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Abstract 

Cloud computing offers cost effective services on-demand which encourage critical 

infrastructure providers to consider migrating to the cloud. Critical infrastructures are 

considered as a backbone of modern societies such as power plants and water. Information in 

cloud computing is likely to be shared among different entities, which could have various 

degrees of sensitivity. This requires robust isolation and access control mechanisms. Although 

various access control models and policies have been developed, they cannot fulfil 

requirements for a cloud based access control system. The reason is that cloud computing has 

a diverse sets of security requirements and unique security challenges such as multi-tenant and 

heterogeneity of security policies, rules and domains. 

This thesis provides a detailed study of cloud computing security challenges and threats, which 

were used to identify security requirements for various critical infrastructure providers. We 

found that an access control system is a crucial security requirement for the surveyed critical 

infrastructure providers. Furthermore, the requirement analysis was used to propose a new 

criteria to evaluate access control systems for cloud computing. Moreover, this work presents 

a new cloud based access control model to meet the identified cloud access control 

requirements. The model does not only ensure the secure sharing of resources among potential 

untrusted tenants, but also has the capacity to support different access permissions for the same 

cloud user. 

Our focused in the proposed model is the lack of data isolation in lower levels (CPU caches), 

which could lead to bypass access control models to gain some sensitive information by using 

cache side-channel attacks. Therefore, the thesis investigates various real attack scenarios and 

the gaps in existing mitigation approaches. It presents a new Prime and Probe cache side-

channel attack, which can give detailed information about addresses accessed by a virtual 

machine with no need for any information about cache sets accessed by the virtual machine. 

The design, implementation and evaluation of a proposed solution preventing cache side-

channel attacks are also presented in the thesis. It is a new lightweight solution, which 

introduces very low overhead (less than 15,000 CPU cycles). It can be applied in any operating 

system and prevents cache side-channel attacks in cloud computing. The thesis also presents a 

new detecting cache side-channel attacks solution. It focuses on the infrastructure used to host 

cloud computing tenants by counting cache misses caused by a virtual machine. The detection 

solutions has 0% false negative and 15% false positive. 



ii 
 

Acknowledgements 

It is a pleasure to thank my Mother and Father, who made this thesis possible and gave me 

everything they have got in order to support me to reach this stage. 

I offer my regards and blessings to my wife who supported me in any respect during the 

completion of the project. She has been always behind me. 

I am heartily thankful to my director of study Dr. Kashif Kifayat, whose encouragement, 

supervision and support from the preliminary to the concluding level enabled me to develop an 

understanding of the subject. His help and guidance have kept me focused and enabled me to 

successfully complete this project. 

I would like to give sincere thanks to Professor Madjid Merabti, who offered me many words 

of encouragement, support and advice throughout my project. I would like also to thank 

Professor Qi Shi and Dr. Bob Askwith for their support and help. 

Lastly, I would like to thank all my friends, who supported and advise of me through the 

project. 

 

 

 

 

 

 

 

 

 



iii 
 

Contents 
CHAPTER 1 Introduction ...................................................................................................... 1 

1.1 Cloud Computing ........................................................................................................ 1 

1.2 Critical Infrastructure .................................................................................................. 1 

1.3 Cloud Computing Security Challenges ....................................................................... 2 

1.4 Access Control ............................................................................................................ 3 

1.5 Cache Side-Channel Attacks ....................................................................................... 4 

1.6 Motivations for the Project .......................................................................................... 5 

1.7 Aims and Objectives of the Project ............................................................................. 5 

1.8 Contributions ............................................................................................................... 7 

1.9 Outline of the Chapters ............................................................................................. 10 

CHAPTER 2 Background .................................................................................................... 11 

2.1 Cloud Computing ...................................................................................................... 12 

2.1.1 Cloud Computing Security Concerns ................................................................ 15 

2.2 Access Control .......................................................................................................... 16 

2.2.1 Why Conventional Access Cannot Be Utilised in Cloud Computing?.............. 18 

2.2.2 Access Control Attacks ...................................................................................... 28 

2.3 Side-Channel Attacks ................................................................................................ 31 

2.3.1 Cache Side-Channel Attacks .............................................................................. 34 

2.3.2 Gaps in Existing Preventing Researches............................................................ 39 

2.3.3 Gaps in the Cache Side-Channel Attacks Detecting Solutions .......................... 41 

2.4 Summary ................................................................................................................... 42 

CHAPTER 3 Related Works ................................................................................................ 43 

3.1 Secure Cloud Services for Critical Infrastructure Providers ..................................... 43 

3.1.1 Requirement Analysis ........................................................................................ 45 

3.2 Access Control in Cloud Computing ........................................................................ 48 

3.2.1 A New Evaluation Criteria to Cloud Based Access Control models ................. 50 



iv 
 

3.3 Summary ................................................................................................................... 58 

CHAPTER 4 Access Control Model for Cloud Computing (AC3) ..................................... 59 

4.1 Access Control for Cloud Computing (AC3) ............................................................ 60 

4.1.1 The Model Security Levels ................................................................................ 68 

4.1.2 The Proposed Model’s Flow Charts .................................................................. 69 

4.1.3 The Analysis ...................................................................................................... 73 

4.1.4 A Case Study...................................................................................................... 75 

4.1.5 Discussion .......................................................................................................... 79 

4.2 Summary ................................................................................................................... 83 

CHAPTER 5 The Prevention and Detection Solutions to Cache Side-Channel Attacks in 

Cloud Computing  .................................................................................................................... 84 

5.1 A New Prime and Probe attack ................................................................................. 85 

5.2 A Novel Lightweight Solution to Prevent Cache Side-Channel Attacks in Cloud 

Computing............................................................................................................................ 88 

5.2.1 Our Goals ........................................................................................................... 88 

5.2.2 The New Lightweight Solution .......................................................................... 89 

5.2.3 Addresses Being Removed From the CPU Caches ........................................... 94 

5.3 A New Infrastructure Solution to Detect Cache Side-Channel Attacks in Cloud 

Computing............................................................................................................................ 96 

5.3.1 Our Goals ........................................................................................................... 97 

5.3.2 The Proposed Detection Infrastructure Solution ................................................ 98 

5.4 Summary ................................................................................................................. 101 

CHAPTER 6 The Implementation of the Proposed Prevention and Detection Solutions to 

Cache Side-Channel Attacks .................................................................................................. 102 

6.1 The Testbed ............................................................................................................. 102 

6.1.1 Xen Hypervisor ................................................................................................ 102 

6.1.2 The Host Server ............................................................................................... 106 

6.2 The Implementation of the Lightweight Prevention Solution ................................. 107 



v 
 

6.2.1 Tracing Algorithm ........................................................................................... 108 

6.2.2 Erasing Algorithm ............................................................................................ 108 

6.2.3 Clflush .............................................................................................................. 109 

6.2.4 A VCPU’s Memory Addresses to Be Erased .................................................. 111 

6.2.5 Implementing the Solution’s Code on the Xen’s Kernel ................................. 112 

6.3 Implementation of the New Detection Solution ...................................................... 113 

6.3.1 Measuring Algorithm ....................................................................................... 113 

6.3.2 Analysis Algorithm .......................................................................................... 114 

6.3.3 Implementing the Detection Solution in the Kernel of the Xen Hypervisor ... 115 

6.4 Summary ................................................................................................................. 116 

CHAPTER 7 Results and Evaluation of the Prevention and Detection Solutions to Cache 

Side-Channel Attacks............................................................................................................. 117 

7.1 Results and Evaluation of the Novel Lightweight Prevention Solution.................. 117 

7.1.1 Security Evaluation .......................................................................................... 117 

7.1.2 Performance Evaluation ................................................................................... 121 

7.2 Results and Evaluation of the Novel Infrastructure Detection Solution ................. 127 

7.2.1 Security Evaluation .......................................................................................... 127 

7.2.2 Performance Evaluation ................................................................................... 132 

7.3 Summary ................................................................................................................. 136 

CHAPTER 8 Conclusion and Future Work ....................................................................... 137 

8.1 Conclusion ............................................................................................................... 137 

8.2 Future Work ............................................................................................................ 140 

Appendix A ............................................................................................................................ 152 

Appendix B ............................................................................................................................ 156 

Appendix C ............................................................................................................................ 163 

 

 



vi 
 

List of Diagrams 

FIGURE 1: THE CLOUD COMPUTING SERVICE MODELS ............................................................... 13 

FIGURE 2: INFORMATION FLOW IN THE BELL- LAPADULA MODEL ............................................ 18 

FIGURE 3: ROLE-BASED ACCESS CONTROL MODEL .................................................................... 21 

FIGURE 4: CPU CACHES AND THEIR LEVELS ............................................................................. 34 

FIGURE 5: THE PRIME AND PROBE ATTACK ............................................................................... 37 

FIGURE 6: THE MONITORED LINE IN THE FLUSH+RELOAD ATTACK ........................................... 37 

FIGURE 7: THE VICTIM ACCESSES THE MONITORED LINES ......................................................... 38 

FIGURE 8: SECURITY REQUIREMENTS FOR A NUMBER OF CI PROVIDERS ................................... 45 

FIGURE 9: FACTORS AFFECTING DESIGN OF AN ACCESS CONTROL SYSTEM FOR CLOUD 

COMPUTING ....................................................................................................................... 51 

FIGURE 10: THE LEVEL 1 IN AC3 MODEL .................................................................................. 60 

FIGURE 11: A SECURITY TAG .................................................................................................... 61 

FIGURE 12: ASSIGNING ONE SESSION FOR EVERY USER IN THE AC3 .......................................... 62 

FIGURE 13: THE AC3 RELATIONSHIPS ....................................................................................... 63 

FIGURE 14: A TASK ACCESSING DATA ....................................................................................... 66 

FIGURE 15: A TASK ACCESSING DATA VIA ANOTHER TASK ........................................................ 66 

FIGURE 16: A TASK PASSING A SECURITY TAG TO AN UTILISED PROCESS .................................. 66 

FIGURE 17: A PROCESS GOT A SECURITY TAG FROM A TASK UTILISED BY ANOTHER TASK ........ 66 

 FIGURE 18: ACCESS CONTROL FOR CLOUD COMPUTING (AC3) (LEVEL 2&3) ......................... 69 

FIGURE 19: THE FLOW CHART OF SOLUTION’S LEVEL 1 ............................................................. 70 

FIGURE 20: THE FLOW CHART OF SOLUTION’S LEVEL 2 ............................................................. 71 

FIGURE 21: THE FLOW CHART OF SOLUTION’S LEVEL 3 ............................................................. 72 

FIGURE 22: THE AC3 BLOCK DIAGRAM .................................................................................... 73 

FIGURE 23: THE AC3 IN THE CLOUD ......................................................................................... 76 

FIGURE 24: THE NEW PRIME AND PROBE ATTACK ..................................................................... 86 

FIGURE 25: TRANSLATING VIRTUAL TO PHYSICAL ADDRESSES ................................................. 87 

FIGURE 26: THE FLOW CHART OF THE NOVEL LIGHTWEIGHT SOLUTION .................................... 92 

FIGURE 27: THE SOLUTION PREVENTS PRIME-PROBE ................................................................ 93 

 FIGURE 28: THE NOVEL LIGHTWEIGHT SOLUTION MITIGATES FLUSH+RELOAD ATTACKS ........ 93 

FIGURE 29: VIRTUAL MACHINES OVERLAPPING ACCESS TO A VCPU ........................................ 95 

FIGURE 30: VIRTUAL MACHINES OVERLAPPING ACCESS TO VCPUS ......................................... 96 

FIGURE 31: VCPUS MIGRATES FROM A CPU CORE TO ANOTHER .............................................. 96 



vii 
 

FIGURE 32: THE NOVEL INFRASTRUCTURE SOLUTION ............................................................... 99 

FIGURE 33: A CPU CACHE MISSES SEQUENCE ......................................................................... 100 

FIGURE 34: THE CPU’S PHYSICAL CORES AND CACHE LEVELS ................................................ 106 

FIGURE 35: THE NUMBER OF VM USED IN THE EXPERIMENTS ................................................. 107 

FIGURE 36: IMPLEMENTING THE SOLUTION’S ALGORITHMS ON THE XEN HYPERVISOR ........... 107 

FIGURE 37: THE KERNEL’S STRUCTURE OF THE XEN HYPERVISOR .......................................... 109 

FIGURE 38: DATA STRUCTURE OF P2M TABLE ........................................................................ 111 

FIGURE 39: A COMPARISON OF ATTACK TRAILS BETWEEN OUR PREVENTION SOLUTION AND 

OTHER SOLUTIONS ........................................................................................................... 118 

FIGURE 40: TRANSLATING VIRTUAL TO PHYSICAL ADDRESS ................................................... 120 

FIGURE 41: A SUCCESSFUL TRIAL TO ATTACK ON A NORMAL HYPERVISOR ............................. 121 

FIGURE 42: THE OVERLOAD INDUCED BY THE LIGHTWEIGHT SOLUTION ................................. 122 

FIGURE 43: THE INDUCED OVERLOAD FROM EACH SOLUTION WITH 30 VM ............................ 123 

FIGURE 44: THE OVERLOAD INDUCED WITH AND WITHOUT TRANSLATING FUNCTION ............. 124 

FIGURE 45: THE INDUCED OVERLOAD FROM EACH SOLUTION WITH VARIOUS VM NUMBERS .. 124 

FIGURE 46: HEAVY WORKLOAD EXECUTED ON THE PROPOSED PREVENTION SOLUTION AND 

NORMAL HYPERVISOR WITH DIFFERENT CAP VALUES ..................................................... 125 

FIGURE 47: HEAVY WORKLOAD EXECUTED ON THE PREVENTION SOLUTION AND NORMAL 

HYPERVISOR WITH DIFFERENT WEIGHT VALUES ............................................................. 126 

FIGURE 48: HEAVY WORKLOAD EXECUTED ON THE PREVENTION SOLUTION AND NORMAL 

HYPERVISOR WITH DIFFERENT XEN TIMESLICE VALUES .................................................. 126 

FIGURE 49: HEAVY WORKLOAD EXECUTED ON THE PREVENTION SOLUTION AND NORMAL 

HYPERVISOR WITH DIFFERENT XEN RATELIMIT VALUES ................................................. 127 

FIGURE 50: A COMPARISON OF ATTACK TRAILS DETECTION BETWEEN OUR DETECTION 

SOLUTION AND OTHERS ................................................................................................... 128 

FIGURE 51: DETECTING A FLUSH+RELOAD CACHE SIDE-CHANNEL ATTACK ........................... 130 

FIGURE 52: DETECTING A PRIME & PROBE ATTACK................................................................ 131 

FIGURE 53: DETECTING THE PRIME & PROBE ATTACK IN ONE OF EXPERIMENTS TRIALS ......... 132 

FIGURE 54: THE GENERATED OVERLOAD BY THE DETECTION SOLUTION WITH 10 VM ............ 133 

FIGURE 55: COMPARING OVERLOAD GENERATED BY OUR SOLUTION WITH OTHER PROPOSED 

SOLUTIONS ...................................................................................................................... 133 

FIGURE 56: THE INDUCED OVERLOAD FROM THE DETECTION SOLUTION WITH VARIOUS VM 

NUMBERS ........................................................................................................................ 134 



viii 
 

FIGURE 57: HEAVY WORKLOAD EXECUTED ON THE DETECTION SOLUTION AND NORMAL 

HYPERVISOR WITH DIFFERENT XEN RATELIMIT VALUES ................................................. 134 

FIGURE 58: HEAVY WORKLOAD EXECUTED ON THE DETCTION SOLUTION AND NORMAL 

HYPERVISOR WITH DIFFERENT XEN TIMESLICE VALUES .................................................. 135 

FIGURE 59: TESTING THE PROPOSED DETECTION SOLUTION WITH VARIOUS VM’S RAM SIZES

........................................................................................................................................ 135 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

List of Tables 

TABLE 3.1: RESULTS OF APPLYING THE CRITERIA ON VARIOUS ACCESS CONTROL MODELS ....... 58 

TABLE 4.1: ACCESSING DATA CASES IN AC3 ............................................................................ 68 

TABLE 4.2: COMPARING AC3 WITH CONVENTIONAL ACCESS CONTROL MODELS ...................... 79 

TABLE 6.1: THE CREDIT SCHEDULER COMMANDS ................................................................... 105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

List of Publications 

Y. A. Younis, K. Kifayat, and M. Merabti, “An Access Control Model for Cloud 
Computing,” J. Inf. Secur. Appl., vol. 19, no. 1, pp. 45–60, Feb. 2015 

A. Younis, Y., Kifayat, K., Shi, Q., & Askwith, B. A New Prime and Probe Cache Side-
Channel Attack for Cloud Computing. In the 13th IEEE International Conference on 
Dependable, Autonomic and Secure Computing (DASC-2015) (p. 7), Liverpool UK. 
2015.  

A. Younis, Y., Kifayat, K., & Merabti, M. A Novel Evaluation Criteria to Cloud Based 
Access Control Models. In The 11th IEEE International Conference on Innovations in 
Information Technology (IIT’15) (p. 6), Dubai, UAE. 2015.  

A Younis, Y., Kifayat, K. & Merabti, M., 2014. Cache Side-Channel Attacks in Cloud 
Computing. The Second International Conference on Cloud Security Management 
ICCSM-2014. (p. 10), Reading, UK. 2014.  

A. Younis, Y., Merabti, M. & Kifayat, K. Cloud Computing Security & Privacy 
Challenges. In The 15th annual post graduate symposium on the convergence of 
telecommunications, networking and broadcasting. p. 6, Liverpool, UK. 2014.  

A. Younis, Y., Merabti, M. & Kifayat, K. Secure Cloud Computing for Critical 
Infrastructure: A Survey. In The 14th annual post graduate symposium on the 
convergence of telecommunications, networking and broadcasting. Liverpool: 
Liverpool John Moores University, p. 6, Liverpool, UK. 2013. 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

CHAPTER 1 Introduction 

This chapter gives a brief introduction to cloud computing in terms of services and security 

challenges. It also provides basic information about critical infrastructure, its importance to our 

daily life and its security requirements. In addition, it covers the importance of access control 

systems to data security and why conventional access control models cannot be deployed in 

their current state in the cloud. Some information about access control systems’ security attacks 

in general and cache side-channel attacks in particular are also presented here. This chapter 

also shows our aims and objectives, the motivation behind this project, the novel contributions 

and the structure of the thesis. 

1.1 Cloud Computing 

Cloud computing is an open standard model, which is Internet-centric and provides various 

services either software or hardware. It offers new cost effective services on-demand such as 

Software as a service (SaaS), Infrastructure as a service (IaaS) and Platform as a service (PaaS). 

A significant interest in both industry and academia has been generated to explore and enhance 

cloud computing. It has five essential characteristics: on-demand self-service, measured 

service, rapid elasticity, broad network access and resource pooling. It is aiming at giving 

capabilities to use powerful computing systems with reduced cost, increased efficiency and 

performance [1]. It consolidates the economic utility model with the evolutionary enhancement 

of many utilised computing approaches and technologies, which include computing 

infrastructure consisting of networks of computing and storage resources, applications and 

distributed services. Moreover, there is an ongoing debate in Information Technology (IT) 

communities about how the cloud computing paradigm differs from existing models and how 

these differences affect its adoption. One view considers it as a modern or a fashionable way 

to deliver services over the Internet, while others see it as a novel technical revolution [2]. 

However, they have agreed that cloud computing gives a new hope for meeting various 

requirements of service providers and consumers as well. Hence, governments, enterprises and 

even critical infrastructure providers are considering migrate to cloud computing. 

1.2 Critical Infrastructure 

Critical infrastructures are a crucial assets for the functioning of vital societal services such as 

power distribution networks and financial systems [3]. The importance of critical 
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infrastructures is hard to overestimate, and even relatively minor failures can impact on a large 

number of people e.g. on 31st March 2015 Turkey has suffered a huge power cut affecting 

almost the whole country [4] due to a cyber-attack. This unexpected power cut caused complete 

shutdown to public transport and big disruption to air traffic controllers. This incident 

highlights the importance of keeping such systems running. Failures can result in serious 

consequences for the functioning of society. It is an alarming situation as an attacker can use a 

laptop or computer to disrupt the national infrastructures. 

Critical Infrastructure Providers (CIP) have started to use the cloud computing due to many 

benefits. However, there are still many challenges such as multi-tenant billing, virtualization 

with very strong isolation, Service Level Agreements (SLA), definitions and automatic 

enforcement mechanisms, end-to-end performance and security mechanisms. One of the 

objectives of this project is to investigate cloud computing security issues, which hinder 

migration of CIP to the cloud and also perform requirement analysis for different CIP users to 

utilise the cloud. 

1.3 Cloud Computing Security Challenges 

With all of these promising facilities and benefits that cloud computing can offer, there are still 

a number of technical barriers that may prevent cloud computing from becoming a truly 

ubiquitous service. Security is the main inhibitor to cloud adoption. Cloud computing may 

inherit some security risks and vulnerabilities from the Internet, such as malicious code 

(Viruses, Trojan Horses). In addition, cloud computing suffers from data privacy issues and 

conventional distributed systems attacks i.e. Distributed Denial of Service attacks (DDoS), 

which could have a huge impact on its services. Moreover, cloud computing has brought new 

concerns such as moving resources and storing data in the cloud with a probability of residing 

in another country with different regulations. Computing resources could be inaccessible due 

to many reasons such as natural disaster or denial of service. 

Cloud computing services may be delivered by a large number of service providers. They use 

various types of technologies, which may cause heterogeneity problems [5]. Extensibility and 

shared responsibilities is another concern as up to now it is not clear, how security duties should 

be assigned in cloud computing and who is responsible for what [6].  Furthermore, 

virtualization is one of many ways used in cloud computing to meet their consumer necessities, 
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but it brings its own threats such as penetrating the logical isolation between virtual machines 

and side-channels [7]. 

Cloud computing provides the perfect platform to lunch cyber-attacks. Many of these attacks 

are commonly encountered in the wider Internet such as Distributed Denial-Of-Service (DOS) 

attack [8], insecure application programming interface [9], abuse and nefarious use of cloud 

computing [9], malicious insiders [9], and access control issues. 

1.4 Access Control 

An access control system is a crucial requirement to secure assets against unauthorised access 

in a cloud environment. However, there are still many questions which raise issues e.g. service 

providers in cloud computing are likely to be outside the trusted domain of users and resided 

in an another country with different law and regulations [10]. Furthermore, access control 

systems can be more complex and sophisticated due to dynamic resources [11] heterogeneity 

[12] and diversity of services [13]. 

There are various traditional access control models and policies for different environment such 

as Mandatory Access Control (MAC) model, Discretionary Access Control (DAC) model and 

Role Based Access Control (RBAC). These models cannot fulfil cloud’s access control 

requirements due to a diverse set of users and platforms with different sets of security 

requirements. More details can be found in chapter 2 section 2.2.1. Cloud computing also has 

unique security challenges such as multi-tenant hosting and heterogeneity of security policies, 

rules and domains. We believe these models may not fully cover access control requirements 

of cloud computing as each one of them has been proposed for a specific environment to fulfil 

consumers’ access control requirements. 

Deploying a robust access control model would make cloud service providers and their clients 

confident about confidentiality and integrity of their data, yet there are a number of common 

techniques and attacks that can be used to gain unauthorized access to data such as session 

hijacking or TCP hijacking. In addition, password attacks such as dictionary attack are still 

used to bypass access control systems. All of the mentioned attacks target the application level. 

However, there are number of attacks at lower levels such as CPU caches which can have 

severe impacts on data access control. One of these attacks is a side-channel. Some side-

channels can be used without interfering with other cloud tenants’ customers to gain some 

sensitive information, for instance, cache side-channel attacks [14]. 
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1.5 Cache Side-Channel Attacks 

Cloud computing supports multi-tenancy to fulfil future increasing demands for accessing and 

using resources provided over the Internet. Multi-tenancy enables the sharing of computing 

physical resources among cloud computing tenants and offers cost-effective on-demand 

scaling. However, multi-tenancy in cloud computing has unique vulnerabilities such as clients’ 

co-residence and virtual machine physical co-residency. Physical co-residency of virtual 

machines in cloud computing has been exploited to leak sensitive information and launch 

sophisticated security attacks. It can facilitate attackers with an ability to interfere with another 

virtual machine running on the same physical machine due to an insufficient logical isolation. 

In the worst case scenario, attackers can extract sensitive data using hardware side-channels on 

the same physical machine. 

Side-channel attacks exploit the correlation between the higher level functionality of the 

software and the underlying hardware phenomena. There are various types of side-channel 

attacks, which are classified according to the hardware medium they target and exploit, for 

instance, cache side-channel attacks. CPU caches are one of the most common hardware 

devices targeted by adversaries because they have high-rate interactions and sharing between 

processes. Furthermore, full encryption keys of well-known algorithms (i.e. RSA and AES) 

have been broken using spying processes to spy and collect information about cache lines, 

which have been accessed [2,3]. This information is analysed and linked to the current virtual 

machine, which occupies the processor. 

There are number of proposed solutions to prevent and detect cache side-channel attacks in 

cloud computing [17,18,19,20,21]. Firstly, the prevention solutions can be either hardware or 

software based. Although hardware-based techniques seem to be more secure to implement as 

they are more efficient and thwart the root cause of those attacks, they cannot be practically 

applied until CPU makers implement them into CPUs. Furthermore, software-based mitigation 

techniques are attack-specific solutions, which can only tackle attacks that they are proposed 

for. Consequently, these solutions might not have the ability to mitigate new side-channel 

attacks. 

Secondly, most of the detection tools fail due to the deceived normal behaviour of cache side-

channel. On the other hand, detecting solutions mainly rely on software and applications to 

detect any abnormal behaviour on the CPU cache. These applications and software have to will 
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slow down the CPU and caches’ operations and introduce unwanted overload, which will affect 

the CPU performance. 

1.6 Motivations for the Project 

The motivation for this project came from the author’s quest to understand the cloud computing 

security challenges and threats; and analyse the level of security access provided to either cloud 

service providers or their tenants in order to secure access to the data. This included 

investigation of security requirements for different critical infrastructure service providers. 

Among many security requirements, a cloud based access control model has been found one 

of the crucial security requirements. The author conducted a detailed requirement analysis for 

proposing a cloud based access control model that can fulfil the security requirements of cloud 

computing services. Data in a cloud computing environment will be shared among different 

entities. These entities have various degrees of sensitivity. Current access control models suffer 

from semantic and heterogeneity problems, which affect used policies and methods used to 

translate the policies.  A cloud based access control model has to insure access to data in all 

computation levels from users’ levels to lower levels; and deal with data leakage at lower level 

such as CPU caches. However, the used access control models either the conventional access 

control models or the proposed for cloud computing cannot control access to data at the lower 

level resources such as RAM and CPU caches. Therefore, this motivates the author to 

investigate the effects of cache side-channel attacks on cloud computing and available 

proposed solutions to mitigate them. 

In addition, the author’s knowledge about securing access to cloud computing is intended to be 

enhanced throughout this multifaceted project. With very little experience in extensive 

research, and also the techniques employed in solving the issues, it is believed that this project 

will pose some significant challenges. However, the author believes that the outcome will be 

worthwhile as it would contribute to global knowledge and also demonstrate how cloud 

computing can be utilised securely to offer secure access to its services for tenants such as 

critical infrastructure providers. 

1.7 Aims and Objectives of the Project 

This project aims to propose an access control model for cloud computing to meet the security 

requirements of cloud service providers and their customers such as critical infrastructure 

providers. It will also enhance the level of security of accessing data in lower levels such as 
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CPU caches by providing detecting and prevention solutions to any leakage of information by 

cache side-channel attacks. 

The key objective is to produce a cloud based access control model, through exploratory 

research that results in achieving these aims. The purpose of this research is: 

1. To identify cloud computing security challenges, concerns and threats for cloud service 

providers and their customers. 

2. To perform critical infrastructure providers’ security requirements analysis for different 

critical infrastructure providers. 

3. To identify gaps in conventional access models (RBAC, MAC, etc.). 

4. To perform a requirement analysis for cloud based access control systems and provide 

new evaluation criteria for cloud based access control systems. 

5. To provide a simplified output model where data can be secured from unauthorized 

access at all levels from application levels to processing levels. 

6. To identify threats of side-channel attacks that can be used to bypass isolation levels 

enforced by access control policies. 

7. To provide an efficient detection solution to identify cache side-channel attacks in cloud 

computing without affecting the performance or asking for any modifications to 

customers’ operating systems. 

8. To facilitate cloud computing service providers with a prevention solution that prevents 

cache side-channel attacks without affecting the CPU caches’ performance. 

9. To implement the proposed solutions in an identical environment to cloud computing 

with various number of virtual machines. 

10. To compare the obtained results from the proposed solutions with various results from 

other prevention and detection cache side-channel attacks solutions that are 

implemented in the same environment. 

11. To publish the results of this project in well-regarded peer reviewed international 

journals and conferences. 
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1.8 Contributions 

In this project, we have fulfilled all the stated objects in section 1.7. We started looking at cloud 

computing security challenges for cloud service providers and their customers such as critical 

infrastructure providers. Security requirements for different critical infrastructure providers 

were analysed and the conducted analysis led to the chosen of cloud based access control 

security challenges. We done a security requirement analysis for cloud based access control 

systems, identified challenges for deploying conventional access models (RBAC, MAC, etc.) 

in cloud computing and presented new evaluation criteria for cloud based access control 

systems. The requirement analysis for cloud based access control systems facilitated proposing 

a new cloud based access control model that can fulfil the surveyed security requirements of 

cloud computing customers. As the proposed cloud access control model has a number of 

components, we focused on identifying threats to isolation levels enforced by the cloud based 

access control model in lower levels (CPU caches). Specifically, we looked at cache side-

channel attacks. We proposed two new solutions to prevent and detect cache side-channel 

attacks in cloud computing. Both of the proposed solutions were fully implemented on a server 

identical to cloud computing servers. Due to the size of the RAM (16 GB), we could not run 

more than 30 virtual machines on the server at the same time. Furthermore, results obtained 

from our solutions to prevent and detect cache side-channel attacks are by far better than results 

gained from other prevention and detection proposed solutions implemented in the same server. 

The contributions of this thesis can be respectively categorized in the following: 

1. Critical infrastructure providers’ security requirements 

This project presents a list of security requirements for different critical infrastructure 

providers to be moved to cloud computing. This list covers more than four sectors of 

critical infrastructure areas, which can also be applied to the other areas. The details 

can be found in section 3.1 in the chapter three: related work. 

2. Requirements analysis for cloud based access control systems 

In order to propose a cloud based access control model, we have carried out an in-depth 

investigation to identify every possible security requirements needed for cloud based 

access control model. It is demonstrated in section 3.2. 
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3. A novel guidelines criterion for cloud based access control models 

This project illustrates novel guidelines criteria, which is shown in section 3.3. It can 

be used either to propose or evaluate access control models for cloud computing. 

4. The cloud access control model contributions 

Chapter 4 presents a novel access control model for cloud computing that facilitates the 

role and task principles to restrict access to cloud computing resources. Major 

contributions in the cloud access control model are as follows: 

 It ensures a secure cloud that has sharing of physical resources among potential 

untrusted tenants. 

 It has three different security levels, which can be used according to level of 

trust. 

 It supports various sensitive levels of information in order to restrict who can 

read and modify information in the cloud. 

 It copes with different access permission to the same cloud user and giving 

him/her the ability to use multiple services with regard to time of authentication 

and login. 

5. A new Prime and Probe attack 

It is a new way to launch cache side-channel attack without utilising the link between 

memory pages and CPU cache sets. It uses a virtual machine’s virtual addresses and 

translates them to physical. These addresses will be checked either accessed by another 

virtual machine or not in order to get the virtual machine’s data. The details can be 

found in section 5.1. 

6. A novel lightweight  solution to prevent cache side-channel attacks in cloud computing 

Section 5.2 in chapter 5 illustrates a novel solution to deal with leakage of data from all 

levels of the CPU caches by preventing cache side-channel attacks. The major 

contributions in the novel lightweight solution are as follows: 
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 The solution erases all data related to a Virtual Machine (VM) from all CPU 

cache levels directly after its Virtual CPU (VCPU) releases the control of the 

CPU resources and does not erase or modify any data that does not belong to 

the targeted VM. 

 The first solution to deal with a VCPU and target all its overlapping situations. 

 It is generic and can be used with any operating system (the Xen hypervisor is 

compatible with many operating systems such as Windows, Linux (Ubuntu, 

SUSE, etc.), etc.). 

 The solution induces neglected performance overhead. 

 All the tenants’ operating systems are completely free from any modifications 

or changing in their applications or libraries. 

 It uses Clflush to erase virtual addresses from cache by utilising the Linux 

Ubuntu operating system. 

 The solution can deal with all overlapping access and core migration in the 

following cases: 

 Number of VMs or domains overlapping access to one VCPU. 

 Number of VMs or domains overlapping access to number of VCPUs. 

 Number of VCPUs overlapping access to a CPU core. 

 A VCPU migrates from a CPU core to another. 

7. A novel infrastructure detection solution to detect cache side-channel attacks in cloud 

computing 

One of our main contributions is a novel solution that can detect cache side-channel 

attacks in cloud computing without needing for any other software to detect cache 

misses caused by a virtual machine. It is demonstrated in section 5.3. Furthermore, 

major contributions in the novel infrastructure detection solution are as follows: 
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 The solution measures cache misses caused and when they happen by a VM in 

its execution time without using any attached software or application. 

 It measures the time taken by CPU Fetch cycle to detect CPU cache misses. 

 The solution has a small performance overhead. 

 The hypervisor used in the cloud infrastructure does not require any major 

modifications. 

 All the tenants’ operating systems are completely free from any modifications 

or changing in their applications or libraries. 

1.9 Outline of the Chapters 

The report is divided into 8 chapters, each covering a specific area of the project work. The 

following outline sections provide an overview for each of the chapters to guide the reader 

through the report. 

Chapter 1 Introduction: This chapter details the overall aims of the project and what it hopes 

to achieve. It briefly discusses the background of the project and justification as to why the 

project was conducted. The final part of this introductory section provides a general overview 

of each of the chapters in the report. 

Chapter 2 Background: This chapter looks in-depth at cloud computing in terms of its 

features, services and security challenges. Here, the author highlights basic information about 

access control systems. It also illustrates the conventional access control models and reasons 

for not being deployed as they are in the cloud. The chapter also provides basic information 

about access control attacks and a concise review of cache side-channel attacks and previous 

research work in this domain, and how far they went in solving identified issues. 

Chapter 3 Related Works: Here, the author sets out the definition of critical infrastructure 

and how it is crucial to societies. A novel analysis of security requirements of various critical 

infrastructure providers is demonstrated in this chapter. Furthermore, this chapter highlights 

the importance of an access control system to cloud service providers and their tenants. A new 

cloud based access control criteria are presented in this chapter. 
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Chapter 4 Access Control Model For Cloud Computing: This chapter presents the proposed 

solution model and its design methodology. The author also describes the implementation 

strategies, a security evaluation, a case study, analysis and discussion of characteristics of the 

proposed solution. 

Chapter 5 The Prevention and Detection Solutions to Cache Side-Channel Attacks in 

Cloud Computing: This chapter presents a new Prime and Probe attack. In this type, attackers 

do not have to have any information about number of cache lines or memory pages. 

Furthermore, novel solutions to prevent and detect cache side-channel attacks are illustrated in 

this chapter. They are a novel lightweight solution to prevent cache side-channel attacks in 

cloud computing and a novel infrastructure solution to detect cache side-channel attacks in 

cloud computing. This chapter details the intended goals to be achieved for both solutions and 

the design of them. 

Chapter 6 The Implementation of the Proposed Prevention and Detection Solutions to 

Cache Side-Channel Attacks: This chapter illustrates full details about the testbed, which is 

used to implement cache side-channel attacks prevention and detection solutions. It justifies 

the reasons behind using the Xen hypervisor and gives full explanation about how both 

solutions are implemented in the Xen hypervisor source code. 

Chapter 7 Results and Evaluation of the Prevention and Detection Solutions to Cache 

Side-Channel Attacks: This chapter sets out the evaluation results, which were gained from a 

number of conducted experiments. The results were compared with other results from a number 

of proposed solutions implemented in the same conditions used to test our solutions. 

Chapter 8 Conclusion and Future Works: This chapter summarises the entire project and 

reviews the findings. It also outlines future work that can be done to improve the project. 

 

CHAPTER 2 Background 

This chapter provides an overview of the necessary background on cloud computing services 

and security challenges. It also presents detailed information about access control’s definition 

and models; and why they cannot be deployed in their current state in the cloud. Furthermore, 

it illustrates a number of security attacks that target access control systems. It provides a concise 
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review of side-channel attacks, specifically cache side-channel attacks. Previous research work 

in cache side-channel attacks and their specific threat to cloud computing are also illustrated 

here. 

2.1 Cloud Computing 

In recent years, we have seen a dramatic growth in IT investments, and a new term has come 

to the surface which is, cloud computing. The National Institute of Standards and Technology 

defines the cloud computing as “a model for enabling ubiquitous, convenient, on-demand 

network access to a shared pool of configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction” [1]. Cloud computing is an open standard 

model, which is Internet-centric and provides various services either software or hardware. It 

needs minimal management effort from service providers. A significant interest in both 

industry and academia has been generated to explore and enhance cloud computing. 

Cloud computing can enable ubiquitous computing and offer on-demand network access to a 

shared pool of configurable computing resources. It provides all of its resources as services 

such as storage, computation and communication. Cloud computing is a unique combination 

of capabilities and innovation technologies. It needs minimal management effort from service 

providers and delivers scalable and dynamic infrastructure, global/remote access and usage 

control and pricing. Furthermore, it changes delivery platform, services consumption and the 

way users and businesses interact with IT resources. It consolidates the economic utility model 

with the evolutionary enhancement of many utilised computing approaches and technologies, 

which include computing infrastructure consisting of networks of computing and storage 

resources and applications. 

Cloud computing has a number of unique features, for example, virtualization and multi-tenant. 

It has five essential characteristics: on-demand self-service, measured service, rapid elasticity, 

broad network access and resource pooling. It is aiming at giving capabilities to use powerful 

computing systems while reducing the cost and increasing efficiency and performance [1]. In 

addition, it offers users scalable services on-demand, which will be used in cloud computing 

to provide services to a wide variety of consumers [22]. As illustrated in figure 1, these service 

models are: 
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 Figure 1: The cloud computing service models 

1. Software as a Service (SaaS) 

It is on-demand applications and software service, which hosts applications and their 

data in the cloud. Software and applications are available to be accessed anywhere at 

any time by using ordinary web browsers over the Internet. 

2. Platform as a Service (PaaS) 

PaaS will facilitate cloud computing customers with the ability to build, enhance and 

deploy their application without the complexity of configuration, cost of managing and 

buying the underlying either software or hardware. 

3. Infrastructure as a Service (IaaS) 

It offers cloud computing consumers computing infrastructure components such as 

storage, processing and any other computing resources. It supplies virtualized 

infrastructures, which are bought or rented as a fully outsourced service. 

In cloud computing, there are four architectures have been considered for being ways to address 

cloud computing customers’ demands [23], they are described as follows: 

1. Public cloud 

Cloud computing resources are provided by a service provider whom makes them 

accessible and available to industry groups and general public. 
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2. Community cloud 

It is another kind of cloud, which is shared by various organizations and offers shared 

infrastructure for a specific community. 

3. Private cloud 

It is supplied and managed by a cloud service provider for a single organization. 

4. Mixed cloud 

It is a combination between two or more clouds such as public, private or community 

clouds. However, these mixed clouds will remain unique entities. 

Cloud computing gives a new hope for meeting various requirements of service providers and 

consumers as well, when they look at what the cloud can offer to them. A report from The 

Economist Intelligence Unit and IBM finds that among 572 business leaders surveyed, almost 

three-fourths indicate their companies have piloted, adopted or substantially implemented 

cloud in their organizations and 90% expect to have done so in three years. Moreover, a number 

of respondents whose companies have “substantially implemented” cloud is expected to grow 

from 13% today to 41% in three years [24]. A new report published April 2014 by the Right 

Scale, finds that among 1000 IT executives surveyed, almost 94% indicate their companies are 

running Software as a Service (SaaS) or experimenting infrastructure as a Service (IaaS). 

Furthermore, 87% of surveyed organizations are utilising public cloud services [25]. 

The unique benefits of cloud computing have provided the basis for many critical infrastructure 

providers to migrate to the cloud computing paradigm, for example, IBM and Cable & Wireless 

(C&W) have announced plans to collaborate in the development of a cloud-based smart 

metering system[26]. This system aims at deploying about 50 million smart meters in the UK 

by 2020. BT has deployed a new cloud-based supply chain solution to increase the operational 

efficiency, improve customer service and optimize reverse logistics [27]. In April 2013, the 

National Grid, the UK’s gas and electricity network, has announced plans to replace its own 

internal datacentres with a CSC-hosted cloud [28]. However, with all of these promising 

facilities and benefits, there are still a number of technical barriers that may prevent cloud 

computing from becoming a truly ubiquitous service. Especially where the cloud computing 

tenants have strict or complex requirements over the security of infrastructures [23]. 
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2.1.1 Cloud Computing Security Concerns 

The latest cyber-attacks on high profile firms (Amazon, Google and Sony’s PlayStation) and 

the predictions of more cyber-attacks on cloud infrastructure are threatening to slow the take-

off of cloud computing. The numbers of cyber-attacks are now extremely large and their 

sophistication so great, that many organizations are having trouble determining which new 

threats and vulnerabilities pose the greatest risk and how resources should be allocated to 

ensure that the most probable and damaging attacks are dealt with first. These security concerns 

and attacks could slow the growth of the cloud computing market, which is expected to reach 

$3.2 billion  in 2013 in Asia alone, while the global market could reach $55 billion in 2014 

[22]. 

Security is the greatest inhibitor for adoption and the primary concern in cloud computing. 

Cloud computing inherits some security risks and vulnerability from the Internet, such as 

malicious code (Viruses, Trojan Horses). In addition, cloud computing suffers from 

conventional distributed systems security attacks, which could have a huge impact on its 

services such as back door, Man-in-the Middle attack, and etc. Moreover, cloud computing has 

brought new concerns such as moving resources and storing data in the cloud with the 

probability of residing in another country, which has different regulations. A cloud service 

provider has to ensure its computing resources are fully usable and available at all times [29]. 

Computing resources could be inaccessible due to many reasons such as natural disaster or 

denial of service. Protecting data privacy is another aspect in cloud computing security. Cloud 

computing is a shared environment, which uses sharing infrastructure. Hence, data may face a 

risk of disclosure or unauthorized access. 

Cloud computing services are delivered by a large number of service providers. They use 

various types of technologies, which cause heterogeneity issues [5]. Extensibility and Shared 

Responsibilities is another concern as up to now it is not clear, how security duties should be 

assigned in cloud computing and who is responsible for what [6].  Furthermore, virtualization 

is one of many ways used in cloud computing to meet their consumer requirements, but it 

brings its own threats such as data isolation problems and communication between virtual 

machines [7]. Cloud computing makes cyber-attacks more likely; many of these attacks are 

among the most potential and commonly encountered in the wider Internet such as Distributed 

Denial-Of-Service (DOS) attack [8], insecure application programming interface, abuse and 

nefarious use of cloud computing, malicious insiders [9], etc. 
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Information in cloud computing is more likely to be shared among different entities, which 

could have various degrees of sensitivity. Therefore, it would require strong isolation and 

controlling access mechanisms.  In order to draw the whole picture, we have done an in-depth 

investigation to find and analyse the cloud security challenges and security requirements for 

different users, e.g. critical infrastructure service providers. 

Cloud computing is a shared open environment, which has its own characteristics and features 

such as on-demand services and mobility. Thus, cloud service providers need a strengthened 

access control system for controlling access to their resources with the ability to monitor who 

deals with them. They should have the ability to deal with dynamic and random behaviours of 

cloud consumers, and heterogeneity and diversity of service. 

An access control system is a collection of components and methods that are concerned with 

giving right activities to legitimate users based upon preconfigured access permissions and 

privileges outlined in the access security policy [30]. Access control models in cloud 

computing can be very complex and sophisticated due to dynamic cloud computing resources 

[11]. Entities in cloud based access control models are likely to reside in various trusted 

domains and may be located in another country that has different regulations. Thus, they may 

not trust each other [31]. Furthermore, existing access control models suffer from the lack of 

flexibility in attribute management. Heterogeneity and diversity of service are another concern 

in designing an access control model for cloud commuting [12]. Diversity of access control 

policies and various access control interfaces can cause improper interoperability [32]. 

2.2 Access Control 

Enterprises and organizations need to make sure the intended users can access information with 

the exact level of access, no less and no more. Dealing with such secure access requirements 

are not an easy task with the growing demand on IT-Infrastructure. Thus, IT experts, 

researchers and institutions have searched for access control systems that can fulfil their 

security requirements. An access control system is a collection of components and methods 

that determine the correct admission to activities by legitimate users based upon preconfigured 

access permissions and privileges outlined in the access security policy [30]. The fundamental 

goal of any access control system is restricting a user to exactly what s/he should be able to do 

and protect information from unauthorized access. Generally, a vulnerable access control 

system can lead to revealing of customers’ data and give the attackers the ability to infiltrate 
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organizations and their assets with the ability to bring the system down. Moreover, there is a 

wide variety of methods, models, technologies and administrative capabilities used to propose 

and design access control systems. Thus, each access control system has its own attributes, 

methods and functions, which derive from either a policy or a set of policies. According to 

NIST( National Institute of Standards and Technology) any access control system should have 

all of following terms or a number of them [33]: 

1. Subject 

It is any active entity, which requests access to an object or data within an object such 

as a user, a process. 

2. Object 

It is a passive entity which has or receives data. 

3. Action 

It is an active process that is used by a subject to perform an action on an object such 

as read, write and execute. 

4. Capability 

It determines a subject’s available actions and is associated with it. 

5. Privileges 

They are used to reduce granted space of access to authorized users to a specific number 

of users. 

In the access control system planning, there are three primary abstractions: access control 

policies, models and mechanisms [33]. Access control policies are high-level requirements, 

which are used to determine who can access data and under what circumstances. A mechanism 

is employed to translate these policies. In case any gap is found between a mechanism and a 

policy, a model has to solve it. Furthermore, there are three crucial components in any access 

control system, which are Identification, Authentication and Authorization [34]. When a 

subject supplies information to identify him/herself to an authentication service it is called 

identification, for example username or account number. Authentication is verifying the 
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identity of a subject to recognize a legitimate user. The authentication mechanism can be based 

upon what the user has (smart card), what the user is (biometrics) or what the user knows (PIN 

or password). Authorization is the process of granting or denying an identified user a 

permission to access and perform certain operations on the system resources. 

2.2.1 Why Conventional Access Cannot Be Utilised in Cloud Computing? 

Cloud computing is a shared open environment, which has its own characteristics and features 

such as on-demand services and mobility. Thus, cloud service providers need a strengthened 

access control system for controlling admission to their resources with the ability to monitor 

precisely who accesses them. They should have the ability to deal with dynamic and random 

behaviours of cloud consumers, heterogeneity and diversity of services. In this subsection, a 

background about conventional access control models and why they cannot be deployed in the 

cloud are presented. It also illustrates fundamental requirements for cloud based access control 

models and existing proposed solutions. 

Due to differences in requirements for military and commercial security policies, two 

distinctive kinds of policies had to be developed, these produced two different access control 

models which are Discretionary Access Control (DAC) and Mandatory Access Control (MAC) 

[35]. These models have a number of flaws, which led to the proposal of other models such as 

Role-Based Access Control (RBAC). However, we believe these models cannot work in cloud 

computing as each one of them was proposed for a specific environment to fulfil consumers’ 

security requirements. 

 
Figure 2: Information flow in the Bell- LaPadula model 
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2.2.1.1 Mandatory Access Control (MAC) Model 

In the Mandatory Access Control (MAC) model, a central authority is in command of giving 

access decisions to a subject that request access to objects or information in objects. In order 

to secure access to objects and the information that flows between objects, MAC assigns an 

access class to each subject and object. An access class is a security level that is used to secure 

the flow of information between objects and subjects with dominance relationship. Object 

classifications are security labels that are used to classify objects based upon the sensitivity of 

information they have. Subject clearances are security levels used to reflect the trustworthiness 

or rules of subjects. The early formula and most well-known relationships were proposed by 

[36]. This model is also known as multilevel security and uses only two properties no-read-up 

and no-write-down as shown in figure 2. The Bell LaPadula model has concentrated on 

securing and controlling data flow, but protecting the confidentiality in a system is not the only 

goal in securing information. Hence, [37] used the same principles utilised by Bell LaPadula 

model to propose a model for protecting the integrity of objects. 

Although the mandatory access control model provides protection against information flow 

and indirect information leakages, it does not guarantee complete secrecy of the information 

either in the Bell LaPadula model or the Biba model. For example, any unclassified subject can 

write into top secret objects, and could cause improper modifications to objects and violate 

their integrity. In fact, this model is very expensive and difficult to deploy and does not support 

separation of duties, least privilege, and delegation or inheritance principles. Dynamic 

activation of access rights for certain tasks is not supported. Moreover, it does not support time 

and location constraints. It needs a precise management system for dealing with system 

components that reside either inside or outside the model. For instance, processes and libraries 

are considered as trusted components, but sometimes they need to break MAC principles. Thus, 

they might need to reside outside of the MAC model. Furthermore, over classifying subjects 

or objects can happen. The BLP still does not deal with the creation or destruction of subjects 

or objects [30]. Security’s labels are not flexible and are not convenient for task execution. 

MAC needs a central authority to determine what information should be made accessible and 

by whom. For example, a manager might want to access information about a staff member, but 

s/he should not be able to have full access to the member’s file, as s/he could access and reveal 

sensitive information such as bank account details. As cloud computing is going to use current 

web applications to deliver their services, MAC has to deal with a lack of sophisticated 
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semantics models, which represent and communicate privileges and constraints that are 

provided via access control policies. 

2.2.1.2 Discretionary Access Control (DAC) Model 

The Discretionary Access Control (DAC) model, grants the owners of objects the ability to 

restrict access to their objects, or information in the objects based upon users’ identities or a 

membership in certain groups. The DAC model is generally less secure than the mandatory 

access control model, so it is used in environments that do not require a high level of protection. 

However, DAC is the most used model in commercial operating systems such as UNIX and 

Windows-based platforms [34] because it is more flexible and easier to be utilised than other 

models. There are two ways to implement a discretionary access control model, this can be 

achieved via identity based access control or by means of an access control matrix Access 

Control List (ACL) or capabilities [38]. 

The DAC depends on allowing owners of objects to control access permissions to objects, yet 

it has many side-effects when it is utilised in cloud computing. For instance, there is no 

mechanism or method to facilitate the management of improper rights (e.g. risk awareness), 

which owners of objects can give to users. Occasionally users are required to use privileges 

that reveal information about objects to third parties. For instance, a user can only read a file 

in a company, and then s/he can copy the file contents to another file in order to pass it to 

another user. The DAC does not have the ability to control information flow or deal with Trojan 

horses that can inherit access permissions [39]. In addition, a user may pass their rights to 

another user, and that can violate the integrity and confidentiality of objects. Finally, it is not 

scalable enough for cloud computing. 

2.2.1.3 Role Based Access Control (RBAC) Model 

Role-based access control (RBAC) is considered as a natural way to control access to resources 

in organizations and enterprises [35]. The motivation behind RBAC comes from considering 

“a subject’s responsibility is more important than who the subject is” [40]. In the RBAC model 

(see figure 3), a subject can have more than one role or be a member of multiple groups. For 

example, an employee within an organization can be a member in secretaries group and 

employees group. 
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Figure 3: Role-based access control model 

Task-Role Based Access Control (T-RBAC) model is another access control approach that has 

been proposed, which is based upon the RBAC model [41]. However, it assigns permissions to 

tasks instead of roles. Users in this model are assigned roles, which are assigned tasks that have 

permissions. It uses the workflow authorization model for synchronizing workflow with 

authorization flow. The scheme has used tasks to support active access control and roles to 

support passive access control. 

The RBAC model has many advantages compared to, DAC and MAC models, yet it has its 

own difficulties and problems when it is deployed in the real-world [42]. Firstly, picking the 

right roles that represent a system is not an easy task and dividing subjects into categories based 

upon roles might make things worse. Roles in the RBAC model classify subjects in a number 

of categories; thus each subject has to have a role in order to access the system. Despite that, 

roles can give a subject more rights than s/he necessarily needs to have, with a possibility of 

having another role which could lead to the violation of the access security policy. It fails to 

cope with the following issues: 

1. It does not provide any kind of sensitivity to the information. For example some 

information is more sensitive than others such as the medical history in a patient file. 

2. Relationships define according to identities not just roles such as the doctor-patient 

relationship. For example, a paediatric doctor should not be allowed to access a patient 

file in the psychology department. 
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3. It does not support the delegation principle, which is needed in organizations for dealing 

with absences of their staff. Furthermore, it does not consider the time and location 

constraints, which are utilised for restricting access to system files and decreasing the 

probability of information leakage. It also fails to cope with dynamic and random 

behaviours of users. 

4. It does not support active responsibilities of staff as it does not separate tasks form roles. 

Moreover, dynamic activation of access rights for certain tasks is not supported. 

5. The RBAC has to deal with a lack of sophisticated semantic models to represent and 

communicate privileges. For instance, a doctor in a remote area might not be able to 

access the system via cloud computing due to lack of syntactic and semantic support. It 

also has to cope with a semantic gap between the user authentication mechanisms and 

the authorization mechanisms. 

6. In cloud computing, there is a huge demand for testing and verifying access control 

functions, which are considered as static tests. There are also other dynamic compliance 

functions that can be used as support functions; for example reporting alerting 

privileges or conflict of rules and monitoring the system current states [33]. For 

instance, a doctor who has full access to patients’ files in his/her department should not 

be allowed to move, copy them to another place or even access them from home. 

7. Before utilising the RBAC in cloud computing, it has to ensure granting access 

decisions in a reasonable time and according to system requirements. For example, the 

response time is crucial in many applications such as a health care system. A consultant 

away from a hospital needs to access the system in a timely manner, disregarding a 

number of access requests to the RBAC and distance. 

8. Any critical infrastructure service provider who aims to migrate to the cloud, with 

thousands of users, hundreds of roles, and millions of permissions face a tremendous 

task that cannot realistically be centralized by a small team of security administrators 

[43]. 

9. In a health care system, there is always a sequence of operations which will need to be 

controlled. For example, in order for a doctor to give a patient the right treatments, s/he 

needs to examine the patient’s physical conditions, look at the patient’s medical history 
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and asks for tests or scans. S/he might ask for help from another doctor or transfer some 

information to another hospital. Each one of the previous operations needs a different 

set of permissions. Thus, the RBAC may not be able to ensure access for a sequence of 

operations in cloud computing. 

2.2.1.4 Attribute Based Access Control (ABAC) Model 

The Attribute Based Access Control (ABAC) model relies on a set of attributes associated with 

a requester or a resource to be accessed in order to make access decisions [44]. There are many 

ways to define or use attributes in this model. An attribute can be a user’s work start date, a 

location of a user, a role of a user or all of them. Attributes may or may not be related to each 

other [45]. After defining attributes that are used in the system, each attribute is considered as 

a discrete value, and values of all attributes are compared against set of values by a policy 

decision point to grant or deny access. These kinds of models are also known as either Policy- 

Based Access Control (PBAC) or Claims Based Access Control (CBAC). Moreover, a subject 

does not have to be known in advance to the system, it just needs to authenticate itself to the 

system then provide its attributes. However, reaching an agreement about what kind of 

attributes should be used, and how many attributes are taken into account for making access 

decisions is a complex task in cloud computing [46]. This model has not at present been 

implemented for well-known operating systems [45]. Finally, proposing a security policy that 

can work accurately with this kind of access control model is vital, because the security policy 

is responsible for selecting the important attributes that are utilised to make access decisions. 

2.2.1.5 Risk-Based Access Control (RBAC) Model 

Risk-Based Access Control was proposed to cope with multinational organizations that face 

various kinds of policies and regulations [47]. This model tries to use different kinds of risk 

levels with environmental conditions and utilise the principle of “operational need” in order to 

make access decisions [42]. In Quantified Risk Adaptive Access Control (QRAAC) [48], risk 

is calculated as risk =V*P, where V is the information value that reflects the sensitivity level 

of the resource and P is the probability of unauthorized disclosure, which reflects the 

trustworthiness of the user. The security policy in this model is dynamic; it is changed 

according to a variety of risk levels stated on the security policy. However, this model is 

difficult to be deployed in cloud computing because of the amount of analysis required and 

number of systems to be merged to compute risk levels. It needs expertise that can deal with 
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the model. Finally, security policies and environmental conditions need to be standardized as 

they play a crucial role in making access decisions [42]. 

2.2.1.6 Existing Proposed Solutions 

There are a number of access control models were proposed for cloud computing, yet each one 

of them was targeted a specific vulnerability in cloud computing without addressing the 

security requirements of cloud computing services. Furthermore, none of them was 

implemented in a real scenario or environment and tested against any type of access control 

attacks. They had not considered the components and processes engaged in any attempts to 

access data or resources in cloud computing. For example, virtual machines that may be used 

to access data and any processes or programs used to read or transfer data. Moreover, there is 

always a sequence of operations that need to be controlled in order to access cloud services. 

Thus, a cloud based access control model needs to be tested in such cases with different 

scenarios to make sure right permissions are given for every task or action engaged in these 

operations. 

Most of the proposed models were tried to deploy the conventional access control models 

directly to cloud computing. However, no improvements had been made to these models before 

they attended to be deployed in cloud computing. Cloud computing service providers and 

consumer have their concerns and security requirements from cloud based access control 

models.  None of the conventional access control models can be utilised in their current state 

in the cloud as stated in the second paragraph. The well-known access control models are 

suffering from semantic problems which affect the interoperability between various cloud 

service providers. Cloud computing and cloud based access control models have heterogeneity 

problems, yet there is no sign how these problems can be solved in the proposed models. The 

following number of proposed access control models for cloud computing utilised the 

traditional access control models: 

1. Wang et al. proposed an adaptive access control algorithm for cloud computing 

environments based upon the contextual information such as security information and 

time [13]. In this scheme, authors combined the trust relationship (either between a 

number of cloud service providers, or a cloud service provider and its consumers), with 

the role based access control system. The trust level is updated and changed 

automatically by the trust management system according to evolution done by clouds 
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after each transaction. In this scheme, authors assume every cloud has a global 

certificate Authority Authorization Centre (AAC), which is responsible for access 

control. Combining the access control system with a trust level calculated and modified 

based upon a user’s behaviours, is a good approach. However, scores related to a trust 

level that is calculated by either users or resources can cause misbehaving problems. 

Furthermore, the type of mechanism used and how the access can be granted is not 

evident. The AAC has the potential to be a single-point of attack. In the model, it is not 

clear where the RBAC model is located and how access to resources is granted (roles, 

trust scores or both). 

2. Tianyi et al. proposed the cloud optimized RBAC model (coRBAC) [32]. It inherits 

many features from RBAC and distributed RBAC (dRBAC) such as dRBAC’s domain. 

It merges the dRBAC’s distributed authentication services together and gives the CA 

ability to issue certificates. It also allocates domains for enterprises and companies with 

the capability to manage their roles and users in their own inner network. The coRBAC 

implements an internal RBAC in each organization, and there is only one manager role 

called D.manager in each internal RBAC. This approach depends on Certificate 

Authority (CA) for issuing users’ certificates, which might cause efficiency and 

scalability problems as a new certificate must be issued each time access is required. A 

third party infrastructure for storing some information such as domain information has 

been utilised, yet it is not clear how it enhances the level of security, and it might bring 

other concerns such as trust issues. The network performance can be affected by using 

the CA as it can be a single point of attack and bottleneck in some situations. Moreover, 

they have not proposed any mechanism for dealing with heterogeneity caused by 

bringing various security domains together in the model. In the issued certificate, no 

information about the security domain is provided. 

3. Sun et al. proposed a semantic access control scheme for cloud computing to 

authenticate users of healthcare systems based upon ontologies [49]. This scheme 

implements an access control system in semantic web environments and uses 

ontologies for the RBAC security model. The authors extended the RBAC model by 

using semantic web technologies. This scheme has not sorted out the dynamic 

activation problems in the RBAC or diversity of data sensitivity. For a health care 

system that aims to migrate to the cloud, with thousands of users, hundreds of roles, 
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and millions of permissions, it is a tremendous task that cannot realistically be 

centralized by a small team of security administrators. Moreover, in the health care 

system, there is always a sequence of operations that need to be controlled. Thus, the 

model needs to investigate how the right permissions can be given for every task or 

action engaged to complete the preformed operations. 

4. Task-Role-Based Access Control scheme is another access control approach which has 

been proposed for healthcare systems in the cloud computing environment [50]. 

Permissions in Task-Based Authorization Control (TBAC) are activated or deactivated 

according to the current task or process state. As there is no separation between roles 

and tasks, they use different factors such as users, information resources, roles, tasks, 

workflow, and business rules, to solve the separation problem and determine the access 

control mechanism. This scheme was implemented in the Amazon Elastic Compute 

Cloud (Amazon EC2), yet there is no clear sign about how semantic problems can be 

handled, how information is meaningfully shared among different hospitals, and how 

the separation problem between roles and tasks is solved. Furthermore, health care 

systems usually suffer from heterogeneity problems and T-RBAC as well, yet here there 

is no sign how these problems can be solved. It does not provide any sensitivity levels 

to information, as it must be considered that some information is more sensitive than 

others such as medical history. 

5. A reference ontology framework using Role-Based Access Control model was 

proposed by [51]. It aims at providing an appropriate policy with an exact role for every 

tenant. In addition, different policies are used to grant permissions such as access policy 

and security policy. Policies might be used as components of a role according to the 

role’s characteristics, such as priority and business values. However, this approach 

needs good ontology transformation operations algorithms to compare the similarity of 

different ontology. A new back-end database schema to support O-RBAC is needed for 

this scheme. Furthermore, it has to be evaluated by testing the role/user ratio according 

to the position hierarchy. It does not give sensitivity levels to the information as some 

information is more sensitive than others, and does not support the delegation principle 

and dynamic activation of access rights for certain tasks. This model has to ensure 

granting access decisions in a reasonable time and according to system requirements. 
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6. Mon & Naing proposed a privacy enhancement system on academic-based private 

cloud system using Eucalyptus open source cloud infrastructure, and they call it 

Attribute Role-Based Access Control (ARBAC) [52]. They try to guarantee privacy of 

cloud’s users and security of the personal data, by combining two approaches together, 

which are role-based access control and attribute-based access control model. The 

authors stated protecting data privacy is the main object in their scheme, but there is no 

clear explanation or evidence how it is protected. They combine the RBAC and ABAC, 

but there is no sign or indication how they are combined or what benefits are gained 

from merging them. 

7. The Mandatory Access Control (MAC) model was used by Hu and others to propose a 

data security access control model for cloud computing[53]. However, this model is 

very expensive and difficult to deploy and does not support separation of duties, least 

privilege, and delegation or inheritance principles. Dynamic activation of access rights 

for certain tasks is not supported. Moreover, it does not support time and location 

constraints. It needs a precise management system for dealing with system components 

that reside either inside or outside the model. 

8. Zhou and Li proposed a hybrid access control framework for IaaS Clouds [54]. They 

combined the Role-based Access Control (RBAC) and Type Enforcement (TE) model 

to enable unified access control and authorization for IaaS clouds. A permission 

transition model was used to dynamically assign permission to virtual machines. 

However, combining two traditional access control models may make the generated 

access control model more complicated and hard to manage. Moreover, the overload 

induced by proposed model is very big, which is one second for every operation carried 

by the model. No information about how the model was implemented, how it was tested 

and why the authors did not performed security evaluation on the proposed model. 

The following are a number of proposed cloud based access control models looked specifically 

at particular problems: 

1. A mutual trust based access control (MTBAC) model was proposed by [55]. They 

aimed to take into consideration both users’ behaviour trust and cloud services node's 

credibility by using mutual trust mechanisms. In the proposed model, user's behaviour 

is divided into three types in a user's trust model (the control factors, the network level 
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and data items of trust attributes) and each type of attribute has a certain weight. A 

user's trust level will be acquired through trust quantization of the user's behavior. A 

trust model of a cloud service node is based on the ant colony optimization algorithm. 

However, mutual trust between cloud service consumer and provider needs a unified 

definition to trust relationship and really requires to be evaluated in real cloud 

environment to deal with uncertainty of access decisions. Scores related to a trust level 

that is calculated by either users or resources can cause misbehaving problems unless a 

trusted third party engaged in the process. Furthermore, the type of mechanism used 

and how the access can be granted is not clear. 

2. Ricardo et al. proposed a dynamic risk-based access control architecture for cloud 

computing [56]. They used three new components added to an extension of the 

XACML standard. They are the risk engine, the risk quantification web services and 

the risk policies. Although, adding the new components might help for calculating the 

risk on cloud computing, the risk awareness depends on calculating the security risk of 

access decision in real time, which is not easy. Calculating the risk in a real time 

requires dealing with considerable challenges, for example, quantifying the trust level, 

operational need and users’ access history. 

Most of the proposed solutions are either using the traditional access control models in their 

current state without considering the cloud computing characteristics or combining a 

mechanism(s) with an access control model(s). In our view that is not enough, firstly, the 

features of cloud computing and its tenants’ security requirements have to be investigated to 

come up with an in-depth analysis to a cloud based access control model. Secondly, this 

analysis has to be considered for proposing a cloud based access control model that can 

confidently fulfil the cloud computing tenants’ security requirements. We have done both of 

them, a novel security analysis for cloud based access control model and a novel access control 

model for cloud computing. The novel access control model can provide three different security 

levels with using security tags and risk engines. Furthermore, it supports access to data and 

resources according to their sensitivity and importance to cloud computing tenants. 

2.2.2 Access Control Attacks 

There are various types of access control attacks targeting access control systems where they 

are placed or used. These attacks can allow unauthorized users accessing privileged resources 
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such as file and database. In the next subsections, we are going to explore different types of 

access control attacks and techniques used to gain access to data or systems. 

2.2.2.1 Port Scanning and Compromise 

They are common techniques used to identify possible vulnerabilities on remote devices. 

Attackers use them in order to either control or gain access to these devices, or stopping the 

network from working and preventing legitimate users from accessing it. The most well-known 

attacks in this type are: 

1. Back doors 

Trojan horses are the common tools used to create back doors into networks.  Back 

doors are used to gain access to networks by inserting a program or utility that creates 

an entrance for an attacker. This program can give the attacker ability to log in without 

providing password, or gain administrative rights. 

2. DoS and DDoS 

DoS attack is the most popular attack in the Internet nowadays and preventing 

legitimate users from accessing their data or resources. It can be used to send thousands 

of SYN TCP messages which make the target’s buffer full, flood the target server with 

a huge number of UDP packets or ICMP ping and cause choking to the bandwidth. 

2.2.2.2 Hijacking 

This threat could happen when an attacker hacks into a web site that is hosted in the cloud 

service provider and then secretly installs his/her software and controls the cloud service 

provider infrastructure. Methods used in this kind of threat are not new such as Man-in-the-

Middle attack, fraud and phishing. However moving the data to the cloud might make the 

situation more complicated. There are different kinds of attacks in this type such as: 

1. Man in the middle attack 

It is also can be called an access attack. It is an attack which involves placing a piece 

of software between two communicating parties and both parties are unaware of it. For 

example, (A) wants to communicate with (B), (C) will pretend to be (B) to (A) and vice 

versa. So, (C) could read and modify any messages from (A) to (B) or from (B) to (A). 
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2. Session hijacking 

This attack can happen when an attacker hijacks a session between trusted client and 

network, then the attacker substitutes his/her IP address for the trusted client and the 

server continues the dialog. 

3. TCP hijacking 

It gives an attacker ability to gain access to a client in a network by taking over the 

connection between the client and the network server. The attacker can insert another 

machine with the same IP address. This happens quickly, which gives the attacker 

access to the session and the server continues dialog. 

2.2.2.3 Malicious Code 

Malicious code can be any kind of software that intends to create security breaches or damage 

to a system. In our digital world, there is a wide variety of malicious codes such as viruses, 

worms and Trojan horses. In the rest of this section, we are going to explore two of them affect 

the access control systems, which are: 

1. Trojan horse 

Trojan horses are a well-known malicious code since computers and networks have 

been used. It is attached to programs and once programs are executed, the malicious 

code will attack. Malicious code could be used to gain access control, create back door 

and so on. 

2. Malicious mobile code 

It is a lightweight program, which is downloaded from a remote server and executed 

locally with no or minimal user intervention. 

2.2.2.4 Password Attacks 

It is a classic attack, which aims at gaining access to a system by trying every possible 

combination of symbols, to find out the password and log in. The types of this attack are: 

1. Dictionary attack 
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Common words are used in this kind of attack to identify users’ passwords. This attack 

can be automated by employing several tools existing in the Internet. 

2. Brute force attack 

This kind of attack tries every possible word that can be used as a password until a 

successful guess occurs. It might take a long time especially when passwords lengths 

are more than 6 characters with a combination of different symbols. 

3. Hybrid attack 

Combines the dictionary as well as brute force attacks. 

4. Replay attack 

It is well known attack, which occurs when an attacker intercepts messages and then 

tries to send them later in order to impersonate one of the participants. It is used for 

access or modification attacks. 

2.2.2.5 Side-Channel Attacks 

They are low level attacks that look at the correlation between underlying hardware phenomena 

and high-level functionalities of the software. These attacks can be hidden to any access control 

system. There are various types of side-channel attacks, which are classified according to the 

hardware medium used to collect the data such as cache side-channel attacks. 

2.3 Side-Channel Attacks 

Cryptographic systems rely on security mechanisms to authenticate communicating entities 

and ensure the confidentiality and integrity of data. The security mechanisms have to be 

implemented according to cryptographic algorithms and to meet the security goals of the 

security systems. Although the security mechanisms can control and specify what functions 

can be performed, they cannot specify how their functions are implemented. For example, a 

security protocol’s specification does not usually include whether the encryption algorithms 

are implemented in custom hardware units or using software running on a general processor. It 

is also independent of the used memory to store intermediate data during computations, either 

it is on a separate chip or on the same chip with the computing unit [14]. Moreover, 

cryptographic algorithms are always implemented in the hardware or the software of physical 



32 
 

devices that interact with, and are influenced by their environments. These interactions can be 

monitored and instigated by attackers. The gap between how security functions are specified 

and how they are implemented, has led to a new class of attack, which is a side-channel attack. 

Side-channel attacks are an implementation level attack on cryptographic systems. It exploits 

a correlation between high-level functionalities of the software and the underlying hardware 

phenomena. For instance, it looks at the correlation between the internal state of the 

computation processing device and the physical measurements taken at different points during 

the computation. It gathers information about certain operations taking place on computation 

processing activities i.e. power consumption of a custom hardware unit or electromagnetic 

radiation. 

There are various types of side-channel attacks, which are classified according to the hardware 

medium they target and exploit, for instance, cache side-channel attacks. Furthermore, 

attackers are always looking for hardware functions that offer a high-rate of computing 

interactions, which can facilitate attackers with detailed information about the state of 

computing operations taking place. For example, CPU cache side-channels are one of the 

hardware devices most prone to be targeted by adversaries due to their high-rate of interactions 

and sharing between processes [57]. Moreover, according to Zhou et al. [14], there are three 

major classifications of side-channel attacks: 

1. Classifications depending on the method used in the analysis process. 

This type is classified according to the tools or methods used to analyse the sampled 

data collected from attacks. It has two different methods to perform analysis: 

 Simple Side-Channel Attack (SSCA) 

This type exploits the relationship between side-channel outputs and executed 

instructions [14]. A single trace is used in an SSCA analysis to extract the secret 

key. However, the side-channel information related to the attacked instructions 

(the signal) has to be larger than the side-channel information of the unrelated 

instructions (the noise) to deduce the secret key [58]. 

 Differential Side-Channel Attack (DSCA) 
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It exploits the correlation between side-channel outputs and processed data. In 

this type, many traces are used in the analysis, and then statistical methods are 

used to deduce the possible secret keys. 

2. Classifications depending on the control over the computation process. 

In this type, the side-channel attacks are classified according to the control over a 

computation process by attackers. It is divided into two major categories: 

 Passive attacks 

Where the attacked system works as there is no attack has occurred and the 

attacker has not been noticed interfering with the targeted operation. 

 Active attacks 

It has some interfering with the targeted operation, and some influence might 

be detected. 

3. Classifications depending on the way of accessing the module. 

This type relies on the kind of interfaces, which the attackers use to exploit the security 

system. These interfaces can be a set of logical, physical or electrical interfaces. 

Anderson et al. [59] has classified these attacks in three different types: 

 Invasive Attacks 

De-packaging is used in an invasive attack to get direct access to the internal 

components of a cryptographic device or module. For instance, an attacker 

captures a signal of a microcontroller chip of a cryptoprocessor by placing a 

micro-probing-needle on a bus line after opening a hole in the passivation layer 

of the microcontroller chip [59]. 

 Semi-invasive Attacks 

In such attacks, an attacker gains access to the device, yet without damaging the 

passivation layer such as using a laser beam to ionize a device to alter some of 

its memories in order to change its output [59]. 
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 Non-invasive Attacks 

In this attack, an attacker requires close observation or manipulation of the 

device’s operation and does not need to get direct access to the internal 

components of cryptographic devices or modules, thus becoming completely 

undetectable. In this process, the attacker just analyses data that unintentionally 

leaked, such as timing analysis. Timing analysis correlates an operation 

performed by a device with the time consumed to execute the operation in order 

to deduce the value of the secret keys. 

 
Figure 4: CPU caches and their levels 

2.3.1 Cache Side-Channel Attacks 

Cache is a small high speed section of memory built in and outside the CPU as illustrated in 

figure 4. It is usually a Static RAM (SRAM) that any requested data must go through. It 

contains the most recently accessed data and frequently accessed memory addresses. 

Furthermore, cache can lead to massive speed increases by keeping frequently accessed data 

and reducing time taken to evict and fetch data from the main memory. It is utilised to increase 

the speed of memory access as the time to execute an instruction is by far lower than the time 

to bring an instruction (or piece of data) into the processor [60]. For example, a 100 MHz 

processor can execute most instructions in 1 Clock (CLK) or 10 nanosecond (ns); whereas a 
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typical access time for DRAM is 60 ns and the SRAM is 15 ns, which is 3 to 4 times faster 

than DRAM [61]. 

As shown in figure 5, a core can have three different levels of cache. Level 1 (L1) is the smallest 

among them, but it is the fastest. It is usually divided into data and instruction cache. If the 

requested data is not kept at L1, it will yield a cache miss. Otherwise, it will return a cache hit 

that means the data are located at the L1. Because L1 is small, therefore, Level 2 (L2) has been 

introduced. It is much larger than L1, yet slower than it. When the core experiences a cache 

miss from L1, it will look at the L2 for the wanted data or address of data. If the core gets 

another cache miss, it will jump to look for the requested data at Level 3 (L3). L3 is the biggest 

cache in terms of the size, but it is the slowest among them. The L3 is shared between the 

processor’s cores, and others (L1and L2) are shared between processes and threads. 

Cache side-channel attacks are a type of Micro architectural Attack (MA), which is a large 

group of cryptanalysis techniques within side-channel analysis attacks [62]. CPU caches are 

one of the most targeted hardware devices by adversaries due to the high-rate of interactions 

between processes [57]. Cache side-channel attacks in cloud computing environments take 

advantage of running multiple virtual machines simultaneously at the same infrastructure to 

leak secret information about a running encryption algorithm. Furthermore, full encryption 

keys of well-known algorithms and schemes such as Data Encryption Standard (DES) [62], 

Advanced Encryption Standard (AES) [15] and RSA [16], have been broken using spying 

processes to collect information about cache lines, which have been accessed. The information 

is analysed and linked to the current virtual machine that occupies the processor. 

In the side-channel attacks, attackers are always looking for high-rate hardware functions to 

explore current running cryptographic operations and the state of the operation in execution. 

The high-rate hardware functions can communicate information more quickly and deduce the 

needed data to yield the secret key. Thus, CPU caches are always an interesting target to 

adversaries due to the following reasons: 

1. They are shared among VMs or cores. Therefore, an attacker can easily use clients’ co-

residence or VM physical co-residency to interfere and exfiltrate sensitive information 

of victims. 

2. They have a higher-rate of computing interactions between processes. 
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3. They have the most fine-grained and detailed information about the state of computing 

operations running on a system. 

There are three major types of side-channel attacks, which facilitate adversaries with various 

capabilities to attack CPU caches [63]: 

1. Access-driven side-channel attack 

In access-driven attacks, an attacker runs a spy program on the physical machine that 

hosts it and the victim, in order to get information about cache sets accessed by the 

victim. There are various types of CPU caches’ architectural components that can be 

targeted.  Adversaries can monitor the usage of instruction cache [62], data cache [64], 

branch-prediction cache [65] or floating-point multiplier [66] to get information about 

the executing cryptographic operation in order to get the secret key. The most well-

known attack in this category is called the Prime and Probe attack. It measures the time 

needed to read data from memory pages associated with individual cache sets. In this 

attack, an attacker uses a process to fill cache lines with its own data as presented in 

figure 5. This step is named as a prime. Then, the process will wait for a prespecified 

time to let the victim access the cache. Having waited for the predefined time, the 

process starts the probe stage, which refills the same cache sets with attacker’s data and 

observes the victim’s activity on cache sets. If the victim accesses a primed line, data 

on the line will be evicted and caused a cache miss. This will yield a higher time to read 

this line than if it is still untouched. 
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Figure 5: the Prime and Probe attack 

      There is another type of the Prime and Probe attack, which is Flush+Reload [67]. The 

spy process shares memory pages with the victim and measures the time to access 

certain lines. The attack works as follows: 

 The spy process flushes the monitored memory lines from the cache hierarchy 

(L1, L2 and L3 if found) as shown in figure 6. 

 
Figure 6: The monitored line in the Flush+Reload attack 
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 The spy process waits for a predefined time to allow the victim to access the 

main memory and cache hierarchy. 

 The spy process will reload the targeted memory lines and measure the time. If 

the accessed time is less than a predefined threshold, then it is a hit and the 

memory lines are accessed by the victim as shown in figure 7. Otherwise, it is 

a miss. 

 
 Figure 7: The victim accesses the monitored lines 

2. Time-driven side-channel attack 

In this type of attack, an attacker aims to measure the total execution times of 

cryptographic operations with a fixed key. The whole execution times are influenced 

by the value of the key.  Thus, the attacker will introduce some interference to the victim 

to learn indirectly whether a certain cache-set is accessed by the victim’s process or 

not. This attack is called Evict and Time [68]. An attacker will execute a round of 

encryption; evict one selected cache-set by writing its own data on it and measure the 

time it takes to a round of encryption by the victim. The time to perform the encryption 

relies on values in the cache when the encryption starts. Hence, if the victim accesses 

the evicted set, the round of encryption time tends to be higher [69]. 

3. Trace-driven side-channel attack 
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The third class is trace-driven, which looks at getting information related to the whole 

number of cache misses or hits for a targeted process or machine [69]. An attacker can 

capture the profile of cache activities during a round of encryption in terms of the 

victim’s misses and hits accesses. Moreover, these attacks need to monitor some aspect 

of CPU caches constantly throughout a round of encryption such as electronic 

emanations [70]. The ability to monitor CPU caches continuously makes these attacks 

quite powerful [71]. 

2.3.2 Gaps in Existing Preventing Researches 

Although side-channel attacks in general and cache side-channel attacks in particular have been 

known for a quite long time, it seems there is a lack of remedies and countermeasures that can 

be applied in cloud computing. Multi-tenancy and co-residency in cloud computing have 

gained the researchers’ attention to explore and examine the level of damage side-channel 

attacks can do in cloud computing  [72,73,74]. Moreover, it is also proven that side-channel 

attacks can extract cryptographic private keys from unwary virtual machines [71]. This section 

will be focusing on a number of proposed solutions to tackle cache side-channel attacks in 

cloud computing. The proposed mitigation approaches can be classified in two different types 

of approaches: software-based mitigation techniques or hardware-based solutions. 

1. Hardware-based solutions 

A considerable number of hardware solutions have been proposed to tackle and prevent 

side-channel attacks in general [75,76,77,78,79]. Most of these solutions focus on 

reducing or eliminating interfering in cache accesses such as cache randomisation [76] 

and cache partitioning [78]. In the randomisation approach, the cache interferences are 

randomised by randomising the cache eviction and permutation of the memory-cache 

mapping [77]. However, the cache partitioning approach is focusing on partitioning the 

cache into distinctive zones for different processes. Therefore, the cache interfering will 

be eliminated due to the fact that each process can only access its partition that has 

reserved cache lines [78]. Although hardware-based defences’ techniques seem to be 

more secure to be implemented as they are more efficient and thwart the root cause of 

those attacks, they cannot be practically applied until CPU makers implement them into 

CPUs and that does not seem to have been feasible in the recent times. 

2. Software-based mitigation techniques 
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Software-based mitigation techniques are attack-specific solutions, which can only 

tackle attacks that they are proposed for. Consequently, these solutions might not have 

the ability to mitigate new side-channel attacks. 

 Assigning predefined cache pages to CPU cores 

This solution relies on assigning one or many prespecified private pages of the 

CPU cache, particularly the last level of cache (L3) to the CPU cores [17]. So, 

each core will have a limited amount of memory, which will not be accessed by 

or shared with other cores. However, it suffers from insufficient uses of CPU 

cache as operations executed by CPU cores demand different sizes of cache 

pages. They require various sizes of pages according to operations they are 

performing. As a consequence, cores will be assigned with more or less than 

they need of cache pages. Furthermore, when numbers of virtual machines are 

increased, this approach will suffer from scalability and security issues, as 

virtual machines can overlap using a CPU core that assigns exclusive pages. 

Therefore, assigning private pages to a CPU core used by various virtual 

machines will not prevent cache side-channel attack. Finally, the proposed 

solution only targets the last level of cache (L3) with extra cost and aims to 

mitigate active time-driven and trace-driven side-channel attacks. Hence, it 

cannot prevent other types of side-channel attacks such as access-driven side-

channel attacks or deal with other CPU cache levels (L1and L2). 

 Flushing the CPU cache 

This solution is targeting the Prime and Probe attack, which is presented in 

section 3. It flushes the CPU cache to prevent an adversary from gaining any 

information about timing to read data from memory associated with individual 

cache sets [18]. In this solution, when two machines overlap and use the same 

CPU cache, the CPU cache will be flushed immediately after changing from 

one VM to another. Thus, when a virtual machine primes the CPU cache and 

waits for another virtual machine to access the CPU cache, the cache will be 

flushed directly after the second virtual machine takes control of the CPU cache, 

and that will destroy the probe step. Although this solution can prevent access-

driven cache side-channel attacks by preventing interfering between virtual 
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machines, it affects the cache usefulness by flushing the CPU cache when 

virtual machines overlapping occur. It also introduces overhead particularly 

when the numbers of virtual machines are increased. 

 Inject noise to cache timing 

This approach aims to inject additional noise into the timing that an adversary 

may observe from the CPU cache [19]. This approach is also targeting the prime 

and probe attacks. When an attacker periodically primes the CPU cache with its 

own data, a periodic cache cleansing process will be called to cleanse the CPU 

cache. So, the attacker cannot observe any timing information about the victim 

when it launches the probe step. The periodic cache cleansing process primes 

the CPU cache in random order until all the cache entries have been evicted. 

However, this approach actually flushes all the CPU cache entries, which will 

reduce the cache usefulness and introduce unacceptable overhead to the CPU. 

2.3.3 Gaps in the Cache Side-Channel Attacks Detecting Solutions 

There is a lack of detective solutions that can be applied to cloud computing due to multi-

tenancy and co-residency characteristics. HomeAlone solution was proposed by Zhang et al. 

[20] to allow cloud computing tenants to verify they are physically isolated and exploit the co-

resident malicious VM. They gave the cloud’s tenants ability to use side-channels analysis as 

a defensive detection tool. A tenant can utilise the Prime and Probe attack to launch cache side 

timing channel on CPU cache level 2 (L2). This detection tool only focuses on a special case 

when the two cloud tenants are physically isolated. It relies on a classifier to distinguish 

between normal and abnormal CPU cache activities. It enforces each virtual machine (VM) of 

a tenant to implement a coordinator and re-mapper, which are used to communicate with other 

VMs and save data in a specific cache sets. Moreover, it might need to silence VMs to avoid 

noises generated by other VMs. In contrast, our solution does not need any classifier tool, 

modification to the tenants’ VMs operating systems and kernels or to silence any VM. It also 

does not degrade the performance or introduce overload. It can detect any malicious VM and 

distinguish it from other VM in all CPU cache levels. 

A Two-stage Mode technique for detecting cache side-channel attacks in cloud computing has 

been proposed by [21]. It uses two stages. Firstly, the host detection step. It uses software 

(OProfile) to count CPU cache misses and determine whether they are a sequence or not. 
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Secondly, the gust detection step, which extracts the attack features and computes a number of 

parameters (standard deviation and utilisation rate index) to decide if it is a cache side-channel 

attack or not. Although it depends on good software to measure CPU cache misses caused by 

VM, the OProfile can generate at least 2,000 interrupts per second to the CPU [80]. It also 

needs to implement an agent in each VM to receive data for the host and the OProfile no order 

to calculate the other parameters. In addition, it has a quit big false negative rate 40%. In 

opposition, our proposed solution does not need any attached software or application. It directly 

measures the CPU cache misses in the Fetch cycle. Furthermore, it has just one stage 

implemented in the hypervisor kernel. It induces 0% false negative rate and 15% false positive 

rate. 

2.4 Summary 

This chapter gave the needed background for cloud computing in terms of definitions, services, 

types, security challenges and threats. Cloud computing is Internet-centric and provides various 

services either software or hardware with minimal management effort from service providers. 

A significant interest in both industry and academia has been generated to explore and enhance 

cloud computing. However, there are still a number of concerns regarding the security level 

provided by cloud computing, particularly, securing access to resource and data on the cloud. 

This chapter also shed light on access control models and reasons behind not being deployed 

directly in the cloud. The conventional access control models were proposed for specific 

environments to meet predefined security requirements. Moreover, the conventional access 

control models and proposed cloud based access control models have not been tested against 

leakage of data in lower levels caused by cache side-channel attacks. Thus, this chapter covered 

cache side-channel attacks and gaps in the current detection and prevention solutions. 

The conventional access control and proposed cloud based access control models cannot be 

used in the cloud without addressing its security requirements. This motivates us to perform an 

in-depth investigation to identify security requirements of cloud computing tenants. These 

security requirements need to be satisfied in any cloud based access control model.  We will 

see an intensive investigation into four different critical infrastructure providers in order to 

identify their security requirements in the next chapter. Next chapter will also present new 

criteria that can be used for proposing a cloud based access control model. 
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CHAPTER 3 Related Works 

Many enterprises and organizations are considering moving to the cloud as one of their future 

aims, if and only if their security requirements and the needed level of data accesses control 

can be met. This chapter provides a brief introduction to what the term critical infrastructure 

means and its importance to our daily life. It details a new intensive investigation into four 

different critical infrastructure providers in order to identify their security requirements. 

Furthermore, the importance of an access control system to cloud computing providers is 

highlighted in this chapter. It describes a novel security requirements analysis for proposing a 

cloud based access control model.  This chapter also presents a novel cloud based access control 

criteria that can be used for evaluating cloud based access control models. 

3.1 Secure Cloud Services for Critical Infrastructure Providers 

The Critical Infrastructure (CI) is an essential asset for the maintenance of vital societal 

services such as power distribution networks and financial systems [3]. The importance of 

critical infrastructures is hard to overestimate, and even relatively minor failures can impact on 

large numbers of people. In May 1990 for example, the AT&T PSTN network suffered a fault 

causing nationwide problems, but which was the result of a human error at just a single switch. 

At the time the expected failure rate by AT&T for switches was not more than 2 hours in 40 

years, a fact that highlights the recognized importance of keeping such systems running. 

Failures can result in serious consequences for the functioning of society, and this has also been 
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recognized by attackers who have targeted these national infrastructures as a way of disrupting 

large numbers of people relatively easily. While the AT&T example was the result of accidental 

failure and human error, it indicates the potential for even a limited attack to have much wider 

consequences. 

As the benefits of cloud computing are hard to ignore, many critical infrastructure providers 

are aiming to utilise the unique benefits of cloud computing and migrate to the cloud computing 

paradigm. For example, the National Grid, the UK’s gas and electricity network, has announced 

plans to replace its own internal datacentres with a CSC-hosted cloud [28]. Moreover, critical 

infrastructure providers would require scalable platforms for their large amount of data and 

computation, multi-tenant billing and virtualization with very strong isolation, Service Level 

Agreement (SLA) definitions and automatic enforcement mechanisms, end-to-end 

performance and security mechanisms. For example, NASA and Amazon spent seven months 

negotiating a cloud service contract because of wrangling over NASA’s rights to hardware 

inspection [81]. Thus, Amazon introduced a new cloud service with physically isolated and 

tenant-specific hardware to meet NASA’s security requirements [20]. 

However, these requirements might not be met by the cloud computing service providers as 

they suffer from some challenges and threats. Cloud computing security challenges and the 

security requirements of critical infrastructure providers may hinder migration to the cloud. 

Furthermore, moving to the cloud without addressing all of the previously mentioned cloud 

security challenges is not going to happen soon. In this subsection we are to investigate security 
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requirements for different critical infrastructure providers such as smart grids, 

telecommunication, transportation and finance. 

 
Figure 8: Security requirements for a number of CI providers 

3.1.1 Requirement Analysis 

Critical infrastructure providers operate using various kinds of infrastructures and may have 

different security requirements in their unique environments. A successful migration of various 

critical infrastructure providers to the cloud would need to meet all of their requirements.  We 

have investigated and analysed the security requirements of various critical infrastructure 

services (see figure 8) to find the common security requirements such as data security, 

compliance and audit, cryptography and access control. An access control system has been 

found as one of the core requirements. 
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In cloud computing, information comes from multiple sources, which need to be secured and 

controlled accurately. Data should be available only to authorized users, secured from 

attempting to alter it and available at any time. Privacy of consumers should be ensured at any 

stage either when data is collected and processed or when it is transferred. So, assurance of 

100% availability, integrity and confidentiality is crucial for clouds [82]. Furthermore, the 

situation in cloud computing might be different from other IT fields as their data can be 

revealed for reasons such as court orders. So, cloud service providers have to state that in their 

terms and policies. Privacy issues have to be considered here as well, as data may face different 

kind of regulations, and any security or privacy policy should illustrate that. 

Moreover, sensitive information about consumers could be revealed unintentionally by 

aggregating data from multiple sources and moving the aggregated data from one place to 

another can lead to violation of the privacy of the data [83]. Clouds’ consumers have to know 

in advance where their data will reside and how will be segregated in order to avoid data 

leakage problems. In addition, lack of visibility about the way data is stored and secured, lead 

to a number of concerns which have to be considered when moving to the cloud. Data centres 

have to deal with a huge amount of data that is collected from everywhere in the cloud. Data 

centres are not stand alone; they have to be connected to other data centres. So, security and 

latency should be managed in a proper way [82]. 

Compliance, security-breach audit and forensics are used to ensure no one violates or attacks 

the security within the system [82]. In addition, cloud computing service providers have to 

apply the right operating models and services to meet compliance and security regulations. 

Virtualization brings well known benefits to the cloud, yet it has a number of security concerns 

such as performance concerns and Hypervisor security [5]. Supporting robust isolation and 

scalable multi-tenant billing are crucial requirements of any attempt to migrate a system to the 

cloud. However, in cloud computing there might be multiple networks running in the same 

infrastructure. So, strong isolation is another requirement to guarantee there is no security or 

performance interference between cloud tenants. Metering and charging for virtual resources 

consumption are needed in cloud computing [84]. 

There are a number of issues which should be considered such as customisation of applications 

and services, dealing with latency, eliminating any technical barriers and sorting out the 

complexity of integrating cloud services with existing legacy environments. Highly 
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configurable, secure, virtual machines that provide granular control and allow easy 

customization are required as well [5]. Moreover, as cloud computing is an environment that 

has shared platforms, shared storage and shared network, it has to ensure its components work 

together to achieve the intended mission regardless of providers, storage, OS, etc. [82]. 

Web applications which are used in the Internet have their own vulnerabilities that have not 

been solved yet, and these applications are being used again in the cloud to deliver services 

without a clear idea how their weakness will be sorted out and their impact on cloud users. 

Additionally, other challenges might be obstacles to moving quickly to the cloud such as 

meeting security requirements of enterprises, performance, scaling operations, cost-

effectiveness, dynamic and size of communication environment, increased size and complexity 

of operations, changing technology and complexity of services and heterogeneity [84]. 

Risk analysis and management consist of business risk analysis, a technical risk analysis and 

infrastructure risk analysis [85]. It is used to deal with dynamic and random behaviours of 

consumers and mitigates risks involved when consumers are utilising the cloud. A security 

incident is one of the major questions for any organizations that want to move to the cloud to 

establish what has to be done if the cloud faces any security incidents and steps to be followed 

to mitigate that incident. Security’s incidents management has to be stated in any agreement 

between consumers and the cloud [86]. 

Security and privacy issues, latency, audit and monitoring, reliability, network connectivity 

and third parties have to be negotiated and addressed in SLA. Cloud computing consumers 

require SLA definitions and automatic enforcement mechanisms that guarantee sustained and 

verifiable end-to-end performance. The SLA must state how isolation, bandwidth on-demand 

and quality of service will be ensured as well [87]. 

Encryption is often used to secure data in untrusted storage environments such as cloud 

computing. However, it can be time and cost consuming if it is not handled in a proper way, 

and it could cause additional storage and bandwidth usage. Key management is another 

complicated problem, which needs more attention [82]. 

Consumers are not adequately informed about what can be gained by moving to the cloud 

computing, and the risk associated with that moving. Consumers should be engaged in the 

moving process, and in any further action as they have always been considered “the weakest 

link” [82]. 
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Moving any organization to the cloud needs thinking critically about using multiple sources of 

identity with different attributes and the ability to identify all the entities involved in a 

transaction [82]. An access control system is a key element in the four surveyed critical 

infrastructure providers. Access control mechanisms have to be sufficient and may allow 

consumers to define access policies to their data and utilities. Furthermore, consumers should 

be allowed to specify and update access polices on data they own. User credentials should be 

known in advance whether are stored in either organizations’ servers or the cloud, in order to 

avoid disclosure problems. Last but not least strong mutual identification and authentication 

between users and network are still an open research area either for cloud computing or for any 

system wanting to migrate to the cloud [5]. Moreover, there is a huge demand for having proper 

polices which can organize relations between consumers, utilities and third parties, but using 

security and privacy policies should not introduce unacceptable latencies. 

3.2 Access Control in Cloud Computing 

In cloud computing, different entities are likely to share the same resources and information, 

which could have various degrees of sensitivity. Therefore, it would require robust isolation 

and controlling access mechanisms. In order to draw the whole picture, we have done an in-

depth investigation into cloud security and identified different security requirements for 

different cloud users (e.g. critical infrastructure service providers and small businesses). We 

have found access control is one of the common and fundamental requirements for all types of 

cloud users. However, conventional access control models cannot be applied in the cloud 

environment due to the following reasons: 

1. Cloud computing can be very complex and sophisticated due to the dynamic nature of 

the cloud’s resources [11]. 

2. Entities which are cloud based are likely to reside in varied trusted domains and may 

be located in different countries that have various regulations. Thus, they may not trust 

each other [31]. 

3. Conventional access control models in cloud computing would suffer from the lack of 

flexibility in attribute management as defining attributes that should be taking into 

account for granting access and their weights is a complex tasks [46]. 

4. Heterogeneity and variety of services [12]. 
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5. Diversity of access control policies and various access control interfaces can cause 

improper interoperability [32]. 

6. Dealing with a large number of users, different classification, high dynamic 

performance, mobility features and changes in high frequency [13]. 

7. Different access permissions to a same cloud user, and giving him/her ability to use 

multiple services with regard to authentication and login time [16,88]. 

8. Sharing of resources among potential untrusted tenants, multi-tenancy and 

virtualization, mechanisms to support transfer of customers’ credentials across layers 

to access services and resources are crucial aspects in any access control model going 

to be deployed in cloud computing [88]. 

There may be possibilities to extend existing access control models and use them in the cloud 

environment. However, this could be a potential risk and may not solve the problem as 

conventional access models may focus on a specific problem in a specific platform or 

environment and miss the remaining interconnected issues. This could happen due to non-

existence of a complete list of access control requirements for cloud computing. In other words, 

the success on any access control solution for cloud computing will depend on analysing and 

accurately identifying a complete list of requirements. 

We have performed a detail investigation and identified access control requirements for cloud 

computing. To the best of the author’s knowledge, fundamental requirements of cloud based 

access control models have not yet been adequately investigated. We believe the proposed 

model can fulfil access control requirements for diverse cloud based users who are sharing 

resources among potential untrusted tenants. In addition, the proposed model has three different 

levels of security, which can be used according to the level of trust. It supports various sensitive 

levels of information in order to restrict who can read and modify information in the cloud. 

The proposed model has the flexibility to cope with different access permissions to the same 

cloud user and give him/her the ability to use multiple services with regard to time of 

authentication and login. 
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3.2.1 A New Evaluation Criteria to Cloud Based Access Control models 

We have seen a variety of suggested properties and factors affecting proposing cloud based 

access control model. They reflect different purposes and backgrounds. Moreover, to the best 

of our knowledge, there is no complete work, which has been done to outline factors or 

properties that might have effect on proposing or evaluating cloud based access control models. 

However, in our view, any proposed access control model for cloud computing needs to address 

the dynamic and flexible constructions of clouds, big numbers of dynamic users and large 

amounts of resources. 

In order to develop an appropriate access control model for cloud computing environments, we 

need to investigate the fundamental security requirements for access control models in the 

cloud. These requirements can help to meet the cloud computing access control necessities and 

evaluate any proposed system. We provide cloud based access control developers with a novel 

guidelines list of factors which should be taken into account for proposing a cloud based access 

control model. We have classified these factors into three classes, which are principles that 

should be supported, access management issues and how an access control can be measured as 

illustrated in figure 9. 
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Figure 9: Factors affecting design of an access control system for cloud computing 

3.2.1.1 Principles 

1. Least privilege principle 

It is the philosophy of granting a subject only the permissions needed to accomplish 

his/her tasks, even when the subject has more permissions than that necessary for doing 

tasks [33]. In cloud computing, any proposed access control model might need to 

support this principle, as it can help prevent misuse of permissions, coping with 

malicious security breach and limiting damage that can result from system error or 

malicious events. For example, a user can have more than one role with multi 

permissions, but s/he should be allowed only to use the necessary privileges to perform 

his/her job. Moreover, an access control system in cloud computing has to specify how 

the least privilege principle is ensured either via constraints or access control rules and 

other specifications [33]. However, enforcing the least privilege principle should not 

affect the flexibility or add any complexity to the administration of the system. 

2. Assignment and ease of privilege 

Assignment and ease of privileges are a critical aspect in any access control system, 

particularly one that is targeting cloud computing.  Whenever fewer steps are required 

to assign or ease privileges, fewer mistakes can be made due to either human or system 

errors. The steps required for adding, removing, and changing privileges or capabilities 

to a subject in an access control system are crucial to the usability of that system. [89]. 

3. Delegation of capabilities 

In order to make an access control system flexible and have dynamic resource 

management in cloud computing environment where users collaborate to fulfill their 

general tasks, it is important to support delegation of permissions and roles [90]. 

4. Separation of duties 

Separation of Duties (SoD) is a principle that is supported by the least privilege 

principle, as it aims at partitioning tasks and permissions associated to roles in order to 

prevent granting too much authority to one user. It also refers to preventing the conflict 

of roles and interests. For example, the person preparing a paycheck in a bank should 
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not be the one who authorizes it, as assigning the two roles to the same person can raise 

the chance of stealing from the bank. The SoD feature can be measured by counting the 

number of different types of SoD a system can support [33]. There are various types of 

separation of duties: 

 Static SoD 

This kind is the simplest version of SoD, which is used in RBAC policies. It 

prevents any user from being a member of any exclusive roles at the same time, 

e.g., bank auditor and teller [89]. Thus, the bank auditor is not allowed at any 

time to be the teller and vice versa. It is also called strong exclusion, which gives 

two roles strong exclusivity, if no one is allowed to perform both of them at the 

same time [91]. It also aims at preventing assigning incompatible roles to users 

[92]. Although it is a simple way for enforcing SoD, it is not practical and does 

not support the actual functioning of human organizations as users might have 

legitimate reasons to use or access two roles at the same time [91]. 

 Dynamic SoD 

It is also named as weak exclusion. Here, a user might be a member of any 

exclusive roles at the same time such as a user can be authorized for the bank 

auditor and the teller roles, yet s/he cannot activate both of them at the same 

time such as used in Chinese wall policy. It uses more policies than the static 

SoD to control the activation and use of roles [93]. 

 Other types 

In the Object-based SoD, a subject can be a member of any two exclusive roles 

and might activate them at the same time as well. However, s/he must not be 

able to apply the two exclusive roles upon the same object [92]. While in 

Operational SoD, a user might be assigned some exclusive roles, but he/she is 

not given permissions to execute every step of a workflow. Hence, a workflow 

in this type may be split out into a separate sub-workflow within the main 

process [92]. The last type is History-based SoD. A user in this kind can have a 

number of exclusive roles with the complete set of permissions to cover working 
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on an entire workflow, yet the user must not be capable of performing all the 

workflow steps affecting the same object(s) [91]. 

SoD is a very important principle to access control systems in cloud computing, 

as it helps prevent inside misuse by separating available roles for a user. It also 

prevents unintended access to objects and information in objects, and helps to 

avoid conflict of interest [33]. 

5. Binding of Duties (BoD), aims at binding tasks associated to roles or participant. There 

are two types of BoD, either role-level or participant-level. In the role-level, the 

assigned tasks have to be executed by the same role. However, in the participant-role, 

the same participant has to perform the specified tasks [94]. 

6. Support passive and active workflows 

Passive and active workflows can be a fundamental unit of business work or business 

activity, which are one of the basic components in cloud computing [41]. Roles are a 

passive workflow while tasks are active workflow. 

3.2.1.2 Access Management Issues 

1. Auditing 

Audit is an important aspect for securing cloud computing and access controls systems 

used in it. In access control systems, audit has to monitor a system’s current state, record 

any fail to take a decision either granting or denying and report any attempt to violate 

the access policy or alter privileges. Moreover, it has to track and keep records about 

granted capabilities to subjects and any change applied to objects such as renaming, 

copying and erasing [33]. 

2. Policy management (add, delete, change, import, export) 

Polices for access control systems in cloud computing have to be flexible and dynamic 

to deal with unexpected and changeable behaviours. For example, they should have the 

capability to combine various sub-policies with different rules and prevent or cope with 

conflicts between policies. The ability of resolving policies’ conflicts is necessary in 

access control policy management. Conflicts can be between different policies used in 
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a system or rules used in a policy. In some cases, enterprises might have branches in 

different regions around the world, and each branch may apply a privacy policy and 

regulations of its region. Thus, any lack of policy management in an access control 

system might violate the data privacy. 

3. Dealing with heterogeneity 

Services in cloud computing are delivered by a huge number of mixing technologies 

and mechanisms, which can cause heterogeneity threats [95]. Hence, heterogeneity in 

cloud computing can come as a result of differences at various levels either software or 

hardware levels. Heterogeneity can also happen in access control systems used in cloud 

computing as they deal with different types of mechanisms, domains and policies. 

4. Syntactic and semantic support 

Current access control languages are designed with specific applications or 

architecture. So, they are not universally applicable for all access control models or 

mechanisms. Moreover, logic operators and Boolean logic give access control policy 

authors adequate ways to cope with complex semantics for policy rules. Thus, not all 

access control languages support logical expression of rules and are capable of 

programming logic for rule specification [33]. 

5. Testing and verifying the access control functions 

They are crucial features in cloud based access control models, as having capabilities 

to test and verify system functions or new updates can promote the level of security 

needed in such environments. Thus, the testing and verifying feature in access control 

systems can provide the following benefits: 

 It gives the access control system ability to handle any future changes in the 

access control policy such as updates, or new events happening. 

 It can help predict the consequence of activation policies and analyse the impact 

when the policy is modified or combined with other policies. 

 It gives the ability to verify policy deployment and activation compliance. 
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 It verifies the access control rules against the intended access control properties 

from the policy. 

 It can check impacts of combining access control policies or rules to ensure 

there are no leaked privileges because of the syntactic or semantic errors. 

Furthermore, all the pervious advantages of using the testing and verifying features are 

static. There are other dynamic compliance functions that can be used as support 

functions such as reporting alteration of privileges or monitoring the system current 

states [33]. 

3.2.1.3 Access Control Measures 

1. Flexibilities of configuration 

The flexibilities of configuration into an access control system can help dealing with 

dynamic environments such as cloud computing. It is aiming at providing efficient 

administration and flexible configuration for access control systems [89]. 

2. Operational and situational awareness 

Operational and situational awareness take into account a number of factors that can 

affect an access control system such as processors, memories, OS or endpoint system 

components. All the previous factors can have a huge impact on the performance of any 

access control system as they might affect access decisions. 

3. Quality of service 

 Computation complexity 

Computational complexity for enforceability validation of access control rules 

is still a hard task for any access control system that is capable of implementing 

any access control policy [96]. The computational complexity can affect the 

efficiency and quality of service as it might delay the decision making process 

and cause unacceptable retardation to other parts within the system. 

4. Response time 
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Access control systems in cloud computing are assumed to have a significant number 

of consumers for authenticating them and dealing with their requests. Thus, they have 

to grant access decisions in a reasonable time and according to enterprises’ 

requirements. Furthermore, using the time response can partly help assess the 

complexity of the decision-making algorithm and vice versa [33]. A number of subjects 

and computational complexities can be also used to calculate and evaluate the response 

time. 

5. Integrating authorization with authentication functions 

In the current access control systems, there is a gap between the user authentication 

mechanisms implemented by the web application, and the authorization mechanisms 

implemented by the lower layers, such as an SQL database [97]. Hence, cloud access 

control systems have to be integrated with or support identification and authentication 

mechanisms. In addition, they have to perform internal checks to prevent unauthorized 

operation and control data flow in lower layers. Attributes of subjects and objects might 

be associated with the identification of users and objects [33]. 

6. OS compatibility 

Cloud computing relies on virtualization to deliver services to their consumers. Hence, 

it is important that cloud computing employs an access control system that is 

compatible with the well-known operating systems and capable of working with 

different operating systems [33]. 

7. Interoperability 

In cloud computing, depending upon consumers’ requirements, different service 

providers often collaborate by contributing their resources and consumers. However, 

diversity of access control policies and interfaces can cause improper interoperability, 

which hinders any integration or movement from one service provider to another [98]. 

8. Supporting vertical or horizontal scope 

Supporting vertical or horizontal scope is another criterion considered in evaluating 

access control systems according to NIST [33]. The vertical scope means controlling 

applications, databases and operating systems while the horizontal scope aims at 
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controlling single host, distributed network or virtual communities. The vertical and 

horizontal scopes in access control systems are very important to cloud computing as 

they consist of platforms, applications, distributed network and virtual communities. 

9. Scalability 

Proposed access control models for the cloud have to be scalable in terms of numbers 

of users, policy evaluation and enforcement points. In addition, scalability should also 

consider operational, maintenance and management costs. they should not increase 

when the number of access system components (users, applications) increases [99]. 

10. Flexibility in attribute management 

Reaching an agreement about what kind of attributes should be used, and how many 

attributes taken into account for making access decision is a complex task [46]. 

11. Transfer a customer’s credentials across layers 

A cloud user may utilise services from multiple clouds, which employ various types of 

access control policies. These policies have to support mechanisms to transfer 

customers’ credentials across layers to access several clouds’ services and resources. 

This requirement includes a single-sign-on mechanism[88]. 

In order to come up with a clear idea about which one of the most well-known access control 

methodologies is suitable for being used in cloud computing environments, we have examined 

all the access control methodologies mentioned earlier in this section against almost all factors 

present in this subsection. The results of our comparison are illustrated in table 1. 

No. Comparison criterion DAC MAC RBAC ABAC R-BAC 

1. Least privilege principle N N Y Y Y 

2. Separation of duties N N Y Y N/A 

3. Binding of Duties N N Y Y N/A 

4. Auditing  Y Y Y Y Y 

5. Syntactic and semantic support N N N N N 

6. Policy management  N N N N Y 

7. Flexibilities of configuration N N Y N N 
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8. Operational and situational awareness N N N N Y 

9. Response time N/A N/A N/A N/A N/A 

10. Integrated with authentication functions N N N N N 

11. OS compatibility Y N Y N N 

12. Testing and verifying the AC functions N/A N/A N/A N/A N/A 

13. Supporting passive and active workflows N N N N N 

14. Supporting vertical and horizontal scope N/A N/A N/A N/A N/A 

15. Delegation of capabilities Y N N N N 

16. Dealing with heterogeneity N N N N Y 

17. Transfer a customer’s credentials across 
layers 

N N N N N 

18. Scalability N N Y N/A N/A 

19. Flexibility in attribute management N/A N/A N/A       Y N/A 

20. Computation complexity N/A N/A N/A N/A N/A 

Y= Yes, N= No and N/A= Not applicable 

Table 3.1: Results of applying the criteria on various access control models 

3.3 Summary 

This chapter presented our new detailed investigation into security requirements of four 

different critical infrastructure providers. The importance of critical infrastructures is hard to 

overestimate; the critical infrastructure is an essential asset for the maintenance of vital societal 

services such as power distribution networks and financial systems. As the benefits of cloud 

computing are hard to ignore, many critical infrastructure providers are aiming to utilise the 

unique benefits of cloud computing and migrate to the cloud computing paradigm. However, 

the critical infrastructure providers’ security requirements might not be met by the cloud 

computing service providers. In addition, there were number of key elements of critical 

infrastructure providers’ security requirements, yet an access control model was the top of the 

list. 

Cloud computing would require robust isolation and controlling access mechanisms. Sharing 

of resources among potential untrusted tenants, multi-tenancy and virtualization, mechanisms 

to support transfer of customers’ credentials across layers to access services and resources are 

crucial aspects in any access control model going to be deployed in cloud computing. 

Moreover, there are possibilities to extend existing access control models and use them in the 
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cloud environment. However, this could be a potential risk and cannot solve the problem as 

conventional access models were proposed for a specific problem in a specific platform or 

environment and miss the remaining interconnected issues. This could happen due to non-

existence of a complete list of access control requirements for cloud computing. In other words, 

the success on any access control solution for cloud computing will depend on analysing and 

accurately identifying a complete list of requirements. Thus, this chapter showed a novel cloud 

based access control criteria, which was used to propose an access control model for cloud 

computing. The following chapter will introduce the proposed Access Control Model for Cloud 

Computing (AC3). 

 

 

 

 

CHAPTER 4 Access Control Model for Cloud 

Computing (AC3) 

A cloud based access control model has been found one of the crucial security requirements 

for either cloud computing tenants or service providers. This motivates us to propose a cloud 

based access control model that can secure access to the data and fulfil the security 

requirements of cloud computing services providers and customers. This chapter sets out the 

Access Control Model for Cloud Computing (AC3). The proposed model uses the role and task 

principles to restrict access to cloud computing resources. It ensures a secure cloud that has 

sharing of physical resources among potential untrusted tenants. Moreover, the proposed model 

has three different security levels, which can be used according to level of trust. It copes with 

different access permission to the same cloud user and giving him/her the ability to use multiple 

services with regard to time of authentication and login. Various sensitivity levels of 

information to restrict who can read and modify information in the cloud are supported in the 

AC3.  This chapter also explains how the proposed model ensures the secure sharing of 

resources among potentially untrusted tenants and its capacity to support different access 
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permissions to the same cloud user. Implementation strategies, a security evaluation and case 

study are also presented in this chapter. 

4.1 Access Control for Cloud Computing (AC3) 

The proposed model facilitates the role and task principles as shown in figure 10. In the model, 

users are classified according to their actual jobs. Thus, users will be located on a security 

domain that relates to their role. Every role within the model will be assigned a set of the most 

relevant and needed tasks for practicing this role. Every task will have a security classification 

for accessing the data or assets, and the exact permissions needed for accomplishing this task. 

A risk engine is utilised to deal with dynamic and random behaviours of users; it credits 

consumers according to their access behaviours. 

 
Figure 10: The level 1 in AC3 model 

A security tags engine is also utilised for issuing security tags in semi or untrusted 

environments and processes. The model can secure access to data or assets by marking the data 

and assets with security labels. Any attempt to access the data has to ensure task classifications 

dominate the data or assets security labels. In our model, we utilise security tags in some 

circumstances according to the level of trust and security used within the environment. The 

security tag proposed will consist of a user role, classification, permissions, the current 

location, issued time and a random unique number as shown in figure11. 
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Figure 11: A security tag 

The AC3 utilises a number of essential components and concepts in order to secure access to 

the cloud. 

1. The AC3 has the following essential components: 

 Users (U) is a set of users. 

 Roles (R) is a set of roles. 

 Tasks (T) is a set of tasks. 

 Sessions(S) is a set of sessions. 

 Permissions (P) is a set of permissions. 

 Data (D) is a set of data. 

 User Assignment (UA) is a subset of intersection between U and R. 

 Role Assignment (RA) is a subset of intersection between R and T. 

 Permission Assignment (PA) is a subset of intersection between P and T. 

 Constraints (Con) are a set of constraints used in the system such as separation 

of duties and delegation. 

 Classifications (Cla) are a set of security classifications utilised to classify tasks 

in the model. 

 Sensitivity labels (SL) is a set of sensitivity labels used to restrict access to data 

according to its sensitivity. 

 Security tags (ST) is a set of security tags. 



62 
 

2. Every user u in the model can have an outlined number of roles {𝑟𝑟1, . . . , 𝑟𝑟𝑛𝑛} where n is 

the total number r assigned to u. Every r can have a predefined number of tasks 

{𝑡𝑡1, . . . , 𝑡𝑡𝑚𝑚} where m is the total number t. Every task t is assigned the exact needed 

permissions {𝑝𝑝1, . . . ,𝑝𝑝𝑘𝑘} to accomplish its job where k is the permissions total, and a 

classification cla to access the targeted data or asset. 

3. Most of the relationships in the model are many-to-many except user-to-session (a user 

can have one session) and task-to-classification (every task has a classification) 

relationships which are one-to-one. 

 
Figure 12: Assigning one session for every user in the AC3 

 ∀ 𝑢𝑢𝑖𝑖 ∈ 𝑈𝑈 → 𝑠𝑠𝑗𝑗 ∈ 𝑆𝑆.  

ui cannot activate ra outside sj, but can use multiple roles as shown in figure 12.  

Where 1 < 𝑖𝑖 < ℎ (h is the total number of u), 1 < 𝑎𝑎 < 𝑛𝑛 and 1 < 𝑗𝑗 < 𝑧𝑧 (z is 

the total number of s). 

 ∀ 𝑡𝑡𝑖𝑖 ∈ 𝑇𝑇 → 𝑐𝑐𝑐𝑐𝑎𝑎 𝑗𝑗 ∈ 𝐶𝐶𝑐𝑐𝑎𝑎. 

Where 1 < 𝑗𝑗 < 𝑚𝑚 and 1 < 𝑗𝑗 < 𝑓𝑓 (f is the total number of cla), 

 ∀ 𝑟𝑟𝑖𝑖 ∈ 𝑅𝑅 has a maximum number of authorised users u and activation at one 

time. Where1 < 𝑖𝑖 < 𝑛𝑛. 

 𝑈𝑈𝑈𝑈 ⊆ 𝑈𝑈 × 𝑅𝑅. A many-to-many mapping of user-to-role assignments as shown 

in figure 13, where ((X and Y = U, R or T), (Z = UA, RA or PA)), q is the total 

of x and w is y’s total. 
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 𝑅𝑅𝑈𝑈 ⊆ 𝑅𝑅 × 𝑇𝑇. A many-to-many mapping of role-to-task assignments as shown 

in figure 13. 

 𝑃𝑃𝑈𝑈 ⊆ 𝑃𝑃 × 𝑇𝑇. A many-to-many mapping of permission-to-task assignments as 

shown in figure 13. 

 
Figure 13: The AC3 relationships 

4. This model supports a number of constraints as follows 

 Least privilege principle 

It is the philosophy of granting a user u the only needed permissions p to 

accomplish its task t, even when u has more permissions than necessarily 

required for accomplishing tasks. 

 Delegation of capabilities 

In order to make the model flexible and have dynamic resource management in 

the cloud computing environment, where users collaborate to fulfil their general 

tasks, the delegation of tasks is supported. However, delegation of tasks can 

happen only under the risk engine control, and between two subjects which have 

equivalent roles and work within the same area. 

𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗 ∈ 𝑈𝑈, 𝑡𝑡𝑎𝑎 ∈ 𝑇𝑇, 𝑟𝑟𝑏𝑏 ∈ 𝑅𝑅  

ui is assigned ta  but cannot finish it. 

Thus, an admin can delegate 𝑡𝑡𝑎𝑎 𝑡𝑡𝑡𝑡 𝑢𝑢𝑗𝑗 ↔  𝑢𝑢𝑖𝑖,𝑢𝑢𝑗𝑗 ∈  𝑟𝑟𝑏𝑏  and in the same location. 

Where 
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1 < 𝑖𝑖 < ℎ and 1 < 𝑗𝑗 < ℎ, but i ≠ j, 

1 < 𝑎𝑎 < 𝑚𝑚, 

1 < 𝑏𝑏 < 𝑛𝑛.  

 Separation of duties 

Separation of Duties (SoD) is a principle that is supported by the least privilege 

principle as it aims at partitioning tasks and permissions associated to roles in 

order to prevent granting too much authority to one user. It also prevents the 

conflict of roles and interests. Dynamic SoD is supported in this model for either 

tasks or roles. 

𝑢𝑢𝑖𝑖 ∈ 𝑈𝑈;  𝑟𝑟𝑎𝑎, 𝑟𝑟𝑗𝑗 ∈ 𝑅𝑅;  𝑡𝑡𝑏𝑏 , 𝑡𝑡𝑐𝑐 ∈ 𝑇𝑇  

𝑢𝑢𝑖𝑖  𝑎𝑎𝑐𝑐𝑡𝑡𝑖𝑖𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑠𝑠 𝑟𝑟𝑎𝑎 𝑎𝑎𝑛𝑛𝑎𝑎 𝑟𝑟𝑗𝑗  ↔ 𝑟𝑟𝑎𝑎 ∩ 𝑟𝑟𝑗𝑗 = ∅ 

𝑟𝑟𝑎𝑎 𝑐𝑐𝑎𝑎𝑛𝑛 𝑎𝑎𝑐𝑐𝑡𝑡𝑖𝑖𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑠𝑠  𝑡𝑡𝑏𝑏 𝑎𝑎𝑛𝑛𝑎𝑎 𝑡𝑡𝑐𝑐 𝑎𝑎𝑡𝑡 𝑡𝑡ℎ𝑎𝑎 𝑠𝑠𝑚𝑚𝑎𝑎𝑎𝑎 𝑡𝑡𝑖𝑖𝑚𝑚𝑎𝑎 ↔ 𝑡𝑡𝑏𝑏 ∩ 𝑡𝑡𝑐𝑐 = ∅ 

Where 

1 < 𝑖𝑖 < ℎ, 

1 < 𝑎𝑎 < 𝑛𝑛 and 1 < 𝑗𝑗 < 𝑛𝑛 1, but a ≠ j, 

1 < 𝑏𝑏 < 𝑚𝑚 and 1 < 𝑐𝑐 < 𝑚𝑚, but b ≠ c 

5. Security labels are attached to data or a system’s assets to restrict access according to 

the degree of sensitivity. In AC3, a hierarchically ordered set of security labels is 

utilised, which are Top Secret (TS) > Secret (S) > Confidential (C) > Unclassified (U). 

6. Classifications are given to tasks when they attempt to access data or a system’s assets. 

They have to dominate an object’s security label before accessing it. This model 

employs the same hierarchically ordered security labels set to classify tasks. 

∀ 𝑡𝑡𝑖𝑖 ∈ 𝑇𝑇 → 𝑐𝑐𝑐𝑐𝑎𝑎𝑗𝑗  
∈ 𝐶𝐶𝑐𝑐𝑎𝑎 (assigned →)  

∀ 𝑎𝑎𝑎𝑎 ∈ 𝐷𝐷 → 𝑠𝑠𝑐𝑐𝑏𝑏 ∈ 𝑆𝑆𝑆𝑆 

𝑡𝑡𝑖𝑖 𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎  ↔ 𝑐𝑐𝑐𝑐𝑎𝑎𝑗𝑗  
𝑎𝑎𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛𝑎𝑎𝑡𝑡𝑎𝑎𝑠𝑠 𝑠𝑠𝑐𝑐𝑏𝑏 (A task can access data if and only if its 

classification dominates the security level of data). 

Where 

𝐷𝐷 = {𝑎𝑎1, . . . ,𝑎𝑎𝑚𝑚}, 1 < 𝑎𝑎 < 𝑦𝑦 (𝑦𝑦 is the total number of 𝑎𝑎), 1 < 𝑖𝑖 < 𝑚𝑚, 1 < 𝑗𝑗 <

𝑓𝑓 𝑎𝑎𝑛𝑛𝑎𝑎 1 < 𝑏𝑏 < 𝑎𝑎 (𝑎𝑎 is the total number of 𝑠𝑠𝑐𝑐)  
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7. Security tags are utilised in the AC3 for some situations especially in untrusted 

environment or employed processes. 

∀ 𝑠𝑠𝑡𝑡𝑖𝑖 ∈ 𝑆𝑆𝑇𝑇 → �𝑟𝑟𝑗𝑗 ∈ 𝑈𝑈𝑈𝑈, 𝑐𝑐𝑐𝑐𝑠𝑠,𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 𝑙𝑙𝑙𝑙𝑐𝑐𝑎𝑎𝑐𝑐𝑖𝑖𝑙𝑙𝑛𝑛, 𝑡𝑡𝑎𝑎,𝑅𝑅𝑈𝑈𝑅𝑅,𝑝𝑝� 

Where 

1 < 𝑖𝑖 < 𝑤𝑤 (𝑤𝑤 is the total number of 𝑠𝑠𝑡𝑡), 

1 < 𝑗𝑗 < 𝑛𝑛, 

1 < 𝑎𝑎 < 𝑚𝑚 

RUN (Random Unique Number) is used to ensure every security tag is unique, 

p ∈ P={Read (R), Write (W), Execute (E) and Delete (D)}, 

The AC3 uses Supervision Role Hierarchy (S-RH) with strict inheritance. 

8. Usually every task is a unique action that either can work alone or requires one or more 

actions to be triggered to fulfil its function. However, in some cases sequences of tasks 

are used to accomplish a job or one task relies on another task to finish its work. In such 

cases, the task that is accessing the data or assets directly has to issue a security tag, in 

order to prevent any leakage of privileges or disallowed access. Moreover, the security 

tag or its information can be passed to applications or processes utilised by the task 

according to system security level. Processes in the model can utilise security tags just 

in level 3. In the other levels, they can only get task classification and permissions from 

tasks that invoke them, in order to prevent the chance of any security tag being misused. 

Delegation of tasks can be insured by the risk engine, but the delegation has to follow 

the security and access policy. There is no delegation of security tags in the model, 

where a security tag is issued for a task then it delegates to another task or process. The 

following four scenarios illustrate and explain how a task or a sequence of tasks will 

employ a security tag and access the data. 

 For a task A that attempts to access data, a security tag stA is generated according 

to the task classification as shown in figure 14. 
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Figure 14: A task accessing data 

 For a task A that attempts to access data indirectly and via another task B, a 

security tag is generated by the actual task accessing as shown in figure 15. In 

the figure, the stB is issued to because it is the current task accessing the data 

and a security tag for A might have more rights than B. 

 
Figure 15: A task accessing data via another task 

 Any process that requires access to data has to get a security tag, which is 

generated by the task employing the process as shown in figure 16. 

 
Figure 16: A task passing a security tag to an utilised process 

 In order to prevent leakage of privileges, any process which needs to access 

data, has to get a security tag from the actual task attempting to access the data 

and employ it. In figure 17, a security tag is issued for task B not A and passed 

to the process, due to A has no direct connection to the process and might have 

more privileges than B. 

 

Figure 17: A process got a security tag from a task utilised by another task 

9. The AC3 can work with all of the accessing data cases presented in table 2. 

Where 
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{𝑢𝑢1, . . . ,𝑢𝑢ℎ} is a set of users and his the total number of u, 

{𝑡𝑡1, . . . , 𝑡𝑡𝑚𝑚} is a set of tasks and m is the t’s total, 

�𝑎𝑎1, . . . ,𝑎𝑎𝑦𝑦� is a set of data and y is the total number of d. 

No.           Case description              Case’s figure 

1 A user uses a task to access (→) a piece of data 
 

2 A user uses m of tasks to access a piece of data 

t1

u1 d1t2.
.
tm 

 

3 A user uses a task to access k pieces of data u1 t1

d1

d2.
.

dy
 

4 
A user uses m of tasks to access k pieces of 

data 
u1

t1 d1

t2
.
.

d2
.
.

tm dy
 

5 h of users use a task to access a piece of data 

u1

t1 d1.
.

u2

uh
 

6 h of users use m tasks to access a piece of data   

t1

d1t2

u1

u2
.
.

.

.

tm uh
 

7 h of users use a task to access k pieces of data 

u1

t1
.
.

u2

d1

d2
.
.

dyuh
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Table 4.1: Accessing data cases in AC3 

4.1.1 The Model Security Levels 

The system can provide three different security levels according to how secure the environment 

is, and how the processes are trusted: 

1. A secure environment and trusted processes 

Here, there is no need to use security tags. Rules and permissions are enforced for every 

task as shown in figure 10. The tasks’ characteristics and privileges can be passed to 

processes that are employed by tasks for doing their jobs. For example, a task can pass 

its security classification to any utilised process engaged in its operation. 

2. Semi secure environment or trusted processes. 

In this level, security tags are utilised and have validation times as illustrated in figure 

18. Their usage is restricted to validation times, and they cannot be passed to processes. 

When processes require access to data, they will use some information passed by a task 

utilising them such as classification, time and location. 

3. Unsecured environment and untrusted processes. 

It uses the same principle presented in figure 18, yet a security tag is issued for every 

access to data or assets in order to prevent any chance of reusing the security tag or 

cheating by either tasks or processes. For instance, a task has to be generated a unique 

security tag used once for every access or utilised process engaged in its operation. 

8 h of users use m tasks to access k pieces of data 

d1

d2

t1

t2

u1

u2 .
.

.

.
.
.

tm dy
uh
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Figure 18: Access Control for Cloud Computing (AC3) (Level 2&3) 

4.1.2 The Proposed Model’s Flow Charts 

The proposed model supports three levels of security. All of them share the same principles in 

terms of the rules and permissions which are enforced for every task.  After a user is 

authenticated, the user’s risk factor will be tested against predefined lower risk and higher risk 

bounds. Both of these values are under the control of the risk engine and adapted according to 

the user’s behaviour.  If the user’s risk factor resides within the both risk bounds, a new session 

will be started and a new role will be chosen by the user. Furthermore, the user has a list of 

available roles dedicated to him/her by a demonstrator. A list of tasks for the user’s role will 

be available for performing. 
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Figure 19: The flow chart of solution’s level 1 

However, in level one no security tags are used as shown in figure 19. In this level, the author 

assumed the model is deployed in a trusted environment. Thus, the model’s level one uses only 

security labels and classifications to secure access to resources. If the task’s classification 

dominates the data’s security label, the task in this case only can access the data or any of a 

system’s resources. The tasks’ characteristics and privileges can be passed to processes that are 

employed by tasks for doing their jobs. For example, a task can pass its security classification 

to any utilised process engaged in its operation. 
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Figure 20: The flow chart of solution’s level 2 

In the model’s second and third levels, security tags are utilised and issued by a security tags 

engine to strength the model in untrusted environments as was explained in section 4.1.1. On 

the second level as illustrated in figure 20, a security tag has a validation time. Each security 

tag is restricted to a validation time, and it cannot be passed to processes. In addition, every 

time a process attempts to access data, it will use some information passed by a task using them 

such as classification, time and location. 
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Figure 21: The flow chart of solution’s level 3 

Furthermore, security tags utilised in the third level in the proposed solution are issued for 

every access to data or resources in order to prevent any chance of reusing the security tag or 

cheating by either tasks or processes. As shown in figure 21, a security tag is generated for 

every task going to access data or resources and it will be passed to any utilised process engaged 

in its operation. 
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4.1.3 The Analysis 

Despite using the T-RBAC as a backbone to the proposed model because of the T-RBAC 

simplicity and flexibility in the configuration, it needs to be developed and extended for cloud 

computing to support the delegation principle, dynamic and random behaviours of users, local 

and global access. Data mostly has various degrees of sensitivity, which needs to be considered 

in any access control system. The most well-known access control system uses data sensitivity 

as a factor for either granting or denying access via MAC. However, it is very expensive and 

difficult to deploy as illustrated in section 2.2.1 in chapter 2. Moreover, there is a significant 

gap between web applications utilised in application layers and lower layers as the system 

components and processes in lower layers are treated as fully trusted. Nevertheless, they should 

not be fully trusted. The dynamic activation of roles and permissions are difficult to achieve in 

cloud computing as relationships between users and resources are active. Service providers and 

users are likely to be in different security domains. In addition, the dynamic and random 

behaviours of users are a big concern and challenge for access control systems developers, as 

users have no time or location restrictions. 

 
Figure 22: The AC3 block diagram 

The AC3 is considerably a big generic model, which cannot be easily implemented due to time 

constraint and the following reasons: Firstly, it needs to implement the risk engine that control 

and responsible for many tasks such dealing with heterogeneity, risk management and users’ 

behaviours. It needs good algorithms to calculate risks and deal with any conflict happen 

between access policies. Secondly, the security tag engine is used for generating security tags 

that are issued for tasks and process. This engine has to be implemented and tested with varied 
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conditions (i.e. issuing more than security tag for a user and its scalability). The security tags 

will be used for accessing data and resources; hence, they should not add any computation 

complexity or affect the response time. Thirdly, the AC3 needs algorithms to give security 

classifications to data and consider location and time of access. These classifications should 

not affect the AC3 overall performance. Finally, the AC3 has to have mechanism to control 

processes that access data and prevent any misuse of security classifications and tags. 

The proposed system as shown in figure 22 can deal with all of the previous concerns by 

utilising the following concepts: 

1. Role is considered as the natural way to control access to resources in organizations 

and enterprises. A subject’s responsibility is more important than who the subject is. 

Various general job functions are facilitated to create roles such as accounting role, 

secretary role and manager role. A role is defined by Sandhu et al. as “A role is a job 

function or job title within the organization with some associated semantics regarding 

the authority and responsibility conferred on a member of the role” [100]. Using roles 

give companies an ability to impose their constraints with full flexibility of adding or 

removing roles to their consumers according to their actual activities and jobs. 

2. Task is another concept used in the AC3 to restrict permissions and access assigned to 

roles. Each user within a system is assigned a role; roles are given tasks that have 

permissions. Moreover, these permissions are assigned to roles in regards to their tasks 

and the given permissions dynamically change according to the task in hand. 

Authorization determines who can do which tasks with what role under which 

conditions. 

3. Permissions in the model are activated and deactivated according to the current task or 

process state. These permissions are assigned to tasks, and the given permissions are 

dynamically changed according to users’ behaviours. 

4. The AC3 model supports a set of constraints, which are location and time constraints, 

least privilege principle, separation of duties either static or dynamic and delegation of 

capabilities. However, the model has no restrictions about constraints that can be 

supported. 
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5.  Classifications and security labels are used for controlling access to resources and 

information flow. Sensitivity labels are utilised to mark data internally according to 

their sensitivity and value, which are top secret, secret, confidential and unclassified. 

The model gives systems an ability to use their sensitivity labels. Any task or process 

employed by a task needs a classification to access resources, as there should be no 

access to any resource without a classification equal or dominant to the resource’s 

sensitivity labels. 

6. The AC3 uses a risk engine for dealing with a number of security concerns 

 Controlling and crediting users according to their previous and current 

behaviours. 

 Offering Policy management such as organizing relations between consumers, 

utilities and third parties. 

 Risk awareness. 

 Dealing with dynamic and random behaviours. 

7. Security tag engines are utilised for generating security tags for tasks, which might be 

passed to employed processes. The security tags are used in untrusted environments for 

controlling access to a system’s resources by either applications at higher levels or 

processes at lower levels. Moreover, the AC3 ensured the security of data on processing 

level when utilised processes access the data and resources by delegating them security 

classifications. For example, any task is invoked by a user’s role in the AC3’s level 

three has to a security tag to any process engaged in accessing the targeted data. 

However, all access control models cannot enforce their security policies on lower 

levels resources (RAM and CPU caches), which is solely under the direct control of 

CPU and ring 0 of operating systems. Thus, other researches needed to control 

overlapping access (processes and virtual machines) and data leakage (side-channel 

attacks) in lower levels resources. 

4.1.4 A Case Study 

A case study approach was used to allow us to investigate how the proposed model can be 

deployed in the cloud. The AC3 can offer a high level of security to the cloud’s layers (Software 
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as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS)) for 

both consumers and service providers. It gives administrators the ability to manage access and 

credentialing for their systems easily and securely as illustrated in figure 23. 

We assume a system has been built on a cloud service provider infrastructure such as Amazon 

or Google. The system utilises the three different services cloud computing can offer (SaaS, 

PaaS and IaaS). 

 
Figure 23: The AC3 in the cloud 

1. SaaS 

Our model provides desirable levels of control and needed flexibilities to restrict access 

to SaaS applications such as Microsoft Office’s 360. Access to applications can be up 

to systems’ administrators, either classifying applications according to their value to 

systems and users, or declassifying them and allowing access according to consumers’ 

demands and roles. The AC3 can restrict access by different ways: 
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 The Microsoft Office’s 360 can have a security level like any other resource 

within the system. Thus, any task attempting to access this application has to 

have a classification that equals or dominates the security level of the 

application. 

 The second way is restricting access to a number of outlined roles. Therefore, 

the application can have unclassified classification and be accessed by users 

who are members of the defined roles. 

 Instead of giving a security level to every application, the targeted application 

can be added to a group of applications that have the same level of importance 

within the system. This group can have a security level to restrict access to it, 

be available to defined roles or be accessed by any consumers. 

 The easiest way is declassifying the application and allowing access to any 

authenticated user. 

2. PaaS 

The PaaS offers application developers great features and tools for developing and 

implementing new applications, which can be utilised within the system. The AC3 can 

provide administrators with the ability to restrict access to the PaaS, for example, 

classifies PaaS features and tools according to the importance of data or applications 

they accessed. Furthermore, in PaaS things can be a little bit complicated as the PaaS 

will be a medium between applications used by users and lower resources provided by 

hosted machines. Thus, systems’ administrators can assign security labels to the PaaS 

applications as they are resources (objects) to the user and applications, yet they will 

delegate security classifications (subjects) to PaaS applications in order to access lower 

resources (virtual CPU and machines). 

3. IaaS 

The model can have a considerable impact on controlling access to IaaS. The AC3 

access policies define roles and tasks needed for every role. Every task is assigned the 

required permissions to accomplish its job and a security classification. The security 

classification is given to a task according to the role used for, and resources attempting 
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to access. Moreover, it offers at level 2 and 3 an excellent feature to control access by 

using security tags. These tags are only generated by a security tag engine. They are 

also used for either one access or a defined time to the same task. Any new user joining 

the AC3 will assign a role or set of roles according to his/her actual job, and the user 

can activate his/her roles according to security and access policies. When the user 

invokes a role, the role will facilitate the user with a set of available tasks. For instance, 

if the user wants to access his/her emails in the mail server, s/he will utilise a task to 

access the mail server, and the task has to have classification which equals or dominates 

the mail server security level. The access ways presented in SaaS can be applied here. 

Hence, access to the mail server can be according to tasks or to any authenticated user. 

No. Comparison criterion DAC MAC RBAC ABAC R-BAC AC3  

1. Least privilege principle N N Y Y Y Y  

2. Separation of duties N N Y Y N/A Y  

  3. Binging of duties N N Y Y N/A Y  

4. Auditing Y Y Y Y Y Y  

5. Syntactic and semantic support N N N N N N  

6. Policy management N N N N Y Y  

7. Flexibilities of configuration N N Y N N Y  

8. Operational and situational 

awareness 

N N N N Y Y  

9. Response time N/A N/A N/A N/A N/A N/A  

10. Integrated with authentication 

functions 

N N N N N Y  

11. OS compatibility Y N Y N N Y  

12. Testing and verifying the AC 

functions 

N/A N/A N/A N/A N/A Y  

13. Supporting passive and active 

workflows 

N N N N N Y  

14. Supporting vertical and horizontal 

scope 

N/A N/A N/A N/A N/A N/A  

15. Delegation of capabilities Y N N N N Y  

16. Dealing with heterogeneity N N N N Y Y  
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17. Transfer a customer’s credentials 

across layers 

N N N N N N  

18. Scalability N N Y N/A N/A Y  

19. Flexibility in attribute management N/A N/A N/A     Y N/A N/A  

20. Computation complexity N/A N/A N/A N/A N/A N/A  

Y= Yes, N= No and N/A= Not applicable   

Table 4.2: Comparing AC3 with conventional access control models 

4.1.5 Discussion 

When we started to propose a cloud based access control model, we had to choose between 

two options: either proposing a new access control model from scratch or surveying what is 

available and can be utilised in the cloud. We chose to survey and analyse the available access 

control models and policies that can be adapted in cloud computing due to: Firstly, there are 

access control models that have a number of features that cannot be ignored. Therefore, 

adapting these features in the cloud can make cloud service providers and consumers confident 

about the level of control they will get. Secondly, the RBAC model is a well-known trusted 

model, which is used by enterprises and organizations. Therefore, it is worth using it as a base 

for any new proposed model. However, it cannot be deployed directly in the cloud (see section 

2.2.1.3 in chapter 2). Moreover, some tenants (organizations or enterprises) use it in their 

internal networks, hence adapting it for cloud computing may encourage tenants to migrate to 

the cloud. 

In order to validate the model, we compare it with conventional access control models. The 

comparison is present in table 3. It is also compared with a number of the proposed access 

control systems for cloud computing. The comparison is based upon security features that 

either the AC3 or other models can offer. Before proposing the model, we have reviewed 

almost every proposed access control system for cloud computing 

[16,32,49,50,51,52,53,54,55,56]. Most of them have not been validated or applied in a real 

cloud computing environment. Moreover, part of the proposed schemes target data outsourced 

and provisioned over the cloud [31,102]. Others adapt the conventional access control models 

[50,51]. 

1. Principles 
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The model can support a set of well-known principles such as the least privilege 

principle, delegation of capabilities, separation of duties (static and dynamic), binding 

of duties (role and participant levels) and temporal constraints (location and time). To 

the best of our knowledge, only one scheme has addressed all of these principles [50]. 

2. Support passive and active workflows 

The AC3 supports passive and active workflows, where roles are passive workflow and 

tasks are active workflow. There is only one approach which offers both workflows and 

this model targets health care systems [50]. 

3. Auditing 

The model provides a unique and novel way to control access, which utilises auditing 

and logs information to control and credit users according to their previous and current 

behaviours. This is done by the risk engine in the proposed model. 

4. Policy management (add, delete, change, import, export) 

There is a huge demand for having proper policies, which can organize relations 

between consumers, utilities and third parties. The risk engine in the AC3 offers a 

policy management by dealing with policies conflicts, add deletes. Almost none of the 

reviewed models [50,51,31,102] have dealt with or mentioned policy management. 

5. Dealing with heterogeneity and syntactic & semantic support 

Heterogeneity can happen in access control systems using various types of mechanisms, 

domains and policies. The model relies on the risk engine for policy management, 

which has to cope with heterogeneity caused by security policies and support different 

access control languages to enforce various logical expressions of rules. Hence, it is 

supported in this model. The ontology principle was used in [49] and[51] for 

heterogeneity problems, however they need good ontology transformation algorithms 

to compare the similarity of different ontologies. A new back-end database schema to 

support O-RBAC is also needed for these schemes. The authors in [102] proposed 

Uniform Resource Identifier (URI) as a based attribute representation. They combined 

it with the Resource Description Framework (RDF) for dealing with heterogeneity 

threats caused by using different attributes within the system. However, deploying the 
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URI and RDF techniques needs to be tested properly as they have a significant effect 

in the used attributes, and the Semantic Web Rule Language needs to be compatible 

with the existing semantic web standards. 

6. Quality of service 

As the model has not been implemented, the computation complexity and response time 

have not been tested. Computational complexity of the AC3 has to be examined as it 

can affect the efficiency and quality of service of the model. In addition, the response 

time to grant access decisions still an open question to the AC3. 

7. OS compatibility 

Due the AC3 utilises the role and task principles that supported in many platforms and 

operating systems, we are confident the AC3 can be supported and used in the currently 

used operating systems such as Windows and Linux. 

8. Flexibilities of configuration and attribute management 

The AC3 model is flexible enough to be configured in the cloud computing 

environment as it utilises the role and task principles, which guarantee easy and 

adaptable assignment and ease of privilege. Moreover, The AC3 does not use or support 

attributes in the process of granting access decisions. In the proposed models, one 

model uses the task and role techniques [50]. Another model utilises the attribute and 

role principles, which combine the RBAC and ABAC, but by combining them this 

makes things more complicated, as they combine them without making further 

improvements [52]. The rest of proposed models employ only the RBAC, yet it suffers 

from dynamic activation of access rights for certain tasks [16,32,49,51,104]. 

9. Operational and situational risk awareness 

The risk engine in the AC3 supports risk awareness, which gives the capability to deal 

with the risk associated with accessing a system’s resources. According to our 

knowledge, none of the reviewed models or approaches provides risk perception. 

10. Integrated with authentication functions 
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In the current access control systems, there is a semantic gap between the user 

authentication mechanisms implemented by the web application and the authorization 

mechanisms implemented by the lower layers. Hence, the model links the 

authentication functions with the authorization mechanisms and controls applications 

and processes at lower levels, accessing data via security tags issued by the security 

tags’ engine. To the best of our knowledge, all the reviewed models have not offered 

any method for dealing with this concern. 

11. Scalability 

By utilising role and task principles that classify consumers to a number of domains, 

we are confident the AC3 is scalable and can deal with large numbers of users and 

administrators as well. For example, customers can be grouped in specific security 

domains, which can be created for number of reasons, for example, specific locations, 

types of employment contracts, etc. Moreover, administrators can be divided to 

different security domains with variant privileges as the cloud computing needs a 

considerable number of administrators with various assigned privileges to control 

access to cloud’s resources. There is only an approach which uses both principles, but 

it does not mention how administrator scalability can be ensured [50]. 

12. Dealing with dynamic and random behaviours 

The AC3 utilises the risk engine in order to deal with any dynamic and random 

behaviour. It credits consumers’ according to how they follow security and access 

policies, such as accessing the system from different locations or launching mutually 

exclusive roles or tasks. In addition, the risk engine assigns default risk lower and upper 

bounds for every new user. When the user starts accessing a system’s resources, his risk 

lower and upper bounds will be changed according to his/her behaviours, either s/he 

can be assigned more permissions or his/her permissions can be reduced. Thus, a user’s 

random behaviours will be observed by the risk engine, which will test the user’s 

random behaviour against the user’s risk lower and upper bounds and access policies, 

then either the risk engine grants or denies access to resources and record that in the 

user’s record. The trust principle is used in most of the models proposed for cloud 

computing [16,105]. However, in our view, calculating the trust degree is not the best 

choice for coping with dynamic and random behaviours of consumers. In these models, 
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the trust degrees are calculated by consumers or service providers, yet it is not clear 

how they are validated. Moreover, scores related to a trust level are calculated by users 

or resources, but what mechanism is used, how the trust level can change the access 

level and how misbehaving problems can be prevented is not explained. 

13. Transfer customers’ credentials across layers 

The cloud needs access control policies that support mechanisms to transfer customers’ 

credentials across layers to access several clouds’ services and resources This 

requirement includes a single-sign-on mechanism [88]. The AC3 does not support these 

features as it targets the authorisation levels and these features have to be supported by 

the authentication mechanisms. 

14. Testing and verifying the access control functions 

They are crucial features in cloud based access control models. Having capabilities to 

test and verify system functions or new updates can promote the level of security 

needed in such environments. Thus, the AC3 uses the risk engine to support testing and 

verifying feature enforced by its security and access policies. To the best of our 

knowledge, there is no access control model support these features. 

15. Dealing with access control attacks 

In the background chapter, various types of access control attacks were reported, which 

target either application levels or lower levels. Defences against the application levels 

attacks such as password attacks or hijacking, are hugely dependent on authentication 

methods and mechanisms, which was out of the scope of this research. Moreover, lower 

levels attacks, for instance, cache side-channel attacks that can bypass authorization 

mechanisms have to be addressed by the AC3. In the next chapter, prevention and 

detection solutions that can be attached to the AC3 to defend against cache side-channel 

attacks are demonstrated. 

4.2 Summary 

In this chapter, a new Access Control Model for Cloud Computing (AC3) has been introduced. 

The proposed model meets the security requirements of cloud computing services providers 

and customers. The AC3 supports various sensitivity levels of information to restrict accessing 



84 
 

and modifying information in the cloud. The proposed model uses the role and task principles 

to restrict access to cloud computing resources and make assigning privileges very dynamic. 

The AC3 ensures a secure cloud that has sharing of physical resources among potential 

untrusted tenants by using risk and security tags engines. In addition, the proposed model has 

three different security levels, which can be used according to level of trust. This chapter also 

showed why a risk engine is utilised to deal with dynamic and random behaviours of users. In 

addition, a security evaluation and analysis, case study and implementation strategies were 

illustrated in this chapter. 

The proposed AC3 model has number of components, which secures access to resources in the 

application and processing levels. Securing access to data in the processing levels require 

controlling access to information on the RAM and CPU caches. Furthermore, the investigation 

of how data are processed and accessed in the processing levels such as RAM and CPU caches 

has shown that most access control models cannot be applied in the RAM and CPU caches as 

they are under direct control of the CPU and operating systems. Moreover, processes used in 

any operating system will overlap access to the same physical CPU caches’ addresses. Using a 

spy process can tell exactly which memory addresses have been accessed and by whom. 

Multiple regression analysis revealed that securing access to information in lower levels has 

the same importance or might be more important to tenants of cloud computing than high and 

application levels. Therefore, our focused in the next chapter is how the proposed AC3 model 

can deal with the lack of data isolation in lower levels (CPU caches), which could lead to 

bypass access control models to gain some sensitive information by using cache side-channel 

attacks. The following chapter will present a new prevention and detection solutions to cache 

side-channel attacks that can be attached to the AC3. 

CHAPTER 5 The Prevention and Detection Solutions 

to Cache Side-Channel Attacks in Cloud 

Computing 

The proposed AC3 model has number of components, which secures access to resources in the 

application and processing levels. Securing access to data in the processing levels requires 

controlling access to information on the RAM and CPU caches. In this chapter we will focus 

on the processing levels and how the proposed AC3 can prevent and detect any leakage of 
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information in lower levels (CPU caches). Hence, we specifically look at the lack of data 

isolation in lower levels (CPU caches) and prevent any leakage of data happen by cache side-

channels attacks. This chapter presents a new Prime and Probe cache side-channel attack, 

which can prime physical addresses. These addresses are translated form virtual addresses used 

by a virtual machine. Then, time is measured to access these addresses and it will be varied 

according to where the data is located. If it is in the CPU cache, the time will be less than in 

the main memory. This chapter also details the fundamental principles and design of novel 

prevention solutions to cache side-channel attacks in the cloud computing. It is a new way to 

prevent any leakage of information caused by cache side-channel attacks. It erases a virtual 

machine’s data from all CPU cache levels when the virtual machine relinquishes CPU 

resources in order to prevent any chance of launching a cache side-channel attack. Moreover, 

a new detection infrastructure solution that detects cache side-channel attacks in cloud 

computing is also presented here. The solution does not rely on any software or application to 

detect any abnormal behaviour in the CPU caches. It uses a new way to measure the time taken 

by every fetch cycle executed by a virtual machine. Both solutions are free from any 

modifications which have to be carried on the operating systems of cloud tenants. 

5.1 A New Prime and Probe attack 

As explained in the background section, the Prime and Probe attacks measure the time needed 

to read data from memory pages associated with individual cache sets. Thus, it primes a number 

of cache sets with data and waits till the data is accessed by another virtual machine. In order 

for this attack to be successful, an attacker needs to firstly, build a link between memory pages 

and CPU cache sets; and then fill cache sets with data. However, both of them require 

sophisticated techniques and a considerable number of predefined conditions, which we found 

in some cases unrealistic. 

The new Prime and Probe attack is a variant of prime and probe attacks, which relies on 

revealing sensitive information from the sharing of memory pages and CPU cache lines.  In 

this new attack, an attacker does not have to have any information about the link between 

memory pages assigned to CPU cache lines or number of cache lines. The attacker needs to 

know the virtual addresses space for his/her virtual machine or a number of virtual addresses 

used by processes in the virtual machine. These addresses will be linked to physical addresses 

which host them to examine whether another virtual machine accesses them or not.  As 

illustrated in figure 24, the virtual addresses will be translated to physical addresses, which will 
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be primed with the attackers’ data. Having primed the physical addresses, the attacker will wait 

for a predefined time to let the victim access the CPU caches and memory. When the victim 

relinquish the CPU resources, the attacker, firstly, measures the time to access the monitored 

addresses and then checks data kept in these addresses whether changed or not. If the time to 

access the monitored addresses is less than the time to access the last level in CPU caches (e. 

g. L3), the monitored addresses have definitely been accessed by the victim and the data on 

these addresses is changed. 

 
Figure 24: The new Prime and Probe attack 

The implementation of the attack follows these steps: 

1. Getting virtual addresses used by the attacking virtual machine is an important step that 

can be done by looking at the virtual addresses space given to the virtual machine or 

driving them from the running code. In our case, we used a function implemented in 

the kernel of Xen hypervisor to print all virtual addresses used by running virtual 

machines, which were two. The function’s source code is presented in the first part in 

appendix c. 

2. We used walk page tables provided in the Xen source code to translate virtual addresses. 

In this function, every virtual address will be translated to linear addresses, which will 

be used in the page tables (4 levels) to get the physical addresses.  In addition, a sample 

of translated addresses that printed on the Xen command prompt is presented in figure 

25. The source code of the function is presented in the second part in appendix c. 
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Figure 25: Translating virtual to physical addresses 

3. Priming physical addresses can be denied by the operating system or segmentation 

fault. Hence, there is a command which should be used to assign data to physical 

addresses. It is malloc (kmalloc) instruction. 

The kernel module prime function 

Static void prime (unsigned long phy_add) 

{ 

    unsigned long *a =(unsigned long*) malloc (sizeof(unsigned long) * 

phy_add); 

    *a=0x2000000000000000; 

     } 

4. After priming the addresses, the attacker will wait until the victim accesses the 

addresses. 

5. The attacker will take control of the CPU resources in this step and measure the time to 

access the same addresses. We used Read Time Stamp Counter (RDTSC) assembly 

instruction to measure cycles taken to read the addresses. If the time is less than 120 

CPU cycles (threshold reflects the longest time to read data from the last level (L3) in 

the CPU caches levels), at least one of the addresses is accessed by the victim and data 

in each address accessed by the victim is checked. 
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The kernel module measure function 

static inline unsigned long long rdtsc13(void) 

{ 

   unsigned long hi, lo; 

   asm volatile ("rdtsc" : "=a"(lo), "=d"(hi) : : "ebx", "ecx"); 

   return ((unsigned long long)lo) | (((unsigned long long)hi)<<32) ; 

} 

6. Once the monitored addresses have been accessed by the victim, the attacker can then 

keep monitoring these addresses and collect information about data kept in these 

addresses either data or addresses point to data. Furthermore, the attack’s results are 

presenting in section 7.1.1.3 in chapter 7. 

This attack can be used to extract fine grained information about data processed and addresses 

accessed by virtual machines. Therefore, solutions to prevent these types of cache side-channel 

attacks are urgently needed to be deployed in cloud computing. 

5.2 A Novel Lightweight Solution to Prevent Cache Side-Channel Attacks in Cloud 

Computing 

The proposed solution is a novel lightweight solution that prevent cache side-channel attacks 

in cloud computing. It erases data or addresses linked to a virtual machine form all levels of 

CPU caches without affecting the CPU caches’ performance or deleting other virtual machines’ 

data kept in the caches. In addition, the proposed solution has been fully implemented in the 

Xen hypervisor’s kernel of the host server. Thus, there is no need for any modification on 

tenants’ virtual machines codes.  Experiments in the lab illustrate that the solution effectively 

prevents cache side-channel attacks on all levels of time-shared CPU caches. 

5.2.1 Our Goals 

Most of the anticipated attacks on time-shared CPU caches involve triggering a spy process on 

the host machine that accommodates it and the victim in order to get information about cache 

sets accessed by the victim. In section 2.3.1 (background chapter), we have reported two kinds 

of access-driven side-channel attacks, which are Prime and Probe and Flush+Reload cache 

side-channel attacks. Both of them rely on calculating the time needed to read data from 

memory pages associated with an individual cache set. If the time is less than a threshold, then 
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that data is on a cache set. Otherwise, it is not in the cache set. Thus, we aim to erase any driven 

information from accessing the CPU cache by erasing all data linked to the victim machine 

from the CPU cache levels without touching other data residing in the cache. 

The proposed lightweight solution aims to satisfy the following goals: 

1. The solution should erase all data related to a VM directly after its Virtual CPU (VCPU) 

releases the control of the CPU resources and does not erase or modify any data which 

does not belong to the targeted VM. 

2. The solution should induce neglected or managed performance overhead. 

3. The hypervisor should not require any major modifications, which can affect its 

usability or performance. 

4. All the tenants’ operating systems should be completely free from any modifications or 

changing in the operating system’s libraries. 

5. The solution should deal with all kinds of overlapping access (VCPU or CPU cores) 

and core migration, which are the direct cause of cache side-channel attacks. The 

solution should deal with the following cases: 

 Number of VMs or domains overlapping access to one VCPU. 

 Number of VMs or domains overlapping access to number of VCPUs. 

 Number of VCPUs overlapping access to a CPU core. 

 A VCPU migrates from a CPU core to another. 

5.2.2 The New Lightweight Solution 

In cloud computing, every cloud service provider has a set of Virtual Machines (VM) shared 

access to Virtual CPU (VCPU) that utilises the physical CPU resources such as Cores (CO) 

and Caches (CA). All of the service provider resources are shared among Users (U), which 

cause overlapping access to resources and lead to leakage of data by side-channels (cache side-

channel attacks). Thus, the prevention solution will tackle these attacks by erasing all VM’s 

data from all CA levels. Moreover, the prevention solution has two stages: trace stage and 

erasing stage. The trace stage continuously monitors any changes happens on the current state 
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of a VCPU used by a VM (either a VM migrates to another VCPU or a VCPU migrates to 

another CO). If any changes detected in the VCPU’s state, the erasing stage will start with 

defining the VM’s Memory Pages (MP) and Virtual Addresses (VA), and then deleting them 

from the CAs. 

To be more specific, the above sets of cloud service provider resources can be represented as 

follow: 

1. 𝑉𝑉𝑉𝑉 = {𝑎𝑎𝑚𝑚1, . . . , 𝑎𝑎𝑚𝑚𝑛𝑛} 

Where VM is a set of virtual machines (vm) and n is the total number of vm 

2. 𝑉𝑉𝐶𝐶𝑃𝑃𝑈𝑈 = {𝑎𝑎𝑐𝑐𝑝𝑝𝑢𝑢1, . . . , 𝑎𝑎𝑐𝑐𝑝𝑝𝑢𝑢𝑚𝑚} 

Where VCPU is a set of virtual cpu (vcpu) and m is the total number of vcpu 

3. 𝑈𝑈 = {𝑢𝑢1, . . . ,𝑢𝑢𝑘𝑘} 

Where U is a set of users (u) and k is the total number of u 

4. 𝐶𝐶𝐶𝐶 = {𝑐𝑐𝑡𝑡1, . . . , 𝑐𝑐𝑡𝑡𝑙𝑙} 

Where CO is a set of cores (co) and l is the total number of co 

5. 𝐶𝐶𝑈𝑈 = {𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐1, 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐2, 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐3} 

Where 

CA is three levels (level) of caches, 

level1={line1,…,linep} and p is the total cache lines in level1, 

level2={line1,…,lineo} and o is the total cache lines in level2, 

level3={line1,…,linez} and z is the total cache lines in level3, 

line is a line in any cache set 

6. 𝑉𝑉𝑃𝑃 = �𝑚𝑚𝑝𝑝1, . . . ,𝑚𝑚𝑝𝑝𝑞𝑞� 

Where MP is a set of memory pages (mp) and q is the total number of mp assigned to a 

vm 

7. 𝑉𝑉𝑈𝑈 = {𝑎𝑎𝑎𝑎1, . . . , 𝑎𝑎𝑎𝑎𝑥𝑥} 
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Where VA is a set virtual addresses (va) and x is the total number of VA a vm has 

Every vcpu has a data structure to save information about vm using it, co assigned (−>) to it, 

and etc. They are represented in form of vcpu.vm and vcpu.co. The solution can be expressed 

as follow: 

𝑖𝑖𝑓𝑓 ((𝑎𝑎𝑐𝑐𝑝𝑝𝑢𝑢. 𝑎𝑎𝑚𝑚 𝑐𝑐ℎ𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎)𝑡𝑡𝑟𝑟 (𝑎𝑎𝑐𝑐𝑝𝑝𝑢𝑢. 𝑐𝑐𝑡𝑡 𝑐𝑐ℎ𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎)) 

{ 

𝑎𝑎𝑟𝑟𝑎𝑎𝑠𝑠𝑎𝑎 �𝑎𝑎𝑐𝑐𝑢𝑢𝑝𝑝. 𝑎𝑎𝑚𝑚−> 𝑚𝑚𝑝𝑝𝑗𝑗) 𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚 𝐶𝐶𝑈𝑈  

Where 1 < 𝑗𝑗 < 𝑞𝑞  

𝑎𝑎𝑟𝑟𝑎𝑎𝑠𝑠𝑎𝑎 (𝑎𝑎𝑐𝑐𝑢𝑢𝑝𝑝. 𝑎𝑎𝑚𝑚−> 𝑎𝑎𝑎𝑎𝑐𝑐)  𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚 𝐶𝐶𝑈𝑈 

𝑡𝑡𝑟𝑟𝑎𝑎𝑛𝑛𝑠𝑠𝑐𝑐𝑎𝑎𝑡𝑡𝑎𝑎 (𝑎𝑎𝑎𝑎𝑐𝑐 𝑡𝑡𝑡𝑡 𝑚𝑚𝑝𝑝) 

𝑎𝑎𝑟𝑟𝑎𝑎𝑠𝑠𝑎𝑎 (𝑚𝑚𝑝𝑝)  𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚 𝐶𝐶𝑈𝑈  

Where 1 < 𝑡𝑡 < 𝑥𝑥 and mp is memory page has the vat 

} 

Our solution prevents cache side-channels in time-shared caches (e.g. L1 instruction/data and 

L2 per core, and L3 if it is used), particularly Prime&Probe and Flush+Reload cache side-

channel attacks, which are presented in the background chapter (section 2.3.1). Both of them 

rely on measuring the time to access an address after a victim VM relinquishes the CPU caches. 

In the Prime-Probe cache side-channel attack, an attacker will define and monitor number of 

addresses and cache sets. The attacker will access the targeted addressed to make sure they are 

in the CPU caches. Then the attacker waits for a predefined time to give a victim a chance to 

access the monitored addresses. Finally, the attacker will re-access the targeted addresses and 

calculate the time to access them. If the accessed time less than the time needed to accesses 

data in last cache level (normally level 3), the monitored addresses were accessed by the victim 

and vice versa. In addition, Flush+Reload cache side-channel attack follows the same step, yet 

it requires flushing the addresses from all CPU cache levels and does not monitor CPU cache 

sets. 
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Figure 26: The flow chart of the novel lightweight solution 

Thus, erasing any link to what the victim VM has accessed would prevent establishing a cache 

side-channel attack. The solution starts looking for any changes happening to any VCPU 

running in the host physical machine. The changes that our solution looks for is any alteration 

to the core that hosts the VCPU or the VM, which occupies the VCPU as presented in figure 

26. When any change is spotted, the solution will erase all virtual addresses used by the VM 

that occupied the VCPU. It will look practically for the VM’s page list and addresses kept on 

it. Erasing virtual addresses from the CPU cache may raise some concerns about the efficiency 

and usefulness of the CPU caches. However, as illustrated in details in chapter 7 section 7.1.2, 

erasing a virtual machine’s addresses from the CPU caches by the proposed solution generated 

at maximum 15,000 CPU cycles (less than 1.5e-8 seconds) overload, which is the lowest 

compared with other solutions proposed for preventing cache side-channel attacks in cloud 

computing. In the Prime-Probe, the solution destroys any chance an attacker can have to drive 

any information about previous activities done by a VM as presented in figure 27. 
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Figure 27: The solution prevents Prime-Probe 

 
Figure 28: The novel lightweight solution mitigates Flush+Reload attacks 

The solution will erase all data from addresses primed by the attacking machine. Thus, any 

data in a primed address will be removed to return a cache miss to the attacker in the Probe 

stage. Furthermore, in the Flush+Reload attack, the proposed solution erases a VM’s data from 
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all levels of CPU caches instantly after relinquishing the CPU resources (see figure 28). Hence, 

when the attacker lunches the reload stage, no information can be gained about addresses which 

were accessed by the victim machine. The proposed solution removes all address accessed by 

the victim VM without interfering with CPU caches’ operation or modifying data.  Moreover, 

it is also injected in the Xen hypervisor and triggered directly after overlapping happens. It will 

delete all addresses accessed by any VM instantly when it relinquishes the CPU resources. 

Thus, any attempt to attack by measuring the time of accessing an address would yield cache 

miss. 

5.2.3 Addresses Being Removed From the CPU Caches 

Knowing what has to be erased and when is an important aspect for our solution’s success. It 

determines the number of addresses should be removed from the CPU caches. These addresses 

may need to be translated from any type (logical, linear and physical) to another before being 

removed from the caches. Moreover, having the exact number of addresses to be erased reduces 

the total number of CPU cycles needed for deleting addresses from all CPU caches’ levels. 

Firstly, we will look at what has to be removed. The solution will be applied in Xen hypervisor, 

which is hosted in an Ubuntu machine. As mentioned in the chapter 6 (section 6.1), there are 

number of data structures utilised be the Xen hypervisor for each VM in order to keep track of 

virtual addresses used, pages assigned and accessed. One of these structures is P2M tables, 

which is a data structure table that has a number of fields to determine number of pages, virtual 

addresses spaces and etc. Hence, we use this table as a base to what should be removed from 

the cache. All addresses pointing to pages used by the VM will be removed. Virtual addresses 

either used by the VM application and processes or utilised to save data structures of the VM, 

will be sent to the erasing function to be removed from the cache. In addition, in order to reduce 

the proposed solution’s performance overhead, we use a function to translate virtual addresses 

to a page that hosts them. So, we take every virtual address used by the VM and look for the 

page that has the virtual address and finally remove its address from the CPU caches. 

The kernel module to translate virtual addresses  

static inline struct page_info *__virt_to_page(const void *v) 
{ 
    unsigned long va = (unsigned long)v; 
 
    ASSERT(va >= XEN_VIRT_START); 



95 
 

    ASSERT(va < DIRECTMAP_VIRT_END); 
    if ( va < XEN_VIRT_END ) 
        va += DIRECTMAP_VIRT_START - XEN_VIRT_START + 
xen_phys_start; 
    else 
        ASSERT(va >= DIRECTMAP_VIRT_START); 
    return frame_table + ((va - DIRECTMAP_VIRT_START) >> 
PAGE_SHIFT); 
} 

The second question is when the proposed solution has to be called. Firstly, whenever 

overlapping access to the CPU caches, the erasing technique should be called. Cloud computing 

tenants share pools of configurable computing resources such as virtual and physical CPUs; 

yet sharing of these resources causes overlapping access managed by scheduling techniques 

and load balancing mechanisms. The overlapping access has the direct cause of cache side-

channel attacks. We come across four different overlaps: 

1. Number of VM overlapping access to one VCPU 

Here the VMs are overlapping to access one available VCPU. So, all the VMs have 

time-shared access to the VCPU due to binding all VMs to a VCPU or the host machine 

has just one core as presented in figure 29. In addition, The Xen hypervisor has a 

command which can be used to bind VMs to one VCPU. 

 
Figure 29: Virtual machines overlapping access to a VCPU 

2. Number of VM overlapping access to a number of VCPUs 

In the Xen hypervisor, when there is more than one VCPU, each VM will be bended to 

a VCPU till the number of VMs is greater than the number of VCPUs. In that case, 

VMs will have time-shared access to VCPUs as illustrated in figure 30. In the figure, 
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the total numbers of VMs and VCPUs are n and m respectively. Thus, the overlapping 

happens only when m < n, which should be the common case in the Xen. 

 
Figure 30: Virtual machines overlapping access to VCPUs 

3. Number of VCPUs overlapping access to a CPU core 

When VCPUs have one CPU core, they will utilise it in time-shared manner. Although, 

in our experiments on Xen we have not come across this case, in other virtual 

environments that use Symmetric Multi-processing (SMP) it might happen (see figure 

30). 

4. Number of VCPUs migrates from one CPU core to another 

In the Symmetric Multi-processing (SMP) settings, VMs will be floated from one CPU 

core to another as shown demonstrated in figure 31. Hence, a VM assigned to a VCPU 

can gain information about operations and addresses accessed by another VM [71]. 

 
Figure 31: VCPUs migrates from a CPU core to another 

5.3 A New Infrastructure Solution to Detect Cache Side-Channel Attacks in Cloud 

Computing 

The reported attacks scenarios (Prime & Probe and Flush+Reload) in cache side-channel 

attacks category have specific characteristics such as evicting a number of CPU cache lines to 
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launch an attack. In order for a cache line to be evicted, there are two ways to do it either by 

using a flushing command or reading data from main memory to be written in that line. Either 

one of the mentioned ways will cause a cache miss to the CPU. Thus, most of the reported 

attacks will cause a considerable number of cache misses to the CPU in order to evict the data 

on the cache. These cache misses can be counted and compared with normal cache misses 

caused in a normal code execution. However, it is a difficult and crucial task. 

Although, the number of cache misses out of the total number of execution times granted to 

the VM is playing a big part to determine cache side-channel attacks, it cannot give a precise 

decision without examining the cache misses sequences. Launching a cache side-channel 

attacks such as Prima and Probe will write a big chunk of data (nearly the size of one of CPU 

caches) to a CPU cache. That will cause a big number of cache misses in a sequence manner. 

Thus, measuring the number of cache misses and testing whether they are sequences or not, 

can definitely detect cache side-channel attacks. 

5.3.1 Our Goals 

In order for the time-shared CPU caches attacks to succeed, they need to evict all the data kept 

in the cache by reading big pieces of data to the cache and that will induce an unusual number 

of cache misses to the CPU. Thus, we are measuring the number of cache misses caused in 

each fetch cycle and the time it is taking to decide whether it is a cache side-channel attack or 

not. 

The proposed detection solution aims to satisfy the following goals: 

1. The solution should measure a number of cache misses caused and when they happen 

by a VM in its execution time without using any attached software or application. 

2. The solution should be accurate in terms of distinguishing between normal cache misses 

and others caused by cache side-channel attacks. It also should report any cache side-

channel attacks instantly. 

3. The solution should induce neglected performance overhead. 

4. The hypervisor should not require any major modifications. 
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5. All the tenants’ operating systems should be completely free from any modifications or 

changing in their applications or libraries. 

5.3.2 The Proposed Detection Infrastructure Solution 

The proposed solution is a detecting strategy that mitigates and prevents cache side-channel 

attacks in cloud computing. It focuses on the infrastructure used to host cloud computing 

tenants by counting cache misses caused by a virtual machine. The number of cache misses 

will be counted and added to the sequence of cache misses in order to detect cache side-channel 

attack. The design, implementation (see section 6.2 in chapter 6) and evaluation (look at section 

7.1 in chapter 7) of the solution illustrated that our solution effectively detects attacks on time-

shared caches. 

The solution attempts to detect cache side-channels in time-shared caches (e.g. L1 

instruction/data and L2 per core, and L3 if it is used), particularly Prime-Probe and 

Flush+Reload attacks. Both of them rely on measuring the time to access an address after a 

victim VM relinquishes the CPU caches. Thus, they erase data kept in the cache by replacing 

it with their own data and that will generate a considerable number of cache misses. Our 

solution implemented in the host’s kernel to measure time taken in every fetch cycle. If the 

time is greater than a predefined threshold, it is definitely a CPU cache miss and it will be 

added to a data structure used to keep track of every VM’s behaviour.  Moreover, the time 

when a cache miss happens is kept in another field in the data structure in order to compute the 

variation times between cache misses caused by each VM. A standard deviation will be 

calculated to the variation times. If the standard deviation is lower than a threshold, the CPU 

cache misses recorded are caused by a cache side-channel attack lunched by a VM. 
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Figure 32: The novel infrastructure solution 

As shown in figure 32, our solution has three stages: 

1. The first stage is the measurement stage, which has two steps: measuring the number 

of CPU cache misses caused by a VM and measuring time for each CPU cache miss 

recorded. Firstly we need to define when a CPU cache access is a miss or hit. We use a 

threshold reflects the maximum time taken for accessing data on caches (from level 1 

up to level 3). Thus, any CPU access time (fetch cycle) greater than the threshold, is a 

CPU cache miss. When a cache miss is recorded, it will be accounted to the (VCPU) 

that occupied by the running VM. Moreover, the start and end time of the Fetch cycle 

that causes the cache miss, will be saved to be used in the analysis stage if the number 

of cache misses are greater than the threshold. This stage will continue while the VCPU 

and the VM using it, is still occupying the CPU resources. Before the overlapping 

between VCPUs happens, the total number of CPU cache misses caused by the VCPU 

will be compared with the total cache misses threshold. If they are greater than 

threshold, they are most likely to be a cache side-channel attack launched by the VM 

and the analysis stage will start. Otherwise, they are normal CPU cache misses and 

there is no need for the analysis stage. 
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2. The second stage is the analysis stage. It has two functions: 

 Calculating the CPU cache misses sequence 

This step is a very important step in the analysis stage. It calculates the time 

between the end of a fetch cycle that causes a CPU cache miss, and the start of 

the following fetch cycle, which induces a new CPU cache miss as illustrated 

in figure 33. Where CMT means a cache miss time, start is the beginning time 

of a cache misses, end is the ending time of a CPU cache miss, S is the difference 

between an end of a CPU cache miss and a start of another CPU cache miss 

followed it, n is the total number for CMT recorded for a VM during its 

execution time and m is the total number of S. 

 

Figure 33: A CPU cache misses sequence 

A CPU Cache Misses Sequence (CCMS) is a sequence comprised of several 

CMTs ordered by time. So, CCMS = {CMT1, CMT2, …, CMTn}. S is defined 

in (1). 

𝑠𝑠𝑘𝑘 = 𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖+1 − 𝑎𝑎𝑛𝑛𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖                                   (1)  

∀ 𝐶𝐶𝑉𝑉𝑇𝑇𝑖𝑖𝑎𝑎𝑛𝑛𝑎𝑎 𝐶𝐶𝑉𝑉𝑇𝑇𝑖𝑖+1  Where 0 < 𝑖𝑖 < 𝑛𝑛 𝑎𝑎𝑛𝑛𝑎𝑎 1 < 𝑘𝑘 ≤ 𝑚𝑚  

 Calculating the standard deviation of the CPU cache misses sequence. 

In order to determine and measure the variation between occur time of CPU 

cache misses, we calculate the standard deviation of the CPU cache misses 

sequence. It can help testing the regularity of CPU cache misses. 

For a set S= {s1, …, sm}, the standard deviation (σ) is calculated as defined in 

(2). 

S1 

CMT1 

Start End 

CMT2 

Start End 

CMTn 

Start End 

CMT3 

Start End 

S2 Sm 

.  .  . 
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𝜎𝜎 = �∑ (𝑠𝑠𝑘𝑘 − �̅�𝑠) 2
1≤𝑘𝑘≤𝑚𝑚

𝑚𝑚
                         (2) 

Where �̅�𝑠  is the mean of set 𝑆𝑆 and m is the total number of 𝑆𝑆 entities 

3. The final stage is the decision stage 

It takes the output of analysis decision, which is the standard deviation. It is compared 

with a threshold (pre-calculated standard deviation) that reflects regularity of CPU 

cache misses in a real attack. If standard deviation is lower than the threshold, the VM 

that has CPU cache misses is launching a cache side-channel attack. Otherwise, no 

attack has been launched even when there are a considerable number of cache misses. 

We will fully explain these cases in the evaluation chapter (chapter 7). 

5.4 Summary 

This chapter gave a detailed description of a new Prime and Probe attack and the two new 

solutions that are proposed for preventing and detecting cache side-channel attacks in cloud 

computing. The new Prime and Probe cache side-channel attack primes physical addresses 

translated form virtual addresses used by a virtual machine. Then, time is measured to access 

these addresses and it will be varied according to where the data is located. If it is in the CPU 

cache, the time will be less than in the main memory. The prevention solution is a new 

lightweight solution that can prevent cache side-channel attacks with neglected overload. It 

erases a virtual machine’s data from all CPU cache levels when the virtual machine 

relinquishes CPU resources in order to prevent any chance of launching a cache side-channel 

attack. The erasing algorithm will not delete or remove any information does not belong to the 

targeted virtual machine. Furthermore, the proposed new infrastructure detection solution is 

free from any modifications that have to be done in either cloud tenants’ machines or cloud 

service provider’s operating systems. The solution does not rely on any software or application 

to detect any abnormal behaviour in the CPU caches. It uses a new way to measure the time 

taken by every fetch cycle executed by a virtual machine. The next chapter will show in details 

how the proposed prevention and detection solutions will be implemented in the Xen 

hypervisor and justify the reasons of using the Xen. 
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CHAPTER 6 The Implementation of the Proposed 

Prevention and Detection Solutions to Cache Side-

Channel Attacks 

In order to implement the proposed prevention and detection solutions to cache side channel 

attacks in cloud computing, a cloud based testbed has been developed which include 30 virtual 

machines and 8 VCPUs. In this chapter we provide a detailed description of how both solutions 

are implemented in the kernel of Xen hypervisor. This chapter (section 6.1.1) clarifies the 

reasons behind using the Xen hypervisor for implementing the solutions. It also details the 

testbed used to conduct the evaluation experiments. The algorithms developed for 

implementing the novel lightweight solution and steps followed to write and append the 

solutions’ codes in the Xen’s kernel are illustrated in section 6.2.  Moreover, full details of the 

steps used to implement the new detection solution are presented in section 6.3. 

6.1 The Testbed 

6.1.1 Xen Hypervisor 

The Xen hypervisor resides between the hardware and the operating system in order to grant 

virtual averment [105]. It is an open-source bare-metal or type-1 hypervisor implementation. 

It is evolved by a world-wide community of researchers, employees of companies and 

individuals. It is being used on contemporary hardware architectures of public clouds including 

Amazon’s EC2 [106] and Rackspace [107]. Moreover, the Xen hypervisor is also used to 

separate operating systems into several isolated components with various privilege levels such 

as Qubes [108]. Xen makes it possible to run multiple guest operating systems in a single host 

domain. The Xen hypervisor hosts virtual machines and runs directly on the physical hardware 

of the host machine. The virtual machines can run different operating systems (Linux, NetWare 

and MS Windows). 

The Xen hypervisor runs on the hardware and is responsible for handling CPU, memory, and 

interrupts. A number of virtual machines are running on top of the hypervisor. The running 

virtual machines are called domains (DomUs) or guests. The host domain is named domain 0 

(Dom0) and contains the drivers (e. g. network backend driver) for all the devices in the system. 

Domain 0 controls virtual machine creation, destruction, and configuration. In addition, 
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software isolation mechanisms are used in the Xen to separate domains and prevent leakage of 

information from one domain to another. However, side-channel attacks have been used to 

bypass and break the software isolation mechanisms [71]. 

1. Type of VMS 

Two different kinds of modes are supported in the Xen hypervisor: Full or Hardware 

assisted Virtualization (HVM) mode and Para-virtualization (PV) mode. They can be 

used and run on a single hypervisor at the same time. 

 Para-virtualization (PV) 

It is a light-weight virtualization technique. Although, PV guests do not require 

virtualization extensions from the host CPU, they require a PV-enabled kernel 

and PV drivers in order to make them aware of the hypervisor and can work 

without emulation or virtual emulated hardware. Moreover, PV can work with 

most Linux distributions such as Ubuntu. It also works with other kernels (e.g.  

NetBSD, FreeBSD and OpenSolaris)[107]. 

 Hardware-assisted virtualization (HVM) or Full Virtualization 

It employs virtualization extensions from the host CPU to virtualize guests. 

Thus, HVM requires AMD-V or Intel VT hardware extensions. Qemu is used 

in the Xen hypervisor to emulate PC hardware, including BIOS, VGA graphic 

adapter, IDE disk controller, USB controller etc. In addition, there is no need 

for any kernel support to (HVM) guests. However, the required emulation in 

HVM guests makes them slower than PV guests [107]. 

2. Memory management in Xen 

The para-virtualization of the memory management unit (MMU) was one of the original 

innovations of the Xen hypervisor. It enables the Xen hypervisor to model the platform 

on which it runs (e.g. x86) [105]. The using of para-virtualization facilitates guest 

operating systems with efficient and fast virtualization. Moreover, memory 

management in Xen depends on the platform used to host the domains such as X86 or 

ARM and the type of domains either Para-virtualization (PV) or Hardware-assisted 

http://wiki.xen.org/wiki/OpenSolaris
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virtualization (HVM). Para-virtualization (PV) utilises direct paging and HVM uses 

shadow paging. 

In our experiments, we have used PV domains. Thus, we will only talk about direct 

paging. At the beginning there are three different types of addresses used in the Xen 

hypervisor [105]: 

 Virtual memory addresses which are employed for user-space applications. 

 Pseudo-physical memory addresses which appear as virtual memory to Xen and 

as physical memory to parts of the kernel that are not virtualization-aware. 

 Machine addresses which point to physical memory locations in the host 

system. 

In the Xen hypervisor, there are two different tables used alongside the ordinary page 

table utilised for translating virtual address to machine address. These tables are 

Physical to Machine (P2M) mapping table and Machine to Physical (M2P) mapping 

table. They are a simple array of frame numbers, indexed by physical or machine frames 

and looking up the other. In addition, the P2M mapping table is managed by the guest 

operating system. The table size has to be the same size as the guest's pseudo-physical 

address space size. On the other hand, the M2P mapping table is sized according to the 

total amount of RAM in the host. Thus, it is controlled by the host operating system. 

3. Xen credit scheduler 

The credit scheduler is a relatively fair share CPU scheduler, which balances and 

schedules accessing to the CPU resources [109]. There are two files in the Xen package 

which can be used to control sharing the CPU resources (credit scheduler and credit 

scheduler2), yet the credit scheduler is the default scheduler in the Xen 4.04. There are 

number of important parameters employed to control execution time assigned to each 

Virtual CPU (VCPU): 

 Weight 
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It is used to determine the CPU time can one VM has compared with another 

VM. For instance, a VM with weight 512 will get twice as much processing 

time as a VM which has weight 256. 

 Cap 

It expresses the percentage a VM can have from the total processing capacity of 

a CPU. For example, when a cap of a VM equals 100, the VM will have a full 

physical CPU. 

 Timeslice 

The Timeslice illustrates the default amount of time allocated to a VCPU for 

execution on a CPU core. Its value is measured in milliseconds. When the 

Timeslice has higher values it will give each VM a big time slice in the credit 

scheduler and vice versa. Moreover, assigning lower values to it increases 

context switching rates between domains [109]. 

 Ratelimit 

It demonstrates a minimum amount of time that a VCPU must run before it 

might be interrupted by another VCPU that has higher priority. It was added in 

Xen 4.2. The default value is 1000μs [109]. 

The credit scheduler parameters’ values can be viewed and modified as shown in the followed 

table (table 4) by using this command 

The command Its description 

# xl sched-credit  Displaying the credit scheduler’s parameters 

current values 

# xl sched-credit -d domain -w weight Modifying the weight parameter for a domain 

# xl sched-credit -d domain -c cap Modifying the cap parameter for a domain 

# xl sched-credit –r timeslice Modifying the timeslice parameter for a domain 

# xl sched-credit –t ratelimit Modifying the ratelimit parameter for a domain 
Table 6.1: The credit scheduler commands 
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Figure 34: The CPU’s physical cores and cache levels 

6.1.2 The Host Server 

We conducted performance and security evaluations for both solutions on a host machine that 

had an x86-64 architecture and Ubuntu desktop 14.04, which was the host operating system. 

The host machine (server) used in our experiments is a comparable to cloud environment 

servers. In addition, we use the aforementioned points presented in our goals sections 5.2.1 and 

5.3.1 in chapter 5 as research questions to evaluate the solutions. As presented in figure 34, the 

server was equipped with quad-core (2 logical cores per physical) Intel i7-3820 processor with 

an operating frequency of 3.60GHz. The server had three levels of caches. Each physical core 

had L1 and L2, yet all cores shared L3. Furthermore, L1 data and instruction caches were 32KB 

in size and 8-way set-associative. The unified L2 was 256KB in size and 8-way set-associative. 

The shared unified L3 was 10MB and 20-way set-associative. Moreover, all three levels had 

64-byte cache lines and 64B cache lines. The server that represents the management domain in 

Xen (Dom0) runs Ubuntu 14.04. The hypervisor used in our experiments was Xen 4.4 

hypervisor. In addition, we used various numbers of virtual machines and each VM had one 

VCPU. RAM size assigned to each VM was varied due to the number of VMs running in the 

server at the same time and the size of the RAM was 16GB. However, the minimum amount 

of RAM assigned to a VM was 256 KB when the number of VMs was 30 as shown in figure 

35. 
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Figure 35: The number of VM used in the experiments 

6.2 The Implementation of the Lightweight Prevention Solution 

The proposed solution has been implemented using the open source Xen Hypervisor version 

4.4. Specifically, we implemented and wrote the proposed solution in three different places in 

the Xen’s kernel in order to deal with all types of overlapping access that are presented at 

section 5.2.3 in section 5 . It is worth mentioning that the Xen hypervisor creates a scheduling 

unit called Virtual CPU (VCPU), which is assigned to one of the physical CPU cores or a time 

slot on the physical CPU. Thus, we focused on VCPUs’ behaviours more than VMs as it’s the 

medium component between a VM and a CPU core. Furthermore, most of the overlapping 

happens between VCPUs and CPU cores. The results of our implementation are a tracing 

algorithm and an erasing algorithm as shown in figure 36. 

 
Figure 36: Implementing the solution’s algorithms on the Xen hypervisor 
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6.2.1 Tracing Algorithm 

The tracing algorithm aims to give the precise decision when a VM’s data should be searched 

and removed from the CPU caches. It starts with tracing the run state of the running VCPU. If 

any changes happen to the VCPU values such as migrating it to another core or  changes to the 

VM using the VCPU, the trace algorithm will examine the changes whether they affect the 

domain occupying the VCPU and the core utilised or not. If any changes happen to the domain 

id or the core id in the VCPU date structure, the erasing algorithm will be called and passed to 

the VCPU data structures. In addition, the tracing algorithm operates in the kernel of the Xen 

hypervisor as long as it runs. 

Tracing algorithm (Tracing VCPUs run state) 

Trace_VCPU_Runstate(VCPU) 

{ 

    If (the run state of (VCPU) is changed) 

       If (VCPU ̵ >domain is changed) OR (VCPU ̵ >CPU.core is changed)  

       Eras_cache_lines(VCPU ̵ >domain.data); 

       Else  Return; 

    Return; 

} End  

6.2.2 Erasing Algorithm 

It mainly focuses on identifying data and how data should be removed. 

Erasing algorithm (Erase a VM’s data from all CPU cache levels) 

Erasing_cache_lines(VCPU) 

{ 

    While (VCPU ̵ >domain.page_list!=NULL) 

    { 

       Erase(Read_address(domain.page_list)); 

       Erase(domain.VA); 

       Erase(translate_VA_to_page(domain.VA)); 

       domain.page_list= domain.page_list.next; 

     } 
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     Return; 

}End 

In order to deal with the data leakage caused by different types of overlapping access to VCPU 

or CPU’s cores, at least one of the aforementioned algorithms was coded in three different 

places in the Xen’s kernel. Firstly, the erasing algorithm was added to Xen credit scheduler 

file, which balances and schedules accessing the CPU resources. Thus, the erasing algorithm 

was coded in a function that removes a VCPU from the Xen run-queue when its execution time 

ends in order to prevent deriving data from cache lines were accessed by the VCPU. The second 

place is the Xen scheduler file. The tracing and erasing algorithms are coded in the VCPU run-

state function to look for any changes in a VCPU run state. For example, the VCPU migrates 

to another CPU’s core. Hence, the solution’s algorithm will prevent launching a cache side-

channel attack. Finally, the erasing algorithm was added in the Xen domain file, which manages 

context switching between domains. In addition, figure 37 shows the kernel’s structure of the 

Xen hypervisor. Words in bold illustrate where the solution’s algorithms were coded. 

 
Figure 37: The kernel’s structure of the Xen hypervisor 

6.2.3  Clflush  

The Clflush instruction invalidates the cache line that contains the linear address specified with 

the source operand from all levels of the processor cache hierarchy (data and instruction). The 

invalidation is broadcast throughout the cache coherence domain. If, at any level of the cache 

hierarchy, the line is inconsistent with memory (dirty) it is written to memory before 

invalidation [110].  
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There are three different addresses supported in the Intel processors: 

1. Virtual address (logical address) 

In operating systems, a range of virtual addresses for each process is used for security 

and isolation proposes, since the 8086 architecture forces the programs to be divided in 

segments. Thus, these virtual addresses tell which segment is used and the address in 

segment holding the value of an operand or instruction. 

2. Linear address 

It is an address derived from virtual addresses by segment translation and segment 

descriptor tables. These addresses are a part of the memory segment of a program. They 

are used to get physical addresses by using page directory and page tables. 

 
3. Physical address 

They are calculated from linear addresses through paging and correspond to addresses 

in RAM. It is the value that the processor places on its address lines in order to access 

a value in chip-based memory. If the paging is not enabled in the operating system, 

linear addresses are equal to physical addresses. 

As described in the Intel document, the Clflush teaks and flushes a linear address attended to 

be flushed from all CPU cache levels. However, by using experiments, we prove flushing a 

linear address will remove the physical addresses that are mapped to it. In the L1 all aliased 

virtual to physical translations map to the same cache set on Intel processors. Thus, evicting 

the linear address removes the physical address. Moreover, in the rest of cache levels (L2 and 

L3), all addresses used by the operating system are physical addresses. Hence, the physical 

address that gets broadcast globally for eviction. 

In Linux Ubuntu, segmentation and linear addresses are not supported. They are only used for 

permission control and the kernel in Ubuntu configures each segment's offset value to zero. 

Thus, linear addresses are not used in a kernel, and the kernel directly uses virtual address on 

paging units. After getting the virtual address, the MMU paging unit uses CR3 register to get 

the base of paging table to generate physical address. 
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Figure 38: Data structure of P2M table 

6.2.4 A VCPU’s Memory Addresses to Be Erased 

As described in the memory structure of the Xen hypervisor, every VM has a table called 

Physical to Machine (P2M) mapping table. This table has full details about the number of 

pages, the structure of the page list and mapping from physical to machine addresses, etc. (see 
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figure 38). Therefore, the erasing algorithm removes the memory page addresses kept in the 

P2M table and addresses point to its data structure. Moreover, to reduce the overload induced 

from erasing all the page addresses from the CPU cache, the proposed solution searches for 

memory pages that host P2M data structure and VM’s memory addresses and removes them 

from the CPU caches. 

6.2.5 Implementing the Solution’s Code on the Xen’s Kernel 

Writing code of the proposed solution inside Xen’s kernel was a risky and challenging task due 

to the complex nature of Xen architecture. The Xen architecture has been written in C language 

including hundreds of various functions and procedures, which are used for different purposes. 

A part of our implementation was to investigate and identify the correct functions and locations 

for the proposed solution. 

After conducting a considerable number of experiments, we focused on data structure on 

architecture and common Xen’s kernel files, which control the entire context switch happening 

between VMs and VCPUs and the scheduling of tasks. 

6.2.5.1 The Arc Xen’s Kernel Data Structure 

The Arc Xen’s kernel data structure has two architectures, which are ARM and X86. It was 

easy to choose the X86 as it is the backbone architecture of machines used around the world. 

Inside the structure of X86, there are 10 other data structures and 55 kernel’s files. They control 

all the hardware components such as CPU and memories. Inside the structure of X86, there is 

a domain.c file, which manages the context switch happening between virtual machines (VMs). 

The domain.c file has been used to implement the tracing algorithm in the function 

(paravirt_ctxt_switch_from). This function would be used when a context switch happens and 

used to save VMs’ data. In the proposed solution the tracing algorithm will examine when this 

function is executed, then the erasing algorithm will be triggered to erase all the VM’s 

addresses from all CPU cache levels. 

6.2.5.2 The Common Xen’s Kernel Data Structure 

The proposed solution (tracing and erasing algorithms) was implemented in two important files 

(sched_credit.c and schedule.c in common data structure). They control VCPUs’ running 

queues and scheduling tables. 
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1. The sched_credit.c represents the fair CPU scheduler, which deals with Symmetric 

MultiProcessing (SMP) on the host machines. More details about the credit scheduler 

are demonstrated on the section 6.1.1. In the file, we looked for functions and 

procedures that deal with credit given to VCPUs in order to finish their tasks. The 

runq_remove is a function that removes any VCPU from the credit scheduler queue 

when its time is finished. Thus, the erasing algorithm is added to the code of this 

function. 

2. The Xen hypervisor under certain circumstances gives VMs ability to wake up, 

performing some tasks, and going back to idle state [111]. Thus, a number of VMs and 

VCPUs used by them can perform some hidden tasks and operations that are not added 

on the running queue or credit schedulers. Thus, the solution’s algorithms were added 

to the schedule.c file to trace any change on the run state of VCPUs. The schedule.c file 

has a large number of procedures and functions that are responsible for creating and 

destroying VCPUs, tracing run state of VCPUs, creating and destroying domains 

(VMs) and etc. Therefore, the tracing algorithm was added to this file, specifically the 

code was injected at the trace run state function. In this function, all parameters assigned 

to a VCPU, a domain that uses the VCPU and CPU’s core which is occupied by it, are 

tested constantly. If any alteration happens to the state of the VM that uses the VCPU 

or the CPU core utilised by it, the Tracing algorithm will trigger the Erasing algorithm. 

6.3 Implementation of the New Detection Solution 

We have implemented the new proposed cache side-channel detection solution using the open 

source Xen Hypervisor version 4.4. The proposed solution has two main algorithms (measuring 

and analysis algorithms) which were coded and embedded in different places in the Xen’s 

kernel in order to detect any cache side-channel attack that causes any abnormality in the CPU 

caches’ behaviour or CPU cache misses. 

6.3.1 Measuring Algorithm 

It focuses on calculating the time taken in every VCPU’s fetch cycle and recording the 

occurring time of that fetch. The executing time of the fetch cycle and happening time are 

added to a new data structure that is linked to every VCPU running in the host machine. 

Measuring algorithm  
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Void the measuring_function (struct vcpu *v)/*injected in the fetch step*/ 

{ 

    Unsigned long str, r; 

    str=rdtsc(); 

    fetch (); 

    r=rdtsc(); 

    v->cache_miss_time=(r-str); 

}End  

6.3.2 Analysis Algorithm 

This algorithm concentrates on analysing the collected data of fetch cycles’ time and tells 

whether a cache side-channel attack has been launched or not. When a VCPU overlapping 

access to a CPU core happens, the analysis algorithm starts counting cache misses and 

compares it with a predefined threshold of the number of CPU cache misses in normal 

conditions. If the whole number of CPU cache misses is greater than threshold, it is likely 

abnormal behaviour and the standard deviation of the time of CPU cache misses reoccurring 

will be calculated. If the standard deviation is greater than the threshold’s standard deviation, 

it is definitely a cache side-channel attack lunched by a VM. 

Analysis algorithm  

Void analysis_function (struct vcpu *v)/*injected where the VCPU release the control of 

PCPU*/ 

{ 

 If (v->cache_miss_time>threshold1) 

Count cache misses (); 

     Calculate percentage of cache misses (); 

    If (percentage>threshold2)  

     { 

          Calculating the summation of cache misses times (); 

                        Calculating the mean of cache misses times (); 

          Calculating the sum of deviation of cache misses times (); 

          Calculating the standard deviation of cache misses times (); 

 If (standard_deviation<threshold3) 
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    Printk (" The VCPU %d which uses by Domain %d launched CSSA\n", 

v->vcpu_id, v->domain->domain_id); 

     } 

Empty the list after the VCPU release the control of PCPU (); 

}End 

6.3.3 Implementing the Detection Solution in the Kernel of the Xen Hypervisor 

The solution’s analysis algorithm was implemented on the same kernel’s data structures, files 

and functions mention in section 6.2.1 to implement the novel lightweight solution for 

preventing cache side-channel attacks.  However, there were two crucial steps for this solution 

to work perfectly. Firstly, creating a new data structure to VCPUs in the kernel of Xen 

hypervisor and that was not an easy task with considerable restrictions on modifying the 

VCPUs’ data structure. For example, the VCPU’s structure in the Xen’s kernel has limited 

memory to be constructed. Hence, we had to change types of number of parameters (form 

uint64_t to uint8_t or other types) and accommodate these changes in other linked data 

structure such as domain and timer data structures. Secondly, finding the code used by VCPUs 

to execute Fetch cycles and adding the measuring algorithm to it. 

6.3.3.1 Creating a New Data Structure 

In order to create a new data structure for every VCPU to save all the fetch cycles’ execution 

time, we looked for the Xen’s kernel files that are responsible for creating VCPUs’ data 

structure. It was difficult to identify the components of Xen which can help implementing the 

detection solution as most of the codes are nested and linked to each other. Thus, we have 

examined various components and functions of the Xen’s kernel to find the file that creates 

VCPUs’ data structure. The Xen’s kernel has a folder named include. The include data structure 

has most of the various libraries and files that responsible for creating memory pages and 

assigning them, controlling the low levels hardware and structures of VCPUs, etc. After 

examining the include’s data structures and files, the file responsible for creating VCPUs’ 

structure was found in the xen folder. It is called sched.h. In this file, a data linked list structure 

was implemented inside the data structure of the VCPU to keep track of all CPU cache misses 

caused by a VCPU. The code used to create it, is presented in a first part the appendix B. 
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6.3.3.2 Fetch Instruction 

Looking for the fetch instruction used by VCPUs was really the toughest part and time 

consuming task of implementing the solution. We had to dig deep for this instruction in every 

data structure, file, and code lines in functions used in the Xen’s kernel. Finally, we found the 

fetch instruction that is used by VCPU to get data either from CPU caches or RAM. It was 

found in file traps.c inside the x86 data structure. In this file, we wrote the measuring algorithm, 

which will be responsible for recording every time taken to execute a VM’s fetch cycle. 

6.4 Summary 

This chapter described how the prevention and detection solutions to cache side-channel 

attacks are implemented. Both of the proposed solutions were implemented in the Xen 

hypervisor. The Xen hypervisor is an open-source bare-metal or type-1 hypervisor 

implementation that resides between the hardware and the operating system in order to grant 

virtual averment. It is evolved by a world-wide community of researchers, employees of 

companies and individuals. It is being used on contemporary hardware architectures of public 

clouds including Amazon’s EC2. Detailed steps and algorithms developed to implement the 

solutions were fully explained here. The proposed prevention cache side-cannel attacks 

solution has two algorithms, which are tracing algorithm and an erasing algorithm. They were 

implemented in the kernel of the Xen. Furthermore, data structures and files that the new 

detection solution where implemented in were also demonstrated in this chapter. We have 

implemented the new proposed cache side-channel detection solution in the open source Xen 

Hypervisor version 4.4. The proposed solution has two main algorithms (measuring and 

analysis algorithms) which were coded. The next chapter will show in details how the proposed 

prevention and detection solutions will be evaluated. We conducted two evaluations, which are 

security and performance evaluations. The evolutions’ results are compared with results from 

other proposed prevention and detection cache side-channel attacks solutions implemented in 

the same testbed. 



117 
 

CHAPTER 7 Results and Evaluation of the Prevention 

and Detection Solutions to Cache Side-Channel 

Attacks 

The proposed prevention and detection cache side-channel attacks solutions are evaluated in 

this chapter.  This chapter presents the results and evaluation of both solutions. Two different 

evaluations were conducted, which are security and performance evaluations. The security 

evaluation includes test the proposed solution against three types of cache-side channel attacks, 

which are Prime & Probe, Flush+Reload and our developed new prime and probe cache side-

channel attack. Furthermore, the performance evaluation for the proposed solutions will cover 

the following aspects: the overload induced by the new prevention and detection cache side-

channel attacks solutions and compare it with overload generated by other proposed detection 

and prevention solution to cache side-channel attacks. Both of the new proposed solutions are 

tested against different factors and conditions such as the number of virtual machine, the Xen’s 

parameters and RAM. 

7.1 Results and Evaluation of the Novel Lightweight Prevention Solution 

7.1.1 Security Evaluation 

The proposed prevention solution was evaluated using three types of access-driven cache side-

channel attacks, which are Prime & Probe, Flush+Reload and our developed new prime and 

probe cache side-channel attack. All of the attacks were given ideal conditions to work. In our 

security evaluation experiments, we have used only two VMs with Dom0 and each VM had 

one VCPU. The VCPUs were pinned to a single CPU core in the experiments. Thus, the VCPUs 

of VMs would overlap access to the CPU core’s cache levels (L1and L2) and that would 

generate the perfect conditions for cache side-channel attacks to work. Moreover, the results 

obtained are compared with results from unmodified Xen hypervisor, which had nothing 

changed on its code or working conditions. In order to achieve consistency of the results, we 

launched the three attacks against the proposed lightweight prevention solution and the normal 

unmodified Xen hypervisor 20 times. Furthermore, in order to compare our solution’s security 

evaluation results with other well-known proposed solutions, we implemented two proposed 

solutions for preventing cache side-channel attacks, which are flushing the CPU caches 
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solution [18] and injecting noise to cache timing approach [19]. They were tested against the 

three types of cache side channel attacks with the same conditions used to test the lightweight 

prevention solution. As demonstrated in figure 39, we lunched the three attacks against the 

proposed solutions 20 times. Our proposed solution and the CPU caches flushing solution had 

the best result and prevents the three types of attacks from gaining any information in 20 times 

out of 20. However, as described in the section 2.3.2 (background chapter) and in section 

7.1.2.1, the CPU caches flushing solution cannot be applied in the cloud computing due to its 

big overload that exceed 1,000,000 CPU cycles (about 0.025 seconds). In addition, the injecting 

noise solutions failed at least 4 times out of 20 to prevent the three types of cache side-channel 

attacks. 

 
Figure 39: A comparison of attack trails between our prevention solution and other solutions 

7.1.1.1 Flush+Reload Cache Side-Channel Attack 

In order to perform Flush+Reload attack, we followed the same steps which were presented at 

the background chapter in section 2.3.1. One of the VMs was the attacking machine, which 

executed a small program written in C language to flush the number of memory addresses 

which were predefined and monitored. The pre-identified addresses were accessed by the 

victim machine in an early stage. When the VCPU of victim machine released control of the 

CPU core, the attacker would use the C language code to flush the memory address from the 

all CPU cache levels and wait to allow the victim machine to access the monitored lines [67]. 

The attacker would measure the time to access the monitoring lines after the victim machine 

relinquished CPU resources. If the time was less than the pre-computed threshold (120 CPU 

cycles), the monitored lines were accessed by the victim machine. Otherwise, the monitored 

lines were not accessed by the victim machine. 
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In the normal hypervisor, the attackers succeeded in 20 trials to tell the victim accessed the 

monitored lines. However, in our solution, the attack did not succeed to derive any information 

about the accessed memory lines. Finally, the attacker did not have any information about 

memory lines accessed by the victim. 

7.1.1.2 Prime & Probe Cache Side-Channel Attack 

The second type of side-channel attacks used in our security evaluation is the Prime & Probe 

attack. The attacker VM primed the CPU core’s caches by using the same technique introduced 

by Osvik et al. [68].  We primed a number of cache lines with our data. Having waited for the 

predefined time to allow the victim machine to access the CPU core’s caches, the probe stage 

started. It observed the victim’s activity on cache sets. If the victim accesses a primed line, data 

on the line will be evicted and caused a cache miss. This will yield a higher time to read this 

line than if it is still untouched. 

The Prime & Probe attack was applied on our novel lightweight solution and normal hypervisor 

20 times. By using the proposed prevention solution, the attacker did not have any information 

about the primed cache lines as all of its primed lines and data were erased after relinquishing 

the CPU core. On the other hand, the attack in the normal hypervisor succeeded in 20 out of 

20 trials. The attacker could see the activity of the victim and which primed line had been 

accessed. 
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Figure 40: Translating virtual to physical address 

7.1.1.3 A New Prime & Probe Cache Side-channel Attack 

The third type was our new Prime & Probe attack. The attacker got the virtual addresses used 

by its VM and translated them to physical addresses (see figure 40). The physical addresses 

were primed with data and left to let the victim access them.  After waiting for a predefined 

time, the attacker machine lunched the probe stage and accessed the physical addresses. It 

measured the time to access the physical addresses and data on the physical address. 

In our solution, the attacker did not have any information about the accessed virtual and 

physical addresses as all of its addresses were erased after relinquishing the CPU core. On the 

other hand, the attack in the normal hypervisor succeeded in 20 out of 20 trials. The attacker 

could see the activity of the victim and which addresses had been accessed. In the figure 41, 

the attacker in VM2 launched the attack and waited for the victim to access the monitored 

address. Then, the new Prime & Probe attack presented a message to the attacker stated an 

address had been accessed by another VM. 
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Figure 41: A successful trial to attack on a normal hypervisor 

7.1.2 Performance Evaluation 

In this subsection, we present our performance evaluation experiments of the novel lightweight 

solution under a variety of Xen credit scheduler parameters and virtual machines. We 

calculated the overhead introduced by the proposed prevention solution and compared it with 

two other approaches that proposed to prevent cache side-channel attacks [18,19]. We 

conducted three different performance evaluation experiments. The first one was comparing 

the overload introduced by the two other approaches with our solution. This experiment was 

conducted with 30 VMs working at the same time on the server. The second experiment was 

identical to the first one, but it examined the three proposed approaches for different numbers 

of hosted VMs. The final experiment was testing the proposed solution and a normal Xen 

hypervisor for a heavy workload and comparing the results. Furthermore, it is worth 

mentioning that RDTSC command was used to measure the time taken for performing all 

conducted evaluation experiments (see section 5.1 in chapter 5). 



122 
 

 
Figure 42: The overload induced by the lightweight solution 

7.1.2.1 Overload 

One of the most important features in the proposed prevention solution is the very small 

overhead introduced, which does not exceed 15,000 cycles as illustrated in figure 42. In order 

to validate our solution, we implemented two other proposed solutions, which are flushing the 

CPU caches [18] and injecting noise to cache timing[19]. Each one of them was implemented 

separately and tested for 30 VMs running at the same time in the server. Furthermore, the 

biggest overload was induced by flushing the whole CPU caches, which induced 0.0249 

seconds every time a switch happens from one VM to another as demonstrated in figure 43. 

This overload will be added to the workload the CPU core has to do. Injecting noise to cache 

timing approach induced 0.0104 seconds overload every time a context switch happens. It is 

less than the whole flushing approach, yet it is still very high and unacceptable. Moreover, the 

novel lightweight solution induced 1.01e-04 seconds, which was the lowest value compared 

with others and more realistic to be used in the cloud. Although, the results are highly 

dependent on the cache hardware in the server’s CPU and size of data to be erased from the 

CPU caches, the proposed lightweight solution removes only used memory address from the 

cache. It also erases memory pages’ addresses that are currently used by the VM not the whole 

assigned memory pages. 
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Figure 43: The induced overload from each solution with 30 VM 

It is apparent from figure 44, that using a translation function to get a page’s address that has a 

VM’s virtual address, reduced the overload dramatically as passing all VM’s pages address can 

cause more than 100,000 cycles. We used a new approach to get the page address used by the 

VM. This page address is translated from a virtual address used by the VM. After getting the 

page address, both the page address and virtual address are erased by using the Clflush CPU 

command that presented at chapter 6 in section 6.2.3. The addresses passed to the Clflush 

command and it instantly flushed them from the cache levels. Moreover, calculating the 

Fibonacci sequence with 106 iterations was used to examine the overload induced by either 

deleting the whole VM’s pages or just pages that have virtual address. A security evolution 

was conducted to examine the effect of erasing pages that have virtual address used by the VM 

only and deleting the whole VM’s pages. It was found that removing pages that have virtual 

address technique from the caches does not affect the level of security provided by the proposed 

solution. 
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Figure 44: The overload induced with and without translating function 

7.1.2.2 VM Number 

Due to the lack of server resources, we could not run more than 30 VMs at the same time in 

the server. We used the same configuration of overload experiment with varying numbers of 

VMs. In figure 45, we started with 5 VMs till reaching 30 VMs. All of the virtual machines 

were running concurrently within the server. The most important observation from this 

experiment was increasing the number of VMs did not increase the overload induced from the 

proposed prevention solution. 

 

 
Figure 45: The induced overload from each solution with various VM numbers 

7.1.2.3 Heavy Workload 
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Fibonacci sequence with 109 iterations. This workload simulates heavy workload found in the 

cloud such as web servers. Two virtual machines were used for all conducted experiments. 

Furthermore, the proposed prevention solution added less than 0.0031% to the total execution 

time of the used program to test the solution in the all conducted experiments. 

1. Cap 

As aforementioned in the introduction of the Xen hypervisor at chapter 6 in section 

6.1.1, changing a Cap value of a VM can affect the time needed for executing the VM 

tasks and operations (see figure 46). In the figure, we changed the Cap value to examine 

its effect on the proposed solution. Reducing the Cap value to 25, can double the time 

to calculate the Fibonacci sequence (109 iterations) from 3 to 6 seconds. However, 

execution results from our solution are almost equal to the normal hypervisor’s 

execution results. 

 
Figure 46: Heavy workload executed on the proposed prevention solution and normal hypervisor with 

different Cap values 

2. Weight 

The credit scheduler in the Xen uses this parameter to manage every VM weight. Thus 

a VM with a weight that is as twice as another VM’s weight can have double execution 

time. As presented in figure 47, we altered the weight parameter of the VMs in order to 

test the performance of the prevention proposed solution, yet no considerable 

observations can be reported. Furthermore, some fluctuations in the results can be seen 

(the first result), yet that were caused by other operations executed by other processed 

in the CPU caches. 
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Figure 47: Heavy workload executed on the prevention solution and normal hypervisor with different 

Weight values 

3. Timeslice 

Results of changing the Timeslice values were expected. In figure 48, we tested the 

calculation code with 5 different values of Timeslice from 10 to 80. However, the 

program’s execution time in both hypervisors is almost identical. 

 

Figure 48: Heavy workload executed on the prevention solution and normal hypervisor with different 

Xen Timeslice values 
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the normal hypervisor as illustrated in the figure 49. Moreover, as the CPU caches are 

shared among various processes and controlled directly by the CPU, there were some 

fluctuations on the results due to other operations executed on the CPU and increased 

the value of the RDTSC that was used to measure the time taken for conducting the 

experiments. 

 
Figure 49: Heavy workload executed on the prevention solution and normal hypervisor with different 

Xen Ratelimit values 

7.2 Results and Evaluation of the Novel Infrastructure Detection Solution 

In this section, we evaluate the proposed detection solution and report the results of our 

evaluation. We conducted performance and security evaluation. We also illustrate some 

additional implementation details that were needed to implement the solution in x86 

architecture and Ubuntu 14.04, which was the host operating system. In addition, we used the 

aforementioned points presented in our goals the section 5.3.1 in chapter 5 as research 

questions to evaluate the proposed solution. Our experiments were conducted using the same 

testbed utilised to evaluate the novel lightweight solution. 

7.2.1 Security Evaluation 

The proposed detection solution and normal hypervisor were evaluated using three types of 
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Prime & Probe attacks. The attacks were given ideal conditions. Hence, only two VMs with 

Dom0 were used and were pinned to a single CPU core to overlap access to the CPU core’s 

cache levels (L1and L2). Moreover, we run up to 30 VM at the same time to get the average 

number of CPU cache misses in normal conditions. The average number of CPU cache misses 

is the first threshold used in our solution. Its value was 60.41% CPU cache misses out of the 

total number of fetch cycle times for a VM. We also calculated the threshold standard deviation 

for CPU cache misses times; the variation was between 9500 and 20,000 cycles. Thus, 

threshold standard deviation of 500 values of cache misses times was 200.314. With applying 

these thresholds’ values 100 times in our full implemented solution and lunching a cache side-

channel attack (Prime and Probe attack), we get 0% false negative and 15% false positive. 

Furthermore, the 15% false positive is caused by VMs when they are just implemented by the 

hypervisor. Therefore, VCPUs assigned to them will cause a considerable number of CPU 

cache misses. 

In order to compare results obtained from our detection solution with results from other 

detection solutions, we implemented two detection solutions, which are HomeAlone detection 

solution  [21] and the two stage detection solution [20]. Both of them were implemented and 

tested against Prime and Probe cache side-channel attack in the same testbed with 2 VMs. As 

presented in figure 50, the novel infrastructure detection solution has the best results and detects 

Prime and Probe attack in 20 out of 20. Furthermore, HomeAlone detection solution succeeded 

14 times out of 20 to detect the attack, yet the two stage solution detected only 11 out of 20. 

 
Figure 50: A comparison of attack trails detection between our detection solution and others 
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7.2.1.1 Flush+Reload Attack 

In order to perform Flush+Reload attack, we followed the same steps which were presented in 

the section 2.3.1(background chapter). One of the VM was the attacking machine, which 

executed a small code to flush the number of memory addresses which were predefined and 

monitored [67]. The pre-identified addresses were accessed by the victim machine in an early 

stage. When the VCPU of victim machine released control of the CPU core, the attacker would 

use the C code to flush the memory address from the all CPU cache levels and wait to allow 

the victim machine to access the monitored lines. The attacker would measure the time to 

access the monitoring lines after the victim machine relinquished CPU resources. If the time 

was less than the pre-computed threshold, the monitored lines were accessed by the victim 

machine. Otherwise, the monitored lines were not accessed by the victim machine. Moreover, 

the used threshold was 120 CPU cycles and it was calculated by using the same code used in 

[67]. 

Furthermore, we ran the attack against the novel infrastructure solution 50 times to achieve 

consistency of the results. The attack was detected every time it was launched. Figure 51 shows 

one of our trials when VCPU1 was working then VCPU2 took control of the shared CPU core 

and launched a Flush+Reload attack. In the figure, the normal VM was executing some 

operations by using VCPU1, which relinquished control over a CPU core. Then, the attacking 

VM (using VCPU2) started to generate a considerable number of CPU cache misses by 

performing a Flush stage. These CPU cache misses were already counted by the measurement 

stage in the detection solution. Instantly, when the attacking machine (VCPU2) released the 

control of the CPU core, the number of CPU cache misses was compared against the total cache 

misses threshold. In the figure, the number of cache misses was over 60% of the total cache 

accessed time by the VM2. Thus, the detection solution calculated the sequence of CPU cache 

misses. The differences between the cache misses were almost constant. Therefore, the 

detection solution successfully reported the attack in its first stage (Flush stage) before 

launching the second stage (Reload stage). 
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Figure 51: Detecting a Flush+Reload cache side-channel attack 

7.2.1.2 The Prime & Probe Attack 

The second type of side-channel attacks was used in our security evaluation was the Prime & 

Probe attack. We follow the same technique introduced by Osvik et al. [68] and explained in 

section 7.1.1.2 and  it was applied on our solution 50 times. The attack was successfully 

detected in the 50 attacking trails by the infrastructure detection solution. A shown in figure 

52, the detection proposed solution was tested with three virtual machines (VM1, VM2 and 

VM3) where VM2 was the attacking machine. The three machine overlapped access to the 

cache and every cache access time of the VMs were recorded. When VM1 finished its slot time 

on the Xen’s run queue, its collected cache misses’ number compared with the total cache 

misses threshed, which was greater than the VM1’s total number of cache misses. Furthermore, 

VM2 started to prime a number of CPU cache lines with its data, which caused a big number 

of cache misses. The detection solution already recorded every time taken by VM2’s fetch 

cycles. When the VM2 finished its execution time slot, the detection solution found VM2 had 

over 60% cache misses. Therefore, the detection solution’s analysis stage started and reported 

that VM2 launched a cache side-channel attack. Finally, the VM3’s fetch cycles times were 

also recorded by measurement stage in the detection solution. However, after the VM3 

relinquished the CPU core, the total of its cache misses time was less than the threshold. 
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Figure 52: Detecting a Prime & Probe attack 

7.2.1.3 The New Prime and Probe Attack 

The new Prime & Probe attack was launched by following the same steps explained in section 

5.1 (chapter 5) and the security evaluation of the novel lightweight solution 7.1.1.3. The 

proposed solution was able in 50 times out of 50 trails to detect the attack. Figure 53 presents 

one of the experiment’s trials. In this trial, there were two VMs or domains (domain1 and 

domain 2). The VM2 in an early stage defined its virtual address, translated them to physical 

addresses and waited for VM1 to access the CPU caches. When VM1 started executing its 

operations, the detection solution monitored these operations and recorded all cache misses 

caused by VM1.  After VM1 finished its time slot on the Xen’s run queue, the detection solution 

found out that no suspicious action (a big number of cache misses) generated by VM1. 

Moreover, VM2 begun to prime a number of targeted physical lines, which caused a 

considerable number of cache misses recorded by the detection solution’s analysis stage. When 

the measurement stage of the detection solution got a message from the analysis stage reported 

VM2 had total cache misses greater than the threshold, it found out VM2 carried out a cache 

side-channel attack.  Finally, the detection solution printed a kernel message, which reported a 

cache side-channel attack carried out by VM 2 that used VCPU0. 
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Figure 53: Detecting the Prime & Probe attack in one of experiments trials 

7.2.2 Performance Evaluation 

In this subsection, we present our performance evaluation experiments of the novel 

infrastructure detection solution under a variety of Xen credit scheduler parameters and virtual 

machines. We calculated the overhead introduced by our solution and compared it with normal 

Xen hypervisor. We conducted three different performance evaluation experiments during the 

detection processes. The first one was calculating the overload introduced by our solution and 

comparing it with the two other detection proposed solutions. This experiment was conducted 

with 10 VMs working at the same time on the server. The second experiment was identical to 

the first one, but it examined the novel infrastructure solution for different number of hosted 

VMs. The final experiment was testing the proposed solution and a normal Xen hypervisor for 

a heavy workload and comparing the results. 

7.2.2.1 Overload 

One of the most important features in the novel infrastructure solution is the very small 

overhead introduced during the detection process, which does not exceed 35,000 cycles as 

illustrated in figure 54. In the figure, the overload of the detection solution was obtained when 

the Xen hypervisor hosted 10 VMs running at the same time. Moreover, the overload 

infrastructure detection solution did not exceed 35,000 cycles due to no applications or 

software being used to measure CPU caches misses. For example, OProfile software was used 

in a two-stage mode technique for detecting cache side-channel attacks in cloud computing to 

count CPU cache misses [21]. OProfile can generate at least 2,000 interrupts per second to the 

CPU and add 20% extra to the total overload to complete a task [80]. Therefore, when the two 

stage solution implemented in the testbed, we got at least 900,000 cycles for every time the 

solution run. Furthermore, HomeAlone solution with single-probe classifier induced at least 

150,000 cycles when was implemented in our testbed as shown in figure 55. 
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Figure 54: The generated overload by the detection solution with 10 VM 

 
Figure 55: Comparing overload generated by our solution with other proposed solutions 

7.2.2.2 VM Number 

We used the same configuration of overload experiment with varying numbers of VMs. In 

figure 56, we started with 5 VMs till reaching 30 VMs. All of the virtual machines were running 

concurrently within the server. The most important observation from this experiment was 

increasing the number of VMs did not increase the overload induced from the detection 

solution. 
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Figure 56: The induced overload from the detection solution with various VM numbers 

 

Figure 57: Heavy workload executed on the detection solution and normal hypervisor with different Xen 

Ratelimit values 

7.2.2.3 Heavy Workload 

In this experiment, we tested the proposed detection solution for heavy workloads with varying 

values of Xen Credit scheduler parameters such as Ratelimit and Timeslice as illustrated in 

figure 57 and 58 respectively. The used workload was a program calculating the Fibonacci 

sequence with 109 iterations. This workload simulates heavy workload found in the cloud such 

as web servers.  Furthermore, we increased the RAM’s size that is assigned for the VM from 
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256KB to 2048 KB (see figure 59) with no major changes to be reported. The workload was 

tested with different values of Ratelimit and Timeslice.  However, the calculation time of the 

program was almost equal on our solution and the normal hypervisor as illustrated in the 

figures. As the detection solution was tested in real scenarios, the CPU was performing 

uncontrolled tasks, which caused some fluctuations on the results. Moreover, the new detection 

solution added less than 0.0093% to the total execution time of the used program to test the 

proposed solution in the all conducted experiments. 

 
Figure 58: Heavy workload executed on the detction solution and normal hypervisor with different Xen 

Timeslice values 

 
Figure 59: Testing the proposed detection solution with various VM’s RAM sizes 
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7.3 Summary 

In this chapter several tests have been made and illustrated. We have shown how effectively 

the new proposed prevention and detection cache side-channel attacks solutions can prevent 

and detect cache side-channel attacks. The proposed prevention solution was evaluated against 

Prime & Probe, Flush+Reload and our developed new prime and probe cache side-channel 

attack. The results showed that the attacked could not gain any information in 20 trails and the 

overload did not exceed 15,000 CPU cycles (1.01e-04seconds). Furthermore, we used varied 

number of virtual machines to test the solution, but no considerable changes had been noticed. 

The proposed prevention and detection cache side-channel attacks solution were tested against 

set Xen credit scheduler parameters. However, the execution results from our solution are 

almost equal to the normal Xen hypervisor’s execution results. 

The proposed detection cache side-channel attacks solution was evaluated against Prime & 

Probe, Flush+Reload and the new prime and probe cache side-channel attack. These attacks 

were launched 20 times. The proposed solution was able to detect the attacks in 20 times out 

of 20. Moreover, the overload induced by the proposed detection solution did not exceed 

35,000 CPU cycles (0.00035 seconds). In the performance evaluation, we tested the new 

detection solutions under a variety of Xen credit scheduler parameters, virtual machines and 

RAM size. The most important observation from the evaluation experiment was almost no 

changes to the solutions overload. 

In the thesis, all parts of the research have been presented. In the next chapter, we will have an 

overall view and point out any potential topics that could be further developed in the proposed 

AC3 or the new prevention and detection cache side-channel attacks solutions. 
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CHAPTER 8  Conclusion and Future Work 

8.1 Conclusion 

Access control is one of the fundamental requirements in order to avoid unauthorized access 

to systems and protect organizations assets. Although, various access control models and 

policies have been developed such as Mandatory Access Control (MAC) and Role Based 

Access Control (RBAC) for different environments, these models cannot fulfil cloud's access 

control requirements. This is because cloud computing has a diverse set of users with different 

sets of security requirements. It also has unique security challenges such as multi-tenant hosting 

and heterogeneity of security policies, rules and domains. This project aimed to propose a cloud 

based access control model that can meet the security requirements for either cloud service 

providers or their tenants such as critical infrastructure providers. Furthermore, we aimed to 

investigate how the proposed access control model can deal with leakage of information in 

lower levels such as CPU caches and enhance level of security at these levels. More 

specifically, looking at the leakage of data caused by cache side-channel attacks and how it can 

be detected and prevented. 

The key objectives of this project were investigating in details cloud computing security 

challenges, critical infrastructures providers’ security requirements and gaps in conventional 

access control models. These key objectives were used to propose a cloud based access control 

model, which satisfies security requirements for cloud tenants. One of our key objects was 

looking at the leakage of data in lower levels caused by cache side-channel attacks and 

proposing prevention and detection solutions to them. 

The findings from this study make several contributions to the current literature: 

1. A new list of security requirements for different critical infrastructure providers to be 

moved to cloud computing. The study has gone some way towards enhancing our 

understanding of various critical infrastructure services to find the common security 

requirements such as data security, compliance and audit, cryptography and access 

control. The results of this investigation show that an access control system has been 

found as one of the core requirements. 
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2. An in-depth requirement analysis to access control requirements for cloud computing. 

Finally, this study has demonstrated, for the first time, a new guidelines list of factors 

should be taken into account for proposing a cloud based access control model. 

3. One of the more significant findings to emerge from this project is a novel access 

control model for cloud computing. The proposed model can fulfil the access control 

requirements in cloud computing. It facilitates the role and task principles to make 

assigning privileges very dynamic and easy. It also utilises temporal (time and location) 

and delegation constraints. In our model, users are assigned to security domains that 

relate to their roles and actual jobs. Every role within the model is assigned the relevant 

tasks that allow them to practice their roles. The model secures access and flow of data 

by marking the data with security labels, which states the data sensitivity. Every task 

will have a security classification for accessing the data or assets, and the exact 

permissions needed for accomplishing this task. Thus, any task or process attempting 

to access the data has to have a classification that dominates the targeted data’s or 

assets’ security labels. A risk engine is utilised to deal with dynamic and random 

behaviours of users. It credits consumers according to their access behaviours. A 

security tags engine is also used for issuing security tags in semi or untrusted 

environments and processes. The security tags are utilised in some circumstances and 

according to the level of trust and security of an environment the system is deployed in. 

The security tag proposed is to consist of only the information needed for securing 

access in order to be lightweight. 

4. A new Prime and Probe attack is a new way to attack CPU caches and derive some 

information from them about addresses and data kept on them. In this attack, there is 

no need for any information about exact CPU cache sets that were accessed by a VM 

or linked to a memory page. The attack gets virtual addresses used by a VM and 

translates them to physical addresses. Finally, the attack primes the physical addresses 

and looks for any changes happening to the time to access them after waiting for a 

predefined time. Furthermore, the experiments’ results shown the attack can tell exactly 

which addresses have been accessed and by whom. 

5. A novel lightweight solution that prevents cache side-channel attacks in cloud 

computing without interfering with cloud tenants and models. 
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Cache side-channel attacks are well-known micro architectural attacks, which benefit 

from correlation between the higher level functionalities of software and the underlying 

hardware phenomena. Their effect gets worse with cloud computing multi-tenancy’s 

unique vulnerabilities such as clients co-residence and virtual machine physical co-

residency. They enable adversaries to interfere with victims on the same physical 

machine and exfiltrate sensitive information. In this report, we illustrated a novel 

lightweight solution to prevent cache side-channel attacks in cloud computing. It 

enables cloud service providers to prevent cache side-channel attacks without any 

modification to the guests’ operating systems or applications. The proposed solution 

was implemented in identical cloud environments that run the up-to-date version of 

Linux Ubuntu 14.04 and Xen hypervisor 4.04 with 30 PV guests. It was evaluated in 

various conditions and circumstances such as testing it for different Xen credit 

scheduler parameters values and heavy workload. Moreover, our evaluation results 

proved that the solution’s overload induced a maximum of 15,000 CPU cycles. The 

solution’s overload was the lowest among other compared approaches even with heavy 

workload or hosting a large number of virtual machines. 

6. A new infrastructure solution detecting cache side-channel attacks in cloud computing. 

We presented a novel infrastructure solution to detect cache side-channel attacks in 

cloud computing. The solution attempts to detect cache side-channels in time-shared 

caches (e.g. L1 instruction/data and L2 per core, and L3 if it is used), particularly Prime 

and Probe, Flush+Reload and new Prime&Probe attacks. This solution has several 

practical applications. Firstly, it builds the code in the host kernel to measure time taken 

in every fetch cycle. Secondly, this is the first study enabling cloud service providers 

to detect cache side-channel attacks without any modification to the guest’s operating 

system or applications. The solution implemented in identical cloud environments that 

run the up-to-date version of Linux Ubuntu 14.04 and Xen hypervisor 4.04 with 30 PV 

guests. It evaluated in various conditions and circumstances such as testing it for 

different Xen credit scheduler parameters values and heavy workload. Moreover, our 

evaluation results proved that the proposed solution’s overload induced a maximum of 

35,000 cycles. 
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8.2 Future Work 

More information on implementing the proposed access control model (AC3) would help us to 

establish a greater degree of accuracy on this matter. If the debate is to be moved forward, a 

better understanding of authentication mechanism that can deal with high time and huge space 

complexity needs to be developed. Future trials should assess the impact of implementing the 

risk engine and its components, which are used to deal with dynamic behaviours. Further 

research needs to examine more closely the links between risk engine and the proposed access 

control model. The issue of implementing and evaluating is an intriguing one which could be 

usefully explored in further research. The AC3 should be implemented in one of the well-

known environments (Windows or Linux) and evaluated in terms of how the security tags can 

be generated and attached to data, the overload induced by using security tags and risk engine, 

how the risk engine can cope with heterogeneity, the time taken for grating access to a system 

deployed the AC3 and the complexity of adding or deleting access policies. 

Future research should therefore concentrate on the investigation of the novel lightweight 

solution to prevent cache side-channel attacks. It should be tested in other architecture such as 

AMD and ARM.  A number of possible future studies using the same experimental set up are 

apparent to be conducted with various CPU cache sizes, levels and cache lines. Moreover, the 

proposed solution can be extended by tainting CPU cache lines accessed by or have data related 

to a VM. These lines will be kept in a new data structure, and every overlapping happen the 

addresses will be erased from all CPU cache levels. Future trials should assess the impact of 

implementing the solution in other virtualization environments and operating systems. 

A greater focus on linking both of the proposed solutions could produce interesting findings 

that account more for preventing and detecting cache side-channel attacks. The detection 

infrastructure solution may take other characteristics into account to improve its efficiency and 

ability to detect other types of cache side-channel attacks. This research has thrown up many 

questions in need of further investigation. It is recommended that further research be 

undertaken in the following areas: 

1. The proposed model needs to be implemented and evaluated in a real cloud computing 

environment. 
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2. More research is needed to better understand how the proposed model can be used in 

mobile devices. 

3. A good quality policy is needed to define allowed roles and tasks which have to be 

assigned to each role. 

4. It would be interesting to assess the effects of giving security classification to processes 

and how that may affect the system performance. 

5. Further work needs to be done to establish whether the security labels can be enforced 

in the lower level layers such as CPU caches. 

6. Further research regarding the role of risk engine would be worthwhile. particularly, 

how risk of accessing data and available resources can be calculated with taking into 

account: 

 The movement of data from one datacentre or place to another. 

 Multiple roles for the same user. 

 What kind of actions should be used to credit users’ behaviours. 

 Dealing with heterogeneity. 

7. More broadly, research is also needed to determine how access control models can be 

linked to mechanisms used by operating systems or CPUs to control access to data in 

lower levels such as CPU caches and RAM. 

8. The novel lightweight solution to prevent cache side-channel attacks needs to be 

extended to cover other types of cache side-channel attacks such as time and trace 

driven side-channel attacks. 

9. It would be interesting to assess the effects of increasing the size of cache size and 

levels. 

10. The novel infrastructure solution may need to be developed for detecting more types of 

cache side-channel attacks. 
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Appendix A: The source code of the novel lightweight 

solution for preventing cache side channel attacks in 

cloud computing 

1. The trace function 

static inline void vcpu_runstate_change( 
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    struct vcpu *v, int new_state, s_time_t new_entry_time) 

{ 

    struct vcpu *v1=v; 

    struct p2m_domain *p2m; 

    struct page_info *page, *pg; 

    void *p; 

    int k,j; 

    unsigned long  l; 

    s_time_t delta; 

    ASSERT(v->runstate.state != new_state); 

    ASSERT(spin_is_locked(per_cpu(schedule_data,v->processor).schedule_lock)); 

    vcpu_urgent_count_update(v); 

    trace_runstate_change(v, new_state); 

    if (v->domain->domain_id!=v1->domain->domain_id || v->processor != v1-

>processor) 

        for (k = 0; k < MAX_NESTEDP2M; k++) 

  { 

  p2m = v1->domain->arch.nested_p2m[k]; 

      while ( (pg = page_list_read1(&p2m->pages)) ) 

  { 

                  asm volatile ( "clflush (%0)" : : "r" (&pg) ); 

  p = __map_domain_page(pg); 

   for (l = 0; l < PAGE_SIZE; l ++) 

  asm volatile("clflush (%0)" :: "r" (p + l)); 

  } 

  for (j = 0; j < sizeof(p2m); j++) 

  { 

   page=__virt_to_page(&p2m[j]); 

    //for (l = 0; l < PAGE_SIZE; l ++) /*4096*/ 

   //asm volatile("clflush (%0)" :: "r" (page + l)); 

   asm volatile ( "clflush (%0)" : : "r" (&page)); 

      asm volatile ( "clflush (%0)" : : "r" (&p2m[j])); 

                  //asm volatile ( "clflush %0" : : "m" (*(const char *)&p2m[j]) ); 

               } 
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 } 

    delta = new_entry_time - v->runstate.state_entry_time; 

    if ( delta > 0 ) 

    { 

        v->runstate.time[v->runstate.state] += delta; 

        v->runstate.state_entry_time = new_entry_time; 

    } 

    v->runstate.state = new_state; 

} 

2.  The erasing function 

static inline unsigned long long rdtsc12(void) 
{ 
   unsigned long hi, lo; 
   asm volatile ("rdtsc" : "=a"(lo), "=d"(hi) : : "ebx", "ecx"); 
   return ((unsigned long long)lo) | (((unsigned long long)hi)<<32) ; 
} 
 
static inline void 
page_read(struct page_info *page, struct page_list_head *head) 
{ 
    struct page_info *next = pdx_to_page(page->list.next); 
    struct page_info *prev = pdx_to_page(page->list.prev); 
 
        next->list.prev = page->list.prev; 
        prev->list.next = page->list.next; 
 
} 
 
static inline struct page_info * 
page_list_read(struct page_list_head *head) 
{ 
    struct page_info *page = head->next; 
 
    if ( page ) 
        page_read(page, head); 
 
    return page; 
} 
 
static inline void the_flush_function_with_D(struct domain *d) 
{ 
    struct p2m_domain *p2m; 
    struct page_info *pg; 



155 
 

    void *p; 
    int k, j; 
    unsigned long  l; 
  
        for (k = 0; k < MAX_NESTEDP2M; k++) 
  { 
  p2m = d->arch.nested_p2m[k]; 
      while ( (pg = page_list_read(&p2m->pages)) ) 
  { 
                asm volatile ( "clflush (%0)" : : "r" (&pg) ); 
  p = __map_domain_page(pg); 
   for (l = 0; l < PAGE_SIZE; l ++) 
  asm volatile("clflush (%0)" :: "r" (p + l)); 
  } 
  for (j = 0; j < sizeof(p2m); j++) 
  { 
     asm volatile ( "clflush (%0)" : : "r" (&p2m[j]) ); 
                 //asm volatile ( "clflush %0" : : "m" (*(const char *)&p2m[j]) ); 
                   
  } 
  } 
} 
 
static inline struct page_info *__virt_to_page(const void *v) 
{ 
    unsigned long va = (unsigned long)v; 
 
    ASSERT(va >= XEN_VIRT_START); 
    ASSERT(va < DIRECTMAP_VIRT_END); 
    if ( va < XEN_VIRT_END ) 
        va += DIRECTMAP_VIRT_START - XEN_VIRT_START + xen_phys_start; 
    else 
        ASSERT(va >= DIRECTMAP_VIRT_START); 
    return frame_table + ((va - DIRECTMAP_VIRT_START) >> PAGE_SHIFT); 
} 
 
 
static inline void the_flush_function_with_V(struct vcpu *v) 
{ 
    struct p2m_domain *p2m; 
    struct page_info *page, *pg; 
    int k, j; 
    //unsigned long  count; 
    //l1_pgentry_t *pl1e; 
  
 //pl1e += l1_table_offset(vpt_start); 
        for (k = 0; k < MAX_NESTEDP2M; k++) 
  { 
  p2m = v->domain->arch.nested_p2m[k]; 
      while ( (pg = page_list_read(&p2m->pages)) ) 
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                asm volatile ( "clflush (%0)" : : "r" (&pg) ); 
  for (j = 0; j < sizeof(p2m); j++) 
  { 
   page=__virt_to_page(&p2m[j]); 
    //for (l = 0; l < PAGE_SIZE; l ++) /*4096*/ 
   //asm volatile("clflush (%0)" :: "r" (page + l)); 
   asm volatile ( "clflush (%0)" : : "r" (&page)); 
      asm volatile ( "clflush (%0)" : : "r" (&p2m[j])); 
                  //asm volatile ( "clflush %0" : : "m" (*(const char *)&p2m[j]) ); 
                } 
  } 
     /*for ( count = 0; count < v->domain->tot_pages >=; count++ ) 
 { 
         page = mfn_to_page(l1e_get_pfn(*pl1e)); 
  asm volatile ( "clflush (%0)" : : "r" (&page)); 
 }*/ 
 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix B: The source code of the novel detection 

infrastructure solution for detecting cache side 

channel attacks in cloud computing 

 
1. The VCPUs new data structure 

struct new_node 
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{ 

    int cache_miss_time; 

    unsigned long start; 

    unsigned long end; 

    struct new_node *next=NULL; 

    struct new_node *curr=NULL; 

}; 

struct waitqueue_vcpu; 

struct vcpu 

{ 

    int              vcpu_id; 

    struct new_node      *head, *curr; 

    int              processor; 

      /*node_younis *new_node,*head_node; the detection */ 

    //void *start_younis; 

    vcpu_info_t     *vcpu_info; 

    struct domain   *domain; 

    struct vcpu     *next_in_list; 

    s_time_t         periodic_period; 

    s_time_t         periodic_last_event; 

    struct timer     periodic_timer; 

    struct timer     singleshot_timer; 

    struct timer     poll_timer;    /* timeout for SCHEDOP_poll */ 

    void            *sched_priv;    /* scheduler-specific data */ 

    struct vcpu_runstate_info runstate; 

#ifndef CONFIG_COMPAT 

# define runstate_guest(v) ((v)->runstate_guest) 

    XEN_GUEST_HANDLE(vcpu_runstate_info_t) runstate_guest; /* guest address */ 

#else 

# define runstate_guest(v) ((v)->runstate_guest.native) 

    union { 

        XEN_GUEST_HANDLE(vcpu_runstate_info_t) native; 

        XEN_GUEST_HANDLE(vcpu_runstate_info_compat_t) compat; 

    } runstate_guest; /* guest address */ 
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#endif 

    /* last time when vCPU is scheduled out */ 

    uint64_t last_run_time; 

    /* Has the FPU been initialised? */ 

    bool_t           fpu_initialised; 

    /* Has the FPU been used since it was last saved? */ 

    bool_t           fpu_dirtied; 

    /* Initialization completed for this VCPU? */ 

    bool_t           is_initialised; 

    /* Currently running on a CPU? */ 

    bool_t           is_running; 

    /* VCPU should wake fast (do not deep sleep the CPU). */ 

    bool_t           is_urgent; 

#ifdef VCPU_TRAP_LAST 

#define VCPU_TRAP_NONE    0 

    struct { 

        bool_t           pending; 

        uint8_t          old_mask; 

    }                async_exception_state[VCPU_TRAP_LAST]; 

#define async_exception_state(t) async_exception_state[(t)-1] 

    uint8_t          async_exception_mask; 

#endif 

    /* Require shutdown to be deferred for some asynchronous operation? */ 

    bool_t           defer_shutdown; 

    /* VCPU is paused following shutdown request (d->is_shutting_down)? */ 

    bool_t           paused_for_shutdown; 

    /* VCPU need affinity restored */ 

    bool_t           affinity_broken; 

    /* 

     * > 0: a single port is being polled; 

     * = 0: nothing is being polled (vcpu should be clear in d->poll_mask); 

     * < 0: multiple ports may be being polled. 

     */ 

    int              poll_evtchn; 
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    /* (over-)protected by ->domain->event_lock */ 

    int              pirq_evtchn_head; 

    unsigned long    pause_flags; 

    atomic_t         pause_count; 

    /* VCPU paused for mem_event replies. */ 

    atomic_t         mem_event_pause_count; 

    /* VCPU paused by system controller. */ 

    int              controller_pause_count; 

    /* IRQ-safe virq_lock protects against delivering VIRQ to stale evtchn. */ 

    evtchn_port_t    virq_to_evtchn[NR_VIRQS]; 

    spinlock_t       virq_lock; 

    /* Bitmask of CPUs on which this VCPU may run. */ 

    cpumask_var_t    cpu_hard_affinity; 

    /* Used to change affinity temporarily. */ 

    cpumask_var_t    cpu_hard_affinity_tmp; 

    /* Used to restore affinity across S3. */ 

    cpumask_var_t    cpu_hard_affinity_saved; 

    /* Bitmask of CPUs on which this VCPU prefers to run. */ 

    cpumask_var_t    cpu_soft_affinity; 

    /* Bitmask of CPUs which are holding onto this VCPU's state. */ 

    cpumask_var_t    vcpu_dirty_cpumask; 

    /* Tasklet for continue_hypercall_on_cpu(). */ 

    struct tasklet   continue_hypercall_tasklet; 

    /* Multicall information. */ 

    struct mc_state  mc_state; 

    struct waitqueue_vcpu *waitqueue_vcpu; 

    /* Guest-specified relocation of vcpu_info. */ 

    unsigned long vcpu_info_mfn; 

    struct evtchn_fifo_vcpu *evtchn_fifo; 

   struct arch_vcpu arch; 

   }; 

2. The measuring and analysing functions 
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void the_measuring(struct vcpu *v)/*injected in the fetch step*/ 

{ 

    unsigned long str, r; 

    str=rdtsc13(); 

    emulate_op(regs); 

    r=rdtsc13(); 

    if ((r-str)>120) /* 120 is the maximum time to access data from CPU caches/*create 

a linked list for the cache misses*/ 

    { 

 if(v->head==NULL) 

   { 

         struct new_node *ptr = (struct new_node*)kmalloc(sizeof(struct new_node)); 

  ptr->cache_miss_time=(r-str); 

      ptr->start=str; 

      ptr->end=r; 

  ptr->next=NULL; 

    v->head=v->curr=ptr; 

   } 

   else 

   { 

         struct new_node *ptr = (struct new_node*)kmalloc(sizeof(struct new_node)); 

  ptr->cache_miss_time=(r-str); 

      ptr->start=str; 

      ptr->end=r; 

  ptr->next=NULL; 

    v->curr=ptr; 

   } 

}   

 

void the_analysis(struct vcpu *v)/*injected where the VCPU relese the control of 

PCPU*/ 

{ 

   int sum=0, s=0, readings=0; 

   unsigned long r=0; 
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   double sum_devation=0.0, standard_deviation=0.0, percentage=0.0; 

   struct new_node *ptr =v->head; 

   struct new_node *head = NULL; 

   struct new_node *curr = NULL; 

   struct new_node *ptr1 = NULL; 

   struct new_node *prev = NULL; 

   struct new_node *del = NULL; 

/************count cache misses***************************************/ 

   while(ptr != NULL) 

   { 

    if(ptr->cache_miss_time>120) 

     { 

  s++; 

  if (r==0) 

  r=ptr->end; 

  else 

  { 

   if(head==NULL) 

     { 

          struct new_node *ptr1 = (struct new_node*)kmalloc(sizeof(struct 

new_node)); 

   ptr1->cache_miss_time=ptr->start-r; 

   ptr1->next=NULL; 

     head=curr=ptr1; 

   r=ptr->end; 

     } 

     else 

     { 

          struct new_node *ptr1 = (struct new_node*)kmalloc(sizeof(struct 

new_node)); 

   ptr1->cache_miss_time=ptr->start-r; 

   ptr1->next=NULL; 

     curr>next=ptr1; 

     curr=ptr1; 



162 
 

   r=ptr->end; 

     } 

  } 

        }  

        ptr = ptr->next; 

 readings++; 

   } 

/**************************************************************/ 

   percentage=(s/readings)*100; 

   if (percentage>60.41) /* 60.41 is the average of CPU cache misses happened in a 

normal execution/ 

    { 

 ptr1=head; 

        /*calculating the sumation of cache misses times*/ 

 while(ptr1 != NULL) 

    { 

  sum=sum+ptr1->cache_miss_time; 

        ptr1 = ptr1->next; 

 } 

        mean=sum/s; 

 ptr1=head; 

        /*calculating the sum of deviation of cache misses times*/ 

 while(ptr1 != NULL) 

    { 

  sum_devation=sum_devation+((ptr1->cache_miss_time-mean)*(ptr1-

>cache_miss_time-mean)); 

        ptr1 = ptr1->next; 

 } 

        /*calculating the standard deviation of cache misses times*/ 

    standard_deviation=sqrt(sum_devation/s); 

 if (standard_deviation<200.314)/*9,500 to 20,000 cycles*/ 

      printk(" The VCPU %d which uses by Domain %d lunched CSSA\n", v-

>vcpu_id, v->domain->domain_id); 

    } 
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/*************empty the list after the VCPU release the control of PCPU*******/ 

    ptr1=v->head; 

    while(ptr1 != NULL) 

    { 

        del = ptr1; 

        if(prev != NULL) 

            prev->next = del->next; 

        if(del == v->curr) 

        { 

            v->curr = prev; 

        } 

        else if(del == v->head) 

        { 

            v->head = del->next; 

        } 

        free(del); 

     del = NULL; 

        ptr1 = ptr1->next; 

        

    } 

} 

 

Appendix C: The new Prime and Probe cache side 

channel attack source code 

1. A function for getting virtual addresses 

static inline void VA_D(struct domain *d) 
{ 
    struct p2m_domain *p2m; 
    struct page_info *pg; 
    void *p; 
    int k, j; 
    unsigned long  l; 
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        for (k = 0; k < MAX_NESTEDP2M; k++) 
  { 
  p2m = d->arch.nested_p2m[k]; 
      while ( (pg = page_list_read(&p2m->pages)) ) 
  { 

                printk ( "%p”, (&pg) ); 
     p = __map_domain_page(pg); 

      for (l = 0; l < PAGE_SIZE; l ++) 
      printk("%p", &(p + l)); 
  } 
  for (j = 0; j < sizeof(p2m); j++) 
  { 
     printk("%p", (&p2m[j]) );           
  } 
  } 
} 

2. The translation of physical addresses from virtual addresses function 

uint32_t trans_VA_to_PA(struct vcpu *v, struct p2m_domain *p2m, 
                  unsigned long va, walk_t *gw, 
                  uint32_t pfec, mfn_t top_mfn, void *top_map) 
{ 
    struct domain *d = v->domain; 
    p2m_type_t p2mt; 
    guest_l1e_t *l1p = NULL; 
    guest_l2e_t *l2p = NULL; 
#if GUEST_PAGING_LEVELS >= 4 /* 64-bit only... */ 
    guest_l3e_t *l3p = NULL; 
    guest_l4e_t *l4p; 
#endif 
    uint32_t gflags, mflags, iflags, rc = 0; 
    bool_t smep = 0, smap = 0; 
    bool_t pse1G = 0, pse2M = 0; 
    p2m_query_t qt = P2M_ALLOC | P2M_UNSHARE; 
 
    perfc_incr(guest_walk); 
    memset(gw, 0, sizeof(*gw)); 
    gw->va = va; 
 
    /* Mandatory bits that must be set in every entry.  We invert NX and 
     * the invalid bits, to calculate as if there were an "X" bit that 
     * allowed access.  We will accumulate, in rc, the set of flags that 
     * are missing/unwanted. */ 
    mflags = mandatory_flags(v, pfec); 
    iflags = (_PAGE_NX_BIT | _PAGE_INVALID_BITS); 
 
    if ( is_hvm_vcpu(v) && !(pfec & PFEC_user_mode) ) 
    { 
        struct segment_register seg; 
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        const struct cpu_user_regs *regs = guest_cpu_user_regs(); 
 
        /* SMEP: kernel-mode instruction fetches from user-mode mappings 
         * should fault.  Unlike NX or invalid bits, we're looking for _all_ 
         * entries in the walk to have _PAGE_USER set, so we need to do the 
         * whole walk as if it were a user-mode one and then invert the answer. */ 
        smep =  hvm_smep_enabled(v) && (pfec & PFEC_insn_fetch); 
 
        switch ( v->arch.smap_check_policy ) 
        { 
        case SMAP_CHECK_HONOR_CPL_AC: 
            hvm_get_segment_register(v, x86_seg_ss, &seg); 
 
            /* 
             * SMAP: kernel-mode data accesses from user-mode mappings 
             * should fault. 
             * A fault is considered as a SMAP violation if the following 
             * conditions come true: 
             *   - X86_CR4_SMAP is set in CR4 
             *   - A user page is accessed 
             *   - CPL = 3 or X86_EFLAGS_AC is clear 
             *   - Page fault in kernel mode 
             */ 
            smap = hvm_smap_enabled(v) && 
                   ((seg.attr.fields.dpl == 3) || 
                    !(regs->eflags & X86_EFLAGS_AC)); 
            break; 
        case SMAP_CHECK_ENABLED: 
            smap = hvm_smap_enabled(v); 
            break; 
        default: 
            ASSERT(v->arch.smap_check_policy == SMAP_CHECK_DISABLED); 
            break; 
        } 
    } 
 
    if ( smep || smap ) 
        mflags |= _PAGE_USER; 
 
#if GUEST_PAGING_LEVELS >= 3 /* PAE or 64... */ 
#if GUEST_PAGING_LEVELS >= 4 /* 64-bit only... */ 
 
    /* Get the l4e from the top level table and check its flags*/ 
    gw->l4mfn = top_mfn; 
    l4p = (guest_l4e_t *) top_map; 
    gw->l4e = l4p[guest_l4_table_offset(va)]; 
    gflags = guest_l4e_get_flags(gw->l4e) ^ iflags; 
    if ( !(gflags & _PAGE_PRESENT) ) { 
        rc |= _PAGE_PRESENT; 
        goto out; 
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    } 
    rc |= ((gflags & mflags) ^ mflags); 
 
    /* Map the l3 table */ 
    l3p = map_domain_gfn(p2m, 
                         guest_l4e_get_gfn(gw->l4e), 
                         &gw->l3mfn, 
                         &p2mt, 
                         qt, 
                         &rc); 
    if(l3p == NULL) 
        goto out; 
    /* Get the l3e and check its flags*/ 
    gw->l3e = l3p[guest_l3_table_offset(va)]; 
    gflags = guest_l3e_get_flags(gw->l3e) ^ iflags; 
    if ( !(gflags & _PAGE_PRESENT) ) { 
        rc |= _PAGE_PRESENT; 
        goto out; 
    } 
    rc |= ((gflags & mflags) ^ mflags); 
     
    pse1G = (gflags & _PAGE_PSE) && guest_supports_1G_superpages(v); 
 
    if ( pse1G ) 
    { 
        /* Generate a fake l1 table entry so callers don't all 
         * have to understand superpages. */ 
        gfn_t start = guest_l3e_get_gfn(gw->l3e); 
        /* Grant full access in the l1e, since all the guest entry's 
         * access controls are enforced in the l3e. */ 
        int flags = (_PAGE_PRESENT|_PAGE_USER|_PAGE_RW| 
                     _PAGE_ACCESSED|_PAGE_DIRTY); 
        /* Import cache-control bits. Note that _PAGE_PAT is actually 
         * _PAGE_PSE, and it is always set. We will clear it in case 
         * _PAGE_PSE_PAT (bit 12, i.e. first bit of gfn) is clear. */ 
        flags |= (guest_l3e_get_flags(gw->l3e) 
                  & (_PAGE_PAT|_PAGE_PWT|_PAGE_PCD)); 
        if ( !(gfn_x(start) & 1) ) 
            /* _PAGE_PSE_PAT not set: remove _PAGE_PAT from flags. */ 
            flags &= ~_PAGE_PAT; 
 
        if ( gfn_x(start) & GUEST_L3_GFN_MASK & ~0x1 ) 
            rc |= _PAGE_INVALID_BITS; 
 
        /* Increment the pfn by the right number of 4k pages. */ 
        start = _gfn((gfn_x(start) & ~GUEST_L3_GFN_MASK) + 
                     ((va >> PAGE_SHIFT) & GUEST_L3_GFN_MASK)); 
        gw->l1e = guest_l1e_from_gfn(start, flags); 
        gw->l2mfn = gw->l1mfn = _mfn(INVALID_MFN); 
        goto set_ad; 
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    } 
 
#else /* PAE only... */ 
 
    /* Get the l3e and check its flag */ 
    gw->l3e = ((guest_l3e_t *) top_map)[guest_l3_table_offset(va)]; 
    if ( !(guest_l3e_get_flags(gw->l3e) & _PAGE_PRESENT) ) 
    { 
        rc |= _PAGE_PRESENT; 
        goto out; 
    } 
 
#endif /* PAE or 64... */ 
 
    /* Map the l2 table */ 
    l2p = map_domain_gfn(p2m, 
                         guest_l3e_get_gfn(gw->l3e), 
                         &gw->l2mfn, 
                         &p2mt, 
                         qt, 
                         &rc); 
    if(l2p == NULL) 
        goto out; 
    /* Get the l2e */ 
    gw->l2e = l2p[guest_l2_table_offset(va)]; 
 
#else /* 32-bit only... */ 
 
    /* Get l2e from the top level table */ 
    gw->l2mfn = top_mfn; 
    l2p = (guest_l2e_t *) top_map; 
    gw->l2e = l2p[guest_l2_table_offset(va)]; 
 
#endif /* All levels... */ 
 
    gflags = guest_l2e_get_flags(gw->l2e) ^ iflags; 
    if ( !(gflags & _PAGE_PRESENT) ) { 
        rc |= _PAGE_PRESENT; 
        goto out; 
    } 
    rc |= ((gflags & mflags) ^ mflags); 
 
    pse2M = (gflags & _PAGE_PSE) && guest_supports_superpages(v); 
 
    if ( pse2M ) 
    { 
        /* Special case: this guest VA is in a PSE superpage, so there's 
         * no guest l1e.  We make one up so that the propagation code 
         * can generate a shadow l1 table.  Start with the gfn of the 
         * first 4k-page of the superpage. */ 
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        gfn_t start = guest_l2e_get_gfn(gw->l2e); 
        /* Grant full access in the l1e, since all the guest entry's 
         * access controls are enforced in the shadow l2e. */ 
        int flags = (_PAGE_PRESENT|_PAGE_USER|_PAGE_RW| 
                     _PAGE_ACCESSED|_PAGE_DIRTY); 
        /* Import cache-control bits. Note that _PAGE_PAT is actually 
         * _PAGE_PSE, and it is always set. We will clear it in case 
         * _PAGE_PSE_PAT (bit 12, i.e. first bit of gfn) is clear. */ 
        flags |= (guest_l2e_get_flags(gw->l2e) 
                  & (_PAGE_PAT|_PAGE_PWT|_PAGE_PCD)); 
        if ( !(gfn_x(start) & 1) ) 
            /* _PAGE_PSE_PAT not set: remove _PAGE_PAT from flags. */ 
            flags &= ~_PAGE_PAT; 
 
        if ( gfn_x(start) & GUEST_L2_GFN_MASK & ~0x1 ) 
        { 
#if GUEST_PAGING_LEVELS == 2 
            /* 
             * Note that _PAGE_INVALID_BITS is zero in this case, yielding a 
             * no-op here. 
             * 
             * Architecturally, the walk should fail if bit 21 is set (others 
             * aren't being checked at least in PSE36 mode), but we'll ignore 
             * this here in order to avoid specifying a non-natural, non-zero 
             * _PAGE_INVALID_BITS value just for that case. 
             */ 
#endif 
            rc |= _PAGE_INVALID_BITS; 
        } 
        /* Increment the pfn by the right number of 4k pages.   
         * Mask out PAT and invalid bits. */ 
        start = _gfn((gfn_x(start) & ~GUEST_L2_GFN_MASK) + 
                     guest_l1_table_offset(va)); 
        gw->l1e = guest_l1e_from_gfn(start, flags); 
        gw->l1mfn = _mfn(INVALID_MFN); 
    } 
    else 
    { 
        /* Not a superpage: carry on and find the l1e. */ 
        l1p = map_domain_gfn(p2m, 
                             guest_l2e_get_gfn(gw->l2e), 
                             &gw->l1mfn, 
                             &p2mt, 
                             qt, 
                             &rc); 
        if(l1p == NULL) 
            goto out; 
        gw->l1e = l1p[guest_l1_table_offset(va)]; 
        gflags = guest_l1e_get_flags(gw->l1e) ^ iflags; 
        if ( !(gflags & _PAGE_PRESENT) ) { 
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            rc |= _PAGE_PRESENT; 
            goto out; 
        } 
        rc |= ((gflags & mflags) ^ mflags); 
    } 
 
#if GUEST_PAGING_LEVELS >= 4 /* 64-bit only... */ 
set_ad: 
#endif 
    /* Now re-invert the user-mode requirement for SMEP and SMAP */ 
    if ( smep || smap ) 
        rc ^= _PAGE_USER; 
 
    /* Go back and set accessed and dirty bits only if the walk was a 
     * success.  Although the PRMs say higher-level _PAGE_ACCESSED bits 
     * get set whenever a lower-level PT is used, at least some hardware 
     * walkers behave this way. */ 
    if ( rc == 0 ) 
    { 
#if GUEST_PAGING_LEVELS == 4 /* 64-bit only... */ 
        if ( set_ad_bits(l4p + guest_l4_table_offset(va), &gw->l4e, 0) ) 
            paging_mark_dirty(d, mfn_x(gw->l4mfn)); 
        if ( set_ad_bits(l3p + guest_l3_table_offset(va), &gw->l3e, 
                         (pse1G && (pfec & PFEC_write_access))) ) 
            paging_mark_dirty(d, mfn_x(gw->l3mfn)); 
#endif 
        if ( !pse1G ) 
        { 
            if ( set_ad_bits(l2p + guest_l2_table_offset(va), &gw->l2e, 
                             (pse2M && (pfec & PFEC_write_access))) ) 
                paging_mark_dirty(d, mfn_x(gw->l2mfn));             
            if ( !pse2M ) 
            { 
                if ( set_ad_bits(l1p + guest_l1_table_offset(va), &gw->l1e, 
                                 (pfec & PFEC_write_access)) ) 
                    paging_mark_dirty(d, mfn_x(gw->l1mfn)); 
            } 
        } 
    } 
 
 out: 
#if GUEST_PAGING_LEVELS == 4 
    if ( l3p ) 
    { 
        unmap_domain_page(l3p); 
        put_page(mfn_to_page(mfn_x(gw->l3mfn))); 
    } 
#endif 
#if GUEST_PAGING_LEVELS >= 3 
    if ( l2p ) 
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    { 
        unmap_domain_page(l2p); 
        put_page(mfn_to_page(mfn_x(gw->l2mfn))); 
    } 
#endif 
    if ( l1p ) 
    { 
        unmap_domain_page(l1p); 
        put_page(mfn_to_page(mfn_x(gw->l1mfn))); 
    } 
 
    return rc; 
} 
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