM to be stopped because it was “too difficult.” 

Direct comparisons at T1 were calculated and confirmed no difference between MTG 

(N=23, total score (SD) = 166.09 (19.45)) and BTG (N=24, total score (SD) = 168.58 

(15.89)) in SSTM total score [t(45)= -.483, p =.632]
 36

. Thus WM capacity was 

comparable between groups at baseline. Further, submitting SSTM data to a Time (2) x 

Group (2) Repeated Measures ANOVA revealed a non-significant Group x Time 

interaction [F(1,45) = 1.322, p = .256], confirming that results obtained from LS2 are 

unlikely to result from modulations of WM following cognitive training. 

  

                                                

36 Only participants who completed the study are included in this analysis 
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Chapter 11. Mindfulness Training, Ageing and Sustained Attention: 

Continuous Performance Task 

11.1 Theoretical Background 

 This Chapter discusses the reasons for using a CPT to assess the efficacy of MT 

to improve sustained and executive functions in older adults, the tasks design, its 

associated outcome measures and specific hypotheses and concludes with the 

presentation of the CPT results. The CPT results are discussed together with the 

findings of the ECStroop and AB task in Chapter 14. 

Continuous Performance Task, Sustained Attention, Executive Inhibition and 

Mindfulness Training 

The use of the CPT allows for the evaluation of a number of behavioural and 

electrophysiological outcome measures that enable an assessment of whether MT may 

improve sustained and executive attentional functions in older adults. Importantly, the 

CPT is a test of sustained attention that has been shown to be sensitive to age related 

declines (e.g. A. D. M. Davies & Davies, 1975; Hammerer et al., 2010; Mani et al., 

2005). As briefly discussed in Chapter 9, CPTs typically require attention to be 

sustained over extended periods of time in order to respond to rarely presented stimuli, 

with sustained attention considered to be a state of readiness to detect and respond to 

said stimuli, appearing at random time intervals over extended periods of time. 

However, for the CPT paradigm utilised herein the frequency of ‘go’ and ‘no-go’ 

responses was somewhat different to a typical CPT paradigm. Participants were 

required to respond or ‘go’ on 60% of trials and to inhibit responses or ‘no-go’ on 40% 

of trials, whereas CPTs typically involve very infrequent responses (e.g. 80% no-go) 

and Go/No-go Paradigms involve the infrequent inhibition of pre-potent responses (e.g. 

20% no-go). Thus the CPT used herein is somewhat of an amalgamation of these 2 

paradigms. 

This presentation ratio was chosen for a number of reasons. Firstly, including 

60% go and 40% no-go stimuli requires the participant to inhibit a pre-potent response 

when presented with a no-go stimuli and thus affords the opportunity to investigate the 

well established age related deficits in inhibitory control (discussed Chapter 9). 
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Secondly, given that the P3 ERP component is sensitive to oddball or infrequent stimuli 

(e.g. infrequent distracting stimuli produce a large P3 ERP component) and that said 

component was the focus of the electrophysiological analysis, the 60:40 ratio was 

expected to reduce the possibility that go or no-go stimuli would ‘pop-out’ and cause 

modulations of the P3 ERP components. Vallesi (2011) utilised a similar approach, 

albeit with a 50:50 ratio, in order to ensure that age related increases in P3 amplitude to 

irrelevant no-go stimuli were not caused by such a ‘pop out.’ The use of this method 

enabled Vallesi (2011) to conclude that older, as compared to younger adults, required 

additional attentional resources to inhibit responses to no-go stimuli and to rule out that 

the enhanced P3 was being caused by enhanced attentional capture of infrequent 

stimuli. Thirdly, the 60:40 ratio limits the potential for participants to use probability 

monitoring strategies as the difference in presentation frequency between go and no-go 

responses is minimal. Lastly, the 60:40 ratio reduces the difficulty of the task and 

requires participants to sustain attention to repetitive stimuli. Additionally, as both the 

go and no-go stimuli were letters, presented in white on a black background, the stimuli 

were non-arousing and there was no conflict between conditions. Thus, the CPT utilised 

herein was able to provide an assessment of sustained attention to a repetitive stimulus 

in the absence of endogenous and/or exogenous arousal.  

Considering Robertson et al. (1997) definition of sustained attention as “the 

ability to self-sustain mindful, conscious processing of stimuli whose repetitive, non-

arousing qualities would otherwise lead to habituation and distraction to other stimuli” 

(p. 747), the utilised CPT may be especially effective as a measure of MT related 

improvements in sustained attention as it assesses a number of the core components of 

the MT that was administered to the MTG. Firstly, MT required participants to sustain 

attention to the breath, a repetitive, non-arousing stimulus. Secondly, MT involved 

mindful, conscious processing, i.e. top down control, in order that attention was 

anchored in the present moment. Lastly, during MT arising stimuli were acknowledged 

and let go, with focus returned to the breath whereas the individual may have habitually 

ruminated or become distracted through more elaborative processing of the arising task-

unrelated stimuli. Similarly, during the CPT no-go stimuli must be acknowledged and 

processed and let go without responding or the participant becoming distracted. 

A number of ERP components have been identified as important to CPT 

completion. The focus of the electrophysiological examination herein was on the P3 
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ERP component that is produced by the no-go condition. A wide range of studies have 

observed that the P3 is increased in fronto-central regions for no-go compared to go 

trials (Bruin & Wijers, 2002; Fallgatter, Brandeis, & Strik, 1997; Fallgatter & Strik, 

1999; Jodo & Inoue, 1990; Jodo & Kayama, 1992; Kok, 1986; Nieuwenhuis et al., 

2003; Pfefferbaum et al., 1985; Roberts et al., 1994; Van 't Ent & Apkarian, 1999 

Bekker, Kenemans, & Verbaten, 2004; J. L. Smith, Johnstone, & Barry, 2006). J. L. 

Smith, Johnstone, and Barry (2007) proposed that the fronto-central ‘no-go P3’ indexes 

attentional resource allocation to inhibition processes, i.e. to prevent the participant 

from responding to no-go stimuli. By manipulating cues to enable participants to 

prepare for no-go stimuli they found that the P3 ERP component was enlarged when a 

preparatory cue was present to warn participants that they would need to inhibit a 

response on the upcoming trial. Fronto-central P3 ERP components have also been 

labelled as P3a and it has been suggested that P3a may be linked to the orienting of 

attention to stimulus discrimination and/or to the engagement of focal attention (Azizian 

& Polich, 2007; Hartikainen & Knight, 2003; Kok, 2001; Polich, 2007). A further P3 

ERP component is typically seen over parietal regions in the go condition and is often 

referred to as P3b. P3b is only seen in the go condition of Go/No-go tasks and is said to 

reflect response related processing (Falkenstein, Hohnsbein, & Hoormann, 1994; Kok, 

2001). P3b has also been associated with the amount of cortical activity necessary for 

the processing of incoming information (Polich, 2007). In a recent review, Polich 

(2007) proposed that P3 ERP components may reflect neural inhibition/suppression of 

extraneous neuronal activity, i.e. the inhibition of ongoing activity in order to allocate 

resources to facilitate attentional processing on the task at hand.  

Interestingly, both P3a and P3b have been shown to exhibit robust age-related 

reductions in amplitude and slowing of latency across multiple tasks and populations 

(e.g. Bekker et al., 2004; Bruin & Wijers, 2002; Fjell & Walhovd, 2001, 2003a, 2003b, 

2003c, 2004, 2005; Nieuwenhuis et al., 2003; J. L. Smith et al., 2006; Stige et al., 2007; 

Walhovd & Fjell, 2001; Walhovd, Rosquist, & Fjell, 2008; J. Wang et al., 2006). With 

respect to Polich’s aforementioned hypothesis, these P3 age-related changes may reflect 

deficits in underlying processes, such as degeneration of the functional cortical 

interconnection that occur with age (Bashore & Ridderinkhof, 2002; Reuter-Lorenz, 

2002), resulting in a reduced ability to orient attention and suppress extraneous neuronal 

operations to facilitate attentional processing.  Thus, the P3 decreases may represent an 
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inability for older adults to allocate attentional resources. Interestingly, P3 ERP 

components have been utilised to demonstrate cognitive impairment in AD with AD 

patients having an increased P3 latency and decreased mean amplitude (e.g. Holt et al., 

1995), whilst similar findings have also been found in patients with mild cognitive 

impairments (MCIs; e.g. Polich & Corey-Bloom, 2005). 

In terms of the CPT utilised herein, it is feasible to suggest that increasing the 

allocation of attentional resources to inhibition processes in older adults would likely 

improve performance. This assertion is backed up by Vallesi (2011) finding of a 

significant negative correlation between no-go P3 mean amplitude and RTs to go 

stimuli, with higher no-go P3 related to quicker RTs. Further, Vallesi found that older 

adults had higher no-go P3 amplitude than younger adults and that those older adults 

who had higher no-go P3 mean amplitude had quicker RTs.  Thus, enhancing 

attentional resource allocation to inhibition processes may be a compensatory 

mechanism in older adults that improves performance. This assertion is commensurate 

with Daffner et al. (2006) proposal that high performing older adults manage task 

demands by relying on additional neural resources. 

It is important to note that whilst Vallesi (2011) finding of higher P3 to no-go 

stimuli in older vs. younger participants appears to be in opposition to the earlier 

discussed declines in P3 amplitude that are typically seen in observations of old vs. 

young adults, this finding was most likely caused by the limited difficulty of the task 

they employed. Due to the minimal task difficulty there is likely to be less extraneous 

neural activity ongoing and more resources may be allocated for task completion. In a 

recent study (Sebastian, Baldermann, et al., 2013) which utilised fMRI to assess older 

adults performance on three inhibition tasks of increasing difficulty, it was found that 

ageing was associated with enhanced activation in inhibitory networks to the simplest 

task (Go/No-go), enhanced activation in additional inhibitory control regions for the 

intermediate task (Simon task) but decreased activity in inhibitory networks to the most 

difficult task (Stop signal task). This suggests that older adults increasingly recruit the 

inhibitory network and, with increasing load, additional inhibitory regions. However, if 

inhibitory load exceeds compensatory capacity, performance declines in concert with 

decreasing activation. The CPT paradigm utilised herein is similar in difficulty to the 

one employed by Vallesi (2011). Thus, increasing no-go P3 mean amplitude and a 

concurrent improvement in behavioural performance would be a positive finding. 
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In Chapter 3 the reasons why MT may influence sustained and executive 

attentional functions were introduced and the potential for MT to improve said 

functions in older adults was covered within Chapter 9. In short, MT requires the 

repeated activation of these core attentional functions during practice and engagement 

in MT over time is thought to strengthen such functions and the neural substrate that 

supports them. Further, mental activity involving such core attentional functions may 

utilise CR mechanisms such as neural reserve and neural compensation to strengthen 

these functions in older adults. Thus it was hypothesised that MT may positively 

influence CR mechanisms, resulting in modulations of behavioural and 

electrophysiological measures of sustained attention and inhibitory control. The specific 

electrophysiological and behavioural outcome measures and hypotheses related to the 

use of the CPT are detailed below. 

Electrophysiological Outcome Measures and Hypotheses 

The use of EEG and the ERP methodology herein allowed for an 

electrophysiological examination of the attentional processing that occurred in response 

to both go and no-go stimuli and was able to provide information regarding modulations 

to attentional processing following MT and BT. The ERP component identification 

procedure detailed in section 4.4 resulted in the identification of 2 ERP components of 

interest (see Figure 31 & Figure 32 for no-go P3, Figure 35 & Figure 36 for go P3).  

A no-go P3 ERP component was observed in the 370 to 530ms time window in 

a small cluster of fronto-central electrodes (FCz, FC1, and FC2). Consistent with recent 

findings (Vallesi, 2011), pooled T1 data (N=44) established that no-go P3 [r = -.527, 

p<.001, 1 tailed] mean amplitude was significantly negatively correlated with RTs, with 

higher no-go P3 mean amplitude related to faster RTs, thus confirming the importance 

of no-go P3 to task performance. As MT was expected to capitalise on CR mechanisms 

it was hypothesised that MT would lead to increased no-go P3 amplitude, evidencing an 

increase in the allocation of attentional resources following MT.  

A positive central parietal component was observed in the 370 to 570ms time 

window at Pz for the go condition only. The go P3 ERP component mean amplitude 

was assessed to see if attentional resource allocation was enhanced across task 

conditions or specifically for inhibition processes only. It was hypothesised that MT 
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may similarly lead to an increase in go P3 mean amplitude as MT was expected to 

enhance attentional resource allocation across task conditions. However, the pooled T1 

data demonstrated that go P3 was not significantly correlated with RTs, only reaching 

the non-reliable trend level [r = -.235, p =.062, 1 tailed], further suggesting that the 

amount of resources allocated to inhibit responses to no-go stimuli is a critical factor in 

task performance. 

Behavioural Outcome Measures and Hypotheses. 

RT means were the focus of the behavioural analysis. In line with the hypothesis 

that MT would lead to increased allocation of attentional resources to inhibition 

processes (i.e. increased no-go P3 mean amplitude), it was hypothesised that said 

increase would make inhibition to no-go stimuli more efficient and enable the MTG to 

improve RTs to go stimuli.  

As the task difficulty was minimal and the duration of the task was only 

approximately 7-8 minutes, errors of omission and commission were expected to be low 

and no between group differences were expected. The analysis of accuracy data is 

presented in section 11.3.1, demonstrating that no between group differences were 

found. 

11.2 Task Design and Stimuli 

 

Figure 28: CPT example trials and timings 

The CPT used here was a simple Go/No-go paradigm. Go/No-go stimuli were 

the letters B, C, F, H, L, M, T, or Y. At the beginning of each trial block the 

participants’ were given instructions that introduced 4 letters, 2 of which would be go 

stimuli and 2 of which would be no-go stimuli. These 4 letters were changed for 4 new 

letters prior to the second block of trials in order to reduce the impact of stimulus 

familiarity, which may cause facilitation and/or automatic responding. Only 1 letter ever 

appeared on screen at a time. The letters administered as Go/No-go stimuli were 
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counterbalanced across participants so that overall each letter was equally used as a go 

and no-go stimulus. Each participant completed the identical version of the task at T1 

and T2. The letters were presented centrally on the screen in Arial font size 48, coloured 

white on a black background. Go responses were given by pressing the spacebar with 

the right index finger. 

Each trial began with a Go/No-go stimulus lasting 300ms, followed by a blank 

screen. Participants performed 2 blocks of 100 trials (200 total), consisting of 60 go 

(120 total) and 40 no-go (80 total) stimuli for an overall 60:40 ratio. Figure 28 shows an 

example of a series of CPT trials and the associated timings. The stimuli were randomly 

intermixed within each block. Participants started block 2 manually after they had 

confirmed they had learnt the new go and no-go stimuli. 

11.3 Results 

An a priori decision was taken to exclude participants from both electro-

physiological and behavioural analyses if they had a hit rate below 90% for go trials. 

Due to the inherent ease of the CPT, a hit rate below 90% would indicate poor task 

understanding or a problem remembering stimulus classification. Only 1 participant 

failed to meet this criterion and was excluded accordingly. Single trials were discarded 

on the very rare occasion (<1% of trials across groups) that RT was over 1000ms and 

only trials with correct responses were used to calculate the RT mean. 

The pattern of behavioural results was similar if all available data or only the 

data of participants included in the ERP analyses were used. Thus, the behavioural 

analyses are presented for all available data. 

11.3.1 Behavioural Analyses 

Table 22 demonstrates that no significant behavioural differences were present 

between MTG and BTG when direct comparisons at T1 (t-tests) were calculated.  
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Table 22: Summary of tests for baseline differences, with mean values (standard 

deviations) and respective statistical values (all 2 tailed) for the comparison between 

MTG and BTG 

 MTG (n=24) BTG (n=25) Statistical Values 

RT mean (ms) 482 (63) 467 (60) t(47) = .849,  p = .400 

Go HR (%) 99.6 (.8) 99.3 (1.4) t(47) = .863,  p = .393 

No-go HR (%) 94.6 (4.4) 94.7 (4.8) t(47) = -.011,  p = .991 

Reaction Times  

A Repeated Measures ANOVA was conducted (Table 23), to determine 

intervention related changes in RTs to go trials. A significant Group x Time interaction 

was observed indicating that the MTG and BTG had modulated RTs differently from T1 

to T2.  

Table 23: Summary of Repeated Measures ANOVA results for RT mean 

Effect  Statistical Values 

Time F(1,47) = .002,  p = .965  

Group x Time F(1,47) = 4.244,  p = .045 r = .288 

Group F(1,47) = .018,  p = .894  

Paired Samples t-tests were computed for each group to ascertain the direction 

of T1 to T2 differences (Table 24) and indicated that the MTG had significantly reduced 

RTs from T1 to T2 whereas no significant change was found for the BTG. Figure 28 

illustrates these T1 to T2 differences. 

Table 24: Summary of means (standard deviations) and Paired Samples t-tests 

displaying RT(ms) differences from T1 to T2 for MTG and BTG 

 MTG (N=24) BTG (N=25) 

 T1:  482 (63) T1:  467 (60) 

 T2:  469 (55) T2:  480 (73) 

Paired Samples T-test t(23)=-2.776, p =.011 t(24)=1.108, p =.279 
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Figure 28: RT differences from T1 to T2 for the MTG and BTG. Error bars depict 

standard error of the mean. 

Response Accuracy 

 Consistent with previous studies using a similar CPT paradigm (e.g. Vallesi, 

2011), accuracy to go trials was very high (98.5%), reflecting the inherent ease of the 

task. Unsurprisingly, no main or between group effects were revealed (see Table 25 for 

summary) by a Repeated Measures ANOVA. The same pattern of results was observed 

for an additional Repeated Measures ANOVA of correctly ignored no-go trials. 

Table 25: Summary of Repeated Measures ANOVA results for HRs in the go and no-

go conditions. Includes T1 and T2 mean values (standard deviations) 

 MTG (N=24) BTG (N=25) Effect Statistical Values 
Go HR       

(%) T1: 99.6 (.8) T1: 99.3 (1.4) Time F(1,47) = 1.394,  p =.244 

 T2: 98.9 (5.1) T2: 98.1 (6.0) Group x Time F(1,47) = .083,  p =.775 

   Group F(1,47) = .404,  p =.528 

      

No-go HR       

(%) T1: 94.6 (4.4) T1: 94.7 (4.8) Time F(1,47) = .252,  p =.618 

 T2: 95.0 (6.5) T2: 95.3 (6.4) Group x Time F(1,47) = .025,  p =.875 

   Group F(1,47) = .014,  p =.906 
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11.3.2 ERP analyses 

No-go P3 ERP component 

 

Figure 31: Pooled T1 data (N=44). A time lapse topographical view of the no-go P3 

ERP component displayed using instantaneous amplitude spherical spline interpolated 

scalp topographies from 350ms to 575ms (75ms steps from left to right). Mean 

Amplitude spherical spline interpolated scalp topography is included for the no-go P3 

time window (370 to 530ms). 
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Figure 32: Grand mean evoked potential for a cluster of Fronto-Central sites (FCz, FC1 

and FC2), from pooled T1 data (N=44). No-go P3 (370 to 530ms time window) is 

highlighted 

Figure 31 displays the time course and topography of the no-go P3 ERP 

component using pooled T1 data (N=44) and suggests that a cluster of Fronto-Central 

electrodes (FCz, FC1 and FC1) best represents the components maxima. As shown in 

Figure 32, a time window of 370 to 530ms best captures the no-go P3 from this cluster 

of Fronto-Central electrodes. Importantly, there were no between groups differences at 

baseline (t(34) = -1.074, p = .290). 

A Repeated Measures ANOVA (Table 26) revealed a significant Group x Time 

interaction, suggesting that no-go P3 mean amplitude was modulated differently for 

MTG and BTG.  

Table 26: Summary of Repeated Measures ANOVA (Time (2) x Group (2)) results for 

no-go P3 mean amplitude in the 370to530ms time window for a cluster of fronto-central 

electrodes (FC1, FCz, FC2 cluster). 

Effect Statistical Values  

Time F(1,34) = .372, p = .546  

Group x Time F(1,34) = 4.180, p = .049 r = .331 

Group F (1,34) = .395, p = .534  
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Paired samples t-tests (Table 27) demonstrate that MTG significantly increased 

no-go P3 mean amplitude from T1 to T2 and that BTG exhibited no change. Figure 33 

illustrates these between group differences.  

Table 27: Summary of means (standard deviations) and paired samples t-tests 

displaying differences from T1 to T2 in no-go P3a mean amplitude (FC1, FCz, FC2 

cluster, 370-530ms) for MTG and BTG 

 MTG (N=18) BTG (N=18) 

 T1: 2.49 (2.41) T1: 3.55 (3.12) 

 T2: 3.17 (2.52) T2: 3.18 (2.54) 

Paired Samples T-test t(17)= -2.228 p =.040 t(17)= .893 p =.384 

These results suggest that the MTG increased the amount of resources allocated 

to response inhibition and are consistent with the findings of improved RTs. Pooling the 

data across groups (N=36), T1 to T2 differences (T2 minus T1) in RTs and no-go P3 

mean amplitude (FC1, FCz, FC2 cluster, 370-530ms) were significantly negatively 

correlated [r = -.318, p = .029], with increases in no-go P3 mean amplitude related to 

decreases in RTs. This further suggests that increasing no-go P3 mean amplitude is an 

adaptive compensatory response that benefits performance. Importantly, a change in the 

latency of the no-go p3 ERP component can be ruled out as a cause of the observed 

between groups difference because no further between groups differences were found 

when no-go P3 peak latency values (calculated as a local peak between 370-530ms) 

were submitted to a Repeated Measures ANOVA (Time x Group: F(1,34) = .078,          

p = .782). 

 

Figure 33: MTG and BTG difference in no-go P3 mean amplitude (FC1, FCz, FC2 

cluster) from T1 to T2  
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 As the no-go P3 ERP component was bilateralised, a final exploratory analysis 

was run to examine if left vs right hemisphere differences existed between the groups. 

The mean amplitude of the no-go P3 (370-530ms) at FC1 and FC2 were subjected to a 

Time (2) x Site (2) x Group (2) Mixed ANOVA (Table 28), revealing a significant main 

effect of Site and significant Group x Time and Time x Site x Group interactions. The 

main effect of Site was caused by higher mean amplitudes at FC1 as compared FC2 

(3.64 vs 3.16 µV).  

Table 28: Summary of Mixed ANOVA results for no-go P3 mean amplitude (FC1 vs. 

FC2) in the 370 to 530ms time window 

Effect Statistical Values 

Time F(1,34) = .154,  p = .697 

Group x Time F(1,34) = 4.126,  p = .050 

Group F (1,34) = .334, p = .567 

Site F (1,34) = 7.097, p = .012 

Site x Group F (1,34) = 1.067, p = .309 

Time x Site F (1,34) = 2.932, p = .096 

Time x Site x Group F (1,34) = 6.491, p = .016 

A series of Paired Samples T-tests (Table 29) split by Group and Site were 

computed to examine the significant Time x Site x Group interaction, revealing that the 

interaction was caused by a significant increase in no-go P3 mean amplitude at FC2 for 

the MTG as compared a relative decrease for the BTG. Figure 34 illustrates this 

between groups difference and also demonstrates that no such difference occurred at 

FC1. Of note, whilst the difference topographies contained in Figure 34 suggest that the 

MTG increased no-go P3 across a number of right hemispheric sites, the no-go P3 ERP 

component and the between groups difference both peak at FC2, thus no further 

exploratory analyses were conducted.  

As with the original no-go P3 cluster (FC1, FCz, FC2), it was found that 

differences in RTs (T2 minus T1) were significantly negatively correlated with change 

in no-go P3 mean amplitude (T2 minus T1) at both FC1 [r = -.318, p = .029, 1 tailed] 

and FC2 [r = -.291, p = .042, 1 tailed] when data were pooled across groups. Both 

significant correlations represented a relationship between increases in no-go P3 mean 

amplitude and decreases in RTs, further confirming the relationship between no-go P3 

and task performance. As only MTG significantly improved RTs and significantly 

increased no-go P3 mean amplitude from T1 to T2, it is feasible to suggest that MT may 

aid the recruitment of additional neuronal resources which in turn facilitates improved 
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task performance. These findings are indicative of improvements in sustained attention 

and a strengthening of executive attentional functions related to inhibitory control in 

older adults. This assertion is discussed in detail in Chapter 14. 

Table 29: Summary of means (standard deviations) and paired samples t-tests 

displaying differences from T1 to T2 in no-go P3 mean amplitude (FC1 & FC2, 370-

530ms) for MTG and BTG 

 MTG (N=18) BTG (N=18) 

No-go P3 (FC1)   

Mean Amplitude (µV) T1: 3.56 (2.45) T1: 4.05 (3.07) 

 T2: 3.43 (2.74) T2: 3.53 (2.30) 

Paired Samples T-test t(17)= .536,    p =.599 t(17)= 1.165 p =.260 

   

No-go P3 (FC2)   

Mean Amplitude (µV) T1: 2.33 (2.50) T1: 3.86 (3.33) 

 T2: 3.31 (2.41) T2: 3.13 (2.73) 

Paired Samples T-test t(17)= -2.136, p =.048 t(17)= 1.841 p =.083 
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Figure 34: Panels A and B depict the T1 to T2 differences in no-go P3 mean amplitude 

between the MTG and BTG for FC1 and FC2 respectively. Panel C displays spherical 

spline interpolated difference topographies depicting T2 minus T1 differences in mean 

amplitude in the 370 to 530ms time window for the MTG (Left) and BTG (Right). Red 

areas indicate an increase from T1 to T2 and blue areas indicate a decrease. FC2 is 

highlighted. 
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P3b ERP component (go condition) 

 

Figure 35: Pooled T1 data (N=44). A time lapse topographical view of the go P3b ERP 

component displayed using instantaneous amplitude spherical spline interpolated scalp 

topographies from 350ms to 575ms (75ms steps from left to right). Mean amplitude 

spherical spline interpolated scalp topography is included for the go P3b time window 

(370 to 570ms). 

 

Figure 36: Grand mean evoked potential at Pz, from pooled T1 data (N=44). P3b (370 

to 570ms time window) for go stimuli is highlighted. 

Figure 35 displays the time course and topography of the go P3b ERP 

component using pooled T1 data (N=56). As shown in Figure 36, the maximum of the 

P3b was best captured by a time window of 370 to 570ms at Pz.  
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Repeated Measures ANOVA for go P3b mean amplitude (Table 30) revealed 

only a non-reliable effect of Time, suggesting that MTG and BTG had similarly 

modulated P3b from T1 to T2. Figure 37 illustrates that a relative increase was observed 

for both groups. Thus, between groups differences were limited to the condition 

requiring the use of inhibitory control (no-go P3) and were not consistent across task 

conditions. 

Table 30 Summary of means (standard deviations) and Repeated Measures ANOVA 

results for go P3b mean amplitude (µV) in the 370to570ms time window 

MTG (N=18) BTG (N=18) Effect Statistical Values 

T1: 2.72 (1.99) T1: 2.51 (2.95) Time F(1,34)= 3.656,  p = .064 

T2: 3.55 (1.91) T2: 2.90 (2.32) Group x Time F(1,34)= .489,  p = .489 

  Group F (1,34) = .364,  p =.550 

  

 

Figure 37: MTG and BTG difference in P3b mean amplitude at Pz from T1 to T2. 
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Chapter 12. Mindfulness Training, Ageing and Attentional/Emotional 

Conflict Monitoring: Emotional Counting Stroop 

12.1 Theoretical Background 

Chapter 12 details the use of an emotional counting Stroop (ECStroop) paradigm 

which was utilised to provide the assessment of executive functions (executive control 

and conflict monitoring) and the attentional processing of emotional stimuli within one 

task. This Chapter discusses the detailed analysis and results obtained by using the 

ECStroop task as well as the reasons for why it was chosen, the tasks design, its 

associated outcome measures and specific hypotheses.   

Executive Control, Conflict Monitoring and Ageing 

The literature reviewed in Chapter 3 established the use of executive attentional 

functions and associated neural networks during MT (e.g. Baron Short et al., 2007; 

Hasenkamp et al., 2012; Hölzel et al., 2007) and the potential efficacy of MT to 

improve said functions (e.g. Chan & Woollacott, 2007; Greenberg et al., 2012; Jha et 

al., 2007; Moore & Malinowski, 2009; Tang et al., 2007; Teper & Inzlicht, 2013; 

Wenk-Sormaz, 2005) and positively modulate neural activity (e.g. Cahn et al., 2010, 

2013; Cahn & Polich, 2009; Moore et al., 2012; Teper & Inzlicht, 2013). Further, a 

number of findings discussed in Chapter 9 suggested that executive deficits exist in 

older adults, including increased Stroop interference (Andres et al., 2008; Cohn et al., 

1984; Mayas et al., 2012; Panek et al., 1984; Van der Elst et al., 2006; West & Alain, 

2000; West & Bell, 1997). Encouragingly, greater grey matter density (Hölzel et al., 

2008; Luders et al., 2009; Pagnoni & Cekic, 2007) and cortical thickness (Lazar et al., 

2005) have been found in attention related areas for older meditators vs. age-matched 

controls. Taken with the aforementioned positive effects of MT a strong case can be 

made for examining whether MT may improve executive performance and modulate 

associated neural mechanisms in older adults, thus a Stroop paradigm was employed in 

LS2. 
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Why Was The ECStroop Task Chosen? 

As an emerging line of research suggests that MT related improvements in 

attentional functions may foster improvements in emotion regulation (discussed below), 

an ECStroop paradigm was chosen as it allowed for the inclusion of stimuli of 

emotional valance in order to concurrently assess modulations of executive functions 

and the attentional processing of emotional stimuli without significantly increasing the 

participants overall task burden. The ECStroop task
37

 utilised herein is an amalgamation 

of two Stroop paradigms, a counting Stroop (cStroop; Bush et al., 1998) and one version 

of an emotional counting Stroop task (Whalen et al., 1998). Whereas this original 

emotional counting Stroop task only utilised negative and neutral stimuli, incongruent 

and positive stimuli were included in the current version to enable an assessment of 

both executive functions and the attentional processing of emotional stimuli. The 

reasons for using aspects of these two Stroop paradigms are discussed separately in the 

following two sections. 

The cStroop, Executive Control, Conflict Monitoring and Ageing 

The primary objective of using the ECStroop task was to measure executive 

control and conflict monitoring. Said objective is related to aspects of the cStroop 

paradigm employed by Bush et al. (1998). The cStroop was originally developed as a 

cognitive activation paradigm for probing ACC function related to cognition during 

fMRI recordings. Similar to the original Stroop task (Stroop, 1935) the cStroop 

produces cognitive interference by pitting two competing information processing 

operations against each other. Whereas word reading and colour naming are in 

competition in the classic Stroop, the cStroop utilises word reading and counting 

processes to create conflict. During task completion subjects are instructed to report, via 

button-press, the number of words (1 to 4) on the screen, regardless of word meaning. 

Incongruent trials (interference) consist of number words that are incongruent with the 

correct response (e.g., “two” written three times, correct answer: “three”) whereas 

neutral trials consist of words that are semantically neutral to the goal of the task (e.g. 

household items). Similar to the classical Stroop task, the pre-potent response of word 

reading must be over-ridden, resulting in slower and less accurate responses on 

                                                

37 The ECStroop moniker is retained herein to highlight that the utilised paradigm involves the counting 
aspect of the original cStroop with the addition of stimuli of emotional valence. 
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incongruent trials. Successful task completion relies on two proposed functions of the 

ACC; executive control is required to bias information processing to goal directed 

aspects of the stimulus array (number of words presented) whilst conflict monitoring is 

required to ensure the pre-potent response of word reading is overcome before making a 

response (Botvinick et al., 2001; Kerns et al., 2004; Ridderinkhof et al., 2004). 

Importantly, the cStroop activates the ACC (Bush et al., 1998) in a similar way to the 

classical Stroop (e.g. Hanslmayr et al., 2008; Liotti et al., 2000). The cStroop has 

become well established as a means to demonstrate ACC dysfunction in a wide range of 

conditions including ADHD (Bush et al., 1999), bipolar disorder (Roth et al., 2006; 

Strakowski et al., 2005), traumatic brain injury (Tlustos et al., 2011) and cocaine-

dependency (Barros-Loscertales et al., 2011). Thus, cStroop stimuli provide an 

appropriate measure to assess MT related modulations in executive control and conflict 

monitoring in older adults. 

Of particular interest to the ECStroop electrophysiological examination 

conducted herein (section 12.3.2) was a negative deflection of the ERP that peaks 

approximately 200-450ms post stimulus onset at fronto-central electrode sites. This 

fronto-central N2 ERP component has been associated with the process of monitoring 

for and/or resolving conflict (Albrecht et al., 2008; Johnstone, Watt, & Dimoska, 2010; 

Kopp, Rist, & Mattler, 1996). Gajewski, Stoerig, and Falkenstein (2008) suggested that 

the N2 is linked to the need for response selection/monitoring. This need is increased in 

tasks that involve conflict such as the cStroop. Of note, conflict monitoring is required 

across all four conditions in the utilised ECStroop task as no cues are given to warn the 

participant that an incongruent stimulus is due to appear. Neuro-imaging studies suggest 

that the ACC is involved in response conflict monitoring (see Botvinick, Cohen, & 

Carter, 2004 for review). Unsurprisingly then the ACC has also been implicated as a 

generator of the fronto-central N2 across a variety of paradigms that incorporate 

response conflict (e.g. Bekker, Kenemans, & Verbaten, 2005; Liotti et al., 2000; 

Nieuwenhuis et al., 2003; Van Veen & Carter, 2002). Thus, the use of cStroop stimuli 

and ERP analysis herein allows for an assessment of whether MT may lead to 

behavioural improvements (RTs and HRs) and modulations of neural markers of 

executive control and response monitoring. Interestingly the fronto-central N2 has been 

shown to be diminished (Ceponiene et al., 2008) or almost absent (Bertoli & Probst, 

2005; Wild-Wall, Falkenstein, & Hohnsbein, 2008) in older adults. This suggests that 



180 

 

executive control and the allocation of attentional resources for response monitoring 

may be diminished in older adults. Thus an increase in fronto-central N2 following 

cognitive training may be considered a positive result. 

Before moving on, it is pertinent to state that the fronto-central N2 discussed 

above should be seen as somewhat distinct from the bilateralised posterior N2 observed 

in LS1 for the standard colour word Stroop paradigm. In addition to the difference in 

topography, the N2 observed in the standard Stroop appeared approximately 100ms 

earlier than that observed during the ECStroop, suggesting that it was related to earlier 

aspects of stimulus discrimination. Modulations of the N2 in LS1 were attributed to 

enhanced attentional amplification of goal related aspects of the stimulus. This 

additional attentional amplification may be required during the standard Stroop as the 

source of conflict is an incompatibility between two aspects of the same stimulus, 

whereas the conflict in the cStroop is caused by an incompatibility between the number 

of words presented in the stimulus array and the meaning of these words. Thus any 

observed modulations in fronto-central N2 should be considered distinct from those 

observed for the bilateralised posterior N2 in LS1. 

ECStroop and the Attentional Processing of Emotional Stimuli 

The secondary objective of utilising the ECStroop was to assess MT related 

changes in the processing of emotional stimuli. The original version of the emotional 

counting Stroop task was designed to activate the affective subdivision of the ACC 

(Whalen et al., 1998). By including stimuli of negative and neutral valence in a cStroop 

paradigm Whalen et al. (1998) found that the affective subdivision of the ACC was 

activated by stimuli of negative valence only. Emotional conflict in the ECStroop is 

caused by the automatic processing of the words meaning overriding the participants 

task to ignore the words meaning and count the number of words presented (e.g., 

“PAIN” written three times, answer = “three”). Emotional Stroop stimuli are typically 

used in patient samples. When patients are presented with colour words relevant to their 

current concerns or condition the automatic processing of the words meaning delays 

naming of the word’s colour (see J. M. Williams, Mathews, & MacLeod, 1996). Such 

increases in response latency have been found for general anxiety disorder (Mathews & 

MacLeod, 1985), phobias (Watts et al., 1986) post traumatic stress disorder (McNally et 

al., 1990), social phobia (Hope et al., 1990), panic disorder (McNally et al., 1992) and 
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obsessive compulsive disorder (Foa et al., 1993). However, increased response latency 

is not typically seen in normal healthy adults (e.g. Kampman et al., 2002). Thus, RT 

differences between neutral and emotional stimuli are not a focus of the analysis herein.  

ERP’s allow the stages of information processing occurring between the 

presentation of a stimulus and the participants’ response to be observed and thus may 

offer a more sensitive measure of the processing of emotional Stroop stimuli than RTs. 

The focus herein was on an electrophysiological examination of the P3 ERP component. 

A number of previous studies found that emotional word stimuli, irrespective of valence 

(pos/neg), produce larger P3 mean amplitudes than neutral words (Bernat, Bunce, & 

Shevrin, 2001; Johnston, Miller, & Burleson, 1986; Thomas, Johnstone, & Gonsalvez, 

2007). Given that P3 amplitude has been proposed to indicate attentional resource 

allocation (Polich, 2007), the enhanced P3 observed in these studies may evince an 

attentional bias or enhanced reactivity to emotional stimuli. Interestingly, words of 

negative valence typically lead to larger ERPs than those of neutral or positive valence 

(Bernat et al., 2001; Carretie et al., 2001; Ito et al., 1998; Junghofer et al., 2001). This 

pattern may be indicative of a “negativity bias”, that is an attentional bias prioritising 

the processing of negative over mundane stimuli occurring in the general population 

(e.g. Carretie et al., 2001). Whilst such a bias may be adaptive in certain instances (e.g. 

warning signs) it is most likely maladaptive in a variety of conditions and may explain 

why emotional Stroop stimuli are processed slower in the aforementioned clinical 

conditions. 

With respect to MT, an emerging line of research has begun to assess whether 

improvements in attentional functions may foster the improvements in emotion 

regulation that are often seen as a result of MT (see Chiesa et al., 2013 for review). In 

line with the Liverpool Mindfulness Model (Malinowski, 2013), it may be proposed that 

improvements in attentional control, fostered through MT, may provide the platform 

upon which cognitive and emotional flexibility may be improved, leading to a myriad of 

potential positive outcomes. This proposal is consistent with phenomenological 

accounts of MT (e.g. Lutz et al., 2008; Wallace & Shapiro, 2006) and is in line with the 

findings of a number of recent studies. Allen et al. (2012) investigated neural changes in 

cognitive and emotional processing using fMRI following a 6 week MT course.  Using 

an emotional Stroop task which included the presentation of affective images with 

positive or negative valence, this study found that emotional conflict scores only 
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diminished in the meditation group but not in an active control group. This was 

accompanied by a meditation related increase in activation of the DLPFC during the 

task. As this area is involved in the executive control network (Raz & Buhle, 2006; 

Seeley et al., 2007) this pattern of results suggests that enhanced attentional control lead 

to reduced emotional conflict. Similarly, Sahdra et al. (2011) reported that participation 

in a 3 month intensive meditation retreat concurrently resulted in enhanced response 

inhibition performance and improved socio-emotional functioning as measured by a 

broadly conceived composite measure of adaptive socio-emotional functioning 

(consisting of 14 self- report measures such as emotion regulation, depression, anxiety, 

well-being, ego resilience, empathy, etc.). Further analysis revealed that the socio-

emotional functioning was influenced by enhancement of response inhibition skills, 

lending support to the hypothesis that attentional control skills fostered through MT 

may underpin the development of emotion regulation skills. Table 31 contains a 

summary of relevant study details for the abovementioned studies. 

Table 31: Summary of relevant study details for studies introduced in section 12.1 

Study 
Type and 

Amount of MT 

MT Intervention 

Details 

Comparison 

Group Details 

Allen et al., 

2012 

Type: Mindfulness 

Course 

Amount: 6 wks, 6 x 

2hr group sessions. 

20 mins of daily 

take home practice. 

 

Focussed breath awareness 

was the core practice 

although body scanning, 

compassion and open 

monitoring were all taught. 

An additional “heart 

practice” aimed at 

developing fullness of 
feeling (Risom, 2010) was 

also included. 

 

Type of intervention: 

Active control Group. 

Shared reading and 

listening. 

Demographics 

matched: Age, 

gender and education. 

Sahdra et al., 

2011 

Type: Mindfulness 

retreat. Participants 

were expert 

meditators (mean = 

13yrs). Tradition 

not stated. 

 

Amount: 3 months, 

7 hrs per day. 
 

Some elements of loving 

kindness, compassion, 

empathic joy and 

equanimity were taught 

but the participants were 

told to focus on 

mindfulness of breathing 

as this was key to training 

attention and self 
regulation 

Type of intervention: 

Waitlist controls 

group.  

 

Demographics 

matched: Age, 

gender, income and 

education matched. 

If MT does indeed improve attentional functions herein, it is feasible to suggest 

that this may result in improvements to emotion regulation. Including both negative and 

positive stimuli in the utilised ECStroop task afforded the opportunity to assess if such 
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improvements to emotion regulation occurred. The MT employed for LS2 included 

instruction regarding a non-judgmental attitude and emphasised a non- reactive 

attentional state, thus it may be expected that it may similarly influence the processing 

of both positive and negative stimuli. As discussed above, the P3 ERP component may 

be utilised to assess attentional resource allocation to emotional stimuli, thus a reduction 

in P3 mean amplitude would be indicative of reduced reactivity to emotional stimuli 

following MT and would represent a positive result.  

Of note, the emotional stimuli were not included to assess an identified 

dysfunction in emotional processing for older adults. Rather they were included to 

assess general MT related modulations in emotional processing. Emotional processing 

remains relatively robust into old age and older adults typically report decreased 

negative affect and increased or stable positive affect (e.g. Carstensen et al., 2000). 

However, recent research suggests that the functional efficacy of structures related to 

emotion regulation may be influenced by cognitive ability (Winecoff et al., 2011). Thus 

even in a sample of older adults, MT related improvements in executive control and 

conflict monitoring, as assessed by the cStroop stimuli, may lead to improved emotional 

processing as assessed by ECStroop stimuli. Thus the ECStroop provides an appropriate 

measure to assess modulations of both cognitive and emotional processing in a single 

paradigm. 

Electrophysiological Outcome Measures and Hypotheses. 

The ERP component identification procedure detailed in section 4.4 resulted in 

the identification of two main ERP components of interest.  

Consistent with the literature reviewed in this section, a fronto-central N2 ERP 

component was observed in the 270 to 340ms time window, peaking at FCz (see Figure 

44 and Figure 45). This component was the focus of the ERP analysis as it is thought to 

represent attentional resource allocation to executive control and conflict monitoring 

processes. As the repeated activation of executive functions and the neural substrate that 

subserves them during MT was expected to positively influence CR mechanisms, it was 

hypothesised that MT would lead to increased fronto-central N2 mean amplitude, 

evincing an increase in the allocation of attentional resources to executive control and 

conflict monitoring processes.  
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A second ERP component was observed in the 500 to 650ms time window, 

peaking at Pz (see Figure 48 and Figure 49). As mentioned in previous Chapters, this 

time window and topography are indicative of a P3b ERP component and thus the 

identified component will be labelled as such herein. As the employed MT involved the 

training of a non-judgmental, non- reactive attentional state to arising thoughts and 

emotions, it was hypothesised that P3b mean amplitude may be reduced for the MCG 

following MT for both the negative and positive stimuli.  

Behavioural Outcome Measures and Hypotheses. 

Raw RTs were the main focus of the behavioural analysis. It was hypothesised 

that MT would lead to a significant reduction in RTs for MTG as compared the BTG, 

evincing an improvement in executive control and conflict monitoring following MT. 

As detailed above RT differences to emotional stimuli do not typically occur in healthy 

adults and were not expected herein. Thus, no between groups RT analysis of an 

emotional interference effect was conducted. Of note, it was expected that RTs for 

incongruent trials would be significantly slower than for each of the other 3 conditions. 

Thus, as a task manipulation check a Repeated Measures ANOVA (presented in section 

12.3.1) was conducted using T1 data, pooled across groups. 

Accuracy was measured in terms of HRs for each individual condition. No 

between-group differences were expected given that HRs were expected to be high 

across conditions throughout. However, accuracy data were analysed and are presented 

to demonstrate no between-group differences. A Repeated Measures ANOVA 

(presented in section 12.3.1) was conducted as a task manipulation check to assess if 

HRs for incongruent trials were significantly lower than for each of the other 3 

conditions. 
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12.2 Task Design and Stimuli 

Stimuli consisted of 28 English language words spread across 4 semantic 

conditions: incongruent, negative, positive and neutral. Stimuli were presented in list 

sizes of 1 to 4 words. Figure 38 presents 4 example trials. The list sizes and associated 

word positions relative to the centre of the screen were as follows:  

 List size 1 = 1 word presented centrally.  

 List size 2 = 2 words presented 0.6 degrees of visual angle above and below 

centre.  

 List size 3 = 1 word presented centrally and 2 words presented 1.2 degrees of 

visual angle above and below centre.  

 List size 4 = 2 words presented 0.6 degrees of visual angle above or below the 

centre and 2 words presented 1.8 degrees of visual angle above or below the 

centre. 

 

Figure 38: 4 example ECStroop trials, 1 per list size and condition. Note: This diagram 

is not to scale and word sizes relative to the size of the screen are exaggerated so that 

they may be viewed clearly. 

Stimuli were presented in black (Arial, fontsize 48) on a light grey background. 

The participant’s task was to respond to the number of words that appeared on the 

screen, ignoring the words meaning. Four keys on a standard QWERTY keyboard were 

used to enter responses; “V”, “B”, “N” and “M” were labelled with the numbers 1-4 for 

the responses 1 to 4 respectively.  Only four number words were chosen in the 

incongruent condition to limit the number of potential responses for the task. Each of 

the other three conditions contained eight potential words in order to minimise exposure 
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effects. Each incongruent stimulus could be presented in the three list sizes that do not 

match its meaning, whilst all other stimuli could be presented in all four list sizes. 

The stimuli and their frequency of use in English language (Leech, Rayson, & 

Wilson, 2001) are detailed in Table 32. The mean frequency of use was matched across 

the negative, positive and neutral conditions
38

 (F(2, 21)= .002, p = .998). It was neither 

possible nor necessary to match frequency of use across all four conditions because the 

‘number’ words used in the incongruent condition are some of the most frequently used 

words in the English language and this is essential to the executive interference related 

task manipulation. In the incongruent condition, participants must ignore the meaning of 

the ‘number’ word in order to respond accurately to the number of words presented. 

Thus, the high frequency of use for the incongruent condition is essential as it drives the 

conflict element of the task. The stimuli were matched for word length across all four 

conditions. 

Table 32: Summary of the word stimuli used in the ECStroop task. Frequency of use 

per million words is displayed for each word with a mean value presented for each 

semantic category 

Incongruent 

Words  

Negative 

Words  

Positive 

Words  

Neutral 

Words  

ONE 118 SAD 36 HUG 3 BOX 114 

TWO 1563 CRY 23 JOY 27 CUP 134 

THREE 800 WAR 297 FUN 34 BED 180 

FOUR 465 BAD 264 FIT 33 FAN 48 

 736.5 PAIN 84 NICE 134 DOOR 302 

  HATE 50 LOVE 150 TOOL 54 

  DEATH  250 HAPPY 129 TABLE 231 

  BLOOD 102 GREAT 635 PLATE 64 

   138.3    143.1  140.9 

 Each trial consisted of the following elements. The trial began with a fixation 

cross presented centrally for 500ms. This was replaced by word stimuli in list sizes of 1 

to 4, which were presented for 1500ms. The trial ended with a variable inter-trial 

interval of between 850 and 1100ms, during which the fixation cross was presented 

again. The task consisted of 4 trial blocks of 63 randomly intermixed trials (252 total). 

                                                

38 Having been grouped by semantic condition, the frequency of use of each word were subjected to a one 
way ANOVA which demonstrated no statistical difference between the mean values for each condition. 
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Each trial block was separated by a 20 second break. The incongruent condition 

accounted for 60 trials (4 words x 3 list sizes x 5 repeats) whilst the remaining 3 

conditions accounted for 64 trials each (8 words x 4 list sizes x 2 repeats). 
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12.3 Results 

 An a priori decision was taken to exclude the data of any participant who had 

less than 85% HR in the neutral condition as this would evince either poor task 

understanding or difficulty with key mapping. The data of 6 participants were removed 

from both behavioural and ERP analyses based on this criterion. The pattern of 

behavioural results was similar if all available data or only the data of participants 

included in the ERP analyses were used. Thus, the behavioural analyses are presented 

for all available data. 

12.3.1 Behavioural Analyses 

 Table 33 demonstrates that no significant behavioural differences were present 

between MTG and BTG when direct comparisons at T1 (t-tests) were calculated.  

Table 33: Summary of tests for baseline differences, with mean values (standard 

deviations) and respective statistical values (all 2 tailed) for the comparison between 

MTG and BTG.  

* Levene’s test for equality of variances was significant, degrees of freedom adjusted accordingly. 

T1 pooled data (N=50)
 
for RT means and HRs were separately subjected to 

Repeated Measures ANOVA as a task manipulation check to ensure that the 

incongruent condition was producing the slowest RTs and lowest HRs.  

 MTG (n=22) BTG (n=22) Statistical Values 

RT mean (ms)     

Incongruent 835 (140) 818 (120) t(42) = .437,  p =.664 

Negative 762 (118) 766 (107) t(42) = -.141,  p =.889 

Positive 759 (110) 761 (98) t(42) = -.084,  p =.933 

Neutral 758 (117) 761 (96) t(42) = -.091,  p =.928 

     

HR (%)     

Incongruent 92.5 (8.5) 96.5 (4.2) t(31*) = -1.993,  p =.055 

Negative 97.1 (2.6) 98.3 (2.2) t(42) = -1.674,  p =.102 

Positive 97.7 (2.4) 98.6 (1.8) t(42) = -1.351,  p =.184 

Neutral 97.4 (2.3) 97.9 (2.9) t(42) = -.625,  p =.536 
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Figure 39: Pooled T1 data (N=50). RT mean at T1 is presented for each of the four 

conditions included in the ECStroop. Error bars represent the standard error of the 

mean.  

RT mean was significantly different depending on the Condition
39

 

[F(1.95,95.85) = 82.238, p < .001] whilst post hoc comparisons [pairwise comparisons 

all Bonferroni adjusted p <.001] clearly demonstrated that the incongruent condition is 

producing slower RTs (Figure 39) than the other three conditions, suggesting that the 

task manipulation is working. 

 

Figure 40: Pooled T1 data (N=50). RT mean at T1 is presented for each of the 4 

conditions included in the ECStroop. Error bars represent the standard error of the 

mean.  

                                                

39 Mauchly’s test indicated that the assumption of sphericity had been violated for the main effect of 
Condition, x2 (5) = 36.465, p <.001, therefore degrees of freedom were corrected using Greenhouse-

Geisser estimates of sphericity (ε  = .652).  

720 

740 

760 

780 

800 

820 

840 

860 

Incongruent Negative Positive Neutral 

Ti
m

e 
(m

s)
 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

Incongruent Negative Positive Neutral 

H
it

 R
at

e 
(%

) 



190 

 

Similarly, HRs were significantly different depending on the Condition
40

 

[F(1.42, 69.62) = 14.493, p <.001] and post hoc comparisons [pairwise comparisons all 

Bonferroni adjusted p <.005] clearly demonstrated that the incongruent condition is 

producing the lowest HRs (Figure 40), confirming that the incongruent condition is the 

most difficult of the 4 conditions. 

Reaction Times 

RTs were subjected to a Time (2) x Condition (4) x Group (2) Mixed ANOVA 

(Table 34) to determine intervention related changes in MTG and BTG. A significant 

main effect of Time was observed, indicating that RTs, pooled across groups and 

conditions, reduced from T1 to T2 (776 vs 754ms). A strong main effect of Condition 

was observed and was caused by the incongruent condition producing slower RTs 

across time points than each of the other three conditions [pairwise comparisons all 

Bonferroni adjusted p <.001], confirming the robustness of the executive behavioural 

manipulation. The remaining three conditions produced similar RTs.  

Table 34: Summary of Mixed ANOVA (Time (2) x Condition (4) x Group (2)) results 

for RTs  

Effect  Statistical Values 

Time F(1,42) = 11.009,  p = .002  

Group x Time F(1,42) = 6.263,  p = .016 r = .360 

Group F(1,42) = .212,  p = .647  

Condition F(1.74,73.22*) = 126.523,  p < .001  

Condition x Group F(1.74,73.22*) = 1.990,  p = .150  

Time x Condition x Group  F(3,126) = .403,  p = .759  

Time x Condition F(3,126) = .350,  p = .789  

* Mauchly’s test indicated that the assumption of sphericity had been violated, therefore degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity 

A significant Group x Time interaction indicated that MTG and BTG modulated 

RTs differently from T1 to T2 whilst the non-significant Time x Condition x Group 

confirmed that this between groups difference was not caused by a difference between 

                                                

40 Mauchly’s test indicated that the assumption of sphericity had been violated for the main effect of 
condition, x2 (5) = 88.696, p <.001, therefore degrees of freedom were corrected using Greenhouse-

Geisser estimates of sphericity (ε  = .474) 



191 

 

MTG and BTG on any one condition. Thus further analyses were only conducted on 

RTs pooled across conditions. Paired samples t-tests revealed that the MTG 

significantly reduced RTs from T1 to T2 [T1: 776, T2: 738; t(21)= 4.407, p <.001], 

whilst BTG RTs did not change significantly from baseline [T1: 776, T2: 770; t(21)= 

.535, p =.598]. This between groups difference can be seen clearly in Figure 41.  

The fact that the MTG improved RTs across conditions suggests that MT may 

have resulted in improved executive control and a general improvement in attentional 

monitoring, two proposed functions of the ACC. Together such improvements may 

have enabled the MTG participants to bias attentional processing to goal directed 

aspects of the stimulus array (number of words presented), enabling RTs to be improved 

across conditions regardless of the words semantic meaning. This assertion is discussed 

further in Chapter 14. 

 

Figure 41: RT differences from T1 to T2 for the MTG and BTG. Error bars depict 

standard error of the mean. 

 Accuracy 

HRs were subjected to a Time (2) x Condition (4) x Group (2) Mixed ANOVA 

(Table 35) which revealed main effects of Time and Condition and a significant Time x 

Condition interaction.  
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Table 35: Summary of Mixed ANOVA (time (2) x Condition (4) x Group (2)) results 

for HRs (%) 

Effect Statistical Values 

Time F(1,42) = 5.907,  p = .019 

Group x Time F(1,42) = .680,  p = .414 

Group F(1,42) = 3.663,  p = .062 

Condition F(1.29,54.10*) = 13.633,  p < .001 

Condition x Group F(1.29,54.10*) = 2.587,  p = .105 

Time x Condition x Group F(2.51,105.53*) = 1.820,  p = .157 

Time x Condition F(2.51,105.53*) = 4.542,  p = .008 

* Mauchly’s test indicated that the assumption of sphericity had been violated, therefore degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity 

The significant main effect of Time was driven by an increase in HRs across 

conditions from T1 to T2 (97.1 vs 97.8%). The main effect of Condition is driven by a 

lower HR for the incongruent condition as compared the other three conditions 

[pairwise comparisons all Bonferroni adjusted p<.01] across time points and is further 

evidence of the difficulty in ignoring the pre-potent response of word reading. The 

significant Time x Condition interaction confirmed that the observed increase in HRs 

was not consistent across all four conditions. Paired samples t-tests were conducted for 

each condition to explore this interaction and demonstrated that significant increases 

occurred across groups for the incongruent [t(43)= -3.140, p =.003] and negative [t(43)= 

-2.087, p =.043] conditions but not for the positive [t(43)= -.488, p=.628] or neutral 

[t(43)= -.768, p=.447] conditions. These differences are depicted in Figure 43. The non-

significant Group x Time interaction confirms that there were no between group 

differences in HRs following training. 
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Figure 43: Differences in HRs across groups from T1 to T2 for each of the 4 ECStroop 

conditions 

12.3.2 ERP analyses 

As displayed in Table 36 there were no baseline differences between the groups 

in any of the analysed ERP components across all four conditions. 

Table 36: Summary of tests for baseline differences in ECStroop ERP components, 

with mean values (standard deviations) and respective statistical values for the 

comparison between MTG and BTG (all 2 tailed) 

 MTG (N=18) BTG (N=18) Statistical Values 

N2 FCz Incongruent (µV) -1.52 (2.31) -1.80 (2.44) t(34) = .347,  p = .731 

N2 FCz Negative (µV) -1.79 (2.38) -1.83 (2.80) t(34) = .051,  p = .960 

N2 FCz Positive (µV) -1.80 (2.10) -1.66 (2.88) t(34) = -.166,  p = .869 

N2 FCz Neutral (µV) -1.76 (2.60) -1.44 (2.80) t(34) = -.352,  p = .722 

P3 Pz Incongruent (µV) 2.42 (2.10) 2.35 (2.44) t(34) = .101,  p = .920 

P3 Pz Negative (µV) 2.86 (1.69) 3.23 (2.12) t(34) = -.577,  p = .568 

P3 Pz Positive (µV) 2.41 (1.81) 2.56 (2.04) t(34) = -.228,  p = .821 

P3 Pz Neutral (µV) 2.55 (2.34) 2.69 (2.16) t(34) = -.183,  p = .856 
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Fronto-central N2 ERP component 

 

Figure 44: Pooled T1 data (N=43). A time lapse topographical view of the Fronto-

central N2 ERP component displayed using instantaneous amplitude spherical spline 

interpolated scalp topographies from 260ms to 350ms (30ms steps from left to right) for 

all four conditions individually and all trials combined. Mean Amplitude spherical 

spline interpolated scalp topography is included for the Fronto-central N2 time window 

(270 to 340ms). 

Figure 44 displays the time course and topography of the fronto-central N2 ERP 

component across all four conditions, and for all trials combined, using pooled T1 data 

(N=43). As shown in Figure 45, the maxima of the fronto-central N2 was best captured 

by a time window of 270 to 340ms at FCz. Interestingly, using the pooled T1 data it was 

found that higher fronto-central N2 mean amplitude was related to lower RTs [r =.304, 

p =.024, 1 tailed]. This finding confirms the importance of fronto-central N2 mean 

amplitude to task performance and justifies its position as the main focus of the ERP 

analysis. 
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Figure 45: Grand mean evoked potential for all four conditions at FCz, from pooled T1 

data (N=43). N2 (270-340ms) is highlighted.  

Fronto-central N2 mean amplitude was subjected to a Time (2) x Condition (4) x 

Group (2) Mixed ANOVA (Table 37), revealing a significant Group x Time interaction 

which indicated that MTG and BTG modulated fronto-central N2 mean amplitude 

differently from T1 to T2.  

Table 37: Summary of Mixed ANOVA (Time (2) x Condition (4) x Group (2)) results 

for fronto-central N2 mean amplitude 

Effect Statistical Values  

Time F(1,34) = 2.940,  p = .096  

Group x Time F(1,34) = 6.989,  p = .012 r = .413 

Group F(1,34) = .532,  p = .471  

Condition F(3,102) = .439,  p = .726  

Condition x Group F(3,102) = .331,  p = .803  

Time x Condition x Group F(3,102) = 1.292,  p = .281  

Time x Condition F(3,102) = 1.139,  p = .337  
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Paired samples t-tests revealed a highly significant increase in fronto-central N2 

mean amplitude for the MTG across conditions (T1= -1.72, T2= -2.60; t(17)= 2.81,       

p = .012) whereas no significant changes were revealed for the BTG (T1= -1.68, T2 =    

-1.50; t(17)= -0.75, p = .465). Figure 46 illustrates the differences in the ERP 

waveforms of each group, clearly demonstrating an increased N2 for MTG as compared 

a relative decrease for BTG.  

 

Figure 46: Differences in Fronto-Central N2 (pooled across all four conditions) for 

MTG and BTG at FCz from T1 to T2 

Interestingly, when the fronto-central N2 data were pooled across conditions and 

groups, T1 to T2 changes (T1minusT2) in RTs and fronto-central N2 mean amplitude 

were significantly positively correlated [r = .281, p =.049], further suggesting that 

fronto-central N2 mean amplitude plays a critical role in task performance. This 

assertion is consistent with the significant negative correlation between RTs and fronto-

central N2 mean amplitude that was found by pooling the T1 data across conditions. As 

the N2 effect was not specific to the incongruent condition the MT related increase in 

N2 across conditions may reflect a general improvement in executive control (goal 

directed attention) and attentional monitoring. Thus this finding is consistent with the 

RT findings and other findings discussed in this thesis. The implications of this result 

are discussed in Chapter 14. 
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P3b ERP component 

 

Figure 48: Pooled T1 data (N=43). A time lapse topographical view of the P3b ERP 

component displayed using instantaneous amplitude spherical spline interpolated scalp 

topographies from 475ms to 700ms (75ms steps from left to right) for all four 

conditions and for all trials combined. Mean Amplitude spherical spline interpolated 

scalp topography is included for the P3 time window (520 to 650ms). 

Figure 48 displays the time course and topography of the P3b ERP component 

across all 4 conditions using pooled T1 data (N=43). As shown in Figure 49, the 

maxima of the P3b was best captured by a time window of 520 to 650ms at Pz. 
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Figure 49: Grand mean evoked potential for all four conditions at Pz, from pooled T1 

data (N=43). The selected P3b time window (520-650ms) is highlighted.  

P3b mean amplitude was subjected to a Time (2) x Condition (4) x Group (2) 

Mixed ANOVA (Table 37) to determine intervention related changes in MTG and BTG. 

The main effect of Condition suggested that P3b was modulated by semantic category. 

Post hoc analyses revealed that across groups and time points the negative condition 

(3.18µV) produced significantly higher P3b mean amplitudes than both the positive 

(2.63µV) and incongruent (2.61 µV) conditions (both pairwise comparisons Bonferroni 

adjusted p <.01), but not the neutral condition (2.86µV). This finding is consistent with 

the earlier mentioned studies that observed significant modulations of P3b for stimuli of 

negative valence (Bernat et al., 2001; Carretie et al., 2001; Ito et al., 1998; Junghofer et 

al., 2001) and confirms that the P3b produced by the ECStroop task was sensitive to the 

processing of emotional stimuli. However, no further significant main or interaction 

effects were observed, suggesting that this effect remained robust over time and that 

neither MT nor BT enabled participants to modulate the processing of emotional 

stimuli. Thus, no further exploratory analyses of P3b were performed.  
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Table 38: Summary of Mixed ANOVA results (Time (2) x Condition (4) x Group (2)) 

for P3b mean amplitude 

Effect Statistical Values 

Time F(1,34) = 1.952,  p = .171 

Group x Time F(1,34) = .001,  p = .974 

Group F(1,34) = .063,  p = .803 

Condition F(3,102) = 5.916,  p = .001 

Condition x Group F(3,102) = .187,  p = .905 

Time x Condition x Group F(3,102) = 1.230,  p = .303 

Time x Condition F(3,102) = .244,  p = .865 

The overall pattern of results for ECStroop suggests that whilst MT resulted in 

improved executive function and attentional resource allocation a concurrent 

improvement in the processing of emotional stimuli was not found. This suggests that 

improvements in attention regulation may precede improvements in emotion regulation. 

The implications of this finding are discussed in Chapter 14. 
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Chapter 13. Mindfulness Training, Ageing and Temporal Attentional 

Resource Allocation: Attentional Blink Task 

13.1 Theoretical Background 

Chapter 13 details the use of an attentional blink paradigm which was utilised to 

assess whether the temporal dynamics of attentional processing may be modulated in 

older adults following MT. The Chapter discusses the reasons for using the ABtask, the 

tasks design, its associated outcome measures and specific hypotheses and the 

presentation of the detailed ABtask results and analysis.  

The Attentional Blink, Ageing and Mindfulness Training 

 The ABtask assesses the temporal allocation of attentional resources. During the 

ABtask participants are asked to identify two targets embedded in a rapid serial visual 

presentation (RSVP
41

). If the two targets are presented within 200-500ms of one another 

the second target is often missed (Raymond, Shapiro, & Arnell, 1992; Ward, Duncan, & 

Shapiro, 1996). As this impairment is considered analogous to someone blinking after 

the first target (tar1) and consequently missing the second target (tar2), it has been 

labelled the ‘attentional blink’ (AB; Raymond, Shapiro, & Arnell, 1992). It is important 

to note that tar2 is not always missed. The so called ‘AB effect’ expresses the 

performance difference between tar2 stimuli that are temporally close to tar1 (<500ms) 

and tar2 stimuli that are temporally disparate (>500ms). Herein, the utilised ABtask 

included both a short lag tar2 (appearing 316ms post tar1) and a long lag tar2 (appearing 

632ms post tar1) in order to assess said AB effect. 

Most interpretations of the AB suggest that it occurs due to limitations of 

working memory consolidation processes (Giesbrecht & Di Lollo, 1998; Vogel & Luck, 

2002). A number of studies have demonstrated that tar2 is fully perceived (e.g. Vogel, 

Luck, & Shapiro, 1998), but because the consolidation process is relatively slow tar1 

may still be undergoing consolidation when tar2 is presented, causing the subsequent 

non-target stimuli to overwrite tar2 before it can also be consolidated. Giesbrecht and Di 

Lollo (1998) utilised two task conditions to test this interpretation 1) tar2 was the last 

                                                

41 In a RSVP stimuli are presented briefly, at the same location and in rapid succession. 
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stimuli in the RSVP and 2) tar2 was followed by a non-target stimulus, finding that 

performance was improved in the former condition. Further, using similar task 

conditions Vogel and Luck (2002) found that the P3 ERP component, utilised as a 

measure of attentional resource allocation, was completely suppressed in the later 

condition but merely delayed in the former. Further, Kranczioch, Debener, and Engel 

(2003) analysed the P3 evoked by tar2 stimuli that were correctly identified compared 

to tar2 that were missed, finding that missed tar2 did not evoke a P3 whereas correctly 

identified tar2 did produce a P3, even when tar2 had appeared in the AB time window. 

Thus, with the majority of the limited amount of available attentional resources being 

taken up by consolidation processes for tar1, the non-target stimuli may overwrite tar2 

before it can also be consolidated. Isaak, Shapiro, and Martin (1999) provided a similar 

interpretation, concluding that the AB effect may reflect competition/interference 

among multiple RSVP items for attentional resources that are already engaged by the 

preceding item. However, as tar2 is not always missed when it is presented in the AB 

time window, some control over the allocation of attentional resources to facilitate 

consolidation processes across targets may be possible. 

As was briefly introduced in Chapter 9, ABtask performance typically declines 

with age (Georgiou-Karistianis et al., 2007; Lahar, Isaak, & McArthur, 2001; Maciokas 

& Crognale, 2003; van Leeuwen et al., 2009) with older participants both missing tar2 

more frequently and missing it for longer periods of time following detection of tar1. 

One plausible explanation for these observed findings concerns the proposed reduction 

in attentional resource capacity in older adults. A reduction in the amount of available 

attentional resources would mean that less resources were available for processing tar2 

whilst tar1 is still being processed, leading to the observed increase in AB. A second 

plausible explanation concerns the inhibitory deficit hypothesis (e.g. Hasher et al., 

1999) discussed in Chapter 9. In line with this hypothesis a number of researchers have 

suggested that the increased AB in older adults may be caused by reduced inhibitory 

control (Georgiou-Karistianis et al., 2007; Lahar et al., 2001). Said inhibitory deficit is 

likely to increase the difficulty of inhibiting the processing of non-target stimuli, thus 

taking up additional attentional resources that were required for tar2 consolidation, 

which in turn leads to the observed pattern of poorer performance. Thus it is feasible to 

suggest that gaining greater control over the allocation of attentional resources for 

consolidation processes and strengthening inhibition related processes would enhance 
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ABtask performance in older adults. As MT was shown to modulate the allocation of 

attentional resources in LS1 and in a number of studies discussed in this thesis (e.g. 

Slagter, Lutz, et al., 2007), and expert mindfulness meditators have shown enhanced 

functional activation in attention related brain regions (e.g. Teper & Inzlicht, 2013), a 

strong case can be made for assessing whether MT may improve ABtask performance 

in older adults.  

Two previous studies have examined the impact of MT on ABtask performance. 

As these findings have already been discussed in previous Chapters they are only briefly 

summarised herein. In short, using both behavioural and electrophysiological methods 

Slagter, Lutz, et al. (2007) found that a 3 month mindfulness retreat resulted in a 

reduced AB and that said reduction was related to a decrease in P3b mean amplitude to 

tar1
42

, whilst in a purely behavioural study van Leeuwen et al. (2009) found that older 

mindfulness meditators were able to outperform both age-matched and younger controls 

on the ABtask. Although these findings offer encouragement, they do not provide 

information regarding how MT may improve attentional resource allocation in a non-

meditating sample as both of these studies utilised expert meditator samples and Slagter 

et al. data were collected following an intensive retreat with 8hrs+ of daily practice. 

Further, as discussed in Chapter 3 such studies inherently include a number of 

confounds (e.g. non-mindfulness components, lasting state induced changes from large 

amount of daily practice, multiple meditations) that make direct attribution of 

improvements to a specific MT difficult. Thus research that assesses the effects of a 

singular MT technique on ABtask performance is required to confirm said previous 

findings and to determine if MT may modulate the temporal allocation of attentional 

resources in older adults. Therefore, the ABtask was employed in LS2 to meet this need, 

providing the first longitudinal examination of ABtask performance and MT in older 

adults.  

                                                

42 The reduction in P3b to tar1 was interpreted as a reduction in the allocation of attentional resources to 
tar1, thus leaving more resources available to consolidate the latterly presented tar2 which in turn lead to 

an increase in tar2 detection rates and a reduced AB. 
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Electrophysiological and Behavioural Outcome Measures and Hypotheses. 

The ERP component identification procedure detailed in section 4.4 resulted in 

the identification of two ERP components of interest. For consistency with Slagter, 

Lutz, et al. (2007) study, the analyses herein utilised epochs time-locked to tar1 and 

were focused on the P3b ERP component which is considered to represent attentional 

resource allocation to tar1 processing and consolidation. 

The P3b ERP component was observed in the 420 to 550ms time window, 

peaking at FCz (see Figure 51 and Figure 52). An additional positive ERP component, 

peaking at FCz in the 650 to 780ms time window was also observed. However, Sergent, 

Baillet, and Dehaene (2005) have shown that the conscious perception of tar2 can 

influence ERP components occurring as little as 270ms after the appearance of tar2. 

This suggests that in the paradigm utilised herein, whereby tar2 was presented either 

316ms or 632ms after tar1, the latter time window may include activity related to tar2. 

Using the pooled T1 data (N=46), the mean amplitude to both short and long lag 

conditions were subjected to separate Paired Samples t-tests for both the 420 to 550 and 

the 650 to 780ms time windows, finding a significant difference for the latter time 

window only [t(45)= 2.566, p = .014]. This finding suggests that the conscious 

perception of tar2 overlaps with ongoing processing of tar1 and modulates the second of 

the identified positive ERP components. This finding is in line with the literature 

discussed in this chapter that suggests that tar2 processing begins before tar1 has been 

consolidated and that the AB is caused by attentional resources being taken up by tar1 

processing. In line with Slagter et al. study, the objective herein was to determine if 

attentional resources allocated to tar1 processing may be modulated to facilitate tar2 

processing. Thus the focus was on the appropriation of attentional resources to tar1. 

Accordingly, the later ERP component which was modulated by processing of tar2 was 

not analysed further. 

No RTs were recorded during ABtask completion. Accordingly, the focus of the 

behavioural analyses was on HRs to tar2. Tar2 responses were only analysed if tar1 had 

also been reported correctly to ensure that only responses in instances where attentional 

resources had been successfully allocated for tar1 consolidation were included. 
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As van Leeuwen et al. (2009) found that older mindfulness meditators had a 

reduced AB compared to age matched and younger controls and Slagter, Lutz, et al. 

(2007) found that a 3month meditation retreat could lead to a reduction in P3b mean 

amplitude to tar1, and that this reduction correlated with a reduced attentional blink 

size, it was hypothesised herein that MT would lead to a reduced P3b ERP component 

and that this reduction would be concurrent to an improvement in tar2 accuracy.  

13.2 Task Design and Stimuli 

 Stimuli consisted of 2 numbers (targets) and 18 letters (non-targets) presented in 

a RSVP. Letters were randomly drawn from the alphabet with the exception of letters 

that could be easily mistaken for numbers (B, I, O, S, Z). The target stimuli were the 

numbers 2 to 9. Stimuli were presented in black on a grey background, with the 

exception of tar1 which was presented in red to facilitate the capture of attention. This 

was expected to increase the number of trials available for analysis given that HRs were 

only analysed for instances in which tar1 had been correctly identified. Each trial began 

with a fixation cross displayed for 1500ms followed by a 250ms blank screen. RSVP 

then commenced and the 20 stimuli were each shown for 66ms followed by a blank of 

13ms. The first target could appear at either position 7 or 10 in the stream. Tar1 and tar2 

were separated by either 4 or 8 letters with tar2 appearing at either position 11 or 15, 14 

or 18 accordingly, meaning there was always at least 2 further stimuli presented after 

tar2. The temporal distance between tar1 and tar2 was either 316ms (Short Lag) or 

632ms (Long Lag). Only 2 target conditions were utilised herein for a number of 

reasons. Firstly, redundancy is typically seen for tar2 presented at lags of 2,3,4,5 letters 

following tar1 i.e. similar performance is seen for each of these lags as they all appear 

within the AB time window, thus additional lags were deemed unnecessary. Secondly, 

as 50-60 trials were needed for each lag in order to generate an appropriate ERP for 

analysis, increasing the number of lags would significantly increase the number of trials 

in the task, producing an increased task duration and burden on participants. Lastly, the 

use of only a short and long lag allowed for an easier comparison between results 

obtained herein and those obtained by Slagter, Lutz, et al. (2007) who similarly only 

used 2 target conditions.   

Participants completed 120 trials overall, 60 each from the short and long lag 

conditions. They were given two practice blocks of 8 trials each. The first block of 8 
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trials was presented at a reduced speed to facilitate task understanding and the second 

block was at full speed to mirror task conditions. Participants were instructed that there 

would be 2 targets per trial, that the first target would always be red and that they 

should refrain from responding until the screen was blank in order to avoid missing tar2. 

Participants responded to the targets they had seen by pressing the appropriate number 

keys of a standard QWERTY keyboard. Participants were instructed not to guess if they 

had missed 1 or both targets. However, they were to respond if they had 2 numbers in 

their head as it was likely they had seen both targets but were not confident due to the 

speed of presentation. RTs were not recorded. 

13.3 Results 

 An a priori decision was taken to exclude participants from both 

electrophysiological and behavioural longitudinal analyses if they had a hit rate below 

50% to tar1 (at either T1 or T2) as this would indicate poor task understanding and limit 

the number of trials available for analysis. Seven participants failed to meet this 

criterion and were removed from the longitudinal analyses accordingly.  

13.3.1 Behavioural Analyses (Accuracy) 

HRs to tar2 were calculated based only upon trials for which tar1 had been 

correctly identified. The efficacy of the task manipulation was confirmed by subjecting 

the pooled T1 data (N=51)
43

 to a Paired Samples t-test, revealing a highly significant 

difference between the short (76.3%) and long (87.4%) lag [t(50)= -4.433, p < .001] 

conditions. Direct comparisons at T1 revealed no significant difference between the 

MTG and BTG in either the short [t(41) = .720,  p = .476] or long [t(41) = 1.625,           

p = .112] lag conditions. 

To assess whether MT or BT caused improvements in ABtask performance HRs 

were subjected to a Time (2) x Lag (2) x Group (2) Mixed ANOVA (Table 39), 

revealing significant main effects of Time and of Lag.  

                                                

43 Only 5 participants had <50% accuracy to tar1 at T1. 
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Table 39: Summary of Mixed ANOVA (Time (2) x Lag (2) x Group (2)) results for 

HRs 

Effect Statistical Values  

Time F(1,41) = 13.771,  p = .001 r = .501 

Group x Time F(1,41) = .768,  p = .386  

Group F(1,41) = 1.371,  p = .248  

Lag F(1,41) = 17.282,  p < .001  

Lag x Group F(1,41) = .030,  p = .863  

Time x Lag x Group F(1,41) = 1.509,  p = .226  

Time x Lag F(1,41) = .796,  p = .377  

The main effect of Lag was caused by a significant difference in HRs between 

the short and long lag conditions across groups and time points (79.6 vs 88.9%), 

confirming that the behavioural task manipulation was successful and that the AB effect 

(HR difference between short and long lag) remained robust throughout. The highly 

significant main effect of Time and non-significant Group x Time interaction suggested 

that both groups had similarly improved performance from T1 to T2. The non 

significant Time x Lag interaction suggests that improvements were not limited to either 

the short or long lag conditions, further confirming that the AB effect remained robust. 

Pooling the data across groups and lags there was a significant increase in HRs from T1 

to T2 (82.2 vs 86.3%), confirming that overall performance improved over time.  

Table 40: Summary of means (standard deviations) for MTG, BTG and overall 

 MTG (N=21) BTG (N=22) Overall (N=43) 

Hit Rate (%)    

Short Lag T1: 79.3 (22.9) T1: 74.9 (17.4) T1: 77.0 (20.2) 

 T2: 84.7 (16.7) T2: 79.6 (16.5) T2: 82.1 (16.6) 

    

Long Lag T1: 90.5 (6.9) T1: 84.2 (16.5) T1: 87.3 (13.0) 

 T2: 91.3 (7.7) T2: 89.6 (10.0) T2: 90.4 (8.9) 

As performance improved across groups and lags (Figure 50), practice effects 

rather than a general effect of cognitive training are the most likely cause. Thus the 

hypothesis that MT would lead to improved performance is not supported as 

performance was not improved beyond the level of improvement gained from repeated 

administration of the task. The implications of this finding are discussed in Chapter 14. 
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Figure 50: T1 to T2 differences in HRs, pooled across groups, for the short and long 

lag conditions and overall pooled across lags 

 

13.3.2 ERP analyses  

P3b ERP component 

 

Figure 51: Pooled T1 data (N=46). A time lapse topographical view of the P3b ERP 

component displayed using instantaneous amplitude spherical spline interpolated scalp 

topographies from 400ms to 580ms (60ms steps from left to right) for the short and long 

lag conditions and for all trials combined. Mean Amplitude spherical spline interpolated 

scalp topography is included for the P3b time window (420 to 550ms) 
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Figure 52: Grand mean evoked potential for tar1 at FCz for both the short and long lag 

conditions, from pooled T1 data (N=46). P3b time window (420 to 550ms) is 

highlighted. 

Figure 51 displays the time course and topography of the P3b ERP component 

for both short lag and long lag conditions using pooled T1 data (N=46). As shown in 

Figure 52, the maxima of P3b was best captured by a time window of 420 to 550ms at 

FCz. Direct comparisons at T1 revealed no between group differences in P3b mean 

amplitude in either the short [t(34) = 1.375, p =.178] or long [t(34) = 1.827, p =.076] lag 

conditions.  

Table 41: Summary of Mixed ANOVA (Time (2) x Lag (2) x Group (2)) results for P3b 

mean amplitude at FCz 

Effect Statistical Values  

Time F(1,34) = 8.763,  p = .006 r = .453 

Group x Time F(1, 34) = 1.072,  p = .308  

Group F(1, 34) = 1.862,  p = .181  

Lag F(1, 34) = 2.276,  p = .141  

Lag x Group F(1, 34) = .000,  p = .991  

Time x Lag x Group F(1, 34) = .208,  p = .651  

Time x Lag F(1, 34) = .905,  p = .348  
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P3b mean amplitude was subjected to a Time (2) x Lag (2) x Group (2) Mixed 

ANOVA (Table 41) to determine intervention related changes in MTG and BTG, 

revealing only a main effect of Time. This effect was caused by a reduction (see Figure 

53) in P3b mean amplitude across groups and lags from T1 to T2 (2.71 vs 1.84 µV). The 

concurrent decrease in P3b and increase in behavioural performance observed herein are 

in line with Slagter, Lutz, et al. (2007) finding of reduced P3b amplitude resulting in 

improved performance. However, the Group x Time interaction was non-significant 

suggesting that both groups had similarly reduced P3b following training. Thus in line 

with the behavioural results there appears to be no specific effect of MT.  

 

Figure 53: Differences in P3b at FCz, pooled across lags and groups, from T1 to T2. 

However, inspection of the individual groups ERP waveforms (Figure 54) 

suggests a larger decrease for the MTG as compared the BTG. Thus, as a purely 

exploratory step, paired samples t-tests were run for each group, pooled across lags 

(total) to ascertain how each group modulated P3b from T1 to T2 (Table 42).   
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Figure 54: Differences in P3b at FCz, pooled across lags, for the MTG and BTG from 

T1 to T2 

The Paired Samples T-test’s demonstrate that only MTG significantly modulated 

P3b from T1 to T2, with a significant decrease observed when P3b was pooled across 

conditions. Whilst these findings intimate that MT caused the largest reduction in P3b 

amplitude, the non-significant Group x Time interaction means that it must still be 

concluded that MT did not significantly modulate P3b as compared BT. The 

implications of this result are discussed in Chapter 14. 

Table 42: Summary of means (standard deviations) and paired samples t-tests 

displaying P3b mean amplitude (µV) differences at FCz from T1 to T2 for MTG and 

BTG 

 MTG (N=18) BTG (N=18) 

Short Lag T1: 3.01 (1.80) T1: 2.16 (1.89) 

 T2: 1.97 (1.88) T2: 1.65 (1.35) 

   

Long Lag T1: 3.31 (1.52) T1: 2.38 (1.55) 

 T2: 2.00 (1.67) T2: 1.76 (1.19) 

   

Overall T1: 3.16 (1.62) T1: 2.27 (1.67) 

 T2: 1.98 (1.71) T2: 1.71 (1.22) 

Paired Samples T-test t(17)= 2.415, p=.027 t(17)= 1.720, p=.104 
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Chapter 14: Implications of Longitudinal Study 2 

 For LS2, three tasks of attention were administered to older adults before and 

after MT or BT in order to provide a comprehensive assessment of training related 

modulations of executive and sustained attention functions and the neural mechanisms 

that subserve them. This chapter contains a discussion of the implications of LS2. A 

discussion of the findings of LS2 in relation to the overall implications of this thesis is 

contained in Chapter 15.  

14.1 The Positive Effect of Mindfulness Training on Core Attentional 

Functions and the Neural Mechanisms that Subserve them in Older Adults 

  A number of positive results emerged from the analysis of the CPT data. As 

hypothesised, the MTG improved RTs and concurrently increased the no-go P3 ERP 

component whereas no such modulations were observed for BTG. The reduction in RTs 

observed for MTG following MT suggests that MT may improve sustained attention 

and strengthen executive attentional functions related to inhibitory control in older 

adults given that said skills were required during task completion to enable consistent, 

prompt and accurate responses whilst concurrently inhibiting responses to no-go 

stimuli. Herein, higher no-go P3 was significantly correlated with faster RTs at T1 and 

increases in no-go P3 from T1 to T2 were correlated with improvements in RTs. This 

suggests that the ability to inhibit responses in the no-go condition is strongly related to 

the speed at which responses can be made in the go condition. A number of studies 

discussed in Chapter 9 similarly demonstrated that older participants who are able to 

allocate the most neural resources during task completion typically perform better (e.g. 

Cabeza et al., 2002; Vallesi, 2011; Vallesi et al., 2011). Thus 8 weeks MT may produce 

positive modulations in the allocation of task related neural resources which in turn 

facilitated improvements in RTs.  

Interestingly, an exploratory analysis which incorporated site as an additional 

variable suggested that the MTG increase in no-go P3 was consistent with an increase in 

activity in fronto central electrode sites over the right hemisphere (see Figure 34). 

Successful inhibition has previously been associated with enhanced activity in right 

prefrontal cortex (Boecker et al., 2007; Rubia et al., 2003). Thus, the enhanced 

activation observed in right frontal sites at T2 for MTG may reflect enhanced activation 
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of the primary inhibitory network, rather than the recruitment of an additional 

compensatory network. Recently, enhanced activity in these regions has also been seen 

for old vs. young participants during successful inhibition (Heilbronner & Munte, 

2013). This suggests that enhanced activation of regions implicated in inhibitory control 

is an age associated compensatory response. Sebastian, Baldermann, et al. (2013) 

similarly found that older adults increasingly recruit brain regions involved in inhibitory 

control until inhibitory load exceeds compensatory capacity. Herein inhibitory load was 

low due to the low difficulty of the utilised CPT, thus compensatory capacity was 

unlikely to be exceeded. Given that increases in no-go P3 in the right hemisphere were 

significantly correlated with improved performance, the enhancement of no-go P3 and 

concurrent reduction in RTs for MTG suggests that MT facilitated an adaptive and 

compensatory increase in the appropriation of attentional resources for inhibitory 

control. However, it must be acknowledged that because source localisation techniques 

were not utilised herein it is not possible to state with certainty the exact brain regions 

that may be producing the observed pattern of enhanced activation for the MTG. Thus it 

is unclear whether an increase in right frontal regions produces the observed pattern of 

activity recorded at the scalp level herein. Nevertheless, previous research utilising such 

techniques has implicated the ACC as a potential generator site for the no-go P3 (Beste 

et al., 2008; Bokura et al., 2002; Schmajuk et al., 2006) and has confirmed that the ACC 

is activated during the completion of tasks involving inhibition such as Go/No-go tasks 

(e.g. Langenecker & Nielson, 2003; Nielson et al., 2002) and the Simon task (Sebastian 

et al., 2013). Thus the observed pattern of results for the MTG following MT may relate 

to enhanced activation in regions implicated in attentional control such as the ACC. As 

the ECStroop task findings presented in Chapter 12 appear to be in line with this 

assertion, the potential mechanisms by which MT may produce positive effects across 

tasks are discussed after a brief discussion of the ECStroop findings below. 

Similar to the CPT, positive behavioural and electrophysiological findings were 

observed for the MTG following analysis of the ECStroop data. As hypothesised, the 

MTG improved RTs and increased fronto-central N2 mean amplitude across conditions 

following 8 weeks MT, whereas no significant changes were observed for the BTG. The 

reduction in RTs suggest that MT may have resulted in improvements to 

executive/attentional control and conflict monitoring given that both of these functions 

are required for successful ECStroop task completion. Of note, change in fronto-central 
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N2 mean amplitude, across groups, was significantly correlated with change in RTs, 

with increases in N2 related to faster RTs. Thus MT again appears to have produced 

positive modulations in the allocation of task related neural resources which in turn 

facilitated improvements in RTs. As with the no-go P3 discussed above, source 

localisation techniques have implicated the ACC as a generator for the fronto-central N2 

(e.g. Bekker et al., 2004, 2005; Liotti et al., 2000; Nieuwenhuis et al., 2003; Van Veen 

& Carter, 2002). Further, the original cStroop task (Bush et al., 1998), upon which the 

paradigm utilised herein was based, was designed and observed to activate the ACC. 

Thus although source localisation was not conducted herein it may be speculated that 

MT produced modulations in task related neural activity associated with regions 

implicated in core attentional functions.  

Interestingly, the MT related enhancement of fronto-central N2 and 

improvements in RTs were seen across conditions on the ECStroop. This suggests that 

MT may have produced a more general improvement in attentional monitoring rather 

than an improvement limited to instances when conflict was present. Recent findings 

have begun to suggest that the ACC, which is a key structure in the executive attention 

network and its salience subsection, plays a more general attentional monitoring role 

and that it is not restricted to conflict monitoring (Mansouri, Tanaka, & Buckley, 2009). 

This assertion is backed up by studies that observed increased ACC activation even 

when tasks involving negligible conflict were employed (Mohanty et al., 2007; Schulz 

et al., 2011). A recent review (Gasquoine, 2013) concluded that the ACC contributes to 

behaviour by modifying responses especially in reaction to challenging cognitive and 

physical states that require additional effortful cognitive control. Thus the ACC is very 

much involved in top-down attention and supports the process of monitoring current 

behaviour in relation to a desired goal (Kerns et al., 2004), whilst the exact goal does 

not necessarily need to include conflicting information. Thus improvements in 

attentional functions and task related neural activity related to the ACC may account for 

the pattern of results observed across tasks herein.  

The observed pattern of results across tasks is particularly encouraging given 

that age related declines in regions such as the ACC have been observed. A recent MRI 

study (Mann et al., 2011) observed age related declines in grey matter volume across the 

cingulate cortex as a whole and specifically for the ventral ACC which is a region that is 

thought to be involved in the aforementioned function of attentional monitoring. Pardo 
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et al. (2007) have also found that metabolism in the ACC declines with age and that this 

decline is correlated with declining cognitive function. In the ongoing moment to 

moment competition for limited attentional resources top-down attentional control 

processes play a fundamental role in selecting relevant from irrelevant sensory 

information. Thus, appropriating an adequate amount of resources for current goals may 

become more challenging, and more necessary, for older adults given that the amount of 

available attentional resources appears to be reduced with older age. The studies 

discussed in Chapter 9 that observed enhanced and bilateralised activation patterns for 

older adults in regions implicated in attentional control are likely to evince an age 

related requirement for additional top-down attentional regulation across paradigms. In 

line with this assertion, a number of recent studies have demonstrated that older adults 

recruit a more frontally distributed attention network during the completion of a variety 

of tasks (Li et al., 2013; O'Connell et al., 2012; West, Schwarb, & Johnson, 2010). Li et 

al. (2013) found that older adults recruit a more frontal attentional network, associated 

with top down attentional control, during task conditions that were designed to induce 

both automatic bottom up (pop out) and effortful top down search behaviours. Further, 

by simultaneously recording both fMRI and EEG O'Connell et al. (2012) observed that 

older adults had higher P3a ERP component mean amplitudes in frontal regions than 

younger adults and that these old vs. young differences were driven by increased 

activation of regions implicated in attentional control such as the cingulate cortex, 

whilst a decrease was observed in inferior parietal cortex. Taken together Li et al. 

(2013) and O'Connell et al. (2012) findings suggest an increased reliance on frontal top 

down attentional control structures for older adults. The results obtained across the CPT 

and ECStroop suggest that 8 weeks MT may strengthen top down attentional control 

structures and their associated functions. Thus MT may be particularly useful as a 

cognitive training intervention for strengthening said structures and functions in older 

adults with the potential to positively influence age related declines in attentional 

functions. The wider implications of these findings and the potential use of MT as a 

strategy to modulate cognitive decline are discussed in Chapter 15. First it is important 

to discuss why MT may have produced the pattern of results observed across the CPT 

and ECStroop.  

As proposed in Chapter 9, MT may be particularly useful as a cognitive training 

intervention for strengthening top down attentional control mechanisms in older adults 
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as it involves the repeated use of core attentional functions and repeated activation of 

attention related brain regions during practice (Baron Short et al., 2007; Brefczynski-

Lewis et al., 2007; Hasenkamp et al., 2012; Hölzel et al., 2007). Chapters 3 and 9 

detailed that attentional processes become more efficient through training (e.g. Newman 

et al., 2007; N. B. Sarter et al., 2007; Slagter, Giesbrecht, et al., 2007; Vidnyanszky & 

Sohn, 2005) and that the repeated activation of a brain region may result in increased 

grey matter (Ilg et al., 2008; A. May et al., 2007). Thus it is feasible to suggest that 8 

weeks of MT may have increased the allocation of attentional resources and improved 

attentional performance by increasing the capacity of available neural substrate. This 

assertion is consistent with previous cross sectional evidence which suggests that long 

term engagement in MT may lead to enhanced grey matter density (Hölzel et al., 2008; 

Luders et al., 2009; Pagnoni & Cekic, 2007) and increased cortical thickness (Lazar et 

al., 2005) in attention related brain regions. Further, increases in available neural 

substrate may be possible after only 8 weeks MT given that previous research has found 

that a similar duration of MT increased grey matter density (Hölzel, Carmody, et al., 

2011) and improvements in white matter integrity in the ACC have been found after 

only 11hrs of IMBT (Tang et al., 2010). 

An alternative explanation for the observed pattern of results is that 8 weeks MT 

resulted in improvements in the allocation of already available attentional resources 

without an increase in the capacity of available neural substrate. Consistent with modern 

conceptualisations of mindfulness (e.g., Bishop et al., 2004; Chiesa & Malinowski, 

2011; Malinowski, 2008, 2013; Shapiro et al., 2006), the MT utilised herein emphasised 

that arising endogenous and exogenous stimuli that appear during moment to moment 

experience should simply be observed with the individual maintaining a curious, non-

elaborating attitude toward them, and returning attention back to the breath when drifts 

of attention are noticed. If such arising endogenous and exogenous stimuli were passed 

on for higher order processing, they would inherently take up attentional resources. 

Thus participation in this form of MT over an extended period is likely to strengthen 

goal directed attention and simultaneously reduce the processing of non-goal relevant 

extraneous stimuli. In particular, the MTG increase in no-go P3 suggests that MT 

resulted in a greater allocation of resources to the goal at hand and neural 

inhibition/suppression of extraneous neuronal activity given that Polich (2007) proposed 

that such ERP components may reflect neural inhibition/suppression of extraneous 
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neuronal activity to facilitate task related attentional processing. This interpretation for 

the observed pattern of results is supported by the findings of a recent longitudinal study 

(Mrazek et al., 2013) which found that a 2 week MT course
44

, with only 10minutes of 

daily practice, resulted in a reduction in the occurrence of distracting thoughts during 

operation span task completion and that improvements in task performance were 

mediated by reduced mind wandering among participants who were prone to distraction 

at pretesting. A number of other studies have similarly found that MT may produce a 

reduction in rumination (Anderson et al., 2007; Chambers et al., 2007; Jain et al., 2007; 

Ramel et al., 2004; Shapiro, Brown, & Biegel, 2007) and mind wandering (Brewer et 

al., 2011). Thus a more efficient allocation of available attentional resources is a 

plausible explanation for the pattern of results observed herein. 

Importantly, the abovementioned potential mechanisms are likely to be 

complimentary. MT may have both increased attentional capacity, making more 

attentional resources available for task completion, and increased the efficiency of 

neural mechanisms involved in the appropriation of existing resources by reducing non-

goal related extraneous processing. Theories of cognitive reserve propose that brain 

networks that are more efficient and have greater capacity are likely to cope better with 

the disruption caused by brain pathology. According to Steffener and Stern (2012) 

recently extended model of CR, the increases in task performance and task related 

neural activity observed herein may be explained by MT related increases in CR, which 

in turn improved task performance by enhancing task related neural activity. Thus, MT 

may have great utility as a strategy for increasing CR. The implication of these findings 

and recommendations for future research are discussed in detail in Chapter 15. 

                                                

44 The mindfulness course involved the following: 45 min group sessions, four times a week for 2 weeks 
with each session involving 10-20mins of mindfulness practice. Participants were also required to 

meditate for 10minutes per day out of class. Mindfulness exercises included FA to the sensations of 

breathing, to tastes of a fruit or to sounds of an audio recording. Participants were also given instruction 

on distinguishing between naturally arising thoughts and elaborative thinking. 
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14.2 Mindfulness Training and the Attentional Processing of Emotional 

Stimuli 

It was hypothesised herein that P3b mean amplitude may be reduced following 

MT for both the negative and positive conditions of the ECStroop task as the MT 

instruction given to the MTG emphasised a non-judgmental, non- reactive attentional 

state to arising thoughts and emotions. Surprisingly, there was no change in the 

processing of emotional stimuli for either group following cognitive training. Given that 

there was a significant difference in P3b mean amplitude between the positive and 

negative conditions, the utilised ECStroop task does appear sensitive to the emotional 

valence of word meaning. However, this difference remained robust following training, 

suggesting that the attentional processing of emotional stimuli was not modulated. Thus 

the pattern of results observed herein was that of improvements in attentional functions 

and associated neural activity with no concurrent improvement in the processing of 

emotional stimuli.  

The ECStroop emotional findings are not necessarily negative. In fact, the 

observed pattern of results herein is in line with modern conceptualisations of MT that 

suggest FA must first be trained in order for an individual to remain in the present 

moment and to consistently engage a non-reactive and non-judgmental OM state (Lutz 

et al., 2008; Malinowski, 2013; Wallace & Shapiro, 2006), thus attentional 

improvements are likely to be seen before improvements in emotion regulation. Thus, 

the observed pattern of improved attentional performance and enhanced attentional 

resource allocation across the CPT and ECStroop may evince a strengthening of present 

moment FA whilst the null findings from the emotional conditions indicate that the 

administered dose of MT was not sufficient to enhance emotional processing.  

As introduced in Chapter 12, Allen et al. (2012) did find that 6 weeks of MT 

was able to produce a positive improvement in attentional functions and a concurrent 

improvement in the processing of affective stimuli with negative valence. However, 

despite being 2 weeks shorter than the MT employed herein, the amount of daily MT 

(20 vs 10-15minutes) and group instruction (6 x 2h weekly meetings vs 4 x 1.5h 

meetings) administered by Allen et al. was substantially higher, which suggest that the 

total amount of time that participants engaged in MT will have been approximately 30% 

higher over the course of their study, as compared to that administered herein. Thus 



218 

 

additional MT experience is a plausible cause of the disparate results obtained by Allen 

et al. and those obtained herein. This conclusion is backed up by Allen et al. finding that 

only those participants who engaged in the most MT had a reduction in blood 

oxygenated level-dependent signals to affective stimuli of negative valence. 

 A further difference between Allen et al. (2012) study and LS2 was that the MT 

participants in the former study were given an additional ‘heart practice’ aimed at 

developing fullness of feeling and empathy (Risom, 2010) and also included a 

meditative practice involving compassion. Together these additional elements may 

account for why changes in emotional processing were seen following short term MT. 

Such additional instruction or counselling regarding emotion regulation are also 

typically seen in MBIs such as MBSR and MBCT and may provide crucial instruction 

for participants on how to process transient arising emotional stimuli. Thus, the lack of 

extensive and detailed instruction regarding how to regulate emotional processing 

herein may account for the null between-groups effects. Therefore, it may be proposed 

that whilst a singular breath awareness MT may be sufficient to provide attentional 

improvements upon which improvements in emotion regulation may be built, further 

instruction/counselling or additional MT with emotional elements may be necessary to 

facilitate improvements in emotional regulation following short term MT. However, it is 

feasible to suggest that a singular breath awareness MT which includes instruction 

regarding a non-judgmental, and accepting attitude, administered over a longer period 

may produce improvements in emotional regulation without the need for additional 

instruction or counselling. Repeated practice would be expected to enable practitioners 

to interrupt pre-potent and automatic responses both in and outside of the meditative 

state once the practitioner is able to consistently and successfully engage in mindfulness 

state that is characterised by a non-judgmental, accepting attitude and a non-reactive 

attentional state. The amount of MT administered herein may simply have been too low 

a dose to observe such change. The implications of the observed pattern of results and 

recommendations for MBIs and future research are discussed in Chapter 15. 

14.3 Mindfulness Training and the Attentional Blink Effect 

 The two hypotheses relating to the ABtask were both unsupported as there were 

no between groups differences in tar2 HR nor in the T1 to T2 modulation of the P3b 

ERP component. However, HRs pooled across lags and groups were improved and P3b 
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mean amplitude was reduced across groups and lags from T1 to T2. The large effect 

sizes observed for these modulations suggest a robust change. Two feasible 

explanations may be proposed for this observed pattern of results: 1) cognitive training 

in general improves both behavioural performance and reduces attentional resource 

allocation to tar1 or 2) repeated administrations of the ABtask may produce practice 

effects.  

The latter explanation appears to be the most plausible. Perceptual learning 

(Fahle, 2005), through repeated practice, may enable participants to detect the target 

stimuli more easily and/or participants may have become better at predicting the timing 

of the target stimuli in the stream. A recent study (Choi et al. (2012) found that the AB 

effect may be eliminated following 1 hour of training with a modified ABtask, wherein 

a short lag tar2 was presented in a salient colour. Further, this effect was maintained up 

to a month later. These findings certainly suggest that the ABtask may be susceptible to 

practice related effects following repeated administrations. However, in a follow up 

experiment in which the training involved repeated administration of the original 

ABtask, the AB effect was not modulated during the post training administration of the 

task. Thus practice effects may not fully explain the null between group effects. 

 An alternative explanation for the observed pattern of results concerns the 

presentation of tar1 in the paradigm utilised in LS2. Herein tar1 was coloured red in 

order that it may be more readily identified, thus ensuring that an appropriate number of 

trials were available for analysis given that tar2 accuracy calculations were based only 

on cases in which tar1 was correctly identified. Other authors have similarly used this 

technique (Georgiou-Karistianis et al., 2007; Maciokas & Crognale, 2003; van Leeuwen 

et al., 2009). However, each of these previous studies utilised a cross-sectional design 

meaning that participants only encountered the task once. Thus it is feasible that 

repeated administration of the task, with tar1 in red, may reduce the amount of 

attentional resources required to process it as participants become familiar with its 

timing, leading to a reduction in P3b mean amplitude to tar1. This would feasibly lead 

to more attentional resources being available for tar2 processing and would explain why 

an improvement in HRs across lags and groups was observed for tar2. However, this 

explanation cannot account for why previous studies have observed a reduction in the 

AB effect (difference between HRs for short and long lag conditions) following MT 

(Slagter, Lutz, et al., 2007). 
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 A specific effect of mindfulness retreats or longer exposure to MT may explain 

why Slagter, Lutz, et al. (2007) observed a reduction in the AB effect post retreat. 

Similar to the results observed herein, participants in both the retreat group and matched 

control group (age, gender and education) significantly improved HRs for short and 

long lag tar2 stimuli when they encountered the AB task for a second time in Slagter et 

al. study. However, the difference in performance between the short and long lag 

conditions, and thus the AB effect, only reduced for the retreat group and this reduction 

was correlated with a reduction in tar1 P3b. Thus MT administered via an intensive 3 

month retreat was able to improve AB performance above and beyond practice effects 

with the observed improvement related to more efficient attentional resource allocation. 

However, given that the retreat group were already expert meditators at baseline and 

that no between groups differences were found when the experts and meditation naïve 

participants encountered the task for the first time, it is feasible to suggest that specific 

effects of retreat participation, rather than MT in general or length of exposure to MT, 

may modulate AB performance.  

Spending 3months in an intensive mindfulness retreat with daily practice of over 

8hours is likely to produce transient changes in ones attentional state that are likely to 

influence task performance. For example, despite instruction to the contrary it would be 

difficult to not utilise a mindfulness state during the completion of a task that requires 

FA, such as the ABtask, having spent 8hours per day for the past 3months engaging in 

MT that includes elements of FA. Completing the ABtask without the induction of such 

a state was likely to be much easier for the MTG herein as they only completed 10-15 

minutes of MT daily. The findings of a number of other studies further suggest that 

changes in attentional state may produce modulations of the AB effect. For example, 

Olivers and Nieuwenhuis (2005) found that the AB effect was reduced by having 

participants concurrently listen to music and thus creating a distributed attentional state, 

a state previously described to account for MT related attentional improvements (Jha et 

al., 2007). Further, C. J. May et al. (2011) found that whilst 8weeks of loving kindness 

meditation did not reduce the AB effect, engaging in this form of meditation 

immediately before task completion did result in a significant reduction. Thus changes 

in attentional state during task completion may play a more crucial role in reducing the 

AB effect than mindfulness related trait attentional change. Engaging in 1hour of 

training in ABtask completion (Choi et al., 2012) may similarly produce changes in 
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ones attentional state. Changes in attentional state specific to retreat participation would 

account for why between groups differences were observed by Slagter, Lutz, et al. 

(2007) and not herein. In conclusion, the ABtask may be more sensitive to state induced 

changes in attention than to trait related attentional change following MT, of which 

there is clear evidence following MT herein. An important question that may be 

answered by future research is whether a singular MT, completed over a brief period, 

may enable individuals to evoke an attentional state that can modulate the AB effect if 

they were in fact given explicit instruction to evoke such an attentional state.  

14.4 Mindfulness Training and Self Report Measures of Mindfulness in 

Older Adults 

 A somewhat surprising finding of LS2 was that MT did not produce a significant 

increase in self reported mindfulness for the MTG. As an increase was seen in LS1 

following MT for the MTG, the administered MT appears to have utility in increasing 

self reported mindfulness. A logical explanation for the observed difference between 

LS1 and LS2 concerns the different ages of the participant samples. A previous study 

conducted by Splevins, Smith, and Simpson (2009) which utilised the Kentucky 

Inventory of Mindfulness Skills (KIMS; Baer, Smith, & Allen, 2004), an earlier 

iteration of the FFMQ utilised herein, found that a sample of older adults (mean age = 

65years) reported higher scores for the observe (FFMQ-O herein) and acting with 

awareness (FFMQ-A) facets of mindfulness than has previously been found in other 

studies utilising younger samples (Baer et al., 2008; Carmody & Baer, 2008). Thus 

ageing may be associated with increased levels of self reported mindfulness and a 

ceiling effect may have prevented the MTG in LS2 from increasing mindfulness 

following MT.  

In order to test the hypothesis that age is related to increased self reported 

mindfulness the baseline data from 3 studies for which we have utilised the FFMQ in 

our lab were pooled (N=151) and the correlation co-efficient of FFMQ total score vs. 

age was calculated. As predicted, FFMQ-total was significantly positively correlated 

with age (r = .209, p =.005), with increasing age related to higher self reported 

mindfulness. As in Splevins et al. (2009), this relationship was also found for FFMQ-O 

(r = .191, p =.010) and FFMQ-A (r = .235, p =.002) but not for FFMQ-NJ (r = .074,     
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p =.183) or FFMQ-D (r = .027, p =.372). Incidentally, the FFMQ-NR scale which is not 

included in the KIMS was also correlated with age (r = .177, p =.015). 

 Splevins et al. (2009) propose that mindfulness may be an extension of the 

developmental process. Further, they propose that FFMQ-O and FFMQ-A, facets which 

largely concern the observation of external stimuli, may be enhanced in older adults as 

many older adults have more free time. It was proposed that this reduced demand on 

available time would mean that attention may be given fully to the task at hand, rather 

than being divided, and thus make observation of external stimuli in the ongoing train of 

experience much easier. As noted by Splevins et al. further research is required to 

explore the relationship between age and the ability to observe and act with awareness 

in older adults to clarify whether these skills are age-related or whether socio-

demographic factors and/or experience related factors may play some role in this 

relationship. 

14.5 Summary 

LS2 is the first fully randomised, active control group study to assess the effects 

of MT on attentional functions in older adults, providing a unique contribution to the 

ever expanding body of research concerning the potential positive effects of MT. 

Carrying out a simple mindfulness based breath awareness meditation, which involved 

elements of FA and OM, for just 8 weeks improved both behavioural and 

electrophysiological markers of attentional functions and attentional resource allocation 

in a sample of older adults. Importantly, the observed behavioural and 

electrophysiological results were complimentary, with enhanced attentional resource 

allocation related to improved behavioural performance across both the CPT and 

ECStroop tasks. However, the previous finding of a reduced AB effect following an 

intense 3 month mindfulness retreat (Slagter, Lutz, et al., 2007) was not replicated, with 

retreat specific modulations of the attentional state proposed as the most likely reason 

for the disparate results obtained herein.  

The results obtained from the CPT and ECStroop tasks are indicative of 

improvements in core attentional functions that are subserved by an attentional control 

network which includes the ACC, a key structure which has previously been shown to 

have reduced grey matter volume (Mann et al., 2011) and metabolism (Pardo et al., 
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2007) in older adults. Based on the observed pattern of results it is proposed that MT 

may strengthen executive attentional functions in older adults through two potential 

mechanisms. Firstly, repeated activation of executive functions, and the neural 

mechanisms that subserve them, during MT may lead to an increase in available 

attentional resource capacity given that previous research has found that short term MT 

can lead to both increased grey matter density (Hölzel, Carmody, et al., 2011) and white 

matter integrity (Tang et al., 2010) in attention related brain regions. Secondly, the MT 

administered herein instructed individuals to remain in the present moment (focussed on 

the breath), to reduce elaborative thinking, rumination and mind wandering, and to 

maintain awareness of the present moment unfiltered by expectations. Thus a 

strengthening of goal directed attention and a reduction in non-goal related extraneous 

processing may be achieved as a result of the interplay between the FA and OM 

components of the administered MT. In turn, this may be expected to lead to an increase 

in the efficiency with which available attentional resources may be appropriated for 

current goals, with or without an increase in overall resource capacity. Together these 

mechanisms are complimentary and may account for why older expert meditators have 

previously been found to have enhanced grey matter density in attention related brain 

regions (Hölzel et al., 2008; Luders et al., 2009; Pagnoni & Cekic, 2007) and enhanced 

behavioural performance compared to age matched meditation naïve individuals (van 

Leeuwen et al., 2009).  With respect to the CR literature reviewed in Chapter 9, the 

observed results suggest that MT may capitalise on CR mechanisms and may have great 

utility in promoting cognitive and neural functioning in older adults. Recommendations 

for future research and the potential uses for MT in older adults are discussed in Chapter 

15. 

Interestingly, the overall pattern of results obtained from LS2 was that of 

improvements in attentional functions, with no concurrent improvement in the 

processing of emotional stimuli. Rather than being negative, this pattern of results is in 

line with conceptualisations of MT that suggest FA must first be trained in order for an 

individual to remain in the present moment and to consistently engage a non-reactive 

and non-judgmental OM state (Lutz et al., 2008; Malinowski, 2013; Wallace & Shapiro, 

2006), with improvements in these core components of MT likely to facilitate 

subsequent improvements in emotion regulation. The dose of MT administered in LS2 

appears to have been too small to allow the clearly observed attentional improvements 
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to influence emotion regulation processes. Further, these results suggest that the 

additional counselling and instruction related to the processing of emotions that are 

often given in MBIs, but were not given herein, may play a crucial role in improving 

emotion regulation following short term MT. The implications of this finding for MBIs 

are discussed in Chapter 15. 

The randomised active control group design of LS2, along with the administered 

self report questionnaires and the baseline tasks (Speed of Processing task and SSTM) 

enabled a large range of variables to be controlled between groups, including group 

contact time (social interaction), group session content, daily exercise time, 

experimenter contact and motivation, learning, participants’ intention and motivation, 

cognitive training environment, age, dispositional mindfulness, computer ability, years 

spent in education, self reported health, self efficacy, mental well being, 

ongoing/current cognitive and physical activity, baseline processing speed, and working 

memory capacity. Further, the use of EEG recordings and the ERP technique enabled 

links to be drawn between the overt responses measured behaviourally and the 

attentional processing and attentional resource allocation that produce said responses. 

Thus the methodological design allows for confidence that the observed improvements 

in task performance and electrophysiological markers of attentional resource allocation 

were a direct result of the administered MT. Thus the findings of both LS1 and LS2 

make a unique contribution to the extant literature by drawing direct links between 

engagement in MT and improvements in attention. Future studies must maintain this 

level of methodological rigor in order to further advance the field of mindfulness 

research. 
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Chapter 15: General Discussion 

Table 43: Overview of main findings 

 
Variable 

type 

MT Vs. Comparison group 

(LS1= WCG; LS2 = BTG) 

Relationship to previous 

findings 

Longitudinal Study 1 

Stroop Task ERP 

N2 @ Pos Right 
and Pos Left 

 

These results build upon 

recent longitudinal findings 
which have demonstrated 

that MT leads to improved 

attentional functions (e.g. 

Jha et al., 2007). 

Increase in N2 correlated with 

decrease in P3  

(incongruent condition) 

P3 @ POz 
 

ANT Behavioural Reaction Times 
 

     

Longitudinal Study 2 

CPT 

ERP 
NoGo P3 @ 

FCz 

 

1
st
 longitudinal evidence of 

MT related improvements 
in sustained attention and 

inhibition related 

processing in older adults. 

Increases in NoGo P3 ERP correlated with 

decreases in reaction times 

Behavioural Reaction Times 
 

 

ECStroop 

ERP 
Fronto-central 

N2 @ FCz 
 

1
st
 longitudinal evidence of 

MT related improvements 
in executive/attentional 

control and conflict 

monitoring in older adults. 

Increases in fronto-central N2 correlated with 

decreases in reaction times 

Behavioural Reaction Times 
 

     

AB Task 

ERP P3b @ FCz  
Slagter et al. (2007) 

findings not replicated.  

No support for van 
Leeuwen et al. (2009) 

findings of greater AB task 

performance for aged 
meditators. 

Behavioural Accuracy  
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The two primary objectives of this thesis were met; confirming that a 

fundamental MT, a simple breath awareness meditation, may modulate behavioural and 

electrophysiological markers of core attentional functions and that MT modulates these 

markers in older adults. The findings of this thesis may be briefly summarised as 

follows (see Table 43 for overview of main findings). Albeit in samples of different 

ages, both LS1 and LS2 found that short term MT modulates behavioural and 

electrophysiological markers of core attentional functions. LS1 revealed MT related 

improvements to earlier stages of stimulus processing in terms of improvements in goal 

directed allocation of attentional resources (N2 increase in the Stroop Task; RT decrease 

in the ANT) and more efficient perceptual discrimination and conflict resolution 

processes (P3 reduction, Stroop Task), with increases in the former correlated with 

decreases in the latter. For LS2, MT related increases in task related neural activity 

(fronto-central N2 increase, ECStroop; no-go P3 increase, CPT) were observed on both 

the CPT and ECStroop. Given that the ACC, a key structure involved in top-down 

attentional control that supports the process of monitoring current behaviour in relation 

to a desired goal (Kerns et al., 2004), has been implicated as a generator of these ERP 

components in previous studies (see Chapter 14) it was proposed that MT increased the 

allocation of attentional resources during task completion. Further, MT related 

improvements in RTs were observed on the CPT and ECStroop, with said 

improvements related to increases of task related neural activity across these tasks (both 

fronto-central N2 and no-go P3 increases were related to RT decreases), suggesting that 

the MT related increase in attentional resource allocation was adaptive and 

compensatory. The findings of LS2 are particularly encouraging given that old age is 

typically associated with slower RTs and that the aforementioned ERP components are 

typically diminished on these tasks. Of note, short term MT did not modulate the 

attentional processing of stimuli of emotional valence and a previously found MT 

related reduction in AB was not observed herein.  

 As discussed in Chapter 3, most modern conceptions position attention as a core 

component of mindfulness (Bishop et al., 2004; Hölzel, Lazar, et al., 2011; Malinowski, 

2013; Shapiro et al., 2006; Wallace & Shapiro, 2006) and the development of 

attentional skills is considered a central part of MT (Hölzel, Carmody, et al., 2011; Lutz 

et al., 2008; Tang & Posner, 2009; Wallace & Shapiro, 2006). However, 
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methodological limitations (see Chapter 3) have meant that an unequivocal link between 

MT and improvements in attention has previously remained elusive. Thus, the 

longitudinal studies detailed in this thesis provide a novel contribution to the ever 

expanding pool of mindfulness research by directly linking a specific, fundamental form 

of MT to both behavioural and electrophysiological modulations of core attentional 

functions. The implications of these findings are relevant to discussions in two main 

areas of ongoing research. First, given that MT resulted in adaptive and compensatory 

modulations of attentional functions in older adults, it is important to assess to what 

extent MT may be utilised as a cognitive training technique to enhance CR, with CR 

thought to play a key role in how older adults are able to deal with age related and/or 

disease related brain pathology. Second, as MT has been shown to modulate attention in 

LS1 and LS2, it is important to assess what role attentional modulations may play in the 

observed salutary effects of MT, an ongoing discussion which may have implications 

for modern MBIs. The following sections bring together the findings of LS1 and LS2 

and all of the information presented herein to discuss current theory in these key areas 

of ongoing research. Recommendations for future research are outlined. 

15.1 Mindfulness Training as a Strategy to Increase Cognitive Reserve in 

Older Adults 

As identified in Chapter 9, a key ongoing aim for researchers is to identify 

methods of increasing CR in order to find ways of ameliorating the effects of cognitive 

decline in ageing. The findings of LS2 are particularly promising as they represent the 

first empirical evidence that MT improves core attentional functions and increases 

attentional resource allocation in older adults, demonstrating that MT may have the 

potential to utilise neuro-protective CR mechanisms to improve attentional functions in 

older adults. Whilst these findings are clearly a first step for research in this direction, 

and require replication and confirmation across further samples and paradigms, they do 

allow for some speculative conclusions to be drawn regarding their potential wider 

reaching implications. The following discussion will detail the potential mechanisms by 

which CR may modulate the relationship between MT, task related neural activity and 

task performance. Additionally, the discussion will also detail why MT may have wide 

reaching utility in older adults, including the potential implications for cognitive 

training interventions designed for the prevention/treatment of MCIs and AD, the 
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benefits of introducing MT during retirement, and recommendations for future research 

in this area. 

Mechanisms by Which Mindfulness Training May Increase Cognitive Reserve and 

Recommendations for Future Research 

It is important to start this discussion by reiterating and expanding on why MT 

may be a valuable form of cognitive training for increasing CR. As stated in Chapter 9, 

evidence for crossover effects of cognitive training is limited, with cognitive training 

typically improving performance on the specific tasks trained without crossover of 

improvements into other tasks (e.g. Ball et al., 2002). Slagter et al. (2011) proposed that 

MT may produce such crossover effects due to their utility in improving core cognitive 

processes that are called upon during various other tasks. The findings of both LS1 and 

LS2 clearly demonstrate that MT improves such processes and that they generalise from 

the specific task of meditation to performance on a variety of attentional tasks that call 

upon these trained core cognitive skills but do not require meditation. The increased 

allocation of attentional resources in ERPs linked to the ACC that were observed across 

tasks following MT in LS2 is a particularly important finding as it is indicative of 

modulations in primary attentional networks. Such modulations of neural activity at the 

level of brain networks imply increases in CR (Stern, 2009) and suggest that MT may 

capitalise on the remaining neuro-plasticity
45

 of the aging brain to facilitate adaptive and 

compensatory change. 

 Since the conception and completion of LS2, Stern and colleagues (Steffener & 

Stern, 2012) have recently extended their model of CR in ageing following a review of 

their groups studies examining the neural basis for CR. Although LS2 was simply 

conducted to determine if MT may modulate markers of attentional functions in older 

adults rather than to assess any extant model, the observed pattern of results do fit Stern 

and colleagues extended model despite pre-dating it. The model details a number of 

ways by which CR may mediate the relationship between age related pathology, task 

related neural activity and task performance/clinical outcomes. Firstly, increased CR 

may modulate or decrease the effect of age or disease related pathology on task 

performance/clinical outcomes, e.g. if two AD patients had similar underlying 

                                                
45

 The term neuro-plasticity refers to the capacity of the brain to change physical structure (i.e., 

reorganization of neuronal networks) and function in response to environmental attributes or factors. 
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pathology the individual with the highest CR would be expected to have better task 

performance. This suggests that higher CR enables an individual to tolerate more 

pathology. Secondly, CR may modulate task related neural activity which in turn 

facilitates improved task performance/clinical outcomes, e.g. CR may increase the 

capacity of primary neural networks and/or enable additional compensatory resources to 

become available through neural compensation, which separately or together enable 

additional neural resources to be allocated during task completion, leading to improved 

performance. Lastly, CR may have a direct impact on task performance, irrespective of 

task related neural activity, if CR utilises its own network, e.g. increased activity from a 

generalised CR network may modulate task performance irrespective of modulations of 

task related neural activity. This model provides potential pathways by which MT 

related increases in CR may modulate task performance and these will be discussed 

below. However, it is important to state at this juncture that further research is ongoing 

and necessary to validate Steffener and Stern model thus the discussed mechanisms are 

necessarily speculative at this stage despite being in line with current theory. 

Increases in task related neural activity and related improvements in task 

performance were clearly observed following MT in LS2. In line with Steffener and 

Stern (2012) extended model, this suggests that MT may increase CR which in turn 

improves task performance by enhancing task related neural activity. However, the 

exact ways in which MT increases CR requires further study. In Chapter 14 it was 

speculated that MT may modulate CR in two complimentary ways, by increasing 

available attentional resource capacity through repeated activation of attentional 

functions during MT and/or by improving the efficiency with which available 

attentional resources are allocated through a reduction of extraneous neural activity. It is 

feasible to suggest that each of these mechanisms may be accounted for by MT related 

increases in neural reserve. However, the lack of spatial precision afforded by the ERP 

technique means neural compensation cannot be ruled out. It is unclear whether or not 

the increased availability of attentional resources was caused by 1) an increase in 

attentional resource capacity of primary networks, 2) an increase in the efficiency of the 

primary networks in allocating attentional resources by limiting extraneous activity, 3) 

the use of additional compensatory resources via neural compensation or 4) a 

combination of any of these 3 potential causes. In line with the abovementioned 

mechanisms, increases in the capacity and efficiency of primary networks are certainly 
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feasible explanations for the pattern of results observed herein given that the ERP 

components modulated following MT in LS2 have previously been linked to ACC 

functions and activation. Recent research certainly shows that both long term (e.g. 

Hölzel et al., 2008; Luders et al., 2009; Pagnoni & Cekic, 2007) and short term (Hölzel, 

Carmody, et al., 2011; Tang et al., 2010) MT can alter the structure of brain regions 

implicated in attentional functions, suggesting that MT may capitalise on the neuro-

plasticity of neural networks, and that the findings observed herein may result from 

such modulation. However, each of these previous studies utilised samples of young to 

middle aged adults, meaning that these results require replication in an older sample 

before strong conclusions may be drawn. Regardless of whether the observed results 

were resultant from increased neural reserve or enhanced neural compensation, the 

results are positive and it can be concluded that the findings of LS2 suggest that neuro-

plasticity may be capitalised upon in older adults to produce improvements in task 

performance. A number of recommendations for future research may be made that 

would help researchers to better understand the relationship between MT, neural reserve 

and neural compensation.  

Longitudinal examinations that include functional and/or structural neuro-

imaging techniques, with their excellent spatial resolution, would help to pinpoint 

specific brain regions that may be functionally or structurally modulated following short 

term MT in older adults. Said techniques have the potential to unravel the roles that 

neural reserve, neural compensation and the intrinsically linked brain reserve may play 

in MT related modulations of neural networks. However, such studies are notoriously 

costly and thus further behavioural and electrophysiological examinations may be 

required before such studies are justified.   

In order to gain further insights into MT related modulations of attentional 

resource capacity and efficiency future studies may examine how such modulations 

impact the brains ability to cope with increased task difficulty and/or time on task. As 

LS2 was the first study of its kind, task duration and difficulty were purposefully kept at 

a minimum to keep the overall task burden low (even then approximately 2.5-3.0 hours 

were still spent in the lab for each testing session) in order to simply assess if MT 

related modulations were possible in older adults. Extending the time spent on task in 

future studies may provide valuable insight into MT related modulations in attentional 

resource capacity. For example, using a sustained attention task (e.g. a CPT) with 
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extended task duration would allow for an assessment of vigilance decrements over 

time, with reduced vigilance decrements being a potential marker for increases in 

attentional resource capacity (see Chapter 9 for more info regarding vigilance 

decrements). ERPs may also be recorded to assess if attentional resource allocation and 

behavioural performance decline in tandem with time on task. Said analysis was not 

carried out herein as the utilised CPT was only 7 minutes in duration and such a short 

duration is likely to be insufficient to significantly deplete attentional resources on a 

task of this difficulty. Manipulating task difficulty in future studies, within or across 

tasks may concurrently provide valuable insight into the efficiency with which 

attentional resources are allocated and regarding the availability of compensatory 

resources. Steffener & Stern, 2012) proposed that more efficient neural networks would 

require less of an increase in neural activity when task demand was increased. Thus if 

MT increased the efficiency of neural networks increases in task demand may require 

less of an increase in task related neural activity to maintain performance. Further, 

Sebastian, Baldermann, et al. (2013) demonstrated that older adults increasingly recruit 

additional compensatory resources as task difficulty increases until demand exceeds 

compensatory capacity. Therefore, if MT facilitates neural compensation in older adults 

then the threshold at which demand exceeds compensatory capacity may be increased 

and thus performance levels and/or task related neural activity may be maintained 

compared to controls despite increasing task difficulty.  

Examining the links between MT, attention and WM in older adults may be a 

particularly interesting avenue for future research. Interestingly, the word mindfulness 

derives from the Pāli word sati which is related to the verb sarati, meaning to remember 

or keep in mind (Analayo, 2006). A link between mindfulness and memory may be 

somewhat surprising given that throughout this thesis present moment awareness is 

emphasised as being a crucial aspect of mindfulness. However, Analayo (2006) 

suggested that if examined within the context of the Pāli discourses, what is meant is 

that once sati/mindfulness is present, memory will function well. As briefly introduced 

in section 10.3.7 a number of recent studies have suggested that MT may modulate WM 

(Chambers et al., 2007; Jha et al., 2010) and selective attention influences WM at 

multiple stages of processing. Given that it is well established that WM declines with 

age (Craik & Salthouse, 2000), a case can be made for assessing whether MT related 

improvements in attentional functions may modulate WM in older adults. Of note, no 
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change was observed in WM capacity (SSTM) following MT herein. However, future 

studies which are explicitly designed to assess this relationship may incorporate a full 

WM task battery which will be more sensitive to MT related modulations in WM over 

time. 

<<<Stephen whitmarsh method, include details regarding questionnaire methods 

struggling to underpin mindfulness and that neurocognitive methods such as whitmarsh 

may provide a window into an important element of mindfulness, metacognitive 

monitoring>>> 

Finally, including appropriate follow up periods may further strengthen 

longitudinal studies of MT. A key limitation of LS1, LS2 and previous longitudinal 

examinations of MT in general is that they lack follow up examinations to test if the 

effects of MT on attentional functions still remain weeks, months or even years after the 

administered intervention. Follow up examinations were not included herein as the 

timeframe of this thesis did not afford enough time to conduct them. Further, there are a 

number of potential confounds which make the inclusion of adequate follow up 

examinations difficult. For example, repeated task administration in longitudinal studies 

can lead to practice and ceiling effects that can obscure between groups differences, as 

was seen for the Stroop task in LS1, thus adding additional follow up examinations 

which utilise the same tasks included in the pre and post intervention testing sessions 

may exacerbate this issue. Fortunately, as in LS1, modulations of different stages of 

attentional processing can still be observed using ERPs, and studies that utilised 

structural imaging techniques such as MRI would be unaffected by this issue, though 

the problem remains for purely behavioural studies. Follow up examinations that use 

different tasks for which performance has previously been shown to be highly 

significantly correlated with the outcome measures used during the study period may 

provide a way to get around this issue. A further issue concerns whether or not 

participants continue MT in the interim before the follow up examination as previous 

studies have shown that ongoing MT may be as or more important than prior experience 

(e.g. Chan & Woollacott, 2007). Post study feedback across LS1 and LS2 suggested that 

the vast majority of participants intended to continue meditating despite the end of the 

study period. Thus asking the participants to stop meditating in the interim period 

before follow up, in order to assess if MT related effects remain following the cessation 

of practice, may be particularly difficult and somewhat unethical given that research is 
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increasingly supporting the potential benefits of MT. Tackling these tricky issues in 

future research will provide further insight into the longevity of the effects of MT but 

not all kinds of studies may be suitable for including follow up examinations.  

Future research that builds upon these recommendations is much needed and 

warranted and has the potential to provide valuable insights into the utility of MT for 

older adults, and possibly more importantly how MT may impact both age and disease 

related brain pathology. The final section of this discussion introduces why MT may 

have utility in delaying AD symptoms and compressing their associated cognitive 

morbidity and why MT may be recommended as an ideal cognitive activity to take up 

following occupational retirement.  

Mindfulness Training, Cognitive Reserve and Age Related Pathology and Disease 

In addition to helping older adults deal with the typical age related pathology 

that accompanies growing old, interventions that increase CR such as MT may also 

enable individuals to better cope with disease related pathology, such as in AD. As of 

the time of writing this thesis there is no consensus regarding the treatment of AD and 

no drug treatments available that prevent it. A number of critical issues are yet to be 

resolved regarding AD diagnosis and treatment, not least that current guidance 

inherently limits diagnosis of AD to a stage at which patients present with dementia 

symptoms despite the fact that the underlying anatomical and pathophysiological 

changes in AD may have begun many years before clinical symptoms manifest. The 

food and drug administration in the USA has recently released draft guidance (Food and 

Drug Administration, 2013) to enable pharmaceutical companies to better identify 

patients in pre dementia stages of AD with the eventual aim of enrolling such patients 

into clinical trials to assess new treatments. However, until pharmaceutical treatments 

that can prevent or slow down the progression of AD become available a key achievable 

clinical outcome is to reduce or ameliorate symptoms and/or reduce the time a patient 

spends symptomatic, with non-pharmacological treatments that increase CR likely to 

play a crucial role. 

As introduced in Chapter 9, a growing body of research suggests that increases 

in CR fostered through mental activity can enable individuals to better cope with brain 

pathology and a number of small clinical trials have begun to demonstrate that cognitive 
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training may slow the progression of symptoms in MCI (Cipriani et al., 2006; Rozzini et 

al., 2007; Talassi et al., 2007) and AD (Galante et al., 2007; Tarraga et al., 2006). In 

addition to the well established memory dysfunction that is considered the hallmark of 

AD, attentional deficits are also thought to manifest early in the diseases progression. 

For example, studies have observed that MCI and AD patients have impairments in 

focused attention (Levinoff, Saumier, & Chertkow, 2005) and a deficiency in the ability 

to disengage attention and utilise alerting cues (Tales et al., 2005), suggesting deficits to 

core attentional functions. Such deficits are thought to play a key role in patients 

struggling to undertake everyday tasks (e.g. planning and cooking a meal) early in the 

diseases progression (Perry & Hodges, 1999). Difficulty completing such seemingly 

simple tasks is likely to severely impact a patients’ quality of life and independence, 

thus interventions that can delay or limit the time spent symptomatic are much needed.  

Recent observational evidence has shown that engaging in mental activity can 

compress the cognitive morbidity associated with AD, i.e. less time spent symptomatic, 

and reduce the rate of cognitive decline prior to dementia onset (R. S. Wilson et al., 

2010). Despite further investigations being required to better understand the relationship 

between MT and CR, it may be expected that MT would produce a similar effect. The 

findings from LS2 allow for the speculative hypothesis that MT may be useful as a 

method of increasing CR and strengthening core attentional functions to better deal with 

pathology, by increasing task related neural activity and thus moderating the 

relationship between pathology and performance. MT would most likely be best utilised 

as a preventative measure, building up CR to delay symptoms or reduce time spent 

symptomatic, rather than as a rehabilitation strategy as pre-existing deficits in 

attentional functions may increase the difficulty of undertaking MT given that MT relies 

heavily upon attentional functions to facilitate focussed attention even in its early 

stages. As the symptoms that accompany AD pathology are potentially life changing 

and AD prevalence is likely to increase, any treatment that can delay symptoms or 

compress the time spent symptomatic may provide valuable assistance to healthcare 

providers and patients alike. Thus, if future research is able to confirm the efficacy of 

MT to increase CR, neural reserve and/or neural compensation, MT may at the very 

least provide a potentially efficacious low cost non-pharmacological adjunct to the ever 

evolving pharmaceutical battery, with the added benefits of being minimally time 

consuming, having no known side effects and not interfering with other medications.  
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Mindfulness Training During Retirement 

To round off this discussion it is important to discuss the potential efficacy of 

MT for healthy older adults following occupational retirement. Occupational retirement 

is a particularly important and potentially challenging landmark in the ageing process 

which is typically accompanied by a reduced amount of mental activity due to the 

inevitable changes associated with ceasing employment. As stated in Chapter 9 a 

number of recent reviews (Bonsang et al., 2012; Mazzonna & Peracchi, 2010; 

Rohwedder & Willis, 2010) have proposed that this retirement related reduction in 

mental activity may exacerbate cognitive declines. Additionally, older adults often do 

not expect to control cognitive outcomes (Hess et al., 2003), often because of habitually 

negative thoughts and cultural stereotypes, to the extent that they may withdraw from 

cognitively challenging situations (Stine-Morrow, 2007). In turn this may cause a 

somewhat self deprecating cycle of reduced cognitively demanding activity leading to 

reduced cognitive ability, which in turn weakens confidence in cognitive outcomes to 

the extent that it may cause an individual to further withdraw from cognitively 

demanding activity. There are a number of key reasons why MT may be particularly 

useful for retired individuals and play a crucial role in breaking this cycle. Firstly, MT 

itself is a cognitively demanding activity and thus engaging in MT inherently increases 

the amount of cognitive activity being undertaken. Secondly, as MT may strengthen 

core attentional functions it is likely to give back a sense of control over cognitive 

outcomes which may have the additional benefit of facilitating engagement with other 

cognitively demanding activities as well. Lastly, MT teaches one to experience the 

present moment free from habitual thoughts and cultural stereotypes which may cause 

individuals to withdraw from mental activity. Thus MT may be recommended as a low 

cost, minimally time consuming mental activity that has potential to positively influence 

cognitive ageing in retired individuals. This is not to say that MT should only be started 

upon retirement. To the contrary, engaging in mental activity prior to retirement is 

likely to increase the amount of CR with which one enters retirement. As emerging 

evidence continues to suggest that the ageing brain retains neuro-plastic properties it is 

important to stress that it is never too late to exert some control over our own cognitive 

trajectories by engaging in activities that may increase our chances of ageing well. MT 

may be seen as a particularly promising way of doing just that. 
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15.2 The Role of Attentional Modulation in MT Related Salutary Effects 

In recent times the interest in mindfulness as a means to treat a variety of 

physical and psychological conditions has risen sharply (Chiesa & Serretti, 2010; 

Ludwig & Kabat-Zinn, 2008) and a number of randomised control studies have 

provided evidence for the efficacy of MBIs in such conditions. MBSR has been found 

to reduce pain, stress and psychological problems in healthy individuals and patients 

with chronic pain and cancer (Chiesa & Serretti, 2011a; Ledesma & Kumano, 2009; 

Shennan, Payne, & Fenlon, 2011), whilst MBCT has been successfully utilised as an 

intervention for currently depressed patients and for the prevention of depression 

relapse in patients with three or more prior episodes (Chiesa, Mandelli, & Serretti, 

2012; Chiesa & Serretti, 2011b; Manicavasgar, Parker, & Perich, 2011; Piet & 

Hougaard, 2011). However, as discussed in Chapter 3, the mechanisms by which MBIs 

produce such clinical outcomes are unclear given that they typically include a range of 

experiential, didactic and group elements that may separately or together produce 

positive outcomes.  

Using MBSR as an example, a typical 8 week MBSR course includes a variety 

of elements as follows: a) Experiential elements include a variety of meditation 

practices such as awareness of breathing, body scanning, sitting meditation, mindful 

movement meditations that may incorporate yoga and/or qigong
46

, and other walking 

meditations. Meditations that include compassion and empathy are also typically 

included. B) Didactic elements include lectures and discussions with participants 

learning about mindfulness, and more importantly about how habitual reactions to stress 

create anxiety, depression, and illness. C) Group elements include group discussions 

that provide group support and afford the opportunity for participants to share and 

discuss daily practice. In addition participants are often asked to perform weekly 

reflection and diarising exercises. Given this wide variety of potentially active 

ingredients it is unclear what is producing the observed salutary effects of MBSR.  

Herein, additional meditation practices and the didactic content were stripped 

away in order to observe the effects of a specific, fundamental, breath awareness MT on 

                                                

46 Qigong is an ancient Chinese system of postures, exercises, breathing techniques, and meditations. Its 
techniques are designed to improve and enhance the body's qi. According to traditional Chinese 

philosophy, qi is the fundamental life energy responsible for health and vitality. 
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core attentional functions in samples of younger and older meditation naïve individuals. 

Importantly, the results of this thesis clearly demonstrate that in said samples short term 

engagement in this fundamental MT can lead to observable behavioural and 

electrophysiological improvements in core attentional functions. Thus, improvements in 

attentional functions observed in previous studies (e.g. Gaden Jensen et al., 2012; Jha et 

al., 2007) that have utilised similar MT techniques as part of wider interventions, such 

as MBSR, may at least be partially explained by engagement in such fundamental 

meditation practices. This suggests that improvements in attention fostered by 

engagement in MT may play a key role in the salutary effects of MBIs. However, 

whether improvements in attention have a direct or indirect effect on the observed 

salutary effects of MBIs requires further study. Examining the mechanisms by which 

MBIs exert salutary effects was beyond the scope of this thesis as it first needed to be 

established that there was a definitive link between specific meditations and improved 

attentional functioning, a need fulfilled by LS1 and LS2. However, taking together the 

observed pattern of results herein and the findings of a number of recently published 

studies and reviews some tentative conclusions may now be drawn and 

recommendations for further research can be made. 

A number of recent review papers have attempted to explain how MT may exert 

its salutary effects (Chiesa et al., 2013; Heeren & Philippot, 2010; Hölzel, Lazar, et al., 

2011). Hölzel, Lazar, et al. (2011) attempted to explain the mechanisms of MT at both 

the conceptual and neural level, proposing that there are four key components that may 

influence how MT exerts its effects: 1) attention regulation, 2) body awareness, 3) 

emotion regulation and 4) change in perspective on the self. Importantly, the authors 

note that these components are likely to interact and may ultimately lead to 

improvements in self regulation
47

, which may in turn foster MT related effects. A 

further consideration is that different MBIs and MT’s may utilise these components to 

differing degrees. As noted and discussed throughout this thesis the training and 

refining of attentional skills is a central part to most psychological and Buddhist 

conceptualisations of mindfulness practices (e.g. Lutz et al., 2008), thus an important 

question to ask is whether improvements in attention regulation may precede 

                                                

47 Self regulation may be broadly defined as the ability to monitor and modulate cognition, emotion and 
behaviour, to accomplish one’s goal and/or to adapt to the cognitive and social demands of specific 

situations (Berger et al., 2007). 
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improvements in the other three proposed mechanisms? The focus for this discussion is 

on the relationship between attention regulation and emotion regulation as the emerging 

pattern of results suggests that the former may indeed precede the later. Thus the 

improvements to core attentional functions observed herein may play a crucial role in 

the observed positive effects of MT. 

For the purpose of this discussion emotion regulation is simply considered the 

ability to regulate ones emotions and emotional responses (see Gross, 1998a, 1998b). 

Deficits in emotion regulation cause difficulty in monitoring, evaluating and modifying 

emotions and emotional reactions. Said deficits have been implicated in a wide range of 

conditions including depression, borderline personality disorder, substance use-

disorders, eating disorders and other psychopathological symptoms (see Berking et al., 

2012 for recent review). This suggests that improvements in emotion regulation, 

whether directly or fostered by improvements in attention regulation, may play a key 

role in the observed positive effects of MT on mental health. Indeed recent findings 

suggest that improvements in emotion regulation may underlie the positive effect of MT 

on stress reduction (Garland, Gaylord, & Fredrickson, 2011) and the reduction of 

depressive symptoms (Shahar et al., 2010).  

Attention regulation and executive attentional functions in particular are thought 

to play a key role in emotion regulation (see Berger et al., 2007 for review). Given that 

executive attention is the basis for inhibitory control, problem solving and self 

monitoring it is feasible to suggest that these core attentional functions allow attention 

regulation to strongly influence affective experience by filtering and analysing 

emotional and mental information, both automatically and consciously (Calvo & 

Nummenmaa, 2007). Furthermore, Wadlinger and Isaacowitz (2011) proposed that 

improving attention regulation through training may be a particularly useful way of 

improving emotion regulation and concluded that meditation techniques such as MT 

provide a means to improve attention regulation.  

Herein the general pattern of results was of improvements in core attentional 

functions without concurrent changes in the processing of emotional stimuli 

(ECStroop). Taken with the findings from Allen et al. (2012; discussed Chapter 14), 

who observed MT related increases in regions implicated in top down attention 

mechanisms (DLPFC) but only found increased recruitment of regions implicated in 
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emotional processing (dorsal ACC, medial PFC and right anterior insula) for individuals 

who engaged in the most MT over their 6 week study, the emerging pattern of results 

suggests that improvements in emotion regulation may be dependent on the dose of MT 

and that they may be reliant on improvements in attention regulation occurring first. In 

line with the abovementioned papers, it is feasible to suggest that the strengthening of 

core attentional functions, such as those responsible for response inhibition, attentional 

monitoring and sustained attention, may foster the development of attentional stability, 

clarity, and awareness of the current mental state, i.e. present moment awareness. In 

turn such changes are likely to provide the platform upon which improvements in 

emotion regulation are built. Sahdra et al. (2011) similarly concluded that improvements 

in socio-emotional functioning may be fostered through improvements in core 

attentional skills, response inhibition in their study, following MT. It is important to 

note that MBIs such as MBSR acknowledge the need to first train attentional skills by 

starting with meditations that focus on strengthening FA before moving onto OM 

meditations later on in the program (typically in week 5 of 8). Similarly, emerging 

interventions that include mindfulness continue to acknowledge the need to first train 

attentional stability. For example, cognitive-based compassion training, which has 

recently been shown to enhance empathic accuracy (Mascaro et al., 2013), 

acknowledges the need to first develop attention and stability of mind by including 

shamatha and vipassana practices in the first weeks of training whilst the cultivation of 

self-compassion and compassion for others is addressed later in the course.  

However, the results of a recent study suggest that the relationship between 

attention regulation, emotion regulation and MT may not be so clear cut. Teper and 

Inzlicht (2013) recorded ERN amplitudes during the completion of the Stroop task and 

found that expert meditators had higher ERN amplitudes and higher emotional 

acceptance (measured using the emotional acceptance subscale of the Philadelphia 

Mindfulness Scale; Cardaciotto et al., 2008) compared to controls. The results of 

mediation analyses led the authors to conclude that meditation related increases in 

executive control, evinced by higher ERN, may be accounted for by heightened 

emotional acceptance. However, the cross sectional nature of the study does not allow 

for strong conclusions to be made regarding directionality of the relationship between 

attention and emotion regulation. Further, the opposite pattern observed herein 

(attention regulation precedes emotion regulation) and by Allen et al. (2012) may be 
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accounted for by the fact that participants were meditation naïve at baseline in these 

studies whereas Teper and Inzlicht findings may reflect the fact that the relationship 

between emotion regulation and attention may manifest differently in expert meditators.  

Following a review of neuro-imaging studies investigating MT within the 

context of emotion regulation Chiesa et al. (2013) proposed that differing levels of 

experience with MT may indeed result in different ways in which mindfulness may 

result in emotion regulation being employed. They suggested that MT may be 

associated with top down regulation strategies in short term meditators and bottom up 

regulation strategies in long term meditators. In terms of bottom up strategies it was 

suggested that MT be described as an increased attention to the present moment in 

experience with a non-judgmental attitude and no attempt to cognitively reappraise 

emotionally salient stimuli. On the other hand, top down strategies were said to describe 

MT as facilitating positive reappraisal, and thus modulating emotional outcomes as 

opposed to simply observing arising emotions. Hölzel, Lazar, et al. (2011) similarly 

speculated that bringing mindful awareness to emotional responses might initially 

require some top down cognitive control, in order to overcome habitual ways of 

internally reacting to one’s emotions. Importantly, a number of the ‘short term’ studies 

included in Chiesa et al. review involved MBSR, thus participants will have been 

exposed to didactic elements that will have included instruction regarding how to 

recognise and modulate habitual patterns of thoughts and emotions, and additional 

meditations that are likely to have involved instruction with affective content. 

Therefore, participants may have been more inclined to engage top down regulation 

strategies to modulate emotional outcomes. This may account for why changes in 

emotional processing have been seen in studies employing MBSR (e.g. Farb et al., 

2010; Farb et al., 2007; Goldin & Gross, 2010) but not herein. Of note, an increase in 

FFMQ-O scores was observed following MT in both LS1 and LS2, suggesting that MT 

resulted in greater awareness of thoughts, bodily sensations and emotions. However, 

despite being a short term intervention the MT utilised herein would better fit in with a 

bottom up description of emotion regulation as practitioners were instructed to simply 

observe arising emotions and to disengage from them (to return focus to the breath) 

without modulating the content in anyway. Importantly then, it may be concluded that 

the way in which mindfulness is taught, conceptualised or packaged (as in MBIs) may 

play a more important role in which emotion regulation strategy is utilised than the 
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length of experience of the meditator. Thus didactic elements and meditations that 

include components of affect are likely to play a crucial role in MBIs. For example, 

Gaden Jensen et al. (2012) recently demonstrated that MBSR produced reductions in 

perceived and physiological stress and a concurrent increase in mindfulness (measured 

using the MAAS) whilst a none mindfulness based stress reduction intervention did not, 

supporting the crucial role of the additional mindfulness instruction and meditations 

used in MBSR. Future research must endeavour to tease out the effects of the 

experiential and didactic elements of MBIs in order that their mechanisms are better 

understood and that interventions may be tailored to treat specific conditions. 

Comparing a singular MT without didactic elements to MBSR in a longitudinal study 

may provide valuable insights into this relationship, especially if both cognitive and 

affective paradigms with electrophysiological or neuro-imaging techniques are utilised. 

It is important to state that improvements in attention regulation may also have a 

more direct effect on MT related positive outcomes. For example, the repeated 

disengagement from ruminative and/or distracting thoughts during MT may improve 

attention regulation in a way that reduces maladaptive rumination, and said reduction is 

thought to be a further mechanism by which MT may exert positive effects (see Heeren 

& Philippot, 2010 for review). Further, irrespective of its influence on emotion 

regulation and other potential mechanisms of MT related effects, the fact that MT has 

been shown to directly influence core attentional processes herein may have 

implications for a number of conditions that are caused or confounded by attentional 

dysfunction. For example, as MT strengthens core attentional functions, enhances 

attentional resource allocation and increased grey matter density in attention related 

cortical areas (Grant et al., 2010; Hölzel et al., 2008; Luders et al., 2009; Pagnoni & 

Cekic, 2007), it has been proposed that MT may ameliorate the symptoms of ADHD 

(Grant et al., 2013), which is characterized by inattention, under recruitment of attention 

related brain regions (Dickstein et al., 2006) and reduced cortical thickness in 

populations of both adults and children (Seidman, Valera, & Makris, 2005; P. Shaw & 

Rabin, 2009). Importantly, this direct effect of improvements in attention regulation is 

likely to have utility in older populations wherein attentional deficits are likely to 

become increasingly prevalent in coming years. 
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15.3 Methodological Issues in Longitudinal Mindfulness Research 

The systematic literature reviews and longitudinal studies conducted as part of 

this thesis have identified a number of methodological issues that researchers must 

tackle and strive to overcome in future research. A number of key issues are briefly 

discussed below. 

Measuring adherence 

 How to measure adherence is an important methodological consideration for any 

longitudinal study that is designed to measure the effect of an experimental 

manipulation or treatment. Herein there was no intention to analyse the relationship 

between dose of MT and any outcome measure, thus a simple weekly diary was utilised 

to enable participants to record the amount of MT they undertook. As the available 

evidence discussed in section 15.2 suggests that there may be a dose related effect of 

MT on emotion regulation it is important that future examinations that seek to examine 

this relationship utilise methods that are able to closely monitor adherence. If the 

experimenter was satisfied with adherence being recorded by the participant, the 

increasingly prevalent use of smart phones may afford an appropriate way to monitor 

adherence on a daily basis via a customised application. This would enable the 

experimenter to monitor the amounts of MT the participants were completing daily and 

prompts could be given when participants fell below the recommended dose. However, 

self reports are inherently reliant on the honesty of the participant and in a study 

involving a self administered intervention such as MT there is always a possibility that 

the participant would fail to report non-adherence. If an experimenter needed to be more 

certain regarding compliance they could use a smart phone app such as skype which 

would enable participants to complete their daily dose of MT via video link. 

Nevertheless, if a large number of participants were involved the logistics of conducting 

such a study would be burdensome and unfeasible. Further, such additional 

experimenter contact via video link is an additional confounding variable that would 

need to be controlled across groups. Thus experimenters will need to judge whether the 

additional information the use of technology may provide is of sufficient value given 

the additional confounds and time they may involve. 
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Use of covariates in longitudinal research 

 Randomisation is a standard methodological procedure for longitudinal studies 

wherein the objective is to assess the efficacy of an experimental manipulation. Such 

randomisation prevents a selection bias from causing systematic differences between an 

experimental and control group at baseline. To test that randomisation has been 

successful an experimenter will typically test for baseline differences between groups 

by using data obtained before the intervention begins. Herein, independent t-tests 

confirmed that no significant baseline differences existed between groups on any of the 

outcomes that were of interest to the longitudinal examination. However, when using 

such tests any judgment regarding whether a between group difference is important is 

based on the somewhat arbitrary cut off of a p value of .05 and it is debatable whether a 

group difference at the .06 would be any less important. If a significant or almost 

significant between groups difference had occurred at baseline in a primary outcome 

variable it would have been necessary to include baseline performance as a covariate in 

the analysis. The use of covariates may be particularly important if such instances occur 

in longitudinal examinations that include outcome measures such as RTs and HRs 

because inter-individual differences in task performance at baseline could mean that one 

group has more room for improvement than the other and this could critically influence 

baseline to end of study differences. For example, within the field of mindfulness 

research longitudinal examinations of expert meditators and control subjects may 

require the use of baseline data as covariates because long term meditation practice may 

be expected to produce a baseline difference between groups on a primary outcome 

measure such as RT or HR.  

Measuring Mindfulness  

Currently used self report measures of mindfulness continue to receive criticism 

and it is debatable whether an appropriate self report measure of mindfulness can be 

developed due to the great difficulty involved in operationalising mindfulness. In the 

future, electrophysiological and neuro-imaging techniques may provide an objective 

way of measuring mindfulness. For example, in his recent PhD thesis Stephen 

Whitmarsh (2013) investigated the neural correlates of meta-cognition, a core 
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component of mindfulness, by using a novel task
48

 that required participant’s to report 

their meta-cognitive awareness of somatosensory attention while their brain activity was 

recorded with MEG. Such novel paradigms provide insights into the neuronal substrate 

that may be involved in a person’s ability to report on one’s own attentional focus, i.e. a 

person’s meta-cognitive awareness, and thus may provide a more objective measure of 

such core components of mindfulness. Such methods warrant further investigation as 

the field of mindfulness research continues to advance in the future. 

15.4 Closing Remarks 

 The field of mindfulness research is no longer in its infancy following two 

decades of investigations. Support for MT related improvements in core attentional 

functions has increased and the methodological rigour of studies is improving. The 

longitudinal studies included in this thesis have a number of key strengths that should 

serve as a benchmark for future studies, including random group allocation, an active 

control condition (in LS2), meditation naïve participants, behavioural and 

electrophysiological dependent variables which enable us to see beyond an overt 

response, and a well defined MT.  

In conclusion, this thesis makes a unique and novel contribution to the growing 

understanding of mindfulness by demonstrating that MT may have a significant positive 

influence on core attentional functions and capitalise on the neuro-plasticity of neural 

networks to modulate task related neural activity in both young and more importantly 

older adults. The emerging pattern of results suggests that such attentional modulations 

play a crucial role in fostering the wide range of MT related positive effects that have 

been observed. Said results open up a number of exciting avenues for future research for 

which recommendations are made herein. The potential for MT to positively modulate 

core attentional functions in older adults and to potentially impact cognitive ageing 

demands further investigation. It is hoped that the positive findings obtained herein act 

as a springboard to further research that seeks to investigate the probable relationship 

between MT, CR and positive cognitive outcomes using similarly robust randomised 

active control group trials. 

                                                

48 In response to auditory cues participants maintained somatosensory attention to either their left or right 
hand for intervals varying randomly between 5 and 32 seconds. Trials were terminated by a probe sound, 

to which they reported their level of attention on the cued hand right before probe-onset. 
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 Appendix A: Overview of cognitive tasks introduced throughout this thesis. 

Task Papers 
Chapter 
Introduced Functions Tested Task Overview 

Attentional 

Blink Task (AB 

task) 

Choi et al. (2012); Georgiou-

Karistianis et al., 2007; Giesbrecht & 

Di Lollo, 1998; Isaak et al. 1999; Jha et 

al., 2007; Kranczioch et al. 2003; Lahar 

et al., 2001; Maciokas & Crognale, 

2003; May et al., 2010; Olivers & 

Nieuwenhuis, 2005; Raymond, Shapiro 

& Arnell, 1992; Slagter et al., 2007; 

van Leeuwen et al., 2009; Vogel & 

Luck, 2002; Vogel, Luck & Shapiro, 
1998; Ward, Duncan & Shapiro, 1996. 

3 Sustained Attention, 

Selective Attention, 

Working Memory, 

Temporal Attentional 

Processing. 

The ABtask requires participants to sustain focus to a rapidly 

presented stream of visual stimuli in order that 2 temporally close 

target stimuli may be identified. 

 

Stroop Task Andrés et al., 2008; Chan & 

Woollacott, 2007; Cohn, Dustman, & 

Bradford, 1984; Gaden Jensen et al., 

2012; Hanslmayr et al., 2008; Kozasa 

et al., 2012; Laguë-Beauvais et al., 

2013; Langenecker et al., 2004; Liotti 

et al., 2000; Mager et al., 2007; Mayas 

et al., 2011; Milham et al., 2002; 

Moore & Malinowski 2009; Moore & 

Malinowski, 2012; Panek, Rush, & 
Slade, 1984; Polak, 2009; Roelofs et 

al., 2006; Teper and Inzlicht, 2013; 

Van der Elst et al., 2006; Volkow et al., 

1998; West and Alain, 2000; West and 

Bell, 1997; West & Moore, 2005. 

 

3 Executive Inhibition, 

Conflict Monitoring, 

Selective Attention. 

During the Stroop task participants are asked to name the colour in 

which words are presented. As word reading is highly automatic in 

proficient readers, participants’ responses are significantly slower 

and less accurate when the colour in which the word is presented is 

incongruent to the words semantic meaning, e.g. BLUE. 
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Task Papers 
Chapter 
Introduced Functions Tested Task Overview 

Attention 

Network Test 

(ANT) 

Bish et al., 2005; Bush, Luu, & Posner, 

2000; Fan et al., 2002; Fan et al., 2003; 

Fan et al., 2005; Fan, Kolster et al., 

2007; Fan, Byrne et al., 2007; 

Fernandez-Duque & Black, 2006; Jha 

et al., 2007; Klein, 2003; Kratz et al., 
2011; Mezzacappa, 2004; Neuhaus et 

al., 2010; Polak, 2009; Posner et al., 

2002; Rueda et al., 2004; Sobin et al., 

2004; Tang et al., 2007; Wang et al., 

2005; Zhou et al., 2011. 

3 Executive Attention, 

Conflict Monitoring, 

Attention Shifting 

/Orienting, 

Sustained attention/ 

Alerting. 

Stimuli consist of a row of 5 visually presented horizontal black 

lines, with arrowheads pointing left or right. The target is a left or 

right arrowhead at the centre. To introduce a conflict-resolution 

component the central arrow is ‘‘flanked’’ on either side by 2 

arrows in the same direction (congruent condition) or the opposite 

direction (incongruent condition). To introduce attentional orienting 
and alerting components to the task, the row of 5 arrows are 

presented in 1 of 2 locations, above or below fixation, and 3 

possible warning cue conditions, a centre cue, no cue, and a spatial 

cue, are utilised. 

 

Emotional 

Stroop e.g. 

Emotional 

Counting Stroop 

(ECStroop 

Task) 

Emotional Stroop: Allen et al., 2012; 

Anderson et al., 2007; Bernat et al., 

2001; Carretie et al., 2001; Foa et al., 

1993; Hope et al., 1990; Ito et al., 

1998; Johnston et al., 1986; Junghofer 

et al., 2001; Mathews & MacLeod 

1985; McNally et al., 1990; McNally et 
al., 1992; Thomas et al., 2007; Watts et 

al., 1986; Williams et al., 1996. 

 

ECStroop: Whalen et al., 1998 

3 Executive Attention, 

Conflict Monitoring, 

Inhibition, 

Attentional 

Processing of 

Affective Stimuli. 

In a typical emotional Stroop paradigm participants are presented 

with colour words of negative and/or positive valence. Emotional 

Stroop stimuli are typically used in patient samples. When patients 

are presented with colour words relevant to their current concerns 

or condition automatic processing of the words meaning delays 

naming of the word’s colour. The pre-potent word meaning causes 

emotional conflict which leads to an increase in RTs. However, 
increased response latency is not typically seen in normal healthy 

adults. The ECStroop has been shown to activate the affective 

subdivision of the ACC. 

 

The d2-test of 

attention 

Gaden Jensen et al., 2012; Moore & 

Malinowski, 2009; Friese et al., 2011 

3 Attentional Control, 

Inhibitory Control, 

Selective Attention. 

The d2 test is a paper pencil test. The participants task is to scroll 

through rows of targets and non-targets, striking through targets 

when they are found. The targets and non-targets are very similar 

meaning that selective attention and inhibitory control are both 

needed in order to discriminate which items are targets. 
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Task Papers 
Chapter 
Introduced Functions Tested Task Overview 

The Wilkins 

Counting Task 

Valentine & Sweet, 1999 3 Sustained attention. The Wilkins Counting Test requires participants to attend to and 

count a series of auditory bleeps that are presented at a set 

frequency (e.g. 0.25 Hz, 1 bleep every 4 seconds). 

Posner Cuing 

Paradigm 

Hodgins & Adair, 2010 3 Selective attention, 

Orienting. 

The Posner cuing paradigm utilises spatial cues to direct attention 

to where a target will appear. Responses are faster when valid 

spatial cues are given and delayed for invalid cues. 

Global to local 

task 

van Leeuwen et al., 2012 3 Selective attention. When attending to the global shape of an object, such as a tree, 

there is less attention available to attend to the fine grained detail, 

such as the leaves, and redirecting attention between levels – from 

the global shape to the local details or vice versa – is known to be 

inherently slow. In psychophysical tests subjects are typically much 

faster in detecting the global pattern than the local detail; this 

phenomenon is known as the “global precedence effect.” The task 

utilised by van Leeuwen et al, displayed numbers arranged in a 

pattern so that they made a larger number at the global level. 

 

The Controlled 

Oral Word 
Association Test 

Zeidan et al., 2010 3 Verbal Fluency. The Controlled Oral Word Association Test (Benton, 1989) is a 

measure of verbal fluency in which subjects are asked to 

say as many words as they can think of beginning with the letters 

‘‘F, A, and S”, or ‘‘C, F, and L” within one minute. The dependent 

measure is the total number of words produced.  
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Task Papers 
Chapter 
Introduced Functions Tested Task Overview 

The Symbol 

Digit Modalities 

Test 

Zeidan et al., 2010 3 Working Memory. The Symbol Digit Modalities Test (Smith, 1982), written version, is 

a measure of complex visual tracking and working memory that 

requires decoding of a series of numbers listed on paper according 

to a corresponding template of visual symbols. With the use of a 

reference key, participants are given 90 s to accurately match 

numbers with corresponding geometric figures. The dependent 
measure is number of symbols coded minus errors. 

N-back task Zeidan et al., 2010 3 Working Memory, 

Attention, Speed of 

Processing. 

In a typical N-back task participants view a sequence of letters and 

indicate whether or not a probe letter is the ‘‘same” or ‘‘different” 

as the stimulus item presented ‘N’ items back. 

Dual Attention 

to Response 

Task (DART) 

Gaden Jensen et al., 2012 3 Sustained Attention, 

Vigilance. 

In the DART white and grey digits are presented sequentially in 

cycles. Participants are instructed to monitor the digit colour, 

Responding with different keys for white and grey digits but to 

always withhold the response after the digit 3. 

Spatial and 

Temporal 

Attention 

Network 
(SPAN) 

Gaden Jensen et al., 2012 3 Orienting, Spatial 

Attention 

In the SPAN task a cue is presented centrally on the screen, flanked 

by 2 boxes inside of which a target will appear. Both spatial 

(pointing at either box) and temporal cues (detailing when in time a 

target will appear) can be used. Valid, invalid and neutral spatial 
and temporal cues can be used. 

CombiTVA 

paradigm 

Gaden Jensen et al., 2012 3 Visual attention, 

Working Memory. 

Stimuli are presented in 6 possible locations on an imaginary circle. 

The stimuli are in 2 different colours and the participants’ task is to 

report all of the stimuli that were observed in the target colour. The 

number of targets and length of mask between stimulus 

presentation and response is varied. 
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Task Papers 
Chapter 
Introduced Functions Tested Task Overview 

Water Jug Task Greenberg et al., 2012 3 Executive Attention, 

Cognitive Rigidity 

Participants viewed 3 jars onscreen marked A, B, and C with numbers 
indicating their size, and a target cup indicating the goal to obtain. 
Participants are instructed to obtain the goal amount of water by adding or 
subtracting the jars given in each problem, while applying the simplest and 

shortest solution.  

Object 

Detection Task 

Anderson et al., 2007 3 Selective Attention. This task required participants to report the presence/absence of a 

named object as quickly as possible when it was presented in 
consistent or inconsistent scenes (e.g. a chicken in a barnyard vs. a 

classroom). Consistency effects are evident as an increased reaction 

time being needed to identify targets in inconsistent vs. consistent 

scenes. 

Dichotic 

Listening Task 

Lutz et al., 2009 3 Selective Attention. In a typical dichotic listening task participants are instructed to 

attend to and report the occurrence of tones in one ear although 

tones are actually presented in to both ears. Distracting tones are 

typically used. 

 

Internal 

Switching Task 

Chambers et al., 2007 3 Sustained Attention, 

Task Switching. 

Participants switched between a neutral and affective task. In the 

neutral task participants were presented with words that were from 
2 semantic categories, food and household items. The task was to 

keep a mental count of the number of items presented in each 

category. For the affective task, negative and positively valenced 

words were presented and the task was to assess the valence of the 

word and to keep a mental count of how many words from each 

category were presented. 
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Task Papers 
Chapter 
Introduced Functions Tested Task Overview 

Digit Span 

backward 

subscale of 

Wechsler Adult 

Intelligence 

Scale 

Chambers et al., 2007 3 Working Memory. Participants must recall digits they have just been presented with. In 

the backward subscale they must recall these digits backwards, 

from the last digit presented to the first. 

Choice Reaction 

Time Task 

van den Hurk et al., 2010 8 Executive Attention, 

Selective Attention. 

In this choice reaction time task participants had to move their head 

to face and select a stimulus presented on either the left or right 

hand side of a screen. Warning cues were utilised to warn the 

participant of an upcoming spatial cue which in turn gave 

information regarding the upcoming location of the target stimuli. 

Auditory 

Oddball Task 

Cahn & Polich, 2009 8 Executive Attention, 

Inhibitory Control. 

In a typical auditory oddball task, target, distracter and oddball 

tones are presented. The oddball tone will typically elicit a higher 

P3 ERP component as it is infrequent and novel compared to the 

more frequent target and distracter stimuli. 

Digit 

Discrimination 

Task 

Deaton & Parasuraman, 1993. 9 Sustained Attention, 

Vigilance. 

Digit discrimination tasks typically require participants to respond 

only to the appearance of one digit out of a number of potential 

digits that are displayed over the course of the task. For example, 
participants may randomly be presented with the digits 0-9 and 

should only respond when they see the 0. 

Simulated Air 

Traffic Control 

Task 

Thackray & Touchstone, 1981. 9 Sustained Attention, 

Vigilance. 

2- h simulated air traffic control task with alphanumeric symbols. 

 

Continuous 

Performance 

Task (CPT) 

Davies & Davies, 1975;  Hammerer et 

al., 2010; Mani et al., 2005. 

9 Sustained Attention, 

Vigilance, 

Executive Inhibition. 

CPT’s typically require attention to be sustained over extended 

periods of time in order that participants are able to respond to 

rarely presented stimuli. 
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Task Papers 
Chapter 
Introduced Functions Tested Task Overview 

Digit 

Cancelation 

Task 

Filley & Callum 1994. 9 Sustained Attention, 

Vigilance. 

In a digit cancellation task participants are typically given a list of 

digits with the instruction to strike through 1 or more digits as they 

make their way through the list. 

Mackworth 

Clock Test 

Giambra & Quilter, 1988; Surwillo & 

Quilter, 1964. 

9 Sustained Attention, 

Vigilance. 

The Mackworth Clock test typically involves a red dot moving 

around a circle in a pattern similar to the seconds hand of a clock, 

with 1 space moved every 1 second. At infrequent and irregular 
intervals the dot makes a double jump and the participant’s task is 

to identify when these occur. 

Sensory 

Vigilance Task 

Giambra, 1997. 9 Sustained Attention, 

Vigilance. 

Detection of 17 mm × 17 mm squares among 20 mm ×20 mm 

neutral squares 

 

Go/No-go tasks 

e.g. SART 

Bekker et al., 2004; Beste et al., 2008; 

Bokura, 2002; Bruin and Wijers, 2002; 

Carriere et al., 2010; Fallgatter et al., 

1997; Fallgatter and Strik, 1999; 

Heilbronner et al., 2013; Jackson & 

Balota, 2011; Jodo and Inoue, 1990; 

Jodo and Kayama, 1992; Kok, 1986; 
Langenecker et al., 2003; McAvinue et 

al., 2012; Nielson et al., 2002; 

Nieuwenhuis et al., 2003; Pfefferbaum 

et al., 1985; Roberts et al., 1994; 

Schmajuk et al., 2006; Sebastian et al., 

2013; Smith et al., 2006; Smith et al., 

2007; Vallesi et al., 2009; Vallesi et al., 

2011; Vallesi, McIntosh & Stuss, 2011; 

Van’t Ent and Apkarian, 1999. 

9 Sustained Attention, 

Vigilance, 

Executive Inhibition. 

Go/No-go tasks typically involve a large number of responses and 

rare non-target stimuli which require the participant to inhibit a pre-

potent response. During a typical SART, digits are presented 1 at a 

time in the centre of a computer screen, e.g. the numbers 1-9 and 

the participants task is to respond to all numbers except for a non-

target stimulus, e.g the number 3. 
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Task Papers 
Chapter 
Introduced Functions Tested Task Overview 

Stop-signal 

Task 

Andrés et al., 2008; Boecker, 2007; Hu 

et al., 2012; Rubia et al., 2003; 

Sebastian et al., 2013; Williams et al., 

1999. 

9 Sustained Attention, 

Vigilance, 

Executive Inhibition. 

 

In a typical stop signal task participants have to execute a choice 

reaction time task in response to a target (Go condition), except in 

those trials where, at variable stimulus onset asynchronies, a tone 

stopping signal (No-go condition) follows the target. Thus the 

participant must inhibit an already prepared response, i.e. cancel a 

planned action.  

 

Simon Task Kubo-Kawai & Kawai, 2010; Lubbe & 

Verleger, 2002; Maylor et al., 2011; 

van der Sebastian et al., 2013; West & 

Alain, 2000. 

9 Sustained Attention, 

Vigilance, 

Executive Inhibition. 

Stimuli in a typical Simon task may be a right facing arrow 

presented on the left hand side of a computer screen, with the 

participants’ task being to ignore the location of the arrow and 

respond to the direction it is pointing. Thus interference inhibition 

is required as the stimuli create a conflict in response selection by 

co-activating response tendencies due to incompatible stimulus 

dimensions.  

Eriksen Flanker 

Task 

Endrass et al., 2012; Waszak et al., 

2010. 

9 Executive Attention, 

Conflict Monitoring 

 

A typical Eriksen Flanker paradigm consists of a row of 5 stimuli, 

with the target stimuli in the middle flanked by 2 stimuli on either 

side. For incongruent trials the flanking stimuli conflict with the 

target stimuli on a task related stimulus dimension. For example, 
the stimuli may be 5 arrows and in an incongruent trial the flanking 

stimuli would be pointing in the opposite direction to the target 

stimuli. This incongruence typically leads to slower RTs and poorer 

accuracy. 
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Task Papers 
Chapter 
Introduced Functions Tested Task Overview 

Spatial Short 

Term Memory 

(SSTM) 

Lewandowsky et al., 2010 10 Spatial Short Term 

Memory, 

Working Memory. 

The SSTM consists of trials wherein 1-6 dots are consecutively 

displayed into cells of a 10x10 grid, with only 1 dot appearing on 

the screen at a time. Participants are instructed to remember the 

spatial relations between dots and to reproduce the overall pattern 

of dots into a blank grid following a brief mask at the end of the 

stimulus presentation. 

 

Counting Stroop 

Task (cStroop 

Task) 

Barrós-Loscertales et al., 2011; Bush et 

al., 1998; Bush et al., 1999; Roth et al., 

2006; Strakowski et al., 2005; Tlustos 

et al., 2011.  

 

11 Executive Attention, 

Conflict Monitoring, 

Inhibition. 

Similar to the original Stroop task (Stroop, 1935) the cStroop 

produces cognitive interference by pitting 2 competing information 

processing operations against each other. Whereas word reading 

and colour naming are in competition in the classic Stroop, the 

cStroop utilises word reading and counting processes to create 

conflict. A typical cStroop trial will involve the presentation of 1-4 

words on the screen and in an incongruent trial the word will be a 

number word and the amount of numbers will be incongruent with 

the meaning of the word, e.g. ONE presented 3 times. Congruent 

conditions wherein the word and number presented match and 

neutral trials wherein the word meaning does not related to the task 
(e.g. chair presented 3 times) are also typically included. 

Operation Span 

Task 

Mrazek et al., 2013. 14 Working Memory In this complex span task, presentations of to-be-remembered 

stimuli are alternated with an unrelated processing task (e.g. to 

verify the accuracy of presented equations). In each of 15 trials, the 

to-be-remembered items were sets of 3 to 7 letters chosen from a 

pool of 12 letters and presented for 250 ms each. At the end of each 

trial, participants selected the presented items in the order in which 

they had appeared. 
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Appendix B: Summary of details for a representative sample of 

longitudinal MT studies  

Study Area of study Type of MT Comparison Group 

Anderson et al., 

2007 

Attention MBSR Waitlist control 

Chambers et al., 

2008 

Attention, 

working 

memory 

Vipassana No practice 

Cusens et al., 2010 Chronic pain 

(pain 

management 

study) 

Breathworks (including 

mindful breathing, moving 

and body scan) 

Treatment as usual  

Davidson et al., 

2003 

Brain and 

immune 

function 

MBSR Waitlist control 

Gaden Jensen et 

al., 2012 

Attention MBSR 1. Non-mindfulness 

based stress reduction. 

2. No practice. 

Greenberg et al., 
2012 

Attention MBCT Waitlist control 

Goldin et al., 2013 Attention MBSR Aerobic exercise 

Hargus et al., 2010 Meta-

awareness, 

memory 

specificity 

MBCT Waitlist control 

Heeren et al., 2009 Memory MBCT Waitlist control 

Hőlzel et al., 2011 Structural 

changes in brain 

networks 

MBSR No practice 

Jain et al., 2007 Stress MBSR based 1. Somatic Relaxation 

2. No practice 

Jha et al., 2007 Attention 1. MBSR  

2. Intense Vipassana retreat 

Waitlist control 

Jha et al., 2010 Working 

Memory 

Mindfulness Based Mind 

Fitness Training (MBMFT) 

No Treatment 

Kilpatrick et al., 

2011 

Attention MBSR Waitlist control 
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Study Area of study Type of MT Comparison Group 

Kuyken et al., 2010 Depression MBCT Maintenance anti 
depressive medication 

Ortner et al., 2007 

(Study 2) 

Emotional 

interference on a 

cognitive task 

Mindfulness meditation 1. Relaxation 

meditation course: 

included visualization, 

breathing, progressive 

muscle relaxation, spin 

breathing, body scans 

and discussion.  

2. Waitlist control 

Polak, 2007 Attention Mindfulness based breath 

awareness meditation 

1) Progressive 

Relaxation Training 

2) Neutral task, e.g. 
make a list of places 

visited yesterday. 

Semple, 2010 Attention Mindfulness meditation (no 

further detail given) 

1. Muscle relaxation, to 

control for physical 
relaxation effects on 

attention 

2. Wait list 

Slagter et al., 2007  Attention Vipassana Retreat No practice 

Splevins et al., 

2009 

Emotional 

Distress 

MBCT None 

Tang et al., 2007 Attention Integrative mind body 

training 

5 days of relaxation 

training, involved 

relaxation of body 

parts. 

van Leeuwen et al., 

2012 

Attention Open monitoring meditation 

retreat 

No practice 

VanVugt, 2010 Working 

Memory 

Intensive retreat based on 

Sathipattana Sutra 

No practice 

Wenk-Somaz, 2005 Attention Mindfulness based breath 
awareness meditation 

1. Learning task, 
learning a list through 

mneumonics 

2. Rest, mind 

wandering 

Zeidan et al., 2010 Verbal fluency, 

working 

memory, visual 

coding 

Mindfulness based breath 

awareness meditation 

Story listening 



295 

 

Appendix C: Cognitive and Physical Activity Scale 

Please indicate how often you perform the following activities by ticking the 
appropriate option. 

 

Daily 

Several 

days per 

week 

Once 

weekly 
Monthly Occasionally Never 

1. Reading 
books or 
newspapers 

      

2. Writing for 
pleasure 

      

3. Doing 
crossword 
puzzles 

      

4. Playing 
board games 
or cards 

      

5. Participating 
in organised 
group 
discussions 

      

6.Playing 
musical 
instruments 

      

7. Playing 
tennis 

      

8. Playing golf       

9. Swimming       

10. Bicycling       

11. Dancing       

12.Participating 
in group 
exercises 

      

13. Playing 
team games 
such as 
bowling 

      

14.Walking for 
exercise 

      

15. Climbing 
more than two 
flights of stairs 

      

16. Babysitting       
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Daily 

Several 

days per 

week 

Once 

weekly 
Monthly Occasionally Never 

17. Doing 
housework 

      

18. Critical 
thinking 

      

19. Problem 
solving 

      

20. Dealing 
with novel/new 
situations 

      

21. Multi-
tasking 

      

22. Performing 
calculations or 
using 
mathematical 
skills 

      

23.Spending 
more than 30 
minutes a day 
moving around 
at work 

      

24. Using a 
computer 

      

25. Creative 
thinking/ 
generating new 
ideas 

      

26. Spending 
more than an 
hour a day on 
your feet at 
work 

      

27. Lifting and 
carrying 

      

28. Climbing 
stairs 

      

29. Typing 
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Electrophysiological Markers of Attentional Control Following Regular, 
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Mindfulness-based meditation practices involve various attentional skills, including the
ability to sustain and focus ones attention. During a simple mindful breathing practice,
sustained attention is required to maintain focus on the breath while cognitive control is
required to detect mind wandering. We thus hypothesized that regular, brief mindfulness
training would result in improvements in the self-regulation of attention and foster changes
in neuronal activity related to attentional control. A longitudinal randomized control group
EEG study was conducted. At baseline (T1), 40 meditation naïve participants were
randomized into a wait list group and a meditation group, who received three hours
mindfulness meditation training. Twenty-eight participants remained in the final analysis.
At T1, after eight weeks (T2) and after 16 weeks (T3), all participants performed a
computerized Stroop task (a measure of attentional control) while the 64-channel EEG
was recorded. Between T1 and T3 the meditators were requested to meditate daily for
10 min. Event-related potential (ERP) analysis highlighted two between group effects that
developed over the course of the 16-week mindfulness training. An early effect at left and
right posterior sites 160–240 ms post-stimulus indicated that meditation practice improved
the focusing of attentional resources. A second effect at central posterior sites 310–380 ms
post-stimulus reflects that meditation practice reduced the recruitment of resources
during object recognition processes, especially for incongruent stimuli. Scalp topographies
and source analyses (Variable Resolution Electromagnetic Tomography, VARETA) indicate
relevant changes in neural sources, pertaining to left medial and lateral occipitotemporal
areas for the early effect and right lateral occipitotemporal and inferior temporal areas for
the later effect. The results suggest that mindfulness meditation may alter the efficiency
of allocating cognitive resources, leading to improved self-regulation of attention.

Keywords: meditation, mindfulness, cognitive control, EEG, Stroop, interference, attention

INTRODUCTION
During the last decade the scientific interest in the effects of
meditation and mindfulness practice has experienced an unprece-
dented surge. A growing number of studies are confirming bene-
fits of mindfulness practices in a broad range of psychologically
relevant domains (Grossman et al., 2004; Chiesa and Serretti,
2009, 2011). After an initial phase of demonstrating general
benefits, research is increasingly zooming in on more detailed
questions regarding the underlying mechanisms that contribute
to the observed changes.

Mindfulness meditation practices are considered to entail at
least two central components: the training of attentional skills
and the development of an equanimous, non-judgmental atti-
tude toward one’s own experiences, toward sensations, thoughts
and feelings, where arising experiences are acknowledged with-
out elaboration or reaction (e.g., Kabat-Zinn, 1990, 2003; Bishop
et al., 2004; Malinowski, 2008). Although conceptualizations may
differ in some specific details, as for instance the inclusion of
additional components such as the intention to practice (Shapiro
et al., 2006), or the provision of a more fine-grained classifica-
tion of contributing factors (Dorjee, 2010), the development of

attentional skills is included as a fundamental factor through-
out (Lutz et al., 2008). The basic training of attentional skills
is thought to underpin other changes that lead to positive
health outcomes and well-being (Chiesa and Malinowski, 2011;
Malinowski, 2012). Most importantly, attentional stability, clar-
ity, and flexibility are thought to be prerequisites for maintaining
a non-judgmental attitude toward one’s experiences. In a first
approximation these two components of mindfulness practice
have been described in cognitive terms as focused attention and
open monitoring (Lutz et al., 2008), which, depending on the
particular meditation system, may be practiced selectively or in
a combined fashion.

As the development and refinement of attentional skills
appears fundamental to all forms of mindfulness meditation
practice, it is not surprising that a major line of investigation
focuses on revealing how meditation practice influences vari-
ous aspects of attentional performance and the underlying brain
mechanisms (e.g., Valentine and Sweet, 1999; Lutz et al., 2004;
Wenk-Sormaz, 2005; Anderson et al., 2007; Brefczynski-Lewis
et al., 2007; Jha et al., 2007; Chambers et al., 2008; van Leeuwen
et al., 2009; Hodgins and Adair, 2010; van den Hurk et al.,
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2010; Zeidan et al., 2010). Chiesa et al. (2011) provide a system-
atic review of studies into this topic that were published until
May 2010. So far, the findings suggest that meditation practice
may increase the efficiency of attention networks (Corbetta and
Shulman, 2002; Raz and Buhle, 2006; Posner and Rothbart, 2007),
where executive control functions that comprise of mental set
shifting, the updating and monitoring of information and, cru-
cially, the inhibition of prepotent responses play a central role
(Miyake et al., 2000).

However, extant research varies greatly regarding study design,
levels of meditation experience, and various other aspects, mean-
ing that straightforward conclusions regarding possible causation
are difficult. For instance, the majority of studies only used a
cross-sectional approach, which does not answer the question
whether meditation practice is causally involved in observed dif-
ferences between meditators and non-meditators. Other studies
investigated meditators with rather varied meditation experience
or from different meditation traditions, and a number of other
studies employ intervention packages like the mindfulness-based
stress reduction program (MBSR; Kabat-Zinn et al., 1985, 1987,
1992), which entails other aspects like yoga exercises and psy-
choeducative components. While all of these studies are worth-
while and make important contributions to our understanding
as to how mindfulness practice influences attentional functions
(Williams, 2010), it is important to complement these findings
with studies that directly investigate the effects of meditation
practice over time, while keeping additional aspects that may
influence the results to a minimum.

In studies that focused on investigating a specific meditation
practice rather than employing more comprehensive interven-
tion programs like MBSR the time period and the amount of
daily meditation practices varied considerably. At the lower end
are studies that used only very brief periods, as for instance
Polak (2009), who investigated the effect of only two 15 min
meditation sessions or a study by Wenk-Sormaz (2005), where
participants completed three times 20 min of meditation prac-
tice. At the upper end changes resulting from meditation retreats,
where participants are withdrawn from ordinary life for longer
periods of time, were investigated. Chambers and co-workers
(2008) investigated the effects of a 10-day meditation retreat, Jha
et al. (2007) and van Vugt and Jha (2011) studied the effects
of one-month mindfulness meditation retreats while other stud-
ies investigated the effects of different three month meditation
retreats (Slagter et al., 2007; Lutz et al., 2009; MacLean et al.,
2010; Jacobs et al., 2011; Sahdra et al., 2011). Between these end-
points a few further studies used dosages of meditation practice
that can more easily be integrated into ones daily routines. In a
study by Semple (2010) participants were asked to practice mind-
fulness meditation for 20 min twice per day over a period of
one month. Tang et al. (2009) employed 20 min of daily integra-
tive mind-body training (IBMT) over a period of five days and
another study by Tang et al. (2010) asked participants to prac-
tice IBMT for a period of one month, for 30 min daily, five days
per week. As this brief overview shows, there is little coherence
regarding the amount or dosage of meditation practice. It is thus
difficult, if not impossible, to find any guidance regarding the
“right” amount and duration of practice. As has been pointed

out recently, this issue has not yet been addressed systematically
(Slagter et al., 2011).

The present study was designed to address our primary interest
of investigating the effects of meditation practice that can easily be
integrated into one’s life, without requiring major changes in daily
routines or life style. A related secondary aim was to study lower
boundaries of meditation practice. We were curious to find out
whether a rather modest dosage would yield any benefits in terms
of cognitive processing. It was thought that 10–15 min of daily
meditation practice would be a minimum time period allow-
ing participants to settle in the meditation practice and develop
some attentional stability. An additional question was what time
period would be required for any changes to appear. Due to the
low daily meditation dose, we considered that practice effects
might require longer time to emerge. Balancing resources, the
required commitment of participants and avoiding interference
through breaks due to summer vacations, we settled for a total
meditation period of 16 weeks. To get some indication regarding
the time course of the changes, an intermediate testing session
was included halfway through the study, after eight weeks. To
reduce the possible influence of group dynamics that would make
unequivocal interpretations of our results more difficult, we fur-
thermore opted for an approach that includes only 3 h of group
contact time in groups of three to six participants, early on in the
study.

In line with our aim of investigating elementary aspects of
mindfulness meditation, a meditation practice was chosen that
is common to many forms of mindfulness training. For instance,
the mindful breathing practice that was employed here is an inte-
gral part of MBSR (Kabat-Zinn, 1990) and MBCT (Segal et al.,
2002), is the starting point in contemporary meditation programs
as for instance the shamatha training composed by Alan Wallace
or of mindfulness practice as explained by Gunaratana (1992). At
the same time it is a basic component of different traditional bud-
dhist meditation systems, ranging from early buddhist sources
like the Anāpānasati Sutta or the Satipatthāna Sutta (Bhikkhu
Bodhi, 1995) to classical Tibetan buddhist instructions (Karmapa
Wangchug Dorje, 2009). Thus, the mindful breathing exercises
used in this study bear relevance to a large variety of mindfulness
approaches and practices.

As we were particularly interested in the effects of medita-
tion practice on executive functions, we employed the Stroop
Word-Color Task (Stroop, 1935; MacLeod, 1991), which in a
previous study in our lab has revealed large differences between
meditators and non-meditators (Moore and Malinowski, 2009).
Central to the Stroop task is that the automatized reading of
words leads to performance decrements if the semantics of a
color word conflicts with naming/indicating the color this word
is printed in (e.g., “BLUE” presented in red). Good performance
on this task would be indicative of good cognitive control and
relatively low automaticity or impulsivity of one’s responses.
Because the actual meditation training is very different to the
Stroop task itself, improvements in the Stroop task would be of
interest regarding the question, whether abilities trained in med-
itation generalize to other tasks and domains beyond the training
itself. Thus, although the training consists of merely directing
and redirecting one’s attention to breathing-related sensations
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and to disengage from or non-engage with arising thoughts and
emotions, changes in the automaticity of reading that is part
and parcel of the congruency effect in the Stroop task would
be remarkable. As skill learning is usually very task-specific and
does not easily generalize beyond the specific tasks, stimuli, or
contents (Green and Bavelier, 2008), such changes would fur-
thermore highlight the possibility that mindfulness practice leads
to changes of underlying processes rather than specific content
(Slagter et al., 2011). Furthermore, such changes could be an indi-
cation of improved impulse control or even a fundamental change
as to how individuals relate to their experiences, possibly having
relevance beyond the cognitive domain itself (Chambers et al.,
2009).

To get a precise estimation as to how meditation practice may
change the involved neuronal processes, we employed 64-channel
EEG recordings, while the participants engaged in a computer-
ized version of the Stroop task. We hypothesized that, compared
to a non-meditating, wait list control group, engagement in a
regular, brief meditation practice would lead to improvements
in attentional performance as indexed by the behavioral Stroop
interference effect, which would also be reflected in changes
in several electrophysiological parameters. As previous studies
found that this Stroop effect is reflected in a late negativity (LN)
that typically starts around 350–400 ms after stimulus onset, we
expected to find meditation-related changes in this event-related
potential (ERP) component (e.g., Liotti et al., 2000; Hanslmayr
et al., 2008). First electrophysiological investigations of attention
effects in mindfulness meditators furthermore report a reduction
of a slightly earlier positivity—the P3 component—in response
to a distracter sound (e.g., Cahn and Polich, 2009) and as an
indicator of improved resource allocation in the attentional blink
task (Slagter et al., 2007), which requires the temporal allo-
cation of selective attention. Accordingly, we also considered
this component. As for some other types of meditation also
changes in a negative deflection occurring before the P3 in a
time range starting from around 150 ms after stimulus onset
were reported (Cahn and Polich, 2006), and this earlier nega-
tive component (N2) has been implicated in attentional processes
(Folstein and van Petten, 2008), it was considered as well. As
both the N2 and the P3 have been shown to reflect atten-
tional control mechanisms, while the LN is considered to be
an indicator of the Stroop interference effect, we expected that
mindfulness practice would influence some or all of these ERP
components.

To sum up, the aim of the current research was to investigate
whether a simple, brief meditation practice carried out regularly
for 16 weeks will lead to detectable changes in cognitive perfor-
mance and associated neural processes. To reduce the possible
influence of some of the factors that made unequivocal interpre-
tations of previous results difficult, we opted for an approach that
includes only a minimum of group contact time (3 h) and a lim-
ited amount of daily meditation practice (10 min), thus allowing
participants to carry on with their daily routines without much
change or disruption. Furthermore, this “ten-minutes-per-day”
approach that we employed may be a more viable option, for
people who may consider integrating mindfulness practice into
daily life.

METHODS
PARTICIPANTS
Forty healthy adults (13 males; mean age 35.4 years) were
recruited via a combination of online advertisements and from
a psychology participant panel maintained at Liverpool John
Moores University (LJMU). To be included in the study par-
ticipants had to be meditation naïve (no previous meditation
experience), have normal or corrected-to-normal visual acuity,
confirm they have no ongoing or recent mental health problems
or neurological disorders (e.g., epilepsy) and confirm they are not
receiving any psychopharmacological treatments. Thirty-eight
participants described themselves as “White” or “White/British,”
one as “White/Irish” and one as “White/Caribbean.” Fifteen
participants classed their religious background as Christian
(Christian, Roman Catholic, Church of England), one as Atheist,
one as Agnostic. The remaining participants stated no religion.
Three students took part in the study. Most of the participants
were in full-time or part-time employment or in voluntary work.
The majority of participants were educated at least to undergrad-
uate level, with 11 participants with postgraduate qualifications.
Due to the nature of the design the participants were aware of
the general aims of the study, but no specific hypotheses were
explained to them.

The study was carried out in line with the ethics guidelines of
the British Psychological Society and was approved by the LJMU
Research Ethics Committee. All participants provided written,
informed consent and were reimbursed with £10/h for attending
the six testing sessions.

Participants were randomly allocated to the meditation group
or the waitlist control group, with the restriction that age and
gender composition were matched across groups. Figure 1 sum-
marizes the flow of participants through the study. Twelve partic-
ipants in the meditation group and 16 in the control group were
included in the final analysis of the EEG data. As far as could be
ascertained, drop-outs in the meditation group were motivated
by personal or health reasons not related to the study itself.

Initial tests of baseline (Time 1) measures are presented in
Table 1 and confirm that the two groups did not differ sig-
nificantly with respect to age, gender, the different self report
measures, or performance measures on the Stroop task.

SELF-REPORT MEASURES
Global well-being
The Subjective Happiness Scale (SHS, Lyubomirsky and Lepper,
1999) was used to assess the global, subjective assessment of
participants’ own happiness and well-being. The SHS is a brief
four-item questionnaire scored on a seven-point Likert scale
and includes items like “In general I consider myself a very
happy person.” High total scores reflect high levels of global
well-being/happiness. The SHS has been successfully used in dif-
ferent community-based and college-student samples, showing
Cronbach’s alpha values between 0.79 and 0.94 (Lyubomirsky and
Tucker, 1998; Lyubomirsky and Lepper, 1999).

Mindfulness
The Five Facet Mindfulness Questionnaire (FFMQ) was used to
assess different aspects of mindfulness that were expected to be
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FIGURE 1 | Flow of participants through the study. From randomly
allocating 20 participants to each group, for the final analysis 12 participants
remained in the meditation group and 16 in the control group.

influenced by mindfulness practice. This 39-item-questionnaire
was derived from an exploratory factor analysis of six existing self-
report measures of dispositional mindfulness (Baer et al., 2006).
Validation on two samples (Baer et al., 2006, 2008) suggests a five
factor structure: (1) Non-reactivity to inner experience (FFMQ-
NR; seven items), e.g., “I watch my feelings without getting lost
in them”; (2) Observing internal and external sensations includ-
ing thoughts, emotions, sights, sounds, and smells (FFMQ-O;
eight items) e.g., “I intentionally stay aware of my feelings”; (3)
Acting with awareness describes attending to one’s actions in the
present moment and can be contrasted with automatic, impul-
sive, or habitual behaving (FFMQ-A; eight items), e.g., “It seems
I am running on automatic without much awareness of what I’m
doing”; (4) Describing involves labeling internal experiences with
words (FFMQ-D; eight items), e.g., “When I have a sensation
in my body, it’s hard for me to describe it because I can’t find
the right words”; (5) Non-judging of experience means refraining
from value judgments or self-criticism (FFMQ-NJ; eight items) “I
tend to evaluate whether my perceptions are right or wrong.” The
response format comprises a five-point Likert scale (1 = never

or very rarely true, rarely true, sometimes true, often true, and
5 = very often or always true). After reversing the scores for the
19 negatively worded items, scores between 1 and 5 are summed
to produce totals for each subscale and a total scale score (range:
39–195). The FFMQ has been shown to have good internal con-
sistency and significant relationships in the predicted directions
with a variety of constructs related to mindfulness. The internal
consistencies (Cronbach α) for these facets have been reported as
0.75 for FFMQ-NR, 0.83 for FFMQ-O, 0.87 for FFMQ-A, 0.91 for
FFMQ-D, and 0.87 for FFMQ-NJ (Baer et al., 2006).

Meditation log
On a weekly basis participants in the meditation group com-
pleted a brief meditation diary (online or paper-pencil version),
which recorded how often they meditated in a given week and the
average length of the meditation sessions.

PROCEDURES
Potential participants received detailed information regarding the
study, completed a screening questionnaire, signed a consent
form, and were then randomly allocated to the meditation or
control group.

Over the course of approximately 16 weeks, participants were
tested at three time points (T1, T2, T3; 8–10 weeks apart). At
each time point participants first completed the self-report ques-
tionnaires and then performed the experimental task, while the
EEG was recorded. Two testing sessions of approximately 90 min
length were conducted at each time point, as several other tests
were carried out that are not reported in this paper. Around
T1, the meditation group received introductory 2 h mindfulness
training, in groups of three to six participants. In order to obtain
accurate baseline data the meditators were instructed not to begin
practicing meditation until after their first testing sessions. A fol-
low up 1 h meditation training session was given to them prior to
T2 and throughout the study the participants were able to con-
tact the meditation teacher to answer questions or give further
instruction.

MEDITATION INSTRUCTION
Participants in the meditation group were introduced to a simple
mindful breathing meditation by a meditation teacher with more
than 15 years of teaching experience. In this meditation the medi-
tator is required to focus their attention on the sensations accom-
panying their breathing, either attending to the experience at the
nostrils, around the diaphragm or the movement of the abdomen
when in- and exhaling, without manipulating the breath in any
form. Whenever the attention would slip or wander off, the task
would be to become aware of it and, without further elaboration,
to redirect the focus of attention to the sensation of breathing. In
addition to this focusing of attention, participants were instructed
to observe other mental experiences, arising thoughts, feelings or
sensation, trying not to judge or evaluate them, and maintain a
curious, non-elaborating attitude toward them. This meditation
instruction is in line with common psychological mindfulness
conceptualizations that emphasize the development of attentional
abilities combined with a specific, non-evaluative attitude toward
the different mental experiences that may arise (e.g., Bishop, 2002;
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Table 1 | Summary of tests for baseline differences, with mean values, standard deviations (in brackets), and respective statistical values for

the comparison between meditation group and control group.

Meditation group Control group Statistical values

Age (years) 36.9 (12.1) 34.6 (11.4) t(26) = 0.53, p = 0.60

FFMQ-total 126.9 (15.6) 136.8 (12.6) t(26) = −1.86, p = 0.08

SHS 22.0 (2.9) 21.3 (3.4) t(26) = 0.62, p = 0.54

RT all trials (ms) 789.3 (102.7) 738.6 (127.9) t(26) = 1.13, p = 0.27

RT congruent (ms) 741.0 (102.5) 683.3 (117.6) t(26) = 1.35, p = 0.19

RT incongruent (ms) 840.2 (110.7) 798.0 (148.9) t(26) = 0.82, p = 0.42

Accuracy all trials (%) 95.9 (2.9) 95.6 (4.7) t(26) = 0.23, p = 0.82

Accuracy congruent (%) 98.0 (2.4) 98.0 (2.8) t(26) = −0.14, p = 0.89

Accuracy incongruent (%) 94.0 (4.1) 93.0 (7.6) t(26) = 0.41, p = 0.68

RT variance all trials (ms) 186.2 (33.4) 181.6 (46.2) t(26) = 0.29, p = 0.77

RT variance congruent (ms) 169.4 (35.7) 159.5 (51.6) t(26) = 0.57, p = 0.57

RT variance incongruent (ms) 185.7 (37.1) 179.9 (43.5) t(26) = 0.37, p = 0.71

Inverse efficiency all trials 8.3 (1.3) 7.8 (1.7) t(26) = 0.77, p = 0.45

Inverse efficiency congruent 7.6 (1.2) 7.0 (1.4) t(26) = 1.21, p = 0.24

Inverse efficiency incongruent 9.0 (1.5) 8.8 (2.4) t(26) = 0.30, p = 0.77

Shapiro et al., 2006; Malinowski, 2008; Chiesa and Malinowski,
2011; Malinowski, 2012). For the period between T1 and T3
(16 weeks) participants were asked to meditate regularly for a
minimum of 10 min per day, at least five days per week and
to record frequency and duration in their meditation log on
a weekly basis. The participants did not receive any particular
instructions regarding the body posture beyond the emphasis
of trying to sit in an upright, relaxed position with a straight
back. They had the liberty to meditate on a chair, meditation
stool, or cushion. Given the relatively small sample size and low
dosage of meditation we did not expect the specific meditation
posture to have a discernable effect and thus did not record
these details.

TASK DESIGN AND STIMULI
Stimuli in the Stroop task were the four color words RED, BLUE,
GREEN, and YELLOW, presented in the same color as the writ-
ten word in congruent trials (e.g., RED presented in red) and in
different colors (e.g., RED presented blue) in incongruent tri-
als. The task was presented on a 21-inch CRT-monitor (100 Hz
vertical refresh rate, 1024 × 768 resolution) and was controlled
by the Cogent 2000 toolbox (v1.25) running in the Matlab envi-
ronment (Mathworks, http://www.mathworks.com). Words were
presented in the Arial Font (font size 48 pt), viewed at a distance
of approximately 90 cm. Each incongruent stimulus appeared in
each of the three other colors with equal frequency. Participants
were instructed to respond as fast and accurately as possible and
to indicate the color each word was presented in, while ignor-
ing the semantic meaning of the word. Four keys on a standard
QWERTY keyboard were used to enter their responses, using the
keys “a” (red, left middle finger), “.” (blue, left index finger), “x”
(green, right index finger), and “ ’ ” (yellow, right middle fin-
ger). The keys were color-coded and chosen to provide optimum
comfort for the participant whilst responding.

At the beginning of each trial a fixation cross was presented for
500 ms, followed by the color word, which remained on the screen

for 1500 ms. The trial concluded with a variable inter-trial interval
of between 850 and 1100 ms. The stimulus always appeared cen-
trally on the screen, replacing the fixation cross. The experiment
began with a color-to-key acquisition phase which consisted of 48
trials that were similar to those used in the experimental blocks.
During this phase, mistakes were highlighted by an audible tone
and accuracy and reaction time feedback was given following
completion of this phase. The experimental phase consisted of
three blocks of 48 trials (50% congruent, 50% incongruent tri-
als) for a total of 144 trials and 72 trials per condition. Each trial
block lasted approximately 3 min and was followed by a 20 s break
before the subsequent block.

ELECTROPHYSIOLOGICAL RECORDINGS
EEG was recorded continuously from 64 Ag/AgCl electrodes with
a BioSemi Active-Two amplifier system (BioSemi, Amsterdam,
Netherlands). For monitoring eye movements and blinks the hor-
izontal and vertical electrooculogram (EOG) was recorded with
supra- and infraorbital electrodes on the left eye and two elec-
trodes placed next to the external canthi. EEG and EOG were
sampled at 512 Hz. Two additional electrodes (Common Mode
Sense [CMS] and Driven Right Leg [DRL]) were used as reference
and ground (see www.biosemi.com/faq/cms&drl.htm for details).
For further off-line analysis, the average reference was used.

EEG was segmented to obtain epochs starting 200 ms prior and
800 ms following stimulus onset. Pre-processing of data was per-
formed in EEGLAB version 9.03 (Delorme and Makeig, 2004).
The Fully Automated Statistical Thresholding for EEG artifact
Rejection procedure (FASTER, Nolan et al., 2010) was employed
for removing artifacts from the data. Using a predefined z-score
threshold of ±3 for each parameter, artifacts were detected and
corrected regarding single channels, epochs, independent com-
ponents (based on the infomax algorithm, Bell and Sejnowski,
1995) and single-channel single-epochs. Remaining artifactual
independent components and epochs containing artifacts were
removed after visual inspection. Data were filtered offline with a
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1Hz high pass filter. A pre-stimulus baseline from –60 ms to 0 ms
was applied.

No between group differences existed regarding the number
of trials available for analysis (Meditation group: 129.0, 132.3,
and 131.8 Control group: 131.2, 131.7, and 130.3 for T1, T2, and
T3, respectively) or the amount of independent components that
were removed from the data (Meditation group: 9.3, 10.2, and 8.8;
Control group: 11.4, 8.8, and 9.3 for T1, T2, and T3, respectively).

DATA ANALYSIS
Analysis of behavioral and self-report data
For analyzing the behavioral and self-report data we conducted
mixed ANOVAs with Group × Time × Congruency as factors for
response times (RTs), response variability, and response accuracy
and Group × Time for the self-report measures. As an estimate
for the variability of responses over time we used the stan-
dard deviation of the RTs of all correct trials in each condition.
To account for possible criterion shifts or influences of speed-
accuracy tradeoffs, we furthermore analyzed the inverse efficiency
scores, derived by dividing the mean RT by the proportion of cor-
rect responses, calculated separately for each condition and each
participant (Akhtar and Enns, 1989; Christie and Klein, 1995).

Whenever the sphericity assumption (equality of variances)
had been violated (Mauchly’s test), Greenhouse-Geisser estimates
of sphericity were employed to adjust the respective degrees of
freedom.

All analyses of behavioral and self-report data were carried out
twice, once including all participants that completed the study
(14 meditators, 18 controls) and once limited to those partici-
pants that were included in the final analysis of EEG data (12
meditators, 16 controls). For consistency we will subsequently
only report the latter, because the pattern of relevant results was
identical for both approaches.

Analysis of event-related potentials (ERP) — electrode space
A 16 Hz low pass filter was applied prior to all ERP analysis.
Based on the grand mean evoked potential (see Figure 2), three
ERP components of interest were defined: N2 (160–240 ms), P3
(310–380 ms) and a late negative deflection (LN; 400–600 ms)
for incongruent stimuli, typical for the Stroop task (e.g., Liotti
et al., 2000). Mean amplitudes averaged across the respective time
window were calculated for the amplitude maxima identified in
the scalp topographies of each component and were subjected to
Group × Time × Congruency mixed ANOVAs. Of particular inter-
est for this study were interaction effects that included the factors
Group and Time, as they would indicate that the respective ERP
amplitudes were influenced differentially by meditation practice.
Accordingly, the analysis primarily focuses on these interactions.
As an estimate of the strength of the effect we calculated the effect
size r for these interactions.

As for the behavioral and self-report data, whenever the
assumption of variance equality had been violated we employed
the Greenhouse-Geisser procedure to adjust the respective
degrees of freedom.

Analysis of event-related potentials (ERP) — source space
To get a general indication of brain areas that may be selectively
influenced by meditation practice, we applied Variable Resolution

FIGURE 2 | Grand mean average ERPs of all 28 participants for

congruent and incongruent stimuli, averaged over Group (meditation,

control) and Time (T1, T2, T3). ERPs from eight representative electrodes
(out of 64 scalp electrodes) are shown. The three analysis time windows
(N2: 160–240 ms, P3: 310–380 ms, and LN: 400–600 ms) are indicated at
electrode POz.

Electromagnetic Tomography (VARETA; Bosch-Bayard et al.,
2001) to localize the cortical generators of the relevant ERP com-
ponents that were identified in the electrode-space ERP analysis.
This procedure was applied separately for each factorial combi-
nation of Group, Time, and Congruency. The VARETA approach
provides the spatially smoothest intracranial distribution of cur-
rent densities in source space which is most compatible with the
amplitude distribution in electrode space (Gruber et al., 2006).
The inverse solution consisted of 3244 grid points (“voxels”)
of a 3D-grid (7 mm grid spacing). This grid and the arrange-
ment of 64 electrodes were placed in registration with the average
probabilistic MRI brain atlas (“average brain”) produced by the
Montreal Neurological Institute (MNI; Evans et al., 1993). To
localize the activation difference between T1 and T3 for each com-
ponent and congruency condition, statistical comparisons were
carried out by means of paired t-tests for the meditation group
and control group. Activation threshold corrections accounting
for spatial dependencies between voxels were calculated by means
of false discovery rates (Benjamini and Hochberg, 1995). All sta-
tistical parametric maps were thresholded at a significance level
of p < 0.001.

RESULTS
TEST FOR GROUP DIFFERENCES AT BASELINE
Group × Congruency ANOVAs for RT, accuracy, RT-variability,
and inverse efficiencies did not yield any significant main effects
for Group nor significant Group × Congruency interactions (all
p > 0.28) at T1. As summarized in Table 1, no significant differ-
ences between meditation group and control group were present
when direct comparisons at T1 (t-tests) were calculated.
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BEHAVIORAL DATA AND SELF-REPORT MEASURES
Response times
For RTs significant main effects of Time [F(1.60,41.48) = 4.953,
p = 0.018] and Congruency [F(1,26) = 110.554, p < 0.001] were
observed, indicating that overall the mean RTs decreased
throughout the experiment (T1: 760 ms, T2: 732 ms, T3: 732 ms)
and that responses to congruent stimuli were faster (689 ms) than
to incongruent stimuli (797 ms). There were no other signifi-
cant effects. Importantly, neither the Group × Time interaction
nor the Group × Time × Congruency interaction were significant
(p = 0.39 and p = 0.15, respectively).

Response time variability
For the variability of RTs a significant main effect of Congruency
[F(1,26) = 43.609, p < 0.001] was observed, reflecting that there
was a lower RT variability for congruent (SD = 154 ms) than
for incongruent (SD = 181 ms) conditions. Again, no effect that
would reflect differential changes in meditation group and con-
trol group were present and the respective interaction effects were
far from being significant (both p > 0.56).

Response accuracy
Only the main effect of Congruency was significant [F(1,26) =
33.604, p < 0.001, congruent: 98.3%, incongruent: 95.1%] and
no indication of differential changes between the groups emerged
(both p > 0.26).

Inverse efficiency
There were significant main effects of Time [F(1,26) = 4.408, p =
0.008] and of Congruency [F(1,26) = 85.224, p < 0.001] but no
further significant effects that would indicate differential changes
between groups (both p > 0.14).

Overall, the analyses of the behavioral results confirm that
the task manipulation was effective, reflected by the influence
of Congruency on task performance. Regarding possible training
effects, only an initial speeding up of responses from T1 to T2 was
observed, which is also reflected in improved efficiency scores.
Beyond that, the data show that behavioral performance did not
change differentially for meditation and control group and did
not improve after T2.

Mindfulness
For the total mindfulness score, which combines the scores
on the five FFMQ subscales, a significant main effect of Time
[F(1.640,42.645) = 5.832, p = 0.009] was observed, indicating
that overall the mindfulness scores increased from T1 (132.6)
to T3 (138.3). This effect was further qualified by a significant
interaction between Group and Time [F(1.640,42.645) = 5.077,
p = 0.015]. As Figure 3 shows, the increase of mindfulness from
T1 to T3 is more pronounced in the meditation group (T3–T1:
11.8 points, p = 0.015) than in the control group (T3–T1: 1.1
points, p = 0.650). Although the figure appears to suggest a dif-
ference between meditation and control group at T1, testing for
baseline differences (Table 1) showed that these differences were
not significant (p = 0.08) and may just be an effect of random
group allocation.

The analysis of the FFMQ subscales revealed a stronger
increase in the meditation group than in the control group for

FIGURE 3 | Total mindfulness scores (FFMQ-total, possible range

39–195) for meditation group and control group from T1 to T3. The
figure depicts the significant interaction between Group and Time. Error
bars show the standard error of the mean.

the observing (FFMQ-O) subscale [F(2,52) = 4.300, p = 0.019]
and the non-reacting (FFMQ-NR) subscale [F(2,52) = 3.771,
p = 0.030]. No other significant effects emerged from the analysis
of the FFMQ subscales.

Meditation time
In general, the participants in the meditation group managed
to adhere to the required meditation schedule. Based on the
meditation logs, the mean time spent meditating during each ses-
sion was 11.3 min (range: 6.2–21.5 min) and the average number
of meditations per week was 5.0 sessions (range: 2.6–8.7).

Mindfulness and meditation time
To analyze whether the amount of meditation practice would pre-
dict the increase in self-reported mindfulness, we calculated the
Pearson correlation between the total time spent meditating over
the 16 weeks and the changes in mindfulness scores from T1 to T3
in the meditation group. As Table 2 shows, increases in the total
mindfulness score correlated highly with total meditation time.
Similarly, changes in three of the five FFMQ subscales (observing,
acting with awareness, non-judging) correlated significantly with
the total meditation time. None of the other behavioral measures
correlated with total meditation time.

Table 2 | Pearson coefficients for the correlations between total

amount of time spent meditating between T1 and T3 and increase in

mindfulness (FFMQ scores) from T1 to T3.

Total meditation time

FFMQ-total 0.771 (0.002)

FFMQ-O 0.592 (0.021)

FFMQ-A 0.577 (0.025)

FFMQ-D 0.009 (0.489)

FFMQ-NJ 0.805 (0.001)

FFMQ-NR 0.474 (0.060)

Values in brackets indicate one-tailed significance levels (N = 12).
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ERP DATA
Plausibility check
Before investigating the specific effects of meditation training
and related between group differences, we confirmed that the
resulting ERPs are in line with the typical patterns of electrical
activity observed for the Stroop paradigm. Figure 2 depicts the
grand mean ERPs averaged over Group (meditation, control) and
Time (T1, T2, T3) of eight representative electrodes distributed
over the whole scalp. The ERP deflections resemble the pattern
usually found with the Stroop paradigm. Also the typical late neg-
ative deflection (LN) for incongruent trials, considered to be a
robust reflection of the Stroop effect, is present in the data (e.g.,
Liotti et al., 2000).

N2 component
Maxima of the N2 were best captured by small clusters of
left occipito-parietal (PO7, PO3, O1) and right occipitopari-
etal electrodes (PO8, PO4, O2). Group × Time × Congruency
ANOVAs revealed significant Group × Time interaction for
the left [F(2,52) = 3.862, p = 0.027, r = 0.263] and for the
right [F(2,52) = 4.273, p = 0.019, r = 0.276] electrode cluster.
Planned Group × Time contrasts indicated that this effect reflects
relatively higher amplitudes at T3 in the meditation group than in
the control group. The relative increase of the N2 amplitude from
T1 to T3 in the meditation group contrasted with an amplitude
decrease in the control group for left and right clusters [F(1,26) =
6.421, p = 0.018, r = 0.445 and F(1,26) = 4.987, p = 0.034, r =
0.401]. Figure 4(A) shows the changes in the ERPs of the two elec-
trode clusters from T1 to T3. The grand mean spherical-spline
interpolated T3–T1 topographical difference maps in Figure 4(C)
show that the N2 amplitudes at left and right posterior sites
tend to develop in opposite directions for meditation and con-
trol group. Figure 4(D) depicts the neuronal sources where the
differences from T1 to T3 developed. In the meditation group sig-
nificant decreases in source strength (salmon-colored) from T1
to T3 for congruent stimuli were observed in the left middle and
superior frontal gyri, the left medial and lateral occipitotempo-
ral gyri, and the left middle temporal gyrus. In comparison, an
increase of source strength (green color) in the left medial and lat-
eral occipitotemporal gyri was observed in the meditation group.
For incongruent stimuli, the control group showed a decrease in
source strength in the left lateral occipitotemporal and left infe-
rior temporal gyri, whereas no significant changes were present
in the meditation group.

P3 component
The analysis of the P3 component focused on the central poste-
rior amplitude maximum at electrode Pz. There was a significant
Group × Time × Congruency interaction [F(2,52) = 4.711, p =
0.013, r = 0.288]. Planned contrasts revealed that this interac-
tion was due to a relative decrease in the P3 amplitude in the
meditators in the incongruent condition from T1 to T3 com-
pared to the control group, which exhibited an amplitude increase
[F(1,26) = 9.267, p = 0.005, r = 0.513]. The ERPs presented in
Figure 5(A) show these differential changes from T1 to T3. The
grand mean spherical-spline interpolated T3–T1 difference maps
in Figure 5(C) show the topographical distribution of the changes

over time, with a maximum decrease over central posterior sites
in the meditation group for incongruent trials, contrasted by
an increase in the control group. Figure 5(D) provides an indi-
cation of the brain areas that show differential source strength
at T1 and T3. For the congruent condition a slight decrease in
left superior and middle temporal gyri was present that was not
present in the meditation group. An important contrast appeared
for the incongruent condition. Whereas an increase of source
strengths was observed for the control group (left medial and lat-
eral occipitotemporal gyri, left inferior temporal gyrus, and right
lateral occipitotemporal gyrus) an opposing pattern appeared for
the meditation group. Here the right lateral occipitotemporal
gyrus and the right inferior temporal gyrus showed a decrease in
source strength from T1 to T3.

Late negative component
The broad negative deflection had a central posterior maximum
that was best captured with an electrode cluster comprising of Pz,
POz, P1, and P2. The only significant effect that emerged from the
analysis was a main effect of Congruency [F(1,26) = 8.219, p =
0.008], confirming the typical Stroop interference effect, with the
ERP for incongruent stimuli being negatively deflected compared
to the congruent condition (see Figure 2).

DISCUSSION
Sixteen weeks of regular, brief meditation practice significantly
changed neuronal activity related to executive control functions
in the Stroop task. These changes were, however, not accompa-
nied by related improvements in behavioral performance and did
not pertain to the late negative ERP component (400–600 ms)
that typically reflects the behavioral interference effect in the
Stroop task (e.g., Liotti et al., 2000; Hanslmayr et al., 2008).

Meditation practice led to a relative increase of lateral posterior
N2 amplitudes over both hemispheres, irrespective of stimulus
congruency. Estimation of the neural sources (VARETA) suggests
that these changes in the meditation group were primarily driven
by increased activity in the left medial and lateral occipitotempo-
ral areas for congruent stimuli, contrasted by decreased activity in
similar brain areas in the control group. These left-hemispheric
areas of the ventral processing stream have previously been iden-
tified as being selectively involved in lexical tasks (e.g., Cohen
et al., 2002; Cohen and Dehaene, 2004; Shaywitz et al., 2004),
with a similar posterior N2 component as observed here (e.g.,
Adorni and Proverbio, 2009). It thus seems plausible that this
effect reflects more successful or consistent attentional amplifi-
cation, selective to the word stimuli that were used in this task.
This interpretation is in line with the time course of enhanced
stimulus processing when attending to non-spatial features of a
stimulus. Typically, enhanced negative posterior ERP amplitudes
appear from around 100 to 150 ms after stimulus onset (Hillyard
and Anllo-Vento, 1998; Hillyard et al., 1998). Even more, the pos-
terior N2 is particularly enlarged when attending to the color
as compared to the form of a stimulus (Eimer, 1997). Thus,
while the control group exhibited a habituation effect over the
course of the study (and 3 × 144 trials), which was expressed
in a reduction of the ERP amplitudes and the related corti-
cal source strengths, the meditation group showed the opposite
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FIGURE 4 | Analysis of the N2 time window, from 160 to 240 ms.

(A) Grand mean averages for meditation and control group for T1 and
T3 averaged over left posterior electrodes (PO7, PO3, O1; upper row)
and right posterior electrodes (PO8, PO4, O2; lower row). (B) Mean N2
amplitudes from T1 to T3 averaged over the same electrode clusters.
(C) Spherical spline interpolated scalp topographies of the difference
between T1 and T3 (T3–T1) for meditation and control group, separated
for congruent and incongruent stimuli. Positive values indicate a decrease

in amplitudes; negative values indicate an increase in amplitudes.
(D) Activation differences between T1 and T3 for each group and
congruency, based on the localization of cortical generators with VARETA.
Significant differences (threshold p < 0.001) are presented for axial MNI
slices at Z = −10 for congruent stimuli and at Z = −17 for incongruent
stimuli (centers of gravity of the activation). Salmon-colored areas
indicate a decrease in activation and green areas indicate an increase
in activation.

pattern, where increased activation of task relevant cortical areas
developed with meditation practice.

The second difference between meditators and controls was
observed in the P3 component (310–380 ms). The majority of
ERP studies of the Stroop task focus on later components start-
ing around 400 ms, as these tend to correlate with behavioral
performance (Liotti et al., 2000), whereas the preceding P3 com-
ponent appears to reflect earlier aspects of stimulus process-
ing that, in themselves, are not the source of the behavioral
Stroop interference effect (Ilan and Polich, 1999). Changes of
the P3 over the course of the study were primarily observed
for incongruent stimuli. While the participants in the control
group exhibited an increase of the P3 amplitude for incongruent
stimuli, a decrease was observed for the meditation group. The
P3 decrease in electrode space was accompanied by significantly
decreased signal strength in source space, which comprised lateral

occipitotemporal and inferior temporal regions of the right hemi-
sphere. These areas have been implicated in object recognition
processes (Schendan and Kutas, 2002; Schendan and Stern, 2007).
In addition, the temporal/parietal P3 component is considered to
reflect attentional resource activation that is generated when per-
ceptual stimulus discrimination occurs and is linked to related
inhibition processes that are required when conflicting stimu-
lus information is present (Polich, 2007). The pattern of results
emerging for the P3 component thus suggests that through med-
itation practice the perceptual processing of incongruent stimuli
becomes less resource demanding.

These findings bear similarities to the results from a pre-
vious study, where experienced meditators showed a reduced
P3 amplitude to a distracter tone during an auditory oddball
stimulation while they were meditating (Cahn and Polich, 2009).
There are however, noteworthy differences to our study. In Cahn
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FIGURE 5 | Analysis of the P3 time window, from 310 to 380 ms.

(A) Grand mean averages for meditation and control group for T1 and T3 for
electrode Pz. (B) Mean P3 amplitudes from T1 to T3 averaged for the same
electrode. (C) Spherical spline interpolated scalp topographies of the
difference between T1 and T3 (T3–T1) for meditation and control group,
separated for congruent and incongruent stimuli. Positive values indicate an

increase in amplitudes; negative values indicate a decrease in amplitudes.
(D) Activation differences between T1 and T3 for each group and congruency,
based on the localization of cortical generators with VARETA. Significant
differences (threshold p < 0.001) are presented for axial MNI slices at
Z = −17 (center of gravity of the activation). Salmon-colored areas indicate a
decrease in activation and green areas indicate an increase in activation.

and Polich’s study a meditation state was compared to a neu-
tral thinking state, whereas we studied the effect of meditation
in a task that was performed outside of the meditation practice.
Furthermore, we investigated changes through meditation prac-
tice developing over time, while Cahn and Polich (2009) only
tested at one time point and thus do not directly address the
question of causal influences of meditation training. The paral-
lels are nevertheless interesting, as they suggest that an ability that
developed and is present during meditation practice appears to
generalize to a different task performed when not meditating. It
may indicate that state effects observed during meditation may
translate into trait effects observed outside of meditation (Cahn
and Polich, 2006), an assumption that underlies the idea that
meditation practice generalizes into daily activities and extends to
contexts separate from meditation practice (Hodgins and Adair,
2010; Slagter et al., 2011).

Furthermore, our results are in line with other studies suggest-
ing that meditation practice leads to more effective brain resource
allocation (Slagter et al., 2007, 2009). Slagter and co-workers
employed the attentional blink paradigm to investigate how a
three-month intensive meditation retreat changes the temporal

deployment of attention compared to a non-meditating matched
control group (Slagter et al., 2007, 2009). During the attentional
blink task participants have to attend to a rapidly changing stream
of stimuli (e.g., letters) and report the identity of two target
stimuli (e.g., digits) after each trial. Performance to the second
target in the stream is typically negatively affected if it appears
within 500 ms after the first target, the so-called attentional blink
effect (Shapiro et al., 1997). After the meditation retreat the medi-
tators showed a reduced attentional blink effect. Furthermore, the
P3b amplitude elicited by the first target stimulus was reduced in
meditators after the retreat and the participants with the greatest
decrease of the P3b amplitude also showed the largest decrease in
attentional blink size (Slagter et al., 2007). Interestingly, the addi-
tional analysis of the phase of oscillatory theta activity following
successfully detected second targets, showed a reduced cross-trial
variability, considered to indicate that the deployment of atten-
tion was more consistent and that through meditation training
attentional resources become more rapidly available to process
additional information (Slagter et al., 2009).

The results from a recent fMRI study comparing medita-
tors and matched controls on the Stroop task provide further
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support for our findings. Compared to a control group, medi-
tators showed reduced activity in various brain areas subserving
attention (Kozasa et al., 2012). The authors interpret their overall
pattern of findings as evidence of enhanced efficiency in med-
itators that may result from improved sustained attention and
impulse control.

When considering our results of enhanced N2 and decreased
P3 amplitudes and source strengths in light of the reviewed
findings, a possible interpretation emerges. We surmise that the
more successful attentional amplification of the color word stim-
uli evidenced by increased N2 amplitudes/source strengths had
the subsequent effect that fewer resources needed to be invested
during object recognition processes, especially when incongruent
stimulus information was processed, indexed by the decrease in
P3 amplitudes/source strengths.

Confining the meditation training to a very simple, but fun-
damental, mindful breathing meditation, which often constitutes
the first step into a more elaborate path of different meditation
practices, gives confidence that the observed changes indeed stem
from the meditation practice itself. Having kept the group ses-
sions to a bare minimum (a total of 3 h), makes it furthermore
unlikely that unspecific group effects account for the changes.
The fact that participants only meditated for very brief periods
each day speaks against an explanation that life style changes
could explain the observed differences, an influence that may
well be relevant when studying the effects of longer daily medi-
tation practices, of meditation retreats or when studying highly
experienced meditators.

As meditation effects were compared to effects in a non-active
waitlist control group, an alternative explanation might be that
the observed effects merely result from the fact that the medita-
tors were engaged in a novel regular activity per se, rather than
being specific to the meditation practice. The current design can-
not fully rule this out, but given that the observed effects are in
line with results from several other studies into similar medita-
tion practices, it appears likely that the effects are more specific.
However, the general weakness of waitlist controlled designs in
this respect needs to be acknowledged. The study tells us that
engaging in 10 min of daily meditation practice for the given
period has specific effects. It can, however, not be concluded
that these effects are completely unique to meditation practice
in general or to this specific type of mindfulness meditation in
particular. While the mindfulness training had these effects, other
practices or activities may have as well. Future studies will have
to face up to the challenge of addressing the question how spe-
cific changes associated with meditation training actually are.
Toward this end, control conditions that are matched with respect
to somatic, mental, and cognitive demands but without actually
being meditation practice will be required.

In this study the participants were required to record fre-
quency and amount of meditation practice themselves. As the
experimenters appeared to have a good rapport with the par-
ticipants and it was emphasized that it is more important to
provide accurate information than to fulfill a specific regime, we
have no specific reason to doubt the honesty and accuracy of
these records. We are, however, in no position to objectively con-
firm this. The fact that we found a positive relationship between

mindfulness (FFMQ) and amount of meditation practice might
be taken as a positive indicator, but as both are self-report mea-
sures they may be prone to similar distortions. Future studies
may want to control actual meditation time more objectively. One
needs to be aware, though, that this is only possible to a cer-
tain extent, because even if, for example, actigraphic measures of
rest and activity cycles were available or sensors were integrated
into meditation stools or cushions, we have to rely on partici-
pant reports whether during a period of physical rest they actually
engaged in meditation practice.

An unexpected result of the study was that no differences
in behavioral measures between meditation and control group
appeared. This finding goes hand in hand with the lack of an effect
of meditation practice on the LN, but is at odds with results from
several other studies, which tended to show better performance of
meditators over controls in similar measures of executive atten-
tion and conflict resolution (Chan and Woollacott, 2007; Jha
et al., 2007; Moore and Malinowski, 2009). One important differ-
ence between such cross-sectional data and the study presented
here is that a longitudinal design requires the repeated adminis-
tration of the same experimental task. In the current study 144 tri-
als of the Stroop task were administered at each time point (to a
total of 432 trials). The fact that overall RTs did not improve after
T2 (T2: 632 ms, T3 632 ms) and that accuracy was above 95% for
incongruent trials, suggests that a performance ceiling might have
been reached. A further difference to the cross-sectional study
that showed the clearest performance differences between mind-
fulness meditators and a control group (Moore and Malinowski,
2009) was, that a verbal paper-pencil version of the Stroop task
was used, whereas here a computerized version with manual but-
ton presses was employed. Several authors have highlighted that
the way of administering the Stroop task has an influence on
behavioral results and the interference effects in particular (Kindt
et al., 1996; Salo et al., 2001). Liotti and co-workers (2000) fur-
thermore showed that different response formats in the Stroop
task (verbal, covert, or button press responses) yield differential
scalp distributions of the ERPs. Variations in task administration,
trial repetition, and related ceiling effects or the type and duration
of the investigated meditation practice may have contributed to
some diversity in outcomes observed in different studies (Chiesa
et al., 2011).

An additional explanation is suggested by new evidence
regarding the involvement of the anterior cingulate cortex (ACC)
in Stroop-like tasks. The ACC has been shown to be the gener-
ator of the LN and to be involved in performance monitoring
and response selection (Liotti et al., 2000; Hanslmayr et al., 2008).
However, two recent event-related fMRI studies suggest that the
role of the ACC is more related to anticipatory regulation of atten-
tion rather than the specific selection of responses itself (Roelofs
et al., 2006; Aarts et al., 2008). The lack of differential effects
in the LN might thus reflect that with extended exposure to the
Stroop task anticipatory regulation was perfected in both groups,
resulting in the observed ceiling effect. The meditation practice,
it seems, has improved earlier stages of processing (indexed by
N2 and P3 changes) that reflect more fundamental changes in
attentional processing and are less amenable to simple task rep-
etition effects. Although speculative, this would also explain why
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clear behavioral differences are found when meditators encounter
the Stroop tasks for the first time (Chan and Woollacott, 2007; Jha
et al., 2007; Moore and Malinowski, 2009), while they tend not to
develop on repeated presentation of the same task as was observed
here and also reported before (Anderson et al., 2007).

Our results also appear at odds with findings from a longi-
tudinal study carried out by Lutz and co-workers, who found a
reduction in RT variability (Lutz et al., 2009) that was not present
in out data. There are, however, noteworthy differences to our
study in that Lutz et al. investigated changes after much more
intensive meditation training (a three-month retreat) and stud-
ied the response to rare targets in an auditory task. It might well
be that a combination of the already mentioned ceiling effect and
the considerable difference in the amount of training accounts for
the different outcome.

Despite the lacking evidence of behavioral effects of the med-
itation practice, significant differences on self-reported mind-
fulness levels were evident and the increase in mindfulness
(FFMQ-total) was correlated with the amount of time partici-
pants invested in their meditation practice, suggesting that the
time invested in meditation directly translates into recognizable
increases in mindfulness. Considering the sample size of N =
12 for this analysis, one needs to be cautious, though, to not
over-interpret the results of this correlation.

This study focused on the effects of meditation practice on
mechanisms of attentional control as indexed by performance and
ERP measures related to the Stroop task. However, we do assume
that also other aspects of attention may have been influenced
by the meditation practice. A recent paper provides an excellent
theoretical account, arguing that mindfulness meditation train-
ing, developed over longer periods of time, should lead to the
enhancement of cognitive core processes including the sustained
monitoring of one’s own mental states, the ability to disengage
from distracting objects and the skill to redirect attention back
to the chosen focus (Slagter et al., 2011). We suggest that the
observed changes in the N2 and P3 partially reflect the enhance-
ment of such core processes. In line with this view of more
wide-ranging changes, our study also included various other mea-
sures, results of which we aim to report elsewhere. These pertain
to sustained attention and alertness and the orienting of atten-
tion without interfering or conflicting stimuli. In addition, these
data will allow us to investigate brain dynamics during rest and
meditation practice, where we are particularly interested in global
brain states, indexed by oscillating neural activity. Several recent
studies suggest that there might be differences between meditators
and non-meditators (e.g., Lutz et al., 2004; Tei et al., 2009; Cahn
et al., 2010) and between different types of meditation (Travis and
Shear, 2010) in this respect. Although not directly related to the
methodological approach we were using, it is also worth noting
that several studies comparing meditators and non-meditators
found differences in brain structure (cortical thickness or gray
matter), often in brain areas involved in attentional functions
(Lazar et al., 2005; Hölzel et al., 2008; Luders et al., 2009; Grant
et al., 2010) and first longitudinal studies show such structural
changes in gray and white matter even after relatively brief periods
of meditation practice (Tang et al., 2010; Hölzel et al., 2011).

CONCLUSION
This study adds to the growing body of research indicating the
positive effects of meditation training on the neural systems
involved in attentional processes. It is one of only a few studies
that investigate such changes in a longitudinal fashion and makes
several unique contributions. First of all, we showed that a rela-
tively low dose of only 10 min of practice per day, employed over
the course of 16-weeks, significantly changes underlying brain
processes that are related to the processing of conflicting stimulus
material.

Carrying out a simple mindful breathing meditation for
an average of only 10 min per day for a period of 16-weeks
improved neural functioning that is indicative of enhanced
focused attentional processing (N2) and less resource intensive
object recognition processes (P3), suggesting improvements of
neural processing related to attentional core processes. These
improvements seem to generalize from the specific situation of a
meditation exercise (i.e., focusing on breathing related sensations
and maintaining a non-responsive attitude to all arising experi-
ences) to the processing of visually presented stimuli and to the
disambiguation of conflicting information present in the stimuli.
Based on such generalizations we may speculate that medita-
tion practice addresses very fundamental processes of selective
and executive attention that may exhibit its beneficial effects in
a variety of domains and situations.

The lack of meditation-specific improvements in behavioral
performance may be a result of a too low dose of meditation
practice, as several studies with experienced meditators show
clearly superior performance. An alternative explanation is that
the repeated administration of the same task resulted in perfor-
mance optimization for all participants, beyond which also the
meditators were not able to improve. As the present study cannot
distinguish between these explanations, it is advisable to choose
the tasks of future longitudinal studies carefully and to limit trial
repetition as much as possible, in order to avoid possible ceiling
effects.

In sum, these findings provide a positive message to every-
body who considers taking up mindfulness meditation practice.
Even short, regular meditation practice may hone our attentional
systems in a useful fashion.

At the end of the study one of the participants expressed how
employing the meditation regime influenced their work perfor-
mance: “I am completing routine reports in a shorter time period.
Also whilst undertaking new tasks I feel that I have a better grasp
of understanding complex issues due to improved attention and
concentration. (. . .) It has opened up my train of thought and
has led me to think outside the box.” Such subjective accounts
highlight the relevance of the meditation training beyond the
laboratory situation and indicate beneficial effects of medita-
tion practices that do not require any life style changes, some
of which we aim to capture by employing cognitive neuroscience
methodologies.
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