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Abstract 

The toxicity and bioaccumulation potential of chemicals are properties that need to be 

assessed in risk assessment. In the context of the aquatic environment, both properties were 

traditionally evaluated in the whole fish. However, due to the reluctance to use a large 

number of animals for experimentation and high cost of in vivo testing, alternative 

techniques have been developed to assess these properties. This thesis describes three 

distinct investigations towards the development of alternative methods for predicting the 

toxicity and bioaccumulation potential of chemicals.  

The first study of this thesis is centred on the development of a list of reference compounds 

to evaluate non-animal methods to in vivo bioaccumulation studies in fish. The selection of 

representative chemicals was developed following a novel strategy built from previous 

criteria proposed for the validation of experimental tests and considering relevant aspects 

for the bioaccumulation of organic chemicals. A revision and a comparison of the most used 

alternative approaches to in vivo bioaccumulation studies were undertaken in this thesis. In 

particular, a variety of in vitro and in silico methods were explored and compared in terms 

of their reliability to predict the whole body biotransformation rate and bioconcentration 

factor of chemicals in fish. As a consequence of this investigation, an insight into the main 

challenges and future perspectives for each of the methods evaluated was conducted to 

provide a foundation for future research. The last research study is focused on the 

verification of the prediction of protein binding for cyclic compounds and the development 

of a decision tree strategy to prioritise chemicals for in vivo toxicity testing. The last two 

objectives were developed based on the integration of different alternative methods to 

assess the toxicity of chemicals.  This thesis concludes with a summary and a discussion of 

the work undertaken and suggestions for future work. 
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Chapter 1. Introduction 

1.1. Chemicals in the Aquatic Environment and Their Risk Assessment 

Man-made and naturally occurring chemical substances can ultimately enter into the aquatic 

environment. Aquatic ecosystems act as a major recipient of chemical substances and their 

transformation products, resulting in a significant pollutant burden. In particular, there are 

four possible origins of chemical substances in the environment [1]:  

1. Chemicals from Anthropogenic Production and Use. Man-made chemicals are 

produced from different types of industries (e.g. agricultural, chemical, 

pharmaceutical and electronic industries) and have a wide range of uses (e.g. 

cosmetics, fertilisers, food additives, pharmaceuticals and biocides). These 

chemicals are also called xenobiotics and represent a risk to aquatic organisms that 

are exposed to them. 

2. Inert Materials. Inorganic compounds are the essence of geological systems such as 

metals from rocks. The heavy metals represent substances of concern due to their 

potential adverse effects.  

3. Fossil Fuels. Fossil fuels contain mainly organic compounds such as hydrocarbons. 

Hydrocarbons are used for several processes such as electricity generation and 

production of a broad range of synthetic substances (e.g. pesticides, dyes and 

plastics). 

4. By-products of Organisms. These are produced from biochemical reactions in the 

organism itself. Generally, substances produced by organisms are readily 

biodegradable in the environment.  

Of these sources, the most significant in terms of the potential harm to aquatic ecosystems 

are organic chemicals arising from anthropogenic use and these will be the focus of this 
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thesis. Modern society has a conundrum: man-made chemicals are needed to maintain 

health and a high quality of life, however the adverse effects of these on the environment 

are a potential problem. Therefore, chemicals undergo a process of risk assessment in an 

attempt to ensure that they are used and disposed of safely [1]. A fundamental component 

of risk assessment procedures is the measurement of the potential hazardous effects of 

chemicals on aquatic species through toxicity tests [2]. Aquatic toxicity tests should be 

conducted according to good laboratory practice (GLP). When conducting a toxicity test, the 

following aspects should be taken into account [2]: 

1. Dose Selection. The selection of the dose level depends on the study. There should 

be at least three dose levels (low, middle and high), in addition to control groups. 

The high dose should produce evidence of toxicity, the middle dose should be 

moderately toxic and no toxicity is expected for the low dose.  

2. Test Species. The selection of appropriate species is based on several considerations 

such as how well they represent the environment and knowledge and experience of 

their maintenance. Although there is a diversity of aquatic model organisms, fish are 

the most commonly tested species in ecotoxicological studies due to their high 

trophic position and similarities with mammals. Danio rerio (zebrafish) and Oryzias 

latipes (medaka) are commonly used in ecotoxicology and biomedical research due 

to their following advantages: 1) ease of maintenance and manipulation in the 

laboratory; 2) high fecundity and rapid development; and 3) transparency of the 

chorion (eggshell) that enables ready identification of abnormalities induced by 

chemicals [3, 4]. 

3. Endpoint and Test Duration. The endpoint measured is the biological response of the 

test organism to a concentration of a chemical over a defined period of time. 

Examples of toxicological endpoints include the median lethal concentration (LC50) 

and the median effective concentration (EC50). In terms of test duration, toxicity 
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studies can be divided into acute and chronic tests. In acute toxicity tests, the 

adverse effect is measured over a relatively short timeframe (between 2 and 7 days), 

whereas chronic studies are carried out over a prolonged period and usually consider 

sub-lethal effects.  

4. Test Substance Characteristics. This refers to the physico-chemical properties of the 

substance of concern. Before conducting a toxicity test, all available information 

related to the test substance should be gathered. Water solubility and volatility in 

solution are the most relevant chemical properties considered in waterborne 

exposures [5].  

In order to ensure high quality toxicity data, experiments should be conscientiously planned 

and carried out according to standardised test protocols issued by international bodies such 

as the Organisation for Economic Cooperation and Development (OECD). In vivo testing 

methods, which imply the use of the whole fish, have been widely used to assess the 

potential toxicity and bioaccumulation of chemicals. Table 1.1 lists the toxicity and 

bioaccumulation tests in fish that are conducted in compliance with the OECD guidelines. 

Due to their reliance on animal use, however, in vivo methods have been continually 

criticised by animal welfare organisations. In addition, other factors such as the high cost of 

maintaining animals in laboratory conditions have led to the development other methods 

which apply the 3Rs (reduction, refinement and replacement of animals in experiments) 

concepts [12]. Alternatives are explained in the next section. 
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Table 1.1 Toxicity and bioaccumulation tests in fish 

Test  
No. OECD 

guideline  

Fish, Acute Toxicity Test  203 [6] 

Fish, Prolonged Toxicity Test 14-day Study 204 [7] 

Fish, Early-life Stage Toxicity Test 210 [8] 

Fish, Juvenile Growth Test 215 [9] 

Bioaccumulation in Fish Aqueous and Dietary Exposure 305 [10] 

Fish Sexual Development Test (FSDT) 234 [11] 

1.2. The REACH Legislation: An Opportunity for Change 

The Registration, Evaluation, Authorisation and restriction of Chemical substances (REACH) 

regulation is the European Union (EU)’s largest piece of legislation for the assessment of 

chemicals [13]. REACH entered into force on 1st June 2007 and eliminates the distinction 

between existing and new substances, subjecting all substances to the same standards. One 

of the main goals of REACH is the protection of the environment and human health from 

chemicals produced, used or imported in quantities of 1 tonne or more a year [14]. Since 

there are complete sets of toxicity and bioaccumulation data for fewer than 5% of chemicals 

on the market, an increased use of experimental animal testing has been reported to be 

likely in the coming years. Consequently, REACH advocates the use of alternative methods 

to in vivo fish testing to assess the toxicity and bioaccumulation of chemicals.  

There are several alternatives proposed to in vivo testing using fish. While some approaches 

imply the use of toxicity tests in aquatic invertebrates to assess the toxicity of chemicals (see 

examples in Table 1.2), others rely on the use of in vitro and in silico (computer-based) 

techniques to prevent unnecessary testing with fish. In vitro and in silico methods represent 

the focus of this thesis. 
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Table 1.2 Toxicity tests in aquatic invertebrates 

Test  
No. OECD 

guideline  

Daphnia magna, Acute Immobilisation Test 202 [15] 

Daphnia magna, Reproduction Test 211 [16] 

Freshwater Alga and Cyanobacteria, Growth Inhibition Test 201 [17] 

 

In vitro methods are becoming widely used in aquatic ecotoxicology to reduce the number 

of fish required in scientific research and risk assessment [18]. In vitro approaches involve 

the use of test systems based on lower levels of biological organisation such as fish embryos, 

tissues, cells, subcellular fractions and molecules. Of these, toxicity tests with embryos 

provide a feasible alternative to experimentation with adult fish as they possess similarities 

in physiology to the adult [18]. 

In silico methods are considered to be an efficient alternative due to their low cost and speed 

with respect to testing methods [19]. In silico approaches encompass Quantitative Structure-

Activity Relationship (QSAR) models, structural alerts, grouping chemicals and read-across. 

Of these, QSAR models are one of the most powerful tools in aquatic toxicology. The principle 

of QSAR is the development of relationships between the physico-chemical properties of 

chemicals with their given biological activity by using a mathematical model. Developing a 

QSAR model involves the following steps [20]: 

1. Selection of the Endpoint of Interest. 

2. Gathering Data from Available Resources.  

3. Assessment of the Quality of the Gathered Data. Not only should data relating to 

chemical structure be checked (correct identification of a compound by its 

nomenclature, CAS number or chemical structure), but also toxicological data 

gathered should be assessed for quality. This is because high quality data are needed 

to generate accurate models. There are formal scoring methods for data quality 

assessment, for instance the Klimisch criteria can be used to allocate data to one of 
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four classes for quality [21].  Similarly, the ToxRTool scheme, based on the use of 

Klimisch criteria, can be used to assess the quality of toxicological data [22]. 

4. Obtaining Descriptors of Chemical Structure and Properties. Software such as EPI 

Suite, from the United States Environmental Protection Agency (US EPA) 

(www.epa.gov), is able to calculate a set of physico-chemical parameters relevant to 

the modelling and prediction of toxicity. Amongst them, the octanol-water partition 

coefficient (KOW) is the main descriptor used in aquatic toxicity prediction due to its 

good correlation with biological and environmental processes [20]. This is because 

log KOW acts as a surrogate for the hydrophobicity of a substance. Other valuable 

descriptors are Henry’s Law Constant (HLC) which gives an indication of the volatility 

of a chemical compound in solution and descriptors for water solubility (S). 

5. Generating the Model. Although there are many different ways to create a model 

using various statistical analysis techniques, linear regression analysis is the most 

common method used to build QSAR models. 

Another in silico approach to predict toxicity and especially specific interactions is based on 

the use of structural alerts. Structural alerts are chemical sub-structures or molecular 

fragments that are associated with toxicological activity [23]. Initially, structural alerts were 

developed and introduced for human toxicology, in particular for endpoints such as 

mutagenicity and carcinogenicity, and subsequently they were applied to aquatic toxicology 

[24]. Although the structural alert approach does not provide a quantitative estimate of 

toxicity (e.g. LC50 and EC50), it can be used to identify chemicals with a potential for binding 

to biological molecules such as protein and DNA, and hence may be related to specific modes 

of toxic action [25,26]. Structural alerts have been compiled within programs such as the 

OECD QSAR Toolbox (www.qsartoolbox.org) to allow for their use within the REACH 

framework for various purposes, such as prioritising chemicals before conducting an in vivo 

toxicity test and category formation. Grouping for category formation, is another in silico 
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approach by which chemicals with similar structural physico-chemical for toxicological 

properties, particularly those that follow a regular (quantitative) pattern, are grouped in the 

same category [27]. Once a chemical category has been formed, data gaps for properties 

(e.g. those related to toxicology) can be filled by other techniques, such as QSAR models and 

read-across. Read-across is a method by which toxicological data available for a reference 

set of chemicals are used to interpolate the toxic activity of a query compound [28]. In the 

context of non-animal approaches, read-across represents an effective approach as it allows 

for extrapolation of data from chemicals with test data to those with no data.  

1.3. Persistence, Bioaccumulation and Toxicity Potential of Chemicals 

Compounds are characterised by physico-chemical and molecular shape properties which 

determine their persistence, bioaccumulation and toxicity potential [5]. There is an interest 

in identifying and regulating persistent, bioaccumulative and toxic chemicals due to their 

adverse impacts on human health and the environment. The persistence of a substance can 

be defined as its presence in the environment before its degradation by physical, chemical 

and biological processes [29]. This section describes in detail the assessment of the toxicity 

and bioaccumulation of chemicals in aquatic ecotoxicology. 

1.3.1 Bioaccumulation of Organic Chemicals 

Information on chemical accumulation in aquatic organisms is important for understanding 

the environmental behaviour of a compound and its possible biomagnification throughout 

higher trophic levels [29]. Two different terms are used with regard to chemical 

accumulation in fish: bioaccumulation and bioconcentration. Bioaccumulation is the 

accumulation of a substance from all routes of exposure (from the solution and diet), 

whereas bioconcentration refers only to its accumulation from the environment that occurs 

in a waterborne exposure i.e. across the gills and skin [30]. 
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The potential of a compound to accumulate is usually expressed by the bioconcentration 

factor (BCF). Traditionally, BCFs were determined in the whole body of fish by a flow-through 

test according to OECD Test Guideline (TG) 305 [31], which required the use of at least two 

test concentrations per substance. To comply with the 3Rs principles, this guideline was 

modified, providing a list of recommendations such as the use of only one test concentration 

per substance to reduce the number of fish required for experimentation [10]. Cyprinus 

carpio (common carp) and Oncorhynchus mykiss (rainbow trout) are the most common fish 

species used for in vivo testing [32]. In particular, common carp has been used in Japan to 

test chemicals to meet obligations under the Chemicals Substances Control Law [33]. 

Unfortunately, although approximately 300 chemicals are tested every year in Japan, only 

data for about 800 “existing” chemicals are available online at the Chemical Risk Information 

Platform of the National Institute of Technology and Evaluation (NITE)’s website 

(www.nite.go.jp). 

In vitro methods for bioaccumulation mainly involve the use of cells or subcellular fractions 

to study the processes governing chemical bioaccumulation, i.e. Absorption, Distribution, 

Metabolism and Excretion (ADME) [30]. Whilst in vitro methods for absorption are based 

predominantly on mammalian species, a variety of cell-based assays has been developed to 

study xenobiotic biotransformation in fish. In vitro tests for xenobiotic metabolism include 

the use of microsomes [34], subcellular fractions such as S9 [35,36], freshly isolated 

hepatocytes [37,38], cryopreserved hepatocytes [39,40] and aggregates cultures [41]. 

Primary hepatocytes can form tree-dimensional spheroidal cultures under specific 

laboratory conditions (e.g. constant rotation speed over exposure of one day) [41].The 

majority of such assays are derived from rainbow trout liver due to the fact that such species 

possess a standardised procedure for isolation of hepatocytes. In an in vitro scenario, the 

potential biotransformation of a compound is usually expressed by the intrinsic clearance 

(CLINT), which is calculated from a substrate-depletion approach. CLINT data can be 
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incorporated into established Physiologically-Based ToxicoKinetics (PBTK) models [42,43] to 

estimate the whole body biotransformation rate (KMET). Figure 1.1 shows the key steps and 

calculations required for the calculation of KMET from a clearance assay using freshly isolated 

hepatocytes from rainbow trout. It should be stressed that although information on 

xenobiotic biotransformation can be determined using in vitro assays, their applicability is 

currently limited due to lack of assay validation and technical limitations [44].  

Only a couple of studies have investigated the feasibility of fish embryos to assess chemical 

bioaccumulation [45,46]. This could be explained by the difficulty in determining the internal 

chemical concentration in such small test organisms. To overcome this, a simplistic approach 

has been proposed by which the chemical concentration in embryos was determined 

indirectly by quantifying the depletion of chemical concentration in the exposure solution 

[46]. The applicability of such an approach, however, was limited for compounds with 

significant biotransformation potential whose BCF values were overestimated. 
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Figure 1.1 Steps required for the calculation of whole body biotransformation rate (KMET) (d-1) (days). 

CHEP = Concentration of hepatocytes used in the clearance assay; Log Co = Initial concentration of test 

chemical (µM); Log Ct = Final concentration of test chemical; PBTK = Physiologically-Based 

ToxicoKinetics Model. 

Due to the limited applicability of in vitro methods, some governmental agencies rely on 

predictive models to estimate BCF. Computer-based models for bioaccumulation have been 

developed over more than 30 years [47]. Traditionally, QSAR models for bioaccumulation 

were focused on regression analysis between in vivo log BCF values and hydrophobicity 

expressed by log KOW, although with poor correlations being found for ionic substances, 

those prone to metabolism and hydrophobic substances (Log KOW > 6).  Dimitrov et al. [48] 

established a non-linear relationship model between log KOW and in vivo log BCF data to 
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estimate the maximum bioconcentration potential (log BCFmax) of organic chemicals, which 

is shown in Figure 1.2.  This non-linear model was later modified to correct for the effects of 

metabolism, molecular size, ionisation and water solubility on the maximum 

bioconcentration potential [49]. However, despite the novelty of such approach, Dimitrov’s 

models were not available to the public. As a consequence, governmental agencies and 

industry usually rely on the predictions made by the log KOW-based model developed by 

Meylan et al. [50], which is available in the EPI Suite Software (www.epa.gov). In contrast to 

the numerous models built for BCF, there have been only few attempts to model the 

bioaccumulation factor (BAF) [51,52]. 

 

 

 

 

 

 

 

 

 

Figure 1.2 The relationship between log BCF and log KOW illustrating the maximal bioconcentration 

(log BCFmax) model developed by Dimitrov et al. [48] shown as a solid line. 

Other in silico approaches have been focused on building kinetic mass balance models to 

take into account the ADME processes to predict chemical bioaccumulation [53,54]. By using 

this approach, BCF is calculated as follows: 

Bioconcentration factor (BCF) = K1 ф/ (K2 + KE + KG + KMET) (L/Kg)             (1.1) 

Where ф is the fraction that is bioavailable to the fish in water (unitless); K1 is defined as the 

gill uptake rate constant (L/Kg x day (d)); KE corresponds to the faecal egestion rate constant 
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(d-1); K2 is the elimination rate constant (d-1); KG is the growth dilution rate constant (d-1); and 

finally KMET corresponds to the metabolic rate (d-1). All these parameters are usually 

estimated for a fish of 1 Kg. Compared to conventional log KOW-based models, the kinetic 

approach offers the advantage of incorporating KMET data estimated from in vitro clearance 

assays to refine BCF.  The refinement of BCF using in vitro data has been conducted using S9 

fractions [36,55,56], freshly prepared hepatocytes [37,38] and cryopreserved cells [40]. 

However, the chemicals that have been tested in these clearance assays were not supported 

by high quality in vivo BCF data, and consequently it was not possible to explore the effect 

of metabolism on the total bioconcentration. 

It should be added that the prediction of metabolic susceptibility of chemicals in fish is 

usually based on predictions for mammalian metabolic data [49]. Nonetheless, the QSAR 

model of Arnot et al. [57] can be used to predict KMET of a compound in fish. This model was 

created from metabolic biotransformation data estimated from in vivo data for 

bioaccumulation. In particular, data for BCF, elimination rate constant and whole body 

biological half-lives (HL) were used to estimate KMET by re-arranging Equation 1.1. The 

predicted KMET data were modelled in a multiple linear regression using similar descriptors to 

those employed in biodegradation models [57]. The QSAR model of Arnot et al. [57] is 

available in the EPI Suite Software (www.epa.gov) and predicts KMET for a range of fish 

weights (10, 100 and 1000 g). 

 1.3.2 Toxicity of Organic Chemicals 

As many toxic effects are dose-dependent, the potential hazard of chemicals has been 

assessed though a dose-response evaluation to determine, for acute effects, the 

concentration causing 50% lethality (LC50). Traditionally, the potential hazardous effects of 

chemicals were assessed in the whole fish according to official guidelines (see Table 1.1.). 

Approximately half of the in vivo LC50 data in fish have been reported for rainbow trout, 
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Pimephales promelas (fathead minnow) and Lepomis macrochirus (bluegill), contrasting with 

the low percentage of data (< 1%) for model species such as medaka (Oryzias latipes) and 

zebrafish (Danio rerio)[58]. At present, the effect of biological factors (e.g. fish species and 

life stage) and test conditions (e.g. temperature and pH) on in vivo data are not well-

understood due to the fact that such variables are not reported in toxicity tests.  

A variety of in vitro methods have been developed to assess the toxicity of chemicals. To 

date, the Fish Embryo Acute Toxicity Test (FET) [59] provides a viable alternative to 

experimentation on adults. Moreover, good correlations have been reported between acute 

toxicological data to embryos and adults [14]. Cell cultures are another promising alternative 

to acute fish toxicity tests [24]. In order for cell-line-based toxicity assays to reflect in vivo 

conditions, they should be derived from the tissues where chemicals exhibit toxicity and 

account for the chemical fraction available to cells [60,61]. It should be noted that alternative 

approaches have mainly been proposed for acute fish toxicity testing. This contrasts with the 

lack of alternatives developed for chronic toxicity tests due to their lack of in vivo data, and 

hence the difficulty in their replacement [24]. Nonetheless, molecular assays could play an 

important role in predicting the chronic effects of chemicals. This could be assisted, for 

instance, by using molecular biomarkers to predict endocrine disruption, genotoxicity and 

immune modulation [4]. In particular, toxicogenomic techniques such as microarrays can 

identify genes that are associated with long-term toxic response [62]. 

1.4. Mechanism of Toxic Action 

A key aspect for understanding the toxicity of chemicals is unravelling their mechanism of 

toxic action. This process involves the identification of the toxicant-biological target 

interaction, also called the molecular initiating event (MIE), and knowledge of the 

toxicological responses at higher levels of biological organisation. All this information, from 

the MIE processes to downstream physiological responses, is framed into the concept 



14 

 

recently termed the “Adverse Outcome Pathway” (AOP), which is represented schematically 

in Figure 1.3 [63].  

Figure 1.3 Conceptual diagram of the Adverse Outcome Pathway adapted from Ankley et al. [63]. 

The most common mechanism of acute aquatic toxicity is narcosis; approximately 60% of all 

industrial organic chemicals act via this mechanism. Toxicity due to narcotic mechanisms 

results from a reversible hydrophobic interaction between the toxicant and cellular 

membranes [64]. Non-polar narcosis corresponds to an unspecific minimum level of toxicity 

exerted by any chemical (also referred to as baseline toxicity). Log KOW has been used in QSAR 

models to estimate the acute toxicity of narcotic chemicals, which include a diversity of 

compounds such as aromatic and aliphatic hydrocarbons, alcohols, ketones, aromatic nitro 

and amino compounds [65]. Over the past three decades, numerous QSAR models have been 

developed for acute aquatic toxicity for three trophic levels [66]. Other chemicals can initiate 

the toxicological response by electrophilic mechanisms. In such mechanisms, the toxicant 

forms covalent bonds with proteins and DNA resulting in a specific and irreversible toxic 

response. One example of an electrophilic reaction is Michael type addition that involves the 

addition of a SH group from a protein (for instance on the fish gill, causing membrane 

irritation) at an electron-deficient β-carbon of an electrophile, known as a Michael acceptor 

(MA). This reaction ultimately forms a chemical-protein adduct. The net result of this 
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covalent interaction is the permanent disruption of proteins, which can be observed as an 

increased toxicity above that elicited by narcosis (often termed excess toxicity).  

Structural alerts for Michael acceptors from the literature, as well as other reaction 

mechanistic domains, were reviewed and compiled by Enoch et al. [25,26].  In particular, the 

structural alerts within the Michael addition domain were classified into four classes: 

polarised alkenes, polarised alkynes, quinones and related chemicals and acid imides [25]. 

Table 1.3 shows examples of substructures of structural alerts for Michael acceptors encoded 

into SMILES strings [67]. It should be stressed that structural alerts can be developed based 

on mechanistic knowledge related to protein binding, which is gained from the analysis of 

the chemical structure, and does not necessarily involve empirical evidence [25,26]. 

Therefore, the verification of structural alerts based on experimental data is required before 

reactivity predictions become applied for regulatory purposes [68]. Here, in chemico 

reactivity data could play an important role for the verification of the prediction of chemical 

reactivity. For instance, Schultz et al. [67] employed a set of Michael acceptors for the 

verification of the structural alerts.  In chemico assays involve the use of proteins such as 

glutathione (GSH) or peptides to determine the reactivity of chemicals based on a depletion 

of substrate approach [69].  

Table 1.3 Examples of structural alerts for Michael acceptors, adapted from Schultz et al. [67] 

SMILES strings Message 

C≡CC=O ethynylene or acetylenic with a carbonyl 

[CH2]=C(C)C=O α-C atom alkyl-substituted with a carbonyl 

C=CN(=O)=O olefinic nitro 

C=CS=O vinyl or vinylene with a S=O group 

C≡Cc1ncccc1 ortho-ethynylene azaarene 

O=C1C=C[CH]=CC1=O ortho-quinone 

[CH3]=[CH][CH]=O acrolein (2-propenal) 

 

 



16 

 

1.5. Integrated Testing Strategies (ITS) in Aquatic Toxicology 

Integrated Testing Strategies (ITS), also referred to as Intelligent Testing Strategies, represent 

another promising approach to reduce the number of fish required for experimentation 

[70,71]. These are built from the combination of a set of alternative methods to provide a 

Weight of Evidence (WoE) with regard to the toxicity and/or bioaccumulation potential of a 

query compound. The components of ITS can be divided into two categories: non-testing 

approaches (e.g. read-across, QSARs and waiving decision schemes built from cut-off values 

for key chemical descriptors [72,73]) and testing approaches (e.g. tests using fish surrogates 

and in vitro methods). When results from alternative methods are in concordance for a given 

examined compound and ecotoxicological endpoint of interest, conducting in vivo tests in 

fish are thus less likely to be required for its risk assessment. It should be noted that risk 

assessment requires very high confidence concerning the toxicity and bioaccumulation 

potential of an examined compound. As a consequence, although ITS have been proposed 

to evaluate the toxicity [74] and bioaccumulation potential [30,75] of chemicals, there is a 

need to formalise ITS to provide potential hazard information with high reliability [24].  

1.6. Validation: The Final Step for the Implementation of Alternative Methods 

Validation is the key to obtain regulatory status of alternative methods [76,77]. Validation 

has been defined as the process by which the reliability and relevance of a procedure are 

established for a particular purpose. Depending on the type of non-animal method 

developed, specific validation requirements should be applied. For instance for in silico 

models, a validated QSAR should incorporate [78]: 1) a defined endpoint; 2) an unambiguous 

algorithm; 3) a defined domain of applicability; 4) appropriate measures of goodness-of-fit, 

robustness and predictivity; and 5) a mechanistic interpretation, if possible. The validation 

of in vitro assays are more difficult than for in silico models, since they need to be designed, 

managed and conducted to very high standards [24].  At present, the Fish Embryo Acute 
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Toxicity Test (FET) [59] is the only alternative that has been validated as an accepted in vitro 

method. The validation principles for in vitro testing include, amongst others: 1) an 

assessment of a quality of overall design; 2) demonstration of the intra- and inter-laboratory 

reproducibility of the test method; and 3) to demonstrate the assay performance in relation 

to existing toxicity data [76,77]. To accomplish the latter, test compounds that are used in 

the validation of in vitro methods should be supported by in vivo high quality toxicity data to 

facilitate a better understanding of the relationship between in vivo and in vitro data. 

Therefore, lists of reference compounds selected based on their high quality in vivo toxicity 

data should be developed to facilitate future inter-method correlations and data 

comparison. Whilst such a reference list has been provided for developing alternatives to 

acute fish toxicity [79], there are no reference lists proposed for chronic toxicity and 

bioaccumulation studies. 

1.7. Objectives of this Thesis 

This research has been undertaken within the AlterREACH project. This project is funded by 

the Norwegian Research Council (NRC) and is coordinated by the Norwegian Institute for 

Water Research (NIVA) in Oslo, Norway. Framed into the REACH legislation, the AlterREACH 

project aims to develop and evaluate non-animal methods to assess the adverse effects of 

chemicals and their bioaccumulative potential to aquatic species, particularly in fish. In 

particular, the following objectives were achieved in the present thesis: 

1. The establishment of a list of reference compounds to develop and evaluate 

alternative methods to in vivo bioaccumulation studies in fish (Chapter 2). 

2. The development of log BCFmax models for rainbow trout and common carp that 

assisted in the creation of the reference list for bioaccumulation studies (Chapter 2). 

3. The development of an in vitro clearance assay using freshly prepared trout 

hepatocytes to study the metabolic biotransformation for a set of reference 
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chemicals supported by high quality in vivo BCF data (Chapter 3).  

4. The evaluation and comparison of available alternative methods in terms of their 

reliability to estimate KMET and BCF for a set of reference chemicals. Alternative KMET 

methods include the clearance assay (objective 3) together with different PBTK 

calculation models derived from the literature and the QSAR model of Arnot et al. 

[57] to predict KMET. Alternative BCF methods include log BCF-based and kinetic mass 

balance models (Chapter 3). 

5. The verification of structural alerts for Michael acceptors using the growth inhibition 

assay in Tetrahymena pyriformis (protozoan) and in chemico GSH reactivity data 

(Chapter 4). 

6. The development of an ITS for prioritising chemicals for in vivo testing. This ITS was 

built from the combination of the non-animal methods used for the verification of 

structural alerts for Michael acceptors (Chapter 4). 
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Chapter 2. Development of a List of Reference Compounds to 

Evaluate Alternative Methods to In Vivo Fish 

Bioaccumulation Tests1 

2. 1. Introduction  

The potential of a compound to bioaccumulate is one of several properties that need to be 

evaluated in risk assessment procedures. Although bioaccumulation refers to the 

accumulation of a substance in an organism from all routes of exposure (from the solution 

and diet), the potential bioaccumulation of a compound is usually expressed by the 

bioconcentration factor (BCF) that refers only to its accumulation through waterborne 

exposure. In aquatic risk assessments, BCFs have been measured in fish according to the 

Organisation for Economic Cooperation and Development (OECD) Test Guideline (TG) 305 

“Aqueous and dietary exposure” [10,31].  This test is demanding in terms of resources and 

the use of a large number of animals per test substance. Coupled with this, compliance with 

legislation such as the European Union Registration, Evaluation, Authorisation and restriction 

of Chemicals (REACH) regulation [13] has the potential to increase the demand for animal 

testing to assess BCFs for a large number of chemicals unless further action is taken to limit 

animal testing. In order to reduce cost and limit animal use, other methods such as in silico 

(computer-based) and in vitro techniques have been proposed as alternatives to in vivo 

testing in fish to comply better with the principles of the 3Rs (reduction, refinement and 

replacement) for animal testing [12]. 

In silico models for bioaccumulation have been developed over more than 30 years, mostly 

in the form of Quantitative Structure-Activity Relationships (QSARs) [47]. As chemical uptake 

is mainly a steady-state phenomenon controlled predominantly by passive diffusion 

processes and lipid partitioning, early QSAR models were built from the relationships 

                                                 
1 This Chapter is based on a publication whose link to the source is provided in the Appendix III. 
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between the observed log BCF and hydrophobicity, often represented by the logarithm of 

octanol/water partition coefficient (log KOW). Although there is a strong relationship with 

hydrophobicity, the maximal bioconcentration potential of a compound may be reduced by 

poor chemical bioavailability, ionisation and other factors that are associated with the 

Absorption, Distribution, Metabolism and Excretion (ADME) of chemicals [48]. Consequently, 

more recent approaches have developed mass balance models for a better interpretation of 

the ADME processes governing the bioaccumulation of neutral compounds [53,54] and 

ionisable compounds [80].  

Of the ADME processes, absorption and metabolism have been implicated as the most 

important factors introducing uncertainty into predictive models for bioaccumulation [30]. 

To deal with factors affecting chemical absorption, in silico approaches have considered 

molecular properties to screen for chemicals that may have limited bioaccumulation as a 

result of molecular constraints. In particular, molecular weight (MW) and the maximum 

inter-atomic distance between two atoms in the chemical structure (Dmax) have been 

demonstrated to be useful descriptors [81,82]; however, there has been little consensus in 

their use [83]. This can be explained partly by the fact that other features such as low 

bioavailability and metabolic biotransformation may also contribute to reduce the 

bioaccumulation of large molecules [83]. To deal with uncertainties associated with 

metabolism, modelling studies have incorporated chemical biotransformation data into log 

KOW-based prediction models to correct for the effect of metabolism in aquatic 

bioaccumulation [49]. Although partly successful, these predictions of metabolic 

susceptibility have been based on models for mammalian systems due to the lack of in vivo 

metabolic data for fish. Models for predicting the metabolic susceptibility in fish include: 1) 

a QSAR model developed by Arnot et al. [57] for the whole body biotransformation half-lives 

KMET(HL) built from predicted in vivo KMET rate data, which were estimated from measured 

BCF and total elimination rate constant in fish [84,85]; and 2) a more sophisticated 
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biotransformation half-lives model that was developed using the Iterative Fragment 

Selection method to identify fragments associated with chemical degradation [86].  

A variety of in vitro methods have been developed to study the absorption and metabolism 

of chemicals [30]. Whilst in vitro methods for absorption are based predominantly on 

mammalian systems, test systems for metabolism have also been developed for fish. Current 

biotransformation assays are based on a substrate-depletion approach for the calculation of 

the hepatic clearance rate which can be incorporated into established physiologically-based 

models for the estimation of KMET [42,43]. Although standardised protocols for in vitro 

methods such as subcellular fractions (S9) and primary hepatocyte cell assays have been 

proposed [35,41], standardised protocols for other biotransformation assays are still to be 

developed. It should be stressed that, despite the fact that information on absorption and 

metabolism properties can be obtained through in vitro methods, their applicability for 

assessing chemical bioaccumulation is currently limited by the lack of assay validation [44]. 

There is a need, therefore, to enable the development, standardisation and validation of in 

vitro methods for the prediction of in vivo bioaccumulation within a regulatory context. 

In order to ensure that non-animal methods can be used as surrogates for, or as a 

complement to, in vivo fish testing, the establishment of a high quality and well-

parameterised relationship between in vivo and in vitro data is required. A small number of 

such comparisons have been reported for BCFs [36-40], but they have been applied to a 

limited selection of chemicals. A representative list of chemicals, chosen on the basis of 

defined criteria for chemical diversity and data quality, is thus required to facilitate targeted 

comparison of the different approaches used in bioaccumulation testing.  

The aim of the present study, therefore, was to develop a list of reference compounds for 

future development and evaluation of the applicability of alternative test methods to assess 

bioaccumulation in fish. The selection of reference compounds was conducted according to 
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a number of criteria that were integrated into a three tiers strategy. The selection strategy 

was applied to identify a diverse set of chemical classes supported by high quality in vivo data 

for BCF, KMET and analysed metabolites for rainbow trout (Oncorhynchus mykiss) and 

common carp (Cyprinus carpio). In addition, broad coverage of bioconcentration potential, 

molecular properties (MW, Dmax), and metabolic properties (metabolic pathways, KMET (HL) 

were also required for the selected compounds. This Chapter describes the chemical 

selection process and the use of in silico techniques that were employed to assist in the 

creation of the reference list of chemicals.  

2.2. Materials and Methods  

2.2.1 Chemical  Selection Strategy 

The selection of reference chemicals was conducted according to a set of criteria organised 

into three Tiers as shown in Figure 2.1. The criteria were established using expert judgement 

based on previous criteria of the validity of the test procedures [77], and relevant 

considerations for the assessment of chemical accumulation in aquatic organisms. In 

essence, the purpose of Tiers I and II was to obtain high quality in vivo data for key 

bioaccumulation endpoints, whereas the purpose of Tier III was to ensure chemical diversity. 

The three tiers of chemical selection are described in detail below.  
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Figure 2.1 The three tier selection strategy used for the development of a list of reference 

compounds for evaluating alternative methods to fish bioaccumulation tests. 
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2.2.2 Starting Points for Chemical Selection 

Before data compilation, the first step in the strategy was the selection of relevant in vivo 

bioaccumulation endpoints, fish species and chemical classes for the development of a 

reference list of chemicals (Figure 2.1).  

Data for in vivo BCF, KMET and characterisation of the metabolic pathway of the chemicals 

(expressed by metabolite identification) were selected from in vivo measurements related 

to bioaccumulation for two reasons. Firstly, the many BCF data that were available for 

organic chemicals and which were determined according to official guidelines [10,31]; and 

secondly, the possibility of measuring such properties through in vitro metabolic test systems 

such as S9 and isolated hepatocytes [35-40]. In vitro test systems can also provide specific 

information on the metabolic pathway of test chemicals by identifying and quantifying their 

resulting metabolites [87]. With regard to fish species, rainbow trout and common carp were 

chosen in the present study as being OECD recommended test species for in vivo 

bioaccumulation studies [10,31] and for which different alternative testing approaches have 

been proposed [30]. With regard to chemical classes, only organic chemicals were 

considered in the present study since mechanisms other than hydrophobicity driven by 

passive diffusion could be involved in the bioaccumulation of organometallic compounds and 

organic salts [49]. As the use of in vitro metabolism assays may become more common in 

bioaccumulation studies in the future, the selection of relevant chemical classes was based 

on the inclusion of structurally diverse chemicals that span known biotransformation 

reactions in fish [29,88]. Table 2.1 lists the 19 chemical classes that were considered for the 

development of the reference list with their main biotransformation pathways and enzymes 

involved. The metabolism of xenobiotics is often classified into Phase I and Phase II 

biotransformation reactions [29,88]. In Phase I, reactive and polar groups are added to 

compounds that are being metabolised. There are three types of Phase I reactions: oxidation, 
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reduction and hydrolysis. Phase II reactions increase the polarity of chemicals by conjugation 

with a polar molecule (e.g. uridine diphosphate (UDP) glucuronic acid). Another crucial 

aspect for the creation of a reference list was the inclusion of chemicals of environmental 

concern. These included persistent organic compounds such as Polycyclic Aromatic 

Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs), and others with known 

industrial applications such as aliphatic halogenated hydrocarbons that have been used as 

industrial solvents, organophosphates and amides (pesticides), azo compounds (dyes) and 

heterocyclic compounds.  

Table 2.1. Chemicals classes considered for the development of a reference list of chemicals for 

alternatives to in vivo BCF tests [29,88] 

No. Chemical classes Major Phase I Metabolic Reactions 

(Enzymes) 

Major Phase II Metabolic 

Reactions (Enzymes) 

1 Aliphatic hydrocarbons Oxidative dehalogenation (CYP), 

Epoxidation of alkenes (CYP), 

Hydroxylation (CYP) 

Glutathione conjugation (GST) 

2 Benzenes Hydroxylation (CYP) Glucuronidation (UGT) 

3 Biphenyls Hydroxylation (CYP) Glucuronidation (UGT) 

4 Polycyclic aromatic 

hydrocarbons  

Hydroxylation (CYP), Epoxidation 

(CYP), 

Hydrolysis (EH) 

Glutathione conjugation (GST), 

Glucuronidation (UGT) 

5 Ethers  Dealkylation (CYP)  

6 Carboxylic acids and esters Hydrolysis of esters Amino acid conjugation (Acetyl-

CoA, AAT),  

Glucuronidation (UGT) 

7 Alcohols Oxidation (ADH) Sulfonation (SULT) 

8 Phenols  Glucuronidation (UGT), 

Sulfonation (SULT) 

9 Aldehydes Oxidation (ALDH), Oxidation of 

aromatic aldehydes (AO) 

 

10 Quinones Reduction (DTD)  

11 Nitroaromatic compounds Reduction (CYP NRT)  

12 Azo compounds Reduction (CYP AzoRT)  

13 Amines Oxidation of secondary amines 

(MAO), Oxidation of  tertiary 

amines (FMO), Reduction (CYP) 

Glucuronidation (UGT), 

Sulfonation (SULT), Acetylation 

(Acetyl-CoA) 

14 Amides and carbamates Oxidation (FMO) Glucuronidation (UGT) 

15 Organosphosphates Oxidation (CYP)  

16 Organosulfur compounds Oxidation desulfuration (FMO)  

17 Epoxides Hydrolysis (EH)  

18 Polyunsaturated fatty acids Oxidation (LPO)  

19 Heterocyclic compounds Oxidation (CYP), Reduction (CYP), 

Epoxidation (CYP) 

Glucuronidation (UGT) 
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AAT: Aminoacyl transferase, Acetyl-CoA: Acetyl-coenzyme A, ADH: Alcohol dehydrogenase, ALDH: Aldehyde 

dehydrogenase, AO: Aldehyde oxidase, CYP: Cytochrome P450, CYP AzoRT: Cytochrome P450 azoreductase, CYP 

NRT: Cytochrome P450 Nitroreductase, DTD: DT Diaphorase, EH: Epoxide hydrolase, FMO: Flavin-containing 

monooxygenase, GST: Glutathione S-transferase, LPO: Lipoxygenase, MAO: Monoamine oxidase, SULT: 

Sulfotransferase, UGT: Uridine diphosphate glucuronosyl transferase. 

 

2.2.3 Data Collection 

The next step in the strategy was the compilation of BCF, KMET and metabolite data for 

rainbow trout and carp from different information sources. A thorough scientific literature 

search was conducted to compile chemicals supported by KMET data and information on 

identified metabolites. BCF values were obtained from established databases including the 

Environment Canada’s Domestic Substance List (DSL) and non-DSL databases, both reviewed 

by Arnot and Gobas [32], and the EURAS-CEFIC database [89]. These databases were selected 

for two main reasons. Firstly, they assessed in vivo BCF data based on the quality principles 

reported in OECD TG 305 [10,31]; and secondly, they compiled data from other important 

sources including the ECOTOX (http://cfpub.epa.gov/ecotox) and the Japanese Ministry of 

Economy, Trade and Industry-National Institute of Technology and Evaluation (METI-NITE) 

database (http://www.nite.go.jp/index-e.html).  

Table 2.2 lists the general features of the different databases in terms of their availability and 

format, BCF data contained therein and the assessment score. It should be noted that 

although the databases differ in the number of criteria and scoring system to assess the 

quality of the in vivo BCF, they all agree with the recommendations for identification of high 

quality BCF data proposed by Parkerton et al. [90]: the correct analysis of test substance in 

fish and exposure medium, lack of significant toxic effects on exposed fish and achievement 

of steady state with unambiguous units.  

  

http://cfpub.epa.gov/ecotox
http://www.nite.go.jp/index-e.html
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Table 2.2 A summary and comparison of the features of the established BCF databases 

 Environment Canada BCF databases EURAS-CEFIC database 

Source On request from 

http://www.hc-sc.gc.ca/ 

Freely available from 

http://ambit.sourceforge.net/euras/ 

Format Microsoft excel spreadsheet Microsoft excel spreadsheet 

No.  BCF values 5317 1130 

No. chemicals 822 549 

Species Fish (82%), Invertebrates (15%), 

Autotrophs (4%) 

Only fish  

(90% for common carp) 

Score system 1 (high quality) 

2 (moderate quality) 

3 (low quality) 

Klimisch score:  

1 (reliable without restrictions)  

2 (reliable with restrictions)  

3 (not reliable) 

4 (not assignable) 

Only BCF data for rainbow trout and common carp supported by the highest quality score 

and measured under the same experimental conditions were selected for inclusion in the 

reference list. The experimental considerations were: 1) analytical determination of the test 

compounds in the whole fish (wet weight); 2) experimental tests conducted in a flow-

through system and; 3) using the steady state method for the calculation of BCF.  For 

chemicals with multiple BCF values, only those presenting coefficient of variance (100 x 

standard deviation/average value; CV %) lower than 50% were considered (Figure 2.1). Single 

BCF values for each chemical were obtained by averaging the multiple data points after the 

removal of statistically significant outliers. Outliers were identified using the boxplot graph 

representation in the SPSS software version (v.) 18 (http://www.spss.co.in). In this simple 

analysis, outliers were identified outside the T-bars (95% confidence intervals of the data). 

With regard to chemicals supported by in vivo KMET and metabolite identification data, both 

waterborne and dietary exposures were considered for the compilation of chemicals from 

the literature due to the lack of sufficient in vivo fish studies covering metabolism of 

chemicals. 

 

http://www.spss.co.in/
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2.2.4 Identification of Chemical Classes 

Compounds processed in Tier II were assigned to chemical classes according to the categories 

established in Tier I (Table 1.1) and the presence of other functional groups that were not 

listed in Table 1.1 (e.g. nitrile, peroxide, ketone). A further sub-classification according to 

structural properties (e.g. aliphatic vs aromatic fragments) was conducted for those chemical 

classes that contained a large number of chemicals. Industrial names were used for 

chemicals with complex chemical structures (e.g. dyes). 

2.2.5 Calculation of Descriptors and Properties 

Chemical structures of the compiled compounds were obtained from the EPI Suite version 

4.1 (http://www.epa.gov). The International Chemical Identifier (InChI) was obtained from 

the OpenBabel v. 2.3.1 software (http://openbabel.org/) and used to identify replicate 

compounds among databases and fish species. Chemical structures were recorded as SMILES 

strings for descriptor calculation and entered into different EPI Suite models to calculate: 1) 

log KOW and MW from KOWWIN v. 1.68; 2) Henry’s Law Constant (HLC) from HenryWin v. 

3.20 using the bond contribution method; and 3) KMET (HL) normalised to a 10 g fish from 

BCFBAF v. 3.01, which was based on the QSAR model developed by Arnot et al. [57]. Common 

names extracted from ChemSpider (http://www.chemspider.com/) were used for those 

chemicals presenting complex International Union of Pure and Applied Chemistry (IUPAC) 

names. 

Dmax values were calculated from the geometry optimised 3-D structures (in xyz format). The 

3-D structures were obtained from SMILES strings using a Python v 2.7.3 script. The 3D 

geometries were generated using OpenBabel v. 2.3.2 (http://openbabel.org/); accessed 

using Python via the Pybel module v. 1.8 (http://openbabel.org/wiki/Python) and locally 

optimised using the MMFF94 force-field [91]. The MOPAC input files were extracted, and 

http://www.epa.gov/
http://openbabel.org/
http://www.chemspider.com/
http://openbabel.org/
http://openbabel.org/wiki/Python
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MOPAC v. 2012 (http://openmopac.net/) was run to optimise the chemical structures using 

the AM1 Hamiltonian. The following keywords were employed: charge=0 and PRT INT 

(setting no charge and exporting the interatomic distances, respectively). Dmax values were 

obtained from the MOPAC.out file, where Dmax was defined as the maximum interatomic 

distance between non-hydrogen atoms. The Dmax values were extracted automatically from 

the MOPAC.out file using an in-house Perl script.  

The prediction of metabolic pathway and resulting metabolites was made using the Meteor 

Nexus v.1.5.1 software (Lhasa Limited, Leeds, England (www.lhasalimited.org/meteor/). 

Meteor predicts biotransformation reactions from the structure of the parent compound by 

applying rules that were created based on knowledge on mammalian metabolism [92]. Such 

knowledge was extracted from the literature and/or confidential information from 

pharmaceutical industries. The Meteor Nexus software uses absolute and relative reasoning 

to make biotransformation predictions. Absolute reasoning describes the probability of 

biotransformation taking place (probable, plausible, equivocal, doubted and improbable), 

whereas relative reasoning allows further ordering of all possible metabolic outcomes. Levels 

of probable, plausible and equivocal, were selected for the analysis of the total number of 

resulting metabolites of the examined compounds, whereas predictions identified as 

probable and/or plausible were used to characterise the metabolic pathways of compounds 

identified in Tier II.  

2.2.6 Development of Log BCFmax Models 

The objective of the development of log BCFmax models was to identify chemicals whose BCF 

values were poorly correlated (over-predicted) with log KOW. Compounds supported by in 

vivo BCF data for rainbow trout and common carp were classified into six categories, noted 

below, depending on the difference between their reported predicted maximal BCF and 

experimental values. To provide an estimate of the maximal bioconcentration potential of 

http://www.lhasalimited.org/meteor/
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the examined chemicals, a model for the maximal log BCF (log BCFmax) for both fish species 

was thus required. To accomplish this, Equation 2.1 developed by Bintein et al. [93] was 

modified to accommodate a subset of in vivo BCF data, using the Minitab v. 16 statistical 

software (http://www.minitab.com).  

Log BCF = 0.91 log Kow – 1.97 log (6.8 x 10-7 Kow + 1) - 0.79      (2.1) 

n = 154, r2 = 0.950, s = 0.347, F = 464 

Where n is the number of observations; r2 is the square of the correlation coefficient; s is the 

standard error, and F is Fisher’s statistic 

As a difference of 0.5 log BCF is assumed reasonable to account for the variability resulting 

from experimental procedures [94], compounds whose residuals were between 0 and 0.5 

log units from this log BCFmax were considered well-predicted (W). In a similar manner, 

compounds whose residuals were less than 0 were considered under-predicted (U) and 

compounds whose residuals were greater than 0.5 log units were considered over-predicted 

(O) by the log BCFmax model. Under-predicted and over-predicted compounds were further 

classified into: 1) highly under-predicted compounds (U2) (residuals < -1); 2) slightly under-

predicted (U1) (residuals = -0.5 to 0); 3) slightly over-predicted (O1) (residuals > 0.5-1); 4) 

moderately over-predicted (O2) (residuals = 1 to 1.5); and 5) highly over-predicted (O3) 

(residuals > 1.5).  

2.2.7 Refinement of Chemical Domain 

The objective of Tier III was to pursue chemical diversity within the reference list in terms of 

physico-chemical, molecular and metabolic properties for each of the chemical classes 

identified in Tier II. Hydrophobicity (Log KOW) was selected amongst other physico-chemical 

properties due to its strong influence on BCF [47]; MW and Dmax were selected as they have 

been widely used to investigate the effect of molecular mass and size on chemical 

http://www.minitab.com/en-US/products/minitab/default.aspx
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bioaccumulation [81,82]; and finally, KMET (HL), metabolic pathway and number of 

metabolites of chemicals were selected amongst other metabolic properties. All these 

properties were calculated using the software as described above. When compounds in the 

same chemical class were identified as having the same bioconcentration potential for a 

similar range of log KOW, compound selection was then based on ensuring a broad range of 

molecular and metabolic properties. It should be noted that chemicals that were in common 

between rainbow trout and common carp and other chemicals that were supported by 

existing in vitro data were included in the reference list regardless of their physico-chemical, 

molecular and metabolic properties.  

2.3. Results and Discussion  

The present study aimed to establish a list of reference compounds for the development, 

assessment and validation of alternative methods to in vivo bioaccumulation studies in fish. 

As no official guidance is provided for conducting such a selection process, the present study 

presents a novel approach to select and evaluate such reference compounds.  

Different strategies have been developed to select representative compounds from existing 

databases depending on the number of compounds in the databases and purpose of the 

study. Particularly in drug discovery, computational techniques, such as cluster analysis and 

dissimilarity-based compound selection, have been used to ensure the selection of 

structurally diverse sets of compounds for testing [95]. In contrast, the chemical selection 

procedure is rationalised in (eco)toxicological studies by considering aspects important for 

the evaluation of alternative methods through the establishment of a list of selection criteria, 

and therefore, not necessarily employing high-throughput screening approaches. Similar to 

other chemical selection strategies in (eco)toxicology [79,96-98], the strategy followed in the 

present study was based on the establishment of a list of criteria, evaluation of available 

experimental in vivo data, and the use of in silico techniques to complement the selection 
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process. It should be noted, however, that whilst for toxicity studies there is a need to 

consider the mechanism of toxic action to ensure either consistency or diversity, chemical 

bioaccumulation is governed to a large degree by ADME processes that are more clearly 

linked to physico-chemical and molecular properties.  

The selection process performed in the present study involved three Tiers: Tier I selected 

relevant in vivo bioaccumulation endpoints, fish species and chemical classes for the 

development of a list of reference compounds; Tier II compiled and analysed chemicals 

supported by high quality in vivo data for the established endpoints and chemical classes in 

Tier I; and Tier III applied further criteria to ensure a broad chemical domain. Tier I has been 

explained in detail in Materials and Methods, and therefore, it will not be discussed again in 

this section.   

2.3.1 Compounds Supported by In Vivo BCF Data 

Data Extraction  

A total of 361 BCF values for rainbow trout and another 840 BCF values for common carp 

were obtained from the Canadian DSL and non-DSL and EURAS-CEFIC BCF databases based 

on the highest reliability score and application of the same test conditions. Initially, all BCF 

values that were extracted for common carp were assessed as having the highest reliability 

score since they were measured in compliance with Good Laboratory Practise in Japan to 

meet the Chemical Substance Control Law [33]. In contrast, for rainbow trout 331 BCF values 

failed to meet one or more of the established quality criteria of the databases [32,89], for 

example the toxic effects reported for two dioxin-like compounds, uncertain correction of 

the radiolabel analysis for some organophosphates and insufficient exposure duration to 

achieve 80% of steady state for the majority of polychlorinated compounds.  
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Multiple BCF values were obtained for the majority of compounds for rainbow trout; all 

chemicals assessed in common carp had two BCF values. Compounds containing multiple 

BCFs with a coefficient of variance (CV) that was lower than 50% were considered for the 

development of list of reference compounds. A total of 51 out of 59 compounds were 

selected for rainbow trout; a total of 224 compounds out of 420 were selected for common 

carp. Generally, rejected compounds (CV > 50%) showed a significant difference between 

their BCFs reported at different test concentration as is represented in Figure 2.2 for a 

rejected compound, pentachloronitrobenzene (CAS no. 62-68-8). This could be an indication 

of toxic effects and/or enzyme saturation in test organisms produced at high concentrations 

[32].  

 

Figure 2.2 Relationship between log BCF and uptake duration phase depending on test 

concentration for pentachloronitrobenzene.  

Single BCF values for selected compounds (CV < 50%) were obtained by averaging the 

multiple data points after the removal of two outliers that were identified for two 

compounds for rainbow trout, and thus were excluded in the calculation of the average 

values for these compounds.  
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Identification of Chemical Classes  

The selected chemicals supported by high quality in vivo BCF data for both rainbow trout and 

common carp were classified into 18 chemical classes and additional subclasses on the basis 

of their functional groups and structural properties. Table 2.3 shows the chemical classes 

identified and number of compounds in each according to fish species. As can be seen, the 

majority of compounds were found to be aliphatic and aromatic hydrocarbons (classes 1-5), 

phenols, nitrobenzenes and amines, with a relatively small number of organosulfur 

compounds, carboxylic acids, alcohols, amides and organophosphates.  

Table 2.3. Chemical classes and subclasses for compounds with in vivo BCF data 

No. Chemical classes  Subclasses Trout Carp Total 

1 Aliphatic linear 

hydrocarbons  

Alkenes, Alkanes 0 24 24 

2 Aliphatic cyclic 

hydrocarbons 

Cycloalkanes, Cycloalkenes  1 13 14 

3 Benzenes Alkylbenzenes, Benzenes 17 28 45 

4 Biphenyls Chlorobiphenyls, Bromobiphenyls  5 5 10 

5 Polycyclic aromatic 

hydrocarbons (PAHs) 

Naphthalenes, Other PAHs 3 7 10 

6 Ethers Aliphatic ethers, Aromatic ethers 2 9 11 

7 Carboxylic acids and 

esters 

Any subclassification was conducted 6 1 7 

8 Alcohols Alcohol derivatives, Alcohols 0 7 7 

9 Phenols Alkylphenols, Nitrophenols, Phenol 

derivatives 

3 35 38 

10 Ketones  No subclassification  0 4 4 

11 Quinones No subclassification  0 7 7 

12 Nitrobenzenes Alkylnitrobenzenes 12 13 25 

13 Amines Alipathic amines, Naphthalenamines, 

Benzoamines, Other amines 

0 25 25 

14 Amides and carbamates Aliphatic amides, Aromatic amides, 

Carbamates 

0 7 7 

15 Organophosphates Aliphatic organophosphates, Aromatic 

organophosphates, Thiophosphates 

1 8 9 

16 Heterocyclic compounds Saturated, Unsaturated 1 16 17 

17 Dyes (azo compounds) No subclassification 0 5 5 

18 Minority groups Nitriles, Organosulfur compounds, 

Phenyls, Hydrazobenzenes, Peroxides 

0 10 10 
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Table 2.3 covered the majority of the chemical classes that were proposed for inclusion in 

the reference list based on their known biotransformation reactions (Table 2.1) with the 

exception of aldehydes, epoxides and polyunsaturated fatty acids. Of these, only two 

epoxides were found initially within the common carp data, however they were not 

considered further due to a CV > 50%. The lack of diversity for some classes of chemicals in 

the original BCF databases, such as reactive compounds (e.g. epoxides), can be explained by 

the fact that such chemicals are likely to cause toxicity higher than the 10 % mortality validity 

limit set for OECD tests even at low exposure concentrations [10,31], and hence may not be 

good candidates for in vivo bioaccumulation assessments. This observation is supported by 

the toxic effects reported for dioxin-type compounds described above for rainbow trout. 

Nonetheless, a broad range of chemical structures and other chemical groups that were not 

initially considered in Tier I, such as ketones, carbamates, esters, nitriles and peroxides, were 

considered for the development of the list of reference compounds.  

Table S1 lists the 265 chemicals that entered into Tier III according to the chemical classes 

noted in Table 2.3. Table S1 is provided as electronic supplementary data (Appendix IV). 

Physico-chemical properties (log Kow, log HLC), molecular properties (MW, Dmax), metabolic 

properties (metabolic reactions, number of metabolites, KMET (HL)) and data related to the 

measurement of the in vivo BCF (test temperature, final wet weight and lipid content of test 

organisms, reference database) are shown in Table S1.  

Compounds in Common Between Fish Species 

Of the 265 chemicals, ten chemicals were in common between rainbow trout and common 

carp including five substituted benzenes (44, 45, 53, 64, 71) (see Table S1), 2,2',5-

trichlorobiphenyl (83), pentachlorophenol (151) and three nitrobenzenes (177, 178, 182). For 

all chemicals in common, lower values of log BCF were obtained for common carp than for 

rainbow trout. This could be caused by differences in the temperature of the test system, 
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since the temperature used to measure BCFs in common carp was 22 °C and a temperature 

of 15 °C was reported for rainbow trout (see Table S1). Temperature is considered to be one 

of the factors affecting bioconcentration kinetics since it may influence the biological 

enzymatic rates and other temperature-dependent biological processes [29]. In fact, a 

comparative study has shown that in vitro metabolite formation was 10 to 100 times faster 

in carp than trout [99], which could explain the consistently lower BCF values observed for 

common carp in the present comparison.  

2.3.2 Development of Log BCFmax Models 

The first step for the identification of compounds with lower log BCF values than expected 

from the relationship with log KOW correlation was the development of a model for maximal 

log BCF for rainbow trout and common carp (log BCFmax). Equation 2.1 was modified to 

accommodate a subset of chemicals with high BCF values for each of the fish species. The 

bilinear models built for rainbow trout and common carp are shown as a solid line in Figure 

2.3 and are described by Equations 2.2 and 2.3 respectively. These models represent the 

worse-case scenario for BCF where accumulation is driven purely by passive diffusion 

processes. 

Log BCFmax, Rt = 0.88 log KOW – 1.73 log (2.25 x 10-6 KOW + 1) - 0.08   (2.2) 

Log BCFmax, Cc = 0.89 log KOW – 1.51 log (1.41 x 10-6 KOW + 1) - 0.88   (2.3) 

It should be noted that the data used in Equations 2.2 and 2.3 were based on selecting 

chemicals with high BCF values (shown as open circles in Figure 2.3) to obtain the maximal 

BCF value and, therefore, were not subjected to any statistical treatment. 
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Figure 2.3 Relationship between log BCF and log KOW for rainbow trout and common carp 

compounds.  Solid line: log BCFmax model developed from a set of chemicals with representative 

maximal values (represented as open circles).  

Compounds supported by in vivo BCF data were then split into six different categories 

depending on their residual values from Equations 2.2 and 2.3. Following the rationale 

explained above, 6% of compounds were classified as being highly and slightly under-

predicted (U2,U1), 31% well-predicted (W), another 35% slightly over-predicted (O1) and 

finally 28% of substances were identified as being moderately and highly over-predicted 

(O2,O3). Over-predicted compounds represent groups of interest to allow for the 

Eq. 2.2 

Eq. 2.3 
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investigation of factors reducing BCF of chemicals such as high rates of metabolic reactions, 

poor bioavailability due to a high degree of ionisation and lack of undergoing uptake due to 

molecular constraints. 

Compounds that were under-predicted (U2,U1) included a set of hydrophilic heterocyclic 

compounds (234,235,237,238), aliphatic amides (218,224) and highly hydrophobic 

hydrocarbons (log KOW > 7) such as dechloran A (38), 1,3,5-tris (1,1-dimethylethyl)benzene 

(78), decabromobiphenyl (87) and tris (1-methylethyl)naphthalene (96) (see Table S1). The 

high bioconcentration potential of highly hydrophobic hydrocarbons (38,78,87) could be 

attributable to a lack of metabolic biotransformation, since halogen groups and/or alkyl 

groups at the target site of metabolic reaction, or at surrounding positions, may have the 

potential to inhibit partly or completely the metabolic biotransformation of these 

compounds [29]. 

Well-predicted and slightly over-predicted compounds (W, O1) included the majority of 

neutral compounds such as cyclic aliphatic, benzenes, biphenyls, PAHs and all compounds 

classified as ethers. This observation is supported by their relatively high values of KMET (HL) 

and lack of polar groups in the chemical structure that may make them less susceptible to a 

metabolic attack [47]. However, compounds with log KOW < 3 with polar groups and relatively 

low values of KMET (HL) such as alcohols (119), phenols (123-130), quinones (164), 

nitrobenzenes (171-180) and organophosphates (225) were also classified as W and O1 

(Table S1). This is in agreement with previous in silico predictions suggesting that high 

biotransformation rates have only a minimal impact on the BCF for compounds with log KOW 

< 3 [43,84]. High rates of chemical flux across the gills could be more important for the overall 

BCF than the biotransformation rates for such compounds. Conversely, more hydrophobic 

compounds (log KOW > 3) with polar groups such as ketones (160,161,163), quinones 

(169,170), nitrobenzenes (187,188,191), amines (212,216), amides (219-221,223) were 
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identified as being over-predicted (O2,O3) (Table S1). The lower than expected log BCF values 

may be a result of metabolism as previous modelling studies have shown that relatively low 

biotransformation rate may have a large influence on bioaccumulation for hydrophobic 

compounds (log KOW > 3) [43,84].  

As expected, the observed log BCF of the majority of ionisable compounds in the present 

study showed low bioconcentration potential, as chemical properties other than 

hydrophobicity account for the bioaccumulation of ionisable compounds. Ionisable 

compounds included organic acids such as phenols, carboxylic acids and phosphates and 

organic bases such as amines and heterocyclic compounds containing a nitrogen atom in the 

ring. Descriptors other than log KOW have been considered in recent in silico studies to 

improve the prediction of bioaccumulation for ionisable compounds [80]. Alternative 

descriptors include the logarithm of the distribution coefficient (log D), which is the ratio of 

concentration of unionised forms of a compound in octanol and the total concentration of 

unionised and ionised forms in water. It should be noted that the log KOW of ionisable 

compounds provided in the present study refers to their neutral form. The absorption of 

ionisable compounds is dependent on several factors such as the log KOW of the neutral form 

and the degree of ionisation, i.e. the negative logarithm of the equilibrium constant for 

dissociation (pKa). No significant reduction in the uptake rate is predicted for weak organic 

acids and weak bases at a pH of 7 [80]; however, a moderate reduction in the uptake is 

expected at higher pH (pH > 9) and, therefore, further analysis of the degree of ionisation for 

ionisable compounds will be required to address this in detail. 

It is worth noting that as the bioaccumulation of a compound is a complex function 

comprising diverse chemical properties and biological processes, the low bioconcentration 

of some of the examined compounds could be associated with more than one factor [83]. 

For instance, the significant low bioconcentration potential of dyes (251-255) (Table S1) could 
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be a result of several processes such as a potential fast metabolic biotransformation, 

absorption limitation due to their large molecular size (Dmax = 1.44 to 2.64) and poor 

bioavailability due to ionisation and binding to proteins. 

2.3.3 Compounds Supported by In Vivo KMET Data 

Data for 14 chemicals with measured in vivo KMET values were found for rainbow trout, which 

contrasted with the lack of information for KMET for common carp. These chemicals are listed 

in Table S2, provided as electronic supplementary data in the Appendix IV, and encompassed 

five phenyls (1-5) [100,101] and nine heterocyclic pesticides (6-14) [101,102]. Of these, 

tetrachlorobiphenyl (1) and DDT (2) were also supported by in vivo BCF data (see compounds 

85 and 261 in Table S1). Experimental details used for the assessment of KMET, such as type 

of exposure, tissue analysed and test concentration are provided in Table S2. KMET values were 

calculated by comparing the HL of test compounds with known recalcitrant PCBs in a non-

linear relationship between log KOW and HL [103]. Based on this approach, chemicals whose 

HL fall on, or near, this non-linear relationship were assumed to be recalcitrant to 

biotransformation, whereas those chemicals with data that fall below this relationship were 

suggested to be more readily biotransformed. This method allows for the quantification of 

the biotransformation rates of a number of organic chemicals that were tested under the 

same experimental conditions [103]. 

2.3.4 Compounds Supported by In Vivo Analysed Metabolites 

Data for eight chemicals whose resulting metabolites were analysed in an in vivo system using 

rainbow trout were compiled from the literature. These chemicals are provided in Table S3 

(electronic supplementary data, Appendix IV) and included four perfluoroalkylated 

compounds (1-4)[104,105], decabromodiphenyl ether (BDE) (5)[106] and three carboxylic 

acid pharmaceuticals (6-8) [107,108]. Although few metabolites were monitored for each 
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compound, the biotransformation pathway was proposed for fluorotelomer acrylate (4) and 

carboxylic acids (6-8). Experimental details used for the analysis of metabolites and 

references are provided in Table S3. Depending on the study, different routes of exposure 

(dietary, waterbone, intraperitoneal injection) as well as fish tissues for analysis (muscle, 

blood, liver bile, and kidney) were used to investigate the biotransformation pathways of 

these compounds (see Table S3). Worthy of mention is that both aspects may influence the 

formation and accumulation of resulting metabolites from the parent compound. For 

instance, a different metabolic pattern was found for BDE (5), where debromominated 

diphenyl ether metabolites (De-BDEs) were the main metabolites in liver, whereas 

methoxylated diphenyl ethers (MeO-DBEs) were found in higher concentration in blood 

[106]. With regard to common carp, the biotransformation of three PAHs [109] and four 

polybrominated diphenyl ether congeners [110] have been reported, but these data were 

not included in the present study as neither study detected any metabolites of the parent 

compounds in the tissue analysed. 

2.3.5 Refinement of Chemical Domain 

All the chemicals that were compiled in Tier II were reduced in number according to the Tier 

III criteria (Figure 2.1). A total of 144 compounds out of the 265 compounds passing Tier II 

were selected to provide in vivo BCF data (see reference compound (RC) in Table S1). Selected 

chemicals are listed in Table 2.4 with some of the properties considered most relevant for 

the selection process. Generally, fewer chemicals were selected (< 50%) for the chemical 

classes that contained a large number of chemicals and low structural diversity (e.g. aliphatic 

linear and cyclic hydrocarbons, benzenes, ethers, phenols and nitrobenzenes) than for more 

diverse chemical groups with fewer chemicals (e.g. organophosphates, amides and 

heterocyclic compounds) (Table 2.3). The selection covers chemicals used in a range of 

industrial applications such as: 1) intermediates in the production of pharmaceuticals 
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(91,123), cosmetic and fragrances (192), plastics (46,225), detergents (36); 2) pesticides 

including insecticides (35, 38, 221,227, 248,250, 261), nematocides (13,98),  fungicides (262) 

and herbicides (222); 3) dyes (251-255); 4) and industrial solvents (14,21,229,234). Of the 

selected compounds, naphthalene (88), pentachlorophenol (151) and nonyl-phenol (154) 

should be considered of high environmental relevance due to their multiple industrial 

applications.  

For compounds supported by KMET and metabolite identification, 13 compounds were 

selected on the basis of the existing in vitro data and broad coverage of chemical properties 

considered for selection (see RC in Tables S2 and S3 respectively). In terms of existing in vitro 

data, four fungicides (6,7,10,11) with in vivo KMET data were previously tested in rat and 

rainbow trout  hepatic microsomes with the aim to investigate their cross-species 

comparison [111]. A high degree of metabolic conservation was found between both species. 

The biotransformation of four compounds supported by in vivo analysed metabolites was 

also investigated from an in vitro scenario (see Table S3 for details). For instance, the 

metabolism of decabromodiphenyl ether (5) was investigated using liver microsomal 

fractions from common carp and rainbow trout [112], and 8:2 Fluorotelomer acrylate (4) was 

tested in S9 fractions isolated from rainbow trout stomach and liver [113].Table 2.5 and Table 

2.6 list the selected chemicals for in vivo data for KMET and metabolites respectively.  

The ensemble of reference compounds for in vivo BCF, KMET and metabolite data 

encompasses a broad range of bioconcentration potential, log KOW (-0.93 to 12.11), molecular 

properties (MW: 68.1 to 959 g/mol and Dmax: 0.29 to 2.64 nm), KMET (HL) (0-33100 d) and 

diverse metabolic biotransformation pathways. 
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Table 2.4 Reference compounds with in vivo BCF data and other significant properties 

ID Chemical name Log KOW 
Pred. Log 

BCFmax 

   In vivo  

  log BCF 
BP     Sp MW Dmax     KMET (HL) 

Aliphatic linear hydrocarbons 

3 Dichlorodifluoromethane 1.82 1.24 0.78 W Cc 120.91 0.29 0.619 

11 2-Methyl-1,3-butadiene 2.58 1.92 1.04 O1 Cc 68.12 0.56 0.591 

13 1,2-Dibromo-3-chloropropane 2.68 2.01 1.04 O1 Cc 236.33 0.48 0.340 

14 Tetrachloroethene 2.97 2.26 1.71 O1 Cc 165.83 0.56 3.35 

19 2,4,4-Trimethyl-1-pentene 4.08 3.25 2.76 W Cc 112.22 0.65 3.00 

20 1-Nonene 4.62 3.70 3.18 O1 Cc 126.24 0.99 2.77 

21 1,1,2,3,4,4-Hexachloro-1,3-butadiene 4.72 3.78 3.82 U1 Cc 260.76 1.19 26.8 

23 2,5,8-Trimethyl-1-nonene 6.01 4.39 3.35 O2 Cc 168.33 1.24 5.89 

24 Hexadecane 8.20 3.38 1.65 O3 Cc 226.45 2.18 19.9 

Aliphatic cyclic hydrocarbons 

26 Cyclohexane 3.18 2.45 1.87 O1 Cc 84.16 0.54 0.762 

30 4-Ethenyl-cyclohexene 3.73 2.94 2.18 O1 Cc 108.18 0.61 1.55 

33 
1,2,3,4,5-Pentabromo-6-      

Chlorocyclohexane 
4.71 3.77 2.45 O2 Cc 513.09 0.66 2.52 

35 Heptachlor 5.86 4.38 3.97 W Cc 373.32 0.68 50.1 

36 Cyclododecane 6.12 4.39 3.85 O1 Cc 168.33 0.89 11.7 

38 Dechloran A 11.27 1.48 2.03 U2 Cc 653.73 1.13 33100 

Benzenes 

39 Chlorobenzene 2.64 1.97 1.24 O1 Cc 112.56 0.47 0.532 

44 1,2-Dichlorobenzene 3.28 2.54 2.26 W Cc 147.00 0.56 3.42 

   2.80 2.58 W Rt    

45 1,3-Dichlorobenzene 3.28 2.54 2.24 W Cc 147.00 0.56 3.67 

   2.80 2.74 W Rt    

46 1-Methylethenylbenzene 3.44 2.68 1.84 O1 Cc 118.18 0.66 0.940 
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Table 2.4 Reference compounds with in vivo BCF data and other significant properties (cont.) 

  ID Chemical name Log KOW 
Pred. Log 

BCFmax 

   In vivo  

   log BCF 
BP      Sp MW Dmax     KMET (HL) 

 48 1,2,4-Trimethylbenzene 3.63 2.85 2.13 O1 Cc 120.20 0.63 0.821 

       53 1,2,3-Trichlorobenzene 3.93 3.36 3.26 W Rt 181.45 0.59 5.59 

   3.12 2.82 W Cc    

       56 Ethenylethylbenzene 3.93 3.12 2.66 W Cc 132.21 0.86 2.71 

       62 1,2-Dichloro-4-(trifluoromethyl)benzene 4.24 3.62 3.18 W Rt 215.00 0.69 9.61 

       63 1,2,4-Trichloro-5-methylbenzene 4.47 3.81 3.88 W Rt 195.48 0.59 4.93 

       64 1,2,3,4-Tetrachlorobenzene 4.57 3.66 3.03 O1 Cc 215.89 0.59 8.70 

   3.88 3.85 W Rt    

       68 1,3-Bis(1-methylethyl)benzene 4.90 3.92 3.16 O1 Cc 162.28 0.89 4.01 

       71 Pentachlorobenzene 5.22 4.14 3.55 O1 Cc 250.34 0.64 13.7 

   4.28 4.19 W Rt    

      73 1,2,4,5-Tetrachloro-3,6-dimethylbenzene 5.67 4.37 3.55 O1 Rt 243.95 0.70 6.98 

      76 Hexabromobenzene 7.33 3.44 3.02 W Rt 551.49 0.67 7.32 

      78 1,3,5-Tris(1,1-dimethylethyl)benzene 7.72 3.67 4.30 U2 Cc 246.44 0.94 77.0 

Biphenyls 

      81 3,5-Dichlorobiphenyl 5.05 4.19 3.77 W Rt 223.10 0.92 20.2 

      83 2,2',5-Trichlorobiphenyl 5.69 4.35 4.07 W Cc 257.55 0.93 94.3 

   4.37 4.23 W Rt    

      84 3,3'-Diethylbiphenyl 5.83 4.38 3.80 O1 Cc 210.32 1.11 30.8 

      85 2,2',3,3'-Tetrachlorobiphenyl 6.34 4.16 4.23 W Rt 291.99 0.93 155 

PAHs 

      88 Naphthalene 3.17 2.44 1.97 W Cc 128.18 0.59 4.53 

      91 9H-Fluorene 4.02 3.19 2.75 W Cc 166.22 0.84 1.37 

      93 Anthracene 4.35 3.48 3.30 W Cc 178.24 0.90 2.54 

      95 1,2,3,4-Tetrachloronaphthalene 5.75 4.37 3.70 O1 Rt 265.95 0.70 25.2 

      96 Tris(1-methylethyl)naphthalene 7.54 3.78 3.82 U1 Cc 254.42 1.05 22.4 
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Table 2.4 Reference compounds with in vivo BCF data and other significant properties (cont.) 

      ID Chemical name Log KOW 
   Pred. Log 

    BCFmax 

   In vivo  

   log BCF 
BP      Sp MW Dmax KMET (HL) 

      97 Octachloronaphthalene 8.33 2.61 2.58 W Rt 403.73 0.78 218 

Ethers 

      98 2,2'-Oxybis (1-chloropropane) 2.39 1.75 0.91 O1 Cc 171.07 0.56 0.437 

     101 Dibenzyl ether 3.48 2.72 2.45 W Cc 198.27 0.84 0.075 

     103 1,2,3-Trichloro-4-methoxybenzene 4.01 3.43 3.25 W Rt 211.48 0.74 18.5 

     106 2-(2-Methylpropoxy)naphthalene 4.65 3.73 2.85 O1 Cc 200.28 1.06 5.93 

     107 Pentachloroanisole 5.30 4.31 4.19 W Rt 280.37 0.83 69.0 

     108 Hexabromodiphenyl ether 8.55 3.16 3.15 W Cc 643.59 1.10 40.3 

Carboxylic acids and esters 

     109 Chlorobenzilate 3.99 3.17 2.65 O1 Cc 325.19 1.03 2.13 

     112 Abietic acid 6.46 4.09 1.84 O3 Rt 302.46 1.16 49.4 

     114 Palustric acid 7.27 3.49 1.40 O3 Rt 302.46 1.20 84.8 

     115 12,14-Dichlorodehydroabietic acid 7.81 3.05 1.97 O2 Rt 369.33 1.17 53.3 

Alcohols 

    116 1,1,1,3,3,3-Hexafluoro-2-propanol 1.11 0.60 0.20 W Cc 168.04 0.46 0.370 

    118 1,1,1-Trichloro-2-methyl-2-propanol 2.09 1.48 0.26 O2 Cc 177.46 0.49 0.405 

    120 2,6-Dichloro-benzenemethanol 2.36 1.72 0.32 O2 Cc 177.03 0.63 0.228 

    121 4-Chlorobenzhydrol  3.35 2.60 1.77 O3 Cc 218.68 0.98 0.636 

Phenols 

    123 4-Nitrophenol 1.91 1.32 0.65 O1 Cc 139.11 0.63 0.073 

    129 3-Nitro-p-cresol 2.46 1.81 0.95 O1 Cc 153.14 0.68 0.051 

    134 2-Chloro-5-methylphenol 2.70 2.02 0.50 O3 Cc 142.59 0.59 0.227 

    135 4-Chloro-2-methylphenol 2.70 2.02 1.14 O1 Cc 142.59 0.61 0.209 

    136 2,6-Dichlorophenol 2.80 2.11 1.06 O2 Cc 163.00 0.56 0.350 

    137 3,4-Dichlorophenol 2.80 2.11 1.70 W Cc 163.00 0.56 0.528 

    140 2,5-Dichlorophenol 2.80 2.11 1.15 O1 Cc 163.00 0.56 0.436 
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Table 2.4 Reference compounds with in vivo BCF data and other significant properties (cont.) 

       ID Chemical name Log KOW 
   Pred. Log 

    BCFmax 

    In vivo  

   log BCF 
BP      Sp MW Dmax   KMET (HL) 

      143 2,4-Dichloro-6-nitrophenol 3.20 2.47 1.28 O2 Cc 208.00 0.62 0.190 

144 1,1'-Biphenyl-4-ol 3.28 2.54 1.64 O1 Cc 170.21 0.93 0.630 

145 2,4,5-Trichlorophenol 3.45 2.69 2.60 W Cc 197.45 0.62 0.734 

147 4-(Phenylmethyl)phenol 3.54 2.77 1.39 O2 Cc 184.24 0.92 0.231 

148 2-Methoxytetrachlorophenol 3.92 3.36 2.26 O2 Rt 261.92 0.78 5.91 

151 Pentachlorophenol 4.74 3.80 2.10 O3 Cc 266.34 0.62 2.20 

   4.00 2.65 O2 Rt    

153 2,6-Bis(1,1-dimethylethyl)-4-ethyl-phenol 5.52 4.29 3.49 O1 Cc 234.38 0.93 1.42 

154 Nonyl-phenol 5.99 4.39 0.33 O3 Cc 220.36 1.57 1.33 

156 2,6-Dicyclohexylphenol 6.30 4.36 2.95 O2 Cc 258.41 1.01 1.06 

158 Hexachlorophene  6.92 4.12 2.07 O3 Cc 406.91 1.01 3.78 

Ketones 

160 Diphenylmethanone 3.15 2.43 0.84 O3 Cc 182.22 0.97 0.248 

161 Michler's ketone 3.50 2.74 1.52 O2 Cc 268.36 1.44 0.298 

162 Oxybenzone 3.52 2.75 1.98 O1 Cc 228.25 1.21 0.173 

163 2-(1-Cyclohexenyl)cyclohexanone 3.73 2.94 0.49 O3 Cc 178.28 0.85 0.480 

Quinones 

165 1-Amino-9,10-anthracenedione 3.53 2.76 1.99 O1 Cc 223.23 0.96 0.126 

166 1-Hydroxy-9,10-anthracenedione 3.64 2.86 2.26 O1 Cc 224.22 0.96 0.070 

169 2-Ethyl-9,10-anthracenedione 4.38 3.50 0.99 O3 Cc 236.27 1.15 0.432 

170 7-Oxobenz[de]anthracene 4.73 3.79 2.07 O3 Cc 230.27 0.96 0.387 

Nitrobenzenes 

171 Nitrobenzene 1.81 1.23 0.63 O1 Cc 123.11 0.61 0.099 

175 1-Methyl-3-nitrobenzene 2.36 1.72 0.76 O1 Cc 137.14 0.71 0.335 

177 1-Chloro-4-nitrobenzene 2.46 2.08 2.00 W Rt 157.56 0.61 0.644 

   1.81 1.12 O1 Cc    
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Table 2.4 Reference compounds with in vivo BCF data and other significant properties (cont.) 

ID Chemical name Log KOW 
  Pred. Log   

   BCFmax 

  In vivo             

 log BCF 
BP      Sp   MW Dmax  KMET (HL) 

178 1-Chloro-2-nitrobenzene 2.46 2.08 2.09 U1 Rt 157.56 0.61 0.644 

   1.81 1.16 O1 Cc    

181 2-Ethylnitrobenzene 2.85 2.16 1.06 O2 Cc 151.17 0.77 0.372 

182 1,2-Dichloro-4-nitrobenzene 3.10 2.65 2.07 O1 Rt 192.00 0.60 1.03 

   2.38 1.67 O1 Cc    

188 1,2,3-Trichloro-4-nitrobenzene 3.74 3.20 2.19 O2 Rt 226.45 0.61 1.62 

189 1,3,5-Trichloro-2-nitrobenzene 3.74 2.95 2.44 O1 Cc 226.45 0.69 1.71 

191 1,2,3,4-Tetrachloro-5-nitrobenzene 4.39 3.74 1.85 O3 Rt 260.89 0.68 2.14 

192 Musk xylol 4.45 3.56 3.56 W Cc 297.27 0.92 0.070 

Amines 

193 1,8-Naphthalenediamine 1.34 0.81 0.70 W Cc 158.20 0.63 0.042 

194 N-Ethyl-benzenamine 2.11 1.50 0.91 O1 Cc 121.18 0.90 0.125 

195 2,5-Dimethylbenzenamine 2.17 1.55 0.48 O2 Cc 121.18 0.69 0.095 

197 N,2-Dimethylbenzenamine 2.17 1.55 0.72 O1 Cc 121.18 0.76 0.317 

204 Triallylamine 2.58 1.92 0.47 O2 Cc 137.23 0.99 0.122 

206 1,1'-Biphenyl-2-amine 2.84 2.15 1.36 O1 Cc 169.23 0.93 0.750 

207 2,4,6-Trichlorobenzenamine 3.01 2.30 1.92 W Cc 196.46 0.67 0.979 

208 N,N-Diethyl-benzenamine 3.15 2.43 1.93 W Cc 149.24 0.81 0.143 

212 N-Nitroso-N-phenylbenzenamine  3.16 2.43 1.36 O2 Cc 198.23 0.91 0.123 

213 4,4'-Methylenebis (2-chlorobenzenamine) 3.47 2.71 2.33 W Cc 267.16 1.11 0.552 

215 N-Phenyl-1-naphthalenamine 4.47 3.58 3.22 W Cc 219.29 1.08 2.21 

216 N-Phenyl-2-naphthalenamine 4.47 3.58 2.32 O2 Cc 219.29 1.26 2.51 

217 N,N-Dioctyl-1-octanamine 10.35 2.05 1.86 W Cc 353.68 2.30 20.0 

Amides and carbamates 

218 N,N-Dimethylformamide -0.93 -1.22 -0.19 U2 Cc 73.10 0.42 0.007 
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Table 2.4 Reference compounds with in vivo BCF data and other significant properties (cont.) 

ID Chemical name Log KOW 
   Pred. Log   

   BCFmax 

   In vivo           

   log BCF 
BP     Sp MW Dmax  KMET (HL) 

219 N,N-Diethyl-3-methylbenzamide 2.26 1.63 0.29 O2 Cc 191.28 1.01 0.206 

220 3,5-Dimethylphenyl methylcarbamate 2.27 1.64 0.25 O2 Cc 179.22 1.06 0.051 

221 Fenocarb 2.86 2.17 0.36 O3 Cc 207.27 0.81 0.132 

222 Linuron 2.91 2.21 1.25 O1 Cc 249.10 0.92 0.148 

223 
3-Hydroxy-N-phenyl-2-

naphthalenecarboxamide 
4.47 3.58 0.66 O3 Cc 263.30 1.36 0.186 

Organophosphates 

225 Triethyl phosphate 0.87 0.39 -0.04 W Cc 182.16 0.88 0.028 

226 Tris(1-chloro-2-propanyl) phosphate 2.89 2.19 0.39 O3 Cc 327.57 0.87 0.136 

227 Fenitrothion 3.30 2.56 1.60 O1 Cc 277.23 1.11 0.785 

228 Gardcide 3.81 3.01 1.65 O2 Cc 365.97 1.08 1.57 

229 Tributyl phosphate 3.82 3.02 1.01 O3 Cc 266.32 1.32 0.289 

230 Foxim 4.39 3.51 3.00 O1 Cc 298.30 1.25 1.10 

231 2-Methylphenyl diphenyl phosphate 5.25 4.16 2.51 O3 Cc 340.32 1.12 0.506 

232 2-Ethylhexyldiphenyl phosphate 6.30 4.36 2.63 O3 Cc 362.41 1.38 0.559 

233 Triphenyl phosphite 6.62 3.99 2.39 O3 Rt 310.29 1.12 4.04 

Heterocyclic compounds 

234 1,4-Dioxane -0.32 -0.67 -0.35 U1 Cc 88.11 0.41 0.031 

237 N,N-Dimethyl-1,2-dithiolan-4-amine 1.38 0.84 1.68 U2 Cc 149.27 0.66 0.026 

238 4-Ethenyl-pyridine 1.71 1.14 1.87 U2 Cc 105.14 0.68 0.151 

241 Benzothiazole 2.17 1.55 0.66 O1 Cc 135.18 0.66 0.112 

243 3-Methyl-thiophene 2.36 1.72 0.61 O2 Cc 98.16 0.51 0.291 

244 
2-(3-Oxo-1H-indol-2-ylidene)-1H-indol-3-  

one 
3.11 2.39 0.39 O3 Cc 262.27 1.27 1.85 

245 9H-Carbazole 3.23 2.50 2.13 W Cc 167.21 0.93 1.42 

246 Dibenzofuran 3.71 2.92 3.17 U1 Cc 168.20 0.85 0.824 
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Table 2.4 Reference compounds with in vivo BCF data and other significant properties (cont.) 

ID Chemical name Log KOW 
   Pred. Log   

    BCFmax 

    In vivo                   

   log BCF 
BP      Sp MW Dmax KMET (HL) 

247 10H-Phenothiazine 3.82 3.02 2.57 W Cc 199.27 0.99 0.820 

248 Dibenzothiophene 4.17 3.32 3.16 W Cc 184.26 0.85 0.901 

249 N,N'-dicyclohexyl-thiourea 4.16 3.32 0.60 O3 Cc 240.41 1.05 0.236 

250 Synepirin 500 6.07 4.39 3.06 O2 Cc 345.53 1.39 7.46 

Dyes 

251 Disperse Blue 143 2.20 1.58 0.50 O2 Cc 408.46 1.84 0.001 

252 Disperse Yellow 42 4.33 3.46 1.49 O3 Cc 369.40 1.44 0.391 

253 Disperse Yellow 163 5.00 3.99 1.58 O3 Cc 417.26 1.65 1.07 

254 Pigment Yellow 12 7.05 4.05 0.62 O3 Cc 629.51 2.34 0.139 

255 Pigment Orange 13 9.55 2.54 0.60 O3 Cc 623.51 2.64 78.7 

Others 

256 1,4-Benzenedicarbonitrile 1.09 0.59 0.12 W Cc 128.13 0.68 0.232 

257 4-Cyano-4'-hexylbiphenyl 6.31 4.36 3.55 O1 Cc 263.39 1.65 49.7 

258 Diphenylmethane 4.02 3.19 2.92 W Cc 168.24 0.95 0.559 

259 Phenyl xylylmethane 5.11 4.07 3.20 O1 Cc 196.29 1.08 2.46 

260 Triphenylchloromethane 5.58 4.32 2.55 O3 Cc 278.78 0.94 2.12 

261 DDT 6.79 4.18 4.19 W Cc 354.49 1.04 161 

262 Thiram 1.70 1.13 0.48 O1 Cc 240.42 1.17 0.228 

263 2-Naphthyl disulfide 6.66 4.24 0.39 O3 Cc 318.45 1.34 94.3 

264 2,2'-Dichlorohydrazobenzene 4.34 3.47 3.64 U1 Cc 253.13 1.17 15.2 

265 Dicumyl peroxide 5.88 4.39 2.77 O3 Cc 270.37 1.06 2.79 

BP = bioconcentration prediction (O1 = slightly over-predicted; O2 = moderately over-predicted; O3 = significantly over-predicted; U1 = slightly under-predicted; U2 = highly under-

predicted; W = well predicted); Dmax = maximum interatomic distance between two atoms in the chemical structure (nanometers); ID = identification number in Table S1; KMET(HL) 

= Whole body biotransformation half-lives (days); Log BCF = logarithm of bioconcentration factor (Litres per kilogram wet weight fish); Log KOW = logarithm of octanol–water partition 

coefficient calculated from KOWWIN v. 1.68; MW= molecular weight (grams per mole) calculated from KOWWIN v. 1.68; PAH = polycyclic aromatic hydrocarbon; Sp = species (Cc = 

common carp; Rt = rainbow trout); Pred. log BCFmax= predicted maximal log BCF using equations 2.2 and 3.2 according to fish species. 
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Table 2.5 Reference compounds with in vivo whole body biotransformation rate (KMET) data 

ID  Chemical name 
Log 

KOW 
KMET Sp Dmax  MW  

KMET 

(HL) 

Phenyls 

      1 2,2',3,3'-Tetrachlorobiphenyl 6.34 0.00 Rt 0.93 292 155 

      2 DDT 6.79 0.01 Rt 1.04 354 161 

      4 2,2',3,3',5,6'-

Hexachlorobiphenyl 

7.62 0.01 Rt 0.93 361 343 

Heterocyclic compounds 

     6 Myclobutanil 3.5 0.20 Rt 1.1 289 5.35 

     7 Propiconazole 4.13 0.57 Rt 1.18 342 6.20 

   10 Metconazole 4.19 0.58 Rt 1.05 320 4.58 

   11 Triadimefon 2.94 0.54 Rt 1.14 294 2.68 

   14 Fipronil 6.64 1.01 Rt 1.21 437 3.77 

Dmax: Maximum inter-atomic distance between two atoms in the chemical structure (nm); ID: Identification 

number in Table S2; KMET: In vivo whole body biotransformation rate (1/d); KMET (HL): Whole body 

biotransformation half-lives (days); Log KOW: Logarithm of octanol-water partition coefficient calculated from 

KOWWIN v. 1.68; MW: Molecular weight (g/mol) calculated from KOWWIN v. 1.68; Sp: Species (Rt: Rainbow 

trout). 

Table 2.6. Reference compounds with in vivo metabolite data 

 

Dmax: Maximum inter-atomic distance between two atoms in the chemical structure (nm); ID: Identification 

number in Table S3; KMET: Whole body biotransformation half-lives (days); Log KOW: Logarithm of octanol-water 

partition coefficient calculated from KOWWIN v. 1.68; MW: Molecular weight (g/mol) calculated from KOWWIN 

v. 1.68; Sp: Species (Rt: Rainbow trout); Metabolites: FTCA: Fluorotelomer saturated acid; FTUCA: Fluorotelomer 

unsaturated acid; FTOH: Fluorotelomer alcohol; FTOH-Glu: Fluorotelomer glucuronide conjugate; PFOA: 

perfluorooctanoate; De-BDEs: Debrominated diphenyl ethers; MeO-BDEs: Methoxylated brominates diphenyl 

ID  Chemical name 
Log 

KOW 
Metabolites Sp Dmax MW 

KMET 

(HL) 

Perflouroalkylated hydrocarbons    

    3 8:2 Fluorotelomer 

alcohol 

5.75 8:2 FTCA; 8:2 FTUCA Rt 1.34  464 24.4 

    4 8:2 Fluorotelomer 

acrylate 

7.11 8:2 FTOH; 8:2 FTUCA; 7:3 

FTCA;  8:2 FTCA; PFOA; 

8:2 FTOH-Glu 

Rt 1.7 

 

518 20.7 

Phenyls 

    5 Decabromodiphenyl 

ether 

12.11 De-DBEs; MeO-BDEs Rt 1.08 

 

959 581 

Carboxylic acids        

    6 Diclofenac 4.02 4'-OH-DCF; 5-OH-DCF; 

DCF- A.Glu; 4'-OH-DCF-

Sul; 5-OH-DCF-Sul; 4'-

OH-DCF-A.Glu; 5-OH-

DCF- A.Glu; 3'-OH-DCF-

A.Glu; 4'-OH-DCF-E.Glu 

Rt 0.96 

 

296 6.13 

    8 Ibuprofen  3.79 Carboxyl-IBF; 2-OH-IBF; 

IBF-A.Glu; OH-IBF-A.Glu; 

3-OH-IBF; IBF-Tau 

Rt 1.03 

 

206 1.87 
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ethers; OH-DCF: Hydroxylated diclofenac; OH-DCF-Sul: Sulfate conjugate of hydroxylated diclofenac; DCF-A.Glu: 

Acyl glucuronide of diclofenac; DCF-E.Glu: Ether glucuronide of hydroxylated diclofenac; Carboxyl-IBF: Carboxyl 

ibuprofen; OH-IBF: Hydroxylated ibuprofen; IBF-A.Glu: Acyl glucuronide of ibuprofen; OH-IBF-A.Glu: Acyl 

glucuronide of hydroxylated ibuprofen; IBF-Tau: Taurine conjugate of ibuprofen. 

 

2.3.6 Lists of Reference Compounds: Further Considerations and Implications 

The successful development and validation of non-animal methods to in vivo 

bioaccumulation studies in fish are dependent on the rational selection of key chemical 

classes supported by a broad chemical domain and high quality in vivo data. However, further 

refinement of the reference list to accommodate project-specific requirements and specific 

purposes of the studies to be conducted is likely to be warranted. For instance, chemical 

purity, commercial availability, and availability of reliable quantitative analytical methods 

(e.g. analytical sensitivity, accuracy and reproducibility) are likely to represent practical 

selection criteria for such refinements. Chemical properties crucial for the performance of 

experimental approaches such as high volatility in solution (log HLC > 3 [114]), a high degree 

of adsorption to the test vessels (log KOW > 6 [47]) and rapid hydrolysis in water (HL < 12 

hours [115]) should also be considered to ensure the stability of the chemical in any assay 

performed. It should be noted that these additional criteria are likely to depend on the assay 

format, and no measures were taken to exclude those from the reference list. Moreover, 

additional compounds could be added to the reference list to expand the chemical domain 

for those chemical classes that were not represented in the original databases (aldehydes, 

epoxides and polyunsaturated fatty acids).  

It is anticipated that the present list of reference chemicals may benefit the development 

and validation of alternative methods. Various in vitro test systems such as microsomes, 

subcellular fractions and isolated hepatocytes are currently deployed in different studies 

worldwide, and harmonisation of experimental efforts aided by the use of common 

reference compounds may facilitate a more rapid standardisation of alternative methods for 

future regulatory use. The present reference list also aims to provide a better foundation for 



 

 

52 

 

future in vitro to in vivo BCF extrapolations, as well as identifying compounds that may be 

particularly challenging for in silico predictions. For instance, reference compounds identified 

as over-predicted by log KOW and susceptible to metabolic biotransformation may be 

particularly relevant for such studies. Additionally, in vitro derived data could enhance the 

knowledge of in vivo absorption and metabolism processes, allowing a better understanding 

of how both processes can influence in vivo assessment of chemical bioaccumulation in fish. 

Moreover, in vitro biotransformation data could be incorporated into the log BCFmax models 

developed for rainbow trout and common carp to correct for the effect of metabolism on 

BCF and to refine the knowledge of metabolic pathways in fish.  Finally, greater acceptance 

of alternative methods in regulatory frameworks may accommodate implementation of both 

testing (e.g. in vitro assays) and non-testing (e.g. in silico methods) in Integrated Testing 

strategies (ITS) to prioritise chemicals for in vivo testing and aid hazard assessment in general 

[30,75]. 

2.4 Conclusion  

In order to reduce the number of fish required for experimentation, there is a need to 

develop and validate non-animal methods to assess bioaccumulation of chemicals. 

Successful development of alternative test systems to in vivo testing could provide not only 

accurate information on ADME processes for a given compound, but also be used in 

regulatory processes and thus reducing animal use.  

The present work provides a transparent description of the selection of reference chemicals 

for future development and evaluation of alternative testing approaches using a three-tiered 

approach. This approach was based on: Tier I) selection of relevant in vivo bioaccumulation 

properties, fish species and chemical classes; Tier II) data collection, evaluation and analysis 

of the chemicals supported by high quality in vivo BCF data ; and Tier III) a refinement process 

to ensure a representation of a large chemical domain in terms of physico-chemical, 



 

 

53 

 

molecular and metabolic properties. As a consequence of this work, a reference list of 144 

chemicals with high quality BCF data, eight chemicals with KMET data and five compounds 

with metabolite data have been proposed. It is envisioned that this list may facilitate the 

development of alternative approaches to regulatory in vivo testing, enhance the 

understanding of the relationship between in vivo and in vitro data, refine in silico prediction 

of BCF and metabolic properties of chemicals and facilitate larger implementation of 

alternative testing and non-testing approaches within regulatory frameworks. 

Chapter 2 has focused on the establishment of a list of reference compounds to enable the 

development and evaluation of non-animal methods to assess chemical bioaccumulation. 

Once such a list was established, a set of compounds supported by high quality in vivo BCF 

data was selected to investigate the reliability of the most common alternative methods used 

for the estimation of the whole body biotransformation rate and BCF. This work is explained 

in more detail in Chapter 3.    
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Chapter 3. A Review and Comparison of Alternative 

Methods to In Vivo Bioaccumulation Studies in Fish 

3.1 Introduction 

The bioaccumulation of a compound is the result of Absorption, Metabolism, Distribution 

and Excretion (ADME) processes [30]. The potential bioaccumulation of chemicals directly 

from water is usually expressed by the bioconcentration factor (BCF), which may be 

measured in the whole fish, for instance according to the Organisation for Economic 

Cooperation and Development (OECD) Guideline 305 [10]. In order to reduce the cost and 

the number of fish used in in vivo testing studies, non-animal methods including in silico and 

in vitro methods have been proposed to assess the BCF of chemicals [116]. 

Early in silico models were built on the relationship between the experimental log BCF and 

hydrophobicity, expressed by the logarithm of octanol-water partition coefficient (log KOW), 

as a surrogate for biological lipids [47].  However, compounds which are ionised and others 

prone to metabolism and highly hydrophobic chemicals (log KOW > 6) show a poor correlation 

with log KOW [48]. To deal with some of these uncertainties, Meylan al [50] used an innovative 

approach based on the development of linear regression models for non-ionisable (neutral) 

and ionisable compounds applying different log KOW ranges (e.g. 1 to 7 and > 7). To account 

for the ADME processes of chemical bioaccumulation, other in silico studies have been 

focused on building kinetic mass balance models, such as the model developed by Arnot and 

Gobas [53,54] normalised for fish of a weight of 1 Kg. Such mass balance models were 

improved recently by Nichols et al. [117] through the incorporation of new experimental data 

for the calculation of extrapolating parameters such as the fraction that is bioavailable to the 

fish in water (ф). In addition, Nichols et al. [117] proposed designing the mass balance model 

for a 10 g fish based on the rationale that the majority of in vivo BCF data have been 

measured in small fish. Although some of these models are available within the EPI Suite 



 

 

55 

 

software (http://www.epa.gov) to enable their use, a comparison between log KOW-based 

and kinetic mass balance models in terms of their ability to predict BCF of chemicals is still to 

be conducted. 

Of the ADME processes of chemicals, metabolism has been identified as the main uncertainty 

in predictive studies due to the lack of in vivo metabolic data for fish to be used for modelling 

[30]. Nonetheless, Arnot et al. [84] predicted the whole body biotransformation rate (KMET) 

in fish based on in vivo data available for bioaccumulation by re-arranging the mass balance 

BCF model equation (see Equation 1.1). In doing this, a database of predicted KMET in fish was 

created [85] and used for the development of a Quantitative Structure-Activity Relationship 

(QSAR) [57] model to predict whole body biotransformation rates in fish based on half-lives 

(HL). KMET data for chemicals can also be predicted by the incorporation of their in vitro 

intrinsic clearance rate (CLINT) into established Physiologically-Based ToxicoKinetic (PBTK) 

models designed for a 1 Kg rainbow trout [42,43] (see Figure 1.1 for more details). CLINT data 

were calculated using in vitro test systems including S9 subcellular fractions and isolated 

hepatocytes, both derived from the livers of fish donors [37,38]. Hans et al. [37] and Cowas-

Ellsberry et al. [38] were the first authors to perform in vitro-in vivo data extrapolations to 

calculate KMET from in vitro intrinsic clearance; however, they used different values for key 

extrapolation factors such as the weight of fish liver. Consequently, Nichols et al. [117] have 

recently proposed a standardised PBTK calculation model defined for rainbow trout, to 

enable future in vitro-in vivo extrapolations.    

The applicability of in vitro methods for metabolism is currently limited due to data variability 

and technical challenges [44]. In particular, the question remains whether the biological 

features of the fish donors could be partly responsible for a high data variability reported for 

in vitro clearance using rainbow trout hepatocytes [37,39,40]. As a result of better analytical 

technologies not yet being developed, only a limited number of chemicals have been tested 
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in such bioassays [37,39,40]. Therefore, there is a need to develop and improve in vitro 

metabolic assays to enable their validation and utility for risk assessment procedures. The 

benefits of the validation of in vitro test systems using fish cells can be enormous. For 

example, accurate in vitro metabolic data not only could unravel the impact of 

biotransformation processes on the maximal BCF of chemicals expected by their passive 

diffusion processes, but also they could refine BCF estimates by incorporating in vitro KMET 

data into mass balance BCF models [37,38]. 

The aim of this study was to review and compare the non-animal methods described above 

which have been proposed as alternatives to in vivo bioaccumulation studies in fish. The 

specific aims included: 1) to investigate the metabolic biotransformation fora set of 

compounds supported by in vivo BCF data in a clearance assay using freshly isolated trout 

hepatocytes, along with providing an explanation of the potential factors affecting data 

variability; 2) to compare the QSAR model of Arnot [57] with different PBTK calculation 

models in terms to their ability to estimate KMET. The intrinsic clearance rates of test 

compounds were integrated into the  PBTK models provided by Hans et al. [37], Cowas-

Ellsberry et al. [38] and Nichols et al. [117] for KMET  estimation; and 3) to compare EPI-log 

KOW-based and mass balance BCF models using the goodness of fit between in vivo and 

predicted BCF data for the chemicals examined. Fish weights of 10 g and 1 Kg using the in 

vitro KMET calculated by Nichols et al. [117] model were employed to investigate their impact 

on the predicted BCF. This study also provided an insight into the challenges and future 

perspectives for each of the alternatives examined. 
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3.2 Materials and Methods 

It should be noted that this work was undertaken as part of the PhD programme at the 

Norwegian Institute for Water Research (NIVA) in Oslo, Norway, from January to June in 

2013. 

3.2.1 Test Compounds  

A total of ten compounds including diverse halogenated benzenes, two polycyclic aromatic 

hydrocarbons (PAHs), one heterocyclic compound (dibenzofuran) and one polychlorinated 

biphenyl (PCB14) were tested in the trout clearance assay (see Table 3.1). All test chemicals 

were obtained from Sigma-Aldrich Norway (www.sigmaaldrich.com/norway) with purities 

between 94 and 99% and, therefore, they were not purified prior to testing. The majority of 

these chemicals were selected from the reference list developed for the evaluation of 

alternatives to bioaccumulation in fish (Chapter 2) [118]. Chemicals that were not included 

in the reference list, such as benzo(a)pyrene (BaP) and pentachloronitrobenzene (PCNB), 

were also considered for in vitro testing. BaP was considered as a benchmark compound in 

this study based on the widely reported in vitro data for this compound [35,37,40]; PCNB 

was selected to enable metabolic data comparison with the other two hydrophilic 

chloronitrobenzenes (see Table 3.1). Whilst any in vivo BCF data were found for BaP from 

the established databases (see Table 2.2), data measured at three different concentrations 

were found for PCNB (see Figure 2.2), from which only values obtained at the lowest 

concentration (0.0014 µg/L) were considered for the average of the BCF. A set of key 

properties such as the predicted metabolic pathway, the bioconcentration prediction (BP) 

and molecular properties of the test compounds were considered prior to testing (Table 3.1).  
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Table 3.1 Test compounds considered for in vitro testing with relevant properties and chemical analysis parameters  

CAS NR 
Chemical name and 

abbreviation 

Log 

Kowa 

In vivo BCF 

(Fs)  

Predicted metabolic pathway  

(Enzyme) b 
BP 

m/z 

quant. 

m/z 

Qualifier 

ion 

Internal standard 

88-73-3 1-Chloro-2-nitrobenzene  
(CNB) 

2.46 123 (Rt) 
14 (Cc) 

1) 4-Hydroxylation (CYP) > O-Sulphation (SULT), 
Glucuronidation (UGT) ; 2) Reduction of Nitro Group (CYP450 
reductase/XO/AO) 

U1 (Rt) 
O1 (Cc) 
 

157 159 d10- biphenyl 

618-62-2 1,3-Dichloro-5- 
nitrobenzene (DCNB) 

3.10 170 (Rt) Reduction of Nitro Group (CYP450 reductase/XO/AO) W 145 191 d8-acenaphthylene 

132-64-9 Dibenzofuran (DBF) 3.71 1490 (Cc) 1) Hydroxylation of Fused Benzenes (CYP) > O-Sulphation 
(SULT), Glucuronidation (UGT); 2) Hydroxylation of Fused 
Benzenes (CYP) 

U1 168 Not used d8-acenaphthylene 

54135-
80-7 

2,3,4-Trichloroanisole (TCA) 4.01 1778 (Rt) 1) Oxidative O-Demethylation (CYP);  2) 5-Hydroxylation 
(CYP) > Glucuronidation (UGT), O-Sulphation (SULT), 
Oxidative O-Demethylation (CYP) 

W 212 210 d8-acenaphthylene 

120-12-7 Anthracene (AT) 4.35 2012 (Cc) 1) Hydroxylation of Fused Benzenes (CYP) > Glucuronidation 
(UGT), O-Sulphation (SULT);  2) Dihydrodiols (CYP, EH)  

W 178 Not used d8-dibenzothiophene 

87-86-5 Pentachlorophenol (PCP) 4.74 447 (Rt)     
126 (Cc) 

Nd O2 (Rt) 

O3 (Cc) 

266 264 d8-dibenzothiophene 

82-68-8 Pentachloronitrobenzene 
(PCNB)                     

5.03 590 (Rt)    Reduction of Nitro Group (NTR)>  Glucuronidation (UGT), O-
Sulphation (SULT) 

O2 295 212 d8-dibenzothiophene 

34883-

41-5 

3,5-Dichlorobiphenyl 

(PCB14) 

5.05 5888  (Rt) 4-Hydroxylation (CYP) > Glucuronidation (UGT), O-Sulphation 

(SULT) 

W 222 224 d8-dibenzothiophene 

636-28-2 1,2,4,5-

Tetrabromobenzene (TBB)c 

5.55 4677 (Rt) Nd O1 394 393 d8-dibenzothiophene 

50-32-8 Benzo(a)pyrene (BaP)  6.11 Nd 1) Hydroxylation (CYP); 2) Dihydrodiols formation (CYP,EH) Nd  252 132 d12-perylene 

BP: Bioconcentration predictions based on log BCFmax model predictions using Equations 2.2 and 2.3 (U1: Under-predicted (residuals = -0.5 to 0), W: Well-predicted (residuals = 0 to 0.5), O1: Over-

predicted (residuals = 0.5 to 1); O2: Over-predicted (residuals = 1 to 1.5); O3: Over-predicted(residuals > 1.5); CAS NR: Chemical Abstracts Service Registry Number; Enzymes (AO: Aldehyde oxidase, CYP: 

Cytochrome P450, EH: Epoxide hydrolase, GST: Glutathione S-transferase, SULT: Sulfotransferase, UGT: UDP-glucuronosyl transferase, XO: Xanthine oxidase); Fs: Fish species (Rt: Rainbow trout, Cc: 

Common carp); Log KOW: Predicted logarithm of octanol-water coefficient, m/z quant: m/z used for quantification; Nd: No data predicted for metabolic pathways. a KOWWIN v.1.68 (EpiSuite); b Meteor 

NEXUS v.1.5.1 software;  c Compound tested only in preliminary experiments. 
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3.2.2 Fish Culture  

Juvenile rainbow trout of approximately 200 to 500 g obtained from the Valdres Rakfisk BA 

hatchery (Valdres, Norway) were kept at the Department of Biology, University of Oslo 

(Norway), in the following culture conditions:  6 ± 2 o C, pH 6.6, 100% oxygen saturation and 

under a 12h light/12h dark photo cycle. The fish were fed daily with commercial pellets 

(Skretting, Stavanger, Norway) that corresponded to approximately 0.5% of total body 

weight. 

3.2.3 Hepatocyte Isolation  

The procedure for the isolation of hepatocytes from rainbow trout is described by Tollefsen 

et al. [119]. In brief, juvenile rainbow trout were killed by a blow to the head, then fish liver 

and intestines were exposed by dissection and finally liver cells were isolated by a two-step 

liver perfusion procedure. The resulting single cell suspension was checked for cell viability 

(criteria > 85% viable) using the trypan blue method. The cell concentration was determined 

using Coulter counter. Cells were diluted to 2 x 106 cells/mL in Leibovitz media (L-15).  

3.2.4 Hepatocyte Incubation 

A detailed protocol for this technique is provided as Supplementary Data in the Appendix I. 

The hepatocyte incubation was performed in 1 mL of a 2 x 106 cells/mL suspension in 5 mL 

sample vials with orbital shaking (100 rpm) at 11 °C. A volume of 5 µL of test chemical 

dissolved in dimethyl sulfoxide (DMSO) were added to each of the incubation glass vials that 

were swirled gently to ensure sample homogeneity. The incubation was terminated at 0, 1, 

2, 3, 4, 5 h into Eppendorf tubes containing 400 µL of dichloromethane with internal standard 

added to correct for the loss of analyte during sample tubes. Sample tubes were mixed briefly 

by vortexing and centrifuged at 20800 centrifugal force (xg) for 10 minutes at 4 °C. The 

supernatant was transferred to Gas Chromatography Mass Spectrometry (GC-MS) vials and 
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stored until chemical analysis at 4 °C. The control (dead) cells were obtained by heating at 

100 °C for 15 minutes to inactivate cells and then were treated in the same way as fresh 

hepatocytes.  

3.2.5 Analytical Methods 

The target analytes were determined on an Agilent 7890A gas chromatograph (GC Agilent 

JW Scientific, Santa Clara, CA) linked to an Agilent 5975c inert XL EI/CI mass spectrometer, 

MS (Agilent JW Scientific) operated in single-ion monitoring mode (SIM) with electron impact 

ionisation (70 keV). Separation was on a DB-5MS column (30 m, -0.25 mm i.d. and 0.25 μm 

film thickness, Agilent JW Scientific) following a pulsed splitless injection (1 μL injection, pulse 

pressure 20 psi for 1.2 min, injector temperature of 300 oC). The helium carrier gas flow was 

set to 1.0 mL min-1. The GC oven temperature programme started with a step at 60 oC (held 

for 2 min) before an increase to 200 oC (at the rate 20 oC min-1), followed by an increase to 

225 o C (at the rate of 4 o C min-1) and then again increased to 315 o C (at the rate of 30 oC min-

1) with this temperature held constant for a further 2 min. The temperatures for the ion 

source, quadrupole and transfer line were set to 230, 150 and 280 oC, respectively. The 

relative response of surrogate internal standards and 8-point calibration curves were used 

for the quantification. The retention time and the m/z compared to the external standard 

was used for identification. The internal standards, m/z qualifier ion and m/z used for the 

quantification of the chemicals examined are shown in Table 3.1. The chemical analysis of 

the compounds tested in this study was conducted at NIVA by Andreas S Hogfeldt. 

3.2.6 Intra and Inter Assay Variability 

Variability within and between assays were reported as a percent Coefficient of Variation 

(100 x standard deviation/average value; % CV), which were calculated using Microsoft Excel 

v.2010. 
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3.2.7 Predicting KMET and BCF from the Intrinsic Clearance  

Figure 3.1 shows the key equations required for the calculation of KMET from the in vitro data 

generated in the clearance assay. Definitions of all parameters and their units are listed in 

Table 3.2.  To calculate KMET and BCF, the first step was the calculation of the first-order 

elimination rate constant (k) (h-1) using the following equation:  

Log Ct = Log CO – k/2.3 t          (3.1) 

Where CO and Ct are the concentration of test chemicals (µM) at time 0 and t, respectively. 

The intrinsic clearance rate (CLINT) was normalised to the hepatocytes concentration (CHEP) (2 

x 106 cells/mL) and loss of the chemical in control samples according to Equation 3.2: 

CLINT = CLINT, ACTIVE HEPATOCYTES - CLINT, CONTROL         (3.2) 

As can be seen in Figure 3.1, the intrinsic clearance in liver (CLINT LIVER), hepatic clearance (CLH) 

and finally KMET were calculated from the input of other physiological parameters. These 

were the liver weight (LW), the total number of hepatocytes in the fish liver (LHEP), the hepatic 

blood flow (QH), the hepatic clearance binding term (fU) and the apparent volume of 

distribution (VD,BL). The term fU is the ratio of the unbound (free) fraction of test compound 

in blood (fU,b) between the unbound fraction in the in vitro clearance assay (fU,h). Vd relates 

the amount of test compound in the body to the concentration in the blood at steady state. 

Data for LW, LHEP, QH, fU, and VD,BL were calculated from the parameters used by Has et al. 

[37], Cowas-Ellsberry et al. [38] and Nichols et al. [117]. These are shown in Table 3.3 to allow 

comparison. It should be noted that same variable could differ in nomenclature depending 

on the calculation model (e.g. VD,BL also termed Vd). 
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Figure 3.1 In vitro-in vivo data extrapolation process to calculate Kmet and BCF. 
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Table 3.2 Parameters used in the in vitro-in vivo data extrapolation 

Definition Symbol Units 

      Fraction of a chemical that is bioavailable to the fish in water  ф; FD Unitless 

Gill uptake rate constant  K1 L/Kg x d 

Gill chemical uptake efficiency  EW Unitless 

Ventilation rate  GV L/d 

DOC content CDOC Kg/L 

POC content CPOC Kg/L 

Disequilibrium factor for DOC DDOC Unitless 

Disequilibrium factor for POC DPOC Unitless 

DOC content binding constant αDOC  Unitless 

POC content binding constant αPOC  Unitless 

Elimination rate constant  K2 1/d 

Lipid content in trout νLT Kg/Kg 

Non-lipid content in trout  νNT Kg/Kg 

Water content in trout  νWT Kg/Kg 

Non-lipid organic matter-octanol proportionality constant β Unitless 

Lipid content of the organism LB Unitless 

Faecal egestion rate constant  KE 1/d 

Dietary chemical transfer efficiency ED Unitless 

Feeding rate  GD Kg/d 

Temperature T °C 

Growth dilution rate constant KG 1/d 

Octanol-water partition coefficient Kow Unitless 

Wet weight of the organism WB Kg 

Whole body transformation rate KMET 1/d 

Metabolic clearance of all organs CLT L/d/Kg 

Metabolic hepatic clearance  CLH L/d/Kg 

Apparent volume of distribution  VD,BL ; Vd L/kg 

Total number of hepatocytes in the fish liver      LHEP  106 cells/g liver 

Organism-water partition coefficient BCFp Unitless 

Blood: water partition coefficient Pb:w Unitless 

Fractional whole-body lipid content νLWB Unitless 

Depletion rate constant k 1/h 

Concentration of hepatocytes  CHEP 106 cells/mL 

In vitro intrinsic clearance CLINT    mL/h/106 cells 

Intrinsic clearance in liver CLINT LIVER L/d/Kg fish 

Liver weight LW g/kg 

Hepatic blood flow QH L/d/Kg 

Liver blood flow as fraction of cardiac output QHFRAC Unitless 

Cardiac output (with temperature adjusted) QC L/d/Kg 

Fraction of blood flow through liver LF Unitless 

Cardiac output  CO mL/min/Kg 

Hepatic clearance binding term  fU Unitless 

Unbound fraction of test compound in blood plasma fU,P ; fu,b Unitless 

Unbound fraction of test compound in the clearance assay fU,HEP ;fu,h Unitless 

   DOC: dissolved organic carbon; POC: Particulate organic carbon 
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Table 3.3 Parameters used by each of the PBTK calculation models considered 

As Figure 3.1 shows, KMET calculated from the in vitro clearance rate was then incorporated 

into the mass balance BCF model provided by Nichols et al. [117], which was compared with 

the model of Arnot and Gobas [53,54] that is referred to as EPI-mass balance model in this 

study. Parameters for each of the mass balance models are shown in Table 3.4 to allow 

comparison. The BCF values of test compounds were estimated as a result of other 

physiological processes including the chemical uptake from the water via gills (K1), 

elimination processes through gills (K2), faecal egestion (KE) and growth dilution (KG). The 

mass balance BCF equation also takes into account the fraction of chemicals that are 

bioavailable to the fish in water (ф or FD). 

 

Parameter 

 (Units) 

                                             Calculation models 

Hans [37] Cowas-Ellsberry [38] Nichols [117] 

LW (g/Kg)                    12.7 8.5   15 

LHEP (106 

cells/mL) 
510 255 500 

QH (L/d/Kg) 

                     QH = LF CO 

               CO = 34.5 ml/min/kg  

 

LFHans = 0.259 

LF Cowas-Ellsberry  = 0.20 

QH = QHFRAC QC 

 

QHFRAC = 0.259 

QC = ((0.23T)-0.78) (WB /500)^-0.1)24 

T= 15 °C 

fU  

                      fU = fu,b/ fu,h 

 

fu,b-Hans = 1/ (10-0.613logkow-0.569  + 1) 

fu,h-Hans  = 1/ (10-0.676logkow-2.215 + 1) 

 

fu,b-Cowas-Ellsberry = 1/ (10-0.605logkow-0.558 + 1) 

fu,h-Cowas-Ellsberry = 1/ (10-0.685logkow-2.237 + 1) 

fu = fU,P / fU,HEP 

 

fu,p =  νWBL / PBW 

fu,HEP = 1/((CHEP / 2) x 100.676logKow-2.215+1) 

PBW = (100.73logKow x 0.16) + νWBL 

νWBL = 0.839 

 

Vd  (L/Kg)                                  

                      Vd
 =  BCFp/Pb:w 

 

 BCFp = νLT Kow + νNTβKow+ νWT 

β = 0.035; νLT = 0.1; νNT = 0.2; νWT = 0.7 

       Pb:w = νLBKow + νNBβKow+ νWB 

β = 0.035; νLB = 0.014; νNB = 0.147; νWB = 

0.839 

VD,BL = BCFp/PBW 

 

BCFp = νLWB Kow 

νLWB = 0.05 

PBW = (100.73logKow 0.16) + νWBL 

νWBL= 0.839 
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Table 3.4 Parameters used by each of the mass balance models considered 

Parameter  

(Units) 
EPI-mass balance model [53,54] Nichols  mass balance model [117] 

Ф; FD 

ф = 1/(1+αPOC DPOC CPOC Kow + αDOC DDOC CDOC 

Kow)  

 

αPOC = 0.35; αDOC = 0.08;  

DPOC = 1; DDOC = 1 

CPOC = 5 x 10-7 ; CDOC = 5 x 10-7  

FD  = 1/(1+αPOC CPOC Kow + αDOC CDOC Kow) 

 

αPOC = 0.35; αDOC = 0.08 

CPOC = 4.6 x 10-6; CDOC = 1 x 10-6  

 

 

 

K1  (L/Kg d)                

 

 

K1 = EW GV/ WB  

 

EW = (1.85+ (155/Kow))-1 

GV = 254.4  

K1 = 1/((0.01+1/Kow)WB
0.4)  

 

 

K2  (1/d) 

K2 = K1/ BCFp
b 

       

 

BCFp = νLT Kow + νNTβKow+ νWT 

β = 0.035; νLT = 0.1; νNT = 0.2; νWT = 0.7 

K2 = K1/ LBKOW   

 

LB = 0.05 

KE  (1/d)               

 

KE = 0.125 GD / ED WB 

 

ED = 3 x 10-7 KOW + 2 

GD = 0.022 WB
0.85e(0.06T) 

T=10 °C 

 

KE = 0.125 GD / ED WB 

 

ED = 5.1 x 10-8 KOW + 2 

GD = 0.022 WB
-0.15 e(0.06T) 

T=15°C 

KG   (1/d) 

 
KG = 0.0005 WB 

-0.2 KG = 0.0005 WB 
-0.2 

3.2.8 Predicting KMET and BCF from EPI Suite v.4.1 

Chemical structures of test compounds were recorded as SMILES strings and entered into 

the BCFBAF software v.3.01 (http://www.epa.gov) to calculate: 1) KMET normalised to 1 Kg 

fish, which was based on the QSAR model developed by Arnot et al. [57]; and 2) BCF 

predicted from the mass balance model created by Arnot and Gobas [53,54] assuming no 

biotransformation and incorporating biotransformation rates calculated from biological HL; 

and 3) BCF predicted form the EPI-log KOW-based model built by Meylan et al. [50]. 
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3.3. Results and Discussion  

There is an urgent need to develop, improve and validate non-animal methods to assess the 

bioaccumulation potential of chemicals in fish.  Validated alternatives to in vivo studies are 

likely to be implemented into tiered strategies to reduce the number of fish required to 

assess chemical bioconcentration [30,75]. The integration of in vivo, in vitro and in silico 

methods is likely to allow for the successful development and standardisation of alternatives 

to in vivo bioaccumulation tests. Based on the integration of in vivo-in vitro-in silico data, this 

Chapter reviewed and compared the current alternatives to in vivo bioaccumulation in fish. 

3.3.1 In Vitro Clearance Assay: Development of an Experimental Protocol 

The first aim of this Chapter was to investigate the ability of the in vitro clearance assays 

using freshly isolated rainbow trout hepatocytes to generate clearance data for a set of 

reference compounds. As a standardised protocol is still to be developed, the experimental 

procedure taken in this study was based on the methodology carried out by Fay and 

colleagues [40]. A similar protocol was also learnt in a course undertaken in the 6th Society 

for Environmental Toxicology and Chemistry (SETAC) World congress held in 2012 in Berlin.  

Before performing definitive assays, preliminary experiments were undertaken to develop 

an experimental protocol. One of the objectives of the preliminary experiments was the 

selection of appropriate test concentrations based on their first-order kinetics [35]. It should 

be stressed that there is a lack of consensus in the literature for the selection of test 

concentration. For example, the benchmark compound, BaP, has been tested at different 

concentrations including 4 µM [39], 2 µM [37], and 0.5 µM [40] using a cell concentration of 

2 x 106 cells/mL. Therefore, the first experiment consisted of testing BaP at 4, 2, 1 and 0.5 

µM in order to investigate its first order kinetics. Figure 3.2 shows the depletion curves for 

each of these test concentrations.  
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Figure 3.2. Depletion of BaP at 4, 2, 1 and 0.5 µM in freshly isolated hepatocytes. Log C: Logarithm 

of test concentration; BaP: benzo(a)pyrene. 

Apparent higher depletion rates were obtained at lower concentrations, suggesting poor 

bioavailability of BaP and/or enzyme saturation at higher concentrations. Based on the same 

rationale, the other test chemicals listed in Table 3.1 were tested at 2, 1 and 0.5 µM to 

investigate their first order kinetics. A concentration of 4 µM was not considered further to 

reduce the final number of samples per test substance and to avoid possible toxic effects at 

this concentration. When testing chemicals with unknown metabolic biotransformation, a 

sample of BaP at 0.5 µM was considered as an additional control to ensure that the metabolic 

clearance occurred. Table 3.5 shows the CLINT data at each of these test concentrations for 

the compounds examined. Attempts at measuring DBF, AT, PCN, PCB14 at some 

concentrations failed. As higher CLINT values were obtained at the lowest concentration for 

the majority of chemicals, a concentration of 0.5 µM was selected. Additionally, by testing 

chemicals at 0.5 µM, concentrations above the aqueous solubility for hydrophobic chemicals 

were avoided.  
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Table 3.5 CLINT data for test chemicals at 2, 1 and 0.5 µM 

Chemicals (AT: anthracene; BaP: benzo(a)pyrene; CNB: 1-chloro-2-nitrobenzene; DBF: dibenzofuran; DCNB: 1,3-

dichloro-5-nitrobenzene; PCN: pentachloronitrobenzene; PCB14: 3,5-dichlorobiphenyl; PCP: pentachlorophenol; 

TBB: 1,2,4,5-tetrabromobenzene; TCA: 2,3,4-trichloroanisole); C: Nominal test concentration (µM); CLINT = In vitro 

clearance rate; Nd: No data available. 

Another crucial question to be determined for experimental testing was whether the 

depletion rates should be normalised to the loss of the examined chemicals in control 

samples or not. In vitro clearance rates are usually determined with no control normalisation, 

although some chemical losses over time have been reported in control samples, being 

attributed to the method used to boil hepatocytes [40]. According to the preliminary results, 

the depletion of the parent compound in denatured samples could be related to the intrinsic 

properties of test chemicals rather than the method used to boil hepatocytes [40]. For 

instance, Figure 3.3 shows the depletion curves in control (open circles) and treated (solid 

circles) samples for BaP and TBB determined at 0.5 µM. As can be seen, whilst the 

concentration of BaP in control samples was constant over time, a steady loss was observed 

for TBB. Such loss of TBB in denatured samples was also found at 1 and 2 µM, and therefore 

this compound was rejected for further experimentation. Consequently, CLINT values were 

normalised with respect to controls based on Equation 3.2 to avoid the over-estimation of 

metabolic biotransformation for certain types of chemicals and also to take into account 

chemical losses due to abiotic degradation processes (e.g. volatilisation) and the adsorption 

of the test chemicals to plastic materials. 

 

 

  C  
CLINT (mL/h/106 cells)  

CNB DCNB DBF TCA AT PCP PCNB PCB14 BaP TBB 

2 0 0.017 Nd 0.049 0.096 0.063 Nd 0.037 0.064 0 

1 0 0.000 0.086 0.068 0.131 0.046 Nd 0.012 0.048 0 

0.5 0 0.015 0.040 0.093 Nd 0.053 Nd Nd 0.182 0 
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Figure 3.3 Depletion of BaP and TBB at 0.5 µM. Log C: Logarithm of test concentration (0.5 µM); BaP: 

benzo(a)pyrene; TBB: tetrabromobenzene; Solid circles: treated samples; Open circles: control 

samples. 

Finally, to avoid the high rate of CV (50-70%) reported in the literature [37,39,40], the 

intrinsic clearance rates of test chemicals were calculated using cells from the same fish 

donor. This involved, however, the use of two replicates in order to test all chemicals at the 

same time.  

3.3.2 In Vitro Clearance Assay: Results and Data Variability 

Table 3.6 shows the average of the metabolic clearance (CLINT) values for test compounds 

from two individual experiments. These results were in a good agreement with the CLINT data 

determined at 0.5 µM in the preliminary experiments, with the exception of TCA (Table 3.5). 
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Table 3.6 CLINT data measured from two experiments using freshly isolated hepatocytes 

Chemicals (AT: anthracene; BaP: benzo(a)pyrene; CNB: 1-chloro-2-nitrobenzene; DBF: dibenzofuran; DCNB: 1,3-

dichloro-5-nitrobenzene; PCN: pentachloronitrobenzene; PCB14: 3,5-dichlorobiphenyl; PCP: pentachlorophenol; 

TCA: 2,3,4-trichloroanisole); CLINT = In vitro clearance rate; Exp: Experiment; Nd: No data available; CV: Coefficient 

of variation; SD: Standard deviation. Duplicates were used in each assay. 

Only anthracene (AT), pentachloronitrobenzene (PCNB) and benzo(a)pyrene (BaP) showed 

significant metabolism (CLINT > 0.15) contrasting with the low and negligible clearance rates 

obtained for the majority of the compounds. The low intrinsic clearance for 3,5,-

dichlorobiphenyl (PCB14) supports the low in vivo values of KMET reported for PCBs [100] as 

well as its good correlation with log KOW (Table 3.1). In contrast, higher clearance rates were 

expected for pentachlorophenol (PCP) based on its reported in vivo metabolic data [120] and 

poor correlation with log KOW (over-prediction) (Table 3.1). Whilst similar CLINT data were 

determined for polycyclic aromatic hydrocarbons (see AT and BaP, Table 3.6), different 

intrinsic clearance rates were obtained for nitrochlorobenzenes, of which only PCNB was 

cleared at a high rate (Table 3.6). This may be attributable to a lack of passive diffusion for 

the hydrophilic nitrochlorobenzenes through the cell membrane [121]. The highest rate of 

clearance detected for PCNB supports the significant role of nitroreductases in the 

biotransformation of nitroaromatic compounds [88]. 

CLINT (mL/h/106 cells) mean, ±SD, CV 

Exp CNB DCNB DBF TCA AT PCP PCNB PCB14 BaP 

 

1 

 

0.001 

±0.001 

141% 

 

0.021 

±0.030 

141% 

 

0.015 

±0.001 

2% 

 

0.018 

±0.002 

12% 

 

0.061 

±0.009 

14% 

 

0.046 

±0.003 

6% 

 

0.848 

±0.086 

10% 

 

0.015 

±0.005 

40% 

0.104 

±0.00

76% 

 

2 

 

0.004 

Nd 

 

0.000 

±0.000 

 

0.064 

±0.014 

21% 

 

0.041 

±0.013 

31% 

 

0.268 

±0.003 

1% 

 

0.038 

±0.021 

55% 

 

1.008 

±0.001 

0.1% 

 

0.011 

±0.015 

141% 

 

0.197 

±0.07 

4% 

 

Mean 

 

0.002 

±0.002 

110% 

 

0.011 

±0.015 

141% 

 

0.039  

±0.035 

88% 

 

0.029 

 ±0.016 

56% 

 

0.164 

± 0.146 

89% 

 

0.042 

± 0.006 

14% 

 

0.928 

±0.113 

12% 

 

0.013 

± 0.003 

22% 

 

0.151 

±0.06

6 

44% 

SD 

CV 
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Coefficient of variation (CV) values for intra and inter assays are shown in Table 3.6. The CV 

values for non- and or poorly metabolised compounds such as CNB, DCNB and DBF should 

be treated with caution, as their mean and standard deviation (SD) values were similar to 

each other resulting in CVs > 100%.  The CVs of inter-assays in this study ranged from 12 to 

89%, slightly higher than those reported in recent studies [40]. Various factors could 

influence the experimental variability obtained such as differences in testing procedures, 

chemical analysis and enzymatic activities of the fish donors. The latter could be influenced 

by gender, age and diet [29]. The gender of fish donor was unlikely to contribute to the data 

variability since non-sexually mature fish donors were used. In addition, no metabolic gender 

differences from in vitro conditions have been reported for rainbow trout [122].  

The age of the animal (expressed by differences in body weight) is likely to be a potential 

factor affecting CLINT variability, as a good correlation (r2 = 0.72) was found between the CLINT 

values for BaP determined at 0.5 µM and the weight of the fish donors (see Figure 3.4). 

Remarkably, such linear regression could be improved (r2 = 0.99) when an apparent outlier 

was removed. It should be noted that CLINT data for BaP were taken from both preliminary 

and definitive experiments. This finding agrees with the higher metabolic rates reported in 

fat cells isolated from young rats compared to those determined in old donors [123]. 

Although the relationship between whole body metabolic rates and body mass has been 

investigated widely in the literature [124], little is known concerning such relationships at 

the cellular level, thus representing a topic of future research.  

It should be added that season could also influence the metabolic capabilities of the fish 

donors [125,126]. The potential influence of season on CLINT data variability was not explored 

in this study due to the fact experiments were conducted within the same period (April to 

June in 2013). 
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Figure 3.4 CLINT data versus the fish donor weight for BaP at 0.5 µM 

3.3.3 In Vitro Clearance Assay: Challenges and Future Perspectives 

Table 3.7 lists the two main challenges found for the in vitro clearance assay using freshly 

isolated rainbow trout hepatocytes. 

Table 3.7 Challenges of the clearance assay using rainbow trout hepatocytes  

Challenges and proposed solutions Drawbacks 

1. Low sensitivity to poorly metabolised chemicals 

 

- Use young donor animals ( < 200 g) 

 

   - Difficulties in cell isolation procedure 

   - More fish will be needed 

- Increase cell concentration  

    (> 2 x 106 cells/mL) 

   - More fish will be needed 

 - Increase temperature ( > 11 °C)   -  Decrease of cell viability 

   - No representative for in vivo conditions 

2. Time consuming procedure and low reproducibility  

 
- Use multi-channel pipettes, well-plates, 

LCMS analysis 

   - Establishment of a new protocol   

The difficulty in measuring low biotransformation rates could be explained partly due to the 

fact that in vitro biotransformation rates in fish have been determined to be much slower 

than those reported for rat hepatocytes (between 8.3 to 315 fold of difference) [37]. It is 

likely that for this reason, low or non-clearance rates were obtained for the majority of the 

test chemicals in this study supporting similar results obtained with liver S9 fractions [127]. 
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Nonetheless, future clearance assays based on isolated hepatocytes using young fish donor 

(< 200 g) and/or using cell concentrations higher than 2 x 106 cells/mL may represent 

alternatives to increase the sensitivity of measuring the depletion rates of poorly 

metabolised compounds.  

Another challenge for the clearance in vitro assay was the use of a time consuming 

experimental procedure due to the several steps involved. For example, the incubation was 

conducted in borosilicate glass tubes, then the reaction was terminated in Eppendorf tubes 

and eventually subsamples were transferred to glass vials for chemical analysis. It is expected 

that future technological improvements such as the integration of the incubation with the 

chemical analysis in the same support will allow for testing a greater number of compounds.  

Despite these drawbacks, in vitro clearance assays using fish hepatocytes may represent a 

promising alternative for fish ecotoxicology. For instance, the CLINT value for BaP in this 

investigation (CLINT = 0.151, Table 3.6) was comparable to those reported using 

cryopreserved trout hepatocytes (CLINT = 0.214) determined at the same concentration [40], 

suggesting the reliability of such assays to study xenobiotic biotransformation. Moreover, 

compared with subcellular assays (e.g. S9 and microsomes), isolated hepatocytes have 

showed higher values for CLINT [36] and metabolic activity [128], making them better 

candidates for routine screening in risk assessment. In addition, a promising benefit of the 

standardisation and validation of the clearance assay with hepatocytes would be the 

investigation of the differences between metabolic activities reported within and among fish 

species in the literature [129].  

A step-wise selection of test chemicals is the key to study the biotransformation of chemicals. 

In order to investigate the impact of metabolic biotransformation on chemical 

bioconcentration, the selection of test chemicals should be based on the relationship 

between their predicted maximal log BCF and experimental values. It was expected in this 
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study that compounds with high bioconcentration potential (W,U1), i.e. similar values to 

their predicted maximal log BCF values, would show low values for CLINT  values and vice 

versa. This was observed for the majority of chemicals with the exception of 

pentachlorophenol (PCP) and 1,2,4,5-tetrabromobenzene (TBB), whose other chemicals 

properties could play a role in their limited BCF.  

Amongst all chemical properties that could affect the accumulation of a compound, the 

effect of molecular properties on BCF has been extensity investigated [81,82,130,131]. As a 

consequence, a list of cut-off values for molecular weight (MW) and maximum molecular 

diameter (Dmax) have been proposed as indicators of low bioaccumulation. In particular, 

values of 700 g/mol and 1.7 nm have been proposed as cut-off values for MW and Dmax 

respectively in bioaccumulation assessment [132]. These molecular properties are unlikely 

to contribute to the low in vivo bioaccumulation reported for PCP and TBB based on these 

cut-off values. A high volatility in solution, expressed by a logarithm of Henry’s Law Constant 

(log HLC), is also unlikely to contribute to the limited in vivo bioconcentration for PCP and 

TBB, as their log HLC are lower than the cut-off value proposed as indicator of high volatility 

in solution, log HLC > 3 (see Table S1)[114]. An exposure pH higher than 8.5 used for in vivo 

testing could explain the low in vivo BCF value for PCP [133,134]. It should be emphasised 

here that molecular properties, log HLC, and the prediction of metabolic pathways should be 

taken into account when selecting potential metabolised compounds whose in vivo BCF 

values were over-predicted by log KOW. For example, no probable biotransformation 

pathways were predicted for PCP and TBB (see Table 3.1), suggesting that this piece of 

information should be considered to provide a high confidence to select well-metabolised 

compounds.  
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3.3.4 Comparison of Alternatives to Predict KMET 

The second aim of this study was to investigate current alternative methods in terms of their 

ability to predict whole body biotransformation rate (KMET) in 1 Kg fish. The KMET values for 

test compounds were calculated using the following approaches: 1) the QSAR model built by 

Arnot et al [57], which is referred to as EPI-QSAR in this study; and 2) Physiologically-Based 

ToxicoKinetic (PBTK) models that involved the extrapolation of the generated in vitro 

clearance data (Table 3.6) to an estimated whole body metabolism in liver. In such models, 

KMET is defined by the ratio between the hepatic clearance (CLH) and the apparent volume of 

distribution (VD,BL) (Figure 3.1). A comparison of different PBTK calculation models that have 

been used for fish [37,38,117] was also conducted in this study to investigate the 

physiological parameters affecting KMET. Table 3.8 shows the KMET data predicted according 

to each of these non-animal methods. Figure 3.5 shows the plot of predicted KMET data versus 

test compound according to the model employed.   

Table 3.8 Comparison of predicted KMET values for test chemicals 

Chemical 

name 

 

Log 

Kow 

KMET (d-1) (1 Kg) 

PBTK      

Nichols 

[117] 

PBTK      

Hans 

[37] 

PBTK  

Cowan-

Ellsberry [38]      

EPI-QSAR [57] 

CNB 2.46 0.027 0.008 0.002 0.398 

DCNB 3.10 0.047 0.024 0.008 0.206 

DBF 3.71 0.068 0.060 0.028 0.266 

TCA 4.01 0.035 0.041 0.021 0.012 

AT 4.35 0.136 0.208 0.115 0.086 

PCP 4.74 0.025 0.056 0.030 0.099 

PCNB 5.03 0.380 0.825 0.523 0.059 

PCB14 5.05 0.006 0.018 0.009 0.010 

BaP 6.11 0.030 0.211 0.106 0.243 
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AT: Anthracene; BaP: Benzo(a)pyrene; CNB: 1-Chloro-2-nitrobenzene; DBF: Dibenzofuran; DCNB: 1,3-Dichloro-

5-nitrobenzene; PCN: Pentachloronitrobenzene; PCB14: 3,5-Dichlorobiphenyl; PCP: Pentachlorophenol; TCA: 

2,3,4-Trichloroanisole; KMET : Whole body biotransformation rate (d-1). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Predicted KMET data vs test chemical. AT: Anthracene; BaP: Benzo(a)pyrene; CNB: 1-

Chloro-2-nitrobenzene; DBF: Dibenzofuran; DCNB: 1,3-Dichloro-5-nitrobenzene; PCN: 

Pentachloronitrobenzene; PCB14: 3,5-Dichlorobiphenyl; PCP: Pentachlorophenol; TCA: 2,3,4-

Trichloroanisole, KMET: Whole body biotransformation rate (d-1). 

From the comparison of KMET data, a number of observations are apparent.  The first is that 

for relatively hydrophilic compounds (log KOW < 3), significantly higher KMET values were 

predicted using the EPI-QSAR model than those predicted from PBTK models that showed 

good similarities in predictions (see Figure 3.5). This could be attributable to the data that 

were used for the development of the EPI-QSAR model. In particular, due to the lack of 

reported measured metabolic rates in fish, the EPI-QSAR model was built from a database of 

fish biotransformation rates that were estimated from available bioaccumulation data by re-

arranging Equation 3.3 [84].   

Bioconcentration factor (BCF) = K1 ф/ (K2 + KE + KG + KMET) (L/Kg)          (3.3) 

In particular, when whole body BCF values were available, the KMET was calculated as: 
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KMET = (K1 ф/BCF) – (K2 + KE + KG)        (3.4) 

And if the total elimination rate constant (KT) was reported, KMET was calculated as follows: 

KMET = KT - (K2 + KE + KG)        (3.5) 

Whole body biological HL(d) was also converted to a total elimination rate constant as 

follows:  

KT = ln(2)/HL            (3.6) 

In Equations 3.4 and 3.5, data for K1, ф, K2 , KE , KG  were based on predictions [84]. However, 

this approach did not correct for the effect of hydrophobicity on measured BCF and KT, both 

being log KOW-dependent. For example, it is well-known that the most important route of 

elimination for hydrophilic chemicals is across the gill [121]. As a consequence, greater rates 

of elimination have been reported for such chemicals than for more hydrophobic chemicals 

(log KOW > 3), as illustrated in Figure 3.6 for various neutral (non-ionisable) aromatic 

compounds [135]. Therefore, when using Equations 3.4 and 3.5, high KMET values are 

estimated for chemicals with log KOW < 3 by the EPI-QSAR model as a result of their high 

measured elimination rates and low BCF values, and not as a consequence of significant 

metabolism. 
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Figure 3.6 Dependence of elimination and branchial uptake rate constants on log KOW for neutral 

compounds adapted from Erickson and McKim study [135]. Solid squares: chlorinated benzenes; 

solid circles: chlorinated benzenes/biphenyls; open squares: chlorinated benzenes/napthalenes; 

open circles: brominated benzenes/biphenyls and chlorinated biphenyls. 

The second observation from the comparison of KMET data is the low metabolic rates 

predicted for hydrophobic chemicals by the Nichols PBTK approach with respect to the other 

calculation approaches (Table 3.8). Conversely, higher metabolic rates are predicted by the 

Nichols model for chemicals with log KOW < 3 than by the other models. It is noted that 

benzo(a)pyene (BaP) and 1-chloro-2-nitrobenzene (CNB), whose reported CLINT data were 

0.151 and 0.002 respectively, showed similar KMET values (Table 3.8). In order to investigate 

this more thoroughly, physiological parameters calculated using each of the PBTK models 

were compared for BaP and CNB (Table 3.9).  
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Table 3.9 Parameter comparison for 1-chloro-2-nitrobenzene (CNB) and benzo(a)pyrene (BaP) for 

each of the calculation models 

Parameter Chemical 

 

Nichols  

model  [117] 

Hans  

model [37] 

Cowan-

Ellsberry 

model [38] 

fu CNB  0.099 0.132 0.132 

BaP  0.015 0.055 0.055 

CLINT LIVER  

(L/d/Kg fish) 

 

CNB  0.360 0.311 0.104 

BaP  27 23.473 7.85 

QH  (L/d/Kg) CNB  24.542 12.680 9.792 

BaP  24.542 12.680 9.792 

CLH (L/d/Kg) CNB  0.035 0.041 0.0082 

BaP  0.402 1.182 0.592 

Vd (L/Kg) CNB  1.33 4.9617 4.9617 

BaP  13.95 5.588 5.588 

As can be seen, different values for the hepatic clearance binding term (fu), intrinsic clearance 

in liver (CLINT LIVER ), hepatic clearance (CLH) and apparent volume of distribution (VD,BL) were 

calculated for CNB and BaP. This is due to the dependence of these variables on log KOW (see 

equations listed in Table 3.3). Of these, PBTK models are highly sensitive to changes in VD,BL , 

as it appears in the denominator of KMET. The value of VD,BL is calculated as the ratio of 

BCFp/PBW. PBW is termed as the fractional water content of blood; BCFp is the organism-water 

partition coefficient. It should be noted that whilst Hans et al. [37] and Cowan-Ellsberry et 

al. [38] used the same equations to calculate BCFp and PBW (see Table 3.3), Nichols et al. [117] 

employed the equation given by Fitzsimmons et al. [136] to calculate PBW, and a simplified 

equation for BCFp. The analysis of the data revealed that by using the Nichols model, much 

lower and higher VD,BL values were obtained for BaP and CNB respectively than the other 

approaches (see Table 3.9), which resulted in similar KMET values for both compounds (Table 

3.8). The parameter fu also has a strong influence on KMET [117,37]. fu is the ratio between the 

unbound fraction of test compound in blood plasma (fu,h o fU,P) and the unbound fraction of 

test compound in the in vitro clearance assay (fU,P o fU,HEP) (Table 3.3). To correct for the cell 
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concentration in the in vitro clearance assay, Nichols et al. [117] incorporated the cell 

concentration (CHEP) into the fu,h equation given by Hans et al. [37] (see Table 3.3.). Nichols 

also proposed the use of the equation for PBW given by Fitzsimmons et al. [136] to calculate 

fU,P. By using such equations, however, a lower value of fu was determined for BaP than the 

values predicted by Hans and Cowan-Ellsberry models (see Table 3.9), contributing to its low 

KMET. 

The final observation is related to the good concordance of predictions for 2,3,4-

trichloroanisole (TCA) and 3,5-dichlorobiphenyl (PCB14) (Figure 3.5) made by all alternative 

models. This finding suggests a high level of confidence to identify low and non-metabolised 

chemicals with log KOW > 4 by using either the EPI-QSAR or any of the PBTK models.  

3.3.5 Comparison of Alternatives to Predict BCF 

The final aim of this Chapter was the comparison of the most common non-animal models 

used in risk assessment to predict BCF of chemicals. Values of BCF for test chemicals were 

calculated according to the following methods: 1) the log KOW-based model developed by 

Meylan et al. [50] that is referred to as the EPI-log KOW-based model in this study; 2) the 

kinetic mass balance of Arnot and Gobas [53,54] (Table 3.4), assuming no biotransformation 

and incorporating biotransformation rates calculated from biological half-lives and referred 

to as the EPI-mass balance with KMET = 0 and KMET (HL) respectively; and 3) the recent mass 

balance provided by Nichols et al. [117] (Table 3.4), referred to as the Nichols mass balance 

model, using two different fish masses: 10 g and 1 Kg (Table 3.4). Nichols et al. [117] 

accounted for the effect of metabolism by incorporating the KMET data estimated from the in 

vitro clearance assay. Table 3.10 shows the predicted BCF values for test compounds 

according to each of these predictive BCF models. 
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Table 3.10 Comparison of the predicted BCF values for the examined chemicals using different 

methods 

Chemical 
name 
(log KOW) 

                               Predicted BCF (L/kg) 

In vivo  
BCF 

(L/Kg) 

Nichols mass balance 
model 

 EpiSuite (BCFBAF v.3.01) 

10 g      
(in vitro 

KMET) 

1 kg 
(in vitro 

KMET) 
 

EPI-
mass 

balance  
with KMET 

(HL) 

EPI-
mass 

balance  
KMET (HL) =0 

EPI-
Kow- based 

model 

CNB (2.46)       68 
14 

(0.027) 
14    

(0.027) 
 

15 
(2.629) 

19 14 

DCNB 
(3.10)         

170 
62 

(0.047) 
61     

(0.047) 
 

121        
(0.186) 

132 51 

DBF (3.71) 1490 
248 

(0.068) 
216   

(0.068) 
 

1179     
(0.031) 

1348 243 

TCA (4.01)        1778 
491 

(0.035) 
424  

(0.035) 
 

547      
(0.028) 

578 136 

AT (4.35)          2012 
879 

(0.136) 
433   

(0.136) 
 

1121        
(0.155) 

2743 401 

PCP (4.74) 286 
2330 

(0.025) 
1500  

(0.025) 
 

254          
(1.109) 

9569 1110 

PCNB  
(5.03)     

590 
1161 

(0.380) 
245  

(0.380) 
 

270        
(1.018) 

4046 535 

PCB14 
(5.05) 

5888 
4691 

(0.006) 
3457 

(0.006) 
 

3790    
(0.054) 

14140 6645 

BaP (6.11)        Nd 
7321 

(0.030) 
1560 

(0.030) 
 

364       
(0.622) 

21010 5147 

AT: anthracene; BaP: benzo(a)pyrene; BCF: Bioconcentration Factor (Litres/ Kg fish); CNB: 1-chloro-2-

nitrobenzene; DBF: dibenzofuran; DCNB: 1,3-dichloro-5-nitrobenzene; HL: Half-lives; KMET: Whole body metabolic 

biotransformation rate (d-1) in parenthesis; PCN: pentachloronitrobenzene; PCB14: 3,5-dichlorobiphenyl; PCP: 

pentachlorophenol; TCA: 2,3,4-trichloroanisole.  

It should be noted that the first kinetic mass balance model for aquatic chemical 

bioaccumulation was developed by Arnot and Gobas [52,53]. This was normalised for a fish 

of 1 Kg and integrated into the EPI Suite software (http://www.epa.gov). Recently, Nichols 

et al. [117] defined such a mass balance BCF model for 10 g fish based on the rationale that 

the majority of the in vivo BCF data have been determined in small fish or juveniles of large 

species. However, such a model assumed that the biotransformation rates do not change 
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with fish mass, which means that the in vitro KMET data predicted for 1 Kg fish are incorporated 

into a BCF model normalised for 10 g fish. To investigate the effect of KMET on chemical 

bioconcentration according to the fish weight, both 10 g and 1 Kg were used as inputs for 

modelling using the same KMET value determined by the Nichols PBTK model (Table 3.8).  

Results show that for chemicals with log KOW < 4, similar BCF values were predicted regardless 

of the fish mass used (Table 3.10). This finding is in good agreement with previous predictions 

that showed high metabolic rates have little impact on the bioconcentration for hydrophilic 

compounds [30,84]. In contrast, for more hydrophobic compounds, higher BCF values were 

predicted for a 10 g fish than 1 Kg (Table 3.10), supporting the concept of strong influence of 

metabolic rates on the BCF for hydrophobic chemicals [30,84]. As there is empirical evidence 

that the metabolic rates scale with the body mass of the organism [57,124], such differences 

in predicted BCF values depending on the fish weight were a result of the lack of KMET 

transformation used for a 10 g BCF. Therefore, in vitro KMET data should be normalised to the 

same fish mass used in the Nichols mass balance model to correct for the effect of 

metabolism on BCF. For instance, this can be performed by using the following equation 

provided by Arnot et al. [57]: 

KMET,0.10 = KMET,1 (WX/WN) - 0.25      (3.7) 

Where WN and WX refers to 1 and 0.01 Kg respectively according to this example. KMET is the 

whole body metabolic rate (1/d). The term KMET,1 is the KMET predicted for a 1 Kg fish 

calculated from the Nichols PBTK calculation model. The term KMET,0.10 is the KMET predicted 

for a fish of 0.01 Kg weight. 

Nichols and colleagues [117] also employed different factors to calculate the following 

parameters: 1) the fraction that is bioavailable to the fish in water (ф), which was termed FD; 

2) the gill uptake rate constant (K1); and 3) elimination rate constant (K2) (Table 3.4). Based 

on experimental measurements, new values for the dissolved organic carbon content (CDOC) 
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and the particulate organic carbon content (CPOC) are recommended for the calculation of 

ф/FD. Based on the comparison performed for PBTK models (Table 3.9), values of ф, K1 and 

K2 for CNB and BaP were compared according to the mass balance model used, assuming no 

metabolism (KMET = 0) (Table 3.11). The analysis of the data showed that lower values of ф 

and K1 for CNB and BaP were obtained by the Nichols mass balance model with respect to 

the EPI-mass balance model, resulting in a strong impact on the outcome of BCF for 

hydrophobic compounds such as BaP (Table 3.11). It should be noted that a value of BCF of 

11469 for BaP is more “realistic” than a value of 21010 based on the evidence of the lack of 

in vivo BCF values for the chemical compiled in Chapter 2 higher than 21000. This finding 

indicates that the new parameters used for ф calculation by the Nichols mass balance model 

improve the BCF predictions for non-metabolised hydrophobic compounds.  

Table 3.11 Parameters comparison for 1-chloro-2-nitrobenzene (CNB) and benzo(a)pyrene (BaP) for 

each of the mass balance models assuming no metabolism (KMET = 0) 

Parameter Chemical 

 

Nichols mass 

balance 

model  

EPI-mass balance 

model  

ф/FD CNB  0.99 0.99 

BaP  0.52 0.78 

K1 

(L/Kg/d) 

 

CNB  74.25 106.55 

BaP  99.99 137.50 

K2 

(1/d) 

CNB  5.15 3.37 

BaP  < 0.01 < 0.01 

Predicted BCF 

(L/kg fish) 

CNB  14 19 

 BaP  11469 21010 

An interesting observation is apparent from the comparison of predicted BCF data (Table 

3.10). Generally, BCF values predicted by the EPI-log KOW-based model were lower than those 

made by EPI- and Nichols mass balance models (Table 3.10). This may occur because the EPI-

log KOW-based model was built from BCF values that were measured in warm water fish 

species [50], mainly for fathead minnow, and the majority of the reported data in this study 
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were determined in rainbow trout, a cold species. From a kinetic processes scenario, warm 

water fish species are likely to achieve the steady state earlier than cold water species, which 

may result in lower BCFs than those reported for cold water fish [121]. A similar finding was 

found when comparing the common chemicals with data for common carp and rainbow 

trout in the creation of the reference list (Chapter 2). 

Finally, the analysis of the relationship between in vivo and predicted log BCF data, according 

to each model, revealed that the EPI-mass balance model incorporating KMET made better 

predictions (r2 = 0.92) than the other predictive approaches (r2  < 0.60) (as is shown in Figure 

3.7). Interestingly, the reported KMET data from such a model were determined, and not 

based on predictions as was expected initially. KMET data calculated based on experimental 

HLs are shown in parenthesis in Table 3.10, and differed from the KMET predicted by EPI-QSAR 

model developed by Arnot et al. [57] (see Table 3.8). It should be stressed that no 

information was found in the EPI Suite Software (http://www.epa.gov) related to the original 

source of experimental HL data and the method followed to transform the experimental HL 

into rate constants. It is hypothesised, however, that these experimental HL were measured 

in the whole body fish and then transformed into metabolic rate constants following 

Equations 3.5 and 3.6. 
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Figure 3.7 Predicted log BCF vs in vivo log BCF for each predictive BCF models investigated. The 

lines plotted represent the QSAR as stated in the figure legend. 

3.3.6 Alternatives for KMET and BCF: Challenges and Future Perspectives 

The challenge of the in silico KMET models reviewed in this study was to obtain reliable data 

for metabolic rates of test chemicals.  This could be explained as predictive models for KMET 

were not developed from in vivo metabolic data, since only a few studies have been 

conducted so far (see section 2.3.3 for more details). In order to build reliable KMET models, 

more in vivo studies will be required to measure the whole body metabolic rates in fish for 

chemicals covering a broad range of log KOW. Nonetheless, the whole body metabolic rates 

may follow a similar trend to those reported between branchial absorption rates and log KOW 

for guppy [137], as shown in Figure 3.8. This is because a compound needs to be absorbed 

and distributed to the target tissue before being metabolised. A question remains, however, 

concerning the metabolic clearances of hydrophilic chemicals measured in in vivo conditions. 

Based on the in vitro results obtained (Table 3.6), very low metabolic rates are expected for 

these compounds. It should be noted that obtaining reliable KMET data will be also relevant 
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for mass balance BCF models, since the analysis showed that even low variations of 

metabolic activity had a strong impact on BCF for hydrophobic test chemicals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Relationship between branchial uptake rate constant in guppies and log KOW adapted 

from Saarikoski et al. [137]. 1: Butyric acid; 2: Phenol; 3: Benzoic aicid; 4: 4-Phenylbutyric acid; 5:2,4-

Dichlorophenol; 6: 2-sec Butyl-4,6-dinitrophenol; 7: 3,4-Dichlorobenzoic acid; 8: 2,6-Dibromo-4-

nitrophenol; 9: 2,4,5-Trichlorophenol; 10: 2,4,6-Trichlorophenol; 11: 2,3,4,6-Tetrachlorophenol; 12: 

Tetrachloroverathrol; 13: Pentachlorophenol; 14: Pentachloroanisol; 15: 2,4,6-Trichloro-5-

phenylphenol; 16: DDT. 

Different challenges were found depending on the in silico BCF models evaluated. For 

example, the main challenge of log KOW-based models was the comparison of BCF data for 

different fish species. It is expected that the development of log KOW-based models for single 

fish species, such as those developed for rainbow trout and common carp in Chapter 2, will 

allow for an accurate BCF data comparison. The main challenge of mass balance models was 

associated with the use of different fish weights. For instance in this study, clearance data 

determined using fish donors with weights ranging from 220 to 320 g were incorporated into 

a PBTK model design for a fish of 1 Kg to predict KMET, and such predicted KMET data were then 

integrated into a mass balance model normalised to a 10 g fish for BCF prediction. The 

extrapolation factors of both PBTK and mass balance models should be normalised to a 1 Kg 

to avoid the uncertainty associated with the fish mass. This would also involve the data 
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normalisation of the in vitro CLINT values determined for a specific weight of the fish donor 

to 1 Kg. In order to do that, more effort from experimental approaches will be required with 

a two-fold purpose: 1) to corroborate the correlation between CLINT and the weight of the 

fish donors observed for BaP in this study (Figure 3.4); and 2) to develop a QSAR model to 

estimate the CLINT value in a 1 Kg fish for a specific compound.  

3.4 Conclusion 

The potential of a compound to accumulate in aquatic organisms is usually expressed by 

bioconcentration factor (BCF). Traditionally, data for BCF for organic chemicals were 

determined in the whole fish according to the OECD TG 305 [31]. Due to metabolism reducing 

chemical bioaccumulation significantly, the potential of a compound to undergo metabolism 

has been identified as another key measurement in risk assessment. Over the last decade, 

there has been an increase in the number of alternatives proposed to in vivo testing in fish, 

necessitating a comprehensive analysis of their potential use in chemical bioaccumulation 

assessment.  This Chapter has accordingly reviewed and compared the most common 

alternatives including an in vitro clearance assay using fresh hepatocytes and in silico models 

to predict KMET and BCF of chemicals. Results showed that the in vitro clearance assay using 

freshly isolated trout hepatocytes represents a powerful tool to identify readily metabolic 

chemicals as well as to investigate the impact of significant metabolism processes on their 

maximal BCF. A high variability in KMET predictions was obtained when different models were 

compared, suggesting that further developments and improvements are needed. With 

regards to BCF models, a kinetic mass balance model incorporating KMET predicted based on 

experimental HL represents a potential surrogate to in vivo bioaccumulation studies with 

respect to traditional log KOW-based and a mass balance model defined for a 10 g fish. As a 

consequence of this work, an in-depth analysis of the current challenges and future 

perspectives of the examined alternative methods to in vivo testing was also provided. 
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Chapter 3 has reviewed and compared the most common alternative methods used for the 

estimation of BCF and KMET for a set of reference compounds selected from the reference list 

established in Chapter 2. Compared to toxicity tests, the assessment of chemical 

bioaccumulation is more complex as diverse processes are involved, i.e. Absorption, 

Distribution, Metabolism and Excretion (ADME). Therefore, considerable work was 

undertaken in this thesis towards the development of alternative methods for chemical 

bioaccumulation. Non-animal methods for aquatic toxicity will be covered in Chapter 4, by 

conducting a mechanistic analysis of the toxicity of cyclic compounds. Chapter 4 also 

highlights the importance of integrating different alternative methods to provide a high level 

of confidence regarding the toxic mechanism of cyclic compounds.  
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Chapter 4. In silico Mechanistic Analysis of the Toxicity of 

Cyclic Compounds2 

4.1. Introduction 

Under the Registration, Evaluation, Authorisation and restriction of Chemical substances 

(REACH) legislation, animal testing might be required for the registration of about 35,000 

chemicals produced, used or imported in the European Union for which sufficient 

toxicological information is lacking [13]. REACH has accordingly advocated the use of 

alternative methods to in vivo toxicity tests to assess the toxicity of chemicals.  Some of the 

alternatives to in vivo tests in fish are based on the use of aquatic invertebrates to assess the 

toxicity of chemicals. Amongst all, the growth inhibition assay with the ciliated protozoan 

Tetrahymena pyriformis represents a potential fish surrogate due to the good correlation 

between T. pyriformis and fish acute toxicities [138]. In addition, toxicity tests in aquatic 

surrogates are frequently used as part of Integrated Testing Strategies (ITS) to prioritise 

chemicals for further fish toxicity testing [74].  

Non-testing strategies rely on the use of Quantitative Structure-Activity Relationship (QSAR) 

models to predict the adverse effect of chemicals. The majority of QSAR models for 

ecotoxicology have been built on descriptors for hydrophobicity (expressed by the logarithm 

of the octanol-water partition coefficient, log KOW), for instance the non-polar narcosis QSAR 

model developed by Ellison et al. [139] to predict the 50% inhibition of growth concentration 

(IGC50) to T. pyriformis. However, chemicals interacting by electrophilic mechanisms with 

biological macromolecules can exhibit excess toxicity above the baseline of narcosis, and 

therefore their toxicity cannot be predicted easily from QSARs based on log KOW alone [140]. 

Common approaches for the prediction of chemical reactivity involve the use of quantum 

                                                 
2 This Chapter is based on a published article whose link to the source is provided in the Appendix III. 
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mechanical descriptors for modelling chemical reactivity [141, 142] and the identification of 

chemicals for potential protein binding based on structural alerts [68]. Structural alerts that 

are associated with toxicological activity [25,26] have been encoded computationally into in 

silico profilers within the OECD QSAR Toolbox (www.qsartoolbox.org). There are two sets of 

protein profilers: the Organisation for Economic Cooperation and Development (OECD) set 

and the Optimised Approach based on Structural Indices Set (OASIS), which are used for 

various purposes such as forming categories. The most common approach to build a category 

is based on the principle that similar chemicals should have a common reactive centre 

[27,143]. Recent studies have shown that one of the better ways to define a chemical 

category for toxicological assessment is setting the structural boundaries of the category by 

applying mechanistic chemistry and grouping chemicals by their ability to undergo a common 

Molecular Initiating Event (MIE) [68]. MIE refers to the toxicant-biological target interaction 

that leads to toxicological responses at higher levels of biological organisation (see Figure 1.3 

for more details). Therefore, it is important to verify the applicability domain of chemical 

reactions to correctly assign a chemical to a category, and thus allowing for filling data gaps 

for untested chemicals when applying read-across [144]. 

The Michael addition domain is one of the most important mechanistic applicability domains 

relating to reactive toxicity [68,144]. Michael acceptors are soft electrophiles containing a 

polarised ,-unsaturated carbonyl or carbonyl fragment. The common characteristic of the 

structural alert for Michael acceptors is a C=C or C≡C group with a neighbouring electron-

withdrawing moiety. Figure 4.1 shows an example of the reaction between a Michael 

acceptor (acrolein) with a soft nucleophile resulting in a chemical-protein adduct. 
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Figure 4.1 Michael addition reaction between glutathione (nucleophile) and acrolein (Michael 

acceptor) (electrophile). The curly arrow indicates the direction of electron movement from the 

nucleophile to the β-carbon (positive charge) of the electrophile. Representation based on Figure 1 

published by Enoch et al. [25].  

The reactivity of Michael acceptors can be measured under standardised experimental 

conditions using techniques known as in chemico methods [145]. In chemico techniques 

employ the use of biological nucleophiles (e.g. peptides or proteins) to quantify the reactivity 

of a compound [69]. In in chemico assays, the measured endpoint is the effect concentration 

of electrophile that depletes 50% of glutathione (GSH) (RC50)  after 120 min incubation time 

at 25 C and pH 7.4 [134,146]. This protocol has been employed to establish an extensive 

database quantifying the reactivity of Michael acceptors and other electrophiles 

(www.qsartoolbox.org).  

In chemico reactivity data play an important role in the verification of the prediction of 

chemical reactivity. For example, Schultz et al. [67] verified the structural alerts for a list of 

Michael acceptors using in chemico reactivity data. However, the Michael addition domain 

should cover a larger range of chemicals than considered so far since Michael acceptor 

compounds are very important industrial chemicals including polymers, textiles and auxiliary 

materials in medicine [147]. Recent investigations have also used T. pyriformis toxicity data 

to refine the applicability domain of selected structural alerts [148-150]. This multiple data 

integration not only offers the possibility of the verification of in silico predictions of chemical 

Glutathione Acrolein Chemical-protein adduct

Ione pais of electrons
α carbon

Electron deficient, β carbon 

-

Lone pair of electrons 
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reactivity, but also could allow for the development of an ITS to prioritise chemicals for 

aquatic toxicity testing. 

Therefore, the aims of this study were: 1) to verify the extension of the applicability domain 

for Michael acceptors within the in silico profilers of the OECD QSAR Toolbox using 

experimental data. The applicability domain of the structural alerts for cyclic compounds that 

are potential Michael acceptors was probed using the in chemico GSH reactivity and T. 

pyriformis growth inhibition assays; and 2) to develop an ITS by combining data from the 

above in silico, in vitro and in chemico methods to prioritise chemicals for in vivo toxicity 

testing. 

4.2. Materials and Methods  

This work was undertaken in collaboration with Professor Terry W Schultz from the 

University of Tennessee (United States). Professor Schultz and colleagues conducted the 

experimental work, i.e. the in chemico testing and T. pyriformis growth inhibition assays, 

whereas the in silico analysis and the development of an ITS were conducted at LJMU as part 

of this research. 

4.2.1 Test Compounds  

Thirty cyclic chemicals containing a range of six-membered cyclic chemicals with different 

substituents were selected for evaluation; the structures of these compounds are 

summarised in Figure 4.2. All chemicals were purchased from commercial sources (Sigma-

Aldrich.com or Alfa.com) in the highest purity available (95% minimum) and were not further 

purified prior to testing. 
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Figure 4.2 Chemicals considered in this study. Identification number related to Table 4.1. Group 1: 

polarised alkanes or non-polarised-alkenes; Group 2: polarised ,-unsaturated alkenes; Group 3:  

polarised ketones substituted at the -carbon; Group 4: ,-unsaturated alkenes with substituents 

at the α- and/or β-carbon atoms; Group 5: ,-unsaturated heterocyclics. 



 

 

94 

 

The chemicals tested were classified into five groups depending on the presence or absence 

of the polarised ,-unsaturated fragment, the general structural alert for Michael acceptors 

(Figure 4.3), and other structural features in the molecule that may affect the reactivity with 

GSH.  

                                           

      

Figure 4.3 Polarised ,-unsaturated fragment. 

 Group 1. The first group were polarised alkanes or non-polarised alkenes. It was 

expected that these chemicals would not be reactive with GSH as they do not contain 

the general structural alert for a Michael acceptor in their structure. 

 Group 2. This group contains polarised ,-unsaturated alkenes with no substituents 

at the α- or β-carbon atoms (Figure 4.3). It was hypothesised that these chemicals 

would be reactive with GSH as they do not have any mitigating factors which may 

affect reactivity.  

 Group 3. The third group of chemicals were acyclic polarised ketones substituted at 

the -carbon by a sterically hindered cyclohexene ring. These chemicals were of 

interest due to the potential for a displaced steric effect as a result of the substituted 

cyclohexene ring. 

 Group 4. Chemicals in this group were ,-unsaturated alkenes with substituents at 

the α- and/or β-carbon atoms. Although these chemicals may react with GSH as they 

meet the general structural alert for a Michael acceptor, it was hypothesised that 

electron-donating substituents at the - and/or -carbon would affect reactivity.  

 Group 5. The fifth group of chemicals is the polarised ,-unsaturated heterocyclics, 

either O-containing pyranones or N-containing chemicals. It was hypothesised that 

although these chemicals may be reactive with GSH due to the general structural 

X=CO,CN and NO2 groups

A

B

X= CO, CN, NO2 groups 
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alert for a Michael acceptor, heterocyclic features may be a mitigating factor 

affecting reactivity.  

4.2.2 Protein Binding Prediction 

The cyclic test chemicals were profiled for protein binding using the OASIS and OECD profilers 

contained within version 3.1 of the OECD QSAR Toolbox (www.qsartoolbox.org). Chemical 

structures were entered into the OECD QSAR Toolbox as SMILES string notations. The SMILES 

strings of each compound were previously obtained and verified in the KOWWIN v 1.68 

software (www.epa.gov). If a structural alert was triggered for a particular chemical within 

one, or both, of the profilers this information was recorded. Chemical transformation due to 

metabolism and/or autoxidation was not considered in this investigation.   

4.2.3 In Chemico GSH Reactivity 

Reactivity with the thiol group of GSH was measured using a simple and rapid 

spectrophotometric-based assay [147]. Briefly, free thiol was quantified after its reaction 

with 5,5’-dithio-bis(2-nitrobenzoic acid) (DTNB) with the absorption of the product measured 

at 412 nm. Experiments were performed with freshly prepared GSH (1.375 mM; 0.042 g of 

reduced GSH into 100 ml of phosphate buffer at pH 7.4) and freshly prepared stock solutions 

in dimethyl sulfoxide (DMSO). By combining the correct amounts of GSH solution, stock 

solution, and buffer the final concentration of thiol was brought to 0.1375 mM, in a manner 

that the concentration of DMSO in the final solution was always < 10%. Following range-

finding experiments, definitive experiments were performed with concentrations adjusted 

to 90, 80, 60, 40, 20 and 10% of the stock solutions. Associated with each assay was a control 

containing GSH and a blank without GSH.  

The RC50 values (the concentration giving 50% reaction in a fixed time of 2 h) were 

determined from nominal chemical concentrations (dependent variable) and absorbance 
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normalised to the control (independent variable) using Probit Analysis in the Statistical 

Analysis System (SAS) software (SAS Institute, Cary, NC). Chemicals with a RC50 value of 

greater than 135 mM were considered to be non-reactive due to the fact that a contaminant 

at the level of 1% could be the cause of such reactivity. Similarly, RC50 values of greater than 

70 mM were treated as “suspect” as a contaminant at the 2% level could be the cause of 

such reactivity. 

4.2.4 In Vitro Toxicity Data 

The protocol described by Schultz [138] was used to measure the 50% inhibition of growth 

concentration (IGC50) to T. pyriformis of the cyclic compounds after a 40 h exposure period. 

The population density of T. pyriformis was quantified spectrophotometrically at 540 nm. 

Following range-finding experiments, definitive experiments were performed with 

concentrations adjusted to cover the highest concentration eliciting no effect on population 

growth to the lowest concentration inhibiting population growth completely. 

Coupled to each assay, a control containing no test material and T. pyriformis and a blank 

containing neither test material nor T. pyriformis [139] were used in order to indicate the 

suitability of the medium and also to help interpret the results produced under test 

conditions. The IGC50 value was calculated (in millimolar units) by absorbance normalised to 

controls (independent variable) and the nominal concentration of the toxicant (dependent 

variable) using the Probit Analysis in SAS software (SAS Institute, Cary, NC). 

4.2.5 In Silico Analysis to Identify Excess and Baseline Toxicities 

The QSAR model for non-polar narcosis published by Ellison et al. [139], shown as Equation 

4.1, was used to calculate the baseline toxicity of the cyclic chemicals. The log KOW
 for all 

chemicals was calculated using the KOWWIN v1.68 software. 
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Log 1/IGC50 = 0.78 log KOW - 2.01  (4.1) 

n = 87, r2 = 0.96, s = 0.20, F = 2131 

Where, n is the number of observations, r2 is the square of the correlation coefficient 

adjusted for degrees of freedom, s is the standard error on the estimate and F is Fisher’s 

statistic. 

The residual value for each compound was obtained from the difference between the 

experimental values and the predicted toxicity calculated from Equation 4.1. Since the 

standard error of the estimate for the baseline model for the IGC50 (Eq. 1) is 0.2 log units, 

experimental toxicity values with residuals < 0.4 log units (twice the s value for Eq. 4.1) were 

considered not different from narcosis-level compounds. In a similar manner, chemicals 

more toxic than this limit (residuals > 0.4 log units) were classified as exhibiting excess 

toxicity. 

4.2.6 Development of an ITS to Prioritise Cyclic Compounds for In Vivo Testing  

The development of an ITS was conducted to classify cyclic compounds into different 

categories to prioritise chemicals for further in vivo aquatic toxicity testing. This strategy was 

built based on: 1) previous ITS proposed for environmental toxicity testing [69,74]; and 2) a 

classification approach that combined a QSAR analysis and the presence of structural alerts 

to identify chemicals with different priorities for experimental testing [140]. The in silico, in 

vitro and in chemico results were combined in a decision tree strategy to prioritise cyclic 

compounds for further in vivo testing.  
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4.3. Results and Discussion 

4.3.1 Verification of Structural Alerts 

The integration of in vitro and in chemico data is becoming more important to verify 

predictions of chemical reactivity [148-150]. Based on the combination of non-animal assays, 

the first aim of this Chapter was to verify the structural alerts for Michael acceptors in 

existing protein binding profilers.  

A total of 30 chemicals were profiled using the in silico OASIS and OECD profilers in the OECD 

QSAR Toolbox. The results are summarised in Table 4.1. The results showed 22 chemicals 

contained a structural alert (in a least one of the profilers), of which 19 were identified as 

being experimentally reactive with GSH. A further eight chemicals failed to trigger an alert in 

either profiler, these chemicals were all experimentally non-reactive. The analysis of the 

relationship between log 1/IGC50 and log KOW (Figure 4.4) revealed that 12 chemicals exhibit 

excess toxicity. A detailed discussion of the results for each group of chemicals is provided 

below.  

 

 

 

 

 

 

 

Figure 4.4 Relationship between log KOW and log 1/IGC50 for the cyclic compounds. The solid line:  

QSAR model for non-polar narcosis published by Ellison et al. [139]. Dashed-line: QSAR model + 0.4 

log 1/IGC50 units. 
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Table 4.1 Summary of experimental and in silico data  

ID(G) Chemical name Log KOW 

In silico profiler 
Log 

1/RC50 
In chemico 

 Log 
1/IGC50 

Toxicity to       
T. pyriformis 

TC 
OASIS OECD 

1(1) Cyclohexanol 1.64 None None 
NR at 
100mM 

NR -0.77 NSDB 3 

2(1) Cyclohexanone 1.13 None None 
NR at 
100mM 

NR -1.23 NSDB 3 

3(1) Nitrocyclohexane 2.23 None None 
NR at 
15mM 

NR -0.28 NSDB 3 

4(1) Cyclohexene 2.96 None None 
NR at 
2.5mM 

NR -0.01 NSDB 3 

5(1) 4-Vinyl-1-cyclohexene 3.73 None None 
NR at 
0.5mM 

NR 0.71 NSDB 3 

6(1) 3-Methy-1-cyclohexanone 1.54 None None NRAS NR -0.43 NSDB 3 

7(1) 1-Methyl-1-cyclohexene 3.51 None None NRAS NR 0.84 NSDB 3 

8(1) Cyclohexanecarbonitrile 2.12 None None 
NR at 
100mM 

NR -0.03 NSDB 3 

9(1) 3-Cyclohexene-1-carboxyaldehyde 1.89 SB SB 
NR at 
22mM 

NR 0.29 XS 1 

10(1) 
3,5-Dimethyl-3-cyclohexene-1-   
carboxaldehyde 

2.85 SB SB 
NR at 
2mM 

NR 0.11 XS  1 

11(2) 
2-Cyclohexen-1-one 1.2 MA MA -0.49 Reactive 0.61 XS 1 

AC: acylation; ID: Identification number; G: chemical group; MA: Michael addition; NR: no reactive; NSDB: not significantly different from baseline; TC: Testing category (1: priority 

for acute toxicity tests; 2: priority for chronic toxicity tests; 3: no priority for experimental testing); SB: Schiff base formation; XS: excess toxicity. 

 



 

 

100 

 

Table 4.1 Summary of experimental and in silico data (cont.) 

AC: acylation; ID: Identification number; G: chemical group; MA: Michael addition; NR: no reactive; NSDB: not significantly different from baseline; TC: Testing category (1: priority 

for acute toxicity tests; 2: priority for chronic toxicity tests; 3: no priority for experimental testing); SB: Schiff base formation; XS: excess toxicity. 

 

 

 

ID(G) Chemical name Log KOW 
In silico profiler Log 

1/RC50 
In chemico 

Log 

1/IGC50 

Toxicity to       

T. pyriformis 
TC 

OASIS OECD 

12(2) 

 

1-Cyclohexene-1-carboxaldehyde 

 

2.02 

 

SB 

 

SB/MA 

 

0.98 

 

Reactive 

 

0.12 

 

XS 

 

1 

13(2) 1-Cyanocyclohexene 2.04 MA MA 0.68 Reactive -0.43 NSDB 2 

14(2) 4,4-Dimethyl-2-cyclohexen-1-one 2.07 MA MA 0 Reactive 0.4 XS 1 

15(2) 1-Nitro-1-cyclohexene 2.15 MA MA -1.6 Reactive 2.33 XS 1 

16(2) 1-Acetyl-1-cyclohexene 2.24 MA MA 0.32 Reactive 0 NSDB 2 

17(2) Methyl-1-cyclohexene-1-carboxylate 2.56 MA MA 0.23 Reactive 0.24 NSDB 2 

18(2) 
4-Isopropenyl-cyclohexene-1-  

carboxaldehyde 
3.14 SB SB/MA 0.75 Reactive 0.67 NSDB 2 

19(3) 
4-(2,6,6-Trimethyl-2-cyclohexen-1-yl-)3- 

buten-2-one 
4.29 MA MA 

NR at 

0.2mM 
NR 0.95 NSDB 2 

20(3) 
4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-3- 

buten-2-one 
4.42 None MA 

NR at 

0.2mM 
NR 1.17 NSDB 2 

21(4) 3-Methyl-2-cyclohexen-1-one 1.75 MA None 1.1 Reactive -0.52 NSDB 2 
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Table 4.1 Summary of experimental and in silico data (cont.) 

ID(G) Chemical name     Log KOW 
In silico profiler Log 

1/RC50 
In chemico 

Log 

1/IGC50 

Toxicity to   

T.pyriformis 
TC 

OASIS OECD 

22(4) 3,5-Dimethyl-2-cyclohexen-1-one 2.16 MA None 1 Reactive -0.57 NSDB 2 

23(4) 3,5,5-Trimethyl-2-cyclohexen-1-one 2.62 MA None 1.4 Reactive -0.57 NSDB 2 

24(4) 5-Isopropenyl-2-methyl-2-cyclohexen-1-one 3.07 MA MA 
NR At 

8mM 
NR 0.23 NSDB 2 

25(4) 2-Isopropylidene-5-methylcyclohexan-1-one 3.2 MA None 
NR at 

10mM 
NR 1.01 XS 1 

26(5) Methylcoumalate -0.65 MA AC/MA -0.04 Reactive 0.89 XS 1 

27(5) 1-Methyl-2-pyridone -0.05 MA AC/MA 2 
Reactive 

(suspect) 
-1.41 XS 1 

28(5) 5,6-Dihydro-2H-pyran-2-one -0.03 MA AC/MA 
NR at 

100mM 
NR 0.42 XS 1 

29(5) 2H-Pyran-2-one -0.24 MA AC/MA 
NR at 

200mM 
NR 0.43 XS 1 

30(5) 4,6-Dimethyl-a-pyrone
Reactive 

(Suspect) 
-0.93 XS 1 

AC: acylation; ID: Identification number; G: chemical group; MA: Michael addition; NR: no reactive; NSDB: not significantly different from baseline; TC: Testing category (1: priority 

for acute toxicity tests, 2: priority for chronic toxicity tests, 3: no priority for experimental testing); SB: Schiff base formation; XS: excess toxicity. 
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Cyclic Polarised Alkanes and Cyclic Non-polarised Alkenes (Group 1)  

Ten cyclic chemicals contained either a polarised alkane moiety or non-polarised alkene unit 

(see Table 4.1). No structural alerts for protein binding were identified in Group 1 compounds 

with the exception of 3-cyclohexene-1-carboxyaldehyde (9) and 3,5-dimethyl-3-

cyclohexene-1-carboxaldehyde (10). These two cyclic aldehydes triggered a structural alert 

for Schiff base formation in both protein binding profilers due to the presence of the carbonyl 

moiety (see compounds 9 and 10 in Table 4.1). The lack of GSH reactivity for the two Schiff 

base formers (aldehydes) is expected as this mechanism requires a nucleophilic nitrogen 

atom, rather than the sulphur, attacking the carbonyl carbon as shown in Figure 4.5 for 

compound 9 [151]. In addition, these Schiff base formers showed excess toxicity towards T. 

pyriformis in the QSAR analysis (Figure 4.4), which could be a result of the depletion of 

proteins containing nitrogen reacting with them.  The absence of structural alerts triggered 

for Michael acceptors for this group of chemicals was verified by the lack of reactivity 

towards GSH, as expected initially based on their lack of an α, β-unsaturated fragment (see 

Figure 4.2). 

 

Figure 4.5 Schiff base reaction between 3-cyclohexene-1-carboxyaldehyde (ID 9) and a nitrogen 

containing nucleophile. 
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Unsubstituted Cyclic Polarised Alkenes (Group 2) 

There are eight cyclic chemicals in the dataset that contain an un-substituted polarised 

alkene moiety (where the alkene is part of the ring system polarised by either an aldehyde, 

ketone, ester, cyano or nitro group; see Figure 4.1 for more details). All of these chemicals 

triggered a structural alert related to Michael addition for covalent protein binding in at least 

one of the profilers (Table 4.1). In addition, compounds 12 and 18 in which the alkene is 

polarised by an aldehyde moiety also trigger an alert for Schiff base formation (Table 4.1). As 

expected these in silico predictions were verified by the results of the in chemico data that 

showed all of the chemicals to be reactive towards GSH. In addition, four of the Group 2 

compounds (11,12,14,15) exhibited excess toxicity towards T. pyriformis (Figure 4.4).  

Acyclic α,-unsaturated Polarised Ketones (Group 3) 

There were two acyclic α,-unsaturated polarised ketones in the dataset that feature a 

cyclohexene ring attached to the -carbon atom (compounds 19, 20). Although these 

chemicals were both profiled as being capable of reacting via Michael addition, neither 

exhibited either reactivity towards glutathione nor showed excess toxicity (Table 4.1). Their 

lack of reactivity could be explained by a steric hindrance at the -carbon atom caused by 

the methyl substituents present on the cyclohexene ring [142,151]. These compounds are 

also relatively hydrophobic (log KOW > 4) which leads to low water solubility potentially 

limiting the usefulness of the reactivity assays. Aqueous methanol reaction conditions would 

be needed to assess the reactivity of chemicals with poor solubility. 

Substituted Cyclic Alkenes Polarised by a Ketone (Group 4) 

All substituted cyclic alkenes polarised by a ketone had a methyl substituent at the β-carbon, 

with the exception of compound 24 whose methyl group was at the α-carbon (see Figure 1). 

All these chemicals were identified as being reactive by the OASIS protein binding profiler, 
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whereas only compound 24 was predicted to be reactive by the OECD profiler via Michael 

addition (Table 4.1). This is due to the restricted applicability domain in the OECD profiler 

that excludes chemicals that are di-substituted at the -carbon atom. The evaluation of the 

experimental reactivity data showed that only three of these chemicals were reactive 

towards GSH (compounds 21, 22, 23) and none of them showed excess toxicity. Interestingly, 

the reactive chemicals with a methyl group at the -carbon were those in which the alkene 

double bond was within the ring system (for example, compare the ring systems of 

compound 21 and 25 in Figure 4.1). The difference in reactivity can be explained by the 

release of the ring strain energy in chemicals of this type that has the effect of lowering the 

energy of activation [142]. Finally, the experimental data showed that the presence of a 

methyl group at the α-carbon atom results in the loss of Michael addition reactivity, which is 

in agreement with a number of studies [68,142,153]. 

Polarised,-unsaturated Heterocyclics (Group 5) 

The final five chemicals in the dataset were six-membered ring systems containing either a 

nitrogen or oxygen atom. Whilst all these chemicals were profiled by the protein binding by 

OASIS profiler as being reactive via Michael addition, the OECD profiler identified potential 

reactivity via either a Michael addition mechanism or an acylation mechanism (Table 4.1). 

With the exception of compound 26, none of these chemicals were positively identified as 

being reactive in the in chemico glutathione-based assay. The ester group attached to the 

heterocyclic ring could be responsible for the GSH reactivity shown for compound 26 [151]. 

All five heterocyclic compounds exhibited excess toxicity towards T. pyriformis (Figure 4.4). 

This finding suggests that these chemicals prefer to react via the acylation mechanism. The 

acylation mechanism involves the attack of a carbonyl moiety by proteins containing 

nitrogen atom as a nucleophilic centre [25] and, therefore, such reactivity would not be 

expected to be observed in a thiol-based GSH assay. 
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Structural Alert Refinement  

The analysis above suggests that several refinements are required to the structural alerts in 

the protein binding profilers of the OECD QSAR Toolbox for some chemicals of groups 3, 4 

and 5. The suggested refinements are summarised in Table 4.2 and discussed in more detail 

below.  

In the analysis of the third group of chemicals, there is strong evidence that the presence of 

a substituted cyclohexene ring system attached to the -carbon inhibits the reactivity via the 

Michael addition mechanism. Thus, chemicals containing such a moiety should be excluded 

from the Michael addition alert for acyclic polarised alkenes. A further restriction in the 

domain of the structural alerts present in both profilers was suggested from the analysis of 

the Group 4 chemicals. This is required to reflect the lack of Michael addition reactivity when 

the α-carbon is substituted by an alkyl group.  For this group of chemicals, this study also 

showed the need for an expansion of the domain of the structural alert present in the OECD 

profiler to reflect the reactivity of cyclohexanones substituted by an alkyl group at the -

carbon. The experimental data suggest that Group 5 of chemicals react via acylation instead 

of Michael addition. The applicability domain of both profilers needs a restriction to exclude 

these chemicals from the Michael acceptor domain. 
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   Table 4.2 Suggested refinements to the protein binding profilers in the OECD QSAR Toolbox 

Group Profiler Structural alert Applicability domain 

3 Both 

 

Restrict the Michael acceptor 

domain to exclude chemicals 

matching the alert. R = alkyl 

N.B. any substituted cyclohexene is 

included 

4 Both 

 

Restrict the Michael acceptor 

domain to exclude chemicals 

matching the alert. 

R = alkyl 

4 OECD 

 

Expand the Michael acceptor domain 

to include chemicals matching the 

alert. 

R = alkyl 

5 Both 

 

Restrict the Michael acceptor 

domain to exclude chemicals 

matching the alert. 

X = O, NH, NR (R = alkyl) 
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4.3.2 Proposed ITS to Prioritise Cyclic Compounds for In Vivo Testing 

The applicability and acceptance of ITS for regulatory purposes are becoming essential with 

the introduction of REACH legislation [154]. The second objective of this Chapter was, 

therefore, to provide an example of an ITS for aquatic ecotoxicology studies to prioritise 

chemicals for experimental testing. Such a strategy was developed based on previous ITS that 

included the following steps: 1) collection of available toxicity data on the query compound; 

2) the use of in silico methods to make predictions on its toxicity; 3) performing in vitro assays 

(e.g. fish surrogates tests, fish cells and fish embryos); 4) WoE evaluation on all data; and 5) 

finally determination as to whether it is required to perform fish toxicity OECD tests [74,69].  

The strategy developed for the classification of cyclic compounds into three categories to 

prioritise chemicals for further aquatic toxicity testing is represented as a decision-tree 

diagram in Figure 4.6. In brief, the first step of the strategy proposed in this study was the 

identification of compounds exhibiting excess toxicity and narcotic (baseline) toxicity based 

on their absolute residuals values from Equation 4.1 (see above). Once compounds with 

excess and narcotic toxicity were identified, in silico data (i.e. the presence of a structural 

alert triggered by either profiler) and in chemico data (reactivity with GSH) were used. Whilst 

all compounds with excess toxicity were considered as a priority for experimental testing, 

only those that showed baseline toxicity and GSH reactivity and/or triggered an alert by 

either profiler were considered as the highest priority for chronic experimental testing 

(Figure 4.6). The identification of compounds relevant for chronic studies was conducted on 

the basis of the assumption that slow reactions between xenobiotics and proteins could have 

a potential hazardous effect to aquatic organisms when such interaction is persistent in the 

long term. In comparison to acute toxicity studies, chronic toxicity tests are not frequently 

conducted due to the high cost and long period involved [24]. The prediction of the chronic 

toxicity of a compound is usually based on the Acute-Chronic Toxicity (ACT) ratio [155]. The 
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ACT ratio refers to the median lethal or effective acute concentration divided by chronic 

value. This study has accordingly integrated acute and chronic toxicity tests in the same 

classification scheme to identify both potential short and long term hazards, thus 

representing the first ITS where both types of tests are integrated in the same scheme.  

As has been explained previously in the verification of structural alerts for some cyclic 

compounds (e.g. group 3), the presence of a structural alert in a chemical structure does not 

guarantee that the reaction will take place [25]. Steric hindrance and electronic effects 

caused by substituents at, or near, the reaction site can affect partially, or even totally, the 

reaction between GSH (or another nucleophile) and the toxicant. In particular, it has been 

reported that steric hindrance effects can influence at least 25% of the overall reaction rate 

of the Michael addition reaction [152]. As a consequence, reactivity data with GSH provided 

crucial information on the MIE of the Michael type reaction (e.g. the existence of mitigating 

factors) which was used to refine the prediction of chemical reactivity. In the ITS proposed, 

such information is framed by a dashed line and was crucial to identify compounds that do 

not require further experimental testing (non-reactive baseline toxicants without alert 

triggered) (see Figure 4.6). 

The proposed strategy could be taken as a foundation to develop future ITSs based on other 

fish surrogates (e.g. Daphnia, fish embryo) and toxicological endpoints (e.g. lethal 

concentration), both frequently used in risk assessments. According to the classification 

scheme illustrated in Figure 4.6, 12 chemicals were considered as having the highest priority 

for acute toxicity tests, 10 other chemicals as being relevant for chronic toxicity tests and 

eight chemicals were identified as compounds without a need to undergo experimental 

testing. Categories for each of the examined compounds are provided in Table 4.1 and 

explained in more detail below.    
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Figure 4.6 Proposed ITS for Michael acceptors to prioritise cyclic compounds for further testing. GSH: Glutathione; QSAR: Quantitative Structure-Activity 

Relationship; MA: Michael Acceptor; WoE: Weight of Evidence.
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Compounds with the Highest Priority for Acute Toxicity Tests 

Compounds with the highest priority for acute toxicity tests were all chemicals that exhibited 

excess toxicity towards T. pyriformis. Interestingly, all compounds with excess toxicity 

triggered a structural alert by either profiler (Table 4.1), supporting the reliability of in silico 

profilers to identify reactive compounds. Of these chemicals, compounds 9, 11, 12, 14 and 

15 were highly reactive with GSH. In the analysis of their chemical structure, no methyl 

substituents were found at the α, -C atoms suggesting a greater accessibility to the reaction 

site. In contrast, compounds 27-30 did not react with GSH. Such compounds were associated 

with the acylation mechanism by the OECD protein binding profiler indicating that the 

electrophilic toxic mechanism involved a nitrogen atom as the nucleophilic centre rather than 

sulphur as explained before. A lysine-based depletion assay would be required to clarify the 

type of electrophilic reaction of these chemicals.  

Chemicals showing excess toxicity should be considered as compounds of environmental 

concern since their reaction with biological macromolecules is irreversible [25]. Testing such 

compounds through a variety of in vitro toxicity assays such as the Fish Embryo Test (FET) 

[14] and fish cells test systems (both primary and cell lines cultures) would be necessary to 

generate more data to support their excess toxicity observed to T. pyriformis. Finally, if the 

in vitro data generated are not conclusive enough on the potential acute toxicity of the 

examined compound, the acute fish toxicity test [6] should be conducted. 

Compounds with the Highest Priority for Chronic Toxicity Tests 

Compounds with the highest priority for chronic toxicity tests were baseline compounds that 

showed either in chemico GSH reactivity or a structural alert triggered. Generally, these 

compounds included all the chemicals containing mitigating factors affecting reactivity such 

as a steric hindrance to the site of reaction (Group 3) and methyl group acting as electron-



 

 

111 

 

donating substituents at the α and β C -atoms (Group 4). This finding shows how combining 

different non-animal test methods can provide an insight into the mechanism of the reaction. 

It is expected that even slow reaction rate with GSH of these chemicals could be toxic towards 

aquatic organisms in a long term exposure.  Conducting additional in vitro and in vivo chronic 

toxicity tests would be of interest to expand the knowledge of the long term toxic effect of 

such chemicals. 

Compounds with No Need for Experimental Testing 

Compounds with no need for experimental testing were narcotic compounds that neither 

triggered a structural alert by the in silico profilers nor were reactive with GSH. All these 

chemicals belong to the Group 1 (polarised alkanes and non-polarised alkenes). For these 

chemicals, there is enough WoE of the lack of their reactivity to biological targets, and 

therefore further in vitro and in vivo testing should be not required. Alternatively, QSARs or 

read-across can be used to predict the toxicity of these non-reactive chemicals. 

4.4. Conclusion 

The integration of alternative methods is becoming more important in regulatory toxicology. 

This study has showed two outcomes of integrating in vitro, in chemico and in silico methods 

to provide relevant information on the Michael addition electrophilic mechanism of action. 

Firstly, this study has verified the structural alerts present in the in silico profilers within the 

OECD QSAR Toolbox using experimental data. The results showed that the applicability 

domain of some of the structural alerts required refinement and improvement, and therefore 

suggestion are given. Secondly, an ITS was developed based on the combination of multiple 

pieces of information to identify: 1) chemicals with a high priority for acute toxicity tests; 2) 

chemicals with a high priority for chronic toxicity tests; and 3) chemicals with no need for 

experimental testing. The results showed a good concordance between in silico, in chemico 
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and in vitro data, which could be integrated into ITS to make a decision whether a query 

compound will require in vivo fish toxicity testing. 
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Chapter 5. Discussion and Suggestions for Future Work 

To conclude this thesis, a summary and discussion of the research undertaken will be 

provided in the first section of this Chapter. A description of three proposed plans for future 

research will be described in the second section. The suggestions for future work were 

derived from the identification of knowledge gaps from the research conducted in this thesis, 

and they are expected to provide a basis for ongoing research. Finally, a thesis overview and 

final thoughts on alternative methods are provided in the last section. 

5.1. Summary and Discussion of the Work Undertaken 

Chapter 1: Introduction 

The development of non-animal methods to assess the toxicity and bioaccumulation 

potential of organic chemicals in fish is the central theme of this thesis. In Chapter 1, a 

description is given of different in vitro and in silico techniques used in aquatic ecotoxicology 

with a particular emphasis of why these methods have become important in risk assessment.  

To provide a better understanding of the research topic, Chapter 1 also introduced the origin 

of the pollutants that enter into the aquatic environment, the aspects that should be taken 

into account for the design of toxicity tests and the process of validation for the 

implementation of alternative methods. 

Chapter 2: Development of a List of Reference Compounds to Evaluate Alternative Methods 

to In Vivo Fish Bioaccumulation Tests 

The validation of alternative methods is the key for their implementation in risk assessment 

to reduce the number of animals required to assess the bioaccumulation potential and 

toxicity of chemicals [76,77]. To enable the validation of alternatives, lists of reference 
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compounds supported by high quality in vivo data are required to enable data comparison. 

Whilst lists of reference compounds have been provided to develop different alternatives to 

animal (eco)toxicity studies [79,98], no reference list has been proposed for in vivo 

bioaccumulation in fish. This knowledge gap led to the development of a reference list of 

chemicals to develop and validate alternative methods for predicting bioaccumulation with 

a particular focus on metabolic assays, as part of this thesis. 

It should be stressed that a considerable effort was made to establish a step-wise approach 

to select reference compounds for chemical bioaccumulation, as there is no official guidance 

of chemical selection procedures in general. Initially, it was planned to perform a similar 

approach to the compound selection strategy provided by Olah et al. [156] for drug discovery, 

which would have implied the use of in silico tools employed in industrial research. Generally, 

chemical selection procedures for drug discovery rely on a random selection of a structurally 

diverse set of chemicals based on a broad chemical space distribution resulting from the 

structure-biological activity relationship [95]. Examples of in silico techniques used for 

compound selection include clustering, cell-based and dissimilarity-based compounds 

selection methods [157,158]. Such methodology was rejected, however, due to two main 

reasons: 1) the heterogeneity of the data, since one of the selection criteria was that 

compounds supported by three in vivo measurements related to bioaccumulation should be 

included in the reference list; and 2) the intrinsic difficulty in selecting different chemical 

classes identified by employing a random selection. It was expected that the chemical 

selection could be biased for those classes containing a minority of chemicals, since different 

chemical classes can have a similar coverage for a given descriptor. Consequently, a list of 

selection criteria was established to minimise random compound selection as much as 

possible. In doing this, the criterion of the inclusion of different chemical classes was 

prioritised to ensure a broad range of key chemical properties (see Figure 2.1). Such selection 

criteria were integrated into a three-tier strategy. Tier I consisted of the selection of: 1) 
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relevant in vivo bioaccumulation endpoints (bioconcentration factor (BCF), whole body 

biotransformation rates (KMET) and measurements related to metabolite identification); 2) 

fish species (common carp and rainbow trout); and 3) and chemical classes that are shown 

in Table 2.2. Tier II involved data collection, evaluation and analysis of the chemicals 

supported by in vivo data for the selected in vivo endpoints. Tier III was based on a refinement 

selection process to guarantee a broad range of chemical domain in terms of physico-

chemical, molecular and metabolic properties. From the use of the above selection strategy, 

144 chemicals were selected for BCF, another eight for KMET and five compounds were 

supported by in vivo data for metabolism.  

The availability and the quality of in vivo data were key issues for compound selection. For 

example, to provide a representative list, the selection was focused on the fish species that 

possessed more measurements for bioaccumulation, i.e. rainbow trout and common carp. 

Another relevant aspect resulting from the creation of a relevance list was the identification 

of compounds whose BCF values showed poor correlation with the logarithm of octanol-

water coefficient (KOW). Such compounds were considered to be of interest for in vitro 

metabolic assays based on the rationale that significant metabolic biotransformation can 

reduce the maximal bioconcentration of chemicals. To identify compounds that may 

potentially be metabolised, maximal log BCF models (log BCFmax) were built from the 

relationship between in vivo log BCF and log KOW for rainbow trout and common carp, 

representing the first models that have been developed for these fish species.  

It should be added that although the list of reference compounds mainly addresses the 

development and validation of non-animal approaches for bioaccumulation studies in fish, 

other benefits can be derived from its common use, as for instance: 1) the investigation of 

the Absorption, Metabolism, Distribution and Excretion (ADME) properties of reference 

chemicals based on the integration of study results derived from various in vitro assays; and 
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2) the development of other chemical selection strategies for other fish species and/or 

toxicity endpoints based on the chemical selection strategy proposed. In particular, a list of 

reference compounds could be developed for chronic toxicity studies based on the data 

compiled by Raimondo et al. [155]. 

Chapter 3: A Review and Comparison of Alternative Methods to In Vivo Bioaccumulation 

Studies in Fish 

Over the last decade, various non-animal methods have been developed to assess the 

bioaccumulation of chemicals. Whilst some of these methods involved the use of fish 

hepatocytes or subcellular fractions (e.g. microsomes, S9) to assess the xenobiotic 

biotransformation based on a depletion approach, others use in silico models to estimate 

KMET and BCF of chemicals [30,116]. Predictive KMET approaches include Physiologically-Based 

ToxicoKinetic (PBTK) and Quantitative Structure-Activity Relationship (QSAR) models. 

Predictive BCF approaches include log KOW-based and kinetic mass balance models. Before 

alternatives become implemented in risk assessment to meet the Registration, Evaluation, 

Authorisation and Restriction of Chemicals (REACH) legislation [13], an in-depth analysis of 

their potential use as a surrogate and/or complement to in vivo bioaccumulation testing is 

likely to be required.  

As a consequence, Chapter 3 reviewed and compared the current alternatives for 

bioaccumulation for a set of compounds selected from the reference list developed in 

Chapter 2.  The non-animal methods examined were: 1) the in vitro clearance assay using 

freshly isolated hepatocytes from rainbow trout; 2) three PBTK calculation models and a 

QSAR model to predict KMET; and 3) log KOW-based and mass balance models for estimating 

BCF. Results showed that the rainbow trout clearance assay can be used to identify readily 

metabolised chemicals and investigate the effect of metabolic processes on the maximum 

bioconcentration of chemicals.   High variability in predicted KMET data was obtained from the 
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comparison between three PBTK models with an established QSAR model, suggesting further 

development and improvement needs. With regards to predictive BCF models, a kinetic mass 

balance model incorporating KMET predicted based on experimental half-lives (HL) represents 

a potential surrogate to in vivo bioaccumulation studies. Overall, although a significant effort 

is being conducted to develop non-animal methods to enable their use in risk assessment, 

further experimental work is still needed to: 1) set up a feasible protocol for the in vitro 

clearance assay to increase its sensitivity; 2) explore the biological factors of the fish donors 

(e.g. age) that can affect the variability of in vitro data; and 3) investigate the in vivo whole 

body metabolic rates of compounds covering a broad range of hydrophobicity (log KOW). 

Chapter 3 also highlighted the importance of the fish body mass in mass balance models for 

predicting BCF of chemicals, suggesting a need for consensus in selecting a single fish mass 

for future in vitro-in vivo data extrapolations.   

Chapter 4: In Silico Mechanistic Analysis of the Toxicity of Cyclic Compounds 

There is an increasing desire in (eco)toxicology to integrate various tests to elucidate the toxic 

mechanism of chemicals. In a regulatory toxicology context, a set of alternative methods are 

usually integrated into decision trees that are termed as Integrated Testing Strategies (ITS), 

which are used to make a conclusion as to whether or not a compound represents a toxic 

hazard before conducting animal tests  [69,74]. The combination of different experimental 

results has also been used for the verification of in silico predictions to define their 

applicability domain. This has been shown for the experimental verification of the structural 

alerts within protein profilers of the Organisation for Economic Co-operation and 

Development (OECD) QSAR Toolbox (www.qsartoolbox.org) by combining in chemico 

(reaction with Glutathione (GSH)) and Tetrahymena pyriformis toxicity data [148-150].  

Chapter 4 described two different outcomes derived from the integration of multiple 

methods when investigating the toxic mechanism of 30 cyclic compounds acting by the 
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Michael addition reaction. The first section involved the verification of structural alerts 

encoded into the two in silico protein profilers of the OECD QSAR Toolbox by using in chemico 

GSH and T. pyriformis toxicity data. The results showed that the applicability domain of some 

of the structural alerts required refinement and improvement; and hence, more work is 

required in this area. In particular, the following cyclic compounds should be excluded from 

Michael addition domain: 1) compounds with a ring system attached to the β-carbon; 2) 

cyclic compounds containing an alkyl group at the α-carbon; and 3) heterocyclic compounds 

containing either a nitrogen or oxygen atom in the ring system.  

The second section consisted of the development of an ITS for aquatic toxicity testing to 

classify cyclic compounds into: 1) chemicals with a high priority for acute toxicity tests; 2) 

chemicals with a high priority for chronic toxicity tests; and 3) chemicals with no need for 

experimental testing. To classify examined compounds into these categories, a decision tree 

was built from: 1) the QSAR analysis of the toxicity data to T. pyriformis; 2) the 

presence/absence of a structural alert for Michael addition domain; and 3) in chemico GSH 

data. Overall, a good concordance between in silico, in chemico and in vitro data was found 

when applying the ITS proposed, which can be used as a foundation to develop other 

prioritisation strategies for different aquatic species and/or endpoints. 

5.2. Suggestions for Future Work 

Suggestions for future work following this thesis are discussed below. 

5.2.1 Investigation of the Factors Affecting In Vivo BCF Data Variability 

It is expected that a large number of chemicals will be tested according to the recent OECD 

305 TG guideline [10] to meet the new REACH legislation. It should be noted that although a 

review of BCF for organic chemicals has been provided [32], the effect of experimental 

variables on chemical bioconcentration is not well understood. Moreover, ambiguous results 
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have been reported in the literature concerning the influence of test concentration on BCF. 

For example, while no significant differences between BCF data measured at the lowest and 

highest test concentrations were reported by Creton and colleagues [159], BCF data 

variability according to test concentration was found for chemicals whose coefficient of 

variance was higher than 50% when developing a reference list (see Figure 2.2 for more 

details). Similar to in vivo toxicity studies [58], there is also a knowledge gap in the potential 

effects of other abiotic factors such as the temperature and the pH of the test system on the 

bioconcentration of a compound. The latter has been identified as a key variable for the 

bioaccumulation of ionisable compounds [80,134,135].  

The biological features of test organisms also have an impact on chemical bioconcentration. 

The body weight of test animals is one of the most important variables in bioaccumulation 

studies due to its influence on Absorption, Distribution, Metabolism and Excretion (ADME) 

processes. In particular, previous work has reported that small fish have higher rates of 

absorption, metabolism and excretion of chemicals than larger fish [29]. It is believed that 

such physiological differences, depending on body mass, may affect the time required to 

attain the steady state (equilibrium) of chemical bioconcentration. For example, compounds 

tested in small fish may reach steady state earlier as a result of their higher rates of 

absorption, metabolism and excretion than those test chemicals measured in larger fish. This 

aspect should be considered as crucial for the bioconcentration of hydrophobic chemicals, 

due to the fact these chemicals require a significant amount of time to attain effective 

equilibrium [160]. 

Therefore, an in-depth analysis of in vivo BCF data is required to investigate the effect of both 

experimental conditions and the body mass of test fish on chemical bioconcentration. It is 

expected that a better understanding of the sources of BCF data variability will not only allow 
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for the development and improvement of alternatives to whole body fish testing, but also 

will help to select appropriate conditions for future in vivo BCF assessment.  

5.2.2 Future Directions of In Vitro Methods to Study Xenobiotic Metabolism 

The following aspects are considered as being relevant for the development and 

improvement of in vitro clearance assays using freshly isolated rainbow trout hepatocytes.  

Expand the Work Undertaken in Chapter 3 

As explained in Chapter 3, a total of nine chemicals were tested using cells from the same 

fish donor to minimise the influence of the biological variables on experimental data, which 

implied, however, the use of two replicates per test substance in order to test all chemicals 

at one time. Therefore, future experiments could consist of testing fewer chemicals with 

three replicates per compound to obtain lower intra-assay data variability. Of the compounds 

examined, 1,3-dichloro-5-nitrobenzene, dibenzofuran and pentachlorophenol should be 

rejected for future experiments as they were not cleared by the hepatocytes (see results in 

Tables 3.6). It should be noted that test concentration higher than 0.5 µM are required to 

test pentachloronitrobenzene to avoid its low detection limit for analysis, and exposure 

periods shorter than 5 hours should be used to reduce the number of samples per chemical. 

Another important question that remains unanswered is whether hepatocytes isolated from 

younger fish donors have higher metabolic rates than those isolated from older fish, as 

described in section 3.3.2.  In order to investigate this more thoroughly, the measurement of 

metabolic activity of enzymes from hepatocytes isolated from different aged fish donors 

should be conducted. Key metabolic enzymes to be measured are 7-ethoxyresorufin-O-

dealkylation (EROD), testosterone 6β-hydroxylation, 1-chloro-2,4-dinitrobenzene (CDNB)-

glutathione conjugation and p-nitrophenol-glucuronidation [39].  
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Development of a Protocol for Daily Routine 

As observed in Chapter 3, the in vitro clearance protocol used to study the biotransformation 

of chemicals involved several steps and materials: 1) the metabolic incubation in borosilicate 

glass tubes; 2) the aliquot of subsamples to stop the reaction into 1.5 mL Eppendorf tubes; 

and 3) finally the transfer of supernatant to vials for chemical analysis through Gas 

Chromatography Mass Spectrometry (GC-MS). The ideal experiments to study the 

metabolism of xenobiotics would be those in which the biological test system and chemical 

analysis are integrated in the same material, similar to the methodology conducted with an 

effect-directed analysis (EDA). EDA combines bioassays with analytical chemistry in 96-well 

plates to analyse environmental pollutants in risk assessment [161].  Another advantage of 

such analysis is that chemical analysis is performed using Liquid Chromatography Mass 

Spectrometry (LC-MS) that can be coupled to High Resolution Mass Spectrometry (HR-MS). 

LC-MS offer several advantages in comparison with GC-MS, such as a rapid chemical analysis 

with a very high sensitivity [161]. However, some types of chemicals such as essential oils, 

fragrances and non-polar compounds are particularly well-suited to GC-MS as they do not 

ionise well by LC-MS. 

Figure 5.1 shows an example of a 96 well-plate test system that could be used to study 

xenobiotic biotransformation, being suitable for both GC-MS and LC-MS analysis. For the 

analysis of certain types of chemicals (e.g. non-polar and volatile chemicals), an additional 

step will be required to extract some supernatant for the analysis of parent compound by 

GC-MS (see Figure 5.1). The use of such a test system could offer several advantages with 

respect to the current experimental procedure including: 1) higher reproducibility and 

reliability, as a result of the use of a greater number of replicates and multi-channel pipettes 

to stop the reaction, thus reducing the time gaps amongst sub-samples; and 2) elucidating 
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the metabolic pathways of test chemicals by analysing the resulting metabolites of test 

compound by LC-MS.  

 

Figure 5.1 Experimental system proposed to study xenobiotic biotransformation. Open circles: Test 

compound A, Solid circles: Test compound B; Crossed circles: control samples 

The use of the above, or a similar, test system is expected to expand the knowledge of the 

metabolism of structurally diverse chemicals. We believe that data on CLINT and metabolites 

identified for a broader chemical domain will allow for the construction of in silico models to 

predict CLINT and metabolic pathways of chemicals. Such metabolic data generated could also 

be incorporated into the log BCFmax models developed for rainbow trout and common carp 

to correct for the effect of metabolism on maximal bioconcentration.  

It should be noted that the clearance assays performed in this thesis consisted of an 

incubation of test compounds with freshly prepared hepatocytes in suspension. Research is 

also needed to develop clearance assays in other cell-based systems such as monolayers and 

aggregates cultures [41,128]. It is expected that clearance data generated in other test 

systems may differ from those determined in a suspension system. For instance, a 

comparative study showed that clearance rates of well-metabolised compounds were lower 

in monolayers than in suspension due to the relatively small surface area for chemical 

diffusion in monolayer test systems [162]. 
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The Use of Cryopreserved Hepatocytes in the Clearance Assays 

The use of cryopreserved hepatocytes in clearance assays is important to comply with the 

3Rs for animal use. Previous work has shown that cryopreserved hepatocytes are suitable for 

bioaccumulation risk assessment, as they maintain metabolic activities comparable to freshly 

isolated hepatocytes [39]. Initially, it was aimed to use cryopreserved cells together with 

freshly isolated hepatocytes in the clearance assays to reduce the number of fish for 

experimentation. As a consequence, preliminary experiments were undertaken to 

investigate the feasibility of cryopreserved hepatocytes for use in clearance assays. Freshly 

isolated hepatocytes with 95% viability from two isolations were cryopreserved following the 

protocol included as Appendix I, and then thawed according to protocol provided as 

Appendix II in the following days. For all thawed cells batches, low percentages of cell viability 

(~ 50%) and yield recovery (~ 25%) were obtained. The low percentage of cell viability could 

be a result of an inappropriate use of cryobox, as the foam was not removed, and/or a toxic 

effect caused by the DMSO (from the cryopreservation buffer). The low percentage of cell 

viability obtained in this study was similar to the yield recovery of 37% reported in previous 

studies [39]. It was concluded that further experimental work will be required to obtain a 

higher percentage of both cell viability and recovery in order to use cryopreserved 

hepatocytes for in vitro clearance assays.   

5.2.3 Establishment of a List of Reference Compounds for Developing AOPs 

A list of reference compounds can be established for aquatic ecotoxicology to provide a 

better understanding of toxic mechanisms of chemicals through the development of Adverse 

Outcome Pathways (AOPs). Investigating the AOP of chemicals is becoming a crucial topic of 

research in (eco)toxicology [26, 163], and recommendations for their appropriate 

development and assessment have been provided in the recent OECD guideline [164]. 
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Different applications for developing non-animal methods can be derived from established 

AOPs including: 1) the establishment of (Q)SAR, facilitating predictive and mechanism-based 

toxicology; 2) the elaboration of prioritising strategies to reduce animal use;  and 3) the 

development of novel in vitro toxicity screening tests [165]. As a consequence, a list of 

reference compounds selected from high quality toxicity data might be needed for future in 

vitro testing aimed at establishing AOPs. 

A variety of molecular test systems can be used to study the toxic mechanism of chemicals 

at cellular and molecular levels. Amongst them, the microarray test represents a powerful 

tool in research to study the gene expression of the toxic effects in organisms.  Of relevance 

is that changes in gene expression are toxicant specific and can be linked to their mechanism 

of toxic action [62,166]. Furthermore, microarray assessment could be a potential alternative 

to median effective concentration (EC50) and median lethal concentration (LC50) standardised 

tests [62]. Therefore, not only can a proposed list of reference chemicals contribute to the 

development of AOPs, but it can also be used for the evaluation and validation of the 

microarray test as an alternative to animal toxicity testing.  

The following steps describe the methodology that could be used for the development of 

such a reference list. 

Step 1: Starting Points for Chemical Selection  

Similar to the strategy taken in Chapter 2, the selection of relevant fish species, toxicity 

endpoints and chemical classes for aquatic ecotoxicology should be conducted before data 

compilation. Danio rerio (zebrafish) and Oryzias latipes (medaka) could be fish species 

candidates for two reasons: 1) their embryos are frequently used to assess the toxicity of 

chemicals as they present several advantages with respect to the whole fish [3,4]; 2) their 

genomes have been sequenced [167-169].  The selection of appropriate toxicity endpoints 
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should be established using expert judgment and considering relevant aspects such as data 

availability. It should be noted here that in vitro toxicity endpoints may be chosen instead of 

in vivo measurements due to the larger data availability [14]. Additionally, a good correlation 

between whole fish and embryo acute toxicities has been shown for zebrafish [14]. The EC50 

and LC50, both determined from 24 to 96 hours, represent endpoints of interest due to their 

wide use in ecotoxicology. It is expected that relevant chemical classes for ecotoxicology may 

cover those proposed for bioaccumulation (Chapter 2, Table 2.1) as well as compounds 

exhibiting: 1) non-polar narcosis; 2) polar narcosis; and 3) all electrophilic reactions involved 

in protein and DNA binding [25,26]. 

Step 2: Data Compilation, Evaluation and Chemical Classification 

Data for EC50 and LC50 determined in zebrafish and medaka embryos could be compiled from 

different publicly available sources such as the ECOTOX database (cfpub.epa.gov/ecotox), 

ECETOC (www.ecetoc.org) and ECHA (echa.europa.eu). Recent scientific publications, such 

as the list of chemicals supported by zebrafish toxicity data compiled by Lammer et al. [14] 

could also be taken into account.  Once all experimental data are collated and organised, 

assessment of the quality of the data should be performed according to the Klimisch criteria 

or the scheme for data quality provided by Przybylak et al. [22]. It should be stressed that 

only compounds assessed with the highest reliability score should be considered for the 

reference list. After this, the classification of compiled chemicals according to the chemical 

classes established in Step 1 should be conducted. A further sub-classification would be 

expected for those classes containing a large number of chemicals. Due to the difficulty in 

classifying chemicals with multiple functional groups in the molecule, special considerations 

should be given for such chemicals. 
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Step 3: In Silico Analysis 

A set of physico-chemical, molecular and toxicological properties should be calculated for the 

chemicals compiled in Step 2. Log KOW, logarithm of Henry’s Law Constant (log HLC) and water 

solubility may account for key chemical properties; molecular weight (MW) and maximum 

molecular diameter (Dmax) should be designated for molecular properties; the toxic 

mechanism of action and the presence/absence of structural alerts for protein and DNA 

binding should account for toxicological properties. The mechanism of action of chemicals 

should be predicted according to the following Verhaar classes [170,171]: 1) non-polar 

narcotics; 2) polar narcotics; 3) reactive chemicals; 4) specifically acting chemicals; and 5) 

unknown. Examples of some specific mechanisms of toxic action that should be considered 

include Acetylcholinesterase (Ach E) inhibition and oxidative phosphorylation [172]. Another 

aspect of interest should be predicting metabolism for the examined compounds, since some 

resulting metabolites can be more toxic than the parent compound [173]. Some of the above 

properties may be calculated by using the OECD QSAR Toolbox (www.qsartoolbox.org), EPI 

Suite software (www.epa.gov) and commercial software such as Meteor Nexus 

(www.lhasalimited.org) 

For compounds with sufficient data, QSARs could be developed from the linear regression 

between the inverse of the logarithm of the selected endpoint and log KOW. Such analysis 

aims to discriminate narcosis-level compounds and chemicals exhibiting excess toxicity. In 

addition, baseline narcotics and compounds with excess toxicity could be split into different 

groups depending on their predicted toxic mechanism of action and structural alert triggered, 

based on a similar approach to the Integrated Testing Strategy (ITS) proposed for Michael 

acceptors shown in Figure 4.6. 
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Step 4: Refinement of Chemical Domain  

A final selection process would be conducted by using a similar methodology to that 

employed in Chapter 2. For each of the chemical classes identified in Step 2, a selection 

should be performed to achieve a broad chemical domain for log KOW, molecular properties 

(MW, Dmax) and toxic mechanism. Additionally, the final list should include the following: 1) 

common compounds for established endpoints and fish species, as they represent chemicals 

of interest for exploring the link between EC50 and LC50 as well as interspecies differences; 

and 2) compounds supported by a high weight of evidence on the toxic mechanism. For 

instance, compounds predicted to be reactive with an alert triggered by the protein/DNA 

profilers, and conversely predicted narcotic compounds with no structural alert triggered by 

the OECD profilers.   

It is expected that in vitro data generated for such reference chemicals by using a battery of 

in vitro test systems, and subsequently incorporated into a common database, will make a 

significant contribution for aquatic ecotoxicology. 

5.3. Thesis Overview and Future Directions of Alternative Methods for Aquatic Toxicology 

This thesis has been centred on the development and improvement of non-animal methods 

to assess the toxicity and bioaccumulation potential of organic chemicals. This involved the 

use of multiple disciplines in the area of aquatic toxicology including: 1) the analysis and 

evaluation of in vivo data for chemical bioaccumulation; 2) the development of in silico 

models for bioaccumulation and the refinement of structural alerts for protein binding; and 

3) the establishment of an in vitro clearance assay to study xenobiotic biotransformation.   

In order to reduce the number of fish required for experimentation, further work is still 

needed for the final implementation of alternative methods. The use of a holistic approach 

might be the key to develop and improve non-animal methods. Similar to musicians of the 
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orchestra playing together, the integration of multiple results obtained from different assays 

could play an important role in providing accurate information concerning the mechanism of 

toxic action of chemicals.  

More experimental efforts are expected in the coming years to develop and validate in vitro 

assays for aquatic bioaccumulation. This is because in vitro methods to study xenobiotic 

metabolism for fish are being currently developed and no assays have been proposed to 

determine the absorption of chemicals.  The validation of these methods will be crucial for 

their appropriate implementation in risk assessment. It is expected that the list of reference 

compounds established in Chapter 2 will assist in this process.  

Finally, more in vivo testing using the whole fish is also likely to be required for the suitable 

development of alternative methods. This is because the effect of biological and 

experimental factors on in vivo data are not well-understood in both toxicity and 

bioaccumulation studies. A better understanding of the influence of these factors on in vivo 

data variability could not only allow for a rational development of in vitro assays, but also it 

could explain the data variability reported for in vivo studies.     
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Appendix I: Cryopreservation of Trout Hepatocytes 

This protocol is exemplified for a final concentration of 15 million cells per vial and a total of 

10 vials. 

1. Determine the concentration and viability of freshly isolated hepatocytes. 
2. Transfer 150 million of hepatocytes into a 50 mL centrifuge tube. 
3. Centrifuge cells at 50 g for 3 min at 4 °C to sediment cells. Aspirate supernatant to 

just above cell pellet and add cryopreservation buffer up to 5 mL. 
4. Suspend cells in solution and then slowly add 2.5 mL of cryopreservation buffer 

containing 12% Dimethyl Sulfoxide (DMSO) while gently shaking cells. 
5. After 5 minutes on ice, slowly add 7.5 mL of cryopreservation buffer containing 16% 

DMSO while gently shaking cells. Final volume is 15 mL at 1 million cells/mL. 
6. After 5 minutes on ice, suspend cells by gently shaking and transfer 1.5 mL of 

hepatocytes suspension to cryovials. 
7. Place vials into the freezing container (previously filled up with isopropanol) and keep 

it at – 80 °C overnight (not recommendable for more than 2 days). 
8. After the controlled rate freezing is completed by the freezing container, place the 

cryovials into a liquid nitrogen storage tank. Removing cells from freezer to storage 
tank should take less than 1 minute.  

 
Additional notes 

 Keep cells and medium on ice throughout entire procedure and always shaking when 
adding a new medium. 

 DMSO is required to protect cells and is added in a two-step gradient to adapt cells 
to DMSO. The final concentration of DMSO should be less than 10%. 

Cryopreservation Buffer (DMEM with 20% FBS and 0.25% BSA) 

 40 mL Dulbecco's Modified Eagle Medium (DMEM) 

 10 mL Fetal Bovine Serum (FBS) 

 0.125 g Bovine Serum Albumin (BSA) 

Mix and adjust to 7.8 

Cryopreservation Buffer w/12% DMSO 

 4.4 mL cryopreservation buffer 

 0.6 mL DMSO 

 
Cryopreservation Buffer w/16% DMSO 

 10.5 mL cryopreservation buffer 

 2 mL DMSO 
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Appendix II: Thawing of Cryopreserved Trout Hepatocytes 

This protocol is exemplified for thawing a total of 45 million frozen cells contained in 3 

cryovials (15 million cells/vial). 

1. Prepare recovery medium at a room temperature using sterile conditions. The 
recovery medium contains Dulbecco's Modified Eagle Medium (DMEM), 10% of Fetal 
Bovine Serum (FBS) and 0.25 % of Bovine Serum Albumin (BSA).  For a total volume 
of 150 mL, the amounts for each reagent are: 

 
                                                        Reagent 

DMEM                            135 mL 

                                                  FBS                                   15 mL 

  Low Fatty Acid (BSA)     0.375 g 

 
2. Mix the recovery medium for approximately 5 min in the incubator refrigerated at 

28 °C, adjust its pH to 7.8 and then filter the recovery medium with a sterile filter.  
3. Adjust the pH of Leibovitz medium (L-15) (without phenol) to 7.8. 
4. Aliquot 42 mL of recovery medium into a 50 mL centrifuge tube for thawing 2 vials 

containing approximately 30 million frozen cells, and aliquot 21 mL in another 
centrifuge tube for 1 vial (15 million frozen cells). 

5. Set up an area for thawing cryovials using a room-temperature bath.  
6. Once the cryovials are taken from the liquid nitrogen storage tank, place them 

immediately into a water bath with gentle shaking for 2 minutes or until their 
contents freely move and/or a small ice crystal remains.  

7. Pour the contents of cryovials into the recovery medium in centrifuge tubes. Once 
you poured the content of cryovials, pipette 1 mL of recovery medium to each 
cryovial to re-suspend any remaining cells, invert once to mix and then pour the re-
suspended 1 mL into the centrifuge tubes. 

8. Invert tubes once and centrifuge them at 500 rpm for 5 minutes at 4 °C. 
9. Aspirate supernatant being careful not to disturb cell pellet. 
10. Quantify sufficient to make a volume of 5 mL with L-15 medium and re-suspend cell 

pellet by tapping side of centrifuge tube against finger/hand. Note: If there are more 
than 2 centrifuge tubes (based on the number of vials thawed), combined cells into 
2 centrifuge tubes and quantify sufficient to make a volume of around 45 mL with L-
15 medium for each. 

11. Invert tubes once and centrifuge at 500 rpm for 5 minutes at 4 °C. 
12. Aspirate supernatant being careful not to disturb cell pellet. 
13. Quantify sufficient to make a volume of 5 ml with L-15 and re-suspend cell pellet by 

tapping side of centrifuge tube against finger/hand. Combine cells into one 
centrifuge tube and quantify sufficient to make a volume of 45 mL with L-15 medium. 

14. Invert tube once and centrifuge at 500 rpm for 3 minutes at 4 °C. 
15. Aspirate supernatant and suspend cells in approximately 0.75 mL of L-15 medium per 

cryovial thawed.   
16. Count cell density and cell viability using Trypan blue. Note: the cell viability should 

be higher than 80%. 
17. Calculate the percentage of recovery: total number of cells/total number of cells 

cryopreserved) x 100. Note: the recovery percentage should be around 20%.  
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