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Abstract 

 

Rubber-like materials and thin membrane materials have been widely used in 

industries, such as engineering fields and biomedical fields. The mechanics of 

membranes and material parameters identification is an important research area. In 

this work, different inverse FE modelling approaches to extract material parameters 

(Ogden model) has been assessed supported by several newly developed programs in 

producing or analysing the data. The effects of new material properties (e.g. negative 

Poisson’s ratio) are also studied.  

 

In this work, the use of inverse FE modelling and indentation bending test for 

material property identification has been systematically studied. A parametric FE 

model has been developed and validated simulating the indentation bending tests of 

thin latex rubber samples made in the laboratory. Rubber samples were tested in 

standard uniaxial tensile, planar tests, the hyperelastic material parameters are 

determined and used as the target for an inverse materials parameter identification 

program. An ABAQUS add-on program has been developed to automatically update 

the material parameters and extract the force-displacement data. Simulation spaces 

over a wide range of material parameters have been developed, which successfully 

provided the numerical data for the inverse approach for material property 

prediction. Different curve analysis approaches in representing the force-

displacement curve have been proposed including (1) using ratio of P/h
3
 for the low 

load region, (2) using the effective slope at higher load and (3) using the second 

order polynomial curve fitting parameters. The result shows that use of these curve 

fitting parameters could effectively simplify the inverse FE modelling process and 

allow the use of surface plot equations to establish a mathematical relationship 

between curve coefficients and material parameters. These relationships could 

effectively open up the possibility of improving the uniqueness of inversely predicted 

material property sets by combining either data from different testing conditions or 

different curve data from the same test.   

 

As an important part of the work, several new programs have been developed to 

process and analyse the data. A MatLab program has been developed to determine 



 

the surface equation between the key curve coefficients and the material parameters 

based on FE data with an Ogden model. Work based on the data from a single 

indenter test shows that there are multiple material property sets that could produce 

identical force-displacement data. This confirms that the results are not unique. 

Several approaches have been evaluated by combining the surface equation for 

different curve parameters or testing conditions (i.e. sample sizes) to improve the 

robustness of the inverse prediction. A program has been developed and 

implemented by the inverse FE modelling which allows systematic studies with 

different approaches including dual chamber size, thickness or combining a two 

curve parameter approach. The results demonstrate combining different curve fitting 

approaches with a smaller chamber size is more effective than using the dual 

chamber size approach. Relaxation indentation bending test have been performed and 

different inverse FE program has been comparatively applied to estimate the 

viscoelastic parameters from the test data. One program is based on full objective 

function approach; the other is a two staged interactive searching approach. This 

program has been evaluated in both training data using numerical data as the target 

and relaxation test data of the natural latex rubber sample.  

 

The deformation of circular elastic membranes with a clamped edge under point 

loading or finite contact conditions is systematically studied incorporating auxeticity 

behaviour (Negative Poisson’s ratio). The effect of Poisson’s ratio on the 

deformation of the material is established. The feasibility and limitation of an 

analytical solution is assessed. The work shows that the P/h
3
 relationship is 

applicable to describe the force displacement data over the membrane domain for 

both point loading and finite contact conditions. It is shown that negative Poisson’s 

ratio has shown clear influence on the membrane deformation domain; the resistance 

force of a membrane with a negative Poisson’s ratio is relatively lower, which could 

be beneficial for application such as sensors, as the material will be more sensitive to 

load change. This work has highlighted some important characteristics of membranes 

with negative Poisson’s ratio, further work is required to quantify these effects with 

consideration of relative dimensions between sample thickness and chamber size. 
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1.0 Introduction 

 

1.1 Indentation bending tests of thin membranes and materials parameters 

identification 

 

Many engineering and medical conditions involve deformation/deflection of thin 

shells/membranes with a clamped boundary, such as pressure sensors, valves and 

actuators. (Ju B.F. et al, 2005; Egan P. et al, 2007; Scott O.N. et al, 2004; 

Selvadurai A.P.S., 2006; Ahearne M. et al, 2010).  Many biological structures are 

also thin walled and filled with different fluidic medium (air/water), for example 

cells, blood vessel, bladder and rectum, etc. (Humphrey, 2002). The mechanical 

properties of thin elastic membranes and structures are of wide interest to improve 

the performance of these materials/structures, as well as the functions of biological 

tissue, including the filling process of the human or animal bladders. The material 

deformation in these cases covers a wide spectrum of strain levels from small 

deformation to large displacement with samples of different thicknesses. A 

convenient way to test the material behaviour is by using indentation bending tests in 

which an indenter/sphere is pressed onto a thin sample fixed along its rim of either a 

regular (round, square) or arbitrary shape (Ju B.F. et al, 2005; Ahearne M. et al, 

2010). The resulting force displacement curve (P-h curves) is dependent on the 

properties of the material, the structure and dimensions of the sample. A detailed 

understanding of the deformation mechanism of different materials/structures under 

such a loading condition is of great significance to materials testing and product 

development.   

 

In a continuous indentation bending test, an indenter is pressed onto the sample 

surface and the resistance of the material is represented by the force 

displacement/deflection data.  (Begleya M. R. et al, 2004; Scott O. N. et al, 2004; Ju 

B. F. et al, 2005; Ahearne M. et al, 2010; Cao Y. P. et al, 2009). A range of testing 

methods with different facilities have been developed and used to characterise 

different materials (Diridollou S. et al, 1997; Selvadurai A.P.S., 2006; Sasso M. et al, 

2008; Aernouts J. et al, 2010; Hosseini M. et al, 2013; Koumi E.K. et al, 2014; 

Budday S. et al, 2015). Due to its intrinsic experimental simplicity in terms of 

facilities and sample requirements, and effort has been made to explore its use to 
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directly/reversely probe the properties of materials and investigate the mechanical 

behaviour of thin shell/membrane materials rather than using standard testing 

methods (such as tensile, planar), which require the use of large samples in order to 

produce stress-strain data with well-defined deformation fields. In some case, such as 

biological materials such as bladder, standard samples are not readily available or 

extremely costly due to limited availability, etc.  Apart from using the method to 

determine material properties, it is also of significant importance to further study the 

mechanics of materials with abnormal properties.  

 

In comparison with other testing methods, such as indentation test which sample is 

supported from the base, and the sample for indentation bending tests is fixed from 

the edge. The testing or material property prediction could be affected by many 

factors including the selection of material models and strain energy functions as well 

as the testing conditions. The effect of the sample size and the indenter size is also 

not well defined, which may vary with the materials and strain levels. This makes it 

much more difficult to establish a robust inverse program and data analysis 

procedure. For an inverse program, the accuracy, robustness and the uniqueness is 

very important. For situations where a unique results is not attainable, effort has to be 

made to define a procedure (such as a larger data set) in order to determine a set of 

material data which is sufficiently accurate.  In such a case, a wide range of material 

parameters set will be required for the inverse modelling program to search the 

optimum material parameters set. This requires expensive modelling works to build a 

large simulation space. Analysis of the data and editing the material parameters 

manually is very time-consuming and ineffective. Inverse modelling programs with 

automatic/semi-automatic program have to be used to improve the accuracy and 

decrease the time of data mining. In ABAQUS, some users interactively modify or 

read data by linking the program with FORTRAN and C++ to run user-subroutine 

codes such as VUMAT and UMAT (Lee W. B. and Chen Y. P., 2010; Toda N. et al, 

2010; Mishnaevsky L. et al, 2014). These developments offer an opportunity to 

develop a data processing program combining FE modelling, parametric studies, data 

process and analysis to reduce the complexity of the inverse program,  This is very 

important for application oriented development of inverse modelling. Python is more 

user friendly and flexible program, which is increasingly being used within or linked 

to ABAQUS. When dealing with complex materials models, it is essential to develop 
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a modern Python programming language to be used as a tool for running multiple 

parametric models over a wide range of material parameters in a smart and quicker 

method to characterise the material properties, rather than relying on manually 

changing the parameters. This is applicable to both hyperelastic parameters and the 

time dependent viscoelastic properties. The work will cover developing models, 

automatic fitting curve parameters, automatically compare results and determine the 

parameters of different materials models. 

 

Another area which requires further study is the mechanics of indentation bending 

tests for some new materials (such as negative Poisson’s ratio materials). Smart 

materials are increasingly being used in area involves thin shells/membranes. A 

detailed understanding of the deformation mechanism of different 

materials/structures under such a loading condition is of great significance to 

materials developments. Most of the work has been focused on material stiffness 

(represented by the Young’s modulus) with a fixed Poisson’s ratio. With the rapid 

development in materials with different Poisson’s ratios, including material with 

negative Poisson’s ratios at different length scales (Evans K.E. and Alderson A., 

2000; Pozniak A.A. and Wojciechowski K.W., 2014; Sanami M. et al, 2014; Sun G.Y. 

et al, 2014; Alderson K. et al, 2014; Ge Z. and Hu H., 2015; Lim T.C., 2015; Shufrin 

I. et al, 2015), it is important to investigate the potential effects of Poisson’s ratio and 

auxeticity on the force-displacement data, the material deformation modes and its 

interaction with the indenter. Due to the nature of loading and sample configuration, 

the effect of Poisson’s ratio for a sample with clamped edge conditions is 

complicated, being affected by material properties as well as the experimental 

conditions (such as sample thickness and indenter size, etc.). Within the loading 

strain domain, the deformation mode may change with depth. In the bending/plate 

domain, the load is known to be not affected by the auxeticity of the materials 

(Timoshenko S. et al, 1951). But in the membrane or transition between plate and 

membrane behaviour, positive or negative Poisson’s ratio theoretically would 

potentially have different effects under localised loading conditions (Timoshenko S. 

and Woinowski-Krieger S., 1987; Komaragiri U. et al, 2005). It is essential to 

investigate the effect of Poisson’s ratio on the material behaviour in both point 

loading and finite contact conditions (such in the case of a spherical indenter). Under 

these conditions which are different from the loading conditions of standard tests 
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(e.g. tensile tests), the effect of material properties on the material behaviour is 

directly influenced by the dimensions of the experimental samples as well as the 

loading conditions. A detailed understanding of these factors will help to establish 

the effects of the Poisson’s ratio with a focus on the influence of auxeticity, which 

will help to further develop material testing methods and extend the use of auxetic 

materials in many relevant industrial fields.  
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1.2 Aims and objectives 

 

The work aimed to develop python based program/framework for a combined 

experimental and numerical method to inversely predict the material properties of 

thin membranes for both hyperelastic material and viscoelastic material.  

The main objectives are: 

 To develop and validate an FE model simulating indentation bending tests of 

thin rubber sheets 

 To develop a python based FE program with fully parametrised material 

properties and dimensional parameters. 

 To evaluate the feasibility of representing the force-displacement data using 

different curve parameters in order to simplify the curve fitting and searching 

process. 

 To develop an inverse FE program for hyperelastic parameters prediction and 

validate the results with training set and testing data of thin rubber sheet. 

 To develop programs to inversely calculate the viscoelastic properties for 

different viscoelastic material. 

 To investigate the effect of Poisson’s ratio on the deformation of thin 

membrane under finite contact condition.  
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1.3 Outline of the thesis 

 

In chapter two, background information and current research on testing thin rubber 

sheets such as indentation bending tests and inverse modelling and their applications 

in characterisation of material properties have been reviewed. The basic theories of 

linear and nonlinear mechanics and strain energy functions are reviewed with the key 

controlling materials discussed. The viscoelastic behaviour of rubber and polymer 

are reviewed, different creep material behaviour model are discussed in details. 

 

The main results on the indentation bending and material properties characterisation 

is presented in Chapter 3. An inverse FE modelling program based on the indentation 

bending tests has been developed and applied to characterise the nonlinear elastic 

material properties of thin sheet. Three different approaches have been evaluated to 

present the force-displacement curve using different curve parameters, which 

effectively simplify the data set. The methodology has been studied in terms of 

accuracy, convergence and robustness of the predicted results, which are important 

for materials characterisation. The method is evaluated using training data with 

known material properties first then, used to predict the material properties of natural 

latex rubber made in the laboratory. Several approaches have been evaluated to 

improve the robustness by combing data at different indentation depths or sample 

sizes.  

 

The work on the FE modelling of the relaxation indentation bending test is presented 

in Chapter 4.  In this work, the inverse FE program is developed to simulate the 

relaxation tests of latex rubber sheet. A set of relaxation tests based on the 

indentation bending test has been conducted. Latex rubber with different thicknesses 

were produced and tested. The viscoelastic properties of the latex rubber are 

inversely estimated by combined experimental data and FE modelling program. The 

accuracy of the predicted viscoelastic parameters is assessed by comparing the 

testing results with standard relaxation tensile tests. 

  

In Chapter 5, the effects of Poisson’s ratio on the material behaviour are investigated 

including the force-displacement data, material movement and the contact 

conditions.  
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Overall conclusions are given in Chapter 6. Future works are highlighted based the 

work reported. 
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CHAPTER TWO 

 

LITERATURE REVIEW 
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2.0 Background and literature review 

  

2.1 Introduction 

 

In this chapter, the main properties of rubber materials and their applications in 

different industrial fields has been reviewed. Different types of mechanical tests, in 

particular those suitable for thin samples are given in details. Main hyperelastic strain 

energy functions widely used for rubber like materials are presented and the 

advantages and disadvantages of each model is discussed. Different testing methods 

for thin membranes are reviewed including different testing setups. The theoretical 

framework and current research on inverse FE modelling method and optimisation 

programs have been critically reviewed and potential improvements are discussed. 

The difficulties and challenges for inverse FE modelling approach based the 

indentation bending tests to predict the hyper-elastic, elastic-plastic, and viscoelastic 

properties are reviewed and discussed.  
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2.2 Rubber-like materials and thin membranes 

 

Rubber and rubber-like materials are used in a wide range of industries such as 

automotive industries (vehicle tires, oil seal ring, and vibration absorber), 

engineering field (conveyor belt, bearing, adhesives, etc.) and marine industries 

(fume scrubbers, cooling pipe work and fender) (Mazurkiewicz D., 2009; Samad 

M.S.A. et al, 2011; Zanchet A. et al, 2012). Rubbers are also widely used in medical 

fields such as diagnosis and treatment equipments, tubes, gloves as well as biological 

organs or morphogenesis (Thein-Han et al, 2009). Figure 2.1(a) list different types of 

rubbers and their applications (Peyraut F. et al, 2009; Bechir et al, 2010; Huang H. 

et al, 2013). Natural rubber normally can be found in household applications such as 

gloves, rubber-bands, flooring mats, hot water bags, etc. Natural rubber is a high 

molecular weight polymeric subtrance. Isoprene is a diene and 1, 4 addition leaves a 

double bond in each of the isoprene unit in the polymer (Charles J. & Gunasekaran 

S., 2015). Raw natural rubber has low tensile strength and abrasion resistant, 

however vulcanised natural rubber can improve its properties and modify the 

properties of the natural rubber. Typical example is radiation or hot vulcanisation 

process, in which heat, sulphur, zinc oxide and accelerator are combined to modify 

the rubber structure and properties (Chaudhari C.V. et al, 2005, Jaunich M. & Stark 

W., 2009). 

 

The type of rubber widely used in the textile industries is polychloroprene or known 

as poly 2 chlorobutadiene for making household product (e.g. carpet, rugs, and 

bedding) as it has good chemical resistance and flexibility over a wide temperature 

range. This polymer is prepared by free radical emulsion polymerisation. The 

chloroprene in the form of liquid emulsion is converted into homopolymers or 

copolymers with the aid of radical initiators. The polymerisation is stopped by agent 

and polymer is frozen by refrigeration and drawn as a thin rubber sheet (Gac P.Y.L. 

et al, 2014). In term of mechanical properties, the chloroprene rubbers are 

homopolymers of chloroprene and the polymer chains have an almost entirely trans-

1-4-configuration. Because of this high degree of stereoregularity they are able to 

crystalise during stretching and elongation at break is between 250 to 500% (Ismail 

H. & Leong H.C., 2001, Ha-Anh T. & Vu-Khanh T., 2005). 
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Another type of rubber is polybutadiene, this type of rubber is a synthetic rubber with 

a high resistance to wear. Polybutadiene forms by linking many 1.3-butadiene 

monomers to make a longer polymer chain molecule. The catalysts used to form a 

polybutadiene are neodymium, cobalt, nickel, titanium and lithum. Different catalyst 

can influence the material properties, for example, using cobalt resulting in a low 

viscosity material that is ease to use but low in mechanical strength and with 

neodymium can form an end-to-end (higher cis) linear structure and increase the 

mechanical strength (Oehme A. et al, 1993, Kwag G. H. et al, 2005, Li H. et al, 2011, 

Srivastava V. K. et al, 2011). One of its typical applications is in manufacture of 

tyres.  

 

Polyisobutylene consists of 98.5% of isobutylene and 1.5% of isoprene. 

Polymerisation of isoprene results in the incorporation of an alkene into the polymer 

chain. The sulphur added vulcanised and formed a network structure in the form of 

crosslinked rubber. The material has high chemical stability, biocompatibility and 

low permeability to gases and solvent, these made them suitable being used in the 

manufacture of adhesives, sporting equipment, protection masks and in chewing 

gum. (Pinchuk L. et al, 2008, Roh J. H. et al, 2015, Trant J. F. et al, 2015) 

Some specific examples of rubber products are shown in Figure 2.1(b-e) including 

tyre, seal, sensor and bearing. Oil seal and water seal (Figure 2.1(b)) is used in 

industrial field to prevent leaking from the joint pipe (Chandrasekaran, 2010). 

Damping facilities such as vibration suspension and shock absorber of automobile 

normally use viscoelastic rubber seal, as shown in Figure 2.1(c), for achieving the 

damping effect. Due to their wide range of applications, it is important to develop 

proper experimental techniques to characterise the material properties of rubbers and 

rubber-like materials.  
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(a) Different types of rubber and typical areas of applications. 

Figure 2.1 Rubber and rubber-like materials and typical applications. 

 

 

  

(b) Use of tuber in tyres. 

(Presti D.L, 2013) 

(c) Use of rubber in automotive seal.  

(Ke Y. C. et al, 2014) 

 
 

(d) Use of rubber in bearing. 

(Saiful Islam A.B.M. et al, 2013) 

(e) Use of rubber in diaphragm sensor. 

(Huang H. et al, 2013) 
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Rubber components are normally used in different form/geometries or under various 

strain range in different applications.  For example, for tyre and bearing, the rubber 

materials are in a form of bulk material. While the material for seals/gaskets is in the 

form of thin sheet, the thinner the seal is the better the performance. Diaphragms are 

used to detect the change of pressure, so thin membranes are used to meet the 

requirement on functionality. Thin rubber like membranes are also widely used in 

applications such as surgical gloves, pressure valves, actuators and etc. (Nguyen et 

al, 2004; Daisley et al, 2006; Kabwe A.M. et al, 2010; Taniguchi H., 2013). Thin 

rubber like material are increasingly being used for artificial tissues such as blood 

vessels, fibrous interface membrane, bladder, rectum and etc. (Haslach and 

Humphrey, 2004; Chan and Crosby, 2006; Kraaij G. et al, 2014; Lee A.Y. et al, 

2014). These types of sample are more difficult to test and characterise than rubbers 

in a bulk form. The choice of testing always depends on the materials concerned, the 

boundary condition in service, the strain level and the main functional requirements. 

In addition, for different condition, the same material may need to be represented by 

different types of material models when simulating the material deformation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

2.3 The properties of rubber like material and plastics material  

 

Figure 2.2(a-c) shows schematically the three main types of stress strain relationships 

in materials. Figure 2.2(a) illustrate a simple case of linear elastic behaviour, in 

which stress is proportional to strain and the strain is recoverable if the stress is 

removed, i.e. the specimen returns to its original dimensions.  

 

A linear elastic relationship between compressive or tensile stress and strain can be 

described by: 

                                        (2.1) 

Where the constant E is the Young's modulus. 

The absolute value of the ratio between the lateral strains to the longitudinal strain is 

the Poisson’s ratio:                                                                                                    

                                                                                                               (2.2) 

The Poisson’s ratio for rubber is close to 0.5 as the material is incompressible. For an 

isotropic material, the shear modulus G can be calculated using: 

                                  (2.3) 

As a comparison, Figure 2.2(b) shows a typical elastic-plastic behavior, this material 

behavior is commonly found in plastics and metals. For elastic-plastic behaviour, the 

strain can be divided into two parts: elastic part and plastic part. Elastic part is linear 

and revisable, normally these two stages is separated by yielding point which is the 

point that material starts to undergo plastic deformation which is an irreversible 

process. The total strain is the sum of the elastic and plastic strain: 

  
pE                  (2.4) 

When unloading in the plastic region, the behaviour is again elastic. After complete 

unloading, the remaining strain is the plastic strain p . 

As shown in Figure 2.2(c), a non-linear relationship or so called hyperelastic material 

is usually found in rubber-like material. Rubber-like materials are elastic in the 

xx E 

x

y




 

)1(2  EG
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classical sense. During unloading, the stress-strain curve is revisable and no 

permanent deformation. Rubber-like materials are initially isotropic elastic body, and 

usually defined in terms of invariants of stretch ratios. There are some phenomena of 

hyperelastic material model such as material is isotropic and non-linear, exhibit 

instantaneous elastic response up to large strains (Malvern L. E., 1969, Johannknecht 

R. & Jerrams S. J., 1999, Shabana A. A., 2012). The non-linear relationships 

between stress and strain are usually convex upwards. When materials are under 

cyclic loading, it will exhibit a typical viscoelastic material behaviour as shown in 

Figure 2.3. This type of deformation is the mechanical characteristic of viscous flow 

and elastic deformation (Love A. E. H., 1944, Timoshenko S. & Goodier J. N., 1951, 

Slaughter W. S., 2002, Mills et al, 2003). 

 

 

 

 

 

(a) Linearly elastic. (b) Elastic-plastic. 

 

 

(c) Hyperelastic. 

Figure 2.2 Schematics showing the linear elastic (a) and nonlinear material 

behaviours (b-c). 
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Figure 2.3 Schematics to show viscoelastic material behaviour in loading and 

unloading. 
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2.4 Strain energy functions for rubber, foams and biological materials 

 

For a linear elastic material, its behaviour can be simply represented by the Young’s 

modulus and Poisson’s ratio. For an elastic-plastic material, the material’s behaviour 

could normally be represented by the yield stress and working hardening 

coefficients. For hyperelastic materials, their behaviour is more complicated, which 

can only be described by complex strain energy functions, this make the testing and 

modelling of this group of materials much more difficult.  

 

Strain energy refers to the potential energy stored in an object by virtue of 

deformation (Ogden et al, 2004). For a perfectly elastic material the strain energy is 

equal to the work that must be done to produce both normal and shear strains. The 

strain energy is recovered when the stress causing the strain is removed. Total 

recovery is achieved for perfectly elastic material and the recovery is partial for 

plastic material due to energy dissipation. The strain energy function, W, is a 

function which relates the strain of a material to the energy developed by this 

deformation. Strain energy density (U): Strain Energy Density (SED) is strain 

energy measured per unit volume of the body. SED is a better indication of the 

material since it is normalized to the size of the body. The strain energy function can 

be regarded as a generalisation of Hooke’s law that enables the description of 

complex elastic components in a systematic way (Afshar and Berto, 2011; 

Boulenouar A. et al, 2013). 

Many materials can undergo a very large deformation (known as hyperelastic 

behaviour) including foams, rubber and many biological tissues (Aernouts et al, 

2012; Ahearne et al, 2010). For an elastic material, the stress at any point can be 

defined solely as a function of the deformation gradient F at that point. A change in 

stress arises only in response to a change in configuration irrespective of the manner 

in which the change in configuration arises in space and time. For a hyperelastic 

material, in addition to the above definition, an additional scalar function also exists 

from which the stress can be derived at each point. The scalar function is the stored 

energy or strain energy function, W, which can also be defined in terms of the 

deformation gradient. (Weiss and Gardiner, 2001). 
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  ( )W W F                 (2.5) 

The strain energy, W, must obey the principle of material frame indifference. With 

this principle, rigid body motions will not change the value of the strain energy 

function. Consequently, W may be expressed in the form of: 

  ( )W W C                            (2.6) 

Where C is the right Cauchy-Green strain tensor. Then, the second Piola-Kirchhoff 

stress is derived directly from the strain energy as: 

  2
W

S
C





                (2.7) 

Hyperelasticity provides a convenient framework for the formulation of constitutive 

equations for materials such as rubber, foams or biological soft tissues as it allows 

for large deformations and anisotropy (Weiss and Gardiner, 2001). 

A hyperelastic material might be represented by a strain energy function. For 

Hookean (linear) elastic materials, this takes the following form: 

  1 2 3( , , )W W I I I                                       (2.8) 

 

For an isotropic material W can depend on C through only the three principle 

invariants of C: 

Where                 
2 2

1 2 3

1
; [( ) ]; det

2
I trC I trC trC I C     

 

and “tr” denotes the trace of the tensor. The isotropic hyperelastic material reduces to 

linearised elasticity when appropriate assumptions regarding the magnitude of strains 

and rotations are made (Ericksen and Rivline, 1948; Weiss and Gardiner, 2001; 

Monteiro E. et al, 2011; Dias V. et al, 2014). 

 

Finite Element analysis for nonlinear elasticity, the solution process often proceeds 

by searching for a configuration that is close to a known equilibrium state that 

provides a balance between incrementally applied loads and the current stress field in 

the material. In this case, the elasticity tensor plays an important role in the iterative 
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solution process (Brunig, 1998; Weiss and Gardiner, 2001; Arciniega and Reddy, 

2007). Nonlinear problems are solved iteratively using the Newton-Raphson method 

(ABAQUS Theory Manual 6.11). The Newton-Raphson method is a powerful 

technique for solving equations numerically. It is based on the simple idea of linear 

approximation. The Newton-Raphson method is widely used in root-finding 

procedures with combination of simplicity and power. The Newton-Raphson method 

has the form for the solution of the nonlinear equation where given 0)( xf , and the 

first estimation of 
)(

)(

0

'

0
01

xf

xf
xx   and 2x is obtained from 1x  . By continue this 

way, if nx  is the current estimate, then the next estimate is given by: 

)(

)(
'1

p

p

pp
xf

xf
xx       (P=0, 1, 2, …..) 

 

A nonlinear problem will require many times the computer resource compare with 

linear problem (Israel A. B., 1966, Traub J. F. & Wuzniakowski H., 1979, Galantai 

A., 2000). 

Many strain energy function models have been developed to characterise different 

material systems which undergo large deformation, typically Mooney-Rivlin model, 

neo-Hookean form, Ogden model and Yeoh (Ogden, 1972; Petre M. T. et al, 2007; 

Renaud C. et al, 2009). They are generally used to describe incompressible materials 

(such as rubber and liquid filled structures). Some models have been extended to 

compressible materials such as hyperfoam models (Verdejo R. and Mills N.J., 2004; 

Fontanella C.G. et al, 2013). These material models have been employed in a range 

of computational software including ABAQUS, which are briefly described:  

 

Neo-Hookean model 

 

A Neo-Hookean model is similar to the Hooke’s law, which can be used for 

predicting the nonlinear stress-strain behavior of material under large range of 

deformation. The model was developed by Ronald Rivlin in 1948 (Ericksen J. L. & 

Rivlin R. S., 1948; Martins et al, 2007). This model is based on the statistical 

thermodynamic of cross-linked polymer chains and is usable for rubber-like and 
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plastic materials. The initial stage of cross-linked polymer acts in a Neo-Hookean 

manner which moves relative to each other when stress applied.  

 

The form of the Neo-Hookean strain energy potential follows the format given below: 

  )3( 11  ICW                                 (2.9)                                  

where 1C is a material constant, and 1I is the first invariant of the left Cauchy-Green 

deformation tensor as defined in equation 2.10.  

For a compressible Neo-Hookean material the strain energy density function is given 

by 

 321

2

111 )det(;)1()3(  FJJDICW          (2.10)                                  

Where 1D  is a material constant, 1

3/2

1 IJI   is the first invariant of the deviatoric 

part of the left Cauchy-Green deformation tensor, and F is the deformation gradient.  

There are several alternative formulations for compressible Neo-Hookean materials, 

for example. 

 
2

111 )1()ln23(  JDJTCW                       (2.11)                                  

To be consistent with linear elasticity, 

 2
;

2
11


 DC                         (2.12)                                  

where  is the shear modulus and  is the bulk modulus. 

 

From the analysis given above, the Neo-Hooke’s law is an extension of Hooke’s law 

for the large deformations material such as plastic and rubber-like substance. 

However, Neo-Hookean material model is only accurate and sufficient for material 

over a strain range up to 30-70%. (Zhu Y.F., 2010). 

 

Mooney-Rivlin model 

 

Several assumptions had been made when developing the original Mooney model as 

the strain energy function for rubber starting from: (1) The material is homogeneous 

and free from hysteresis; (2). The material is isotropic initially and throughout the 

deformation; (3) The deformations occur without change in volume; (4) The traction 

in simple shear in any isotropic plane is proportional to the shear (Mooney, 1940). 

http://en.wikipedia.org/wiki/Invariants_of_tensors
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Compressible
http://en.wikipedia.org/wiki/Deviatoric
http://en.wikipedia.org/wiki/Deformation_gradient
http://en.wikipedia.org/wiki/Shear_modulus
http://en.wikipedia.org/wiki/Bulk_modulus
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Mooney initially proposed the linear form of strain energy functions as: 

 1 1 2 2( 3) ( 3)W C I C I                           (2.13)                                  

where C1 and C2 are constants and 1I  and 2I  are the first and the second invariant of 

the unimodular component of the left Cauchy–Green deformation tensor: 

  
)det(;; 2

3

2

2

2
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3/2

1 FJIIJI                         (2.14)                                  
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1 ;    IIJI           (2.15)                                  

For an incompressible material such as rubber, 1J . 

This general form based on a linear relationship between stress and strain in simple 

shear was referred to as the Mooney-Rivlin model, this equation gives a marginally 

better fit to some of the experimental data of rubber than pure elastic models with 

suitable choices of C1 and C2 (Mooney, 1940; Ali A. et al, 2010; Crocker L.E. et al, 

2011).The Mooney-Rivlin material was originally developed for rubber, but is today 

often applied to describe general incompressible biological tissue. For modelling 

rubbery and biological materials at even higher strains, the more sophisticated 

Ogden material model has been used. (Breslavsky I.D. et al, 2014; Kraaij G. et al, 

2014). 

 

Ogden form models  

 

This model was developed by Ray W. Ogden in 1972 (Ogden, 1972). It is used to 

describe the non-linear stress-strain behaviors of complex materials such as rubbers, 

polymers and biological tissue. Similar to the other hyperelastic material models, the 

Ogden model was based on an assumption that the material behavior can be 

described by strain energy density function, which is isotopic, incompressible and 

strain rate independent. 

 

For small strains the shear modulus and bulk modulus for the Ogden form are given 

by 

http://en.wikipedia.org/wiki/Invariants_of_tensors
http://en.wikipedia.org/wiki/Unimodular_matrix
http://en.wikipedia.org/wiki/Finite_strain_theory
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According to the Ogden model (Ogden, 1972a), U is a function of the principla 

values b1, b2, b3 of B. 
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Where μn is constant, and αn is not necessarily integer and may be positive or 

negative. B is left Cauchy-Green strain tensor, 

  
TFFB                (2.18)  

and b1, b2, b3 are principle values of B.  

 

Equation 2.19 shows the general form of the Ogden strain energy potential 
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where i  are the deviatoric principla stretches; λi are the principla stretches; i  and 

i  is a material parameter; and iD  are temperature-dependent material parameters 

(ABAQUS Theory Manual 6.11). Ogden model is widely used for rubber components 

such as seal and O-ring where the model is sufficient to represent test data up to 

700% of the tensile test result. In addition, the Ogden model is much more flexible in 

describing the experiment data than Mooney-Rivlin model. (Yeoh O.H., 1993; Kim 

B.K. et al, 2012) 

 

Yeoh Model 

 

The Yeoh hyperelastic material model is also called the third-order reduced 

polynomial form, which is suitable for describing isotropic almost incompressible 

rubber-like materials (Renaud C. et al, 2011). This model is based on Ronald Rivlin's 

observation that the elastic properties of rubber may be described using a strain 

energy density function which is a power series in the strain invariants 321 III . The 

Yeoh model for incompressible rubber is a function only of 1I  and the strain energy 

potential is given by 

http://en.wikipedia.org/wiki/Hyperelastic_material
http://en.wikipedia.org/wiki/Ronald_Rivlin
http://en.wikipedia.org/wiki/Strain_energy_density_function
http://en.wikipedia.org/wiki/Strain_energy_density_function
http://en.wikipedia.org/wiki/Finite_strain_theory
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           (2.20)                                  

Where 1

3/2

3 IJI   , and ki CC ,0  are material constants. The quantity 10C  is half of the 

initial shear modulus, while 11C  is half of the initial bulk modulus. The compressible 

Yeoh model could be reduced to the Neo-Hookean model for compressible materials 

when n=1. (Renaud C. et al, 2009). 

All these strain energy functions have found applications for different situation 

where the model is most suitable. Due to the fact these models are developed based 

on mathematical formation, sometimes it is difficult to derive values for the key 

parameters. As briefly illustrated in the equations, in several cases, a combination of 

parameters is linked to the initial shear modulus. This directly influences the 

accuracy, robustness and uniqueness of materials parameter estimation and choice of 

material models in different situations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Neo-Hookean_solid
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2.5 Viscoelastic properties for rubber and plastic materials 

 

Viscoelasticity is a time dependent mechanical behaviour where the material 

response is dependent on the current state of deformation and deformation history 

(Zhang H.H. and Li L.X., 2009). Typical viscoelastic materials include rubbers, 

fibers, human muscle tissues and plastics (Tobolsky A.V. and Andrews R.D., 1944). 

The viscoelastic behaviour can be observed/measured by following tests: Creep test 

under constant load and stress relaxation test under constant deformation. When a 

constant strain is applied to a rubber sample, the stress necessary to keep the strain 

would be decreased over time. This means that the material resistance against the 

deformation is decreasing gradually. This behaviour is named “stress relaxation”. On 

the other hand, when an elastomeric specimen is subjected to a constant stress, the 

strain gradually increase leading to a phenomenon known as “creep”. Chemical 

processes within the material could lead to relaxation as well as creep in higher 

temperature. An increase in temperature results in thermal expansion among polymer 

molecule, then expansion result in an increase in the average distance between 

sequential segments in a strand and between network chains. The increase of the 

distance may cause the intermolecular and intramolecular force decrease and 

reduction of elastic moduli. This mean the rubber material will creep more at  higher 

temperatures, so temperature is known to strongly influence the creep properties of 

rubber material. Chemical processes occur which may result in either main chain 

scission or cross-link scission. There are several factors which could lead to chemical 

process such as thermal effects, chemical properties, oxygen and ozone attack and 

light aging effect. (Drozdov A.D. et al, 1999, South J. T., 2001; Hamaguchi H. et al, 

2009; Woo C. S. and Park H. S., 2011; Cui T et al, 2013; Le Gac P. Y. et al, 2015). 

However, at room temperature this effect can be neglected and the most dominant 

sort of relaxation comes from physical processes. (Brown R.P. and Bennett, F.N.B., 

1981; Mottahedi M. et al, 2010). 

 

Viscoelastic is a combination of elastic and visco behaviour. The elastic behaviour 

can be simply represented by the Hook’s law with Young’s Modulus. The visco 

material behaviour in elastomer “The entropic uncoiling process” is fluid-like in 

nature, and can be modelled by a “Newtonian dashpot”, in which the stress produces 

not a strain but a strain rate: 
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

                (2.21)                                  

The overdot in equation 2.21 denotes time differentiation and η is a viscosity. In 

many of the relations to follow, it will be convenient to employ the ratio of viscosity 

to stiffness: 

k


                            (2.22) 

The unit of τ is time, k is the spring constant; and it will be seen that this ratio is a 

useful measure of the response time of the material’s viscoelastic response. For 

viscoelastic materials, the two important material parameters are stiffness ‘E’ and the 

material coefficient of viscosity ‘η’. (Roylance D., 2001). 

 

As shown in Figure 2.4, many theoretical models have been developed for describing 

viscoelastic material behaviour under different situation and configurations including 

the Maxwell model, Kelvin-voight model, Prony series model, Standard linear solid 

model, etc. These models represent materials under different loading conditions in 

different configurations balancing the elastic and viscoelastic behaviour, normally 

represented by spring and dashpot, respectively. Springs perform like an elastic 

material and a dashpot performs like a pure viscous material. Elastic materials strain 

when stretched and return to their original state once the stress is removed. While 

dashpots exhibit time dependent recovery behaviour. Viscoelastic materials have 

elements of both properties and, as such, exhibit time-dependent strain. The basic 

theory and mathematical formula of some commonly used viscoelastic model are to 

be briefly presented in this section.  

 

Kelvin–Voigt model 

 

The Kelvin–Voigt model consists of a Newtonian damper and Hookean elastic spring 

connected in parallel. It is used to describe the creep behaviour of polymers. As 

shown in Figure 2.4(a), the two components of the model are arranged in parallel, the 

strains in each component are identical: 

  SDTotal                (2.23)                                  



27 
 

Where D is the strain of the dashpot; S is the strain of the spring. Similarly, the total 

stress will be the sum of the stress in each component: 

SDTotal                (2.24)  

Where D is the stress of the dashpot; S is the stress of the spring based on these 

equations in a Kelvin–Voigt material, stress σ, strain ε and their rates of change with 

time t are governed by equations of the form: 

dt

td
tEt

)(
)()(


              (2.25)                                  

Where  is the viscosity of the material. Based on this model, the material deforms at 

a decreasing rate upon application of a constant stress, asymptotically approaching to 

a steady-state strain. When the stress is released, the material gradually relaxes to its 

original undeformed state. At constant stress (creep), the model is quite realistic as it 

predicts strain to approach to σ/E as time continues to infinity.  Many works has used 

the Kelvin–Voigt model (Taylor L.S. et al, 2002; Rajagopal K.R, 2009; Licht C., 

2013). 

 

Maxwell Model 

 

The Maxwell model is commonly used in many works. As shown in Figure 2.4 (b), it 

consists of one Hookean spring and one Newtonian dashpot being connected in 

series. This model was designed to describe the stress relaxation behaviour of 

materials. When the load is released and the spring gradually recovers to its original 

shape by pulling the dashpot with it and stress on the spring release over time. The 

spring can be represented by the stiffness (E) and dashpot can be described by 

viscosity coefficient ( ). 

In a Maxwell material, stress σ, strain ε and their rates of change with respect to time 

t are governed by equations in the form of:  

 dt

d

kdt

d

dt

d

dt

d SDTotal 



 1
             (2.26) 

Multiplying by k and using τ = η/k: 

http://en.wikipedia.org/wiki/Stress_%28physics%29
http://en.wikipedia.org/wiki/Strain_%28materials_science%29
http://en.wikipedia.org/wiki/Stress_%28physics%29
http://en.wikipedia.org/wiki/Strain_%28materials_science%29
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k              (2.27)                                  

This is a “constitutive” equation for theoretical Maxwell material. Since the equation 

contains time derivatives, simple constant of proportionality between stress and 

strain is no longer applicable. In this case, the concept of “modulus” – the ratio of 

stress to strain – needs to be broadened to account for this more complicated 

behaviour. The equation can be applied either to the shear stress or to the uniform 

tension in a material. In the former case, the viscosity corresponds to that for a 

Newtonian fluid. In the latter case, it has a slightly different meaning relating stress 

and rate of strain. The model is usually applied to the case of small deformations 

(Boubaker M.B. et al, 2013; Jiang T.Z. et al, 2014). For the large deformations some 

geometrical non-linearity has to be included. 

 

Generalized Maxwell Model (Prony series) 

 

Maxwell model has a problem when being applied to relaxation test due to the fact 

that it resulted in a zero stress at the infinity time. The general Maxwell model was 

developed to solve this problem and was found to be able to model complicated 

viscoelastic materials. The main idea behind the general Maxwell model is that the 

relaxation does not occur at a single time, but at a distribution of times as illustrated 

in Figure 2.4(c). Viscoelastic behaviour can be divided into two types of deformation 

(small or large). In large deformation of viscoelastic, the hyperelastic properties need 

to be taken into account. For small strain model, the initial values of shear and bulk 

modulus would be enough as the starting values of the material properties over the 

time. The shear and bulk modulus are representative of deviatoric and volumetric 

parts of the stress respectively to the equation below (Yang L.M. et al, 2000). 

  volumetricdeviatoric               (2.28) 
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Where  is Cauchy stress, e and  are deviatoric and volumetric part of the strain. 

G(t) and )(t  are shear and Bulk modulus functions, t and  are current and past 

http://en.wikipedia.org/wiki/Shear_stress
http://en.wikipedia.org/wiki/Newtonian_fluid


29 
 

time and I is identity matrix. Prony series was then proposed by the following 

formulas (2.30) and (2.31) relating shear and bulk modulus over the time.  
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Where superscript is used to show the belonging to shear or bulk modulus, and 

subscript indices the number of series component. 

0G

Gi

i  and i  is relaxation time constant for each Prony series component. 

 could be simply calculated by time equal to zero. Then we have  

  
][ 100

G

i

nG

i

GGG                (2.32) 

Where the term i

n

i  1   should then be equal to 1. It means that 

i

n

i  11   . Hence, the only constant of the formula are i and i  which 

should be determined by a relaxation test. Where the initial values of G and K would 

be calculated when time equal to zero. For incompressible material like elastomer, 

the Poisson's ratio can be assumed as 0.5 or infinite bulk modulus. The generalized 

Maxwell model can be express in term of E instead of G which G=E/ (2(1+)). 
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k eEEtE
/
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

             (2.33)    

Where k is the relaxation time of an element k, kkk E/  , and 0E is the quasi-

equilibrium value of the modulus of elasticity, n is the total number of Maxwell 

elements, kE  is the Young’s modulus for element number k and i  is the coefficient 

of viscosity of the Maxwell element. 

 

In most cases, equations (2.31) and (2.32) can be used instead of some additional 

different boundary condition for example in different temperatures (Mottahedi et al, 

2010). According to Sato et al (2004), generalised Maxwell model was successfully 

used in representing the viscoelastic behaviour of different materials, such as nitrile 
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butadiene rubber and damper used in seismic isolation. (Park S.W. and Schapery 

R.A., 1999; Renaud F. et al, 2011; Lu L.Y. et al, 2012; Hassan M.A. et al, 2012). 

 

Standard Linear Solid Model 

 

Figure 2.4(d) shows the standard linear solid model with a linear combination of 

spring and dashpots. In this model, the Elastic response of the material is represented 

by spring and viscousity is represented by dashpots. This model, to certain extent 

combined Kelvin-Voigt model and Maxwell Model in order to overcome the 

limitation of these models. For example, the Maxwell model does not describe creep 

or recovery, and the kelvin-Voigt model does not describe stress relaxation. In 

contrast to the Maxwell and Kelvin–Voigt models, the SLS is slightly more complex, 

involving elements both in series and in parallel. This model consists of two systems 

in parallel. The first, referred to as the Maxwell arm, contains a spring ( 2EE  ) and 

dashpot (viscosity ) in series. The other system contains only a spring ( 1EE  ). 

In order to establish this system, the following physical relations must be realised: 

 

For the parallel components: 21  tot  , and 21  tot  

For the series components: 21  tot , and 21  tot  

These relationships help with relating the various stresses and strains in the overall 

system and the Maxwell arm: 

  smtot    

  1smtot    

  2sDm    

  2sDm    
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Where the subscripts m , D , 1s  and 2s  refer to Maxwell, dashpot, spring one, and 

spring two, respectively. 

Using these relationships, the time derivatives of these functions, and the stress-strain 

relationships above for the spring and dashpot elements, the system can be modelled 

as follows: 
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The equation can also be expressed as: 
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         (2.35)                                  

The relaxation time  is different for each material and is equal to
2E


. 

The Standard Linear Solid Model has been used in modelling more complex 

materials, such as building material, composite material, auxetic material and 

biological material (tissue, tendon, ligaments, and articular cartilage) (Lakes R. et al, 

2009; Almagableh A. et al, 2009; Argatov I.I., 2012; Wang X. et al, 2013; De Haan 

Y.M. and Sluimer G.M., 2014). 
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(a) Kelvin–Voigt material. 

(Chandra P.K. and Sobral P. J. do A., 

2000) 

(b) Maxwell material. 

(Chandra P.K. and Sobral P. J. do A., 

2000) 

 

  

(c) Generalized Maxwell Model. 

(Prony series) 

(Mottahedi M. et al, 2010) 

(d) Standard Linear Solid Model. 

(De Haan Y.M. and Sluimer G.M., 2001) 

 

 

Figure 2.4 Different types of viscoelastic material models. 
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2.6 Mechanical tests of materials and applications 

 

2.6.1 Material testing with standard tests 

 

As presented in section 2.4, most of these linear and nonlinear materials behaviours 

can be described with one or more material parameter. It is a challenging task to 

accurately derive the key parameters of these functions. Conventionally, the 

determination of material parameters is based on the use of test samples with a 

standardised geometry and strain state as shown in Figure 2.5. Such that particular 

conditions on the stress and strain field are satisfied in the sample/or part of the 

sample. Then the unknown model parameters are obtained via curve fitting from 

experimental data. Current standard approaches normally require large numbers of 

tests and samples with well-defined geometries (Mills and Zhu, 1999; Mills et al, 

2003; Moreu and Mills, 2004; Petre et al, 2007). 

 

Figure 2.5 Deformation modes of various experimental tests for measuring material 

parameters (ABAQUS User Manual 6.11). 
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Most of the tests has been done with standard tests, but in some cases, the method is 

inconvenient or even impossible where standard specimens are not readily available, 

or for in situ monitoring of the mechanical strength of the materials. Recently, some 

effort has been made to use non-standard test under more complex conditions to 

determine the material parameters. The use of a range of tests have been explored 

including tension, compression, suction, and bending test or indentation. (Diridollou 

S. et al, 1997; Bader D. L. and Knight M. M., 2008; Ridha H. and Thurner P. J., 

2013; Budday S. et al, 2015). The indentation test has been used to charcaterise 

material properties of the gray and white matter brain tissue. Different diameter of 

the circular flat punch has been used to indent the brain tissue with 400µm and 

measuring the force. By using the analytical solution method, constant samples 

elastic moduli were calculated. The testing method presented an easy-to-use, robust, 

reliable and repeatable to characterise the mechanical properties of brain tissue 

(Budday S. et al, 2015). Another testing method with an air suction device to 

measure the material properties of human skin were developed by Diridollou S. et al, 

(1997). The cylindrical chamber is attached to the skin using double-sided adhesive 

tape and vacuum is applied to deform the skin by air suction. By using the ultrasonic 

detection, skin deformation and position was recorded. The results are plotted in 

suction pressure over displacement. This study is to monitor the actual skin and 

subcutaneous fat thickness changes while under suction, the technique should prove 

the difference between healthy and diseased skin to mechanical deformation. In other 

words, to develop a mathematical model of the physical properties of skin to define 

material parameters for differentiating skins. 

 

Generally, these tests involve applying a predefined stress /deformation on the 

sample surface and monitor the displacement/load. Then the material 

properties/parameters were determined through mathematical or inverse FE 

modeling by finding the material parameters that give numerical results matching 

experimental data. One testing mode which is particularly relevant to thin 

membranes/sheet is the indentation bending tests (Ju B. F. et al, 2005; Ahearne M. et 

al, 2009), which combines localized indentation and bending of the sample that is 

ideal for samples in the form of thin sheet. In addition, creep and relaxation are 

normally associated with the functions and performance of thin membranes, it is also 
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interest to investigate how to use these nonstandard tests and inverse modelling to 

determine the time dependent material behaviors in creep and relaxation. 
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2.7 Indentation and indentation bending test 

 

In an indentation test, indenters of different shapes are pressed onto the sample 

surface while the force and displacement is recorded, either continuously or with 

fixed load/displacement, to represent the resistance of the material to deformation. 

There are many types of shaped indenter, such as cylindrical, spherical, pyramid tip 

indenter, are developed and all of these have found applications in testing different 

types of materials (Swain M.V., 1998; Lim Y.Y. and Chaudhri M.M., 2006; Chicot D. 

et al, 2013; Hosseini M. et al, 2013; Koumi E.K. et al, 2014). For example, the 

pyramid tip indenter (such as the Vickers Indenter) is mostly used for hard material 

such as metals, ceramics and plastics, while blunt indenter (spherical or flat) is 

commonly used for softer materials. Recently, the application of indentation tests has 

also been increasingly used to determine mechanical properties of materials with 

time-dependent deformation behaviour including polymers and rubber-like materials 

(Carter F.J. et al., 2001; Delalleau A. et al, 2006; Giannakopoulos A.E. et al, 2007; 

Carson W.C. et al, 2011). There have been several works using flat and spherical 

indenters to test biological materials such as skin, heel pad, etc. (Han L.H. et al, 

2002; Erdemir A. et al, 2006; Li B, 2009; Pamplona D.C. et al, 2014; Zhang M.G. et 

al, 2014). In addition, flat punches type indenters can also be used to determine the 

viscoelastic properties of soft layer bonded to hard substrates shown in Figure 2.6(a) 

(Cao Y. P. et al, 2008). Bending tests are another form of experiment to test the 

resistance of material to localised loading. Bending is a common deformation in 

many thin sheet structures such as (mobile phone, pressure sensors, bio-tissues, 

packaging, laptop casing, household, automotive, and etc.). Figure 2.6(b) shows 

schematically the setup of a bending tests, which has been used in the work of testing 

the deformation in a mobile phone cover (Fredrik N. 2006). 

Indentation bending test is a combination of indentation and bending tests, as 

illustrated in Figure2.6(c). It is able to characterise the mechanical properties of the 

material in the form of a thin sheet such as Young modulus, yielding stress and 

viscoelastic (Huber N. et al, 1999; Begleya M. R. et al, 2004; Scott O. N. et al, 2004; 

Cao Y. P. et al, 2009). In the test, an indenter is pressed onto the surface of the 

material which is firmly clamped around the rim/edge. The force and displacement 

curve data is used to measure the properties of the material. This test can be of 

different scale from nano, micro to macro tests and the shape of the sheet being 
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indented can be a circular, square or irregular shape (Chen and Soh, 2008; Heinrich 

C. et al, 2009). Figure 2.6(d) shows the experimental setup of a test used to predict 

the young modulus of the thin polymer membrane using an atomic force microscope 

by Ju B. F. et al, (2005). This research mainly focuses on very thin polymer 

membrane with a thickness of 120μm. Figure 2.6(e) shows a setup of a tester used to 

study the indentation deformation of freestanding circular elastomer films with 

spherical indenters. In the work, a spherical indenter is used to test very soft thin film 

made of poly (dimethyl siloxane) and biological material (membrane) as the 

specimen. In this work, an analytical solution has been evaluated (classical 

Begley/Mackin finite contact solution and classical Schwerin solution) in predicting 

the testing result using linear elastic model. The limitation of Schwerin point-load 

solution is that it only works for a small indenter, in other way Begley/Mackin finite 

contact solution can potentially work for all size of indenter (Scott et al, 2004). 
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(a) Flat punch test of sample 

within a thin layer on top of a 

rigid substance. (Cao Y. P. et 

al, 2009) 

(b) Setup of a bending test for mobile 

phone material. (Plastic). (Nordgren 

F. et al, 2006) 

 

 

 

 

(c) Schematic to show 

indentation bending tests of 

free standing film.(Scott O.N. 

et al, 2004) 

(d) Schematic diagram of the vertical 

indentation bending test based on 

Atomic Force Microscope (AFM). 

(Ju B. F. et al, 2005) 

 

(e) A horizontal indentation bending test. (Scott O. N. et al, 2004) 

 

Figure 2.6 Different indentation/bending tests for characterising rubber-like 

materials and plastics. 
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In the study done by Selvadurai (2006) (Figure 2.7), the problem of the large 

transverse deflection of a natural rubber membrane that is fixed along a circular 

boundary was investigated. In the work, uniaxial experiments were performed first in 

order to characterise the constitutive behaviour of the rubber material and the data is 

analysed with several constitutive models available. These constitutive models were 

used to develop a computational model for the quasi-static load–displacement 

response of a rigid spherical indenter that deflects the rubber membrane in a 

controlled fashion and to determine the deflected shape of the membrane at specified 

load levels. Both axisymmetric and asymmetric deflections of the rubber membrane 

were investigated. The study provided comparison between the experimental results 

for the membrane deflections with results derived from FE simulations. The work 

showed that many of the existing models can,  in general, describe the material at 

both moderate and large strain levels and the Mooney–Rivlin type of strain energy 

functions were found to be the most suitable for deformation at lower strain level 

(Figure 2.7(d)). Similarly the Ogden model also showed a reasonable accuracy in 

predicting the force deflection data. 
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Figure 2.7 Large displacement indentation bending tests of a rubber sheet. 

(Selvadurai, 2006) 

In another study, Aernoutset (2010) used a similar setup to characterise membranes 

with a complex shape using point indentation measurements as shown in Figure 2.8. 

The sample made of latex rubber which was clamped with a circular boundary. The 

indenter used is a flat cylindrical with a diameter of 1.7mm. The main objective of 

 

 

 

a) Axisymmetric indentation. b) FE model of indentation 

bending tests. 

  

c) Deflection of rubber membrane 

during a large displacement 

indentation bending test. 

d) Comparison between 

experimental and numerical data 

with different material models.  
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the work was to use the indentation technique to determine the elasticity parameters 

of a rubber-like material with a complex surface and shape. In the work, an inverse 

modelling method is developed to predict the material properties by using First-order 

Mooney-Rivlin and second-order Ogden material to define the material parameters. 

This research also extended to the modelling of a human tympanic membrane that 

has a complex shape. The test demonstrate a clear advantage in using indentation 

bending tests to study the behaviour of tympanic membrane and middle ear ossicular 

prosthesis, which is difficult to be tested using other methods.  

 
 

(a) Schematic drawing of the point 

indentation setup: (1) translation 

and rotation stage, (2) phantom 

model, (3) needle connected to a 

load cell, (4) stepper motor and 

(5) LVDT. 

(b) Pictures of phantom model 

creation. Top: step 1, a circularly 

tightened flat rubber membrane. 

Bottom: step 2, resulting complex 

conical shape after pressing a 

triangular shaped rod along a 

radius. 

 
(c) FE modelling of indentation test shown in (a&b). 

 

Figure 2.8 Indentation test for elastic membranes with a complex shape. (Aernouts J. 

et al, 2010). 
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Instead of indentation test, bulge test has also been used by researchers (e.g. Sasso 

M. et al, 2008) on thin membranes to predict the material properties. As shown in 

Figure 2.9(a), a bulge test is conducted by applying a fluid pressure which stretches 

the sample without any direct contact and the change of thickness and depth of the 

sample is recorded by two high resolution cameras and pressure is measured by fluid 

pressure gauge. Figure 2.9(c) shows the FE model and the boundary condition used 

to fix the circular edge. Typical pressure-depth is shown in Figure 2.9(d) where 

Ogden and second order of Mooney-Rivlin model are comparable to the 

experimental result. Both give a good description of the non-linear behaviour.  
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(a) Schematic to show the setup of a 

bulge test. 

(b) Diagram showing the change of 

thickness vs. deformation of the 

rubber. 

 

 

 

 

 

(c) FE modelling of bulge test. (d) Typical pressure -displacement 

curve for experiment and FEM. 

The dotted lines represent the 

experimental data; straight lines 

represent the second order of 

Mooney-Rivlin fitting and dash 

line represents the Ogden 

hyperelastic model fitting. 

 

Figure 2.9 Characterisation of hyperelastic rubber-like materials by stretching in a 

bulge test. (Sasso M. et al, 2008). 

 

An indentation bending test does not required any expensive instrumentation. The 

main measurable variables are force and displacement, which can easily be captured 

by load cell or displacement sensors. The test can be set up with a complex shape of 

the product and only require a small piece of the material sample to run the test. 

However, the indentation bending test is not a standard test which cannot directly 

measure the properties of the material. In addition, due to the fact that the 

deformation domain may change between plate theory to membranes depending on 
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the size of the sample, indenter shape, materials properties and strain level, it is 

difficult to use a robust analytical solution which is universally applicable to all 

materials. In order to characterise materials using indentation bending test, FE 

inverse modelling offers a better option to estimate the materials properties from the 

tests. Typical inverse modelling method and applications are briefly discussed in the 

next section. 
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2.8 FE modelling and inverse properties prediction 

 

Finite element method is a numerical technique used to solve engineering and 

scientific problems. The methods are widely used to solve structural, fluid, 

multiphysics problems. (Fagan, 1992; Dai X. H. et al, 2010; Khor C. Y. et al, 2011; 

Coombs D.J. et al, 2012). There are many commercial packages available which are 

being widely used nowadays such as ABAQUS, ANSYS, COSMOL and etc. The 

finite element approach involves dividing the continuum into small elements for the 

stress or displacement fields (or other physical parameters) to be approximated with 

displacements (or other variables) that is continuous and is in equilibrium, thus 

satisfying the problem’s boundary conditions. The approximation is determined by 

transforming the differential equation approach into an algebraic problem, wherein 

the finite elements or small subdomain have all the complex equations solved for a 

simple shape and transformed to a more complex equation over a larger domain. 

Structural analysis is based on the discretisation method which converting model into 

discrete model of number of elements and included degrees of freedom (DOF) such 

as loading, boundary conditions and material properties. Once the problem has been 

discretised, the main equations for each element are calculated and assembled 

together to give the system equation. In the next step, general format of the equations 

of an element type is derived, the calculation of the equations for each occurrence of 

that element in the body is straightforward; it is simply the question of substituting 

the nodal coordinates, material properties and loading conditions of the element into 

the general format. 

The individual element equations are assembled to obtain the system equation, which 

describe the behaviour of the body as a whole. These generally take the form of 

 
    k U F               (2.36) 

Where [k] is a square matrix, known as the stiffness matrix; {U} is the vector of 

(unknown) nodal displacements or temperatures; and {F} is the vector of applied 

nodal forces. 

 

The equation above is direct problem which is comparable to the load and 

displacement relationship for a simple one-dimensional spring. The F represents 
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force and U is deflection and k is spring of stiffness. To find the displacement by a 

given force, the relationship is inverted. These matrixes define inherent properties of 

the system being studied. Energy derivations are commonly used to form the 

stiffness for a variety of element types. The elements have restrictions on their 

behaviour; the result is always a stiffness matrix that can then be treated like any 

other stiffness matrix and can be rotated and transformed. Additional considerations 

are also generated since the shape function assumption can affect the accuracy of the 

results. For thin structures, the most common elements are the membrane (planar), 

plate, shell and solid elements. Each element has a given set of nodes and 

displacements associated with those nodes. There are many types of elements 

suitable for different materials or systems. Shell/membrane elements are most widely 

used to simulating thin sheet structures in engineering or biological materials 

(Hutton, 2005; Firat, 2007; Peng X. Q. and Wang Y, 2011; Lei et al, 2014). 

 

The membrane element refers to two-dimensional triangular and rectangular 

elements extending flat elements. The membrane element has a stiffness or rigidity 

without rotation perpendicular to the plane of the element. It may optionally be 

located in the space, but the resulting force must be located in the plane of the 

element. The flat plate element is similar to the two-dimensional element plate. 

There are two-plane rotation and normal displacement degrees of freedom. These 

elements could be used to model plate bending behaviour of two dimensions. The 

three-dimensional solid element is a variable 4- to 20- node or a 21- or 27-node 

isoperimetric element applicable to general 3-D analysis. Eight-node unit has some 

linear variation of stress throughout the element. Solid element has no rotational 

stiffness. The most common version is the eight-node solid elements; also called 

tetrahedron (tetrahedral) and hexahedral (hex) is a popular mesh generation and the 

use of adaptive mesh refinement. (ABAQUS, 6.11) 

Traditionally, FE modelling was used to predict the behaviour of materials or 

structures under different loading condition (Reusch and Estrin, 1998; Dini et al, 

2009; Podshivalov et al, 2011) over a wide range of industries. Recently, many 

research works explored the use of FE modelling to inversely predict the material 

properties by coupling FE modelling with different inverse programs (Guo et al, 

2004; Kajberg and Wilman, 2007; Kim and Choi, 2008). For example, Louche et al, 
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(2009) has developed an impact test model to study the thermo mechanical behaviour 

of an ABS polymer structural component by comparing the result of experimental 

data and numerical data. In another study, FE modelling was used to model a 

collapsible PET water fountain bottles by using Pro/Engineering software. In this 

study, bottle with different wall thickness were tested and simulated in order to 

determine the material properties (Masood et al, 2005). In another work Cao et al, 

(2009) developed an inverse program to predict the viscoelastic properties of 

materials based on indentation tests with a flat punch. The program was successfully 

used to characterise the compressible elastic properties of thin sheet samples. The 

approach has also been used in research of new materials. In the work on hydrogels 

by (Sasson et al (2012) as potential implant material of the Nucleus Pulposus (NP) 

within the intervertebral disk, a spherical tip indenter was used to test the hydrogel 

surfaces shown in Figure 2.10. A digital image correlation (DIC) technique was used 

with the indentation test in order to process the full-field surface strains where the 

indenter contacts the hydrogel and then compare the data with those predicted by the 

FE model. For the data with D=20, the FE model with Ogden model showed 

reasonable agreement with the testing data, but the comparison with a larger chamber 

is less good.  
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(a) Photo showing the specimen 

inside a casting mould. 

(b) Schematic showing the setup of 

the indentation testing system.  

 
(c) FE modelling and contour of the strain field. 

 

Figure 2.10 Indentation test of hydrogel with high cross-linked polymeric network. 

(Sasson A. et al, 2012). 
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2.9 Different inverse modelling approaches and their applications in material 

properties prediction 

 

Inverse material parameter identification normally involves the use of combined 

experimental and numerical methods to determine the properties/variables that are 

not readily available from nonstandard tests. Inverse modelling has been applied to 

many problems in engineering fields (Buljak V. and Maier G., 2012; Tang L. and 

Walters C. L., 2014; Sun G. Y. et al, 2014). General areas in inverse problems in 

engineering mechanics were the subjects of mathematical and computational aspects 

of inverse problems, parameter or system identification, shape determination, 

sensitivity analysis, optimization, material property characterization, thermal inverse 

problems, and other engineering applications (Tanaka and Dulikravick, 2000). 

Parameter estimation can be treated as one form of inverse problem of optimisation 

that deals with the determination of the mechanical system with unknown material 

properties, geometry sources or boundary conditions, from the knowledge of 

response to given excitations on its boundary (Neaupane and Sugimoto, 2003). A 

successful program for predicting material parameters has to be accurate, efficient 

and robust. Whether or not all these can be achieved are dependent on the testing 

method(s) used, inverse program, optimisation method etc. There are many methods 

to estimate the parameter problems, typically interactive data processing method, 

parametric method, Kalman filter method, neural networks method etc. (Corigliano 

A. and Mariani S., 2004; Saleeb A.F. et al, 2004; Tyulyukovskiy E. and Huber N., 

2006; Puel G. et al, 2013; Kim T.H., Kim Y.M., 2015). In materials testing, inverse 

modelling is normally combined with non-standard tests under more complex 

conditions to determine the material parameters. The uses of a range of tests have 

been explored including suction, tension, torsion, bending test or indentation 

(Vannah and Childress, 1996; Vescovo et al, 2002; Mattei and Zahouani, 2004). 

Each method has its advantages and disadvantages which made them only suitable 

for different conditions.  
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2.9.1 Inverse parameter identification based interactive property searching 

approach 

 

In an interactive property searching approach, the properties are modified in the 

optimisation loop, and then new numerical data is produced and compared to the 

target. The input was modified again after comparison between predicted data and 

target until the numerical result is within a reasonable range of the target. Normally 

the user defines an objective function based program to measure the material 

parameters, an lower objective function represents a better fit between the numerical 

data and the experimental target. One example use a direct and inverse modelling to 

determine the material parameter is shown in Figure 2.11. The FE model of the 

indentation test is shown in Figure 2.11(a), the flow chart (Figure 2.11(b)) shows the 

structure of the inverse program to estimate the material parameters from the 

indentation curve. (Saux et al, 2001). The interactive method is easy to understand, 

however, it requires the model to be re-run many times, which can be time and 

resources consuming.  Figure 2.12 shows another approach used by Ren et al, (2006) 

in determining the elastic properties from in vivo surface tension tests. This approach 

firstly determines a rough range of the data and then refines the material parameters. 

This method could effectively predict the material parameters with reduce the 

amount of computation works required. However, before using this approach, good 

pre-knowledge of the material required for the user.  
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(a) FE model and dimensions of conical indentation test on rubber.  

 
(b) Use of inverse analysis strategy to search for the optimum material 

parameters.  

 

Figure 2.11 Inverse modelling approaches for characterising rubber materials based 

on indentation tests. (Saux et al, 2001). 
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(a) Schematic to show the setup of the experimental work of surface tension 

tests. 

 
(b) Flow chart to show the parametric study approach for determining the linear 

elastic properties of silicone rubbers.  

 

Figure 2.12 Typical parametric studies based inverse FE modelling method for 

inverse material properties identification of rubber block based on a surface tension 

test. (Ren et al, 2006). 
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2.9.2 Artificial Neural Network (ANN) 

 

Recently, Artificial Neural Network (ANN) algorithms have been used to model 

complex non-linear relationship based on indentation test results. Huber et al (2001) 

presented artificial neural network model to determine the constitutive properties of 

thin films on a substrate based on the depth–load curves of spherical indentation. 

Their models enabled the material properties of both the thin film and the substrate to 

be identified from a single indentation load–displacement curve. Tho et al, (2004) 

proposed an artificial neural network model to characterise elasto-plastic material 

properties of metals following the power law work hardening rule. Kapoor et al, 

(2005) and Araujo et al, (2006) employed ANN technique to predict mechanical 

properties of an alloy with a laminated structure based on a two layered system. In 

addition, Tyulyukovskiy and Huber (2007)used neural networks combined with FE 

model and experiments to analyse bulk material and thin films for their creep 

behaviour. Figure 2.13 lists the key input and output of an ANN program involved in 

the work using ANN by Lobato et al, (2010). 

 

 
 

Figure 2.13 Structure of direct and inverse neural network modelling. (Mishulina O. 

A. et al, 2011). 

 

Harsono (2009) used a single neural network approach (Figure 2.14(a)) in studying 

the prediction of yield stress and work hardening coefficients based on data from 

indenter with different angles. The input is the surface of the ratio between work 



54 
 

done and total energy (WR/Wt) and the ratio of the curvature ratio of the curves of 

two different indenter angles (C1/C2) (Figure 2.14(b)). The comparison between the 

ANN predictions is listed in Table 2.1 in comparison with the target value.  

 
(a) Flow chart of ANN based on a single ANN model. 
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(b) Surface function () used in the ANN inverse program.  

 

Figure 2.14 A single ANN system used in predicting plastic properties based on 

conical indentation (a) and the surface equations representing the relationship 

between  the P-h curve parameters and material properties  (b) (Harsono, 2009). 
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Table 2.1 Comparison of the predicted material properties obtained from ANNs 

algorithm with inputs for various combinations of three-sided pyramidal indenter 

tips. (Tho et al, 2004). 

The ANN predicted yield strength shows a good agreement but the work hardening 

coefficients showed a relatively high deviation. This shows that ANN can be used to 

predict the materials properties but not necessarily will achieve high accuracy for all 

the material parameters. This does not imply that program is not useful but to 

highlight the fact that when developing ANN, the goal should be try to achieve the 

best possible outcome can be achieved rather than purely to produce accurate number 

on limited cases.  In another work of using ANN program on EVA foams (Su et al, 

2010), it was found that ANN can be used in direct P-h curve prediction, but the 

inverse property prediction process was not necessarily unique. 

 

2.9.3 An optimisation method with post data processing –the Kalman filter 

method 

 

Figure 2.15 is a flow chart showing the procedure for a Kalman filter method to 

obtain the parameter of the material properties of foams and human heel pad (Li B.et 

al, 2009). In the work, experiment and numerical data have been stored into the 

database and Kalman filter program was used to search for material parameters. 

Once the comparison between the experiment and numerical data match over several 
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data points, the program will stop and present the material properties as a final result. 

This method provides an efficient computation a framework to compare the 

experimental and numerical data. In this method, the unknown variable can be 

effectively estimated than interactive methods, but a simulation space has to be 

produced first.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15 Post-modelling approach based on the Kalman Filter method. 

 

The Kalman filter has been used in seeking unknown parameters of homogeneous 

material models (Hoshiya and Saito, 1984; Aoki et al, 1997; Nakamura et al, 2000; 

Gu et al, 2003; Delalleau et al, 2006). Neaupane and Sugimoto (2003) used an 

extended Kalman filter coupled with finite element method to formulate an inverse 

problem and estimate the thermal boundary in the form of a heat transfer coefficient 

(HTC). In their research a simple non-linear formulation based on steady-state heat 

conduction was incorporated in the Kalman filter loop. From the laboratory 

experiment, steady state temperatures were measured at predefined locations. The 

heat transfer coefficient (HTC) was estimated inversely from the measurements 

(Neaupane and Sugimoto, 2003). Gu et al, (2003) developed an inverse analysis 
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model based on the Kalman filter technique to characterise elastic-plastic properties 

of graded materials, in which the material properties varies across the sectional area. 

The results showed an excellent agreement between the indentation load-

displacement curve from finite element analysis with estimated properties and that of 

measured record, which assures a high degree of accuracy in the current 

measurement procedure. Recently, Li (2009) has developed an inverse program 

based the Kalman filter approach and successfully used it to study foams and human 

heel pad.  

 

2.9.4 An objective functions method for optimisation 

 

The objective function method involves calculating the difference between two 

curves. The final material property sets were determined by finding the property data 

that give a minimum objective function value. This is a straight forward approach 

commonly used in comparing the similarity of two sets of data. The objective 

function method is normally defined by the sum of the squares of the differences 

between the computational and experimental data for the same time or strain level. 

 

G= 
2

1

)
,

,,
(



n

i eFi

nFieFi
              (2.37) 

Where G is objective function value, ( eFi, ) is experimental data, and ( nFi, )is 

computation data. 

The objective function has been used to determine material constants within unified 

creep constitutive equations based on experimental data (Simunek J. & De Vos 

J.A.,1999, Li B. et al, 2002, Lin J. et al, 2002, Cao J. & Lin J., 2008). Lin J. et al, 

2002 used objective function method to characterise the effect of hardening and 

softening state variables on superplastic flows of metal and alloys. By using the 

objective optimisation method, the work overcome the difficulties associated with 

identifying the difference between predicted and experimental data. In another study, 

Harih G. et al, 2000 has successfully used an objective function to identify material 

parameters of hyperelastic foam material used to provide grasping force in artificial 

hands. 
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2.10 Main challenges testing thin membranes and properties identification.   

 

Many efforts have been made to study thin membranes of rubber like materials using 

different strain energy functions in describing the material behaviour. (Guo Z. and 

Sluys L. J., 2006; Selvadurai, 2006, Zhao et al, 2006). The potential use of an inverse 

modelling program requires satisfactory convergence and consistency conditions. 

This includes an accurate FE model of the system and effective experimental setup to 

achieve a reasonable robustness for the inverse modelling technique (Aernouts J. et 

al, 2010; Erdemir A. et al, 2006). In addition, for hyperelastic material models, a 

wide range of material parameters is required to be able to access the uniqueness of 

program. This requires expensive modelling work to build a large simulation space 

and allow the program to compare with experimental result. Many inverse analyses 

still uses conventional methods to calculate and analyse the data. Analysis of the data 

and editing the material parameters manually is very time-consuming and ineffective. 

An effective programming technique has to be used to improve the accuracy and 

decrease the time of data mining. In ABAQUS, many users using linked between 

FORTRAN and C++ to run user-subroutine codes such as VUMAT and UMAT (Lee 

W. B. and Chen Y. P., 2010; Toda N. et al, 2010; Mishnaevsky L. et al, 2014).  These 

developments offer an opportunity to develop a data processing program combining 

FE modelling, parametric studies, data process and analysis to reduce the complexity 

of the inverse program, this is very important for application oriented development of 

inverse modelling. Another potential area is to use the Python programming, which 

is much easy to implement and directly compatible with ABAQUS. 

 

Indentation bending testing is an important characterisation method for thin 

membranes. It is important to develop an effective framework of inverse modelling 

based on programming base method to characterise the material parameter. However, 

this is a very challenging task due to the fact that the testing and predicted result can 

be affected by many factors including the selection of material models and strain 

energy functions as well as the testing conditions. The effect of the sample size (such 

as thickness) and the indenter size is also not well defined, this may vary with the 

materials and strain levels. This makes it much more difficult to define a robust 

inverse program and data analysis procedure. All these could be effectively 

established by developing a modern Python programming language as a tool to 
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search a wide range of material parameters set for rubber-like in smart and quicker 

method to characterise the material properties. Another area is the potential effects of 

new material behaviours. Recently many new materials are being explored such as 

negative Poisson’s ratio or Modulus materials (Evans K.E. and Alderson A., 2000; 

Sanami M. et al., 2014; Alderson K., et al, 2014; Brighenti R., 2014; Shufrin I. et al, 

2015). These materials hold the potential to open up new application areas. For 

example, material with negative Poisson’s ratio has been found applications in many 

areas such as fabrics (Sloan M.R. et al, 2011; Subramani P. et al, 2014; Ge Z. and 

Hu H., 2015). It is important to establish the effects of these features (such as 

negative Poisson’s ratio) on the material behaviour under indentation bending test.  
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CHAPTER THREE 

 

INVERSE FINITE ELEMENT (FE) MODELLING 

METHOD TO DETERMINE THE 

HYPERELASTIC MATERIAL PARAMETERS 

BASED ON INDENTATION BENDING TESTS 
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3.1 Introduction 

 

As shown in Figure 3.1, there are three main parts in the work: experimental tests, 

FE modelling and inversed program. The experiment work is carried out with latex 

rubber sheet of different thicknesses and diameters. Standard tests including uniaxial 

test and planar test are used to characterise the material and produce input material 

data for the FE model to assess its accuracy and evaluate the suitability of different 

strain energy functions. Relaxation tests based on indentation bending tests are also 

performed; the result is to be presented in Chapter 4.The testing data is also used the 

target to assess the accuracy of the inverse FE program for material parameters 

estimation. 
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Figure 3.1 Flow chart showing the research work: The experimental tests, numerical 

modelling and inverse FE modelling. 

 

 

 

Experimental work 

 Samples and preparation procedure. 

 Standard tests (Uniaxial tensile tests, planar tests) 

 Indentation bending tests of thin rubber sheets of different thicknesses 

(Repeatability, different chamber sizes, and different thicknesses) 
 

Development of finite element models and validation 

 FE models development: Parametric models with python program 

 FE model validation and material model evaluation 

 Effects of material and dimensional parameters  

 

 
Program development and inverse material parameters identification 

 Development of ABAQUS add-on interface using python to automatically 

producing data for developing the inverse program 

 Different curve/data analysis approaches to represent the force-

displacement data through curve coefficients for inverse properties 

identification 

 Inverse estimation of hyperelastic parameters with training data (using 

numerical data models of different material parameters 

 Application of the approach to estimation hyperelastic parameters based on 

the experimental data. 

 Prediction of viscoelastic properties through interactive searching approach 

(chapter 4) 

Discussions (Chapter 5) 

 The mechanics of indentation bending tests 

 Factors influence indentation bending tests 

 Inverse material parameter identification and its applications  

 Effect of material parameters on indentation bending tests including 

auxetic behaviours  
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Finite element (FE) models of indentation bending tests are developed using 

ABAQUS (ABAQUS 6.11). The effects of element size and the frictional conditions 

represented by different friction coefficients are investigated using parametric 

studies. The FE model is validated by comparing the FE result with experimental 

data. The FE model with linear elastic material models is validated against analytical 

solutions from published papers and known the analytical solution for specific 

conditions (e.g. point loading condition) (Komaragiri U. et al, 2005). An ABAQUS 

add-in parametric program has been developed using the Python code to produce 

systematic data over a wide range of material parameters. Three main approaches 

have been developed to characterise/represent the force-displacement data through 

different curve parameters, which are to be detailed in section 3.4. The validity and 

accuracy of the inverse program is systematically assessed using training data (i.e. 

using numerical data as the target data for the inverse program) before being used to 

analyse the experimental data.  An inverse program is also developed for estimation 

of the time dependent material parameters with indentation bending tests. The key 

viscoelastic parameters are determined through combining experimental test data and 

numerical simulation results through an objective function based approach and a two 

stage interactive curve matching program. In the discussion (Chapter 5), several main 

topics are discussed in details include the mechanics of indentation bending tests, 

main issues/factors influencing an indentation bending test, potential applications 

and limitation of the inverse FE modelling approaches, and effects of material 

parameters including auxetic material on the material behaviour.  
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3.2 Experimental works and results 

 

3.2.1 Rubber sheet sample preparation 

 

The experimental tests were performed using liquid latex rubber as the model 

material. The Latex or liquid rubber is a prevulcanized emulsion which can forms a 

highly flexible thin rubber or mould. Samples for different types of tests were 

moulded into different shapes, including indentation bending tests, uniaxial tensile 

test and planar test, as shown in Figure 3.2. All the samples were from the same 

batch of liquid latex under an identical processing procedure. The use of single part 

resins ensures that the rubber is homogeneous and the thickness is controlled by the 

volume of the resin. The moulding and curing process was performed at room 

temperature. In general liquid latex contains polymer produced by the reaction of 

monomers in presence of initiators or catalysts. Surfactants are used to stabilise these 

polymer particles in water during emulsification. After removed moisture, formation 

of strong bridge bonded between individual latex particles with polymers (Steward 

P.A., et al, 2000). To fully evaporate water within the liquid latex, sample was left in 

the mould for 24 hours to ensure the effect of curing process for each rubber sheet 

sample was comparable. The circular sample for the indentation bending tests was 

made using a plastic circular mould with a diameter of 40mm as shown in Figure 

3.2(a). The 'dog bone' shaped sample moulded for the uniaxial tensile test is 10mm 

wide with a gauge length of 100mm as shown in Figure 3.2(b). The planar test 

sample is 120mm wide with a gauge length of 12mm as shown in Figure 3.2(c). The 

standard uniaxial tensile tests and planar tests are performed to characterise the 

material to provide data to validate the FE model and provide data to assess the 

accuracy of the inverse material parameters prediction. 
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(a) Samples for the 

indentation 

bending tests. 

(b) Samples for the 

uniaxial tensile 

tests. 

(c) Sample for the planar 

test. 

 

Figure 3.2 Samples of rubber sheets used in the indentation bending tests, uniaxial 

tensile test and planar tests. 

 

3.2.2 Uniaxial and planar tests of the rubber material and results 

 

The uniaxial tensile tests were performed on a standard tensile testing machine 

shown in Figure 3.3(a) (Model: Tinius Olsen, H50KS) equipped with 2 types of 

loadcells in different load ranges (10N and 500N). A 500 LC laser extensometer was 

used to measure the deformation of the rubber sheet by monitoring the movement of 

two reflective markers placed on the surface of the rubber sheet as shown in Figure 

3.3(b-c). The purpose of conducting tests under different stress strain conditions was 

to obtain data for extracting the nonlinear material properties as there are multiple 

material parameters involved in the hyperelastic strain energy functions. A testing 

rate of 5mm/min was used in the experiments and at least three samples were tested 

and the average data was used. Figure 3.4 shows typical experimental data showing 

the force-displacement. The engineering stress over strain curve was determined and 

the result was plotted in Figure 3.5. These stress strain data was then used as an input 

into the FE model, the hyperplastic parameters could be then determined through the 

material evaluation function available in ABAQUS. The data could also directly be 

used to validate the FE model and evaluate the suitability of the linear elastic and 

hyperelastic models.  
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Figure 3.3 Tensile test machine (a) and the setup of the uniaxial tensile test (b) and 

planar tensile tests (c). 

 
(a) Standard test machine (Model: Tinius Olsen H50KS). 

 
 

(b) Uniaxial tensile test specimen 

(Width=10mm; Gauge 

length=100mm). 

(c) Planar tensile test specimen 

(Width=120mm, Gauge 

length=12mm). 
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Marker 

Laser 

Marker 
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(a) Force and displacement data of the uniaxial tensile test. 

 
(b) Force and displacement data of planar tensile test. 

 

Figure 3.4 Typical force and displacement data of the uniaxial tensile test(a) and 

planar tensile test (b). 
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(a) Uniaxial tensile stress-strain curve. 

 
(b) Planar tensile stress-strain curve. 

 

Figure 3.5 Stress-strain curves for uniaxial tensile test (a) and planar tensile test (b) 

of the rubber sheet. 
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3.2.3 Indentation bending tests and results 

 

Figure 3.6 shows the experimental set-up of the indentation bending test system. As 

shown in Figure 3.6(a), the test system was setup on a standard testing machine. The 

indenter was connected to the cross-head of the tensile test machine with a load cell 

monitoring the force and the force-displacement was recorded by the computer. The 

accuracy of the force and displacement was calibrated by comparing from other 

machines. Figure 3.6(b) is a chart showing the main function of the key components 

and Figure 3.6(c) shows the indentation process and the sample holder. Metal 

cylindrical chambers of different diameters have been made which controls the 

dimension of the sample being tested, the two mainly sizes used in this work are 

20mm and 30mm in diameter, which are designated as sample size 20 and 30 (Ch20 

and Ch30). Most of the data reported in the thesis used a spherical indenter with a 

radius of 4mm (R4) made of stainless steel. The rubber sample was clamped onto the 

chamber made of brass with three evenly spaced screws (Figure 3.6(d)). 
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(a) Indentation bending test system. (b) Key components. 

  
(c) Schematic to show the sample 

system. 

(d) Photo showing the setup of the 

sample and the supporting 

chamber. 

 

 

(e) XFTC300 miniature load cell 

(10N). 

(f) Comparison between the force-

displacement data from tests with 

a smaller and larger load cell. 

 

Figure 3.6 Structure and setup of the indentation bending test system (a&b), the 

sample holder (c&d), smaller load cell and typical force-displacement curve (e&f). 
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Figure 3.7 are typical experimental results showing the repeatability of the tests when 

using a sample size of 20 and 30mm. The initial part of the testing data is not picking 

up by the load due to the sensitivity of the loadcell, but it was cross compared with a 

smaller loadcell (10N) shown in Figure 3.6(f). The XFCT300 series of miniature 

load cell has a measuring range from 0-10N. With the smaller load cell, initial load 

of P-h curve can be determined and the curves were comparable. The limitation of 

the smaller load cell lies in the fact that it is unable to do large deformation 

especially for smaller sample size. The cross comparison between smaller and larger 

load cell (500N) to certain extent shows that the testing data are accurate. The 

average of at three testing data was used to represent the results. Figure 3.8 shows the 

effect of different loading rate on the force and displacement data. In the work, the 

tests were performed using loading (displacement) rates ranged from 1mm/min to 10 

mm/min to a pre-set displacement of 10mm. The results show that there is no 

significant influence of the loading rate on the force-displacement data within the 

load range tested. A reasonable testing rate of 5mm/min was used in the experiments, 

which is relatively easy to control. 

 

Figure 3.7 Typical experimental force-displacement data showing the repeatability 

of the test. (Chamber size, diameter=20mm, Sample thickness=0.8mm).  
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Figure 3.8 Typical testing data with different loading rates. (Sample 

Thickness=0.8mm; Chamber size diameter=30mm). 

 

The effect of sample thickness on the force-displacement data was investigated by 

conducting tests on rubber sheets with different thicknesses made from the same 

batch. Figure 3.9(a&b) shows typical force and displacement data for two typical 

thicknesses (0.3mm and 0.8mm) with a chamber size of diameter 30mm or 20mm. In 

both cases, the curves have shown a similar trend but the thicker sample exhibits a 

higher resistant force in particular over the higher displacement range.  
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(a) Typical experimental force-displacement data with different sample 

thicknesses.  (Chamber size 30mm).  

 
(b) Typical experimental force-displacement data with different sample 

thicknesses.  (Chamber size 20mm).  

 

Figure 3.9 Force-displacement data of rubber sheet of different thicknesses. 
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3.3 FE modelling of indentation bending tests and validation.  

 

3.3.1 Hyperelastic FE model of indentation bending test  

 

As explained in 3.1, the FE modelling work involves initially building an FE model 

mimicking the indentation bending tests, then an ABAQUS add-on is developed 

which enables automatic generation of a large scale data over a wide range of 

material properties. The add-on is developed based on the .rpy file associated with 

ABAQUS cae file. This requires a carefully planning in building the FE model 

following a proper procedure (Figure 3.10), otherwise the add-on will repeat some 

operations unnecessarily. The procedure to build the FE model in ABAQUS is 

shown in Figure 3.10. The first stage of the model is to create each individual part 

with the same shape and dimensions to mimic the experimental work. The rubber 

sheet is modelled as a 3D deformable shell with S4R four-node shell element with 

reduced integration. This type of element has 6 degrees of freedom (3 displacement 

and 3 rotation components at nodes) and based on first-order-shear deformation 

theory in which the transverse shear strain are assumed to be constant through the 

thickness of the shell. The indenter is modelled as an analytically rigid part, as it is a 

lot stiffer (Esteel=200GPa) than the rubber sheet. Analytical rigid was used instead of 

discrete rigid as the shape of the indenter is smooth and is not an arbitrary shape. 

Analytical rigid is less expensive in terms of computational resources and time 

compared to that when the indenter is treated as a discrete rigid body. In the 

assembly section, the parts are assembled together in the correct position mimicking 

the experimental condition as shown in Figure 3.11(a). Two types of approaches 

have been used to assign the material properties. The first approach is directly 

inputting testing data in the form of stress-strain curves based on the standard 

uniaxial tensile tests and planar tests data (Figure 3.5). The second approach is using 

material coefficients either for linear elastic model or hyperelastic model. As shown 

in Figure 3.11, the clamping force on the sheet is represented by fixing the outer rim 

of the rubber sheet to prevent the sample from moving/sliding away. A displacement 

is applied to the reference point of the indenter and reaction force on the indenter is 

extracted to represent the resistance. Figure 3.11(c) shows the typical vertical 

deformation field, which illustrates that the displacement increased gradually from 

the central point to the edge. Figure 3.11(d) shows a typical numerical force-
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displacement data extracted from the FE model. The result shows that the initial 

increment of the slope of curve was relatively slow and becomes much stiffer as the 

displacement is increased. 
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Figure 3.10 Flow chart showing the key procedure to build the ABAQUS model of 

the indentation bending test, which is used to produce the .RPY file.  
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(a) FE model assembly. (b) FE Meshes.  

  
(c) Typical displacement field.  (d) Typical FE force-displacement 

data. 

 

Figure 3.11 3D finite element model of the indentation bending tests (a) FE model; 

(b) Mesh of the model; (c) typical deformed shape (vertical displacement, U3); (d) a 

typical force displacement data.  
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3.3.2 Mesh sensitivity tests and results 

 

To achieve an optimum result, mesh sensitivity tests were performed in order to 

determine a suitable number of nodes and elements. This was done by increasing the 

number of elements in the model until the difference between the force-displacement 

data and stress-strain contour from two consecutive models became negligible. As 

illustrated in Figure 3.12(a-c), FE models with different mesh densities have been 

developed with all other parameters including material properties being kept the 

same. The material model used in the mesh sensitivity tests is a linear elastic model, 

where the properties are represented by the Young’s modulus and the Poisson’s ratio. 

The chamber size is 30mm in diameter and the sample thickness is 0.8mm. Figure 

3.12(d) shows typical numerical force-displacement data extracted from FE models 

with different mesh sizes. It is clearly shown that, with larger elements, the curves 

are significantly different with much higher forces, and as the mesh size becomes 

smaller, the force displacement data become less sensitive to the mesh density. The 

FE with the finest mesh gives the highest accuracy of the numerical result, but the 

simulation time will increase significantly. For this model, the best choice of the 

mesh size is 0.1mm to achieve an optimum balance between demand on the 

computation resources and modelling accuracy. 
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(a) Mesh size=0.1mm. (b) Mesh size=1mm. (c) Mesh size=3mm. 

 

(d) Typical force and displacement data and mesh size sensitivity test results. 

 

Figure 3.12 Mesh size sensitivity tests and results. (a-c): FE models with different 

mesh sizes for chamber diameter=30mm;(d) typical force and displacement data of 

FE models of different element size(E=1.25Mpa, v=0.495). 
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3.3.3 Validation of the FE model with testing data and selection of suitable 

strain energy function for direct and inverse analysis 

 

Different FE models with different hyperelastic models have been developed and 

compared to the experimental data. The most common used linear elastic model is 

represented by two material parameters which are Young’s modulus and Poisson’s 

ratio. The Young’s modulus used E=1.25MPa determined by initial part of the stress-

strain curve of uniaxial tensile test data. The Poisson’s ratio was set at 0.495 which is 

close to 0.5 as rubber is known to be an incompressible material. The suitability of 

several nonlinear models was assessed using the same tensile test data and planar test 

data as an input data but selecting different strain energy function in the FE model. 

Details of the strain energy functions involved are listed in Table 3.1. Figure 

3.13(a&b) shows the force-displacement data when using different strain energy 

models together with experimental data. As shown in Figure 3.13(a), for a thicker 

sample, the linear elastic model match the experimental data up to a displacement of 

4mm, while for a thinner sample, the force-displacement with the linear Elastic 

model match the experimental data up to a much higher displacement. While the 

numerical data with the Ogden model (1
st
 order) is in a good agreement to the 

experimental data over the displacement range for all the cases. The match between 

experimental data and numerical data suggests that the FE model is valid and 

accurate. The validated FE model will be used to investigate the effect of key testing 

and material parameters on the testing results and to develop an inverse FE 

modelling approach to predict the material parameters. 
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(a) Chamber size 30, thickness 0.8mm. 

 
 

(b) Chamber size 20, thickness 0.33mm. 

 

Figure 3.13 Comparison between experiment result and FE results with different 

material models based on the combination of tensile test and planar test data of the 

rubber sheet. 
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There are some material models, for which the FE data is also close to the 

experimental data including Mooney Rivlin, polynomial, Neo Hooke and Arruda-

boyce. However, preliminary works reveals clear limitation of these models such as 

suitability of a wider range of materials or lack of uniqueness, or interlinking 

between the material parameters, therefore the main work will be focused on the 1
st 

order of the Ogden model, represented by the two material parameters µ and . 

Table 3.1: List of different material models assessed in this work. 

Material Models Governing Equations Main 

material 

parameters 

Linear Elastic 

model 
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3.4 Inverse FE modelling for material parameters prediction  

 

In an inverse FE process, the materials parameters are determined by determining the 

material property sets which produce a numerical results best match the target 

experimental data. One key aspect is how to represent the curves. For indentation of 

elastic-plastic materials, the curve can be represented by the curvature (CP/h
2
), 

while for the force-displacement data of indentation bending tests of a hyperelastic 

material, it is not clear which is the best way. In this work, three approaches are 

proposed and their suitabilities to be used to extract the hyperelastic material 

parameters from the force-displacement data are evaluated. The main results will be 

focused on the Ogden model to illustrate the working structure of the program where 

the two main parameters are mu(µ) and Alpha(α). The three approaches are briefly 

explained below. 

 

Curvature (P/h
3
) approach 

 

The first approach is designated as “curvature approach”, which involves calculating 

the curvature value (P/h
3
, where P is force and h is the indentation depth) over the 

small displacement section of the force displacement curve.  

  P=Ch
3
                 (3.1) 

This idea is based on the Schwerin equation for a point loading condition. 

(Komaragiri et al, 2005). The analytical solution (equation 3.2) is based on a 

modified Schwerin point loading condition with consideration of the influence of the 

Poisson’s ratio.
 

  ℎ = 𝑓(𝜈)𝑎 (
𝑃

𝐸𝑎𝑡
)

1

3
                          (3.2) 

In the equation, ‘a’ is the diameter of the chamber; ‘h’ is the indentation 

depth/deflection; ‘P’ is the force (N) and ‘t’ is the thickness. f(ν) is a material 

constant if the Poisson’s ratio is known. As shown in Figure 3.14 (a), preliminary 

analysis shows that the initial part of the data follows this relationship. So, for a 

situation where the chamber diameter ‘a’, and sample thickness is fixed, potentially 

these relationship of the P/h
3 

may still be valid and can be used to approximately 
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represent the material resistance. Details are presented in section 5.1 on the 

mechanics of indentation bending tests.  If we designated C as C(h
3
) to distinguish it 

from the C for indentation test on elastic-plastic materials (Li J. et al, 2012; Marteau 

J. et al, 2012), then C(h
3
), the curvature value, is the function of mu(µ) and Alpha(α) 

with different material parameters but same chamber size and thickness. 

  C(h
3
)=f(µ, )                (3.3) 

This curvature could potentially provide a mechanism of representing the curve 

through a single curvature value, which will make the inverse FE modelling process 

mathematically viable and much easier to program by establishing the relationship 

between the curvature and the material parameters. Similar approach has been used 

in dealing with elastic-plastic materials for indentation tests, where P=Ch
2 

(Gouldstone A. et al, 2007; Zeng K. and Chiu C. H., 2001; Giannakopoulos A. E., 

2006; Zisis Th., 2011). Table 3.2 below shows the correlation coefficient when using 

the curvature to fit the P-H data for different sample thicknesses. In this process, the 

curvature value of each p-h curve with different thicknesses was calculated and then 

this C value is used to recalculate the force (P) of each curve by equation 3.1. As 

shown in Table 3.2 the correlation coefficient, the approach for the thinner sample is 

better than thicker samples, this approach is not applicable for some thicker samples. 

As shown in Figure 3.14 (b), comparison between two curves, one from experiment 

data and the other from C(h
3
) calculation. For the case with a thickness of 0.1mm, 

the result is close to the numerical data. However, for thickness 0.3mm the curve 

calculate by C(h
3
) becomes different from the original data. The curve starting to 

split after 6.5mm indentation depth. This is used as the limit for the force-

displacement data for the curvature based approach.  
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(a) Curve analysis approach 1: Curvature (h3) and slope method.  The curvature 

approach is for the data over the lower displacement range, slope method is 

for the data over the high displacement range. (Chamber size=30mm, Sheet 

thickness= 0.8mm). 

 

(b) Thickness effect of the limited of the curvature approach. 
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(c) Polynomial fitting approach (P=ax²+bx). 

 

Figure 3.14 Typical feature of the P-h curve that provides coefficients representing 

the force displacement data to be used in the inverse FE modelling program.  
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Table 3.2: Correlation coefficient of curve fitting using C(h
3
) with different sample 

thicknesses. (Indentation depth 6.5mm) 

Sample thickness Correlation coefficient of two curve 

0.1 0.999521 

0.2 0.999467 

0.3 0.999394 

0.4 0.999307 

0.5 0.999202 

0.6 0.999076 

0.7 0.998926 

0.8 0.998748 

0.9 0.998539 

1.0 0.998295 

1.5 0.996455 

2.0 0.993462 

 

Slope approach 

 

The second method is designated as “slope approach”, which involves using the 

linear part of the curve at relatively large displacement. Analysis/observation of the 

data over a wide range of material properties revealed that the force-displacement 

data roughly follow a linear relationship at larger displacement. This part of the 

curve could be represented by the slope and intercept value. As illustrated, the 

coefficient of correlation is good enough to represent the data through this approach. 

If we treat the data as a linear line, then there are two parameters, one is the slope, 

and the other one is the intersection point with the horizontal axis. Both could be a 

function of the material parameters. These data are likely to provide another potential 

approach to inversely predict the material parameters by establishing the relationship 

between their relations with the material parameters. This approach might be more 

stable as it is using a trend and intercepting point.  
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Polynomial coefficients approach 

 

The third method is designated as “polynomial approach”, which involves fitting the 

force displacement curve using second order polynomial equation as illustrated in 

Figure 3.14(b). Second order polynomial equation P=ax²+bx and the interception 

was set as ‘0’, as based on the physics, when the displacement is zero, then the force 

should be zero. In this approach, each of the curves could be represented by a 

combination of ‘a’ and ‘b’ values, both are function of the material properties, which 

potentially can be used in an inverse FE program for identifying the material 

parameters from an indentation bending test. 

 

Further details of each of these three approaches and typical inverse modelling 

results are to be presented in the following sections. In each case, the use of single 

chamber size data and dual chamber (chambers of different sizes) is comparatively 

studied. The main purpose is to assess the accuracy, robustness and uniqueness of the 

inverse results, which are important for practical application of inverse FE modelling 

programs for material property identification. Once the force displacement data is 

characterised through curve parameters, then it is relatively easy to mathematically 

work out the relation between the material parameter and the curvature parameter 

(e.g. the curvature, slope etc.). Then the material parameters can be predicted. This 

requires generating data over a wide range of material properties and a proper 

approach to establish the mathematic link. 
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3.5 Structure of the data analysis and inverse material parameters identification 

program  

 

Figure 3.15 shows the process to produce and analyse the data. In the first part of the 

work, an ABAQUS add-on python program is developed to generate a series of 

models within a potential range of material properties to form a simulation space as 

shown in Figure 3.16. The Pseudo code illustrating the main steps and functions 

structure of the program are listed in Table 3.3. The range and the density of data in 

the simulation space can be properly controlled using the ABAQUS add-on. The 

ABAQUS add-on program allow the user to generate, execute and gather the results 

from multiple analyses with different input parameters such as dimensional 

parameters or material parameters. In the next step, several python programs are 

developed to be able to automatically determine all the curve parameters including 

the curvature, slope, intercept, and 1
st
 and 2

nd
 order of polynomial trendline 

coefficients. A program is then developed in MatLab to produce three dimensional 

surface plot representing the mathematic relationship between the curve parameter 

(curvature, slope, intercept, or 2
nd

 order of polynomial coefficient) and the material 

parameters (mu(µ) and Alpha(α)). The suitability of several different surface 

equations are to be coded and assessed as listed Table 3.4. A different program is 

developed for each equation in MatLab, which is then used to determine the surface 

plot coefficient (e.g. a, b, c, d, e or f) and evaluate their suitability in describing the 

relationship between the curve coefficients of the force displacement data and the 

material properties. The best one which is generally applicable to a range of data is 

the 3D parabolic equation. A MatLab program is used to solve this equation format 

to directly form a function between a material parameter and the curve parameters 

with 3 dimensional least-square polynomial methods. This provide a mathematical 

mean to estimate the material parameters either based on different parameters of the 

same curve or by combination of two different approaches with two chamber sizes. 

Some key code, procedure and results are to be presented in the following sections.  
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Table 3.3: Pseudo code to show main steps and functions of the program. 

 

 

Algorithm 1: paramatricStudy 

 

       Input: inputRequest, nodeSet, dataFromInputFile 

       Output:tempFile,  resultODB, resultReport, failedJobList 

 

1. inputRequest, request data from user(Dimension of the model, Material 

parameters and range, interaction properties, mesh type and mesh size) 

2. tempFile, store variables from user inputRequest 

3. materialParameterRange, define the range of material parameters 

4. nodeSet, define a nodeSet for the reference point of the indenter 

5. dataFromInputFile, create  parametric rpy file  

6. Update dataFromInputFile with inputRequest 

7. i=1 

8. Create a Simulation Job-[i]with dataFromInputFile 

9. While i <= materialParameterRange: 

10.     Submit the Job-[i] in ABAQUS 

11.     OpenjobMessage from ODB[i] to read the job status 

12.     If jobMessage is Job-completed: 

13.         Open ODB[i] 

14.         NodeSet, obtain nodal force and displacement of the indenter 

15.         resultsReport, write results (force-displacement data) as a report (.rpt) 

16.         resultsODB[i], convert .rpt files of force and displacement into a plain 

text file  following a structured framework for later access 

17.         i+=1 

18.     Else: 

19.         Return the job[i] which has been failed to user, failedJobList 

20.         I+=1(continue while loop without break) 

21. Return resultODB 

22. Goto slopeFunction 

  

 

Where: 

inputRequest is a user interface to allow user input and asking questions. 

tempFile is a temporary file to store all the user input variables and range of 

material parameters 

materialParameterRange is a number of different material parameter sets for the 

numerical model need to be run 

nodeSet is a node set to record the reaction force and displacement from the history 

output 

dataFromInputFile is a rpy file which can be edited such as dimensions of the 

model, hyperelasic model material parameter, friction coefficient, mesh type, mesh 

size and job name. 

resultODB is a text file to store the force-displacement results corresponding to each 

material parameter sets (‘’ and ‘’ for the Ogden model). 

failedJobList is a text file to store the job names of failed models 
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Figure 3.15 Structure of the program to estimate the material parameters. 

 

Figure 3.16(a) Screen print of the add-on program.  
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Solve the equation 

µ=f(m, );µ=f(C, ) 

 

 

 

Solve the equation 

µ=f(a, );µ=f(b, ) 

 

;µ=f(A, ) 

 

Determination of suitability of different combinations of curve parameter or 

chamber sizes to estimate the nonlinear material parameters based on the 

Ogden model (, ). 

Parametric study/ABAQUS add-on 
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Figure 3.16(b) Large range of material parameters (:0.2-1, :1-4.5) 

 

Table 3.4: Different 3D surface equations evaluated.  

Function Equation 

Plane byaxzz  0  

3D least squares polynomial(3 terms) cbxyaxz  23  

3D least squares polynomial(6 terms) 22 fyeydxycxbxaz   
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3.6 P/h
3
Curvature approach and results 

 

As outline in the last section, in the curvature approach, the initial part of the curve is 

fitted using P=Ch
3
. A program in python is developed to automatically calculate the 

C value from the force-displacement data for each set of material parameters. In most 

of the case, the coefficient of fitting is over 99%. This was done initially in excel to 

evaluate the ideas, and then a MatLab based program was developed to automatically 

calculate the curvature values. The coding program involves discreting the data into 

different depth points, and then the curvature can be calculated following equation: 

  

N

ii

i

h

P
hC

0

3

3 )(











                (3.4) 

This program can also calculate the coefficients of fitting.  

Once the curvature values corresponding to the material properties over the whole 

domain of data (Figure 3.16 (b)) are determined, the 3D surface is determined using 

a code written in MatLab. Figure 3.17 shows the surface plot of full parabolic 

equation z=a+bx+cx²+dxy+ey+fy² and the key parameters with different chamber 

diameters. For both chamber size of 20mm and 30mm, the coefficient of 3D surface 

fitting is over 99 and 98% respectively. This equation would provide a means to 

mathematically predict all the potential sets of material parameters when the force 

displacement data is known.  
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a 0.000013 

b 0.019514 

c 0 

d -0.00012 

e -2.3E-05 

f 0.000008 

(a) Curvature approach with 3D paraboloid equation for Chamber size 20mm. 

 

a 0.000001 

b 0.008106 

c 0 

d -1.4E-05 

e -1E-06 

f 0 

(b) Curvature approach with 3D paraboloid equation for Chamber size 30mm. 

Figure 3.17 Surface plot for Curvature vs. (, )  (Sheet thickness=0.3mm).  
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The results have been assessed using training data, i.e. using FE data with known 

material properties. This could simplify the process as for training data, the material 

properties are known as the target. Created a smaller range of simulation space with 

25 potential material properties and used one of the material property as a target to 

assess the accuracy of the program. Two typical examples are shown in Figure 

3.18(a) with the P-h curves of the two material property sets (i.e. a pair of  and ) 

with two different chamber sizes. For each set of material properties, there is a 

curvature value. Then based on the equation, we can work out all the potential 

material properties which could produce the target curvature value. Given the format 

of the equation, there are many sets of material properties. As shown in Figure 3.18(b 

& c), for both chamber size 20mm and 30mm, for a known curvature value (based on 

the target material property set), the surface equation could identify a range of 

material property sets which fits the equation (data on the line). Mathematically, 

curvature values of the force-displacement data corresponding to the material data set 

on the line will all close to the target value. The data symbols plotted are just a few 

representative points, the line is a polynomial trendline. This suggests that based on a 

single chamber data, the inversely determined material properties are not unique. 

This is a common problem in inverse modelling, the surface function developed 

provided a quick way to identify all the material property sets. This is important as it 

provides an effective way to identify this material property sets which have identical 

force-displacement data. Then new approach can be developed to improve the 

uniqueness of the inverse modelling program. 

One common practical approach in inverse modelling is to combine potential 

material properties for different dimension/stress strain conditions to improve the 

non-uniqueness. This has been shown to be effective in some tests and inverse 

modelling. For example, dual indenter methods (Swaddiwudhipong S. et al, 2005; Le 

M. Q., 2009), for which data associated with different shaped indenters are jointly 

used in the inverse Fe modelling approach to be able to extract more than one 

material parameters from indentation tests.  As shown in Figure 3.18 (b&c), we tried 

combine the data for different chambers size. As shown in the Figure 3.18 (b), there 

is a cross point between the curve for Chamber size 20 and 30, so this suggests 

mathematically, this could produce an better result by using the data with different 

chamber sizes. However, in this case, all the data of the potential properties for 
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chamber size 20 and 30 are still very close, so in a practical application, it will be 

difficult to use this method, i.e. based on the curvature method, to produce a unique 

result even though data from different chambers sizes are used. However, the results 

clearly shows that surface function approach is an effective way to identify all the 

potential material set with confidence which will provide important info for inverse 

material identification with other physical curve parameters which are to be 

presented in the following sections.  
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(a) Force and displacement curve used in the training data. 

 

(b) Predicted material property sets which has a curvature value close to the 

target value. Target (=0.2, =0.5). 
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(c) Predicted material property sets which has a curvature value close to the 

target value. Target (=0.35, =2.5). 

Figure 3.18 The p-h curves used in the training data as the target; (b & c) predicted 

material parameters with two different chamber size based on the curvature 

approach. (Sheet thickness=0.3mm). 
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3.7 Slope method and results 

 

In the slope method, the key curve parameter is the slope of the data at higher 

indentation depth. For this approach, the depth needs to be determined at which the 

method (which is applicable to most of the data) can be used to represent the data.  A 

program needs to be developed to calculate the slope and interception for a range of 

data. This involves discreting the data into different depth points, and then the slope 

value can be calculated following: 

  








_
2

__

)(

))((

xx

yyxx
m                           (3.5) 

Where 
_

x  and 
_

y are the mean of the known x’s and known y’s. In this case, y is the 

force, x is the displacement. Typical example of the pseudo code is shown in Table 

3.5. 
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Table 3.5: Pseudo code shows the algorithm of the program to obtain slope value. 

 

Algorithm 2: slopeFunction 

 

       Input: tempFile, resultsODB,  

       Output: overAllNumericalSlope, overAllNumericalIntercept 

 

1. tempFile, obtain the material parameters ( and )  from user input 

2. resultsODB, obtain all the ODB results from database 

3. materialParameterRange, obtain the range of material parameters from 

tempFile 
4. readCurve, read data from the resultODB column by column 

5. x, define displacement column of readCurve as x 

6. y, define force column of readCurve as y 

7. countNumberI, compute number of row in x and y (to determine  the number 

of data point for each force-displacement curve))  

8. i=1, starting with the first number of resultsODB[i], then updated in each 

calculation loop. 

9. while i < materialParameterRange: 

10.      j=1 

11.     For j<countNumberI: 

12.         Calculate SumX=Sum(xj) & SumY=Sum(yj) 

13.         j+=1 

14.     Calculate meanX and meanY by divide SumX and SumY with 

countNumberI 
15.     For i<countNumberI: 

16.          j=1, starting with first data of x[j] and y[j] 

17.         Calculate slope value of the linear section of the force-displacement curve 

with the regression equation  

 

                 Where numericalSlope[j]=









2
_

__

)(

))((

xx

yyxx

j

jj
, 

_

x  is MeanX and 
_

y  is 

MeanY 

18.          j+=1 

19.     Save numericalSlope[j] into a text file, overAllNumericalSlope 

20.     For j<countNumberI: 

21.          j=1, starting with first data of x[j] and y[j] 

22.          Calculate slope value of the linear section of the force-displacement 

curve with the regression equation  

                  Where numericalIntercept= Average(yj-numericalSlope[j]*xj) 

23.          j+=1 

24.     Save numericalIntercept into a text file, overAllNumericalIntercept 

25.     i+=1 

26. Return overAllNumericalSlope and overAllNumericalIntercept 

27. Goto 3DSurcfaceEquationFunction 
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Where:  

readCurve is a function to read the data from text file 

x is a column to store a displacement data from the readCurve 

y is a column  to store a force data from the readCurve 

countNumerI is a integer variable to store number of rows for each column of x and 

y 

SumX is a summation of x(i=1,2,3,…) 

SumY is a summation of y(i=1,2,3,…) 

numericalSlope[j] is a slope value for each force-displacement curve(j=1,2,3,…) 

numericalIntercept[j] is a intercept value for force-displacement curve (j=1,2,3,…) 

MeanX is the average of x(i=1,2,3,…) 

MeanY is the average of y(i=1,2,3,…) 

overAllNumericalSlope is a text file to store the slope value for all the numerical 

curve 

overAllNumericalIntercept is a text file to store the intercept value for all the 

numerical curve 

 

Figure 3.19(a&b) shows the 3D surface plot of slope as a function of the material 

parameters for chamber size 20mm and chamber size 30mm, respectively. It clearly 

shows that the equation and the surface plot for the two chamber size are different. 

The surface plot for chamber size 30mm is significant flatter than that for chamber 

size 20mm. Based on the surface equation, potential material properties for a target 

slope data could be mathematically determined by solving the equation in MatLab. 

Figure 3.20 (a&b) shows two cases in training data. These data shows that for both 

chamber size 20 and 30, there are several material properties combination could 

match the slope value, however the data for chamber size 30 shows much less change 

with the value/magnitude in the parameter ‘’ than that for chambers 20. More 

importantly, there is a clear cross point, which represent this property point can 

match the slope value for both chamber size 30 and chamber size 20. The point is 

very close to the target property value.  
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(a) Illustration of the slope method to extract the slope value from the force-

displacement data. 

 

 

(b) 3D paraboloid equation for Chamber size 20mm. 
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(c) 3D paraboloid equation for Chamber size 30mm. 

Figure 3.19 Surface plot for slope vs. (, )  (t=0.3mm). (a) Chamber size =20, and 

(b) Chamber size =30mm. 
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(a) Predicted material property sets which has a slope value close to the target 

value. 

 

(b) Predicted material property sets which has a slope value close to the target 

value. 

Figure 3.20 Typical materials sets predicted based on the surface plot equations of 

the slope and the use of data from two chamber sizes to predict the material 

parameters (Sheet thickness=0.3mm). 
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FE model has been performed based on the properties of these cross point, the result 

confirmed that both cross point can produce identical/comparable force displacement 

curves, this suggest that the result is still not unique but the program is able to narrow 

the potential material properties to a manageable number of properties. In this case, 

there are only two points, which will give a clear focus point for the property 

searching process. Similar analysis has been conducted on several target material 

properties and the results are listed in Table 3.6 and 3.7. In all the cases, the 

prediction accuracy is within 3% for . 

Table 3.6: Typical data in training data to predict the material parameters with two 

chamber size using slope approach. (Sample thickness=0.8mm).  

Target Value Prediction Result Percentage error % 

      

0.2 0.5 0.206 1 3 100 

0.2 2.5 0.198 2.5 1 0 

0.3 1 0.3 1 0 0 

0.3 1.5 0.299 1.5 0.3 0 

0.3 2.5 0.3 2.5 0 0 

0.35 1 0.345 0.7 1.43 30 

0.35 2 0.349 2 0.28 0 

0.35 2.5 0.3508 2.5 2.5 0 

0.4 0.5 0.41 1 2.5 100 

0.4 2.5 0.401 2.5 0.25 0 

 

Table 3.7: Typical data in training data to predict the material parameters with two 

chamber size using slope approach. (Sample thickness=0.3mm).  

Target Value Prediction Result Percentage error % 

      

0.2 0.5 0.205 0.9 2.5 80 

0.2 2.5 0.2 2.5 0 0 

0.3 1 0.3 1 0 0 

0.3 1.5 0.3 1.5 0 0 

0.3 2.5 0.3 2.5 0 0 

0.35 1 0.34 0.8 2.9 20 

0.35 2 0.35 2.1 0 5 

0.4 0.5 0.41 1 2.5 100 

0.4 2.5 0.401 2.5 0.25 0 

0.35 2.5 0.35079 2.5 0.2257 0 
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3.8 Polynomial curve fitting approach and results 

 

As shown in Figure 3.14, the force-displacement curves could be fitted by 2nd order 

polynomial trendline equation.  The first order coefficients and the second order 

coefficients potentially is the function of ‘’and ‘’. Typical 2nd order of 

polynomial correlation coefficient of different FE data have been plotted into bar 

chart as shown in Figure 3.21. The range of the correlation coefficients is within 

0.974- 0.998. For each force displacement data, there are two parameters. A program 

has been developed to fit/determine these two parameters for a wide range of 

material data. The main least square fitting 2
nd

 order of polynomial equation is as 

following: 
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We can obtain the matrix for a least squares fit by writing 
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By multiplying the sides with transpose of the first matrix then gives 
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                 (3.6) 

In matrix notation, the equation for a polynomial fit is given by 

y=Xa. 

This can be solved by premultiplying by the transpose X
T
, 

X
T
y=X

T
Xa. 

This matrix equation can be solved numerically where 

a=(X
T
X)

-1
X

T
y. 
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(a)  Correlation coefficients of with 2

nd
 order polynomial fitting of material data 

set. 

Figure 3.21 Typical correlation coefficients when fitting the force-displacement data 

with 2
nd

 order polynomial trendlines. 

Based on these equations, the two polynomial coefficients (‘a’ and ‘b’) could be 

evaluated for every different set of material properties over a wide range of 

simulation space. Typical 3D surface plot of parameter ‘a’ is plotted in Figure 3.22, 

Figure 3.22(a) is for chamber size 20mm and Figure 3.22(b) is for chamber size 

30mm. In both cases, the coefficient ‘a’ increase with the ‘’ and ‘’. To check the 

accuracy and consistency of the ax² approach in predicting material properties for a 

given target value, training data has been performed with two chamber size and 

different thicknesses. As shown in Figure 3.23(a), there are several material sets for 

both chamber size 20 and 30. The data for chamber size 20 exhibits a curved shape, 

while the data for chamber size 30 is close to a linear line. There are two cross point, 

one of them is very close to the target dataµ=0.2 α=0.5).  Similar trend can be 

observed in another set of data when the target is μ=0.202, α=1.8. The material 

property sets for chamber size 30 follows a linear trend, while the material property 

sets follows a curved distribution for chamber 20. One of the cross point is in 

agreement with the target material property.  These data shows that there will be 

multiple materials property sets having similar 2
nd

 order polynomial coefficient from 
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one chamber size test. One potential approach is to use two chambers with different 

sizes, which will narrow the material property down to only two points. Similar 

approach has been evaluated when using the first order polynomial coefficient ‘b’, 

some typical data are shown in Figure 3.24. The overall trend is similar to the 

predicted data based on the 2
nd

order polynomial coefficient. But the quality of some 

data is less smooth as the data shown in Figure 3.23. The 2
nd

 order coefficient ‘a’ and 

first order coefficient ‘b’ has been evaluated with thicker samples.  Typical results 

for the case of a sample 0.8mm thick are shown in Figure 3.25. The data clearly 

shows that the approach is capable of predicting the target material properties. 

Similarly when using a sample with thickness of 0.8mm, the data based on the 

surface function for the first order coefficient ‘b’ shows a similar trend (Figure 3.26), 

but the quality of the data is less good than the data for ‘a’  as shown in Tables 3.8 

and 3.9.  
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(a) 3D parabolic surface for Second order Polynomial coefficient ‘a’(chamber 

size 20mm). 

 
(b) 3D parabolic surface for Second order Polynomial coefficient ‘a’ (chamber 

size 30mm). 

Figure 3.22 Surface plot for second order coefficient a vs. (, ) (t=0.8mm, chamber 

size =20 (a) and 30mm (b)). 
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(a) Typical predicted material sets (Target: =0.2, =0.5). 

 

(b) Typical predicted material sets (Target: =0.35, =2.5).  

Figure 3.23 Typical material sets predicted based on the surface plot equations of the 

second order polynomial coefficient ‘a’ and  the use of data from  two chamber sizes 

to predict the material parameters (Sheet thickness=0.3mm).  
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(a) Typical predicted material sets (Target: =0.2, =0.5). 

 

(b) Typical predicted material sets (Target: =0.35, =2.5). 

Figure 3.24 Typical materials sets predicted based on the surface plot equations of 

the first order polynomial coefficient ‘b’ and  the use of data from two chamber sizes  

to predict the material parameters  (Sheet thickness=0.3mm). 
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(a) Typical predicted material sets (Target: =0.2, =0.5). 

 
(b) Typical predicted material sets (Target: =0.35, =2.5). 

Figure 3.25 Typical materials sets predicted based on the surface plot equations of 

the second order polynomial coefficient ‘a’ and the use of data from two chamber 

sizes to predict the material parameters (Sheet thickness=0.8mm). 

 

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4

M
iu

Alpha

Target value=0.2-0.5

CH20

Ch30

Poly. (CH20)

Poly. (Ch30)

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1 2 3 4

M
iu

Alpha

Target value=0.35-2.5

CH20

ch30

Poly. (CH20)

Poly. (ch30)



114 
 

 

Figure 3.26 Typical materials sets predicted based on the surface plot equations of 

the first order polynomial coefficient ‘b’ and the use of data from two chamber sizes 

to predict the material parameters. (Sheet thickness=0.8mm). 

 

 

 
(a) Typical predicted material sets (Target: =0.2, =0.5). 

 
(b) Typical predicted material sets (Target: =0.35, =2.5). 
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Table 3.8: Typical results of training data to predict the material parameters with 

two chamber size using coefficient ‘a’ approach. (Sample thickness=0.8mm).  

Target Value Prediction Result Percentage error % 

      

0.2 0.5 0.206 0.6 3 20 

0.2 2.5 0.199 2.5 0.5 0 

0.3 1 0.3 1 0 0 

0.3 1.5 0.3 1.6 0 6.7 

0.3 2.5 0.3 2.5 0 0 

0.35 1 0.35 1 0 0 

0.35 2 0.35 2 0 0 

0.4 0.5 0.41 1 2.5 100 

0.4 2.5 0.4 2.5 0 0 

0.35 2.5 0.3505 2.5 0.1429 0 

 

Table 3.9: Typical results of training data to predict the material parameters with 

two chamber size using coefficient ‘b’ approach. (Sample thickness=0.8mm).  

Target Value Prediction Result Percentage error % 

      

0.2 0.5 0.2 0.5 0 0 

0.2 2.5 0.2 2.3 0 8 

0.3 1 0.3 1.4 0 40 

0.3 1.5 0.3 1.5 0 0 

0.3 2.5 0.3 2.3 0 8 

0.35 1 0.37 1.3 5.7143 30 

0.35 2 0.35 1.8 0 10 

0.4 0.5 0.41 0.3 2.5 40 

0.4 2.5 0.401 2.3 0.25 8 

0.35 2.5 0.35 2.3 0 8 
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3.9 Inverse materials properties identification based on combination of different 

curve parameters 

 

Another approach evaluated in this work is to use the combination of different curve 

parameters from the same force displacement curve. The combination of two 

approaches in one chamber size is potentially more effective way to predict the 

material than using the data from two chamber sizes, because one testing data is only 

needed instead of two. This is a more straight forward method to extract the material 

properties from a wide range of material parameters set. Main approaches tested 

included (i) combination of curvature and slope, (ii) slope and interception, (iii) 

combination of second order and first order polynomial coefficients etc. Table 3.10 

shows a typical example of pseudo code to show how the slope and intercept 

program can be used to predict the material parameters. In the first part, an 

experimental is input to the program, then the curvature value and the slope is 

calculated using the program. The value is then feed into the surface equation 

between the curvature-and parameter ( and )  and the surface equation between the 

slope and the  parameter ( and ). The equation is solved and the set of material 

parameters is determined. In the next stage, the material parameter ( and ) fits both  

the curvature and slope surface equations was identified as the target material 

parameter.  
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Algorithm 4: MaterialParameterPredictionFunction 

 

       Input: expCurve, coefficientSlope, coefficientIntercept 

       Output:  resultMaterialParameter 

 

1. expCurve, obtain experimental curve from user 

2. coefficientslope, read the 3D surface coefficient of slope function ( Algorithm 

3) 

3. coefficientIntercept, read 3D surface coefficient of intercept function 

(Algorithm 3) 

4. readCurve, read data from the expCurve 

5. x, define displacement column of readcurve as x 

6. y, define force column of readCurve as y 

7. countNumberI, compute number of row in x and y (to get the number/length of 

numerical data)  

8. i=1, starting with number of x[i] and y[i] 

9. For i<countNumberI: 

10.     Calculate SumX=Sum(xi) & SumY=Sum(yi) 

11.     i+=1 

12. Return SumX and SumY 

13. Calculate meanX and meanY by divide SumX and SumY with countNumberI 

14. For i<countNumberI: 

15.     i=1,  starting with number of x[i] and y[i] 

16.     Calculate slope value of the final linear curve with the equation of the 

regression line 

             Where expSlope=









2
_

__

)(

))((

xx

yyxx

i

ii
, 

_

x  is MeanX and 
_

y  is MeanY 

17.     i+=1 

18. Return expSlope 

19. For i<countNumberI: 

20.     i=1, starting with first data of expCurve 

21.     Calculate intercept  value of the linear curve with the equation of the 

regression 

             Where expIntercept+= Average(yi-expSlope*xi) 

22.     i+=1 

23. Return expIntercept 

24. Save the data for expSlope and expIntercept individually into text file 

25. Solve 3DequationSlope with 3dimensional least-square polynomial method

022  zfyeydxycxbxa , where z is expslope, a, b, c, d, e and f is 

from coefficientSlope. 

26. Solve 3DequationIntercept with 3dimensional least-square polynomial method

022  zfyeydxycxbxa , where z is expIntercept, a, b, c, d, e and f 

is from coefficientIntercept. 

27. Obtain resultMaterialParameter by combining 3DequationSlope and 

3DequationIntercept to get the point representing material property sets 

matching the surface equations for both the slope and intercept surface 

equation. 
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Table 3.10: Typical example of pseudo code for slope and intercept approach. 

 

Some typical results are briefly shown from Figure 3.27 to Figure 3.28. Figure 

3.27(a) shows the data from the slope and intercept method with a chamber size of 

20mm and sample thickness of 0.8mm. As shown in Figure 3.27(a), the data for the 

slope and intercept approach are plotted together and it clearly shows that the 

material parameters corresponding to one of the cross point is in a good agreement 

with the target values. Figure 3.27(b) shows the results when combining inversely 

predicted data from the second order and first order polynomial curve coefficients. 

The results reveal a clear point which is close to the target material parameter values.  

 

Figure 3.27(c&d) show the results for chamber size 30mm. As shown in Figure 

3.27(c), there are two crossing points, one of which is close to the target value. But, 

in general, the data from the slope and intercept point are very close, this suggest that 

it is not suitable to predict the material properties for chamber size 30mm. Figure 

3.27(d) shows the data for the combining inversely predicted data from the second 

order and first order polynomial curve coefficients. One of the crossing point 

matches the target value, but the difference between the two sets of data are not as 

clear as the data for chamber size 20mm. In general, the data from the slope and 

28. Save resultMaterialParameter into text file 

29. Return resultMaterialParameter 

 

Where:  

expCurve is an experimental data input by user 

readCurve is a function to read the data from text file 

x is a column  to store a displacement data  from the readCurve 

y is a column  to store a force data from the readCurve 

countNumerI is an integer variable to store number of row for each column of x and 

y 

SumX is the summation of x(i=1,2,3,…) 

SumY is the summation of y(i=1,2,3,…) 

MeanX is the average of x(i=1,2,3,…) 

MeanY is the average of y(i=1,2,3,…) 

expSlope is the slope value for experimental curve 

expIntercept is the intercept value for experimental curve 

3DequationSlope is the 3D surface equation for slope function 

3DequationIntercept is the 3D surface equation for intercept function 

resultMaterialParameter is a text file for material parameter set ( and ) predicted 

by combining two equations (3DequationSlope and 3DequationIntercept) 
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intercept point are very close, this suggest that it is not suitable to predict the material 

properties for chamber size 30mm.  

 

Similar analyses have been applied to thinner samples. Typical results are shown in 

Figure 3.28(a-d). As shown in Figure 3.28(a), the prediction based on the 

combination of slope and intercept method doesn’t fully match the target value 

different from the case of thicker sample (as shown in Figure 3.27). In the case of 

prediction based on the combination the second order and first order polynomial 

curve coefficients, one of the crossing points matches the target very well. As shown 

Figure 3.28(c&d), when the chamber size is 30mm, it is difficult to identify a clear 

crossing point. The work shows that the program developed is able to automatically 

determine all potential data, this is important for determine the feasibility of different 

approaches in identifying the materials parameter when combining different 

experimental set up.  The situation for smaller chamber size and thicker sample (e.g. 

20mm, sample thickness=0.8mm), the situation is much clearer. In both cases for 

combined Slope-Intercept method (Figure 3.27(a)) and the combined polynomial 

parameters approach (Figure 3.27(b)), there is a clear cross point that match the 

target values, this suggest that it is a better approach for practical application. 

 

 

 

 

 

 

 



120 
 

 

(a) Combination of data from the slope and intercept approach (Camber size 

20mm, thickness=0.8mm). 

 

(b) Combination of data from the second and first order polynomial coefficients. 

(Chamber size 20mm, thickness=0.8mm).  

Figure 3.27 (a&b) Data to show the concept of combining the material sets based 

surface equation for the slope and interception method (a) and the material sets based 

surface equation for the second order and first order polynomial coefficients. 

(Chamber size=20mm, Sheet thickness=0.8mm). 
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(c) Combination of data from the slope and intercept approach (Chamber size 

30mm, thickness=0.8mm). 

 

(d) Combination of data from the second and first order polynomial coefficients. 

(Chamber size 30mm, thickness=0.8mm). 

Figure 3.27 (c&d) Data to show the concept of combining the material sets based 

surface equation for the slope and interception method (a) and the material sets based 

surface equation for the second order and first order polynomial coefficients. 

(Chamber size=30mm, Sheet thickness=0.8mm). 
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Figure 3.28 (a&b) Data to show the concept of combining the material sets based 

surface equation for the slope and interception method (a) and the material sets based 

surface equation for the second order and first order polynomial coefficients. 

(Sample diameter=20mm, Sheet thickness=0.3mm) 

 

 
(a) Combination of data from the slope and intercept approach. 

 
(b) Combination of data from the second and first order polynomial coefficients. 
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Figure 3.28 (c&d) Data to show the concept of combining the material sets based 

surface equation for the slope and interception method (a) and the material sets based 

surface equation for the second order and first order polynomial coefficients. 

(Sample diameter=30mm) 

 

 
(c) Typical predicted material sets (Target: =0.2, =0.5) with a combined slope 

and intercept approach. 

 
(d) Typical predicted material sets (Target: =0.2, =0.5) with a combined 

ax² and bx approach. 

 

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4

M
iu

Alpha

Target value=0.2-0.5

Slope

Intercept

Poly. (Slope)

Poly. (Intercept)

 

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4

M
iu

Alpha

Target value=0.2-0.5

ax2

bx

Poly. (ax2)

Poly. (bx)



124 
 

3.10 Use of the inverse approach in analysing experimental data and 

comparison with the full curve objective function approach 

 

The analysis developed using training data with selected numerical data as the target 

shows that by using two curve parameters from the same curve, the material 

parameters could be predicted using the crossing point between the data from 

different approaches. These approaches have been used to analyse the experimental 

data of samples of different thicknesses including the curvature and slope, slope and 

intercept, polynomial parameters ‘ax²’ and ‘bx’ approaches. The procedure is similar 

to that used in the training data, in which the curve parameters were determined first 

then the potential material parameters are determined by using the surface functions. 

The procedural details are not repeated to preserved clarity. Some key results are 

illustrated in Figure 3.29.  

As shown in Figure 3.29(a), two different approaches (curvature and slope) have 

been performed with chamber size 20mm and plotted together to identify the 

material parameters. The experimental data fitted in ABAQUS from the standard 

tensile tests data is (=0.35, =2.4). As shown in the figure, the material property at 

the cross point is =0.34, =2.5), which is close to the target value. As shown in 

Figure 3.29(b), for chamber size 30mm, the prediction material parameter sets is 

within in a reasonable range of the target, but there are many other data close to each 

other on the lines. Figure 3.29(c & d) shows the results for the data based on 

combination of slope and intercept point method. As shown in Figure 3.29(c), there 

is a clear cross points when the chamber size is 20, which is close to the target value. 

But for chamber size 30mm, as shown in Figure 3.29(b), there is no clear cross point.  

Figure 3.29(e&f) shows the data when combining the second order and first order 

polynomial curve coefficients. As shown in Figure 3.29(e) for chamber size 20mm, 

there is a clear cross points between data from the surface equations, the material 

properties correspond to the cross point is within a close range of the target data. For 

chamber size 30mm, as shown in Figure 3.29(f), there is cross point which is in a 

reasonable range of the target data, However, the data line of 2
nd

 order coefficient ‘a’ 

and data line for the first order coefficient ‘b’ is very close, which made it difficult to 

be conclusive with a clear prediction. This suggests that this ax² and bx approach is a 
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more robust approach than the other approach in particular with a smaller chamber 

size. 

 

(a) Experimental material properties prediction with the combined curvature and 

slope approach. (Chamber size 20 thickness=0.8mm). 

 

(b) Experimental material properties prediction with combined curvature and 

slope approach. (Chamber size 30 thickness=0.8mm). 

Figure 3.29 (a-b) Materials parameters prediction based on the experimental data 

with the combined curvature and slope approach for chamber size 20 (a) and 

chamber size 30 (b). (Sheet thickness=0.8mm, Target value: =0.35, =2.4) 
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(c) Experimental material properties prediction with combined slope and 

intercept approach. (Chamber size 20 thickness=0.8mm). 

 

(d) Experimental material properties prediction with combined slope and 

intercept approach. (Chamber size 30 thickness=0.8mm). 

Figure 3.29 (c-d) Materials parameters prediction based on the experimental data 

with the combined slope and intercepts approach for chamber size 20 (a) and 

chamber size 30(b). (Sheet thickness=0.8mm, Target value: =0.35, =2.4). 
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(e) Experimental material properties prediction with combined ax
2
 and bx 

approach. (Chamber size 20 thickness=0.8mm). 

 

(f) Experimental material properties prediction with ax
2
 and bx approach. 

(Chamber size 30 thickness=0.8mm). 

 

Figure 3.29 (e-f) Materials parameters prediction based on the experimental data 

with the combined 2
nd

 and 1
st
 polynomial equation coefficients approach for chamber 

size 20 (a) and chamber size 30(b). (Sheet thickness=0.8mm, Target value: =0.35, 

=2.4). 
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Figure 3.30 is a bar chart showing the comparison between inversely predicted 

properties from the experimental data with three different approaches. For chamber 

size 20, most of the prediction in a good agreement with the target values. For 

chamber size 30, the values are within a reasonable range. The predicted mu(  ) 

value is very close to the target value but the values for Alpha() are slightly out of 

range. 

 
(a) Result from different approach based on the experimental data with  chamber 

size 20mm. 

 
(b) Result from different approach based on the experimental data with chamber 

size 30mm.  

 

Figure 3.30 A Bar chart comparing the predicted data from different approaches. 
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3.11 Discussion 

Application and mechanics of indentation bending tests. 

Indentation bending test is a convenient testing method to characterise the material 

properties in the form of thin soft samples. The material covered is relevant to many 

industrial sectors such as biomechanics and material engineering. The advantages of 

the indentation bending test is that if only requires small amounts of material sample. 

Many efforts have been made to analytically represent the force displacement data 

(Begley M. R. et al, 2004; Scott O.N. et al, 2004; Ju B. F. et al, 2005; Ahearne M. et 

al, 2009) but most of these analytical approaches are only applicable to limited 

conditions. In addition, most of the analytical solution is only based on the Young’s 

modulus. The use of an inverse FE modelling allows a much more flexible approach 

without the requirement of strict conditions, but requires large data asset and 

processing. As illustrated in this work, this can be addressed using a computer 

program to automatically generate and process data. The main focus of the project is 

in developing a practical program to identify all the potential materials parameters, 

the data would then be used to establish optimum condition for materials parameter 

identification by combining different test dimensions and the data.  

 

As presented in sections 3.1-3.10, this work has developed some key computer 

programs which are important to make the inverse property identification process. 

The first program is the ABAQUS add-on which allows the user to generate the FE 

data over a wide range of material properties, once the original FE model is 

validated. This involves allowing the user to control both the range and the data 

density. This can be easier to use in other situations. Secondly, the program has been 

developed to allow the calculation of the key curve parameters. This made it much 

easier and quicker. Most importantly it allows the processing to follow the same 

format. All the data can be processed in exactly the same way. The program 

developed determines the 3D surface plot is one of the important programs. In 

preliminary work, many different equations have been tried but the results shows that 

it could not accurately represent the data. The 3D surface plot clearly demonstrates 

the relationship between key curve parameters and the nonlinear material parameters. 

This program has allowed us to processing multiple curve parameters format, force-

displacement curves and conveniently compare/assess the uniqueness and accuracy 
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of the inverse material parameter identification process. It also made the evaluation 

of different approaches in combining different tests much easier. One major problem 

for inverse FE based material parameter identification may suffers from non-

uniqueness, this has been reported in many other form of testing in tension, 

compression or indentation, in particular when using hyperelastic strain energy 

functions (Sasson A. et al, 2012; Erdemir A. et al, 2006; Moerman K.M. et al, 2009; 

Gras L. L. et al, 2012; Chang C.T. et al, 2015). The approach in using the surface 

plot equation could make the processing in using data from different experimental set 

(such as dual indenter method) and in this work dual chamber method much easier. 

This allows the feasibility of different approaches to be more efficiently evaluated.  

With the help of the programs developed, this work has assessed many different 

combinations including jointly using the data from different chambers (sample sizes) 

and the combination of different curve parameters. The dual chamber size method 

showed some improvement in terms of the robustness of the predicted results but 

with the depth of this work, this is still difficult to predict nonlinear parameters. The 

option of combining the curve parameters could gave a new direction. Most of the 

combination of curve parameters (Figure 3.18(b&c)) mathematically showed a clear 

cross point, which suggests that the method is theoretically feasible. But there are a 

few situations where the data from different curve parameters are still very close, so 

practically it will not be possible to distinguish the material parameter accurately and 

robustness. The best result is shown with chamber 20 and thicker sample. This 

suggests that using a relatively smaller chamber or sample size will be a better 

option. As shown in the work in the training data (using numerical data) and 

analysing the experiment data, these approaches could produce predicted data close 

to the target data.  

Factors affect the indentation bending test and FE modelling process 

 

The indentation bending test usually represented by force and displacement (p-h) 

curve, where force (p) is the resistance of the material and depth (h) of the indenter. 

There are many factors which might affect the p-h curve such as indenter shape and 

size, chamber size, and experimental conditions, etc. These factors have to be 

carefully considered when using the indentation bending test and FE modelling 

process. For each of the material models studied, the effect of mesh size has been 
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assessed by different meshing scheme to ensure the model is accurate and valid. 

Different strain energy function and linear elastic models were compared to testing 

data to further validate the FE model. Loading rate is another important factor has to 

be studied and has been assessed in the early stage of the work by comparing the p-h 

curve with different loading rate range from 1-10mm/min. The results showed no 

significant difference for all the loading rates studied. This could eliminate one of the 

factors for FE modelling as it could reduce the uncertainty of the results due to rate 

dependent material model. Another important factor which might affect the p-h curve 

is friction coefficient. This has been assessed in the earlier stage of the work by 

comparing the p-h curve with different coefficients and showed testing data is less 

than 0.1 friction coefficient. This could assumed that frictionless between two 

surfaces and provide a significant advantage for inverse FE modelling. Different 

from other small sample tests such as indentation tests, indentation bending tests is 

sensitive to the size of  the chamber. When a smaller chamber is used, for the same 

displacement the strain level is higher. This actually has generated a situation when 

the dual chamber size approach can be used. In addition, for hyperelastic properties, 

a smaller sample size is more sensitive.  

Sensitivity of the predicted material properties due to variations of the input data is 

essentially an intrinsic characteristic of inverse processes. In this work, the input data 

were taken from a numerical model, but, in a real testing situation, there can be 

potentially both system and random errors. Factor such as indenter diameter, 

roundness of the indenter tips, accuracy of the recorded indentation force or depth 

and chamber position which may influence the measurement results (Dao et al., 

2001). One of the major issues may affect the prediction work is misalignment of the 

experiment setup such as indenter and chamber holder. All these needs to be 

carefully controlled to avoid error in the inverse FE modelling process. 
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3.12 Conclusion 

 

In this work, the use of inverse FE modelling and indentation bending test for 

material properties (hyperelastic Ogden model) identification has been systematically 

studied. A parametric FE model has been developed and validated simulating the 

indentation tests of thin latex rubber samples made in the laboratory. An ABAQUS 

add-on program has been developed to automatically update the material parameters 

and extract the force-displacement data. Different curve analysis approaches in 

representing the force-displacement curve have been proposed including: (1) using 

ratio of P/h
3
 for the low load region, (2) using the effective slope at higher load and 

(3) using the second order polynomial curve fitting parameters. The effectiveness of 

these three approaches in providing data to inverse material parameters identification 

is evaluated supported by several programs. The result shows that use of these curve 

fitting parameters could effectively simplify the inverse FE modelling process and 

allow the use of surface plot equations to establish a mathematical relationship 

between curve coefficients and material parameters. These relationships could 

effectively open up the possibility in improving the uniqueness of inversely predicted 

material property sets by combining either data from different testing conditions or 

different curve data from the same test.  

 

A MatLab program has been developed to determine the surface equation between 

the key curve coefficients and the material parameters based on FE data with an 

Ogden model. Work based on the data from a single indenter tests shows that there 

are multiple material property sets that could produce identical force-displacement 

data. This confirms that the results are not unique. A program has been developed 

which allows systematic studies with different approaches including dual chamber 

size and combining two curve parameters approach. Several approaches have been 

evaluated by combining the surface equation for different curve parameters or testing 

conditions (i.e. sample sizes), including (1) combination of curvature and slope; (2) 

combination of slope and intercept, (3) combination of 2
nd

 and 1
st
 polynomial 

equation coefficients approach.  The program is evaluated using numerical training 

data and experimental data. The results show that combining different curve fitting 

approaches method with a smaller chamber size is more effective than using the dual 
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chamber size approach. The combination of 2
nd

 and 1
st
 polynomial equation 

coefficients approach offers the optimum accuracy and flexibility.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



134 
 

 

 

 

 

 

 

 

 

CHAPTER FOUR 

 

CHARACTERISATION OF THE VISCOELASTIC 

MATERIAL PARAMETERS OF MATERIALS FROM 

INDENTATION BENDING TESTS. 
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4.1 Introduction 

 

In this chapter, an inverse FE program is developed to characterise the viscoelastic 

material parameters of thin sheet samples based on indentation bending tests. As 

shown in Figure 4.1, in the first part, a set of relaxation tests based on the indentation 

bending system was conducted. Latex rubber with different thicknesses were 

produced and tested. The creep properties of the latex rubber are inversely estimated 

by combined experimental data and FE modelling program. The repeatability and 

effect of experimental condition on relaxation testing are established. The accuracy 

of the predicted viscoelastic parameters is assessed by comparing the testing results 

with standard tensile relaxation test. The factors affect the viscoelastic tests and the 

inverse parameter identification process is discussed. Two inverse modeling 

approach have been developed, one is based on an objective function searching 

approach, the other one is based a staged interactive approach. The accuracy of these 

two approaches are comparatively studied through both training dataand against 

experimental data.  
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Figure 4.1 Flow chart showing the main work in developing an inverse modelling 

procedure to extract the relaxation coefficients from indentation bending tests. 
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4.2 Experimental work and results 

 

4.2.1 Materials 

 

Specimens for standard tensile stress relaxation tests and indentation bending 

relaxation test were produced by latex liquid emulsion as shown in Figure 4.2(a) and 

(b). Large rubber sheet were cut in round shape for indentation bending relaxation 

tests and dog-bone shaped standard tensile test specimen is used for tensile stress 

relaxation tests.  

 

 

 

 
 

(a) Latex liquid emulsion (b) Latex rubber sheet 

Figure 4.2 Latex liquid emulsion and specimen material. 

 

4.2.2 Relaxation tensile test 

 

The tensile stress relaxation tests were performed on a standard tensile testing 

machine (model: Tinius Olsen, H50KS) as shown in chapter 3 (Figure 3.3(a)) with a 

10N load cell. In the test, a dog bone shaped specimen is pulled to a predefined 

displacement with a constant strain rate. The movement of the cross head is stopped 

when the required displacement is reached and the sample is held at that position. 

The load, which decreases with time is monitored from the load cell. Figure 4.2(c) 

shows a typical force-time data of relaxation tensile test. Different loading rate were 
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performed to check the sensitivity of force-time data on the strain rate. In these cases 

the relaxation tensile test was not significantly affected by the strain rate as shown in 

Figure 4.3. 
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Figure 4.2 (c) Typical force-time data for relaxation tensile test of the latex rubber 

material.  
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Figure 4.3 Force-time data with different loading rate. 
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4.2.3 Indentation bending test and relaxation tests  

 

For the indentation bending relaxation test, round latex rubber sample is clamped 

tightly on a cylindrical frame with 3 evenly spaced screws to ensure no slipping 

occurs during the test. A stainless indenter 4mm in radius is used. The indenter was 

stopped at a specific depth and hold at that position with the time and force being 

recorded. These data would provide data as the input to the FE inverse modelling 

program to determine the viscoelastic parameters. Samples of different thicknesses 

were produced to check the thickness effect on the force displacement and the 

relaxation process. Figure 4.4 shows the force and time data for the indentation 

bending relaxation test for different thickness (1.9mm, 0.34mm and 0.24mm). 
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Figure 4.4 Typical force-time data of relaxation indentation bending test on samples 

of different thicknesses (R=4mm, Chamber size=30mm, and thickness=0.24, 0.34, 

1.9mm). 
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4.3 FE model and inverse identification of creep parameters  

 

The setup of FE model for simulating the relaxation test is the same as the one to 

simulate an indentation bending test but two steps are applied in the analysis. Step 1 

is to move the indenter to a predefined depth; step 2 is to hold the indenter at the 

depth over a period of time. Relaxation tensile test has been conducted and converted 

into normalised shear modulus over time as shown in Figure 4.5. The relaxation 

shear test data in term of stress against time is used as an input test data into 

ABAQUS. First of all, the shear stress is normalised by the initial stress (Hibbit, 

Karlsonand Sorensen Inc., 2002). 

)1(2

)(
)(

v

tE
tGR


                (4.1) 

Where RG  and )(tE  are shear and Young modulus as a function of time and v is the 

Poisson’s ratio. 

The shear relaxation modulus can be written in a dimensionless form 

0
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R

R

R

R                          (4.2) 

Where 
0G = )0(RG  is the instantaneous shear modulus. 

From the formula above, the shear relaxation modulus )(tgR could be obtained which 

is required by the ABAQUS software together with time(s) as the input 

The long term normalised shear compliance or modulus is calculated based on the 

formula below: 

 
0
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G
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Where g_inf is long term normalised shear modulus, 
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E(t) is the Young modulus for maximum shear stress, 
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)1(2
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E
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
                                      (4.4) 

Where E(0) = Young’s modulus of the material. (Canovic S. and Concalves, 2005). 

Table 4.1 listed the key time point and data to obtain normalised shear stress from 

the tensile stress relaxation tests.  
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Figure 4.5 Typical normalised shear modulus-time for ABAQUS input parameters to 

fit the Prony series coefficients. 

 

Table 4.1: The key time point and data to obtain normalised shear stress. 

Tensile 

stress Time(s) E(t) G(t) G(t)(E max) 

gR=G(t)/G(t)M

ax 

21.75815 200 5439.538 1970.847 1970.847016 1 

20.77145 400 5192.862 1881.472 1970.847016 0.954651 

20.14917 600 5037.293 1825.106 1970.847016 0.926052 

 

The FE model used is shown in Figure 4.6(a) and validated by the testing data, as 

detailed in Chapter 3. The numerical data is shown in Figure 4.6(b), the loading 

curve is simulated with hyperelastic parameters (Ogden model) and force relaxation 

part is modelled based on creep material parameters from the tensile stress testing 

data. Several visco-hyperealstic models have been developed and the force-time data 
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is plotted in Figure 4.7. The result shows that the Ogden hyperelastic model is 

suitable for modelling both the loading and relaxation process. Figure 4.8 shows the 

accuracy of Ogden model to describe the non-linear stress-strain behaviour.  

 

For the viscoealstic model, ABAQUS only allow to use Prony series (Eq. 4.1), which 

is normally used to describe the viscoelasticity of materials (Chen T.K., 2000; Mills 

N.J., 2006). 

)/exp()(
1 i

N

i i tGGtG   
                        (4.5) 

Where, 

 G(t) is Shear modulus of time dependent 

 G∞ is long term shear modulus 

 Gi is Shear modulus at the observation i 

 t is the time in second 

 and
i is material constant. 

The material constant for the Prony series are G modulus and Tau(
i ), which needs 

to be inversely predicted with indentation bending relaxation tests. 
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(a) FE model and typical displacement field. (U: vertical displacement) 
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(b) Typical force and time numerical results 

Figure 4.6 Typical FE modelling result using the tensile relaxation as direct input to 

the FE model. 
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Figure 4.7 Comparison between experiment result and FE results with different 

material model. 
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Figure 4.8 Comparison between fitted standard test data versus the data based on 

predicted material parameters. 
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4.4 Inverse program and results 

 

Figure 4.9 shows the procedure of an objective function based inverse modelling 

approach which consist of three parts: experiment works, FE modelling and the 

inverse program. The input to the program (e.g. experimental results) is in the form 

of force-time data. Then FE parametric studies were used to generate relaxation test 

data over a potential range of material properties. The numerical data were then 

processed to form simulation surfaces. The inverse program will explore the 

simulation spaces to search for the material parameter which gives a force-time 

response matching the experimental data represented by an objective function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Flow chart to show the inverse modelling approach to predict the visco-

hyperelastic properties. 
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To assess the accuracy of the program, training data were conducted by using data 

with known material parameters as shown in Figure 4.11. The difference between the 

relaxation curves for each set of material properties and the target was calculated 

using objective functions of the force at different time points. Figure 4.12 plots the 

surface of the objective function value over the property domains against the material 

parameters (G and i). The 3D surface plot represents the objective function value, x 

and y-axis is the material parameters (G and i). The minimum value point could be 

determined as G=0.2 and i=250. As shown in Figure 4.13 where the objective 

function value gets lower when the material parameters move closer to the target 

value. Similar accuracy has been observed with other target data in the training data. 

These suggest that the objective function approach is an effective method in 

estimating the creep parameters.  
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Figure 4.10 Simulation space for Prony series properties. 
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Figure 4.11 Numerical data used as a target in the training data to predict the visco-

hyperelastic parameters. 
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Figure 4.12 Surface plots of the Objective Functions for training data with known 

material properties. 
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Figure 4.13 Typical objective function values for some property sets against target 

(G=0.2 and τ=250). 

Figure 4.14 shows the surface plot of the objective functions using the experiment 

test data as input. Due to the limited property range of the simulation space, the 

prediction of the material properties is not in a perfect match to the data estimated 

from the tensile relaxation tests.  
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Figure 4.14 Surface plot of objective function against the experimental data. 
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Figure 4.15 shows the lowest objective function is (G modulus=0.15 and i =500) 

where the fitted standard test data is (G modulus=0.125 and i =370). This suggests 

that the variation of the simulation space need to be refined. The accuracy of the 

inversely predicted material parameters is tested by comparing the numerical data 

and the target as shown in Figure 4.16. The red coloured cross line is numerical 

result fitted by tensile testing data, the blue dot line is experimental result and green 

colour triangle is numerical force-time data based the material property sets with the 

lowest objective function value. The curve clearly shows that these three are in a 

reasonable agreement. But there are still some differences between the curves. The 

results highlighted a disadvantage of the objective function based approach, as it 

requires the simulation need to be positioned within a reasonable range, which might 

be difficult in a real situation. To improve this situation, python programming was 

used as an interactive searching tool which has the flexibility on the property range. 

Details of the program and typical results are to be presented in the next section.  
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Figure 4.15 Typical objective function values of some material property sets against 

the experimental data. The results show that the inverse program method has 

produced a result close to the true material properties extracted from the standard 

tensile relaxation tests. 
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Figure 4.16 Typical force-time curve based on predicted material parameters with 

low objective function values together with experimental curve. 
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4.5 Development of a staged interactive searching program in Python and 

results 

 

To overcome the problem with objective function based inverse modelling, a new 

interactive searching program is developed in python. A new staged based approach 

is implemented, i.e. searching for the G modulus first, then searching for the 

parameter i, This will effectively reduce the time to total searching time. This 

concept is based on the trend shown in Figure 4.14. As shown in the surface plot, the 

change of the objective function is much more sensitive to G modulus than the 

parameter i. As shown in Figure 4.17, the program consists of three main parts. The 

programs allow the user to input the dimensions of the indenter, chamber size, 

thickness and experimental data of the rubber. In the second part, the ABAQUS INP 

file will be updated and submit for calculation. The program will automatically 

extract the data from the ABAQUS ODB file and compare the results with the 

experiment data. Several loops will be performed until the numerical data is in a 

close agreement with the experimental data. Once the G value has been estimated, 

the program will go into the second stage searching for the parameter i. The 

sensitivity of Prony series has been tested to check the different influence of the 

increment of G and ion the relaxation curve. Figure 4.18(a) shows that the G value 

mainly affects the initial relaxation stage, while the parameter i has a stronger 

influence on the curve over a longer time. The accuracy of the program depends on 

the increment of the material parameters, where if the increment is high the accuracy 

will decrease vice versa lower the increment of the material parameters will increase 

the accuracy of the program. In this case, every increment of the G parameters is 

0.05 and for parameter i is 1. The searching time is also important for this case to 

avoid wait for longer time to complete each search. Material parameters refinement 

has been create where the program consist of variation of the parameters increments 

shows in table 1. The aim of using different parameters increment is to speed up the 

search when the target is still far away from the input.  
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Figure 4.17 Flow chart to show the procedure of the python program to search for G 

and of the Prony series parameter. 
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(b) Sensitivity of force-time data on the τ values. 

 

Figure 4.18 Sensitivity test of Prony series parameters. 
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Table 4.2: Variation of parameters increment. 

Variation of parameter increment 

Objective function 

value 

Parameter increment 

(G Modulus) 

Parameter increment 

i 

>0.05 0.5 50 

>0.02 0.4 40 

>0.01 0.3 30 

>0.005 0.2 20 

>0.001 0.1 10 

>0.000001 0.05 1 

 

Table 4.3: Training data for python searching program. 

Input Target %error 

G i G i G i 

0.3 100 0.3 100 0 0 

0.25 400 0.25 401 0 -0.25 

0.1 250 0.1 248 0 0.8 

 

The following Table 4.3 are the training data used to assess the python searching 

program accuracy. Three known material parameters have been used as an input into 

the program, and the returned results from the program are very accurate as shown in 

Table 4.4. The accuracy achieved is better that the prediction based on the objective 

function approach. In addition, it can be applied to samples of different thickness 

flexibly.  Figure 4.19 compared the predicted G shear modulus and the parameter i 

from the experimental data with different sample thicknesses. It is clearly shown that 

the parameters predicted between samples of different thickness are comparable, and 

in all the case, close to the target value predicted form standard tensile stress 

relaxation tests. These values are used in the FE model to predict the force-time data, 

the result is shown in Figure 4.20. In all the three cases, the numerical data showed a 
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good agreement with the original raw test data of different sample thicknesses. This 

suggests that the two stage interactive searching approach is an effective way of 

estimating the relaxation parameters from indentation bending tests.  
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Figure 4.19 (a) Comparison between the predicted G modulus based on the 

Objective function approach and the interactive searching approach and the target 

value (based on the standard tensile stress relaxation test).  
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Figure 4.19 (b) Comparison between the predicted  based on the Objective function 

approach and the interactive searching approach and the target value (based on the 

standard tensile stress relaxation test).  
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Figure 4.20 Comparison between experimental relaxation data and numerical force-

time data using the predicted relaxation parameters in an indentation bending tests.  
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4.6 Summary 

 

In this chapter, Relaxation indentation bending test has been performed and different 

inverse FE programs have been comparatively applied to estimate the viscoelastic 

parameters from the test data. Relaxation indentation bending test of different 

thickness latex rubber samples have been tested. FE models simulating the relaxation 

indentation bending of viscoelastic material behaviour have been developed and 

factors such as mesh sensitivity, hyperelastic material model were systematically 

studied. Relaxation tensile test and relaxation shear test also directly be used to 

validate the FE model and evaluate the suitability of the hyperelastic and viscoelastic 

model. Simulation spaces over a wide range of material parameters have been 

developed for thickness samples, which successfully provided the data for the 

material parameters prediction. Two inverse parameter identification programs have 

been developed. One program is based on full objective function approach; the other 

is a two staged interactive searching approach. These programs were evaluated in 

both training data using numerical data as the target and relaxation test data of the 

natural latex rubber sample. The work shows that the viscoelastic parameter could be 

determined through an inverse program, but the two stages based interactive 

searching program developed is more effective and flexible in running larger 

property domains. 
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DEFORMATION OF THIN MEMBRANE 

STRUCTURES UNDER INDENTATION 

 

 

 

 

 

 

 

 

 

 



159 
 

5.1 Introduction 

 

As detailed in Chapter 2, many engineering and medical conditions involve 

deformation/deflection of thin shells/membranes with a clamped boundary, such as 

pressure sensors, valves and actuators as well as biological tissues (Scott O. N. et al, 

2004, Ju B. F. et al, 2005, Selvadurai A. P. S., 2006, Egan P. et al, 2007, Aheame M. 

et al, 2010). The material deformation in these cases covers a wide spectrum of strain 

levels from small deformation to large displacement with samples of different 

thicknesses. The resulting force displacement curve (P-h curves) in an indentation 

bending test is dependent on the properties of the material, the structure and 

dimensions of the sample. Many studies have been conducted into the mechanics of 

membranes under localised load with different loading or boundary conditions 

(Perlrine R. et al, 2000, Haughton D. M., 2001, Liu K. K. & Ju B. B., 2001, Oyen M. 

L. et al, 2004, Scott O. N. et al, 2004, Ju B. F. et al, 2005, Selvadurai A. P. S., 2006, 

Egan P. et al, 2007). Most of these works have been focused on material with a 

positive Poisson’s ratio. It is important to expand the study to some new materials 

groups under indentation bending, in particular Negative Poisson’s ratio materials. 

These types of materials get fatter when they are stretched, or become smaller when 

compressed, in contrast to conventional materials (like rubber, glass, metals, etc.) 

(Evans K. E. & Alderson A., 2000, Alderson K. et al, 2014). Many advances have 

been made recently  to produce material with negative Poisson’s ratios at different 

length scales (Pozniak A. A. & Wojciechowski K. W., 2014, Sanami M. et al, 2014, 

Sun J. et al, 2014, Ge Z. & Hu H., 2015, Lim T. C., 2015, Shufrin I. et al, 2015). A 

detailed investigation on  the potential effects of Poisson’s ratio and auxeticity on the 

force-displacement data, the material deformation and its interaction with the 

indenter during indentation tests is important to explore the use of auxetic materials 

in different applications.  

 

Due to the nature of loading and sample configuration, the effect of Poisson’s ratio 

for sample with clamped edge conditions is complicated being affected by material 

properties as well as the experimental conditions (such as sample thickness and 

indenter size, etc.). Within the loading domain, the deformation mode may change 

with depth. In the bending/plate domain, the load is known to be not affected by the 

auxeticity of the materials (Timoshenko S. & Woinowski-Krieger S., 1987). But in the 
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membrane or transition between plate and membrane behaviour, positive or negative 

Poisson’s ratio theoretically would potentially have different effects under localised 

loading conditions (Timoshenko S. & Woinowski-Krieger S., 1987, Komaragiri U. et 

al, 2005). It is essential to study the effect of Poisson’s ratio on the material 

behaviour in both point loading and finite contact conditions (such in the case of a 

spherical indenter). In these conditions which are different from the loading 

conditions of standard tests, the effect of material properties on the material 

behaviour is directly influence by the dimensions of the experimental samples as 

well as the loading conditions. A detailed understanding of these factors will help to 

establish the effects of the Poisson’s ratio with a focus on the influence of auxeticity, 

which will help to further develop material testing methods and extend the use of 

auxetic materials in many relevant industrial fields.  

 

In this chapter, numerical models of a thin membrane under point loading and finite 

contact conditions with a spherical indenter have been developed. The FE model for 

the spherical indentation model is fully validated against experiment data of latex 

rubber samples (as a model material) of different thicknesses and sizes. The FE 

model simulating point loading of thin membranes is compared to analytical 

solutions for materials of different thicknesses and effects of the Poisson’s ratio with 

different sample thickness and deflection depth is analysed. FE models with finite 

contact are developed to simulate thin membranes incorporating auxetic behaviour 

and their deformation mechanisms under an indentation bending test is studied. The 

effect of auxeticity on the P-h curves, deformation profile and contact is presented 

and discussed with reference to deformation mechanisms and potential use of 

auxeticity.  
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5.2 Experimental and FE models 

 

Figure 5.1(a) shows schematically the setup of the indentation bending test. In the 

test, a spherical indenter is pressed onto a thin membrane supported by a circular 

frame which provides a fixed boundary condition. The diameter (designated as 

chamber size) and height of the supporting chamber) is 30mm and 50mm, 

respectively. The radius of the indenter is 4mm. A rubber sheet with a thickness of 

0.8 mm was made out of a latex resin by casting. The Young’s modulus of the rubber 

sheet is 1.25MPa. The sample was made by mixing the latex coagulant and emulsion 

(ABL Resin & Glass, UK) at room temperature followed by degassing in a vacuum 

casting machine to remove entrained air, then pouring into an aluminum mold and 

cured at room temperature to avoid any residual pre-strain. The samples were 

characterised in uniaxial tensile tests and planar tests on a tensile test machine 

(Tinius Olsen Ltd (H50KS)), the data was used to validate the FE modeling results 

from the indentation bending tests. The indenter used is made of a stainless steel ball 

with a highly polished surface. The indentation system was mounted on a rigid 

supporting frame. The loading rate used in the test is 0.5mm/sec. A sensitive load 

cell (model: LCMS-D12TC-5N) was attached to the moving head of the actuator to 

monitor the force during the test. The displacement of the indenter is monitored by a 

linear variable displacement transducer (LVDT) and controlled by a computer.  

 

The FE of the test is developed using the finite element code ABAQUS 6.11. Figure 

5.1 (b&c) shows the FE models developed to study the deformation of membranes 

under finite contact condition (b) and under point loading condition (c). The 

membrane was modelled with shell elements (type S3 and S4R). There are total 

~15000 elements in the model with finer meshes over the region under the indenter 

in order to establish the contact area. Both element types are general purpose 

conventional stress displacement shells with 3 or 4 nodes. These elements allow 

transverse shear deformation. They use thick shell theory as the shell thickness 

increases and become discrete Kirchhoff thin shell elements as the thickness 

decreases. The use of mixed types of elements effectively improved the efficiency of 

the FE model. The rim of the rubber sheet was fully fixed to represent the effect of 

the clamping rig. Preliminary work showed that the numerical results from this 

simplified (but more efficient) boundary condition were comparable to a solid model 
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with full boundary conditions. A full 3D model also allows the evaluation of 

potential effects of misalignment etc. The main work reported in this paper is based 

on a linear elastic law in which the properties were represented by Young’s modulus 

(E) and the Poisson’s ratio (nu). Linear elastic models have been used previously to 

describe rubber like membranes at relatively lower strain levels (Ju B. F. et al, 2005, 

Scoot O. N. et al, 2004). In this work, the suitability of elastic modelling is also 

compared to several hyperelastic models to further validate the FE model and 

establish a displacement range, within which the Elastic mode is fully valid. The use 

of linear elastic modelling allows effective evaluation of the effect of Poisson’s ratio 

and auxeticity on the material behaviour in terms of force displacement data and 

deformation behaviour.  

 

As shown in Figure 5.1 (b&c), two loading conditions have been investigated. One 

(Figure 5.1(b)) is to apply a point load at the centre of the circular membrane; this is 

designed to compare the FE modelling results with analytical solutions. The other 

one (Figure 5.1(c)) is a finite contact situation in which indenters of different sizes 

are simulated. In this case, contact has been defined between the indenter and 

specimen. Sensitivity tests have been performed to assess the influence of mesh size, 

boundary conditions, and frictional condition in order to ensure the FE model is 

accurate with an optimum requirement with regard to computational resources. A 

python program has been developed in which the material properties and sample 

thickness can be changed systematically.  
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(a) Schematic to show the setup of a typical indentation bending tests 

 

(b) FE model simulation finite contact model. 

 

(c) FE model for point loading of circular membrane. 

Figure 5.1 Setup of a typical indentation bending tests (a) and FE model for finite 

contact (b) and point loading (c) of thin membranes. The rim of the circular 

membrane is fixed at all degree of freedom.  
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5.3 Results and discussion  

 

5.3.1 Comparison between experimental data and FE modelling  

 

Figure 5.2(a) shows the displacement fields and comparison between test data of the 

latex rubber sample and FE modelling with elastic properties (solid line) and 

hyperelastic properties (dashed line). Details of the Ogden and Mooney Rivlin strain 

energy function could be found in the ABAQUS 6.11 Theory Mannual. The elastic 

property is based on tensile tests and hyperelastic property was based on the 

combination of tensile and planar tests. The material test data is not shown to 

preserve clarity. The data in Figure 5.2 clearly shows that the FE data with elastic 

properties is in a good agreement with the testing data up to a displacement of 5mm. 

While the hyperelastic models can produce data up to much larger displacement. 

Given the current work is focused on investigating the effects of Poisson’s ratio, the 

modelling is limited to the strain range where the elastic model is valid. Similar 

agreements could be found between FE and experimental data over a wide range of 

sample thickness and indenter sizes which confirms that the FE model is valid and 

accurate. This is essential to be able to predict the effect of Poisson’s ratio and 

auxeticity.  
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(a) Typical deflection fields of membrane under indentation. 

 

 

(a) Experimental force deflection data and FE results with elastic and hyperelastic 

material law. (E=1.25MPa). 

Figure 5.2 Comparison of experimental and numerical data with Elastic and 

hyperelastic model to validate the FE model. 

 

5.3.2 Deformation of a thin membrane under point loading conditions.  

 

Figure 5.3 compares the FE modelling results and analytical solution. The analytical 

solution (equation 1) is based on a modified Schwerin point loading condition with 

consideration of the influence of the Poisson’s ratio (Komaragiri U. et al, 2005). 
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Where:  

f(ν)≈ 1.049 − 0.146𝜈 − 0.158𝜈2                (5.2) 

 

In equation (1), ‘a’ is the diameter of the chamber; ‘δ’ is the indentation 

depth/deflection; ‘P’ is the force (N) and ‘t’ is the thickness. The data presented in 

Figure 5.3 are for membrane thickness of 0.1mm, E=1.25MPa and Poisson’s ratio of 

0.495 and -0.495 (these value are used rather than 0.5 to improve the modelling 

efficiency). In both cases, the FE data and the analytical data show a good agreement.  

 

 

Figure 5.3 Comparison between FE and analytical solution for point Loading 

Condition of circular membrane with negative and positive poisson’s ratio. 

 

According to the analytical solution, P is related to ^3. Figure 5.4 plots (P/
3
) vs. 

displacement. At lower displacement, P/
3 

decreases with displacement following a 

similar trend between negative and positive Poisson’s ratio, and then eventually 

reach to a stable value. With thin samples Figure 5.4(a), there is a clear effect of 

auxeticity, (P/
3
) is much lower with negative Poisson’s ratio. As the thickness of the 

sample increase, the effect of negative Poisson’s ratio become less significant, as 

shown in Figure 5.4(b&c). In the case where thickness is 1mm, the difference 

between positive and negative Poisson’s ratio is much less significant. 
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(a) thickness=0.1mm 

 

(b) Thickness=0.5mm 

 

(c) Thickness=1mm 

Figure 5.4 Variation of curvature parameter (P/δ
3
) with positive and negative 

Poisson’s ratio for samples of different thicknesses under point loading.  
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5.3.3 Effect of Poisson’s ratio on the deformation of membranes under finite 

contact conditions.  

 

In the finite contact case, an indenter is pressed onto the surface. Figure 5.5 shows 

typical force displacement data with an indenter size of R4mm. The data shows that 

the force displacement of a finite contact conditions.is different from the analytical 

solution derived for point loading in particular at high indentation depths. 

Preliminary work also showed that only when the indenter size is smaller than 

0.5mm, the result can be approximated by the analytical solution (result not shown). 

As shown in the data, the membrane with negative Poisson’s ratio is weaker than the 

corresponding one with a positive Poisson’s ratio. This is also observed for other E 

values. In other words, a material with a negative Poisson’s ratio has better 

sensitivity to the load change. This could be a beneficial factor in situation such as 

sensors or some biological tissue such as bladder tissues. Figure 5.6 plots P/
3 

data 

for different indenter sizes. Results show that, in all cases, the membrane 

deformation zone can be effectively represented/approximated by a cubic 

relationship, i.e. P/
3

, which could provide an effective way in material data 

comparisons. Comparing to the data metric for point loading conditions (Figure 5.4), 

the P/
3 

reached a stable constant zone at certain displacement ranges (in this case, 

after 1mm depth). This is probably due to the interaction between the membrane and 

the indenter. This could a very useful feature in representing the force displacement 

data. In the data for each indenter size, the P/
3 

is lower for the membrane with 

negative Poisson’s ratio. Figure 5.7 shows the P~
3
 for samples of different thickness. 

It clearly shows that samples with different thickness show a different trend in 

reaching a full membrane domain and the effect of auxeticity becomes more 

significant with increasing depth for thicker samples.  
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Figure 5.5 Force displacement curves for Limit Contact Model. The solid and dash 

lines are data based on analytical solution for point loading (Eq. 5.1).  
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(a) R=1mm. 

 

(b) R=2mm. 

 

(c) R=4mm. 

Figure 5.6 Curvature Parameter (P/
3
) vs. depth for different indenter sizes (R1, 2, 

and 4mm, sample thickness=0.1mm). 
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(a) Thickness=0.1mm. 

 

(b) Thickness=1mm. 

Figure 5.7 Effect of auxeticity on the P/
3
 for samples of different thickness. 

 

The results clearly show that auxeticity has direct influence on the force 

displacement relationship. The detailed deformation is analysed to establish the 

effect of auxeticitiy on the displacement profile for both the vertical and lateral 

direction. Different from standard material tests, the displacement profile is an 

important feature for thin membrane tests. The profile may provide means to 

represent the deformation of the materials, which has been explored by several 

researchers (Ju B. F. et al, 2005, Selvadurai A. P. S., 2006). It is important to analyse 

the potential effects of auxeticity on the displacement profile and contact conditions. 

Figure 5.8 plots a typical profile of vertical deflection (U2) with positive and 

negative Poisson’s ratio. In the figure, the x-axis used is the distance from the centre 
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point normalised by the radius of the chamber (15mm). (0 represents the central 

point, 1 represents the position of the edge). For thin samples, the displacement 

profile between the positive and negative poisons ratio is slightly different (Figure 

5.8(a)). But in the central part and near the clamp edge, the displacement profile is 

comparable. This is probably due to restraint from the indenter and the edge effects. 

But with thicker specimen, there is no difference in the displacement profile between 

positive and negative Poisson’s ratio. This is probably due to the transition to the 

plate deformation domain. 

 

 

(a) Vertical displacement (U2), Thickness=0.1mm, R4. 

 

(b) Vertical displacement (U2), Thickness=1.5mm, R4. 

Figure 5.8 Effect of auxeticity on the displacement (Vertical displacement, U2) 

profile with different sample thickness.  
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Figure 5.9(a) compares the distribution of lateral displacement between positive and 

negative poisons ratio. In general, the values are very low, but there is a clear 

difference between these two sets of data. The data suggests that a negative Poisson 

ratio results in a positive circumferential strain as comparison to a predominantly 

negative circumferential strain in the case of a positive Poisson’s ratio. Figure 5.9 

(a&b) compares the profile of lateral displacement of samples with different 

thickness at an indentation depth of 3mm, in all cases, the auxeticity showed a clear 

influence on the profile. With finite contact problems, the contact area is another 

important character. This is studied by plotting the contact stress. Figure 5.10 shows 

the contact pressure for samples of different thicknesses. In both cases, the contact 

area for the negative Poisson’s ratio one is smaller than the one with positive 

Poisson’s ratio. This is in reasonable agreement with the data on the deformation 

profiles and force displacement data.  
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(a) Positive Poisson’s Ratio 

 

(b) Negative Poisson’s Ratio 

Figure 5.9: Axial displacement (U1) Profile with different sample thicknesses. 
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(a) Thickness=0.1mm, R4 

 

(b) Thickness=1.5mm, R4. 

Figure 5.10 Effect of Poisson’s Ratio on the contact stress showing the effect of 

auxeticity on the contact area.  
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complex process, as the deformation of the region in contact with the indenter and 

the remaining region of the membrane could be through different deformation 

regimes (Komaragiri U. et al, 2005). The contact pressure is affected by many 

factors such as the friction, thinning of the samples and chamber size, which require 

a systematic further investigation. The change of the contact area observed is in 

reasonable agreement with the effects of negative Poisson’s ratios. In general, for an 

auxetic membrane, there is a tendency for lateral strain ‘’ to be positive causing 

expanded radius. An expanded radius, in the case of finite contact, would naturally 
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give a decreased contact area. This in turn may affect the overall indentation 

resistance. Further work is required to investigate if these changes of the contact area 

have partially contributed to the relative lower force for materials with a negative 

Poisson’s ratio. 
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5.4 Summary 

 

In this chapter, the deformation of circular elastic membranes with a clamped edge 

under point loading and finite contact conditions is systematically studied 

incorporating auxeticity behaviour. The effect of Poisson’s ratio on the deformation 

of the material is established. The feasibility and limitation of an analytical solution 

is assessed. The work shows that the P/
3
 relationship is applicable to describe the 

force displacement data over the membrane domain for both point loading and finite 

contact conditions. It is shown that negative Poisson’s ratio has direct influence on 

the membrane deformation domain; the force is relatively lower, which could be 

beneficial as the material will be more sensitive to load change. The deflection 

profile is slightly different between positive and negative Poisson’s ratio,  while the 

contact area for negative poisson’s ratio relative smaller. This work has highlighed 

some important characteristics of membranes with negative poisson’s ratio, further 

work is required to qunatify these effects with consideration of relative dimensions 

between smaple thickenss and chamber size.  

 

 

 

 

 

 

 

 

 

 

 

 



178 
 

 

 

 

 

 

 

 

CHAPTER SIX 

 

CONCLUSIONS AND FUTURE WORKS 
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6.1 Summary and conclusion 

 

In this work, the use of inverse FE modelling and indentation bending test for 

material properties identification has been systematically studied. A parametric FE 

model has been developed and validated simulating the indentation tests of thin latex 

rubber samples made in the laboratory. Rubber samples were tested in standard 

uniaxial tensile, planar tests, the hyperelastic material parameters are determined and 

used as the target for the inverse material parameter identification program. The 

influence of factors such as mesh size sensitivity and choice of material model on the 

modelling results was systematically studied. An ABAQUS add-on program has 

been developed to automatically update the material parameters and extract the 

force-displacement data. Simulation spaces over a wide range of material parameters 

have been developed, which successfully provided the numerical data for the inverse 

approach for material properties prediction. Different curve analysis approaches in 

representing the force-displacement curve have been proposed including: (1) using 

ratio of P/h
3
 for the low load region, (2) using the effective slope at higher load and 

(3) using the second order polynomial curve fitting parameters. The effectiveness of 

these three approaches in providing data to inverse material parameters identification 

is evaluated supported by several programs. The result shows that use of these curve 

fitting parameters could effectively simplify the inverse FE modelling process and 

allow the use of surface plot equations to establish a mathematical relationship 

between curve coefficients and material parameters. These relationships could 

effectively open up the possibility in improving the uniqueness of inversely predicted 

material property sets by combining either data from different testing conditions or 

different curve data from the same test.  

 

The work has been supported by several new programs to process and analysis the 

data. A MatLab program has been developed to determine the surface equation 

between the key curve coefficients and the material parameters based on FE data 

with an Ogden model. Work based on the data from a single indenter tests shows that 

there are multiple material property sets that could produce identical force-

displacement data. This confirms that the results are not unique. Several approaches 

have been evaluated by combining the surface equation for different curve 

parameters or testing conditions (i.e. sample sizes). A program has been developed 
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and implemented in the inverse FE modelling which allows systematic studies with 

different approaches including dual chamber size, thickness or combining two curve 

parameters approach. The program is evaluated using training data with numerical 

and experimental data. The results demonstrate combining different curve fitting 

approaches method with a smaller chamber size is more effective than using the dual 

chamber size approach. 

 

Relaxation indentation bending test has been performed and different inverse FE 

programs have been comparatively applied to estimate the viscoelastic parameters 

from the test data. One program is based on full objective function approach; the 

other is a two staged interactive searching approach. These programs have been 

evaluated in both training data using numerical data as the target and relaxation test 

data of the natural latex rubber sample. The work shows that the viscoelastic 

parameter could be determined through an inverse program, but the two staged based 

interactive searching program developed is more effective and flexible in running 

larger property domains. 

 

The deformation of circular elastic membranes with a clamped edge under point 

loading or finite contact conditions is systematically studied incorporating auxeticity 

behaviours (Negative Poisson’s ratio). The effect of Poisson’s ratio on the 

deformation of the material is established. The feasibility and limitation of an 

analytical solution is assessed. The work shows that the P/h
3
 relationship is 

applicable to describe the force displacement data over the membrane domain for 

both point loading and finite contact conditions. It is shown that negative Poisson’s 

ratio has direct influence on the membrane deformation domain; the resistance force 

of a membrane with a negative Poisson’s ratio is relatively lower, which could be 

beneficial for application such as sensors, as the material will be more sensitive to 

load change. The deflection profile is slightly different between positive and negative 

Poisson’s ratio, while the contact area for negative Poisson’s ratio is relative smaller. 

This work has highlighted some important characteristics of membranes with 

negative Poisson’s ratio, further work is required to quantify these effects with 

consideration of relative dimensions between sample thickness and chamber size. 
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6.2 Recommendations for future works  

 

This work has established a series of programs and framework for developing FE 

models of indentation bending tests and inverse materials parameters identification. 

The work can be extended into the following areas: 

 

1. Use of the method in investigating temperature effects on materials. Rubber 

materials could be used in different temperatures, which directly influence the load 

bearing capacity and creep behaviour. The indentation bending tests could potentially 

be a convenient way to establish the material behaviour at different temperatures.   

 

2. Use of the method to study the effect of composition or curing time on the 

properties of rubber or gels. A special shaped mould could be made, which allows 

the making of very thin rubber samples. Some thin silicone rubber could be made by 

simply spin the rubber in a container, and then the thin sheet can be tested.  

 

3. Further develop the program into a web based tool in running ABAQUS model 

and analysing data. 
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