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Abstract

Supernovae (SNe) are the spectacular deaths of stars and have shaped the universe we see

today. Their far-reaching influence affects the chemical and dynamical evolution of galaxies,

star formation, neutron star and black hole formation, and they are largely responsible for

most of the heavy elements that make up the universe, including around 90 per cent of the

reader. They also provide laboratories of nuclear and particle physics far beyond what we can

construct on Earth and act as probes of extreme density and energy. This thesis presents new

research into understanding the nature of the progenitor systems of various types of SNe,

as well as presenting results that will allow their study to be more productive in the future,

through use of automated pipelines and methods to increase the science value of discov-

ered SNe. An environmental study of two peculiar types of transients (‘Calcium-rich’ and

‘2002cx-like’), which may not be true SNe, reveals extremely different ages of the exploding

systems that will constrain the current theoretical effortinto discovering the progenitor sys-

tems. The GRB-SN 120422A/2012bz is investigated and found to be an extremely luminous

and energetic SN, even amongst the infamously bright GRB-SNe.A method is presented that

allows an accurate reconstruction of the bolometric light curve of a core-collapse SN, which

relies on only two optical filter observations – this will hugely reduce the observational cost

of constructing bolometric light curves, a tool of great importance when hoping to constrain

the nature of a SN explosion and hence its progenitor. Finally, this method is utilised to

construct the largest bolometric CCSN bolometric light curvesample to date, and these are
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analytically modelled to reveal population statistics of the explosions, thus informing on the

nature of the progenitors.
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Chapter 1

Introduction

Abstract

Supernovae (SNe) are hugely luminous events in the transient sky caused by the explosive

death of a star. This death can be caused either by the collapse of a massive star (core-

collapse SNe; CCSNe) or by a massive white dwarf (WD) undergoinga thermonuclear ex-

plosion, known as Type Ia SNe (SNe Ia). Despite originating from a stellar process, they can

reach brightnesses comparable to entire galaxies for periods of a few weeks. As such, SNe

act as beacons in the Universe, allowing them to be studied both nearby and at cosmolog-

ical distances. Their study has intensified immensely in thepast few decades as their link

to massive stellar evolution and ability to probe the acceleration of the Universe’s expansion

have come to light. In the following sections, a discussion of SN discoveries, historical and

modern, are presented as well as some highlights of SN research in recent years. The current

state of knowledge about their progenitor systems is reviewed, before a brief introduction to

the rest of this thesis.
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1.1. Historical origins 2

Figure 1.1: How SN 1572 looked to Tycho Brahe upon discovery (left, labelled asNova
Stella) and how it looks at present in high resolution imaging (right; image credit: NASA).

1.1 Historical origins

Before the arrival of modern astronomy (specifically, modernastronomical instrumentation),

identification of SNe was reliant on the event being bright enough to be observed by the

naked eye for an appreciable length of time1. This obviously meant the SN would need to

be very nearby, within the Galaxy most likely, which naturally severely limits the volume in

which an observable SN could explode, and so the rate. The earliest evidence for a potential

SN was in 185AD, described inHouhanshu, although the cause of the ‘guest-star’ has been

debated (Chin and Huang, 1994; Schaefer, 1995; Zhao et al., 2006). Since then a sparse and

irregular stream of events have been documented. Two famousexamples are SNe 1572 and

1604. SN 1572 was discovered by Tycho Brahe (Fig.1.1) – such was his disbelief of this

immensely bright intruder on the night sky, he asked servants to confirm his observations.

The first recorded observation of SN 1604 is noted by JohannesKepler, and it is still the

most recent Galactic SN to have been observed during its initial, luminous explosion. Both

SN 1572 and 1604 have been since classified as SNe Ia from observations of light echoes

and analysis of the elemental abundances (e.gKrause et al., 2008).

1Also, a southern hemisphere event would be less likely to have surviving documentation from the civilisa-
tions of the time, if indeed it was documented.
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1.2 Modern SN Discoveries

The rate of SN discoveries dramatically increased with the advent of astronomical instru-

mentation (which allowed extragalactic SNe to be observed), and regular night-sky observ-

ing, beginning around the middle of the 19th century. Interest in SNe also grew following

the work of Fritz Zwicky and Walter Baade (e.g.Baade and Zwicky, 1934; Zwicky, 1942),

who linked them to exotic phenomena such as neutron stars, cosmic rays and dark matter.

Throughout most of the 20th century supernovae were still discovered by professionals and

amateurs manually observing repeated patches of the sky at regular intervals, looking for

new objects that were not present in previous observations.Towards the end of the 20th

century dedicated transient surveys began. With the efficiency of scheduled observations,

and automated object detection in difference imaging (see Chapter2), SN discoveries have

increased from one a month to several every night in∼50 years. The Supernova Legacy

Survey (Astier et al., 2006) found around 1000 high redshift SNe from 2003-2008, and the

Palomar Transient Factory (Law et al., 2009; Rau et al., 2009) had discovered 2135 SNe as of

17/12/20132, since its first detections in March 2009. These are just two examples of many

recent surveys performing searches in this automated manner. The huge increase in discov-

eries is highlighted in Fig.1.2, which shows the discoveries of SN by year from the IAU

SN list3– a noticeable rise in the SN discovery rate is evident post-1987, after the extremely

close by SN 1987A was discovered, a landmark event in the study of SNe. Although a huge

number of SNe are shown, this list does not include the majority of discoveries from the

most recent dedicated, proprietary searches which would dramatically increase the number

of discoveries for the years since 2000.

1.3 Classification of SNe

A large number of discoveries, as shown in Fig.1.2, has been coupled with intensive mon-

itoring of a small sub-section of events. Such a strategy hasled to great advances in the

knowledge of SNe in a relatively short time-scale, and revealed the heterogeneity of SNe. A

2http://ptf.caltech.edu/iptf/
3http://www.cbat.eps.harvard.edu/lists/Supernovae.ht ml

http://ptf.caltech.edu/iptf/
http://www.cbat.eps.harvard.edu/lists/Supernovae.html
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Figure 1.2: SN discoveries since 1900 from the IAU SN list as of 17/12/2013. Note this does
not include the majority of recent (since 2000) SNe discovered by proprietary searches.

brief overview of the main SN classifications is given here, and the observational differences

causing their classification. A graphical representation of the decision tree for the main SN

classes is shown in Fig.1.3.

After the initial distinction from Novae by Zwicky, ever increasing divisions have been made

to the family of SNe, in order to group similar events. Beginning with Minkowski (1941),

supernovae were grouped into Type I (SNe I), which displayedrather homogeneous char-

acteristics, and Type II (SNe II) that appeared more diverse. The distinction being whether

a SN displayed signatures of hydrogen in its spectra – classified as a SN I if there was no

evidence for hydrogen, and a SN II if hydrogen features were observed (e.g.Oke and Searle,

1974).

Barbon et al.(1979) identified two subclasses to SNe II, IIP and IIL, through a study of 21

SNe II light curves. SNe IIP display a characteristic long lasting (∼100-120 days)plateau
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after peak brightness, where the brightness of the supernova remains roughly constant. SNe

IIL do not display this andlinearly decline in brightness after peak.

SNe I now exist as three main subclasses, Ia, Ib and Ic. These are spectral classifications;

SNe Ia display strong silicon absorption, SNe Ib and Ic show either weak or absent silicon

features. The distinction between SNe Ib and Ic comes from the existence of helium features

in the former that are absent in the latter. SeeFilippenko(1997) for a review of the spectral

classification of SNe. SNe Ic also exist asbroad-line variants (SNe Ic-BL). SNe Ic-BL

exhibit unusually high explosion velocities (up to∼30000 km s−1, cf. ∼10000 km s−1 for

normal SNe Ic) and are the only SNe type found to be associatedwith gamma-ray bursts

(GRBs); a discussion of the SN-GRB connection can be found in Section 4.1.

Alongside these are other common designations for SNe that make up a smaller fraction

of the observed explosions. One such is SNe IIb, which initially appear as SNe II but the

initially strong hydrogen features disappear on a time-scale of ∼a week to months, and they

then evolve to resemble a SNe Ib. SN 1993J was the prototypical example of this class.

SNe IIn are SNe II that display unusual features in their hydrogen line emission. The classifi-

cation of IIn is made when anarrowcomponent, with a typical width of hundreds km s−1 (cf.

normal SNe lines of many thousands km s−1), is observed overlaid on the existing, broader

features of hydrogen in the SN’s spectrum (Schlegel, 1990). These SNe can be exceptionally

bright (although a very large range in peak absolute magnitude exists) and display wide-

varying time-scales of evolution (e.g.Kiewe et al., 2012).

1.4 Physics of the explosions and progenitor properties

The empirically-driven classification system is naturallya consequence of the events that

are observed. What may be considered a well defined class now, may have been considered

‘peculiar’ when first discovered, until a significant sampleof similar events could be grouped

by their common properties. Similarly ‘peculiar’ SNe now, will inevitably have a yet further

designation once studies of their properties are complete.Such taxonomy is a relic of the

initial attempt to categorise SNe without a knowledge of theunderlying properties giving rise
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Figure 1.3: SNe classification scheme, taken fromTuratto(2003).

to the observations, and obfuscates details of the progenitor system(s) and the mechanism of

explosion. Since the impact of SNe on shaping the universe wesee today is dictated by such

properties, it is important to understand the links betweenobservations and these underlying

properties.

When considering explosion mechanisms and progenitors, twomain classes can be defined

– thermonuclearandcore-collapseSNe.

As an aside, it appears nature has a multitude of mechanisms at its disposal to cause the

death of a star. Electron capture-SNe (Miyaji et al., 1980) are thought to occur at the low-

est mass range possible for a SN to occur, with super-asymptotic giant branch stars mooted

as the progenitors. These stars explode with a O+Ne+Mg core as oppose to an Fe core in

more massive CCSN progenitors (Nomoto, 1984). The temperature becomes large enough

in the core for significant electron capture by magnesium as the core grows, consequently

the degeneracy pressure drops and the core collapses. This explosion mechanism results in

SNe with characteristic velocities and energies lower thanthat of typical CCSNe and light
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curves displaying an intermediate plateau length of∼60 days (Tominaga et al., 2013). At the

other end of the brightness scale are super-luminous SNe (SLSNe;Gal-Yam, 2012), which

appear to occur at large distances and are extremely bright,even by SN standards. Outshin-

ing even the brightest SNe Ia, they can reach peak magnitudesof M <∼−22. Already three

distinct subclasses exist based on spectral and light curvefeatures. The explosion mecha-

nisms, and the energy sources of their light curves are areasof active study; pair-instability

explosions (e.g.Woosley et al., 2007; Cooke et al., 2012), the synthesising of huge amounts

of radioactive material (Young et al., 2010; Dessart et al., 2012, e.g.), CSM interaction (e.g.

Chatzopoulos et al., 2013), and magnetar production in the core (Kasen and Bildsten, 2010;

Nicholl et al., 2013, e.g.) have all been investigated as potential mechanisms to power such

luminous events. The discussion in this introduction will be limited to thermonuclear and

core-collapse, however.

1.4.1 Thermonuclear SNe

Thermonuclear SNe arise due to nuclear burning of degenerate material in a carbon-oxygen

(CO) white dwarf (WD); this explosion mechanism is responsible for SNe Ia. Direct, very

early time observations of SNe Ia constrain the exploding stars to be very compact objects,

consistent with a WD origin. For exampleNugent et al.(2011) concluded for SN 2011fe that

the exploding star’s radius was≤0.1 R⊙, with Bloom et al.(2012) confirming the degenerate

nature of the progenitor and favouring a WD. SN 2013dy was observed only a few hours

after explosion and similarly had tight constraints on the progenitor radius of<∼0.24 R⊙

(Zheng et al., 2013), indicative of a WD progenitor. The ability to standardise SNe Ia for

use as cosmological distance indicators (Phillips, 1993) to probe the cosmic expansion of

the universe (e.g.Perlmutter et al., 1998, 1999; Riess et al., 1998; Schmidt et al., 1998), has

ensured ardent observational and theoretical study of them.

The details of how the WDs explode is an area of ongoing study and debate. The delayed-

detonation model (Khokhlov, 1991), where an initially sub-sonic flame burns before the WD

detonates, can produce explosions that match the characteristics of SNe Ia. Recent three-

dimensional hydrodynamical simulations (e.g.Seitenzahl et al., 2013) are able to produce
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the observed spreads in SN Ia properties (peak brightness, for example) and comparison to

observed light curves and spectra reveals generally good agreement, although some discrep-

ancies exist (Sim et al., 2013). Another explosion mechanism, the pure deflagration model

(Nomoto et al., 1984), is generally thought to be applicable to sub-luminous type I SNe (see

Chapter3) due to the lower expansion velocities and peak brightnesses found from simula-

tions utilising pure deflagration (e.g.Long et al., 2013). The lack of abundance stratification

in the pure deflagration model is also at odds with what is seenin normal SNe Ia. Ignoring

the nuances of the particular method of ignition, for an explosion, the CO WD must reach a

point where carbon ignites. Since the WD is degenerate this means that the carbon burning

increases the local temperature but does not decrease the density. Positive feedback from

this reaction leads to a thermonuclear explosion that unbinds and explodes the WD.

How the WD reaches the conditions required for carbon burningis also a matter of great

debate. Two competing models are the single degenerate (SD)and double degenerate (DD;

Iben and Tutukov, 1984; Webbink, 1984) channels. In both cases the WD is in a proxi-

mate binary system. In the SD scenario, where the companion is a non-degenerate star, the

gravitational pull of the WD causes the companion to fill its Roche lobe and material passes

through the inner Lagrangian point to accrete on the WD (Roche lobe overflow; RLOF).

Through this mechanism the WD grows in mass and thus the temperature can reach the car-

bon ignition temperature when it reaches the Chandrasekhar limit (∼1.4 M⊙). The nature of

the companions in SD systems is not known; limits have been placed inLi et al. (2011a) for

SN2011fe, where observations rule out red giants and most helium stars as possible compan-

ions. Observations of SN2011fe appear to favour a DD progenitor (Chomiuk et al., 2012),

although the SD cannot be ruled out with current observations (Röpke et al., 2012). Obser-

vational support for the SD scenario came in the form of PTF11kx, where the circumstellar

material (CSM) around the system is naturally explained by a red giant wind and multiple

previous nova outbursts from the progenitor, prior to explosion as a SN Ia (Dilday et al.,

2012). The effect of an evolved companion in the system can also produce SN IIn-like spec-

tral features for a SN Ia (Hamuy et al., 2003, although also seeBenetti et al. 2006), and

indeed it is argued that a fraction of SNe classified as IIn arein fact Ia, masked beneath the

dense CSM (Silverman et al., 2013). See Section1.4.2for a discussion of SNe IIn. In the
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DD scenario the companion is another WD and it is the merger energy of these WDs that

causes allows conditions sufficient for carbon ignition to occur in the merger remnant. A

search for the surviving donor star companion of SN 1572 (Tycho’s SN) found no plausible

candidates (Kerzendorf et al., 2013), and as such a DD scenario is favoured for this SN. It is

apparent that the SD and DD progenitor channels for SNe Ia both contribute to the observed

population, and current studies are now focussing on the relative fractions of SNe Ia that

are formed by each mechanism. A potential discriminating factor between the two channels

could be the velocity of spectral features in SNe Ia, with higher (lower) velocities indicative

of the SD (DD) scenario, which may also correlate with the host galaxy type, and thus age

(seeMaguire et al., 2012). A recent extensive review of the observational evidence for the

various SN Ia progenitor systems is presented inMaoz et al.(2013).

The light curves of thermonuclear SNe are homogeneous in themain, with ‘normal’ SNe Ia

obeying a width-luminosity relation (i.e. broader, more slowly evolving light curves are

brighter;Phillips, 1993). Although some unusual sub-types contribute to a large spread in

luminosities, the light curves are all powered by the radioactive decay of heavy elements,

primarily 56Ni over the initial light curve peak. Two examples of SN Ia lightcurves can be

seen in Fig.1.4, including SN 1991T, the prototypical high-luminosity SN Ia. Spectra of

SNe Ia are characterised by a lack of hydrogen or helium, withstrong silicon absorption (see

Fig. 1.5Filippenko, 1997), often with high velocities.

1.4.2 Core-collapse SNe

The method of exploding via core-collapse is expected to occur only in massive stars. Theo-

retical (e.gIben and Renzini, 1983; Heger et al., 2003) and observational (e.g.Smartt, 2009)

constraints place the lower limit for this to occur at∼ 8 ± 1 M⊙, with some dependence on

metallicity (Ibeling and Heger, 2013). Upper limits are more uncertain as extremely massive

stars may undergo a different explosion mechanism.

The life of a massive star, once the main sequence is reached,briefly comprises (seeWoosley

et al., 2002, for an in-depth review) the following stages.
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• Steady burning of hydrogen to helium occurs in the core, primarily via the CNO cycle.

• Hydrogen burning continues via the CNO cycle in a shell arounda massive, non-

degenerate helium core, which is unable to support the outerlayers of the star and

contracts until the temperature increases to initiate helium burning (T≈ 108K).

• Helium burning produces a carbon-oxygen core surrounded bya helium-burning shell.

• Carbon burning occurs as the core contracts due to pressure from the outer layers. Pair

annihilation becomes significant at the temperatures reached at this point and nuclear

burning is now driven predominantly by replacing the lost energy from neutrinos by

the star, rather than its radiated surface energy.

• After carbon, continued, rapid exhaustion of neon, oxygen and silicon follow in a

similar manner, until nuclear statistical equilibrium occurs during the final stages of

the silicon burning core – i.e. photodisintegration becomes important and reactions

where nuclei gain particles are balanced by destructive inverse reactions.

At this point an iron core exists, with a shell of silicon burning occurring around it. While the

silicon is burning the core will not contract as any attempt to do so will increase the burning

rate, expanding the core and counteracting any contraction. This silicon shell will migrate

out in mass until it passes the point where the mass interior to its extent, the iron core, is

above that given by the Chandrasekhar limit. The degenerate iron core is now susceptible

to collapse and does so on a thermal time-scale. The collapseis speeded up due to electron

capture by iron-group nuclei, which removes electrons (responsible for much of the internal

pressure) and also emits neutrinos that carry away energy. Photodisintegration of the nuclei

also occurs, producing a large number of freeα particles. The resulting binding energy of

the core is lowered and the energy gained by contraction is not enough to match that lost,

resulting in an accelerating collapse that is complete in a few milli-seconds.

At the limit of its maximal density, dictated by neutron degeneracy pressure, the collapse

abruptly stops. Outer core material falling in collides with this inner, incompressible ma-

terial and the core rebounds. The supersonic interaction between this core rebound and the

outer layers of the star that continue to fall inwards produces a strong shock wave. Al-
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though the energy of this shock wave contains enough energy to unbind the outer layers, the

shock wave loses a significant amount of energy by photodisintegrating the nuclei of these

infalling layers that it encounters (losing around1052 erg/ M⊙), and neutrino emission – as

the shock wave propagates outwards, and thus encounters lower densities, neutrinos have a

higher chance of escape beyond the shock front. As such, another mechanism is required to

reinvigorate the shock wave, which is now believed to be neutrino energy deposition (first

proposed byColgate and White, 1966). The huge densities in the inner regions mean the

neutrinos produced here will interact before escape (i.e.ν mean free path≪ core radius),

depositing the energy of the neutrinos into the dense inner material of the star before they

can escape, thus providing a means to couple the energy injected by the core bounce to the

outer layers of the star. This leads to an unbinding of the outer star and a CCSN.

Although it is thought this same principal explosion mechanism is responsible for inducing

core-collapse, and the subsequent explosion of massive stars, CCSNe exhibit very heteroge-

neous properties; core-collapse is the responsible mechanism for SNe of types IIP, IIL, IIb,

Ib, Ic and at least a fraction of IIn. The diversity in observed properties is due to the nature

of the exploding star and the local medium into which it is expanding. Broad properties such

as the mass, metallicity, rotation and binarity of the star,as well as intricacies such as the

particulars of the star’s nuclear burning, internal magnetic fields and mixing of the ejecta

during the propagation of the shock wave, will all affect theobserved SN. Since the effects

of many of these factors are not well understood, a broad overview of how the nature of the

exploding star affects the observables of the SN will follow, neglecting many of the finer

details which are subject to ongoing, intense theoretical work.

Whereas SNeIa follow a similar light curve evolution, CCSNe exhibit a wide spread in light

curve properties and brightnesses.Hamuy(2003) found a 5-magnitude spread in the plateau

luminosities of SNe IIP, similarlyDrout et al.(2011) found a>5 mag spread in peak bright-

nesses for a sample of SNe Ib/c. Despite this heterogeneity,efforts to make distance indica-

tors of SNe IIP, following the method ofKirshner and Kwan(1974), and SNe IIn (Potashov

et al., 2013), are being made since they can provide primary distance indicators, as oppose

to SNe Ia that are reliant on local calibration. Examples of CCSN light curves can be seen

in Fig. 1.4.
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The spectral difference between SNe II and SNe Ib/c is the presence or absence of hydrogen

(see Fig.1.5for example spectra). In order for a massive star to exhibit signatures of massive

amounts of hydrogen, as is seen in SNe II, the exterior envelope must be retained up to the

point of core-collapse. The mass loss experienced by a star is thought to be highly dependent

on its mass (O’Connor and Ott, 2011), alongside metallicity and rotation, to a lesser extent

( e.g.Vink et al., 2001; Vink and de Koter, 2005). Thus SNe II are proposed to be massive

stars at the lower end of the mass range for a CCSN progenitor in order to retain their ex-

ternal hydrogen envelopes, which is backed-up observationally through direct detection of

progenitor systems that reveal them to be red and yellow supergiants, around8 − 15 M⊙

(e.g.Van Dyk et al., 2003; Smartt et al., 2004; Li et al., 2007; Van Dyk et al., 2012; Maund

et al., 2011, seeSmartt 2009for a review). It follows then that we expect SNe Ib/c to arise

from more massive stars (with SNe Ic being more massive than SNe Ib given they also lose

their helium envelope before core-collapse). Such stars would be Wolf-Rayet (WR) stars,

whose strong mass loss has stripped the outer layers throughout their evolution (Crowther,

2007); a tentative detection of a SN Ib, iPTF13bvn, which is consistent with a WR progen-

itor (MZAMS ≃ 30 − 40 M⊙) has been made (Cao et al., 2013; Groh et al., 2013a).4 This

scenario, however, encounters problems when one considersthe stellar initial mass function

(IMF). Due to the steep slope of the IMF, low mass star numbersdominate over high mass

stars, and even moderately massive stars numbers (SNe II progenitors) will also dominate

over very high mass stars (proposed SNe Ib/c progenitors). This simple argument is difficult

to reconcile with the observed SN rates of the two classes. For exampleArcavi et al.(2010),

from an early analysis of PTF discovered SNe, findN (Ib/c)/N (II) ≃ 0.23-0.25 (depending

on host mass), an earlier study byBressan et al.(2002) found a similar fraction when con-

sidering all nearby SNe. The Lick Observatory Supernova Search (LOSSLi et al., 2011b)

also found high proportions of SNe Ib/c – that they make up around 30 per cent of the core-

collapse population. Taking a Salpeter IMF and mass limits at solar metallicity for various

SN types fromHeger et al.(2003), one would expectN (Ib/c)/N (II) ≃ 0.10. This has driven

interest in the role of close binaries in the progenitors of SNe Ib/c (e.g.Nomoto et al., 1995;

Heger et al., 2003; Eldridge and Tout, 2004) as a potential solution to this problem. Bina-

rity, specificallyclosebinarity, will significantly alter the evolution of a star inthe system

4Confirmation of the progenitor’s disappearance in late timeimaging being awaited at the time of writing.
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from that of a single star (or, equivalently, one in a wide binary). The gravitational pull of

the companion introduces the potential for RLOF to occur, hugely increasing the efficiency

of envelope stripping and allowing even lower mass stars to explode with a spectrum that

would warrant a Ib/c classification – therefore increasing the SN Ib/c/SN II ratio (Eldridge

et al., 2008). This additional channel provides additional progenitorsystems to SNe Ib/c, in

order to support their relative prevalence cf. SNe II. Indeed, it is proposed that the majority

of massive stars do not evolve alone, with more than half being in a binary system where

the stars have some form of interaction (consequently a small fraction of massive stars being

actually true single stars), as shown inSana et al.(2012).

Nevertheless, it has been demonstrated through environmental studies that their exists a mass

sequence of SN progenitors. This was statistically shown byAnderson et al.(2012), through

correlations of SN location with Hα emission, who find a sequence, in order of increasing

mass, of: SNe IIP→ SNe IIL → SNe IIn→ SNe Ib→ SNe Ic. The discrepancy in progen-

itor life time (and thus mass) between various SN types has also been shown byKelly et al.

(2008); Kelly and Kirshner(2012); Crowther(2013), with the aforementioned sequence (or

a broader classification version, but maintaining the orderof increasing mass) being posited

in each case. It is important to note that these are statistical studies of SNpopulations, and

as such they can only distinguish between the average progenitor masses, i.e. it is possi-

ble to say thaton averagea SN Ib/c will be more massive than a SN II progenitor, but the

distributions of the initial progenitor masses may indeed overlap (thus not ruling out a pop-

ulation of moderately massive SN Ib/c progenitors in binaries or the effects of metallicity in

determining SN type).

Besides observing directly the progenitor system, or observing the environment of SN pop-

ulations, observing the luminous transient itself can opena wealth of information on the

progenitor. Light curve and spectral information act as a fingerprint for an explosion, iden-

tifying the structure of the progenitor and the nature of theexplosion. The electromagnetic

signature of a SN begins at shock breakout (SBO). This occurs when the shock wave that

is propagating out of the star reaches an optical depth ofτ ∼ 25 (seeKistler et al., 2013,

and references therein), at which point radiation from the shock front leaks from the star,

emission peaking atτ ∼ 1. The signature of this SBO is an extremely bright burst of emis-
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sion peaked in the UV/X-ray regime, whose duration is determined largely by the radius of

the progenitor (e.g.Tominaga et al., 2011); the bolometric luminosity of the SBO can be

∼ 1044 erg s−1, reached in seconds to hours. After this initial burst, the cooling phase oc-

curs, during which the extremely hot, shocked material cools and expands causing the light

curve to initially rise in the UV/optical for a short time while the peak of the black body

emission from this shocked material is bluer than these wavelengths (Piro and Nakar, 2013),

before fading as the peak of the thermal emission moves to longer wavelengths. The du-

ration of this cooling phase is tied to the radius of the exploding star also – the very large

red supergiant (RSG) progenitors of SNeIIP have been observed to show signatures of rising

UV/optical emission for∼2 days after explosion (Gezari et al., 2010), with the signature

of emission from cooling of shocked material present in the fading UV/optical light curves

observed for several days, and up to weeks (Quimby et al., 2007). For SE SNe the durations

are much shorter (signatures of any emission related to the SBO disappear within a day of

explosion, except for the most extended SN IIb progenitors), and there is consequently only

a small number of SE SNe showing SBO cooling (e.g. SNe 1993J,Richmond et al. 1994;

1999ex,Stritzinger et al. 2002; 2008D,Modjaz et al. 2009; 2011dh,Arcavi et al. 2011). The

previously accepted notion that a larger pre-SN radius would result in a longer SBO (and

associated cooling) duration has been questioned recently. This doubt has arisen from the

detection of the progenitor of SN 2011dh, which was been found to be a relatively large yel-

low supergiant (YSG;Maund et al., 2011), despite its modest and very short (∼1 day) SBO

signature. Observations were thought to be indicative of a compact progenitor (Soderberg

et al., 2012; although seeBersten et al., 2012), and it had been argued that the YSG observed

at the location of SN 2011dh was the binary companion (Van Dyk et al., 2011). Late time

imaging showed the YSG had disappeared, confirming it was theprogenitor itself (Van Dyk

et al., 2013).

SNe rebrighten after SBO cooling emission due to one of two sources. In SNe IIP the

massive hydrogen envelope, which has been ionised by the shock wave passing through it,

recombines and the photosphere recedes through this envelope as the outer ejecta cool and

become transparent. This causes the plateau observed in SNeIIP, whereby the luminosity

remains roughly constant for∼100–120 days. It is thought this plateau duration is very
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short or non-existent in SNe IIL owing to a much less massive hydrogen envelope. This

recombination energy source is also not available in other SE SNe (at least not at significant

luminosity or duration), and it is the radiative heating from the decay of56Ni that causes a

rebrightening of the SN once it has diffused to the outer layers, typically peaking∼2 weeks

after explosion. The rise time of this peak is determined by the distribution of56Ni in the

star (Piro and Nakar, 2013), as well as the combination of mass and energy in the ejecta.The

peak luminosity is determined by the amount of56Ni synthesised in the SN (see Section6.2.1

for a description of this in an analytical framework).

Over the evolution of a SN, deeper and deeper layers of the ejecta are probed as the pho-

tosphere recedes. Thus, the abundance and distribution of elements in the ejecta can be

gleaned from good spectral coverage. Early spectra of cooling emission after SBO are gen-

erally quite featureless and display a strong blue continuum due to the high temperatures

of the material at the photosphere (e.g.Quimby et al., 2007). In SNe II, the recombination

of hydrogen then gives rise to strong hydrogen lines, whereas in SNe Ib/c it is helium and

calcium that appear as prominent features initially. Giventhe large velocities involved in SN

explosions, such features form P-Cygni like profiles, with blueshifted absorption and red-

shifted emission. From the minima of the blueshifted absorption, the velocity of the ejecta

producing that spectral line can be determined (see Section6.2.1). The explosions of SNe

result in homologous expansion (v ∝ R) and it therefore follows that the velocities of these

spectral features decrease with time, since it is the outermost ejecta that are probed initially,

with the photosphere receding in ejecta velocity as time progresses. The recession of the

photosphere in velocity and mass of the ejecta eventually leads to thenebularphase, ulti-

mately revealing the composition of the entire ejecta (a few–several months past explosion).

During the nebular phase the continuum becomes weak as the ejecta are optically thin, and

forbidden lines begin to show. Nebular phase observations can reveal asymmetries of the ex-

plosion via double-peaked emission lines in spectra (Maeda et al., 2008), inform on amount

of radioactive elements synthesised in the explosions, andgive estimates of the progenitor’s

initial mass through oxygen mass measurements, which are directly linked (Jerkstrand et al.,

2012, 2013).

The expansion of the ejecta is very fast in CCSNe (∼ 10000–20000 km s−1). These velocities
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are much higher than typical velocities associated with stellar evolution. The ejecta therefore

feel the influence of the progenitor’s behaviour that occurred in the years to decades leading

up to core-collapse as it catches-up previously ejected material. This interaction between the

ejecta from the SN and the circumstellar material born of theprogenitor system’s prior evo-

lution is responsible for SNe IIn. The aforementioned narrow lines exhibited in their spectra

are a result of the collision of this ejecta with a dense CSM. Such high density (or highly-

clumped) CSM is indicative of large, episodic mass-loss fromthe progenitor and massive

star evolution theory would present luminous-blue variables (LBVs) as suitable progenitors.

This has an observational grounding inGal-Yam et al.(2007), where it was proposed the

progenitor of the IIn SN2005gl was a very massive LBV star, which was later confirmed by

post-explosion images (Gal-Yam and Leonard, 2009). Also, in Smith et al.(2011), a very

massive (≥30 M⊙) progenitor for SN2010jl was found using pre-explosion images.

The cases for massive LBVs as SNe IIn progenitors, and the SN IIn class itself, are not clear

cut however. Such massive progenitors retaining a significant hydrogen envelope up until

explosion poses problems for stellar evolution models. Until recently models of massive

star formation did not predict LBV stars to become SN, insteadthe star would evolve to a

WR star, shedding its hydrogen envelope before reaching the conditions for core-collapse.

Groh et al.(2013b) present recent models that can produce LBV progenitors for SNe, but

suggest the resulting spectra are more representative of type IIb explosions, and in any case,

these progenitors are 20–25 M⊙, much lower than the inferred progenitor detections thus

far. When high mass-loss values are found that lead to favouring an LBV progenitor, the

density profile for the CSM surrounding the SN is taken to ber−2, which constitutes the

case of steady mass loss.Dwarkadas(2011) argues this is an incorrect assumption, thus

a high density medium (giving rise to the narrow emission lines in SN IIn spectra) is not

reliant on high mass-loss rates from the progenitor. Clumpy media, or shells of high density

produced from winds with different velocities colliding, are possible scenarios providing the

requisite conditions for a IIn classification, for example.Dwarkadassuggests that SN IIn

should not be designated as a separate class, but rather thatthey form a possible phase of

evolution of any SN, regardless of class. It has also been found that a fraction of previously

classified SNe IIn are in fact SNe Ia with a dense CSM, giving theappearance of IIn spectra
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Figure 1.4: Example light curves of various types of SNe (taken fromPatat et al. 2001).

(Silverman et al., 2013). This may account for some of the inconsistency environmental

studies find between massive star locations and the locations of SNe IIn (Anderson et al.,

2012). The population of SNe IIn are extremely heterogeneous andit is likely they arise

from more than one progenitor system.

Although both photometric and spectroscopic observationshave been fundamental to fur-

thering knowledge regarding CCSN, perhaps the greatest success for the theory of CCSNe

came from a non-electromagnetic source. Over a six second interval, eight neutrinos were

detected by the Irvine-Michigan-Brookhaven detector in theUSA, as reported byBionta

et al. (1987), with a simultaneous detection of 11 neutrinos in Japan by the Kamiokande-

II detector (Hirata et al., 1987). The huge significance of these particular neutrinos is that

they were shortly followed by the optical detection of SN 1987A in the Large Magellanic

Cloud (D ∼ 50 kpc) – a resounding success for core-collapse theory that predicted very

large neutrino luminosities for CCSNe.

Finally, it is proposed that mass ranges exist in which starsdo not produce a luminous coun-
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Figure 1.5: Example spectra of various types of SNe (taken from Filippenko 1997).

terpart to the collapse instead collapsing directly to a black hole. For example (Kochanek,

2013) suggest direct collapse of stars of initial mass∼16.5–25 M⊙. This explains the lack

of a detected SN IIP progenitor in this mass range, where one would expect RSGs to exist,

and would also alleviate some of the inconsistency between the abundances of SNe II and

SNe Ib/c when considering the stellar IMF.

1.5 Thesis introduction

SNe studies have advanced knowledge of massive star/WD evolution, and the ultimate fates

of these stars. Each new advance in both theoretical and observational investigations, how-

ever, is coupled with new questions and, generally, even more bizarre explosions.

The next step for SNe research is to link directly between theprogenitor star, and the nature

of the explosion. To this end, this thesis investigates the host-galaxy environments of a two

peculiar types of transients in Chapter3. The terminal/non-terminal nature of the explosions
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is not known so their description as a SN is even called into question. Constraints are placed

on the ages of the progenitor systems of these peculiar transients and a discussion of the

implications for theoretical models and explosion mechanisms is made. As is evident from

Section1.4.2, the light curves of SNe divulge important informations on the explosion, and

also the progenitor system. A particularly useful tool is the bolometric light curve of a SN,

i.e. one that accounts for all the electromagnetic emission. A discussion of how these bolo-

metric light curves can inform on the explosion parameters of a SN is given in Chapter4,

alongside an application of modelling to a GRB-SN. Despite their usefulness, bolometric

light curves are observationally very expensive since a large wavelength range needs to be

observed. To counteract this, bolometric corrections for CCSNe are presented in Chapter5

which allow bolometric light curves to be made very inexpensively for CCSNe. These cor-

rections are then utilised to construct and model the largest sample of bolometric light curves

of CCSNe in Section6.2.1, in order to investigate the explosion parameters of different types

of CCSN and deducing differences or similarities between their progenitor systems.



Chapter 2

Image subtraction and theCLASP

pipeline

2.1 Image subtraction

The night sky is largely unchanging on the time-scale of human lifetimes. In general, if one

were to repeatedly observe a random patch of sky, there wouldbe no difference between

the images (aside from those differences arising from the effects of the Earth’s atmosphere,

such as seeing and sky brightness); the same objects would remain, and at constant bright-

ness. If a variable star, lensing event or transient happensto be in one of the observations

however, they will be noticeable as a difference in brightness of an object (a variable star

or a lensing event) or a new object (a transient).1 Traditionally, photometry would need to

be performed on all objects to detect any changes in brightness of objects in the field, or

subsequent frames would be “blinked” to attempt to identifytransients. This is clearly a

labour intensive job given the scale of the problem, when onemay be potentially searching

for variables in an entire galaxy of sources, or searching many hundreds of frames a night

to discover transients/lensing events. Image subtractionnaturally provides a solution to both

problems: each image is subtracted from a template. The template is simply another image

1For the purposes of this discussion, moving objects such as asteroids, minor planets or high proper motion
stars, will be neglected. Although clearly these would alsobe noticeable on subsequent images of a field.

20
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of the field that was taken previously, and is generally a deepstack of previous, good-seeing

images.

Considering idealised data, a subtraction of the image from the template would result in an

image containing only zero-valued pixels for the case of no detected variables or transients.

A new transient or increase in brightness of a variable wouldbe manifest as positively-

valued pixels, as the pixels in the image at the location of the change would be larger than

those in the template (similarly, a fading variable or transient would result in negatively-

valued pixels). Study of such subtracted images then makes it trivial to identify interesting

objects. Idealised data does not exist for observations however, and there are many factors

associated with taking multiple observations that makes the process of image subtraction

less straightforward. The following is a list of some important phenomena to consider when

performing image subtraction with modern CCD detectors:

i. removal of cosmic rays, detector artefacts, and fringing patterns

ii . accurate alignment between the image and template

iii . sky-background level and variability across (and between) image and template

iv. brightness scale factor which will account for differing exposure times, filter transmis-

sions2, observing conditions etc. between the image and template

v. saturation and non-linearity of detector response function

vi. point-spread function (PSF) variability within each observation and between image and

template

Typical methods for dealing with these issues are:

i.

Correct reduction of the data beyond standard CCD reduction of bias/overscan removal and

flat-field division can aid with obtaining a clean subtraction. Naturally cosmic rays will

2See Section2.2.3for a a discussion of an application of image subtraction using different filters for the
image and template.
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appear in random locations on each frame and will result in ‘spikes’ or ‘holes’ over the

subtraction. As well as this bad pixels in the detector will be present as it is likely that

the frames will need some alignment (seeii.), and as such they will not be at the same

pixel coordinates for the aligned image and template. The removal of cosmic rays and bad

pixels is usually done by replacing the bad pixel values withvalues obtained from a simple

interpolation of nearby good pixels over the shortest axis of the bad pixel region. A bad pixel

mask is used to identify defects in the detector, whereas a detection algorithm must be run

to identify cosmic rays, since these appear randomly for each image (see Section2.2.1for

a description of the detection algorithm used by CLASP). Fringing patterns, although not

varying in form by large amounts over reasonable timescales, do vary in strength on short

timescales. Coupled with the small scale of variation (whichcannot be easily removed by

typical background fitting functions used in image subtraction, seeiii. ), fringe patterns must

be removed from each of the image and template frames prior tosubtraction to obtain a

smooth, near-zero background over the image. Removal of a fringing pattern is done using a

median-stacked image of dithered on-sky frames taken in thesame filter as the observations.

This fringe frame is then subtracted from the image and template, after scaling to match the

pattern strength in each.

ii.

Alignment of frames, including rotation, scaling and flipping, can be performed using either

a world coordinate system (WCS) transformation or object matching. WCS alignment is

obviously reliant on an accurate WCS solution for each frame. Given two WCS solutions

a transformation can be trivially produced by existing packages (such asWREGISTER in

IRAF), however, this willnot fail in the case of erroneous WCS solutions for one or both

frames, in the sense that an alignment can always be found between two arbitrary coordinates

on the sky as it is simply a geometrical transformation. Thismeans that it is difficult in

a programmatic sense to discover these erroneous alignments.3 A more robust and fail-

safe procedure is to find objects in the two frames and then compute the transformation

based on creating matched coordinate pairs for objects in each image. By doing this, a

3There is also the possibility that an incorrect telescope pointing could produce an image or template with a
nominally correct WCS solution, but of a different patch of sky. Again, in this case the WCS alignment routine
will not fail, but the transformation will obviously be incorrect.
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success alignment is dependant upon the two observations having common sources, and it

will naturally fail in the case of no overlap between the frames. The alignment is sought

by attempting to match triangles of objects in the frames, using the ratios of the triangle

lengths to find corresponding triangles in each frame. This process is detailed further in

Section2.2.1.

iii–vi.

Even with cleaned and properly aligned images, there exist factors that must be accounted

for in order to produce a useful subtraction. These differences arise from the varying condi-

tions each observation will have been taken under; softwarepackages have been developed

that attempt to deal with these, such as ISIS (Alard, 2000) and HOTPANTS4, the methods

of which follow. The atmospheric conditions and optical setup will produce background

variation between the frames that varies as a function of position on the image. This is ac-

counted for by firstly scaling each image based on the brightness of objects in each frame

such that they match (typically an iterative sigma clippingof the object list which produces

this scaling factor is performed so as to remove anomalous objects – i.e. variable or saturated

objects). Then a two-dimensional function (low order polynomial or spline) is fit in order to

match the form of the background in the image to that of the template. However, by far the

biggest factor affecting the quality of the resulting subtraction is the difference in the PSF.

Significant PSF variations can happen on timescales of minutes, and as such, even in the case

of a template and image being taken sequentially on the same telescope and instrument, a

treatment of the PSF variation must be included in the data manipulation before subtraction.

This typically takes the form of akernel(e.g.Alard and Lupton, 1998), with which one of

the frames is convolved in order to match the PSF of the other.Since this convolution will

always degrade the seeing of a frame, the convolution is applied to the better seeing. In the

case where the image is worse seeing than the template the equation takes the form:

I(x, y) ⊗ K(u, v) − T(x, y) = S(x, y), (2.1)

where I is the image, K is the kernel, T is the template and S is the resulting subtraction. The

4http://www.astro.washington.edu/users/becker/v2.0/h otpants.html

http://www.astro.washington.edu/users/becker/v2.0/hotpants.html
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kernel is practically obtained by selecting a number ofstampswithin each image (regions

of the frame centred on point sources), and modelling the functional form of the difference

in the PSF between the frames at the locations of these stamps. The kernel model consists

of a number of gaussians of varying order and full-width half-maximum (FWHM) superim-

posed5, and is typically allowed to vary in a low order polynomial fashion over the extent of

the image to account for PSF variations (Alard, 2000). The FWHM of the gaussians should

reflect the seeing of the frames otherwise they will not properly model the kernel, e.g. in the

case of poor seeing (PSF is spread over a large number of pixels in each stamp) but narrow

gaussians (small pixel widths), the full extent of the PSF will not be accounted for since

the gaussians are not characteristic of the PSF’s form. Again, the selection of stamps to use

has an iterative sigma clipping applied in order to prevent artefacts or extended or saturated

sources from inclusion in the final kernel creation. Naturally such bright stars, which have

a deformed PSF from the rest of the image due to their pixel counts entering the regime

of non-linearity for the detector, will not be cleanly subtracted. Most stars will leave some

small imprint in the subtraction, but these bright stars mayleave significant residuals, and so

bright sources would be masked prior to detection algorithms being run on the subtraction.

Clearly, although image subtraction provides a natural solution to the task of finding vari-

able and transient objects within subsequent observationsof a field, there are still a large

number of steps that must be performed, each with several parameters that affect the quality

of the resulting subtraction. Typically large surveys willcreate or utilise real-time subtrac-

tion pipelines that perform some automated searching of thesubtractions in order to flag

potentially interesting sources. The advantages of this for a single survey are that they can

produce source catalogues of variable stars to prevent repeated flagging of them, the data

are of a consistent form and the details of the telescope and instrument setup are known.

However, a large amount of image subtraction is still performed investigating individual ob-

jects, or on follow-up observations of transients detectedby these large-scale surveys. The

challenges here are not running detection routines on the subtractions (it is already known

that a transient is in the frame), but an ease of usability by awider audience and the accep-

5Although seeBramich(2008); Becker et al.(2012) for methods using delta functions to properly model
the kernel at each pixel of the stamp, to remove the dependency on a functional form (e.g. a summation of
gaussians).
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tance of diverse imaging data from many different telescopes and instruments. This led to

the development of CLASP.

2.2 CLASP

CLASP (Create Light curves with Alignment, Subtraction and Photometry) is a tool for

performing small- to medium-scale image subtraction tasks, with a focus on usability and

success for a wide variety of imaging data, regardless of thespecific telescope/instrument

setup. CLASP is reliant on some common FITS header values (such as an exposure time,

date of observation, read noise and gain of detector). Appendix B describes the details of the

requirements.

CLASP is written in PYTHON6 (utilising IRAF7 tasks through the PYRAF8 package), call-

ing on SEXTRACTOR9 and HOTPANTS. It consists of a subtraction pipeline (SUBPIPE) to

perform the image alignment and subtraction, a photometry pipeline (PHOTPIPE) to perform

photometry on the subtracted image (producing it in the template’s photometric system), and

a GUI interface to both. A simplified outline of the actions ofeach pipeline is shown in the

form of flow charts in Figs.2.1and2.2, and a detailed description in plain English follows.

See AppendixB.1 for practically how to use CLASP, including a fuller description of the

optional arguments and details of the configuration files.

2.2.1 SUBPIPE

Designed to perform some data reduction (after basic flat-fielding and bias/overscan subtrac-

tion has been performed), image alignment and subtraction,SUBPIPEcan be run on individ-

ual images or in batch mode on a directory of images. The threerequired elements are: one

or more science images (image), a template image (template) to subtract from these, and a

work directory (workdir) where all the output data are stored (along with logs and reports of

6http://www.python.org/
7http://iraf.noao.edu/
8http://www.stsci.edu/institute/software_hardware/py raf
9http://www.astromatic.net/software/sextractor

http://www.python.org/
http://iraf.noao.edu/
http://www.stsci.edu/institute/software_hardware/pyraf
http://www.astromatic.net/software/sextractor
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Figure 2.1: Flow chart showing the basic processes and decisions made bySUBPIPE
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the pipe’s progress).SUBPIPEthen performs the following actions:

• A list of input images is created by searching the specified image directory based on

file name selection criteria (e.g. “*.fits”). If an image pathis provided, a single image

is sent forward for processing.

• workdir is created if it doesn’t exist, or the user is prompted to clear its contents if it

already exists. A log and a report are created to hold output information. Ashelve

file10 is also created as a permanent store for the data that can be read byPHOTPIPE.

The following are then copied intoworkdir:

– template, into a sub-directory ofworkdir called ‘template/’.

– The configuration filesHOTPanTScfg.py andPIPEcfg.py .

– The firstimagein the list of science images.

• image is cleaned as required by the user and some information is stored about the

image. (This is also performed fortemplateon the first pass.)

– image header is read as per thePIPEcfg.py file for date of observation, filter,

read noise, gain and exposure time; the validity of the WCS is also checked.

– Cosmic rays are removed using Laplacian edge detection as described in van

Dokkum (2001), originally implemented in PYTHON by Malte Tewes11, and

modified here for integration withSUBPIPE, as well as including bad-pixel mask-

ing.

– A bad-pixel mask, if given, highlights pixels that will be interpolated over by the

cosmic ray routine.

– image is defringed if a fringe frame is offered using theRMFRINGE package of

IRAF.

– The median seeing is determined using SEXTRACTOR with clipping of non-point

sources from the catalogue.

10http://docs.python.org/2/library/shelve.html
11http://obswww.unige.ch/ ˜ tewes/cosmics_dot_py/

http://docs.python.org/2/library/shelve.html
http://obswww.unige.ch/~tewes/cosmics_dot_py/
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• SEXTRACTOR is run onimage(and templateif it is the first pass) iteratively until a

satisfactory number of objects are detected (limits are read from PIPEcfg.py ).

– The threshold for detection is raised (lowered) a limited number of times to de-

crease (increase) the number of objects detected.

• Alignment of imageandtemplateis attempted if one or both of the alignment options

areTrue in PIPEcfg.py . Pre-alignment is assumed if neither alignment option is

True .

– The object lists created by SEXTRACTOR are fed toXYXYMATCH in IRAF to

attempt to align the images directly based on these object lists.

– If XYXYMATCH fails, the coordinate lists are reduced to include only nearby

objects in each frame (i.e. objects that exist in bothimageandtemplatewithin a

set number of pixels, to help if the two images are only slightly misaligned.

– In the event thatXYXYMATCH fails to align the images thenWREGISTERis used,

which is reliant only upon the solutions of the WCS in the respective headers.

This is not used if the header of the image or template shows that the WCS

solution was incorrect.

• TheHOTPanTScfg.py configuration file is read to store the user’s configuration of

the subtraction to be performed.

• The SEXTRACTOR output catalogues of the alignedimageandtemplateare parsed to

ensure objects are coincident in each frame (to sanity checkthe alignment). Direct

comparison of the FWHM in each frame is made with an object-by-object comparison

– the median seeing ratio is included in the report.

• The FWHM of the newly-alignedimageandtemplateare checked and the FWHM of

the gaussians used to produce the kernel are increased in accordance with the seeing

to achieve a better subtraction.

• HOTPANTS is called to subtracttemplatefrom image, the direction of the convolution

is by default to convolve the better-seeing frame but this may be overridden by the user.
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• The subtracted image has its pixel statistics read (std. dev., mean etc.) as a measure of

the goodness of subtraction and these are included in the report.

• PNG images of alignedimageand the subtracted image are made for quick look anal-

ysis inworkdir.

• A new line is added to the report with an overview of the previous subtraction (the see-

ing in each frame, alignment process used, which frame was convolved, pixel statistics

of subtracted frame etc.)

The post-workdir creation process is repeated for each subsequentimagein the list of input

images (minus the steps specific totemplate, which only need to be performed once).

Potential failure points (barring simply poor data) are theinability to detect a good number

of objects inimageor templateand the alignment process. Although, as mentioned in Sec-

tion 2.1, the WCS alignment will not fail (provided both frames have a WCS fitted, correct

or not), an additional check of the alignment is made by searching for sources in each frame

and matching their positions to within a threshold of 2 pixels. If the number of matched

objects is too low, the alignment is deemed to be incorrect. Success/failure of the subtraction

is noted in theshelve file such thatPHOTPIPEknows which to perform photometry on.

2.2.2 PHOTPIPE

PHOTPIPEwill produce photometry of object(s) in the subtracted frames and transform these

to the photometric system oftemplate, meaning only thetemplateneeds to be calibrated

and then the zeropoint of thetemplatecan easily be applied to the photometry output here.

PHOTPIPE is reliant upon the presence of an unalteredSUBPIPE workdir that contains a

valid shelve file. Alteration of names or deletion of directories/files between performing

SUBPIPEandPHOTPIPEfor a givenworkdir will result in unanticipated behaviour. Given a

workdir, PHOTPIPEthen performs the following:

• The coordinates of the object(s) on which to perform photometry are either read from

the provided input or found through interactive selection:
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– The astronomical image viewer DS9 is loaded and a subtractedimage is shown.

– Via the IRAF packageIMEXAM , the user can select one or more objects and their

centres are passed toSUBPIPE.

• The a log and report file forPHOTPIPEare created inworkdir alongside alightcurve.txt

file which will hold the final photometry.

• Theshelve file is opened and the list of successful subtractions are stored.

• If a list of star coordinates is not supplied,templateis shown to the user in DS9 and

the user can select various stars by their annotated object number. These are the stars

that will be used to calculate the aperture correction and the image-templateoffset.

• The IRAF aperture photometry routine,PHOT, is called to perform aperture photome-

try on the objects at the specified small aperture size.

• For imageand template(for the first pass),PHOT is called to perform aperture pho-

tometry on the stars chosen in apertures of increasing radiiup to the specified large

aperture size (the aperture we wish to correct the objects photometry to).

• From this photometry a curve-of-growth (COG) model is formulated usingMKAPFILE

in IRAF for each image, and the object(s) small aperture photometry is corrected to

the large aperture using the COG.

• A median offset betweenimageandtemplateis found by comparing the instrumental

magnitudes of the large aperture photometry output byMKAPFILE on an object-by-

object basis. A sigma-clip is applied to the list of offsets to remove contributions from

anomalous objects.

• The offset value is applied to the large-aperture photometry of the object(s).

• A report line is added detailing the object photometry at each stage and the values and

errors of the associated corrections.

• The corrected magnitudes and errors are output into a light curve file with a column

for each object chosen, with a time column given by the date ofobservation which was

gleaned from the header ofimagein SUBPIPE.
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Again, in batch mode where theshelve file contains multiple subtractions, the process is

repeated (from performing small aperture photometry on theobjects) for eachimage, barring

template-only steps, which only need to be performed once.

Potential failures include inability to determine the COG model and object photometry fail-

ing if the object has faded below the detection threshold in some images.

2.2.3 Examples of usage

Some examples of subtractions performed by CLASP are presented in Figs.2.3and2.4. In

Fig. 2.3, a trail left by a fast moving body is clear in the template of the second example,

this is clearly visible in the subtraction but does not adversely affect it in a noticeable way

as the background determination is largely robust from suchsmall perturbations and the

kernel determination is made from point sources only. Hugely saturated stars and associated

diffraction spikes are also problematic for image subtraction, as shown in the penultimate

example. The orientation of the diffraction spike is different as these images have been

originally taken at different orientations and aligned by CLASP. The region around the

saturated star clearly suffers from strong residuals, however note that the overall subtraction

is clean and the background mean is indeed close to zero in regions away from the strong

residual. This would make photometry of the SN located at thecentre of the image possible.

The third row in Fig.2.4 shows an image of SN2011fe in M51 taken with SkyCamZ – the

very large large field-of-view (1 square degree) and strong misalignment between the image

and template are dealt with by CLASP and the SN is well recovered in a clean subtraction

(barring the asteroid/satellite trail near the top of the image).

CLASP, although designed to ease light curve creation for transient follow-up, was tested

for a similar but initially unenvisaged subtraction task. Hα imaging must have the contin-

uum level subtracted from it before being representative ofjust the Hα flux. This is typically

done by observing in a narrow band filter centred on Hα and one centred just off it which

should be subtracted, this could also be an R (orr) band image which would need to be

scaled before subtraction. Because the image subtraction routine incorporates a scaling fac-
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tor which accounts for varying sky brightnesses, it turns out this can also absorb the varying

transmission profile width of the narrow and R band images to scale them correctly before

subtraction. The usefulness of CLASP to create continuum-subtracted Hα maps is shown in

the bottom 3 rows of Fig.2.4. The first of these suffers from anomalous background levels

in the four quadrants of the frame, at different strengths inthe image and template, due to

varying amplifier noise – the subtraction shows no sign of this. Two sets of Isaac Newton

Telescope (INT) observations (bottom 2 rows) produce excellent Hα maps with largely clean

removal of foreground stars. This ability to produce Hα continuum maps allows CLASP to

be used when considering the pixel statistics method ofJames and Anderson(2006). A study

using CLASP and this method is given in Section3.2.

When failures do occur (be they complete errors or just bad subtractions and thus bad pho-

tometry), the main reasons are:

Inability to deduce the alignment. This will not occur in the case of a correct WCS fitted

to the image and template and with some overlap between the frames, but may occur

when relying solely on star-matching.

Large difference between each frame’s PSF.Be it from elongation or just very poor see-

ing, these differences are difficult to reconcile to a commonPSF in image subtraction,

as as such the extended wings of the poor-seeing image may still be present around

point sources in the subtraction.

Not enough point sources to determined kernel.This can be an intrinsic lack of point sources

in the images, or only point sources in one region of the image, in which case the ker-

nel function over the spatial dimensions of the image can vary wildly away from these

point source tie points.

Wrong convolution direction. Although HOTPANTS makes some attempt to deduce the

best convolution direction, this can sometimes be incorrect, resulting in a poor sub-

traction – forcing HOTPANTS to convolve in the other direction solves this problem

(see AppendixB).

Two examples of poor subtractions are given in Fig.2.5
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Figure 2.3: Examples of subtractions performed by CLASP on Liverpool Telescope images
(RATCam and IO:O) of various SNe.Left: the templates,Centre:the science images,Right:
the subtractions.
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Figure 2.4: Examples of subtractions performed by CLASP on Liverpool Telescope (RAT-
Cam, SkyCamZ and LT IO:O) and INT+WFC. Columns are the same as Fig.2.3. The
last three columns are R-band, Hα and continuum-subtracted Hα images of star forming
galaxies. The excess seen in these galaxies is not residuals, but genuine Hα flux above the
continuum level.
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Figure 2.5: Examples of poor subtractions performed by CLASP on Liverpool Telescope
images (RATCam) of various SNe. The top row shows an example of very poor seeing in
the science image, hence the wings of the PSF are visible on the subtracted image since the
kernel is too small to cover this large area. The bottom row has only a few point sources,
all concentrated down the centre of the image, from which to construct the kernel. In this
case the polynomial function of the kernel varies greatly when no tie points are present, i.e.
the top left and bottom right of the image – using a lower order(or non-varying) kernel may
alleviate this.Left: the science images,Right: the subtractions.



Chapter 3

The environments of low-luminosity type

I supernovae

Abstract

This chapter describes a study using CLASP to investigate the properties of the locations

of supernovae within their host galaxies. Utilising star formation tracers, constraints can be

placed on the ages of progenitors by investigating the spatial coincidence of SNe with these

tracers. This method is used to investigate of the properties two types of unusual transients,

both being sub-luminous compared with the major classes of supernovae. Those of one type

exhibit unusually strong calcium features, and have been termed ‘Ca-rich’. Those of the sec-

ond type, with SN 2002cx as the prototype, have some properties in common with the first,

but show typically lower ejecta velocities, and different early spectra. Important differences

in the environments of the two types are confirmed, with Ca-rich transients preferentially

occurring in galaxies dominated by old stellar populations. Quantitatively, the lack of asso-

ciation of the Ca-rich transients with regions of ongoing star formation is well matched to

that of the overall Type Ia supernovae population. The SN 2002cx-like transients are very

different, with none of the present sample occurring in an early-type host, and a statistical

association with very recent star-formation similar to that of Type IIP supernovae, meaning

a similar delay time of∼30–50 Myr. Further constraints from ultraviolet imaging confirm

the progenitor lifetimes of SN 2002cx-like events to be< 100 Myr.

37
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3.1 Star-formation tracers in SN hosts as diagnostics for

the progenitor systems

Stars are luminous at a range of wavelengths throughout their lives from the onset of nucle-

osynthesis, to their ultimate fate. Thus photometric observations of a stellar population in

an arbitrary wavelength range (filter) will include contributions from stars of a wide range

of ages and masses. In order to specifically observe certain types of stars, observations can

be made in specific wavelength ranges where the emission is primarily comprised of light

from those stars. Discussion here will concentrate onstar-formation(SF) tracers, i.e. those

wavelengths of emission that are present only for a relatively short time after stellar birth,

and hence act as a diagnostic for recent star formation, for the case of unresolved stellar

populations.1

SF tracers are generally the result of the emission directlyfrom young, massive stars, or

from its effect on the immediate surroundings. Massive (short-lived) OB stars are extremely

hot (blue) and luminous. A large fraction of their emission is in the UV regime, hence

observations revealing UV-bright stellar populations area diagnostic for recent star formation

over the life time of these stars (a few–30 Myr). This large amount of UV emission also

affects the dust local to the recent SF. Given the increased likelihood of interaction with dust

grains for UV compared with optical or near-infrared emission, and the fact these higher

energy photons will heat the dust to higher temperatures, the influence is different to that

from older stellar populations (Helou, 1986). Characterisation of the temperature of dust

through mid- to far-IR observations (as derived from the peak of the SED in this regime

given the black body nature of the emission) can thus also point to the presence of young,

massive stars – recent SF. The need to characterise the SED over a range of wavelengths,

and the uncertain contributions from the underlying, olderstellar populations makes the IR

a less straightforward tracer of SF. The radiation from these hot, young stars also contains

a significant number of hydrogen-ionising photons, that is,photons of wavelength<912

Å, which ionise the local medium. Cascading electrons recaptured by ionised hydrogen

1The particulars of deriving absolute SF rates from such tracers, and the assumptions inherent to this of
constant versus instantaneous SF, will be neglected in favour of detailing simply the observations that would
be indicative of a young stellar component.
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produce very strong hydrogen emission lines, including theoptical Balmer series, meaning

observations of Hα or Hβ, for example, are tracers of SF. The amount of ionising flux is

strongly dependent on the mass of the star, i.e. the most massive stars will dominate the

ionising flux of a SF region. Given this, the Hα flux from a new stellar population also

rapidly evolves since the extremely massive stars, which are contributing significantly to the

flux, will explode as SNe in a very short time. As such Hα and similar emission tracers are

probes of very recent SF, with measurable fluxes diminishingseveral Myr after the cessation

of the SF episode.

By comparing the locations of SNe in external galaxies to the presence of such SF tracers,

it is possible to determine if there has been any recent SF at the location of the SN within

the time-scale probed by the tracer being used. This allows estimates to be placed on the age

of the SN, e.g. if a SN is coincident with a Hα emitting HII region, it is probable that the

SN progenitor lived less than the time-scale probed by Hα emission (∼10-20 Myr), whereas

an absence of such emission would be indicative of a progenitor outliving this time-scale.

Naturally for a given SN in a given host, such a method is subject to uncertainties and indeed

the presence or absence of a tracer may be unrelated to the SN’s parent population. For

example, line-of-sight effects, where the SN is along the line-of-sight to a burst of recent

SF but not coincident, may give an anomalous result, and extinction, particularly important

for UV tracers where the wavelengths probed are highly diminished by such extinction, may

veil the appearance of emission at the SN’s location. However, by looking at astatistical

association between the locations of many SNe in many galaxies, the contamination by such

effects should be minimised. Furthermore, when looking atrelativedifferences between the

associations of different SN types, these contaminations should be roughly equivalent for

each type and thus any differences are due to the differencesin the ages of the progenitor

systems. This analysis is employed in the following section(Section3.2) as a follow up

study to the larger scale studies ofJames and Anderson(2006); Anderson and James(2008);

Anderson et al.(2012).
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3.2 The environments of low-luminosity type I supernovae

3.3 Introduction

With the advent of dedicated SN searches that are discovering many SNe in a single night,

coupled with in-depth follow-up that is now possible, inevitably events will be discovered

that challenge the current understanding of SNe. Indeed, weare moving away from the ob-

servationally based classification system as increasing numbers of events are discovered that

do not fit this system. It is not even known if many of these luminous events are in fact SNe

in the sense of the death of a star or stellar remnant, and thisintroduces other possibilities

for progenitor systems and explosion mechanisms. Two examples of such transient types

are ‘Ca-rich’ and ‘SN2002cx-like’. Given the uncertain nature of these events, ‘transients’

rather than ‘SNe’ will be used to describe them. An overview of each type is now presented.

3.3.1 Ca-rich transients

Named ‘Ca-rich’ on the basis of the relative strength of calcium lines in spectra observed

during the nebular phase these transients are also known as ‘SN 2005E-like’ after the pro-

totypical event (Perets et al., 2010), example light curves and spectra are shown in Fig.3.1.

In their overall spectral properties, the Ca-rich transients quite closely resemble CCSNe of

Type Ib (i.e. lacking hydrogen, but showing strong helium features). Their very low ejected

masses (∼ a few tenths of M⊙) have calcium to total-ejecta mass ratios many tens or hun-

dreds times that of other SNe types – for example,Perets et al.(2010) found almost half of

the total ejecta of SN 2005E was calcium and showed that thesetransients actually produce

more calcium in absolute terms than ordinary SN per explosion, despite CCSN releasing up

to several solar masses of ejecta. Their contribution to thetotal calcium production budget

of the intracluster medium could be very significant (Mulchaey et al., 2014), although rates

remain uncertain currently. The spectral similarity to SNeIb led to the claim byKawabata

et al.(2010) that one of the members of the class, SN 2005cz, could indeedbe a core-collapse

object with a 10 M⊙ zero-age progenitor. This would be a surprising discovery,given that
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the host galaxy of SN 2005cz, NGC 4589, is an elliptical galaxy with a ‘classical E2 mor-

phology’ (Sandage and Bedke, 1994), and a corresponding expectation of a predominantly

old stellar population. Simultaneously, the even more extreme environment of SN 2005E,

the prototypical member of the Ca-rich class that occurred far from the disc plane of an early

type S0/a galaxy, NGC 1032, ledPerets et al.(2010) to conclude that these explosions are

likely to arise from the accretion of helium on to an old, low-mass progenitor, probably a

WD. Modelling was used to show that such a progenitor can reproduce the observed proper-

ties, with ejecta that has high velocities but low masses, and a composition that is dominated

by the products of helium burning, without the iron-group elements indicative of explosive

nucleosynthesis found in SNe Ia.Perets et al.(2011) extended this analysis to SN 2005cz in

NGC 4589, again preferring a low-mass, long-lived progenitor, in contradiction toKawabata

et al.(2010).

The spectroscopic and environmental properties of the general class of these Ca-rich tran-

sients have been investigated byPerets et al.(2010) andKasliwal et al.(2012). The for-

mer identified eight SNe in this group (SN 2000ds, SN 2001co, SN 2003H, SN 2003dg,

SN 2003dr, SN 2005cz, SN 2005E and SN 2007ke) and the latter identified three addi-

tional objects in this class from the Palomar Transient Factory survey (Law et al., 2009;

Rau et al., 2009, henceforth PTF).Kasliwal et al.(2012) combined these three new objects

(PTF 09dav, PTF 10iuv (SN 2010et) and PTF 11bij) with two of the better observed earlier

events (SN 2005E and SN 2007ke) which share common properties of low peak luminosities,

fast photometric evolution, high ejecta velocities, strong Ca emission lines and locations in

the extreme outskirts of their host galaxies. They followPerets et al.(2010, 2011) in pre-

ferring long-lived, low-mass progenitors, pointing out that the core-collapse objects with

the lowest generally-accepted progenitor masses, Type IIPSNe (SNe IIP), are almost never

found at the extreme outlying locations that characterise these five Ca-rich events.

Valenti et al.(2014) have reported on another possible member of the Ca-rich class, SN 2012hn,

that was discovered by the Catalina Real-Time Transient Survey. This was initially classified

as a peculiar Type Ic SN (Benitez-Herrera et al., 2012), but Valenti et al.(2014) conclude

from analysis of later spectroscopic and light-curve data that SN 2012hn much more closely

resembles members of the Ca-rich class, with a low peak luminosity and rapid evolution.
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This is supported by its location in the outskirts of an earlytype (E/S0) galaxy (discussed

further in this chapter). However, it should be noted thatValenti et al.(2014) find some

detailed spectral differences between SN 2012hn and other members of the Ca-rich class.

A study byYuan et al.(2013) has investigated the progenitors of the Ca-rich class by com-

paring their host galaxy locations to results from cosmological simulations. By comparison

to the simulated metallicity distribution in hosts, they find the progenitors are likely to be of

low metallicity and, tied with their remote locations compared to the bulk of the host stellar

mass, consequently of old age (∼10 Gyr). They conclude that a massive star origin for such

events is disfavoured.

3.3.2 SN2002cx-like transients

Some similarities exist between the Ca-rich events and the unusual transient SN 2008ha

(Valenti et al., 2009; Foley et al., 2009, 2010a), in particular the extremely low luminosity

and the inferred low ejecta-mass, and some similarities in the late spectra. SN 2008ha,

however, does not show evidence for helium – it is classified as a SN Type Ia (SNe Ia) event

– and has extremely low photospheric velocity (∼2000 km s−1 cf. 6000-11000 km s−1 for the

Ca-rich transients).Foley et al.(2013) have recently linked SN 2008ha and similar objects,

including the prototypical example SN 2002cx (Li et al., 2003), to a proposed new class

of stellar explosion, that they term ‘Iax’. These differ from normal SNe Ia in having lower

maximum-light ejecta velocities (2000-8000 km s−1) and lower peak luminosities for a given

light-curve shape. SN 2008ha then appears as probably the most extreme object in this class

identified to date, with the lowest peak luminosity, and ejecta velocities at the bottom end of

the range for this class.Foley et al.(2013) infer high rates, with∼30 for every 100 SNe Ia in

the local Universe. Example light curves and spectra of SN 2002cx-like transients are shown

in Fig. 3.2.

Various models were suggested for the origin of these transients including complete ther-

monuclear deflagration of a WD (Li et al., 2003; Branch et al., 2004), failed detonation of a

C/O WD (Jordan et al., 2012) or possibly a peculiar type of CCSN event (Valenti et al., 2009).

Foley et al.(2013) suggested the progenitors to be C/O WDs that accrete materialfrom a He-



3.3. Introduction 43

Figure 3.1: Example light curves (top panel) and nebular spectra (bottom panel) of Ca-rich
transients. The low velocity, fast evolution and strong calcium/oxygen ratio compared to
other CCSNe are evident. Taken fromKasliwal et al.(2012).
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star, and therefore consider some possible connections between SN 2002cx-like and Ca-rich

transients, where both type of events arise from a He-shell detonation scenario. However,

one of the major differences between the two types is their environment, as first noted by

Perets et al.(2010). The Ca-rich events occur in all galaxy types (with a large fraction in

early-type galaxies), and/or far from the centres of host galaxies (Kasliwal et al., 2012),

whereas SN 2002cx-like transients preferentially occur inlate-type, star-forming galaxies,

indicating a possibility for having younger progenitor systems. Foley et al.(2013) suggest

that the difference might originate from a different originof the accreted He in the two cases,

i.e. SN 2002cx-like events arise from accretion from a He-rich non-degenerate donor star,

whereas the Ca-rich events originate from accretion from a degenerate He-WD.

Valenti et al.(2009) discuss the class of SN 2002cx-like events in general, and SN 2008ha

specifically, and conclude that these may be low-luminosityCCSNe, with progenitors that

are either high-mass (25-30 M⊙) Wolf-Rayet stars, or stars from the low-mass limit of CC-

SNe (7-9 M⊙). However,Eldridge et al.(2013) have recently discussed SN 2008ha in the

context of a study of the rates of CCSNe, and on the balance of evidence decide in favour

of a thermonuclear interpretation. They thus exclude it from their study, although they warn

that the evidence is far from conclusive, and that further study of SN 2008ha and other

SN 2002cx-like transients is clearly required.

3.4 Methods

It is clear from the above discussion that the association with different types of stellar en-

vironment is of key importance in distinguishing between these different types of luminous

transients, and in constraining the possible progenitor systems. However, much of the envi-

ronmental information, e.g. the association of the Ca-rich transients with old populations and

SN 2002cx-like transients with young, lacks quantificationand in many cases is little more

than anecdotal. Host galaxy classifications give some useful information, but they are noto-

riously subjective and, even if free from actual errors, they do not give precise information

on the stellar population at the location of the transient event. For example, even a late-type

spiral may have a bulge, or extreme outer disc, that is entirely composed of old stars. In this



3.4. Methods 45

Figure 3.2: Example light curves (top panel) of SN 2002cx-like transients. A spectrum
of SN 2002cx at∼ 12 days past peak (bottom panel) shows the lower velocity features
compared to other SNe Ia, including the sub-luminous SN 1991bg. Taken fromFoley et al.
(2013) andLi et al. (2003).
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section, both host galaxy types and quantified measures of SFactivity, local to the sites of

events within their host galaxies, will be applied specifically to the known samples of Ca-

rich and SN 2002cx-like transients, to determine whether they appear to rise from the same

progenitor populations, and to compare these populations with the same measures for other

types of SN (including ‘normal’ SNe Ia, and core collapse types SNe Ib, Ic and IIP).

The idea of obtaining a statistical association between SN types and recent SF, as introduced

in Section3.1, is implemented here as a quantified analysis of these transients’ environments.

This analysis takes the form of the Normalised Cumulative Rank(NCR) method. The NCR

method is explained in the specific context of the manner in which it is applied here in

James and Anderson(2006). It is also discussed at length in more general terms, focussing

on the mathematical and data reduction steps, in AppendixA. The NCR method has been

previously applied to large samples of supernovae inAnderson and James(2008); Anderson

et al.(2012), and the latter provides the main comparison sample for thecurrent work.

Briefly, each transient is assigned an NCR, based on pixel statistics of a continuum-subtracted

Hα image of the host (taken either prior to, or long after the transient), as a measure of the

degree of association of the transient with recent SF withinits host. The continuum sub-

tracted Hα images are trimmed to contain the host and transient location and then binned

3 × 3 such that the pixel location of the transient given by the WCS forms the centre of a

3 × 3 ‘super-pixel’. A pixel in the binned images represents∼ 0.9 arcsec across the various

instruments used, or∼ 260 pc at the mean galaxy distance. Star residuals and artefactsaris-

ing from saturation in the subtracted images are masked using a local median. Pixel values in

this binned image are sorted, cumulatively summed and then normalised by the total sum of

pixel values. In this way each pixel now has an associated NCR value between 0 and 1 (any

negative values are set to 0). Any pixel with NCR= 0 is considered a background pixel, i.e.

there is no Hα flux at that position. Positively valued pixels are then ranked within the NCR

method such that low values have an association with weak emission, and high values are

coincident with the brightest Hα emitting regions of the host. Specifically, the NCR value is

the fraction of host galaxy flux that is below the level of flux at the location of the transient,

i.e. NCR= 1 means the transient location is at the site of the most intense SF activity within

its host galaxy.
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Using these methods,Anderson et al.(2012) find a clear separation of the CCSN subtypes,

with types IIP, Ib and Ic forming a clear sequence of increasing strength of association with

current sites of SF, and high mean NCR values. This is most simply interpreted in terms of a

sequence of increasing mean progenitor mass, and hence decreasing progenitor lifetime.

Crowther(2013) has looked at the progenitor constraints that can be drawn from association

of SNe with ongoing SF, using a smaller sample thanAnderson et al.(2012) with higher

spatial resolution, and employing rather different statistical methods based on distance to the

nearest region of Hα emission.Crowther(2013) finds very similar results toAnderson and

James(2008) andAnderson et al.(2012) in terms of the difference of strength association

between SNe II and SNe Ibc, which he interprets in terms of a large fraction of SNe II outliv-

ing their natal SF regions.Crowther(2013) argues that the complications involving lack of

resolution of individual SF regions should obscure any differences between the correlation

strengths for shorter-lived, higher-mass progenitors than those of the SNe II, but this argu-

ment seems hard to reconcile with the clear statistical differences found for the populations

of SNe Ib and Ic investigated byAnderson et al.(2012).

Hα was chosen as a SF tracer since there already exists large samples of NCR values for the

more common SN types which can be compared to. The typical duration of Hα emission

from HII regions is comparable to that of the ages of the middle-to-lower mass end of CC-

SNe.Kuncarayakti et al.(2013) show the evolution of the Hα equivalent width for a single

burst in Starburst99, which weakens strongly after 5 Myr, falling to very low values after

∼15 Myr (roughly the lifetime of a 14 M⊙ star). Although this is very much a lower limit in

terms of the time-scale of SF, since a typical SF region will not form stars in a delta-function

manner, it must be stressed that the loss of gas is not taken into account (i.e. the earliest SNe

will disperse the gas), which will strongly diminish the emitted flux of a region after several

Myr. Hα imaging allows, through the NCR method, to distinguish between transients whose

progenitor ages fall entirely within, or overlap with, thislimit. Since each transient’s NCR

value is normalised to its own host, the analysis is not sensitive to absolute calibration issues

of Hα as a SF rate tracer (Lee et al., 2009; Botticella et al., 2012).

The NCR method is particularly reliant on the Hα filter used for observations. Its transmis-

sion profile must allow for detection of Hα over a reasonable velocity range so as to detect
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Table 3.1: Hα narrow-band filter properties.
Filter name Telescope Wavelength limits Vrec limits

Å km/s
‘Halpha’ INT 6522–6614 −1865–2357
‘Ha 6657’a INT 6618–6697 2400–6100
‘H-alpha-100’ LT:RATCam 6517–6617 −2093–2478
‘Ha 6566’ LT:IO 6522–6610 −1865–2164
‘Ha 6634’ LT:IO 6608–6662 2080–4520
‘Ha 6705’ LT:IO 6680–6733 5349–7764
‘Ha 6755’ LT:IO 6729–6783 7595–10047
‘Ha 6822’ LT:IO 6798–6849 10747–13097
‘665/12’ MPI-2.2 6598–6713 1616–6857
a No scanned transmission profile is available for this filter so the

limits are based on manufactured specification.

all host galaxy emission, whilst being narrow enough to allow for accurate subtraction of

the underlying continuum light. Clearly, if a filter fails to transmit Hα emission from some

regions of the host, this will affect the NCR value of the transient. As such, transients that

are potentially well separated from their hosts in recession velocity (Vrec) provide a prob-

lem of filter choice, especially when Vrec cannot be determined for the transient itself. In

the present study, for all cases except PTF 09dav, the filter with a central wavelength best

matching the host-Hα wavelength was chosen; for PTF 09dav, the redshift of the transient

was used to find the best matched filter as its host is anonymous. Given the widths of the

filters (typically∼2000–3000 km s−1), this meant Hα over a broad range of host velocities

would be detected, giving confidence that the observations are not missing some regions of

Hα emission in the host or, importantly, at the location of the transient.

Alongside Hα NCR analysis, UV NCR values are obtained usingGALEX archive imag-

ing following the same method as detailed above.GALEX is a space-based UV telescope

with imaging in two filters, the near- and far-ultraviolet (NUV; λeff = 2267Å, FUV; λeff =

1516Å). The large field of view of (1.2 degrees diameter) makes it ideal for observing the

large, nearby hosts of these transients. The data reductionspecific to these observations and

the results of this analysis are given in Section3.8.
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3.5 Transient samples and observations

Table 3.2: Properties of Ca-rich transients and their host galaxies.
SN name Host galaxy Host type Vrec Discovery Abs. mag IAU

(km s−1) (unfiltered mag) classn.
2000ds NGC 2768 E6 1373 −13.59 Ib/c
2001co NGC 5559 SBb 5166 −15.69 Ib/c
2003H NGC 2207 SABbc 2741 −14.16 Ib/c
2003dg UGC 6934 Scd (edge-on) 5501 −15.31 Ib/c
2003dr NGC 5714 Scd (edge-on) 2237 −15.06 Ib/c
2005E NGC 1032 S0/a (edge-on) 2694 −15.86 Ib/c
2005cz NGC 4589 E2 1980 −16.36 Ib
2007ke NGC 1129 E 5194 −15.71 Ib
PTF 09dav Anon Sba 11123 −14.7 –
2010et Uncertain – – −13.8 –
PTF 11bij IC 3956 E 10406 −15.9b –
2012hn NGC 2272 SAB0 2130 −16.0c I-p
a Classified by P.A. James based on the imaging presented here
b MR at discovery taken fromKasliwal et al.(2012)
c MR at peak taken fromValenti et al.(2014)

The samples of transients analysed here are inevitably somewhat eclectic and subject to se-

lection biases, and thus cannot be considered in any sense torepresent a statistically complete

sample of objects of either type. This is unavoidable for classes of transient objects that are

both relatively rare (although the global rates are highly uncertain) and substantially fainter

than the main SN types. Thus, in order to compile the samples of Ca-rich and SN 2002cx-

like transients presented here, a variety of sources were used. Most of the Ca-rich transients

are listed inPerets et al.(2010) andKasliwal et al.(2012), alongside SN 2012hn (Valenti

et al., 2014). For a complete recent compilation of the SN 2002cx-like transients, seeFoley

et al.(2013).

It should be stressed here that although this is an investigation of two classes of transients,

their unknown nature, and the lack of detailed observationsfor some, means that there is

potential contamination in each sample by transients of different origin and the potential for

diversity within the each sample. Discussion of progenitorconstraints for each sample will

be presented as a whole due the small numbers in each sample, however it may be true that

some specific events differ from these conclusions due to their erroneous classification.
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Table 3.3: Properties of SN 2002cx-like transients and their host galaxies.
SN name Host galaxy Host type Vrec Discovery Abs. mag IAU

(km s−1) (unfiltered mag) classn.
1991bj IC 344 SBcda 5440 −15.46 Ia
2004gw CGCG 283-003 Saba 5102 −16.33 Ia
2005P NGC 5468 SABcd 2842 −15.14 ?
2005cc NGC 5383 SBb pec 2270 −15.18 ?
2005hk UGC 272 SABd 3895 −17.05b Ia-p
2006hn UGC 6154 SBa 5156 −18.69 Ia
2007J UGC 1778 Sdm 5034 −15.92 Ia
2008A NGC 634 Sa (edge-on) 4925 −16.57 Iap
2008ha UGC 12682 Im 1393 −12.7c Ia?
2009J IC 2160 SBc pec 4739 −16.17 Ia-p
2012Z NGC 1309 SAbc 2136 −14.62 Ia-p
a Classified by P.A. James based on the imaging presented here
b MR at discovery taken fromPhillips et al.(2007)
c Puckett et al.(2008)

New imaging observations presented here were made using theIsaac Newton Telescope

(INT) and Liverpool Telescope (LT) at La Palma and the MPI2.2at ESO. For each transient,

exposures were taken in the R band, to characterise the continuum light, and a narrowband

Hα filter. Details of the Hα filters used are given in Table3.1, where wavelength and corre-

sponding Vrec limits are defined as the 50 per cent transmission limits of the filter. Exposure

times were 300 seconds for R band and 900 seconds for Hα, which corresponds to a limit-

ing Hα flux of ∼ 3.8 × 10−16 erg s−1 cm−2 (seeAnderson et al. 2012for a discussion of

SF limits using this method). Images taken with the LT were reduced using the automated

pipeline; standard bias and overscan subtraction and flat fielding was performed for other

data. Typical seeing was 1–2 arcsec. Subtraction of the R band images from the Hα images

was performed using a version ofSUBPIPE, an image subtraction pipeline that is detailed in

Section2.2 (note this earlier version used the ISIS code ofAlard 2000, cf. HOTPANTS,

which is used currently).

Data for the Ca-rich and SN 2002cx-like transients in the present study are given in Ta-

bles3.2and3.3, respectively. These list the International AstronomicalUnion (IAU) super-

nova name for all transients except PTF 09dav and PTF 11bij, which are not on the IAU

list; the host galaxy name, classification and recession velocity from the NASA Extragalac-
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Table 3.4: Observations of the host galaxies of Ca-rich transients.
SN name Host galaxy Vrec Telescope Obs. date Seeing Filter name Hα range NCR index SF detected

(km s−1) (arcsec) (km s−1) in host?
2000ds NGC 2768 1373 INT Jan 2012 1.6 ‘Halpha’−1865–2357 0.000 No
2001co NGC 5559 5166 INT Mar 2007 1.6 ‘Ha 6657’ 2400–6100 0.357 Yes
2003H NGC 2207 2741 LT:IO Sep 2012 1.8 ‘Ha6634’ 2080–4520 0.312 Yes
2003dg UGC 6934 5501 INT Jan 2012 1.3 ‘Ha 6657’ 2400–6100 0.626 Yes
2003dr NGC 5714 2237 INT Jan 2012 1.6 ‘Halpha’−1865–2357 0.000 Yes
2005E NGC 1032 2694 LT:IO Jan 2013 1.3 ‘Ha6634’ 2080–4520 0.000 No
2005cz NGC 4589 1980 INT Jan 2012 1.2 ‘Halpha’−1865–2357 0.000 No
2007ke NGC 1129 5194 INT Jan 2012 1.7 ‘Ha 6657’ 2400–6100 0.000 No
PTF 09dav Anon 11123 LT:IO Dec 2012 1.6 ‘Ha6822’ 10747–13097 0.000 Yes
2010et Uncertain – LT:IO Mar 2013 2.9 ‘Ha6705’ 4900–7640 0.000 –
PTF 11bij IC 3956 10406 LT:IO Jan 2013 3.0 ‘Ha6822 10747–13097 0.000 No
2012hn NGC 2272 2130 LT:IO Feb 2013 2.4 ‘Ha6566’ −1865–2164 0.000 No
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Table 3.5: Observations of the host galaxies of SN 2002cx-like transients.
SN name Host galaxy Vrec Telescope Obs. date Seeing Filter name Hα range NCR index SF detected

(km s−1) (arcsec) (km s−1) in host?
1991bj IC 344 5440 INT Jan 2012 1.9 ‘Ha 6657’ 2400–6100 0.163 Yes
2004gw CGCG 283-003 5102 INT Jan 2012 1.7 ‘Ha 6657’ 2400–6100 0.000 Yes
2005P NGC 5468 2842 INT Feb 2008 1.4 ‘Ha 6657’ 2400–6100 0.055 Yes
2005cc NGC 5383 2270 LT:RATCam Dec 2005 1.8 ‘H-alpha-100’−2093–2478 0.621 Yes
2005hk UGC 272 3895 LT:IO Oct 2012 1.1 ‘Ha 6634’ 2080–4520 0.000 Yes
2006hn UGC 6154 5156 INT Jan 2012 1.3 ‘Ha 6657’ 2400–6100 0.289 Yes
2007J UGC 1778 5034 INT Jan 2012 1.1 ‘Ha 6657’ 2400–6100 0.904 Yes
2008A NGC 634 4925 INT Jan 2012 0.9 ‘Ha 6657’ 2400–6100 0.000 Yes
2008ha UGC 12682 1393 LT:IO Oct 2012 1.9 ‘Ha6566’ −1865–2164 0.407 Yes
2009J IC 2160 4739 MPI2.2 Feb 2010 1.9 ‘665/12’ 1616–6857 0.000 Yes
2012Z NGC 1309 2136 LT:RATCam Aug 2009 1.5 ‘H-alpha-100’−2093–2478 0.000 Yes
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tic Database (NED)2, the absolute discovery magnitude (taken from the Asiago Supernova

Catalog3, using distance modulus values for the host taken from NED);and the classification

of the supernovae from the IAU database.

Details of the observations and NCR values are given in Tables3.4 and3.5 for the Ca-rich

and SN 2002cx-like transients respectively. Velocity limits from Table3.1 are shown for

the Hα filter used — the bulk of the detected light in the continuum-subtracted images will

come from emission within these velocity limits (although the filters also have non-negligible

transmission for a few hundred km s−1 outside these limits). Whether any recent SF (i.e. Hα

emission) is detected in the host in the observations is alsonoted.

Images of the of the twelve Ca-rich hosts are shown in Fig.3.3, showing the R band and

continuum-subtracted Hα exposures with the location of the transient marked. Of these, six

(NGC 2768, NGC 1032, NGC 4589, NGC 1129, IC 3956 and NGC 2272) are early-type

galaxies, and hence should have no recent SF. Indeed, no SF astraced by Hα is found at

the location of the transients in these early hosts or anywhere else in the hosts. The only

apparent emission in the subtracted images arises from the very centre of these galaxies; due

to the difficulties in obtaining a clean subtraction on such extremely bright regions, this is

most likely to be artefacts arising from the image subtraction process and saturation effects

rather than real Hα flux, although neither can be ruled out conclusively. It is not clear which

galaxy hosted the very isolated transient SN 2010et, as discussed below. The remaining five

hosts all display varying levels of SF.

Fig. 3.5shows the corresponding images for the SN 2002cx-like sample. All these hosts are

late type, and all display strong ongoing SF with prominent HII regions.

Further discussion of the hosts of the two samples is given inSection3.7.1.

As a check on the presence and nature of emission lines at the locations of these events,

long-slit optical spectroscopy was obtained (with a slit width of 1.5′′) of two of the host

galaxies in the samples (Fig.3.7). The observations were taken on the INT in January 2013

using the IDS spectrograph with the R632V grating. The slit was positioned to include both

2http://ned.ipac.caltech.edu/
3http://heasarc.gsfc.nasa.gov/W3Browse/all/asiagosn. html

http://ned.ipac.caltech.edu/
http://heasarc.gsfc.nasa.gov/W3Browse/all/asiagosn.html
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the galaxy nucleus, as a positional reference, and the location of the transient. The spectral

range covered included the location of any potential Hα emission. NGC 2768 (SN 2000ds)

was observed at an airmass of 1.3 in seeing of 1.8′′, the corresponding values for NGC 2207

(SN 2003H) were 1.57 and 0.8′′.
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3.6 Individual properties of the transients and their envi-

ronments

3.6.1 Ca-rich transients

SN 2000ds in NGC 2768.NGC 2768 is classified as an E6 galaxy in NED, and in the

Third Reference Catalog (de Vaucouleurs et al., 1991). This classification is discussed by

Hakobyan et al.(2008), who ultimately prefer a classification of S0. As expected,no Hα is

found in the obervations (apart from the region affected by subtraction artefacts at the very

centre) indicating a lack of recent SF at the transient location, or indeed anywhere within

this host galaxy. The INT+IDS long-slit spectrum crossing the nucleus of NGC 2768 and the

location of SN 2000ds is shown in Fig.3.7, confirming the lack of any line emission close

to the location of the SN. There is weak, diffuse line emission in Hα and [NII] in the central

regions of the galaxy, far from the SN location, that is probably related to the known LINER

nucleus of this galaxy.

SN 2001co in NGC 5559.An inclined spiral galaxy, NGC 5559 displays prominent SF

throughout the disc. SN 2001co is located near the edge of thedisc and is coincident with

some diffuse SF.

SN 2003H in NGC 2207. NGC 2207 is a close interaction with Sc galaxy IC 2163 at

2765 km s−1; SN 2003H lies immediately between the bulges of the two galaxies on an area

of intermediate-level Hα. For the purposes of the NCR analysis, the pixels used included

those from both galaxies since they cannot be cleanly distinguished as separate systems. As

such, SN 2003H’s NCR value is relative to the interacting system as a whole. A long-slit

spectrum crossing the nucleus of NGC 2207 and the location ofSN 2003H is shown in

Fig. 3.7, showing that there is clearly detectable SF at the locationof SN 2003H, although

it appears to lie in the outer regions of a SF complex. The interacting system of NGC 2207

and IC 2163 has also hosted SNe 1975A (Ia), 1999ec (Ib) and 2010jp (IIn).

SN 2003dg in UGC 6934.The host displays strong HII regions along its highly inclined

disc. SN 2003dg appears to be somewhere in the plane of the disc, but due to line of sight
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Figure 3.3: R band (top) and continuum-subtracted Hα (bottom) images of Ca-rich tran-
sients. The location of the transient is marked in each case on the continuum-subtracted Hα
image. The bars in each R band image indicate 30 arcsec and arelabelled with the linear size
at the distance of the host in kpc. For all images North is up, East is left.
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Figure 3.4: Same as Fig.3.3, for the rest of the Ca-rich sample.
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Figure 3.5: Same as Fig.3.3but for the SN 2002cx-like transients.
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Figure 3.6: As for Fig.3.3, for the rest of the SN2002cx-like sample.
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Figure 3.7: Spectra showing the Hα region of the long slit spectra of SN 2000ds in NGC 2768
(left) and SN 2003H in NGC 2207 (right). The arrows indicate positions corresponding to
Hα emission from the location where each transient occurred. A1D spectrum is extracted
for each at the position of the transient and shown below in relative flux. SN 2000ds and
SN 2003H are located 33.4 arcsec and 51.4 arcsec away from their respective hosts’ nuclei.

effects it cannot be determined where in the disc it lies. This means the NCR value may

not be accurate (see Section3.7.2). From the projected view, SN 2003dg is coincident with

some fairly bright Hα emission.

SN 2003dr in NGC 5714. SN 2003dr occurred in another galaxy that is viewed almost

exactly edge-on, but in this case the transient location lies well outside the plane of the disc.

Thus it is safer to say it is indeed in a region of no recent SF. The only apparent SF in

NGC 5714 is diffuse and concentrated along the plane.

SN 2005E in NGC 1032.NGC 1032 is an S0/a galaxy, and no Hα is found along the plane

of the disc lending weight to the argument this is a lenticular galaxy. The host is edge-on and

the transient well separated from the disc plane with no Hα evident at its location.

SN 2005cz in NGC 4589.NGC 4589 is classified as an E2 elliptical galaxy in NED, and in

the Third Reference Catalog (de Vaucouleurs et al., 1991). Moellenhoff and Bender(1989)

find unusual central kinematics, and a minor axis dust lane, which they interpret as the re-
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sult of merging activity. However, they conclude from the regular shape, and a smooth

light profile that follows the classicR
1
4 profile characteristic of elliptical galaxies (de Vau-

couleurs, 1948), that ‘the merging already is in an advanced state’. As withNGC 2768, in

the very bright central region a saturated core is observed,with associated subtraction resid-

uals, which accounts for the apparent Hα emission seen in the continuum-subtracted image.

No other detected SF is seen from the host, as is expected if its E2 morphology is accepted.

The transient is located fairly close to the centre of the galaxy, although it is still outside the

region of subtraction residuals.

SN 2007ke in NGC 1129.The central excess in the continuum-subtracted frame may again

be due to saturation effects, although it is less clear in this case. However, SN 2007ke is very

distant from the centre of this halo on a location of no detected Hα. (Note that the bright

spot nearest SN 2007ke in the subtracted frame is a foreground star residual and was masked

prior to NCR analysis.) Although NGC 1129 is the proposed host, clearly seen between this

galaxy and the transient is another galaxy, MCG+07-07-003, at Vrec = 4967 km s−1. Due to

the similarity of the velocities of the two galaxies, the chosen narrowband filter would have

detected any Hα from both these galaxies, so there is confidence that the observations are not

missing potential SF from MCG+07-07-003 (the location of MCG+07-07-003 was included

in the NCR analysis since it lies between the putative host andthe transient). MCG+07-07-

003 appears to be an elliptical galaxy, possibly of the compact cE type, and so it is immaterial

whether this galaxy or NGC 1129 is adopted as the host for the discussion of the statistics of

host types in Section3.7.2.

PTF 09dav.The most distant transient in the sample, this could prove a problem for the NCR

method when trying to compare consistently with the other, much nearer examples where

the resolving distance at the host will be much smaller. However the extreme separation of

the transient from the host negates this problem and no Hα is detected anywhere near the

transient, though there is clear SF in the disc of the putative host galaxy∼40 kpc away.

Kasliwal et al.(2012) present a limiting magnitude ofMR ∼ −10 for any underlying dwarf

host at the location of the transient.

SN 2010et.SN 2010et= PTF 10iuv was discovered by PTF in a very isolated location, with

no obvious host galaxy. The images, shown in Fig.3.4, contain three galaxies which prob-
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ably constitute a small galaxy group, since they have similar recession velocities. These are

6997 km s−1 for the elliptical galaxy toward the right-hand edge of the images, 7132 km s−1

for the faint edge-on spiral galaxy, and 7407 km s−1 for the brighter spiral toward the left-

hand edge of the images. The brighter spiral is the only galaxy in the frame to show evidence

for Hα emission, and hence for ongoing SF, but this galaxy is very remote from the location

of SN 2010et. The elliptical galaxy is marginally the most likely host, given its luminosity

and somewhat lower (but still substantial) projected distance. However, it would be very

misleading to claim any strong preference for a host galaxy in this case, and so SN 2010et is

omitted from the analysis of host galaxy types presented later in this chapter. The NCR in-

dex for the location of SN 2010et is unsurprisingly 0.000, i.e. consistent with an empty ‘sky’

location. The limiting magnitude for an underlying dwarf galaxy is estimated asMR ∼ −12

by Kasliwal et al.(2012).

PTF 11bij in IC 3956. Another relatively distant example, the transient is located 33 kpc

from IC 3956, an elliptical galaxy that displays no definite Hα emission in the continuum-

subtracted image. The recession velocity, unfortunately for this study, lies in the overlap

region of the transmission curves of two Hα filters, where both have transmissions of about

half of their peak values. The filter with the slightly bettertransmission at the Vrec of IC 3956

was chosen, however a strong caveat must be attached to the analysis of this transient as

there is a possibility that the observations miss potentialHα emission. Regardless of this

problem, the remote location around an early type galaxy would indicate an unlikely place for

significant SF and hence Hα emission.Kasliwal et al.(2012) present a limiting magnitude

of MR ∼ −12.5 for any underlying dwarf host.

SN 2012hn in NGC 2272.The host galaxy is an early type (SAB0 in NED, E/S0 in Hy-

perLeda4) with no detected SF in the imaging shown here, although it should be noted that

the recession velocity of the host galaxy would put any Hα emission only just within the

half-peak transmission limit of the filter used. The transient location lies well away from

the nucleus, and no emission is seen close to its location in either the broad or narrow-band

imaging.

4http://leda.univ-lyon1.fr/

http://leda.univ-lyon1.fr/
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3.6.2 SN 2002cx-like transients

SN 1991bj in IC 344. IC 344 is a spiral galaxy showing clumpy SF in strong HII regions.

SN 1991bj lies on a region of weak Hα emission within the disc.

SN 2004gw in CGCG 283-003.Weak SF is displayed throughout the disc, apart from the

southerly arm, which displays several bright areas of Hα emission. The bulk of the SF is

centrally located. The transient location is close to regions of very diffuse Hα emission, but

is not coincident with any.

SN 2005P in NGC 5468.Clumpy Hα structure with some regions of extremely intense SF

are seen in this face-on spiral. SN 2005P is located on the edge of a fairly bright HII region,

although the low NCR value of 0.055 is warranted by the other, intensely bright regions in

the host. NGC 5468 also hosted SN 1999cp (Ia), SN 2002cr (Ia) and SN 2002ed (IIP).

SN 2005cc in NGC 5383.A strongly barred galaxy, NGC 5383 displays strong Hα emission

in the centre of the bar including an intense star burst region. Lower-level, diffuse emission

occurs near the ends of the bar and the base of the spiral arms.SN 2005cc is located on a

bright region on the southern edge of the bulge.

SN 2005hk in UGC 272.The transient is located towards the outer edge of the host’sdisc,

which displays several regions of strong Hα emission. SN 2005hk is located close to some

very faint emission but is coincident with an area devoid of any detected flux and thus has

NCR= 0.

SN 2006hn in UGC 6154.Star formation is concentrated around the bar region in thisspiral

with little elsewhere in the disc. The transient is located on the cusp of a moderately bright

HII region.

SN 2007J in UGC 1778.Star formation is clumpy, spread evenly across nearly all ofthe

disc. SN 2007J lies towards the outer edge of the disc coincident with one of the brightest

HII regions.

SN 2008A in NGC 634.NGC 634 is a highly inclined spiral galaxy that shows reasonably

strong Hα emission in the central region with weaker emission coming from the disc plane.
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Line-of-sight effects mean the NCR can potentially be erroneously high, but for SN 2008A,

NCR = 0, meaning it is likely to indeed be in a region of no SF. NGC 634 also hosted

SN 2006Q (type given in the IAU list as ‘II?’).

SN 2008ha in UGC 12682.An irregular galaxy, UGC 12682 displays several regions of

strong SF. SN 2008ha is located directly on top of a region of moderate Hα emission.

SN 2009J in IC 2160. A strongly barred spiral showing some clumpy SF. The transient,

SN 2009J is near very low level SF but coincident with a regionof no detected Hα emission.

IC 2160 also hosted SN 2009iw (Ia).

SN 2012Z in NGC 1309.Intense regions of Hα emission are observed in the arms of the

face-on spiral galaxy NGC 1309. The transient is located farout in the disc of the host, on a

region devoid of Hα emission.

3.7 Strength of association of transients with ongoing SF

3.7.1 Host galaxy classifications

The first indications of the association of these transientswith ongoing SF come from the

Hubble types of the host galaxies. For the Ca-rich transients, the most important observation

is that six of the eleven which have host types arise from early type galaxies (four ellipticals

and two lenticulars) which, as expected, are shown by the observations to have no detectable

SF as revealed by Hα emission. The other five Ca-rich transient hosts are all nominally spiral

galaxies; these are bright, star-forming galaxies with types in the range Sb–Scd, which are

the types that dominate the overall SF rate in the local Universe (James et al., 2008). One of

these five is PTF 09dav, which lies at a projected distance of 40.6 kpc from a bright, disturbed

star-forming galaxy that was identified as the probable hostby Sullivan et al.(2011), and

which has been classified as being of type Sb from the imaging presented here. However,

the identification of this galaxy as the host is far from certain, given the very substantial

projected offset.
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The host galaxies of the eleven SN 2002cx-like transients are all clearly of star-forming

types, ten being spiral galaxies and one a Magellanic-type irregular. Two are classified as

Sa, one as Sab, one as Sb, one as Sbc, one as Sc, two as Scd, one asSd, one as Sdm and one

as Im.

These distributions of host galaxy types can be compared with the expectations for the typical

host environments of low- and high-mass stars, picked at random from across the ensemble

of all galaxy types, with the important caveat that both setsof transients are likely to be

subject to substantial selection biases. For low-mass stars, a reasonable comparison is with

the distribution of total stellar mass across the population of galaxies in the local Universe,

which has been estimated byDriver et al.(2007a,b). Driver et al.(2007a) gives the following

fractions of stellar mass in different galaxy components: discs 58±6 per cent; elliptical

galaxies 13±4 per cent; bulges 26±4 per cent; 3 per cent other. While the significance is

far from compelling, this indicates that the Ca-rich transients are if anything more strongly

weighted towards elliptical galaxies than would be expected if they accurately traced the

low-mass stellar population. The expectation might be for one to lie in an elliptical host,

whereas four are actually found. For the SN 2002cx-like transients, the reverse is true; none

of the hosts is an elliptical galaxy. From an inspection of Fig.3.5, all occurred within the star-

forming disc components of their host galaxies, with the debatable exception of SN 2008A,

which would be a surprising finding if they follow the distribution of old stellar mass.

To determine the expectations for high-mass stars picked atrandom from local galaxies, es-

timates of the contributions made by galaxies of different types to the SF density of the local

Universe are used, presented inJames et al.(2008). This comparison is made in Fig.3.8,

where the filled circles in both frames represent the contributions made to the local SF rate

density by galaxies of the different types. Thus, Sc galaxies (T-type=5) make the largest

single contribution, and host about 25 per cent of the current SF in the local Universe. The

differences between the distribution of Ca-rich host types and those contributing to the SF

rate density are striking. The lower frame of Fig.3.8, where all the quantities are plotted

as cumulative, normalized distributions, confirms this discrepancy for the Ca-rich transients

(solid line), which show a large excess of early-type hosts.However, this cumulative distri-

bution comparison shows that the SN 2002cx-like transients(dashed line) much more closely
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match the expectations for a population that traces SF and hence high-mass progenitors.

The numbers of transients involved in this study are small, and the sample is potentially sub-

ject to significant selection effects. Noting these important caveats, it is still interesting to

test the statistical significance of the difference betweenthe distributions shown in Fig.3.8.

A one-sample Kolmogorov–Smirnov (KS) test gives a criticalD value of 0.468 for a sample

of eleven objects and a probabilityP of 0.01; the observed maximumD between the Ca-rich

hosts and the SF density distribution summed over types is larger than the critical value, at

0.523. Thus the Ca-rich hosts are significantly different from the expectations for a popu-

lation that traces cosmic SF. A two-sample KS test shows thatCa-rich and SN 2002cx-like

host galaxies differ significantly, with a maximumD value of 0.55 and a probability of only

0.047 that the two sets of host galaxies could be drawn from the same parent distribution.

It is useful, in the interests of increasing sample size, to look at the host types of other

SN 2002cx-like events, even those for which no suitable Hα imaging exists. Some events

prohibit a confident host classification to be made due to the distance to and/or a lack of high

resolution imaging of the host. Additional transients included are SN 2002bp (UGC 6332,

SBa), SN 2003gq (NGC 7407, Sbc), SN 2004cs (UGC 11001, Sdm), SN2008ge (NGC 1527,

SAB0), SN 2010ae (ESO 162-17, Sb), SN 2010el (NGC 1566, SABbc),SN 2011ay (NGC 2315,

S0/a) and SN 2011ce (NGC 6708 Sb); seeFoley et al.(2013) for a discussion of each event.

As can be seen in Fig.3.8, this enlarged sample of 19 transients broadly follows the host

distribution of the Hα-imaged SN 2002cx-like sample, as expected, although one transient

has an early-type host classification — SN 2008ge in NGC 1527.This may argue against a

young age for the progenitor; indeed,Foley et al.(2010b) find an absence of evidence for

recent SF at the transient’s location and conclude that the progenitor is likely to be a WD,

however see Section3.8. SN 2008ge is further discussed in Section3.9

3.7.2 Transient locations and ongoing SF

To further quantify the apparent association of the two transient populations with current

sites of SF, the NCR statistic is used, applied to a pixel-by-pixel analysis of the continuum-

subtracted Hα images, which was introduced in Section3.4.
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Figure 3.8: The SF density of the local Universe as a functionof galaxy T-type (solid cir-
cles), compared with the distribution of types of the host galaxies of Ca-rich (solid lines) and
SN 2002cx-like (dotted lines) transients. Also shown are the host types of the full sample
SN 2002cx-like events for which a good host classification can be made (see text; dot-dashed
lines). Both frames show the same data, but quantities plotted in the lower frame are cumu-
lative values along the sequence from early- to late-type galaxies.
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For the five Ca-rich transients in galaxies with detectable SF, the mean NCR value is 0.259

(standard error on mean 0.119), range 0.000-0.626. Including the seven for which the Hα

imaging reveals no SF anywhere in the galaxy (including SN 2010et which has no obvious

host), and which all thus have NCR values of 0.000, this value falls to 0.108 (0.060).

The Ca-rich transient with the strongest apparent association with an HII region is SN 2003dg.

This occurred in the disc plane of UGC 6934, an edge-on Scd spiral galaxy. This galaxy

orientation makes the interpretation of the NCR index highlyambiguous, with a greatly

increased probability of line-of-sight projection effects resulting in spurious apparent cor-

relations, and large, poorly-constrained extinction effects. Thus, edge-on galaxies were ex-

cluded from the NCR analysis in previous papers (James and Anderson, 2006; Anderson and

James, 2008; Anderson et al., 2012), with a limiting criterion of a major- to minor-axis ratio

of 4.0. For UGC 6934, this ratio is 7.7, so it would have been excluded from earlier studies.

Removing SN 2003dg from the sample, the mean NCR value falls to 0.061 (0.041).

Two more of the Ca-rich transients, SN 2003dr and SN 2005E, occurred in disc galaxies that

are very close to being exactly edge-on. In these cases, the transient occurred far from the

disc plane, so the line-of-sight projection argument does not apply. However, for the sake

of consistency the average NCR value is recalculated with allthree edge-on hosts removed,

giving an average for the remaining nine of 0.074 (0.049).

For the eleven SN 2002cx-like transients, the mean NCR value is 0.222 (0.092), range 0.000

- 0.904. Removing SN 2008A, which occurred in the edge-on Sa galaxy NGC 634, this mean

is 0.244 (0.099).

Figure3.9shows the distributions of NCR values for the two samples presented here, and of

other SN classes. The values for Ia, IIP, Ib and Ic types are taken fromAnderson et al.(2012).

The study ofAnderson et al.(2012) was of only star-forming galaxies however, whereas this

sample has six early type hosts in the Ca-rich transient classthat display no detected SF. In

order to compensate for this fact, the rate of SNe Ia going offin early type galaxies from

LOSS (Li et al., 2011b), ∼ 27 per cent, is used. With no SF, any location in the host will

have NCR= 0, so by adding 27 per cent to the SNe Ia sample as NCR= 0 events, this will

give an expected SNe Ia distribution across all galaxy types. The number of CCSNe that
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Figure 3.9: Cumulative distribution of the Ca-rich and SN 2002cx-like samples as compared
to other SN types. Data for other SNe are based onAnderson et al.(2012), with a correction
factor applied to the SN Ia sample to account for the fact thatonly star-forming galaxies were
included in that study (see text).

have been observed in non-star-forming early type hosts is∼ 0, and as a result no correction

was applied to the SN II, Ib or Ic distributions.

The KS test was applied to the distributions of NCR values shown in Fig.3.9. These confirm

the extreme nature of the environments of the Ca-rich transients; even with a small sample

(12 objects), the test conclusively shows that the values are not consistent with a distribution

that perfectly traces the SF activity in the host galaxies (the black diagonal line in Fig.3.9),

with a probability of these distributions being consistentof < 0.1 per cent. More importantly,

the Ca-rich transient NCR values are inconsistent with the distributions for SNe of Type II

(including all subtypes and unclassified Type II; seeAnderson et al., 2012) and Ib, with

probabilities less than 2.5 per cent of being drawn from the distributions of either type; the
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Table 3.6: Mean Hα NCR values for the locations of different SN types.
SN Type No. Mean Std. err.
Ca-rich 9 0.074a 0.049
Ca-rich 12 0.108 0.060
Ia 98 0.114b 0.019
SN 2002cx-like 11 0.222 0.092
SN 2002cx-like 10 0.244c 0.099
IIP 58 0.264 0.039
Ib 39 0.318 0.045
Ic 52 0.469 0.040
a All edge-on hosts excluded
b Corrected for an assumed early-type

fraction of 27 per cent; mean in star-
forming hosts is 0.157

c Edge-on host excluded

consistency with the SNe IIP sample shown in Fig.3.9 is ∼ 5 per cent. Notwithstanding the

small sample size, a clear distinction exists between Ca-rich transients and SNe II/Ib.

The Ca-rich transient distribution is completely consistent with that of SNe Ia, and by eye the

two distributions overlay very closely, given the constraints of small number statistics. For

the SN 2002cx-like transients, the situation is less clear;formally the NCR values of these

eleven transients could have been drawn from any of the otherdistributions shown in Fig.3.9.

However, the distribution most closely approximates that of SNe IIP, and indeed, again con-

sidering the small number statistics, reproduces it well. The distribution of SN 2002cx-like

transients shows a stronger association to SF than that of SNe Ia, with the mean NCR being

larger even in the case of considering only star-forming hosts of SNe Ia (see Table3.6).

3.8 GALEX NCR analysis

Investigations thus far have concentrated on the use of Hα imaging to build NCR distribu-

tions as there exist comparative samples of these distributions for ‘normal’ SN types. How-

ever, the duration of appreciable Hα emission post SF, although ideal to probe the lifetimes

of very massive stars, is not conducive to investigating thelonger time-scales these transients

appear to exhibit. For this reason the excellent coverage ofthe ultraviolet (UV) sky afforded
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by theGALEXobservatory is exploited. The FUV and NUV bands act as tracers of SF on

longer time-scales, up to∼100 Myr for the NUV, with FUV being a slightly longer time-

scale than Hα (Stewart et al., 2000; Gogarten et al., 2009). The same method as described

in Section3.4 is employed but here using theGALEX UV imaging instead of continuum-

subtracted Hα imaging. TheGALEX archive5 was queried on the locations of all Ca-rich

in Table3.2 and all SN2002cx-like events listed inFoley et al.(2013). 21 (20) out of 25

SN2002cx-like events have suitable NUV (FUV) imaging, with8 of the Ca rich appearing

in the archive. For each host the ‘Sky background image’ was subtracted from the ‘Inten-

sity map’ to obtain a zero-mean background. The normal NCR method was then applied to

this subtracted image.6 The results of the NCR analysis are given in Tables3.7and3.8, the

cumulative distributions of NCR values are shown in Fig.3.10.

Fig. 3.10 shows that SN2002cx-like transients appear to almost perfectly trace the NUV

emission with only 10 per cent having NCR = 0. The FUV distribution, however, deviates

significantly from tracing the underlying emission with 40 per cent occurring on regions

of no FUV emission. This is not unexpected as the FUV probes a similar time-scale to

Hα, but is a good sanity check for ruling out very short-lived progenitors. This allows

constraints on the progenitor ages of< 100 Myr, i.e. shorter-lived than the time-scales of

NUV emission, with a probable age of a few tens of Myr, given that they outlive FUV

emission and appear quantitatively similar to SNe IIP in terms of Hα association7. One

interesting note is regarding SN 2008ge where, notwithstanding the SAB0 classification for

its host,GALEXimaging reveals extended emission in both NUV and FUV. The NCRvalues

are 0.917 and 0.000 for NUV and FUV, respectively. This wouldindicate there has been

fairly recent SF in the host, and specifically SF at the location of SN 2008ge, potentially

meaning this was a young system (cf.Foley et al., 2010b).

For the Ca-rich transients, the association to FUV is not beyond that which might be reason-

ably expected from random coincidence (> 60 per cent have NCR = 0), as expected from the

5http://galex.stsci.edu/GR6/?page=mastform
6The pixel scale ofGALEX is 1.5 arcsec, and the WCS solutions will be more robust than ground based

imaging, we therefore do not apply a binning factor to the images prior to NCR analysis, as was done in the
case of Hα imaging.

7The similarity between SN2002cx-like transients and SNe IIP is also strikingly evident when comparing
Fig. 3.10with figure 4 ofAnderson et al.(2012).

http://galex.stsci.edu/GR6/?page=mastform
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Table 3.7:GALEXNCR values for Ca-rich transients.
SN name NUV NCR FUV NCR
2000ds 0.583 0.000
2001co 0.332 0.233
2003H 0.342 0.000
2003dg 0.782 0.431
2003dr 0.000 0.353
2005E 0.000 —
2005cz 0.674 0.000
2007ke 0.000 0.000
PTF09dav 0.000 0.000
2012hn 0.000 0.000

Hα distribution in Fig.3.9. We also see that even the longer time-scale of the NUV emis-

sion also does not encompass the progenitor lifetimes of these transients, with> 40 per cent

outliving the NUV emission. This gives confidence that theseCa-rich transients have indeed

very old progenitors.

One potential issue withGALEX data is the relatively coarse spatial resolution at∼4–5

arcseconds. This may result in an observed coincidence of the transients location with

NUV/FUV that is, in reality, spatially distinct and could erroneously shift a distribution to-

wards a closer association to the emission. Even with this effect, the Ca-rich display little if

any association and this reinforces a long-lived progenitor nature for these transients. Some

confidence that this effect is not completely distorting thedistribution of the SN2002cx-like

transients comes from the comparison of their Hα distribution (Fig.3.9) with their FUV dis-

tribution (Fig.3.10) – since these tracers probe similar time-scales of SF it is expected they

would display similar distributions for each, as is seen. 6

3.9 Discussion

Though the total rate of Ca-rich and SN 2002cx-like transients might be significant com-

pared to SNe Ia, the actual number of observed events is stillsmall, mostly due to their low

luminosity, which limits their detection at large distances. For this reason the sample sizes

in this study are limited. Nevertheless, a clear picture emerges from these results, pointing
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Table 3.8:GALEXNCR values for SN2002cx-like transients.
SN name NUV NCR FUV NCR
1999ax 0.481 0.000
2002cx 0.392 0.872
2003gq 0.453 0.000
2004cs 0.974 0.170
2004gw 0.000 0.000
2005P 0.304 0.248
2005cc 0.796 0.000
2005hk 0.125 0.154
2006hn 0.498 0.491
2007J 0.091 —
2007ie 0.781 0.618
2007qd 0.148 0.168
2008A 0.000 0.000
2008ae 0.376 0.000
2008ge 0.919 0.000
2008ha 0.373 0.037
2009ku 0.818 1.000
2010ae 0.849 0.814
2010el 0.500 0.452
2011ay 0.560 0.000
2012Z 0.132 0.214

to significant differences between the host environments ofthese two transient types, which,

in turn, implies different types of progenitor systems. Theclear distinction between the two

classes is strengthened by the possible contamination frommisclassified transients in each

sample. Such contamination would serve to dilute any distinct behaviour between the two

samples.

The first indications for such difference come from the host galaxy populations analysis. All

SN 2002cx-like transients have host galaxies that display strong, recent SF activity. The

progenitor systems are therefore likely associated with a young stellar population, quite sim-

ilar to that of CCSNe. Conversely, six of the eleven Ca-rich hosts(disregarding SN 2010et,

where the host is not certain) are early-type galaxies with no detected SF, and therefore point

to an old stellar population lacking any young, massive stars.

The host galaxy distributions provide strong support to thesuggestion ofPerets et al.(2010)

of an old progenitor system for Ca-rich transients. Their original analysis of a smaller sample
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Figure 3.10: Cumulative distributions of NCR values for Ca-rich and SN2002cx-like tran-
sients fromGALEX NUV and FUV imaging. The black line indicates a distributionthat
perfectly traces the SF.

of events, showed the host galaxy distribution of various SNtypes compared with the Ca-

rich events. The distribution of Ca-rich transient hosts displays similarities with that of

regular SNe Ia, a trend strengthened by the addition of similar events identified since then

and presented here.

Furthermore, the NCR analysis allows the locations of the transientswithin their respective

hosts to be investigated. More than simply saying the SN 2002cx-like transients are found in

hosts that display ongoing SF, a quantitatively good match between SN 2002cx-like events

and SNe IIP with respect to association with very recent SF (Hα) in their host galaxy is

found. Such a match would indicate a similar progenitor age for SN 2002cx-like transients

and SNe IIP (i.e. a typical delay time of30− 50 Myrs). This suggestion is reinforced by the

association of SN2002cx-like transients to NUV emission, and through their almost perfect
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tracing of NUV emission it can be concluded that their lifetimes are< 100 Myr. From the

NCR analysis it is confirmed that Ca-rich transients do not appear to follow very recent SF

in their hosts and closely resemble the distribution of ‘normal’ SNe Ia, whose progenitors

are expected to have significant life times (∼ Gyrs). The longer time-scale of NUV emission

is not traced by these transients either, lending support tothe argument of very long lived

progenitors.

The samples are, as mentioned previously, inherently eclectic and suffer many biases rela-

tive a volume-limited sample. Their fainter magnitudes compared to SNe in general would

suggest that they will be difficult to detect on bright galaxyregions. Note, however, that

SN 2003dg (Ca-rich) and SN 2005cc (SN 2002cx-like), both typical of the mean bright-

ness of their sample, were discovered on the brightest central regions of their respective

hosts. The preference for discovery in fainter host locations would strengthen the argu-

ment for SN 2002cx-like events’ association with SF, given it is plausible to miss some of

these events if they are coincident with the brightest HII regions. The discovery magnitudes

quoted in Tables3.2and3.3show there is no statistically significant difference between the

distributions of brightnesses in the two samples, suggesting any bias from magnitude-limited

searches will affect each sample similarly (although theirfaintness will possibly affect the

comparison to ‘normal’ SN types).

For the Ca-rich transients at large host offsets, nothing underlying is detected in these data

at their locations. It should be noted the limits of these data will not rule out the majority

of underlying potential systems, such as low surface brightness dwarf galaxies or globular

clusters. Literature limits provide more useful restrictions on underlying dwarf galaxies and

find nothing toMR ∼ −12 for a small subset of the sample. When looking at very deep

imaging, Lyman et al. (in prep) find nothing at the locations of SNe 2005E and 2012hn,

with limits deep enough to probe down the globular cluster luminosity function, ruling out a

globular cluster origin at high confidence. Limits on surviving massive binary companions

(or other massive stars at the locations) are also placed, with nothing detected to stringent

limits.

This analysis provides new clues regarding the origin of these peculiar transient events, and

can help constrain the suggested theoretical models. In thefollowing a discussion of these
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constraints, in view of the suggested theoretical models for these transients, is provided.

Ca-rich transients:Several models were suggested for the origin of the Ca-rich events. The

model of He-shell detonation on a CO WD, following He accretionfrom a He-WD, was

suggested byPerets et al.(2010), with support from the theoretical analysis byShen and

Bildsten(2009) andWaldman et al.(2011). Such a model points to a double degenerate ori-

gin for these types of transient. In particularWaldman et al.(2011) suggested a low mass CO

WD progenitor, which requires a long lived stellar origin, and possibly a low metallicity en-

vironment. An alternative model of a CC origin as suggested byKawabata et al.(2010) (see

also discussion byKasliwal et al. 2012) would require a young, star-forming environment.

This Hα-based analysis of the hosts of the Ca-rich transients makes clear that the majority

of these are occurring a very long way from any detectable SF.This also strengthens the ar-

guments ofPerets et al.(2010) andKasliwal et al.(2012) that even extremely high-velocity,

high-mass runaway stars are implausible candidates as progenitors of the Ca-rich transients.

It can be concluded therefore that this analysis consistently points towards old progenitor

systems, and a likely thermonuclear origin, for the Ca-rich transients (see additional support

through the analysis ofYuan et al. 2013).

SN 2002cx-like transients:Several models were also suggested for the origin of SN 2002cx-

like events. Li et al. (2003) and Branch et al.(2004) suggested they originate from the

deflagration of a Chandrasekhar mass C/O WD. This model encounters difficulties explain-

ing the diversity of such events and in particular the extremely low-mass and sub-luminous

SN 2008ha event. A more recent and detailed model byJordan et al.(2012; see alsoCalder

et al., 2004; Livne et al., 2005; Kromer et al., 2013) discusses a failed detonation model,

in which a deflagration scenario fails to explode the WD, and only burns and ejects a frac-

tion of the WD, leaving behind an intact (but now lower mass andpolluted) WD remnant.

This scenario can similarly explain the low velocities observed for SN 2002cx-like events

due to deflagration, but in addition provides a robust explanation for the diversity of the

SN 2002cx-like events and the possible production of extremely low-mass and low lumi-

nosity events. Both of these models begin with a Chandrasekharmass WD, similar to the

single-degenerate model suggested for SNe Ia. WDs initiallyformed at high masses (which

in turn form from higher mass stellar progenitors with shorter lifetimes) and require less ad-
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ditional accretion in order to achieve the Chandrasekhar mass. This would generally point to

their association with younger environments, where more massive stars and binaries evolve

and transfer mass. However, the evolution towards the Chandrasekhar mass is still expected

to be generally longer, and sometimes much longer, than the typical lifetimes of CCSN stel-

lar progenitors (>8 M⊙ stars). Although some SN 2002cx-like transients have been found

in supposedly old environments (Foley et al., 2013), these findings suggest a very young

environment for the progenitors of these transients, comparable with that of SNe IIP. The

environmental constraints found here therefore do not exclude, but are less favourable for a

Chandrasekhar mass C/O WD explosion.

Ferńandez and Metzger(2013) suggest neutron star-WD mergers as a possible origin for

SN 2002cx-like events. Some of the properties of SN 2002cx-like transients are qualitatively

reproduced by the model, but more detailed studies are needed. This model would suggest a

mixed distribution of old and young environments, due to thedistribution of the gravitational

wave inspiral time leading to the merger, in contrast with the strong bias to very young

environment found here. In addition, the total rate of neutron star-WD mergers is about

3 per cent of that of SNe Ia – even if all such mergers resulted in an SN 2002cx-like event,

the expected rates would be an order of magnitude lower than those observed (Foley et al.,

2013).

Valenti et al.(2009) suggested that SN 2002cx-like transients arise from a variant of CC-

SNe with low ejecta velocity, although currently no detailed theoretical modelling of such

events has been done. The findings of similar environments for both these transients and

those of CCSNe, are therefore consistent with the CC origin of SN2002cx-like transients.

In particular, the detailed NCR statistics indicate that SN 2002cx-like events share similar

environments to those of SNe IIP, i.e. while they are evidently associated with SF, a substan-

tial fraction appear to outlive their natal HII regions, resulting in lower values of the NCR

index than would be expected for the highest mass progenitors. In the context of this sce-

nario, this analysis would therefore point to the lower-mass, 7–9 M⊙ (with typical lifetimes

of 30–50 Myrs) progenitors discussed byValenti et al.(2009), rather than the alternative

high-mass Wolf-Rayet stars also discussed by them. The inclusion of SN 2008ge as a young

progenitor is still debatable asFoley et al.(2010b) conclude a lack of any recent SF at the
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transient’s location, however, our NUV NCR analysis would indicate the host, and the loca-

tion of SN 2008ge has undergone moderately recent SF.

Two of the SN 2002cx-like transients show spectral evidencefor helium. Taken together with

the young environment found for these events,Foley et al.(2013) suggest this as possible

evidence for their origin from a helium star accretion on to aWD. However, a helium layer

may also form following hydrogen accretion and burning intohelium on a WD (Cassisi et al.,

1998; and references therein). It is therefore concluded that although the existence of helium

in even a small fraction of these events is a potentially important clue for their origin, its

interpretation is still inconclusive.

3.10 Summary

The investigations presented here of the environments and host types of Ca-rich transients

show a lack of association with recent SF (similar to that of SNe Ia), and thus point to old

progenitor systems, consistent with helium-shell detonation on low mass C/O WDs, and

inconsistent with a CCSN origin. Conversely, SN 2002cx-like transients are well matched

by young progenitors (< 100 Myr lifetime and likely to be 30–50 Myr) through a close

association to NUV emission and an association to very recent SF that is similar to that

displayed by SNe IIP. Such young progenitors are less favourable to failed detonations of

Chandrasekhar mass C/O WDs, and more consistent with either thecore-collapse of a 7-

9 M⊙ star, or a WD explosion following the accretion of helium star. While the failed

detonation model for these events appears to be consistent with the observable parameters

of SN 2002cx-like events themselves, the latter two models currently lack an actual detailed

study. Therefore, they can not yet be adequately compared with observations, beyond the

generally consistent aspects of their expected environments as studied here.



Chapter 4

Creating and modelling the bolometric

light curve of SN 2012bz

Abstract

The bolometric light curve of a SN is a powerful tool to investigate the nature of the explosion

since it contains the entire kinetic energy output of the SN (modulo non-electromagnetic

sources, e.g. neutrinos, which can account for 99 per cent ofthe energy). As such bolometric

light curves often form a tight constraint for any modellingof SNe.

In this chapter the gamma-ray-burst-SNe (GRB-SNe) phenomenon will be introduced and

specifically the recent case of GRB120422A/SN 2012bz. The bolometric light curve of

SN 2012bz is created through the integration of spectral energy distributions based on broad-

band photometry with a correction for the missing near-infrared regime based on another

GRB-SN, SN 2010bh. An analytical model for bolometric light curves of stripped-envelope

SNe is briefly introduced and used to model SN 2012bz. Despitebeing an unremark-

able GRB in cosmological terms, SN 2012bz was very luminous bySN standards (exclud-

ing SLSNe), brighter than SN 1998bw and an inferredMNi amongst the largest for SNe

(∼ 0.6 M⊙). A comparison of the results of this modelling is made against those found with

more involved spectral analysis performed by others, with generally good agreement found.

79
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4.1 GRB-SNe and the case of GRB120422A/SN 2012bz

The link between long GRBs (LGRBs; i.e. those bursts with gamma ray emission>2 sec-

onds) and CCSNe is well established both theoretically and observationally. Proposed under

the ‘collapsar’ model ofWoosley(1993), the collapse of a massive star can create a stellar

mass black hole with an accretion disc. The accretion onto the black hole (the central en-

gine) powers a relativistic jet which penetrates the outer layers of the star, producing narrow,

beamed emission of gamma rays, most likely due to colliding shells of differing Lorentz

factor within the relativistic jet (the exact emission mechanism for the gamma rays is an area

of ongoing study, for a recent review seeMésźaros, 2013). The duration of this emission

is intrinsically linked to the time-scale of the central engine and this is thought to depend

somewhat on the size of the collapsing star, where a larger sized collapsing body will fuel

the central engine for a longer duration.

Observational support arrived in the error box of the very low redshift GRB980425, where

an emerging SN was seen to be brightening temporally coincident with this burst (Galama

et al., 1998). The SN, SN 1998bw, was very luminous and classified as a SN Ic-BL, due

to the very high photospheric velocity it exhibited (resulting in broad-line features in its

spectra). The observational association has been cemented, with Hjorth and Bloom(2012)

counting 11 objects with good light curve, and at least some spectroscopic, evidence for a SN

in the light curve of a GRB afterglow (not including the very recent examples SN 2012bz,

Melandri et al. 2012; Schulze et al. 2014; SN 2013cqXu et al. 2013and SN 2013dx Cenko

et al., in prep). In each case that a classification is possible, the identified SN has been of

type Ic-BL. Previous studies comparing GRBs that have an observed SN to ‘cosmological’

GRBs (i.e. those at high redshift, or where no SN was detected) appeared to show to a bias

towards lower luminosity for GRBs that show a SN (Guetta and Della Valle, 2007), with the

notable exception of GRB030329/SN 2003dh (Stanek et al., 2003).

However,Xu et al. (2013) present GRB 130427A/SN 2013cq – with the GRB bring ex-

tremely luminous even for cosmological GRBs, despite its moderate redshift ofz = 0.3399.

Coupled with GRB030329, this would suggest there is in fact a common progenitor system

for GRB-SN to those GRB at high redshift, and high explosion energy events are capable of
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producing a SN. Further to this, GRB 030329 and 130427A were very long duration bursts

(in terms of the time-scale of gamma-ray emission). This poses a contradiction between the

putative compact Wolf-Rayet progenitors (given they displayed SNe Ic) and consequently

short fall back time, and the ling time-scale of the central engine, suggesting progenitor size

and central engine duration may not be so simply linked (Zhang et al., 2013).

GRB120422A was nearby in GRB terms atz = 0.283. Monitoring of the event revealed

the accompanying SN, SN 2012bz which peaked around a fortnight after the GRB. True to

previous GRB-SNe, it was classified as a SN Ic-BL. Interestinglythe GRB is intermediate

between the typically lower luminosities of GRB-SNe and high redshift cosmological GRBs

and is likely a transition event in this parameter space (Hjorth, 2013; Schulze et al., 2014).

4.2 The bolometric light curve of SN 2012bz

Construction of bolometric light curves can be observationally expensive even for very

nearby objects. In principle all wavelengths should be observed, but this is infeasible and as

such bolometric light curves often rely on theoretically motivated prescriptions for very long

and very short wavelengths, with observations concentrated in the near ultraviolet (NUV)

to near infrared (NIR) regime. Presented here is an example construction of a pseudo-

bolometric light curve that covers the NUV to NIR.

GRB120422A was subject to intensive observational follow up.The accompanying SN,

SN 2012bz also contained well sampled coverage in thegriz bands. The light curves in

each filter were fitted with spline interpolations starting at 2 days past the GRB trigger (to

avoid including points dominated by the GRB afterglow in the fits), such that an estimated

magnitude for all four bands was available at each epoch of observation. The fitted splines

are shown in Fig.4.1. Magnitudes were converted into monochromatic fluxes at theeffective

(rest-frame) wavelengths of the filters using:

Fλeff
=

c

λ2
eff

× 10−
mAB+48.6

2.5 erg s−1 cm−2 (4.1)
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Figure 4.1: Light curves of SN 2012bz taken fromSchulze et al.(2014), data have been
corrected for Galactic extinction (E(B − V ) = 0.04 mag). Very early data where the GRB
afterglow dominates have been removed (<∼ 2 day). The cubic splines used to interpolate
the light curves are shown (solid lines).

wherec is the speed of light,mAB is the AB magnitude, andλeff is the effective wavelength

of the filter. This was done for each filter at every epoch to produce an SED.1

Each SED was then interpolated linearly in flux and integrated over the limits of the filter

wavelength range, assuming zero flux at the rest-frame blue edge ofg and red edge ofz

(∼3000 and 8000̊A respectively). Some example SEDs are shown in Fig.4.2. The differen-

tial peaking of the light curves (i.e. peaking later in redder bands; Fig.4.1) is evident in the

form of these SEDs. The integrated fluxes were converted to luminosities using a distance

modulus ofµ = 40.79.2

1Since the SED is being evaluated for every observation, nearby epochs (within< 0.2 days of each other)
were first calculated individually and then averaged when producing the final bolometric light curve for clarity.

2Based onz = 0.283 and aΛCDM cosmology ofH0 = 71 km s−1 Mpc−1, Ωm = 0.27, andΩΛ = 0.73

(Larson et al., 2011).
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Figure 4.2: Sample SEDs of SN 2012bz constructed fromgriz photometry (the sequence
yellow to red represents increasing time past the GRB trigger). The SEDs are artificially tied
to zero flux at the blue edge of theg band and red edge of thez band.

Contributions to the flux (and hence luminosity) outside thisregime, however, are not in-

significant. This is particularly true in the NIR, wherein thefraction of the total luminosity

emitted increases with time, reaching a comparable contribution to the optical within 30 days

(e.g.Valenti et al., 2008). By using the fractional NIR flux of a similar transient, an estimate

of the missing flux can be applied to SN 2012bz. A photometric study by Olivares et al.

(2012) of the low redshift (z = 0.059) XRF100316D/SN 2010bh contains well sampled

light curves inzJH bands, extending upon the rest-frame wavelength limits. The contribu-

tion of wavelengths> 8000 Å to the flux was determined by first integrating SN 2010bh’s

dereddened SED over wavelengths≤8000Å and then wavelengths> 8000 Å. Thus, for each

epoch of SN 2010bh observation, the NIR contribution as a fraction of the∼‘optical’ flux

(∼4000–8000̊A) is obtained. This fractional flux is then applied to SN 2012bz after similarly

obtaining integrated fluxes for the optical regime. The phases of these fractional contribu-
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Figure 4.3: NIR contributions to SN 2010bh as a fraction of the ‘optical’ flux (∼4000–
8000Å). The fitted polynomial is shown. Epochs are normalised andstretched to match
those of SN 2012bz (see text).

tions were normalised sot=0 was the optical peak of the respective SNe, and stretched by a

factor∆m15,optical (à laPhillips, 1993) to match the light curve shape of the two SNe (0.78

for SN 2012bz, 1.00 for SN 2010bh). The peak and∆m15,optical values were found by fitting

polynomials to the data around peak. The fractional NIR values of SN 2010bh were fitted

with a polynomial (Fig.4.3) in order to sample it at the epochs of SN 2012bz observations,

and the appropriate amount was added to the optical flux of SN 2012bz. The result is a

NIR-corrected light curve covering 3000-17000Å for SN 2012bz. No attempt was made to

account for flux missed below 3000̊A, due to the paucity of data constraining the UV in such

objects.

The resulting pseudo-bolometric light curves are shown in Fig. 4.4along with modelling fits

(see Section4.3).
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4.3 Analytical modelling of SN 2012bz

The bolometric light curve of a stripped-envelope SNe (SE SNe) can be modelled using the

simplified analytical prescription ofArnett (1982), updated byValenti et al.(2008), to obtain

physical parameters of the explosion, the mass of56Ni, the mass ejected and the kinetic

explosion energy (MNi, Mej andEK respectively). The model is briefly introduced here with

results of the modelling of SN 2012bz. The model is further detailed in Chapter6, along

with a discussion of the relevant equations and assumptions, where it is applied to a large

sample of SE SNe.

Although the model formally describes a bolometric light curve of a SE SN, the pseudo-

bolometric light curve (plus NIR correction) created in Section 4.2 is used as an approxi-

mation since observations of wavelengths outside these wavelengths do not exist. The data

cover the photospheric phase of SN evolution, when the ejecta are considered optically thick.

The opacity is chosen to beκ = 0.07 cm2 g−1 (seeCano et al., 2011). To constrain the de-

generacy in theEK/Mej ratio, ascale velocityis required (see equation 54 inArnett, 1982),

and this is taken to be the photospheric velocity (vph) at peak. FeII lines are a good tracer

of vph (Valenti et al., 2011), and the peak of the pseudo-bolometric light curve occurs at

∼13.9 days (from fitting low-order polynomials around peak).Using data fromSchulze

et al. (2014), 20500 km s−1 is used forvph by linearly interpolating between the measure-

ments taken from spectra at epochs 11.380 days and 14.575 days.

Fitting to the optical bolometric light curve reveals the following parameters:MNi ≃ 0.4 M⊙,

Mej ≃ 4.7 M⊙ and EK ≃ 3.3 × 1052 erg, when including the NIR contribution

from SN 2010bh, the fit results obtained areMNi ≃ 0.6 M⊙, Mej ≃ 5.9 M⊙ andEK ≃
4.1 × 1052 erg. The first 8 days were ignored in the fit as contributions from other sources

(GRB afterglow, SN shock-breakout cooling) would compromise the assumptions of the SN

model. SN 2012bz shows one of the highest nickel masses ever seen in a GRB-SNe (Bufano

et al., 2012).

Systematic errors arise from both the simplifying assumptions in the model (spherical sym-

metry, centrally concentrated56Ni mass etc.) and the choice of parameters for the fit,

which typically dominate statistical errors. For example,taking an uncertainty invph of
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2000 km s−1 translates to an error inMej andEK of ∼ 10% and∼ 25% respectively. The

MNi value derived is more secure given the GRB signal gives an extremely precise time to

set as the time of explosion in the model. The rise time is therefore very well constrained,

however any uncertainty in the peak luminosity directly affects theMNi value derived. The

redshift of the host has a well determined redshift of 0.283 (Schulze et al., 2012); a 10%

error inMNi is therefore estimated, arising from the inherent photometric errors (which af-

fects SED construction) and also uncertainties on the NIR contribution. The two-component

model for hypernovae byMaeda et al.(2003) would suggest these data are only represen-

tative of the outer, lower density region of the ejecta that is visible during the photospheric

phase (<∼30 days), and a fraction is hidden in a denser, inner component during this time,

this means the quoted values will have a more uncertain upperlimit – studies show this in-

ner component can be∼ 10% of the total flux but can reach up to15 − 30% in some cases

(Valenti et al., 2008). A fuller detail of the errors inherent to the modelling scheme employed

here is provided in Chapter6, including a discussion of the assumptions that are used and

their effect on the resulting parameters.

Although the afterglow component of GRB120422A is shown not tocontribute significantly

around the SN peak, potential contamination by underlying host galaxy light is included in

this bolometric light curve, although the potential impacton the resulting parameters would

be small compared to other systematics detailed.

Melandri et al.(2012) modelled SN 2012bz using a scaled spectral model for SN 2003dh

to obtain estimates of the physical parameters. They obtained values ofMNi ≈ 0.35 M⊙,

Mej ≈ 7 M⊙ andEK ≈ 3.5 × 1052 erg using a bolometric light curve covering 3300-

7400 Å. Comparing these to the values for the 3000-8000Å bolometric light curve, the

MNi values are in good agreement, given the slightly extended wavelength range here (and

hence higher derived luminosity),EK values are consistent, however the ejected mass found

is lower compared to their value. Differences could be caused by choices ofvph andκ, or

asymmetries, which spectral modelling can account for.

One thing to note is the importance of the NIR contribution tothe extracted parameters from

such modelling. A∼ 45% increase in the nickel mass obtained is found, and a∼ 25%

increase inMej andEK when including this correction. Although SN 2010bh was clearly
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Figure 4.4: Pseudo-bolometric light curves of SN 2012bz from direct integration of the SED
overgriz filters, and including a NIR contribution as found for SN 2010bh. For comparison
theUBV RI light curve of SN 1998bw (Clocchiatti et al., 2011) and thegrizJH light curve
of SN 2010bh are shown (Olivares et al., 2012). The models for SN 2012bz are shown as
solid lines. Early time data are not fit as the analytical model does not account for other non-
negligible sources of luminosity at these times (see text).Only photometric and calibration
uncertainties are included in the error bars.

different from SN 2012bz, the NIR contribution as a fractionof the optical is not expected

to differ hugely across SN of the same type (see Fig.5.1). The contribution of the NIR is

clear when comparing the analytical models to the data in Fig. 4.4; much better agreement

is found at late times when including a NIR correction, when the fractional flux contained at

these longer wavelengths is substantial.



Chapter 5

Bolometric corrections to optical light

curves of CCSNe

Abstract

With the usefulness of bolometric light curves of CCSNe as probes of the progenitors sys-

tems, it is beneficial to expedite their creation in terms of observational cost, given the huge

mismatch between the resources of telescope time and the rate of SN discoveries. Charac-

terisation of the bolometric light curve of a SN requires well-sampled observations over the

NUV to NIR regime, since these wavelengths exhibit the largest diversity and will contain

the vast majority of the total flux over nearly all epochs of a SN’s evolution. To perform

this for even a very small fraction of discovered SNe is infeasible. In this chapter we collect

literature SN photometry over a wide range of wavelengths, and make simple but robust ap-

proximations for the flux emitted in less well observed wavelengths to construct bolometric

light curves for a large sample of SNe. These bolometric light curves are correlated with

easily-obtained optical colours and a tight relation is found for several optical colours. The

method presented here shows that the bolometric output of a CCSN can be reliably deter-

mined from just two-filter observations in the optical window, vastly reducing the telescope

time required to construct bolometric light curves. Such a method has implications for large-

scale supernovae surveys by making it possible to constructbolometric light curves for a

large fraction of their discovered supernovae using only their own optical monitoring.

88
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5.1 Investigating the progenitors of CCSNe and the role of

bolometric light curves

Core-collapse supernovae (CCSNe) are spectacular highlightsthroughout the transient uni-

verse. As the extremely luminous end-point of the evolutionof massive stars (≥ 8 M⊙;

Smartt, 2009), CCSNe are valuable tools to many areas of astrophysical research. Their

ability to probe the environments they inhabit and our understanding of the diverse range

of explosions that occur, however, is limited by our knowledge of the progenitor system for

each event, and the surrounding medium.

If the event occurs in a local galaxy, searches in high resolution archival imaging can allow

direct observations of the progenitor system to be made; such analysis has proved successful

in a growing number of cases (e.g.Van Dyk et al., 2003; Smartt et al., 2004; Li et al., 2007;

Gal-Yam and Leonard, 2009; Van Dyk et al., 2012; Maund et al., 2011; seeSmartt 2009

for a review). This technique is clearly reliant on the proximity of the SN, to be able to

resolve individual progenitor systems from star clusters,and also the existence of archival

high-resolution imaging to a sufficient depth for direct detection or stringent upper limits

to be made (preferably in several bands). For the vast majority of discovered SNe, direct

studies cannot be performed; post-explosion observationsand modelling of the luminous

event must be used to infer the properties of the progenitor star and the explosion. Dedicated

SN searches are finding SNe of all types with such regularity that in-depth observational

follow up, required for accurate modelling, is not feasiblefor most SNe discovered.

Modelling of CCSNe, from simple analytical descriptions of the light curve evolution (Ar-

nett, 1982; Valenti et al., 2008) to spectral synthesis codes (e.g.Mazzali and Lucy, 1993) and

hydrodynamical modelling (e.g.Nakamura et al., 2001; Utrobin, 2007; Tanaka et al., 2009)

can provide good estimates of the physical parameters of theexplosion; typically the mass

of nickel synthesised and the mass and kinetic energy of the ejecta. Such modelling typically

requires at the very least one spectroscopic observation near peak (for analytical methods),

with good spectroscopic coverage into the nebular phase desired to obtain the most accurate

results from spectral/hydrodynamical modelling. However, to obtain accurate explosion pa-
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rameters, models must typically be scaled to a bolometric light curve, this is particularly true

for hydrodynamical modelling.

A NUV–NIR light curve contains the vast majority of the lightfrom a SN, but obtaining well-

sampled data over this wavelength range is expensive, especially for significant samples of

objects. Data are often limited to much shorter wavelength ranges, meaning estimates of

bolometric magnitudes can be vastly underestimating the emitted flux. (U)BVRI integrated

light curves have been used as a proxy for a bolometric light curve, although a comparable

amount of flux is emitted in the near-infrared (NIR) alone. Either no attempt is made to

correct for flux outside this regime (e.g.Young et al., 2010; Sahu et al., 2011), since no reli-

able methods exist, or a zero order assumption, that the fraction of flux outside the observed

window is constant with time, is made (Elmhamdi et al., 2011), despite this demonstrably

not being the case (e.g.Valenti et al., 2008; Modjaz et al., 2009; Section5.4.1). An improved

method is to find a similar object and assume the same proportional flux to be emitted out-

side the observed window (Valenti et al., 2008; Mazzali et al., 2013; Schulze et al. in prep).

Bolometric light curves are therefore created using a variety of methods and this introduces

uncertainties on how to compare the results of modelling consistently across events.

Bersten and Hamuy(2009) have investigated bolometric corrections (BC) to three well-

observed type II-P SNe (SNe II-P) and two sets of atmosphere models. The progenitor

stars of SNe II-P are expected to be at the lower end of the massrange for CCSNe (Smartt,

2009) and to have kept their outer layers throughout their evolution. These hydrogen-rich

envelopes make their evolution well approximated by spherical explosions whose evolution

is blackbody-like and continuum-dominated (until the end of the plateau phase).Bersten

and Hamuy(2009) indeed find very tight correlations between the BC and optical colour

of the SNe/models in their sample, providing a parameterised way of obtaining bolometric

magnitudes fromBVI photometry. Including another well-observed SN II-P,Maguire et al.

(2010) looked at BCs versus time, and found relatively similar evolution of the BC toR-band

magnitudes between the four SNe, although theV -band BC appears rather more diverse.

Pritchard et al.(2013), utilisingSwiftdata, have considered all CCSNe types to produce bolo-

metric and ultraviolet corrections (UVC). TheSwiftdata set is uniquely able to constrain the

behaviour of SNe in the∼1800–3000Å wavelength regime. By correlating directly with
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optical colours and UV integrated fluxes, both taken with theUVOT instrument, they find a

linear behaviour of the UVC, which appears to have no strong dependence on CCSN type.

These correlations, however, are subject to substantial spread, which highlights the diversity

of UV evolution in CCSNe. An attempt was also made to create a BC for CCSNe, how-

ever since the reddest filter available on UVOT isV , the BC is reliant upon modelling and

the blackbody (BB) approximation for wavelength regimes thatcontain the majority of the

bolometric flux at all but the very earliest epochs. As the authors noted, ground-based obser-

vations will provide a more robust estimate for the contribution of these longer wavelengths

to CCSN bolometric light curves, particularly when includingNIR observations.

Clearly a consistent manner in which to obtain an approximation for the bolometric output,

particularly for stripped-envelope CCSNe (SE SNe, i.e. typesIb, Ic and IIb), is lacking. Such

a method would allow results from modelling to be compared more consistently, as well as

providing further tests for current and future models and simulations of SNe.

In this chapter literature data for well observed CCSNe is utilised to investigate flux con-

tributions of different wavelength regimes, and to construct BCs based on optical colours.

Although these literature SNe are predominantly observed in the Johnson–Cousins systems,

fits in Sloan optical bands are also presented, given their prevalence in current and future

SN surveys. The data and SN sample are presented in Section5.2, Section5.3describes the

steps involved in creating spectral energy distributions (SEDs) for the SN sample. Results

and fit equations are presented in Section5.4and discussed in Section5.5.

5.2 Data

5.2.1 Photometry

SEDs, from which to calculate integrated light curves, would ideally be constructed from

spectra. However the expense of such spectral coverage, andconsequent dearth of available

observations, means that the SEDs analysed here have been constructed exclusively from

broad-band photometric data. The phase ranges covered by this analysis (typically< 70
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days past peak for SE SNe, and the duration of the plateau for type II SNe; SNe II) are

regions where continuum emission dominates the brightnessof a SN, with line emission only

dominating in the later, nebular phases. As such, photometric and spectroscopic integrated

luminosities will typically agree well in the phase ranges explored here.

All photometric data used here are taken from the literaturewhere a CCSN has photometric

coverage over theU -to-K wavelength range. All types of CCSNe are included except those

exhibiting strong interaction with their surrounding medium (typically with an ‘n’ designa-

tion in their type). Strong CSM interaction introduces a range of photometric and spectro-

scopic evolution, as well as the possibility of early dust formation (e.g. SN2006jc;Nozawa

et al., 2008; Smith et al., 2008), making SED evolution between these events diverse.1 See

Moriya et al.(2013) for an analytical treatment of SNe IIn bolometric light curves.

5.2.2 SN sample

Naturally, a sample of well-observed SNe taken from the literature will be extremely hetero-

geneous since it is often the events that display unusual or peculiar characteristics (and/or are

very nearby) that find the most attention. As such this sampleis by no means a representative

sample of discovered CCSNe, or CCSNe as a whole. This makes it moredifficult to break

down the sample by type as some are unique events. The unusualcharacteristics across this

sample are evident from the uncertain and peculiar flags on their initial IAU typing.2 In Ta-

ble5.1we present SN type, as taken from more detailed literature studies of the objects, host

galaxy name and redshift from the NASA Extragalactic Database (NED)3, E(B−V ) values

for Galactic and total reddening, the filters used to construct the SED, an epoch range over

which the full filter set can be reliably used in constructingthe SED (see Section5.3.1), and

a∆m15,V value (see Section5.4.1) for each SN in the sample.

The sample includes a GRB-SN (SN1998bw), XRF-SNe (SN2006aj, SN2008D) and the

unusual SN2005bf that displayed two peaks and a transition from type Ic to Ib, discussed

1Furthermore, recent evidence suggest some fraction of SN IIn could be type Ia, thermonuclear, explosions
that are expanding into a dense hydrogen-rich medium (Silverman et al., 2013).

2http://www.cbat.eps.harvard.edu/lists/Supernovae.ht ml
3http://ned.ipac.caltech.edu/

http://www.cbat.eps.harvard.edu/lists/Supernovae.html
http://ned.ipac.caltech.edu/
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variously as a magnetar (Maeda et al., 2007) and an asymmetric Wolf-Rayet explosion (e.g.

Folatelli et al., 2006). See the references in Table5.1 for a detailed discussion of individual

events and further unusual characteristics.

Given the limited sample and the previously mentioned eclectic and peculiar nature of many

of them, we limit our sub-typing to SE SNe (i.e. those of type Ib, Ic and IIb) and SNe II (i.e.

those of any type II except IIb). Practically, we consider SN1987A, SN1999em, SN2003hn,

SN2004et, SN2005cs and SN2012A as the SNe II sample (N = 6), with all others being

SE SNe (N = 15).
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Table 5.1: Data for SNe in the sample.

SN name Type Host RedshiftE(B − V )MW E(B − V )tot Filter coverage Full SED coveragea ∆m15,V
b Refs.

(mag) (mag) (∆tpeak,V ) (mag)

1987A II-pec LMC 0.0009 0.08 0.17 UBVRIJHK 2–134c – 1–4

1993J IIb M81 -0.0001 0.081 0.194 UBVRIJHK −18 to−10, 14–27 0.935 5–7

1998bw Ic-BL ESO 184-G82 0.0087 0.065 0.065 UBVRIJHK 6, 31, 49 0.816 8,9

1999dn Ib NGC 7714 0.0093 0.052 0.10 UBVRIJHK 24, 38, 123 0.500 10

1999em II-P NGC 1637 0.0024 0.043 0.10 UBVRIJHK 11–117c – 11,12

2002ap Ic-BL M74 0.0022 0.072 0.09 UBVRIJHK −8 to 25 0.881 13–20

2003hn II-P NGC 1448 0.0039 0.014 0.187 UBVRIYJHK 20–140 – 12

2004aw Ic NGC 3997 0.0159 0.021 0.37 UBVRIJHK 4–27 0.558 21

2004et II-P NGC 6946 0.0001 0.314 0.41 UBVRIJHK 8–112c – 22,23

2005bf Ib/c MCG +00-27-5 0.0189 0.045 0.045 UBVriJHK −17 to 20d 0.462 24

2005cs II-P M51 0.0015 0.035 0.050 UBVRIJHK 3–80c – 25

2006aj Ib/c Anon. 0.0335 0.142 0.142 UBVRIJHK −7 to 6 1.076 26,27

2007Y Ib NGC 1187 0.0046 0.022 0.112 uBgVriYJHK −13 to 29 1.049 28

2007gr Ic NGC 1058 0.0017 0.062 0.092 UBVRIJHK −3 to 141 0.861 29

2007uy Ib NGC 2770 0.0065 0.022 0.63 UBVRIJHK −4 to 5,33–35 0.815 30

2008D Ib NGC 2770 0.0065 0.023 0.6 UBVRIJHK −16 to 18 0.697 31

2008ax IIb NGC 4490 0.0019 0.022 0.4 uBVrRIJHK −10 to 25 0.909 32,33
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2009jf Ib NGC 7479 0.0079 0.112 0.117 UBVRIJHK −17 to 54 0.592 34,35

2011bm Ic IC 3918 0.0015 0.032 0.064 UBVRIJHK 8–56 0.251 36

2011dh IIb M51 0.0015 0.031 0.07 UBVRIJHK −18 to 70 0.968 37

2012A II-P NGC 3239 0.0025 0.028 0.037 UBVRIJHK 9–90c – 38

a The phase(s) over which there exists a full complement of filter observations (or well constrained interpolations) fromwhich to construct

an SED in days relative to theV -band peak

b Difference in magnitudes of theV -band light curve at peak and 15 days later

c Phase is quoted with respect to estimated explosion date

d The secondV -band peak is used astpeak, SN 2005bf is the famous ‘double-humped’ SN.

13–20

References: (1)Menzies et al.(1987); (2) Catchpole et al.(1987); (3) Gochermann et al.(1989); (4) Walker and Suntzeff(1990); (5)

Richmond et al.(1994); (6) Matthews et al.(2002; and IAU circulars within); (7)Matheson et al.(2000); (8) Clocchiatti et al.(2011); (9)

Patat et al.(2001); (10) Benetti et al.(2011); (11) Elmhamdi et al.(2003); (12) Krisciunas et al.(2009); (13) Mattila et al.(2002); (14)

Hasubick and Hornoch(2002); (15) Riffeser et al.(2002);(16) Motohara et al.(2002); (17) Gal-Yam et al.(2002); (18) Takada-Hidai et al.

(2002); (19) Yoshii et al.(2003); (20) Foley et al.(2003); (21) Taubenberger et al.(2006); (22) Zwitter et al.(2004); (23) Maguire et al.

(2010); (24) Tominaga et al.(2005); (25) Pastorello et al.(2009); (26) Mirabal et al.(2006); (27) Kocevski et al.(2007); (28) Stritzinger

et al. (2009); (29) Hunter et al.(2009); (30) Roy et al.(2013); (31) Modjaz et al.(2009); (32) Taubenberger et al.(2011); (33) Pastorello

et al. (2008); (34) Valenti et al.(2011); (35) Sahu et al.(2011); (36) Valenti et al.(2012); (37) Ergon et al.(2013); (38) Tomasella et al.

(2013).
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5.3 Method

Flux evolution and BCs are found through integrations of various wavelength regimes of

SEDs for our SN sample. A description of how these SEDs are constructed from the photo-

metric data, and the treatment of unconstrained wavelengths follows.

5.3.1 Interpolations of light curves

Photometric data will not have equal sampling across all filters. For example optical data

may be taken on a different telescope to the NIR, or poor weather prevent the observations

in one or more bands on a given night. Since we are interested in obtaining a full SED over

theU -to-K filter range, we must rely on interpolations in order to provide good estimates

for these missing data.

Such interpolations were fitted to each filter light curve as awhole and chosen as the best

estimate of the missing evolution of the light curve. Typically interpolation functions were

either linear, spline or a composite fit (consisting of an exponential rise, a Gaussian peak,

and magnitude-linear decay; seeVacca and Leibundgut, 1996). The choice of function was

linked to the sampling; where the light curve had densely sampled evolution (∼ daily), linear

interpolation was sufficient, whereas splines and the composite model were used when the

light curve had substantial gaps (>∼ several days) where the light curve was not constrained.

Interpolated values were used to fill in missing values from literature photometry such that

at every epoch of observation a full complement of magnitudes in each filter of theU -to-K

range existed from a mixture of observed and interpolated data points. Epochs over which

the interpolations were valid were noted and interpolated values were only trusted within

a few days of observations; for regions of simple behaviour,where we could be confident

the interpolation accurately represented the missing partof the light curve (e.g. epochs on

the plateau for SNe II), this limit was increased. Any epoch where the evolution of the SN

light curve in one or more filters was not well constrained wasrejected from further analysis.

Extrapolations were typically not relied upon, although some cases warranted extrapolated

magnitudes to be used in one or two filters – these were only used <∼2 days beyond the data,
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and where the function was well-behaved. See Table5.1for ranges where fullU -to-K fluxes

could be used in SED construction for each SN.

5.3.2 SED construction

SED construction is performed using a different method for three different wavelength regimes:

the optical–NIR (3659–21900̊A; the wavelength range covered by theU -to-K photometry),

the BB tail (>21900Å) and the UV (<3569Å). A discussion of the construction of the SED

in each regime follows.

The optical-NIR regime

In this wavelength range we are constrained by photometric observations from the inter-

polated light curves, which form tie points of the SED. Priorto SED construction, the

photometry is corrected for extinction assuming aFitzpatrick (1999)4 RV = 3.1 Galac-

tic extinction curve for both Milky Way and host galaxy extinction. E(B − V )tot (=

E(B − V )MW + E(B − V )host) values are given in Table5.1.

Extinction-corrected magnitudes are then converted to fluxes (Fλ). An optical-NIR SED is

created for every epoch of observation using theFλ and effective wavelength (λeff ) values of

each filter. Filter zeropoints, to convert toFλ, andλeff values are taken fromFukugita et al.

(1996), Bessell et al.(1998) andHewett et al.(2006). Note thatK-corrections were neglected

in this analysis due to the very low redshift of the sample (see Table5.1). K-corrections were

investigated using available spectra of the SN sample at similar epochs to SED construction

in WISeREP (Yaron and Gal-Yam, 2012), with over 90 per cent of measurements across all

filters having|K| < 0.03 mag.

4The choice of extinction law has minimal impact on the final results.
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The BB tail

Although longer wavelengths than theK-band are not expected to contribute significantly

to the bolometric flux, a treatment of these wavelengths in the SEDs must be made to avoid

systematically underestimating the bolometric flux. During the photospheric epochs mainly

investigated here, we assume the flux evolution of the long wavelength regime to be well

described by a BB tail – see Section5.5.1for a discussion of this approximation.

A BB was fitted using theR (or r), I (or i), J , H and K-band fluxes (R-to-K), since

optical fluxes, particularly for SE SNe, fall below the expectation from a BB once strong line

development of Fe-group elements begins (seeFilippenko, 1997; and references therein).

Epochs where bluer bands are expected to be well characterised by a BB fit (<∼20 days for

SE SNe and prior to the end of the plateau for SNe II), were alsoseparately fitted, here

including theB- andV -bands, to ascertain the difference to theR-to-K fits. Including these

extra bands had very little impact on the fits and resulting integrated luminosities. As such

we favour using theR-to-K bands for our BB fits, since this is appropriate for each SNe at

all epochs investigated here and we reduce the danger of erroneously fitting to wavelengths

that are not described by a BB.

CURVE FIT in the SCIPY5 package was used on each pair of parameters in an initial grid

of reasonable SN temperatures and radii to find the globalχ2 minimised BB function. The

resulting function was appended to the optical–NIR SED at the red cut-off of theK-band

filter (defined as 10 per cent transmission limit, 24400Å) and extended to infinity. The

K-band and beginning of the BB tail were linearly joined in the SED.

The UV

The UV represents a wavelength regime with complex and extremely heterogeneous evo-

lution for CCSNe (Brown, 2009). Coupled with a dearth of observations, correcting for

flux in the UV is uncertain. Early epochs in the evolution of a SN can be dominated by

the cooling of shocked material which emerges after the short-lived shock breakout (SBO)

5http://www.scipy.org/

http://www.scipy.org/
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emission. This cooling phase is observed as a declining bolometric light curve that is very

blue in colour. After this the radioactively powered component of the light curve begins to

dominate and the light curve then rises to the radioactive peak (in SE SNe; for SNe II-P the

recombination-powered light curve will become dominant and the light curve will settle to

the plateau phase). The time over which the cooling phase dominates is highly dependent

on the nature of the progenitor star, primarily driven by itssize. The extended progenitors of

SNe II, which have retained their massive envelopes, can display the signature of this cooling

phase for many days, whereas in compact SE SNe progenitors itis shorter and often<∼1 day.

Indeed for SE SNe it has only been seen in a handful of cases (e.g. SNe 1993J,Richmond

et al. 1994; 1999ex,Stritzinger et al. 2002; 2008D,Modjaz et al. 2009; 2011dh,Arcavi et al.

2011), generally thanks to extremely early detections. The evolution in the UV regime also

quickly falls below the expectations of a BB approximation, as mentioned in Section5.3.2,

and as such a BB fit to these wavelength ranges over most of the evolution of a SN would be

inconsistent with one drawn from longer wavelengths. During the cooling phase however, a

BB fit across all wavelengths is appropriate as the SN is dominated by the hot, continuum

flux.

Given the changing behaviour of the UV we utilise two treatments for the differing cases.

For epochs over the cooling phase, the UV flux is taken to be theintegrated flux of a BB

function, from zeroÅ to the blue edge of theU -band (following e.g.Bersten and Hamuy,

2009); the BB is fitted and joined to the SED in the same manner as Section 5.3.2. (Note that

for these epochs we opted to include theB andV filters as further constraints for the BB.)

Signatures of this cooling phase were taken to be early declines in theU - andB-bands in the

light curves of SNe. All SNe II and SNe 1993J, 2008D and 2011dhhad epochs during the

cooling phase which contained fullU -to-K photometry, i.e. where we could construct SEDs

for them. The extent of the cooling phase was determined by observing a drop in theU -band

flux in the SED, relative to that predicted by the BB fit.

To account for UV flux at later epochs, when the BB approximation is not appropriate, each

SED was tied to zero flux at 2000̊A by linearly extrapolating from theU -band flux. This was

found to be a good estimate of the UV flux when compared to UV observations, as discussed

in Section5.5.1.
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5.4 Results

Using the constructed SEDs, investigations into the contributions of different wavelength

regimes can be made over various epochs of SN evolution and across different types.

5.4.1 Flux contributions with epoch

Initially, SEDs were integrated over three wavelength regimes: an optical regime (defined

here as covering thegri bands; 3924–8583̊A), the IR (including the BB tail; 9035̊A–infinity)

and the UV (0–3924̊A). For the SE SNe each SED was assigned an epoch relative to the

peak of theV -band light curve, where the peak was found by fitting a polynomial to the

data near maximum. A∆m15,V value for each SN was also found, following the method of

Phillips (1993), using theV -band.∆m15,V values are presented in Table5.1. Each SN was

normalised to the evolution of the average∆m15,V (0.758) in order to correct for varying

light curve evolution time-scales. This was done by applying a linear stretch factor,S to

the epoch for each SN, whereS = ∆m15,V /0.758. For SNe II each SED epoch was made

relative to the time of explosion (see references in Table5.1).

The behaviour of the flux contained in the UV, optical, and IR are plotted as a function of

the total bolometric flux in Fig.5.1. Clearly the individual components, as fractions of the

total emitted flux, evolve strongly with respect to time, as has been indicated previously

for individual or small samples of events (e.g.Valenti et al., 2008; Modjaz et al., 2009;

Stritzinger et al., 2009). This behaviour appears to be qualitatively similar for all SE SNe

(after normalising to a common light curve evolution time-scale). IR fractions typically

reach a minimum on or slightly beforeV peak and then rise until∼ 20/S days after peak,

reaching a comparable fraction of the bolometric flux to thatof the optical. The UV is weak

at most epochs, falling from∼10–20 per cent prior to peak to just a few per cent a week

past peak for most SE SNe. However, in the case of an observed SBO cooling phase, as is

the case particularly for SN1993J and, to a lesser extent, SNe 2008D and 2011dh, the UV

contributes a significant fraction of the bolometric flux fora short time after explosion. Due

to the putative compact nature of the progenitors of these SNe however, the fraction of the
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light emitted in the UV falls rapidly.

For SNe II we see largely coherent behaviour amongst the sample in the three regimes, albeit

very different from that of SE SNe. The IR rises almost monotonically from explosion until

the end of the plateau, where it contributes∼40 per cent to the bolometric flux. The optical

remains roughly constant with time indicating the BC to optical filters should be roughly

constant (e.g.Maguire et al., 2010). The UV contributes a larger fraction than in SE SNe

and for a longer time, owing largely to the generally much more extended cooling phase that

SNe II exhibit, for example SN2003hn shows significant UV contributions to its bolometric

flux (∼30 per cent) more than 20 days past explosion. SN1987A, however, is very unusual

compared to the other events. Being UV deficient (Danziger et al., 1987), any significant

contribution from the cooling phase rapidly falls, with theUV making up only a few percent

of the bolometric flux within a week of explosion. The IR of SN1987A also increases much

more rapidly than other SNe II, maintaining a similar fraction as that of the optical from

20 days, and overtaking the optical as the dominant regime after∼80 days.

5.4.2 Optical colours and bolometric corrections

CCSNe evolve strongly in colour during the rise and fall of their brightness. Previous work

looking at the optical colours of SE SNe and SNe II (e.g.Maguire et al., 2010; Drout et al.,

2011) shows that the colour evolution changes strongly as a function of time. The driving

force of these large colour changes during the photosphericevolution of a SN is the change in

temperature of the photosphere, with some smaller contribution from development of heavy

element features in the spectra. It is expected that the BC should be linked to the colour of

the SN (a diagnostic for the temperature) at that epoch. Given the relative ease of obtaining

colours for SNe as oppose to characterising entire flux regimes as is given in Section5.4.1, it

is prudent to quantify BCs as functions of the colours sensitive to the SN’s temperature (i.e.

those in the optical regime).

For filters used in the construction of the SEDs, obtaining the colour at each epoch is trivial.

However, when one or both filters are not observed and thus do not form tie points of the

flux in the SEDs, we must rely on interpolations. The linear SED interpolations used in order
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to integrate over wavelength were used to sample the SEDs at theλeff of the desired filter,

and fluxes inFλ were then converted to apparent magnitudes. The continuum-dominated

SEDs largely do not contain significant fluctuations on the scale of broad-band filter widths

between neighbouring broad-band filters and one would not expect large deviations from a

linear interpolation between neighbouring filters. In the interest of presenting results that will

be useful for future surveys, corrections to Sloan magnitudes were investigated. An analysis

of using these linear interpolations to derive Sloan magnitudes is made in Section5.5.4by

comparing to the expected magnitudes directly from contemporaneous spectra. We find that

g and r magnitudes are very well estimated by the linear interpolation method; however,

there is some systematic offset ini.

Given the highly uncertain nature of the UV correction, two types of BC were investigated.

These are a ‘true’ BC including the UV, and what will be termed apseudo-BC (pBC) which

will neglect contributions from the UV (i.e. the BB integration to zeroÅ or linear extrap-

olation to 2000Å, see Section5.3.2) and instead cut-off at the blue edge of theU -band.

This makes thepBC independent of the treatment of the UV presented here and makes no

attempt to account for these shorter wavelengths, useful inthe case where UV observations

exist, where indications of unusual UV behaviour are present, or where a complementary

treatment of the UV exists that may be added to thepBC.

The SEDs were integrated over each of the wavelength ranges to obtain (pseudo-)bolometric

fluxes. These were then converted to luminosities, and finally to bolometric (or pseudo-

bolometric) magnitudes using:

Mbol = M⊙,bol − 2.5 log10

(

Lbol

L⊙,bol

)

, (5.1)

whereMbol andLbol can be replaced by their pseudo-bolometric counterparts. ABC (or

pBC) to filterx can then be defined as:

BCx = Mbol − Mx, (5.2)

whereMx is the absolute magnitude of SN in filterx that has been corrected for extinc-

tion (see Section5.3.2). This definition can also be expressed in observed magnitudes



5.4. Results 104

(BCx = mbol − mx) using the distance modulus for each SN host.6

All colours and (p)BCs in theBV RI andgri ranges were computed. For both thepBC

and BC, the tightest correlation for the Johnson–Cousins filters wasBCB againstB − I

colour. For the Sloan filters this was theBCg againstg − i colour; however, as detailed in

Section5.5.4, the i-band derived magnitudes are susceptible to a systematic offset, and as

such we presentg − r as the representative fit.

We will limit our discussion here to mainly the BC toB − I, alongside plotting the BC to

g − r relation for a visual comparison; the parameters for all reasonablepBC and BC fits,

which may be useful in the case where good coverage is not available in either of these filter

pairs, are presented in Section5.4.5.

Furthermore, distinct behaviour was observed for those epochs during the cooling phase (see

Section5.3.2) and subsequent epochs, mainly due to the differing behaviour of the UV and

subsequent differing treatment in our method. We thus present the two phases separately and

offer distinct fits to each.

5.4.3 The radiatively-/recombination- powered phase

Those epochs post cooling from SBO are analysed here. TheB − I andg − r data for these

epochs are plotted in Fig.5.2for the BC and Fig.5.3for thepBC.7 As is evident, even across

all SNe types, we find a tight correlation between the (p)BC, and the respective colour. Such

a universal trend of behaviour allows us to construct fits to describe the bolometric evolution

of CCSNe for each filter set. The BC has some parabolic evolution evident at blue and very

red epochs, and as such a second order polynomial is fitted forthe BC in each case.

Equations (5.3) and (5.4) describe the BC fits to the entire sample, which allow a good

estimate of a SN’s bolometric magnitude to be made based on the colour in each equation,

BCB = −0.057 − 0.219 × (B − I) − 0.169 × (B − I)2 (5.3)

6Although the BC is accounting for missing flux, its value can be positive in magnitudes, given the differ-
ence in the zeropoints for the filter magnitudes andMbol.

7All plots of BC against a given colour have equal plotted ranges. for ease of comparison.
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BCg = 0.055 − 0.219 × (g − r) − 0.629 × (g − r)2, (5.4)

The BC in each case is a tight correlation, with deviations of just∼0.1 mag from the best

fitting function for even the most extreme objects in each case. The rms scatter and colour

range for theB − I fit are 0.053 mag and−0.4 to 2.8. For theg − r fit the rms and colour

range are 0.070 mag and−0.3 to 1.2.

Despite the generally universal behaviour of the SNe in the sample, there is certainly a dif-

ference in scatter and colour range between the two types, with SNe II populating very red

regions of the plots, and, although there is no indication for a strong divergence of the SE SNe

from the extended behaviour of the SNe II, each SN type shouldonly be trusted over the ob-

served colour range. For these reasons, it is useful to defineindividual fits for SE SNe and

SNe II separately. These are plotted in Fig.5.4 for each filter set, colour-coded by type and

with the individual fits to SE SNe and SNe II shown. As is clear from these fits, there is good

agreement between the two samples over the range of colours for which the samples overlap.

The equations describing the SE SN-sample fits shown in Fig.5.4are:

BCB = −0.055 − 0.240 × (B − I) − 0.154 × (B − I)2 (5.5)

BCg = 0.054 − 0.195 × (g − r) − 0.719 × (g − r)2, (5.6)

and for the SNe II sample, the fits are:

BCB = 0.004 − 0.297 × (B − I) − 0.149 × (B − I)2 (5.7)

BCg = 0.053 − 0.089 × (g − r) − 0.736 × (g − r)2 (5.8)

As might be expected given their more homogeneous evolution, SNe II appear to evolve

extremely similarly (including SN1987A, which displayed avery unusual light curve) until

the end of the plateau, the time range over which this analysis is made. This confirms the

coherent behaviour of SNe II-P shown byBersten and Hamuy(2009) and indicates that

colour is a very good indicator of the BC for SNe II. We present the bolometric light curve
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Figure 5.2: BC for all SNe in the sample presented for a relation in the Johnson–Cousins
(top) and Sloan (bottom) filters. Epochs showndo not include those exhibiting signatures
of strong cooling after SBO. SNe II are denoted by triangles. Abest-fitted second order
polynomial is shown for each (see text).
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Figure 5.3:pBC for all SNe in the sample presented for a relation in the Johnson–Cousins
(top) and Sloan (bottom) filters. Epochs shown include thoseexhibiting signatures of strong
cooling after SBO, since the UV is not accounted for in thepBC. SNe II are denoted by
triangles. A best-fitted second order polynomial is shown for each (see text).
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of SN1987A constructed using the fits ofBersten and Hamuy(2009) and those presented

here in Section5.6. We find a simple second-order polynomial sufficient to definethe BC

from our colours with a larger sample (up until the end of the plateau), which means the

bolometric light curve of a SN II can be robustly estimated from just two-filter observations

with minimal scatter in the relation. An increase in sample size is obviously desired to

improve and confirm this relation across the family of SNe II.

SE SNe are an inherently diverse range of explosions given their various expected progenitor

channels; notwithstanding this, we still see evolution remarkably well described by a second-

order polynomial in each colour. Rather the opposite of investigating a “typical” SE SNe

sample, we here show many unique and unusual outbursts, which suggests that the spread

observed here is plausibly close to the worst-case scenarioof uncertainties on computing a

bolometric magnitude for a given SE SN that is constrained only in the optical. SN2007uy

appears as somewhat of an outlier from the SE SNe fit and this SNis discussed further in

Section5.5.1.

For the fits toB − I the rms values are 0.061 and 0.026 mag for SE SNe and SNe II,

respectively. The SE SN (SN II) fit is valid over theB − I colour range−0.4 to 2.3 (0.0–

2.8).

For the fits tog − r the rms values are 0.076 and 0.036 mag for SE SNe and SNe II, re-

spectively. The SE SN (SN II) fit is valid over theg − r colour range−0.3 to 1.0 (−0.2 to

1.3)

5.4.4 The cooling phase

Due to the different treatment of the UV during the cooling phase of SNe evolution from

that at later phases, where the BB approximation is more validthan a linear interpolation, we

find these epochs require a separate treatment as they are notwell described by the parabo-

las given in Section5.4.3. This is clearly displayed Fig.5.5, where the epochs over the

cooling phase are plotted alongside the data from the radiative and recombination epochs.

The fact this cooling phase forms a ‘branch’ in this plot rather than an extension in colour
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also prompts a separate fit, since the cooling phase occurs over the same optical colours as

the later evolution for some SNe. We follow the same procedure as in Section5.4.3and fit

parabolas to the cooling phase data for each colour. Separate fits for SE SNe and SNe II were

not done due to the low number of points. The fitted functions are:

BCB,cool = −0.473 + 0.830 × (B − I) − 1.064 × (B − I)2 (5.9)

BCg,cool = −0.146 + 0.479 × (g − r) − 2.257 × (g − r)2 (5.10)

The rms value forB − I (g − i) is 0.072 (0.078) and the colour range is−0.2 to 0.8 (−0.3

to 0.3). The cooling branch, as expected, is only observed over the bluer colours of SNe

evolution, and shows a larger scatter than the later epochs for each colour, which is reflected

in the generally larger rms values of the fits given in Section5.4.5. The reader’s attention is

drawn to Section5.5.1for a discussion of the UV treatment in this regime.

5.4.5 Fits to other colours

Following Bersten and Hamuy(2009), we present all calculated fits for our BC andpBC as

tables of coefficients to the polynomials:

BCx =
2

∑

i=0

ci(x − y)i (5.11)

pBCx =
2

∑

i=0

ci(x − y)i (5.12)

where BCx andpBCx are the bolometric andpBC to filter x, based on colourx − y. The

coefficients are presented in Tables5.2 and5.3 for SE SNe and SNe II respectively. The

parameters for the BC appropriate during the cooling phase are provided in Table5.4, note

these are appropriate for both SE SNe and SNe II, as we neglectto divide the sample by type

during this phase due to the small numbers involved. Also given are the colour ranges over

which the fitted data extend and rms values of the fits in magnitudes.

Note that the data used to produce theg−i fits were corrected for the systematic offset found



5.4. Results 111

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
B − I

−2.0

−1.5

−1.0

−0.5

0.0

B
C

(t
o

B
-b

an
d
)

1987A

1993J

1999em

2003hn

2004et

2005cs

2008D

2011dh

2012A

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
g − r

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

B
C

(t
o

g
-b

an
d
)

1987A

1993J

1999em

2003hn

2004et

2005cs

2008D

2011dh

2012A

Figure 5.5: As for Fig.5.2 (grey markers), overlaid with those epochs which exhibit the
signature of strong cooling after SBO emission. As is clear these epochs do not occur at
unique colours, and as such a separate fit must account for this phase of evolution. A best-
fitted second-order polynomial is shown for each, fitted to all SNe types (see text).
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when estimatingi-band fluxes from a linear interpolation of the SED, see Section 5.5.4for

more details. However, it was found that theg − i relation has the smallest intrinsic scatter

of any colours investigated here, and a fit to this colour should be reassessed once a data set

of SNe observed in Sloan filters with good UV/NIR coverage exists.

Fits toR− I andr − i were calculated, but the scatter about these fits was rather larger than

the fits presented here, and as such are not included in Tables5.2 to 5.4. The larger scatter

is probably due to both of these pairs of filters failing to characterise the peak of the SED at

any epoch. As such, a given value for either of these colours has a large uncertainty on the

strength of the peak of the SED, where the majority of the flux is emitted, and thus a large

uncertainty on the BC (orpBC).
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Table 5.2: Fit parameters for SE SNe. We indicate in bold the fits with the smallest dispersions (see text).

BC pBC
x y x − y range c0 c1 c2 rms c0 c1 c2 rms
B V 0.0–1.3 −0.083 −0.139 −0.691 0.109 +0.076 −0.347 −0.620 0.112
B R 0.1–2.0 −0.029 −0.302 −0.224 0.069 +0.136 −0.464 −0.181 0.067
B I −0.4 to 2.3 −0.055 −0.240 −0.154 0.061 +0.097 −0.354 −0.131 0.064

V R −0.2 to 0.7 +0.197 −0.183 −0.419 0.101 +0.299 −0.372 −0.358 0.087
V I −0.7 to 1.1 +0.213 −0.203 −0.079 0.090 +0.306 −0.283 −0.084 0.072
g i −0.8 to 1.1 −0.029 −0.404 −0.230 0.060 +0.051 −0.511 −0.195 0.055

g r −0.3 to 1.0 +0.054 −0.195 −0.719 0.076 +0.168 −0.407 −0.608 0.074

Table 5.3: Fit parameters for SNe II. We indicate in bold the fits with the smallest dispersions (see text).

BC pBC
x y x − y range c0 c1 c2 rms c0 c1 c2 rms
B V 0.0–1.6 −0.138 −0.013 −0.649 0.094 +0.058 −0.331 −0.520 0.092
B R 0.1–2.5 +0.004 −0.303 −0.213 0.037 +0.124 −0.406 −0.191 0.038
B I 0.0–2.8 +0.004 −0.297 −0.149 0.026 +0.121 −0.387 −0.131 0.028

V R 0.0–0.9 +0.073 +0.902 −1.796 0.050 +0.059 +1.039 −1.958 0.060
V I 0.0–1.2 +0.057 +0.708 −0.912 0.043 +0.065 +0.744 −0.953 0.053
g i −0.5 to 1.4 −0.007 −0.359 −0.336 0.022 +0.063 −0.497 −0.268 0.024

g r −0.2 to 1.3 +0.053 −0.089 −0.736 0.036 +0.165 −0.332 −0.612 0.037
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Table 5.4: Fit parameters for the cooling phase, appropriate for both SNe types. We indicate
in bold the fits with the smallest dispersions (see text).

BC
x y x − y range c0 c1 c2 rms
B V −0.2 to 0.5 −0.393 +0.786 −2.124 0.089
B R −0.2 to 0.8 −0.463 +0.790 −1.034 0.078
B I −0.2 to 0.8 −0.473 +0.830 −1.064 0.072

V R 0.0–0.4 −0.719 +4.093 −6.419 0.125
V I 0.0–0.4 −0.610 +2.244 −2.107 0.146
g i −0.7 to 0.1 −0.158 −0.459 −1.599 0.069

g r −0.3 to 0.3 −0.146 +0.479 −2.257 0.078

5.5 Discussion

Our results show that it is possible to obtain the full bolometric flux of a CCSN from two-

filter observations through a simple second-order polynomial correction. Here we will dis-

cuss aspects of the results in terms of the BC, although they also largely apply to thepBC

relation as well (excluding discussion of UV treatment).

We observe differing scatter for the two samples. As mentioned, SNe II are expected to

be a more homogeneous type of explosion, with the large hydrogen-rich envelopes of the

progenitors upon explosion meaning continuum-dominated emission occurs throughout the

plateau. The expected sphericity (and likely single-star nature) of the events also means

viewing angle will introduce little if any scatter in the relations. We see extremely similar

evolution across our SN II sample, even the peculiar SN1987A. The SE SNe are subject

to other factors that could explain the increased scatter weobserve in their relations. First,

several progenitor channels are proposed and it is likely that a combination produce the

SNe we observe. Binarity and rotation of the progenitor and the intrinsic asphericity of the

explosions (e.g.Maeda et al., 2002) are all likely to contribute to scatter in the BC across

the sample. High-energy components (e.g. gamma-ray burst afterglow components) could

be expected also to affect the colours of the SNe. For examplewe see that SN2008D lies

somewhat below the general trend in theg − r fit, and to a lesser extent inB − I fit, as

shown in Fig.5.2, although other SNe with high-energy components are well described by
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the fit (e.g. SNe 1998bw and 2006aj). The stripped nature alsointroduces a range of possible

evolution time-scales as more highly stripped progenitorswill reveal their heavier elements

earlier than those retaining more of their envelopes, making their spectra potentially diverge

from homogeneous evolution due to the different chemical composition and pre-mixing of

the progenitors.

A factor that could affect the evolution of any SN is the CSM into which it is expanding. Al-

though we have ruled out SNe that show strong interaction with their surrounding medium,

in reality, all SNe will have some level of interaction that is dictated by density and com-

position of the CSM; this being linked to the mass-loss of the progenitor system in the final

stages of its evolution. Again, this may affect the SE SN sample more markedly than SNe II,

which are expected to have retained the vast majority of their envelopes until explosion.

5.5.1 Treatment of the UV/IR

Some extremely well-observed SNe have observations that show that the bulk of the light

is emitted in the near-ultraviolet (NUV) to NIR regime. The observed wavelength range

investigated here stops at 24400Å due to a paucity of data in wavelengths redder than this

for CCSNe. Ergon et al.(2013) show that the MIR regime contributes at most few per

cent to their UV-MIR light curve of SN2011dh and the contribution diminishes to negligible

values beyond these wavelengths (∼1 per cent). There are no mechanisms producing signif-

icant sources of flux at long wavelengths in CCSNe over the epochs investigated here (e.g.

Soderberg et al., 2010) and as such the treatment of wavelengths longer than the NIRas a

Rayleigh-Jeans law is appropriate.

Wavelengths shorter than theU -band constitute a significant fraction of the bolometric flux

at certain epochs8 and this fraction is difficult to quantify for a large sample of SNe due to

the inherently diverse behaviour, the prospect of strong, very blue emission occurring after

the SBO in certain SNe, and the fact it is not a very well observed wavelength range in

CCSNe. The validity of the treatment of the UV used here (a BB extrapolation to zero̊A

8We neglect a treatment of very high energy emission since this is insignificant in terms of bolometric
luminosity on the time-scales of SN detections.
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during the cooling phase and a linear extrapolation to zero flux at 2000Å for epochs of no

strong cooling) was tested using UV observations. Eight SNeof the sample presented (two

SNe II and six SE SNe) have sufficient existingSwift data, as presented inPritchard et al.

(2013), to test our method. For each SN with UV data, SEDs were constructed using both the

method described in Section5.3.2and the following: instead of extrapolating the UV flux

(using the UV approximation appropriate to each epoch),Swift UV observations are added

to our SEDs, having corrected their magnitudes for reddening using the same method as for

the optical and NIR filters. The large red leak of theuvw2filter (as demonstrated in relation

to SN2011dh byErgon et al., 2013) was evident from a strong excess in some SEDs for this

filter. For this reason theuvw2filter was only used for SNe 2007uy, 2008ax and 2012A in

epochs< 2 weeks from detection, when the blue continuum will minimisecontamination in

uvw2from the red leak. Each SED constructed withSwiftdata was tied to 1615̊A (the blue

cut-off of uvw2) in all cases. The UV luminosities at each epoch were computed in each case

via an integration of the wavelengths from 1615Å (2030Å in the linear extrapolation case) to

theU -band. By comparing the UV luminosity results of each method of SED construction,

the accuracy of the UV treatments used here was tested. For a visual representation of the

treatment of the UV cf.Swiftdata for SN 2005cs, see Fig.5.6.

The results of this test are shown in Fig.5.7 for theB − I colour. There is generally good

agreement between our simple treatments of the UV and when includingSwift data for the

majority of the epochs, with differences in most cases beingof the order of a few per cent

of the bolometric luminosity. SN2007uy, the SN which shows the largest deviation barring

epochs with strong post-SBO cooling (although still< 10 per cent), has extremely large and

uncertain reddening (Roy et al., 2013). The larger discrepancy between the linear interpola-

tion and theSwiftdata seen for this SN could be indicative of an incorrect reddening value,

or reddening law, but it cannot be ruled out that it is intrinsic to the SN. Contributions from

wavelengths shorter than 1615Å will not contribute much to the bolometric flux except dur-

ing the cooling phase, when SNe are UV bright. Thus theSwift data and, given the good

agreement seen, our linear extrapolation method, accountsfor the vast majority of the UV

flux in a SN.

The cooling branch in this plot, however, displays fairly large discrepancies, even though we
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Figure 5.6: The SED of SN 2005cs shown at three early epochs, with the time after explosion
given in days above each SED. SEDs including swift data (solid lines) are shown compared
to linearly extrapolating the UV fromU -band to zero flux at 2000̊A (dashed lines). The dif-
ference between the two methods is highlighted as the hatched region in each case. Clearly,
the very early SED of 5.38 days shows the linear method significantly underestimates the
true flux – the BB approximation of the UV flux is used in such cases as a better approxi-
mation. At 10 days after explosion the linear extrapolationbecomes a better approximation,
with the to methods of SED construction agreeing well at 12.24 days post explosion and sub-
sequent epochs, when the UV bright cooling emission diminishes in favour of an optically/IR
dominated SED (Fig.5.1).

are unfortunately limited to three SNe (2005cs, 2011dh and 2012A) that have contempora-

neous UV–optical–NIR data over the cooling phase. As may be expected from its relatively

modest cooling phase, SN2011dh exhibits the best agreement, with even the earliest epochs

( <∼2 day after explosion) discrepant by less than 5 per cent at all epochs. The BB treatment

of 2005cs and 2012A, both of type II-P, appears to overestimate the UV luminosity at early

epochs by 10–20 per cent. An explanation that may account forsome of this discrepancy is

that theSwift SED is tied to zero flux at 1615̊A (the limit of the UV integration), whereas

the BB will obviously be at some positive flux value. This ‘cutting-off’ of the SwiftSED is

an under estimation of the flux, especially in these extremely blue phases, but a lack of data

at shorter wavelengths necessitates this treatment. Two very early epochs of the evolution

of SN 2005cs are well matched by the BB treatment however, and it may be that the later
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Figure 5.7: The difference between the UV integrated luminosities (as a fraction of the bolo-
metric luminosity) between usingSwift data in SED construction and the UV treatments
presented here. Larger, black-edged points represent the epochs where the BB extrapola-
tion method was used for the UV, whereas smaller points represent a linear extrapolation to
2000Å (see Section5.3.2). The methods are consistent within a few per cent except forthe
case of strong SBO cooling emission for SNe 2005cs and 2012A.

cooling phase epochs are falling from the BB approximation quicker than expected. The in-

trinsically heterogeneous nature of this cooling phase is evident in the large scatter observed

during these epochs (Fig.5.5) and we must also add the caveat that our simple UV treatment

may be discrepant at the 10–20 per cent level. This discrepancy, however, appears only evi-

dent in SNe II-P and at the very early epochs. An increase in sample size is desired to further

quantify this and thus improve upon the UV treatment at theseepochs. Given this, for events

where UV data exist which is indicative of post-SBO cooling emission, it is advisable to use

thepBC and add the UV contribution directly from observations.

5.5.2 Time-scales of validity

It is important to determine over what epoch range these relations are valid for each sample.

Fig. 5.8 shows the evolution in time of the SE SNe in the BC plot. The intrinsic scatter



5.5. Discussion 119

about the fits does not change dramatically with epoch and a largely coherent evolution from

top-left to bottom-right in each plot is observed, with verylate-time data beginning to move

top-left again. The duration of validity after the peak is tied to the time-scale of evolution

of the SNe. We have normalised our SE SN evolution by making use of the∆m15,V value

for each SN (Section5.4.1). When evolution is normalised by this factor, the two SNe with

the data furthest past peak are SN2011dh (∼93 days) and SN2007gr (∼75 days). The data

representing these late epochs are clearly visible in Fig.5.8, with the evolution of SN2011dh

explicitly shown offset from the data – both show a trend towards moving above (below) the

B − I (g − r) fit at late epochs. Data coveringU -to-K for SN2007gr actually extend to

roughly 120 days after optical peak. These data are not included as they diverge from the

correlation, as appears to be happening for SN2011dh. SN2011dh and SN2007gr are at the

higher end of the∆m15,V range (0.968 and 0.861, respectively) and may be consideredto

give a good limit for the range of validity of this fit. The datapresented show the corrections

for SE SNe to be valid from shortly after explosion (earliestdata are∼2 days post-explosion)

to∼50 days past peak, and potentially further, although we are limited to analysing only two

SNe.

Figure5.9 shows the evolution of the BC for the SN II sample, where the colour indicates

days from explosion date. For the SN II sample we see that evenvery early data (e.g. begin-

ning at∼5 days past explosion for SN1987A) have a small dispersion. Evolution in this plot

appears to be simpler than the SE SNe with a smooth transitionfrom top-left to bottom-right.

However, SN1987A undergoes a phase of little evolution in colour (and BC) from days∼40–

80, with other SNe II displaying a similar period of inactivity in the plot during the plateau

phase. Despite the fact that SN1987A also appears to evolve much more rapidly and evolves

to much redder colours, as can be seen in Fig.5.1, its evolution is still remarkably consis-

tent with the other objects in the BC plots, and its additional, redder, evolution follows the

parabolic fit. The phase range investigated here is broadly over the plateau of SNe II, after

which the deeper layers of the ejecta act to destroy any homogeneous evolution. For exam-

ple, Inserra et al.(2012) show optical colours for several SNe II-P to late times, with diverse

behaviour observed after∼120 days (the end of the plateau). This can also be seen in the

BCs presented byBersten and Hamuy(2009), where the BC scatter increases dramatically
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after the end of the plateau. We therefore limit the use of these fits from explosion until the

time of transition from plateau to radioactive tail.

It must be stressed however that the use of these fits will primarily be for SNe detected

only in the optical regime. As such, there is no knowledge of any UV bright SBO cooling

emission, given that the optical colour ranges overlap for the cases of strong and no cooling

emission (as shown for the fits in Fig.5.5). Relying only on optical follow up, although

vastly increasing the number of SNe with the requisite data,means there is uncertainty in

the early light curve. Hence, although the above described fitsarevalid at early epochs, they

are valid only for the case of no strong SBO cooling emission. In the case where unobserved

SBO emission is present, the fits will under predict the actualbolometric luminosity. In such

cases, use of the cooling phase fits will provide an alternate, plausible, bolometric luminosity

in these early epochs by assuming the case of strong SBO cooling emission. This uncertainty

can be coupled with previous knowledge of the durations of SBOcooling emission and the

type of SN. For example, a SN Ib/c would not be expected to haveSBO cooling emission

beyond 1–2 days and the cooling fit would over estimate the luminosity at further epochs.

Complementary data indicative of SBO cooling emission would warrant the sole use of the

cooling phase fit for those epochs, or the use of thepBC and a separate treatment of the

UV emission from the available data. The cooling phase fits include data from early after

explosion (∼2 days) to the end of the SBO cooling being dominant.

5.5.3 Reddening

An uncertainty when constructing the SEDs is the reddening towards each SN. Although

Galactic reddening may be well known,E(B − V )host values are generally less certain.

Additional to this, the reddening law for each host is assumed to match that of the Galaxy,

an assumption made in the absence of detailed knowledge of the gas and dust properties of

the hosts. An increase in assumedE(B − V ) will cause a decrease inB − I andg − r (i.e.

make the SN intrinsically bluer); this will also affect the BC,however. The BC becomes

more positive with increasingE(B − V ) as theg (or B)-band value increases more rapidly

than the bolometric magnitude for a given change inE(B − V ). Combining these effects
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Figure 5.8: The BC for SE SNe, colour-coded to show evolution with time. The colour bar
indicates the phase with respect to theV -band peak (tpeak), where the SN evolution has been
stretched such that∆m15,V = 0.758 (see Section5.4.1). Epochs showndo notinclude those
exhibiting signatures of strong cooling after SBO. To illustrate the typical movement of a SN
in this plot, the polynomial-smoothed evolution of SN2011dh is plotted offset from the data.
The effect of reddening is shown by re-analysing SN2011dh with an increase inE(B − V )
of 0.2 (black dot-dashed line). Eq.5.6 (top) and Eq.5.5 (bottom) are also plotted for each
filter set (thick black dashed line).
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Figure 5.9: The BC for SNe II, colour-coded to show evolution with time. The colour bar
indicates the phase with respect to the explosion date. Epochs showndo not include those
exhibiting signatures of strong cooling after SBO. To illustrate the typical movement of a SN
in this plot, the polynomial-smoothed evolution of SN1987Ais plotted offset from the data.
The effect of reddening is shown by re-analysing SN1987A with an increase inE(B − V )
of 0.2 (black dot-dashed line). Eq.5.8 (top) and Eq.5.7 (bottom) are also plotted for each
filter set (thick black dashed line).
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means that the SNe actually move somewhat along the fits when reddening is varied. This

effect is plotted in Figs.5.8 and5.9 via an artificial increase of 0.2 inE(B − V ) for the

offset SN in each plot. Moderate reddening uncertainties donot affect the actual value of the

fits drastically, although clearly an accurate reddening value is desired when using the fits,

to ensure the SN’s true colour for a given epoch is measured (and consequently the correct

value for the BC is used).

The effect of uncertain reddening is largest on the BCs to optical colours with a largeλeff

difference between the filters (e.g.B − I), since a given change in reddening will affect

these colours the most. TakingB − I, an uncertainty of∆E(B − V ) = 0.2 mag results in

an uncertainty of∆B − I ≃ 0.5. During the early phase of evolution this corresponds to

an uncertainty on the BC of∼ 0.5 mag and at later times∼ 0.8 mag (Figs.5.8 and5.9).

The usefulness of an almost 1 mag error in the decline phase ofa CCSN (before including

distance uncertainties etc.) is very limited, however a∼ 0.5 mag error in the peak could

still be useful for inclusion when studying the behaviour ofpopulations of SNe, but would

limit the accuracy of any modelling specific to that explosion. Some reasonable knowledge

of the reddening is therefore required to effectively use these BCs, although the colour infor-

mation shown here may be used to gauge the presence of a large amount of reddening. The

behaviour in optical colours of a large sample of CCSNe is shown; should an object display

colours not characteristic of this sample at similar phasesof evolution (e.g. at peak), or show

optical colours outside the ranges shown here, it may be indicative of a mistreatment of the

reddening – however the possibility of an intrinsically unusual explosion could not be ruled

out. Drout et al.(2011) show a method to obtain a reasonable estimate of the reddening for

a SE SN using theV − R colour 10 days afterV -band peak, extending this to other optical

colours would be useful for the BCs presented here.

5.5.4 Extracting Sloan magnitudes from Johnson–Cousins SEDs

It is desirable, particularly given the impending prevalence of their use for large-scale sur-

veys, to present BCs using Sloan filters. The SN sample here, however, is literature-based,

and as such is predominantly observed in Johnson–Cousins filters. Sloan magnitudes were
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derived for these SNe by extracting fluxes from the SEDs constructed with Johnson–Cousins

measurements at the correspondingλeff of the filters. Large deviations from a linear interpo-

lation between neighbouring filters are not expected since the widths of the filters (∼2000Å)

are much larger than individual spectral features and thereis a large amount of overlap be-

tween Sloan filters and their neighbouring Johnson–Cousins counterparts. However, it may

be that some systematic error could be introduced by this method, particularly when one

considers the effect of the extremely strong Hα emission line in SNe II, or that the strong

Ca II NIR triplet absorption borders on theI-band. These deviations could make the linear

interpolation a poor estimate of the true flux in some specificSN types or at specific epochs.

To test the linear interpolation method we have collated allspectra in WISeREP of our SNe

sample that cover a sufficient wavelength range (i.e. completely cover the transmission pro-

file of at least one of thegri filters and the appropriate neighbouring Johnson–Cousins filters)

and are at similar epochs to those when the photometric SEDs are constructed (see Table5.1).

Synthetic photometry was performed on the de-reddened spectra (using theR = 3.1 curve

of Fitzpatrick 1999) via:

Fx =

∫

Tx(λ)f(λ)λdλ
∫

Tx(λ)λdλ
(5.13)

to obtain the flux in filterx, based on spectral flux of the SN,f(λ), and the transmission

profile of filter x, Tx(λ). This was done for each of thegriBVRI filters where spectral cov-

erage allowed. After accounting for the filter zeropoints, adirectly measured value of the

magnitude in each the filters was obtained. Neighbouring Johnson–Cousins filters were in-

terpolated linearly in flux between theirλeff values such that a flux (subsequently converted

to a magnitude) for the appropriate Sloan filter could be madeat itsλeff (e.g. flux values for

B andV were interpolated to obtain an estimate for theg-band).

The comparison of the Sloan magnitudes found via direct synthetic photometry (msynth) and

using the linear interpolation method (mlinear) is presented in Fig.5.10. Firstly, it was found

that there was no dependency on SN type or epoch for the valuesof msynth − mlinear. Given

this, theg andr mean offsets fall extremely close to zero, with values of -0.019 (rms 0.034)

and 0.0004 (0.044) mag respectively. We can therefore say our method is not introducing

any systematic offset for quantities reliant on these filters and as such consider the BC and
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pBC fits tog againstg − r colour to be valid.

However, it is true we see some systematic offset in the measurements of thei-band, with the

mean being 0.111 (0.032) mag, despite the Sloani and CousinsI-band transmission curves

overlapping heavily. This overestimation ofi-band flux from the linear interpolation method

suggests that theg − i colours derived from SED interpolations are likely to be redder than

the intrinsicg − i. For this reason we increase the magnitude values obtained for i in our

linear interpolation method by the mean offset (0.111 mag),to give estimates that will be

free from this systematic offset. These correctedi values were used when computing fits to

g − i that are presented in Tables5.2to 5.4.

The difference in the BC (andpBC) due to this change ini values for a giveng − i, when

compared to calculating the fits without accounting for the offset, is 0.103 mag for the reddest

SE SNe colour (i.e.g− i = 1.1), with differences reaching 0.198 mag for the reddest SNe II

colours (g − i = 1.4). The differences are less for typical SN colours and approaching zero

for bluer colours (g−i < −0.5). Similarly for the cooling phase fit, differences for the bluest

colours (g − i < −0.5) reach0.182 mag, with the average difference being0.078 mag.

An investigation into this systematic offset ini showed the choice ofλeff to be mainly

responsible. There is no knowledge of the spectral featuresof a SN based on photometric

data, above that which can be discerned from colours. As suchwe are limited, as has been

done in similar previous work, to using a singleλeff for each filter (taken from the literature,

or based on the transmission profile), when in reality this should change according to the

shape of the underlying spectrum being observed, as in:

λeff =

∫

Tx(λ)f(λ)λ2dλ
∫

Tx(λ)f(λ)λdλ
(5.14)

for photon-counting devices (e.g.Bessell and Murphy, 2012).

It was found that theλeff for theI-band when using this equation was particularly suscep-

tible to large deviations compared to the value we used when constructing SEDs, whereas

filters BV R were more stable. This is most likely due to theI-band being consistently on

the ‘tail’ of the flux distribution, coupled with strong absorption due to the calcium triplet
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bordering on the red edge of the transmission curve. These effects weight theλeff to lower

values, although no significant dependence on epoch was found either in the change ofλeff

or the value of the offset in msynth − mlinear for i. This change inλeff obviously impacts

on the gradient of the linear interpolation betweenR andI, and hence on the estimate of

i. When accounting for the changingλeff , the mean systematic offset ini was more than

halved, whilstg andr remained very close to zero. However, we take no account of chang-

ing λeff in our SED construction since we have no a priori informationon spectral shape

from photometry. Hence we opt not to include it here in our test of the method, but present

these findings to highlight the potential uncertainties in the choice ofλeff when constructing

SEDs from photometric data for SNe.

We therefore conclude that the determination of Sloan magnitudes derived from our method

of linearly interpolating the SEDs constructed with Johnson–Cousins filters is robustfor the

cases ofg- and r-bands, howeverthere is a systematic offset in thei-band magnitude de-

terminationfrom the two methods. We neglect to correct our derivedg- andr-band magni-

tudes, given the mean difference is very close to zero in bothcases, but do correct ouri-band

measurements by the mean offset before calculating fits based on this filter. It is obviously

desirable to reassess the fits to these filters once an appreciable data set of SNe observed

directly in Sloan filters with good NIR (and ideally UV) coverage exists.

5.6 SNe 1987A and 2009jf and PTF 12dam – test cases

In order to practically test the reliability of the fits, we recover the bolometric light curves of

one SN in each sample as well as a recently observed super-luminous SN (SLSN).

5.6.1 SN 1987A

Being the best observed SN to date, SN 1987A represents a good test of the method. Here

we reconstruct the bolometric light curve of SN 1987A using the optical photometry ofMen-

zies et al.(1987). Extinction was corrected for usingE(B − V ) = 0.17 and the procedure
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Figure 5.10: Residuals found between obtaining Sloan synthetic magnitudes from spectra
(msynth) and those using a linear interpolation from neighbouring Johnson–Cousins filters
(mlinear) for all spectra of the SN sample during the epochs where SEDshave been con-
structed in the main investigation. The mean values for the three distributions are marked as
the vertical dashed lines.

described in Section5.3.2. Two fits with differing rms values were used:B − V andB − I.

Eq.5.11was used with the appropriate fit parameters (the first 2.1 days were calculated with

the cooling phase fits given in Table5.4, subsequent epochs used the appropriate BC in Ta-

ble 5.3) to turn each of these colours into a bolometric magnitude using Eq.5.2. Using a

distance modulus ofµ = 18.46, this was converted to an absolute magnitude and then to

a bolometric luminosity via Eq.5.1. Alongside this we also make use of the BC presented

in Bersten and Hamuy(2009) to reproduce their bolometric light curve for SN 1987A. Fi-

nally we also use the data ofSuntzeff and Bouchet(1990) for the UV-optical-IR observed

bolometric light curve of SN 1987A for comparison.

The four bolometric light curves of SN 1987A are shown in Fig.5.11. First to note is the

good agreement between all four methods, and particularly the agreement between the BC

methods and the observed bolometric light curve. The extremely early data<1 day are

slightly underestimated, and we again stress here the caveat that emission from cooling post-
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Figure 5.11: The bolometric light curve of SN 1987A constructed from optical colours using
theB − I andB − V corrections presented here, and the fit ofBersten and Hamuy(2009).
Also plotted is the observed bolometric light curve ofSuntzeff and Bouchet(1990) (black
dashed line).

SBO is subject to larger uncertainties when using these fits. After this, including the tail of

the cooling phase, we observe excellent agreement over the rest of the evolution. Although

our IR extends nominally to infinity, the observed data stop in the MIR. The excellent agree-

ment between ourB − I-derived bolometric luminosity and the observed bolometric light

curve thus suggests that these very long wavelengths make little difference to the bolometric

flux, and certainly not at a level to affect derived parameters from modelling.

Happily enough, we also note that when using a fit with larger scatter (i.e.B − V ), we

recover a bolometric light curve consistent to that produced by theB−I fit and, importantly,

the observed light curve. Some deviation is observed>110 days and this is most likely a

result of the two relatively blue filters used in this colour not tracing the evolution of the IR

particularly well.
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5.6.2 SN 2009jf

SN 2009jf has good coverage over rise, peak and decline inUBVRIJHK filters (used to

construct the SED in Section5.3.2). However, alongside these data there exists a set of well-

calibrated Sloan observations (Valenti et al., 2011), including goodg- andr-band coverage

from which to test the Sloan fit – both in terms of the actual fitsas well as using the SED

interpolations to extract Sloan magnitudes. Theg and r data were used to construct the

pseudo- and full bolometric light curve of SN 2009jf.

Initially theg andr data ofValenti et al.(2011) were corrected for reddening, which was done

in the manner of Section5.3.2with E(B − V )tot = 0.117 mag. For epochs of simultaneous

g- andr-band observations,g − r values (corrected for reddening) were fed into Eqs. (5.11)

and (5.12) using the parameters in Table5.2to obtain values of the BC andpBC, these were

converted into apparent bolometric and pseudo-bolometricmagnitudes via Eq.5.2using the

g magnitudes. The distance modulus (µ = 32.65) converted these to an absolute magnitudes,

and finally Eq.5.1was used to convert this to a luminosity.

The SED (constructed as in Section5.3.2) was integrated from 2000 AA to infinity and

theU -band to infinity to obtain the observed bolometric and pseudo-bolometric light curves

from U -to-K photometric data.

A comparison of the two methods’ results of producing the pseudo-bolometric light curve

is shown in Fig.5.12. As is clear, with onlyg andr filter observations and the method pre-

sented here, an excellent estimation of the pseudo-bolometric luminosity can be obtained,

even including uncertainties of extracting Sloan magnitudes from linear interpolation of a

Johnson–Cousins SED (Section5.5.4). Plotting the bolometric and pseudo-bolometric light

curves highlights the contribution of the UV shown in Fig.5.1, with an appreciable contri-

bution diminishing to negligible values soon after peak – where the pseudo- and bolometric

points overlap.
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Figure 5.12: Comparison of the observed bolometric and pseudo-bolometric light curves
found by SED integration (dashed and dotted lines respectively) with the bolometric and
pseudo-bolometric light curves constructed using the BC andpBC fits tog − r (circles and
pentagons respectively) for SN 2009jf.

5.6.3 PTF 12dam

SLSNe are defined as such by havingM ≤ −21 and have been divided into 3 main sub-

types (seeGal-Yam, 2012). PTF 12dam occurred in a host galaxy az = 0.107 and peaked at

M ∼ −21.3, securing its status as a SLSN. The slowly fading nature of the light curve sug-

gest a common explosion mechanism to SN 2007bi, i.e. pair-instability SN (PISNGal-Yam

et al., 2009), but Nicholl et al. (2013) find the rapidly rising light curve to be incompatible

with PISN models and favour a magnetar powered SN. Notwithstanding the unknown and

potentially exotic nature of the explosion, the excellent data coverage of PTF 12dam pre-

sented inNicholl et al. (2013) is used to compare the method to the observed bolometric

light curve of this SLSN. The observed bolometric is constructed from UV to NIR wave-

lengths, with the bolometric light curve construction process detailed inNicholl et al.(2013)

(although broadly the same method as presented here is used). The comparatively large

redshift means the UV, as observed bySwift, is probed to very short wavelengths. This cos-

mological distance also means thatK-corrections must be applied to the optical photometry
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before using the colours in the BC equations and the values found inNicholl et al.(2013) are

used. PTF 12dam was observed in the Sloan filters and as such wemake use of theg− r and

g − i fits presented here. The fits used were those applicable for SESNe since PTF 12dam

showed no hydrogen or helium in its spectra – making it spectrally similar to a SN Ic. The

results are presented in Fig.5.13. The fits generally reproduce the observed light curve well

over the majority of the SN’s evolution. It must be emphasised here that the errors quoted

on the values obtained from the fits only take into account theerror on the colour (from

the photometry) and thus the uncertainty on the value of the BCderived from the fit. Late

time data appears to deviate and may be an indication of a transformation into the nebular

phase, where the fits would not be expected to work. Early datais not well fit but is also

subject to large uncertainties. This disagreement could besurmised from a comparison be-

tween Fig.5.1and figure 7 ofInserra et al.(2013), who plot the UV/optical/IR contributions

to SLSNe. Early epochs for SLSNe, prior to peak, appear much more UV bright, at the

expense of the IR, when compared to the SE SNe investigated here. The cooling branch fit

of g − r is plotted for interest, which gives an accurate, if not precise, representation of the

early data. The huge uncertainties in the early epoch data make it difficult to place any confi-

dence or significance on this agreement beyond happenstance(although it would favour the

SLSN SED being well described by a BB in the UV at these epochs).Nevertheless, the good

agreement found around peak light means these fits can also beused to construct bolometric

light curves of at least one type of SLSN (PTF 12dam is the onlySLSN observed over an

appreciable wavelength range as to make a observed bolometric light curve to compare to).

This is of particular importance during this data-starved era for SLSN studies.

5.7 Summary

We have presented simple fits making it possible to easily obtain accurate estimates of the

bolometric light curves of any CCSN given only two filter observations. We have presented

both Johnson–Cousins and Sloan colour corrections and shownour method for determining

Sloan magnitudes is robust forg andr, and accounted for the systematic offset present in

i-band determinations. Fits toB − I andg − r are presented as the best fits to each filter
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Figure 5.13: Comparison of the observed bolometric light curve (black circles) with the
bolometric light curve recovered using theg− r andg− i fits (blue squares and red triangles
respectively). Good agreement between each fit and the observed data is found. Very late
time data>150 days past peak is not well fit, as may be expected if the limits of SE SN
agreement were applied to this SN (see Section5.5.2). Very early data is not well fit, albeit
there are large errors on the SED construction. The cooling phase fit forg − r is shown for
the two earliest epochs (see text).

set. The SE SNe corrections (Eqs. (5.5) and (5.6)) are constrained in the colour ranges

−0.4 < B − I < 2.3 (rms 0.061 mag) and−0.3 < g − r < 1.0 (0.076 mag). The

SNe II corrections (Eqs. (5.7) and (5.8)) hold for 0.0 < B − I < 2.8 (0.026 mag) and

−0.2 < g − r < 1.3 (0.036 mag). Corrections for other optical colours are presented; these

corrections are valid over the radiatively/recombinationpowered, photospheric epochs of

CCSN evolution. Evolution during epochs that show cooling following SBO emission are

fitted separately (Eqs. (5.9) and (5.10)) and are subject to larger uncertainties. Given the

diversity and uncertainty of UV evolution, separate pseudo-bolometric fits are given where

no treatment of the UV regime is made.

The BCs presented here will allow current and future SNe surveys, where the sheer number

of detected events prevents intense monitoring of the largemajority of SNe, to accurately

and easily use their optical detections to obtain estimatesof the bolometric light curves of

CCSNe of all types, essential for modelling of such events.



Chapter 6

Creating and modelling bolometric light

curves of 36 literature SE SNe

Abstract

An extensive literature search is carried out to collate thedata for all SE SNe that have good

light curve coverage in more than one optical band. Through the use of the BCs presented

in Chapter5, bolometric light curves are created and templates for sub types provided. The

peak light distributions and decay rates are investigated;no correlation between peak and

light curve width is observed, and SNe subtypes are not cleanly distinguished in this param-

eter space, although some grouping of types does occur. The bolometric light curves are

modelled with a simple analytical prescription and resultsare found to agree with those of

more detailed studies on individual SNe (modulo the fact truly bolometric light curves are be-

ing modelled here). The distributions of the explosion parameters shows the extreme nature

of SNe Ic-BL in terms of their56Ni mass and the energy of the explosions, however ejected

masses are similar to those of other subtypes. The ability ofSNe Ib and Ic to reach similar

56Ni masses to the most luminous SNe Ic-BL, alongside the similarity in ejected masses,

indicates that these parameters in the exploding core do notdictate the emergence (or not) of

a SNe Ic-BL and something else must be driving the huge energies of these explosions.

133
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6.1 Data

Since a method of creating bolometric light curves from justoptical colours has been for-

mulated (Chapter5), the creation of bolometric light curves is now not limitedto those SNe

with extended photometric coverage, but rather is possiblefor any SN with coverage in just

two optical bands. Additional to this, distance and reddening determinations are needed in

order to convert to luminosity and correct for the effects ofdust.

The sample consists of all SE SNe presented in Chapter5, as well as many other literature

SE SNe that have good light curve coverage in at least two bands from which to construct

a colour, which is in turn used to derive the BC. Here there requirement of ‘good’ coverage

refers to capturing at least the peak of the light curve (and preferably epochs prior to this)

and a large number of epochs within the next∼60 days, extending at least 15 days past peak.

We restrict our SNe to low redshift (comparable to the redshifts of those in Table5.1) in

order to neglect the requirement ofK-corrections. The sample consists of 7 IIb, 13 Ib, 8 Ic

and 8 Ic-BL. The SN IAU names, types, colours used, reddening values and distance moduli

(to host) are presented in Table6.1.

Table 6.1: Data for SNe used to create bolometric light curves.

SN name Type E(B − V )tot Distance modulus Colour used Refs.

(mag) (mag)

1993J IIb 0.194 27.81 B − I 1–3

1994I Ic 0.3 29.6 B − I 4

1996cb IIb 0.03 31.0a B − R 5

1998bw Ic-BL 0.065 32.89 B − I 6

1999dn Ib 0.10 32.95 B − I 7

1999ex Ib 0.3 33.42 B − I 8

2002ap Ic-BL 0.09 29.5 B − I 9–16

2003bg IIb 0.02 31.68 B − I 17

2003jd Ic-BL 0.144 34.46 B − I 18

2004aw Ic 0.37 34.17 B − I 19

2004dk Ib 0.337 31.81 V − R 20
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2004dn Ic 0.568 33.54 V − R 20

2004fe Ic 0.315 34.29 V − R 20

2004ff Ic 0.302 34.82 V − R 20

2004gq Ib 0.253 32.07 V − R 20

2005az Ib 0.441 32.96 V − R 20

2005bf Ib-pec 0.045 34.5 B − V 21

2005hg Ib 0.685 34.67 g − i 22

2005kz Ic-BL 0.514 35.3 V − R 20

2005mf Ic 0.398 35.27 g − i 22

2006T IIb 0.075b 32.58 g − i 22

2006aj Ic-BL 0.142 35.81 B − I 23

2006el IIb 0.303 34.23 V − R 20

2006ep Ib 0.035b 33.84 B − I 22

2007C Ib 0.682 31.99 V − R 20

2007Y Ib 0.112 31.36 g − i 24

2007gr Ic 0.092 29.84 B − I 25

2007ru Ic-BL 0.27 34.15 B − I 26

2007uy Ib 0.63 32.4 B − V , B − Ic 27

2008D Ib 0.6 32.46 B − I 28

2008ax IIb 0.4 29.92 B − I 29,30,31

2009bb Ic-BL 0.58 33.01 B − I 32

2009jf Ib 0.117 32.65 B − I 33

2010bh Ic-BL 0.507 36.90 g − i 34

2011bm Ic 0.064 34.90 B − I 35

2011dh IIb 0.07 29.48 B − I 36

a Taken from NED.

b Galactic extinction only.

c TheB−V correction was used for earlySwiftdata, withB−I used for subsequent

data.
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References: (1)Richmond et al.(1994); (2) Matthews et al.(2002; and IAU circulars within);

(3) Matheson et al.(2000); (4) Richmond et al.(1996); (5) Qiu et al.(1999); (6) Clocchiatti

et al.(2011); (7) Benetti et al.(2011); (8) Stritzinger et al.(2002); (9) Mattila et al.(2002);

(10) Hasubick and Hornoch(2002); (11) Riffeser et al.(2002);(12) Motohara et al.(2002);

(13) Gal-Yam et al.(2002); (14) Takada-Hidai et al.(2002); (15) Yoshii et al.(2003); (16)

Foley et al.(2003); (17) Hamuy et al.(2009); (18) Valenti et al.(2008); (19) Taubenberger

et al.(2006); (20)Drout et al.(2011); (21)Tominaga et al.(2005); (22)Modjaz(2007); (23)

Mirabal et al.(2006); (24)Stritzinger et al.(2009); (25)Hunter et al.(2009); (26)Sahu et al.

(2009); (27) Roy et al.(2013); (28) Modjaz et al.(2009); (29) Taubenberger et al.(2011);

(30) Pastorello et al.(2008); (31) Tsvetkov et al.(2009); (32) Pignata et al.(2011); (33)

Valenti et al.(2011); (34) Olivares et al.(2012); (35) Valenti et al.(2012); (36) Ergon et al.

(2013);

6.2 Method

Firstly, photometric data extracted from the literature for each SN were dereddened assuming

aFitzpatrick(1999) RV = 3.1 Galactic extinction curve for both Milky Way and host galaxy

extinction (as is done in Section5.3.2). The same methods of light curve interpolation are

employed as in Section5.3.1, in order to obtain values of simultaneous observations in the

chosen filters, which give the colour. Extrapolations were not used for this analysis.

The reddening-corrected values of the chosen colour (see Table 6.1) were then fed into the

polynomials fits of the BC found in Table5.2. The resulting BC was then applied to the

appropriate SN light curve (e.g. for colourB−I, the BC is applied to theB-band light curve).

Using the distance modulus we can convertmbol to Mbol and finally toLbol. For clarity in

plotting, nearly contemporaneous data have been combined by averaging any epochs within

0.2 days of each other.

The results then provide the largest sample of bolometric light curves for SE SNe on which

a simple analytical model can be applied, in order to extractestimates for the explosion

parameters.



6.2. Method 137

6.2.1 The analytical model

The analytical model presented is appropriate for SE SNe, where the light curve is powered

predominantly by the decay of56Ni, and describes the evolution of a SN over the early pho-

tospheric phase (the first 1-2 months, depending on the speedof the SN) and the nebular

phase. The bolometric output is described by the model, and as such the model should be

fit to a bolometric light curve, with an additional constraint required in the form of a char-

acteristic velocity of the ejecta (Section6.2.1). From this simple analytical fitting, estimates

of the mass of nickel synthesised (MNi) and the mass and kinetic energy of the ejecta (Mej,

EK respectively) can be found and readily compared to those obtained from more detailed

modelling of the same SNe.

Naturally an analytical approximation requires some simplifying assumptions. These are

listed inArnett (1982); Valenti et al.(2008) and also presented here:

Rt=0 → 0 The radius of the star at the onset of explosion is very small.This is relevant for

the analysis of SE SNe which have shed their extended outer layers and are compara-

tively compact upon explosion.

Homologous expansion with spherical symmetryExpansion of the ejecta followsV ∝ R.

Spherical symmetry is a simplification required for an analytical solution, although

SE SNe do show evidence for some degree of asphericity of the ejecta, as gleaned

from double-peaked nebular emission features (Maeda et al., 2008). Such an assump-

tion is valid for moderately energetic SNe, givenMaeda et al.(2008) find an only

moderately aspherical model to best describe the SE SNe in their sample, however

extreme examples, such as GRB-SNe are likely to have higher asphericity.

Constant optical opacity A single choice of opacity (κopt) is made over the early optically-

thick regime. However, the opacity will change even over this early evolution and

additionally, its absolute value is dependant on the composition of the ejecta. The ef-

fect of varying the choice ofκopt is analysed as part of the error budget in Section6.3.2,

however this treatment is a strong caveat that must be acknowledged when interpreting

results.



6.2. Method 138

Centrally concentrated 56Ni The amount of mixing will affect the rise time of the SNe

since radiation from high-velocity (i.e. further out in radius, given homologous ex-

pansion)56Ni will have a shorter diffusion time and thus make the SN rise faster than

a centrally concentrated approximation. 3D modelling has shown that a small frac-

tion of high-velocity56Ni is not uncommon in SE SNe, although the bulk is generally

located close to the centre (Hammer et al., 2010). Modest differences in the56Ni dis-

tribution will have a noticeable impact only on the early rising light curve and will

not be a significant source of uncertainty given other assumptions and observational

uncertainties.

56Ni and 56Co power the light curve These radioactive isotopes represent the main source

of energy to a CCSNe, dominating the luminosity evolution for many months. Other

isotopes are much less abundant and have longer decay time-scales, and consequently

affect only very late time light curve evolution. As such, this is a valid assumption

when very early data are excluded from the fit (since other processes may be con-

tributing to the luminosity, e.g. SBO cooling).

During thephotosphericphase of evolution, optically thick ejecta is assumed. Taking this

together with the above assumptions,Valenti et al.(2008), following from Arnett (1982),

showed that the luminosity is described by the following equation:

Lphot(t) = MNie
−x2 ×

[

(ǫNi − ǫCo)

∫ x

0

2ze−2zy+z2

dz + ǫCo

∫ x

0

2ze−2zy+2zs+z2

dz

]

(6.1)

wherex ≡ t/τm, y ≡ τm/2τNi ands ≡ [τm (τCo − τNi) /2τCoτNi]. ǫNi (= 3.90×1010 erg s−1 g−1)

andǫCo (= 6.78 × 109 erg s−1 g−1) are the energy production rate of nickel and cobalt re-

spectively.

The time-scale of the light curve, dictated by the effectivediffusion time,τm, is given by:

τm =

(

κopt

βc

)0.5 (

Λ
M3

ej

Ek

)0.25

(6.2)

In the current work, as is done inValenti et al.(2008), Λ = 10/3; seeCano(2013) and
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references therein for a discussion of the choice of this value and its impact on the derived

parameters. Opacity,κopt, is chosen to be 0.06 cm2 g−1 (e.g.Maeda et al., 2003; Valenti et al.,

2011), although the impact of the uncertainty in this value is analysed later (Section6.3.2).

β ≃ 13.8 is a constant of integration.

Model photospheric light curves are shown in Fig.6.1. The top panel shows that the peak

luminosity of a SN is directly linked to the amount of56Ni synthesised in the explosion at

a fixed rise time. When keepingMNi constant, varyingτm alters the rise and decline time-

scales of the light curve and can also affect the peak luminosity. Since restrictions on the light

curve width come from the declining phase of a SN, the value ofτm can still be estimated

in lieu of early, rising data, this alleviates to some level the potential degeneracy between

increasingMNi or loweringτm, which both act to brighten the peak luminosity.

As the optical depth of the ejecta becomes lower, the SN enters thenebularphase of evolution

and the energy input comes from that deposited by gamma rays emitted in the decay of56Ni

and56Co, where a fraction of the energy released in56Co is in the form of positrons. During

the nebular phase, the luminosity is given by

Lneb(t) = MNiǫNie
−t/τNi + 0.81ξ

(

1 − e−(F/t)2
)

+

0.164ξ
(

1 − e−(F/t)2
) (

1 − e−(G/t)2
)

+ 0.036ξ
(

1 − e−(G/t)2
)

(6.3)

(Valenti et al., 2008; and references therein), where the first term describes theenergy de-

posited by nickel decay and the subsequent three terms describe the energy released by cobalt

decay (the gamma-rays emitted in56Co decay, the gamma-rays emitted from positron anni-

hilation and the kinetic energy of the positrons, respectively).

ξ = MNiǫCo

(

e−t/τCo − e−t/τNi
)

(6.4)

describes the energy production rate of56Co. τNi (= 8.8 days) andτCo (= 113.7 days)

are the time-scales of nickel and cobalt decay respectively. FunctionsF andG can be ap-

proximated (after sensible choices of opacities are assumed) to beF ≃ 32Mej/
√

E51 and

G ≃ 515Mej/
√

E51 (Clocchiatti and Wheeler, 1997), whereE51 is the kinetic energy in

units of1051 ergs. The exponential terms involving these parameters describe the evolution
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of the trapping of gamma-rays, which powers the light curve.

Maeda et al.(2003), however, noted a discrepancy between the parameters derived from their

modelling of the two phases of evolution (photospheric and nebular) for some SE SNe. They

interpret this as a difference in the optical depth of the ejecta that is contributing in each

regime and use a model where the SN is made up of two distinct regions. During the early,

photospheric phase, the outer layer contributes to the luminosity of the SN. Additional to

this is a much denser inner component whose contribution to the luminosity only emerges

once the outer layer becomes optically thin – during the nebular phase. Using this two-

component modelMaeda et al.(2003) find much better fits to the observed light curves of

a sample of SNe Ic-BL. Incorporating this two-component model into the above modelling

scheme manifests itself as two free parameters:fM andfE, the fractions of mass and energy

respectively within the inner dense component.1 The initial fit to the photospheric phase

constrains the masses and kinetic energy in the outer layer,which are then fixed for the

nebular phase fit, and the additional contribution from the inner component is fitted for using

fM andfE.

The form of the nebular phase model is shown in Fig.6.2. The early, bright light curve is

due to this model making no account for diffusion (cf. photospheric model), and shows the

overall instantaneous deposition of energy in the ejecta with time (“instant diffusion”; see

Arnett 1982). The case offM = fE = 0 (solid black line) passes through the peak of the

photospheric fit since this case assumesall the 56Ni is located in the outer layer, which is

therefore the same as that accounted for by the photosphericfit. When increasingfM, the

effect is to brighten the light curve above that of the photospheric peak, as the model is now

accounting for additional heating from inner56Ni that is not considered in the photospheric

model. VaryingfE affects the late time slope of the light curve, the gradient of colour in the

late time curve shows that only a modest amount of energy in this inner component causes

a large change in the slope, with much larger values quickly saturating to a near-similar

outcome. An increase infE at constantfM raises the value ofF andG (both∝ Mej/EK).

The fractions of gamma-rays and kinetic energy from radioactive decay that are thermalised

1The assumption of a homogeneous distribution of nickel is made, such thatfM describes both the fraction
of nickel and of the total ejecta contained in the inner component.
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in the ejecta evolve with time with factors(1 − e−(F/t)2) and(1 − e−(G/t)2), respectively.

Thus, asF andG increase, this factor is lower for givent, and consequently the luminosity

is lower.

When data exist regarding the time of explosion (e.g. from theSBO signature or accompa-

nying GRB), this is also used as a constraint to the model. Otherwise this was left as a free

parameter. Note, however, that very early data are not included in the fit regardless, since the

assumptions in the model are not appropriate (i.e. exclusively 56Ni powered emission and

the approximation of centrally concentrated56Ni).

The fitting of these equations to the bolometric light curve data was done via theCURVE FIT

function inSCIPY. In order to prevent the least-squares fitting from finding a local minimum,

a custom ‘global fit’ function was used as a method of locatingthe global minimum. Each

fitting step was performed over a grid of values for all parameters, over wide value ranges

since computation time was not an issue (e.g.MNi initial guesses ran from 0.01 to 1 M⊙).

CURVE FIT was performed for each set of parameters specified by the grid– this would

locate the solution from that set of initial guesses. Comparison ofχ2 values of each of the

solutions meant the globally best-fitting parameters were found.

Scale velocity of SNe

As is clear from Eq.6.2, a degeneracy exists betweenMej andEK, as derived from this

model. This is resolved by including ascale velocityfor the SN, which observationally is

set as the photospheric velocity near maximum-light (vph). The relationship between the

photospheric (scale) velocity and the parametersMej andEK takes the form:

vsc ≡ vphot =

√

6EK

5Mej

. (6.5)

SNe exhibit strong P-Cygni line profiles in their spectra due to the fast moving ejecta. This

causes absorption that is blue-shifted by the velocity of the ion relative the rest wavelength

of the spectral line. Due to the stratification of the ejecta and the homologous expansion,

elements near towards the outer layers of the ejecta (e.g. helium and calcium) can exhibit
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large velocities compared to heavier, more centrally concentrated elements. Two elements

that appropriately trace the photospheric velocity are silicon and iron, with SiII λ6355 and

the FeII set of lines clustered around 4500-5200Å generally used (e.g.Pastorello et al.,

2008; Valenti et al., 2011; Corsi et al., 2011).

Practically the measurements consist of a simple Gaussian fitting procedure to the absorption

features on a wavelength- and flux-calibrated spectrum of the SN taken on or near peak

(generally obtained from WISeREP), performed in the IRAF packageSPLOT. This was

initially attempted for FeII lines, before averaging to obtain a value ofvph. In the case where

FeII lines could not be accurately measured (e.g. strong line blending or no spectral coverage

at those wavelengths), the SiII λ6355 feature was measured. When data were not available,

literature values had to be relied upon. These were typically found using a similar Gaussian

fitting technique or through spectral fitting. Measurementsfrom this simple Gaussian-fitting

method were found to agree well with those of from detailed spectral fitting codes in the cases

where a comparison was possible. Both methods have uncertainties of several hundred to a

thousand km s−1 (S. Valenti, private communication). Such errors arise from the data quality

as well as the broad-featured characteristic of SNe spectraat maximum light – velocities of

at least several thousands of km s−1, as is seen for CCSNe, make line blending an issue

and it is often the case that one cannot attribute a single absorption feature to one specific

transition. Similarly, nearby emission from other transitions will also impact on the shape of

the absorption feature, affecting the Gaussian fit and, ultimately, the photospheric velocity

derived. A visual representation of the Gaussian fitting method is shown in Fig.6.3. Finally,

in the absence of appropriate data or literature value for a SN, vph was taken to be the median

vph for the SN’s type from a collation of literature values, as presented inCano(2013). These

are 7700, 8150 and 14000 km s−1 for SNe types Ib, Ic and Ic-BL, respectively (additionally

the SN Ib medianvph was used for SNe IIb).Branch et al.(2002) provide a power law fit

to their estimates ofvph values for SNe Ib (as determined from FeII lines), with the value

at peak being slightly higher than the median used here,∼ 9000km s−1. The values ofMej

andEK derived from SNe modelled using these averages are clearly susceptible to larger

systematic uncertainties, but56Ni masses are largely unaffected.
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6.3 Results

6.3.1 Bolometric light curves

The bolometric light curves are presented in Fig.6.4. The time and value of the peak of each

light curve (tpeak andMpeak, respectively) were found with a low-order polynomial, fitted

to data around peak. The diversity of SE SNe becomes apparentfrom these plots and some

interesting observations can be made. A spread of∼ 3 magnitudes is observed inMpeak;

interestingly, two SNe Ib encompass the extremes of the spread, ranging from SN 2007Y

at Mpeak∼ −16.3 to SN 2005hg atMpeak∼ −19.2.2 This spread inMpeak is similar to that

found byDrout et al.(2011) in theirV - andR-band imaging when considering the overlap-

ping sample. The decline rates of the sample vary greatly, toparametrise the speed of the

evolution, a∆m15,bol value is used, i.e. the number of magnitudes from peak the bolometric

light curve has declined by 15 days after peak (values were found from polynomial fits to the

light curves). SN 1994I, despite being often cited as a ‘prototypical’ SN Ic, has unusually fast

evolution, as has been previously noted, with∆m15,bol= 1.37 calculated here. SN 2011bm

displays the slowest evolution, with∆m15,bol= 0.20. The evolution speeds appears to form a

continuum, as is evident from the bottom panel of Fig.6.4, although SNe 1994I and 2011bm

are noticeably displaced from the extremities of the distribution. Perhaps unexpectedly, a

GRB-SN, SN 2010bh, is exceeded only by SN 1994I in terms of speedof evolution. This

extremely fast evolution was noticed byOlivares et al.(2012), but is highlighted here when

compared to many other SE SNe. Such fast evolution is at odds with the perception of GRB-

SN progenitors/explosions being massive/energetic when considering the analytical form of

SE SN light curves (Eq.6.2).

To investigate any possible correlation between light curve peak and width in these bolomet-

ric light curves, we plot∆m15,bol againstMpeak for the sample in Fig.6.5. There appears

to be some trend towards having a narrower light curve (faster evolution) at high luminos-

ity, with the fainter SNe evolving slower, the Spearman’s rank coefficient is not significant

enough to reject the case of no correlation however. There appears to be no reason why

2The classification of SN 2005hg was originally made as a SN Ic (Modjaz et al., 2005a), before the detection
of He lines inModjaz et al.(2005b).
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bright, slowly evolving SNe would be missed compared to quicker evolving events at sim-

ilar luminosities, and it may indeed indicate that events such as SNe 2005kz and 2011bm

are intrinsically rare. Conversely, fainter, quickly evolving SNe are most likely to have been

missed from detection (particularly prior to peak, which isone of the criteria imposed on this

sample). As this is a literature based sample, the selectioneffects cannot be analysed beyond

these qualitative statements. However, the literature-based nature of the sample would also

mean that any peculiar SNe that may inhabit these unusual regions of parameter space would

be likely to be included since unusual events tend to be the best observed. By colour coding

the SN by type it is clear the various types do not inhabit exclusive regions of this parameter

space, although some clustering of SNe IIb and SNe Ic-BL (withtwo exceptions) occurs. All

SNe IIb in the sample occur within a small region of roughly average evolution speed and

modest peak magnitudes when compared to the entire sample. SNe Ic-BL are all luminous

when compared to the rest of the sample with the exception of SN 2002ap, and all have

fast evolution with the exceptions of SNe 2002ap and 2005kz.This analysis indicates that

bolometric light curves alone cannot be used to reliably distinguish between SE SN types.

Template bolometric light curves for SE SNe are presented inFig. 6.6, showing the median

value and the standard deviation. The data for these templates are presented in Tables6.2

to 6.5with the phases being relative to the peak ofLbol. These were found by sampling in-

terpolations of the bolometric light curves and calculating the median and standard deviation

of those SNe who had a light curve covering that particular phase.

6.3.2 Modelling

Thevph values are presented in Table6.6. These values were used to break the degeneracy

in EK andMej, arising from Eq.6.2, by using Eq.6.5. Velocity determinations were found

to agree well with literature values that were determined from both the Gaussian-fitting tech-

nique and also spectral modelling. Furthermore, no significant correlation ofvph was found

with either peak luminosity or light curve width. The previously noted fast evolution of the

SN-Ic-BL 2010bh still allows for a largeEK value when reconciled with its hugevph (∼
30000 km s−1) and Eq.6.5.
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Table 6.2: Template bolometric light curve data for SNe IIb
Phase log10 Lbol std. dev.
(days) erg s−1

-18 42.172 0.547
-17 42.129 0.422
-16 41.785 0.370
-15 41.859 0.290
-14 41.930 0.226
-13 41.933 0.167
-12 41.936 0.138
-11 42.023 0.116
-10 42.116 0.103
-9 42.200 0.096
-8 42.245 0.093
-7 42.294 0.092
-6 42.341 0.094
-5 42.385 0.097
-4 42.357 0.105
-3 42.308 0.106
-2 42.316 0.111
-1 42.320 0.115
0 42.317 0.117
1 42.311 0.117
2 42.300 0.115
3 42.286 0.113
4 42.269 0.109
5 42.250 0.105
6 42.229 0.100
7 42.207 0.095
8 42.184 0.091
9 42.160 0.086
10 42.137 0.082
11 42.114 0.079

Phase log10 Lbol std. dev.
(days) erg s−1

12 42.092 0.076
13 42.070 0.074
14 42.071 0.113
15 42.052 0.113
16 42.035 0.113
17 42.020 0.114
18 42.005 0.114
19 41.992 0.114
20 41.979 0.115
21 41.967 0.115
22 41.956 0.115
23 41.944 0.115
24 41.933 0.116
25 41.947 0.120
26 41.935 0.116
27 41.901 0.116
28 41.891 0.116
29 41.882 0.117
30 41.874 0.117
31 41.866 0.117
32 41.859 0.117
33 41.852 0.118
34 41.845 0.119
35 41.838 0.119
36 41.830 0.121
37 41.797 0.088
38 41.788 0.087
39 41.728 0.093
40 41.720 0.093
41 41.711 0.093

Phase log10 Lbol std. dev.
(days) erg s−1

42 41.702 0.092
43 41.694 0.091
44 41.686 0.090
45 41.677 0.089
46 41.669 0.087
47 41.662 0.086
48 41.654 0.085
49 41.647 0.084
50 41.640 0.083
51 41.633 0.082
52 41.627 0.082
53 41.620 0.082
54 41.614 0.081
55 41.646 0.116
56 41.602 0.082
57 41.596 0.082
58 41.590 0.083
59 41.583 0.084
60 41.577 0.084
61 41.569 0.085
62 41.561 0.085
63 41.580 0.069
64 41.569 0.070
65 41.557 0.072
66 41.545 0.073
67 41.533 0.075
68 41.522 0.076
69 41.496 0.015
70 41.488 0.015
71 41.481 0.017

Table 6.3: Template bolometric light curve data for SNe Ib
Phase log10 Lbol std. dev.
(days) erg s−1

-20 41.649 0.417
-19 41.799 0.337
-18 41.920 0.270
-17 41.895 0.394
-16 41.934 0.362
-15 42.047 0.318
-14 42.146 0.276
-13 42.049 0.335
-12 42.143 0.325
-11 42.239 0.318
-10 42.421 0.348
-9 42.458 0.324
-8 42.418 0.329
-7 42.452 0.326
-6 42.545 0.315
-5 42.574 0.301
-4 42.595 0.297
-3 42.603 0.294
-2 42.613 0.292
-1 42.618 0.290
0 42.619 0.289
1 42.617 0.299
2 42.613 0.299
3 42.604 0.300
4 42.594 0.302
5 42.569 0.302
6 42.547 0.303
7 42.524 0.305

Phase log10 Lbol std. dev.
(days) erg s−1

8 42.498 0.306
9 42.472 0.307
10 42.445 0.308
11 42.418 0.309
12 42.392 0.310
13 42.367 0.312
14 42.421 0.304
15 42.401 0.302
16 42.380 0.300
17 42.360 0.317
18 42.340 0.298
19 42.321 0.297
20 42.302 0.297
21 42.285 0.296
22 42.267 0.293
23 42.251 0.297
24 42.235 0.296
25 42.220 0.296
26 42.205 0.295
27 42.191 0.295
28 42.175 0.309
29 42.163 0.308
30 42.151 0.307
31 42.051 0.320
32 42.035 0.319
33 42.021 0.319
34 42.099 0.254
35 42.092 0.254

Phase log10 Lbol std. dev.
(days) erg s−1

36 42.082 0.252
37 42.071 0.250
38 42.061 0.249
39 42.052 0.248
40 42.051 0.257
41 42.156 0.192
42 42.147 0.192
43 42.139 0.192
44 42.131 0.192
45 42.125 0.191
46 42.120 0.191
47 42.116 0.189
48 42.112 0.188
49 42.109 0.186
50 42.106 0.183
51 42.103 0.180
52 42.198 0.164
53 42.192 0.169
54 42.186 0.171
55 42.181 0.170
56 42.068 0.108
57 42.067 0.105
58 42.062 0.107
59 42.062 0.105
60 42.060 0.105
61 42.058 0.107
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Table 6.4: Template bolometric light curve data for SNe Ic
Phase log10 Lbol std. dev.
(days) erg s−1

-9 42.583 0.239
-8 42.498 0.188
-7 42.506 0.277
-6 42.553 0.263
-5 42.507 0.279
-4 42.529 0.254
-3 42.571 0.204
-2 42.588 0.197
-1 42.599 0.193
0 42.652 0.183
1 42.650 0.183
2 42.644 0.185
3 42.633 0.188
4 42.618 0.192
5 42.602 0.197
6 42.584 0.204
7 42.566 0.211
8 42.547 0.219
9 42.529 0.228
10 42.511 0.237
11 42.495 0.245
12 42.479 0.254
13 42.457 0.263
14 42.431 0.271
15 42.406 0.278
16 42.388 0.285
17 42.371 0.292
18 42.347 0.298
19 42.325 0.304
20 42.303 0.309
21 42.283 0.313

Phase log10 Lbol std. dev.
(days) erg s−1

22 42.264 0.316
23 42.232 0.339
24 42.208 0.342
25 42.185 0.345
26 42.164 0.348
27 42.144 0.351
28 42.127 0.353
29 42.111 0.355
30 42.096 0.356
31 42.084 0.357
32 42.072 0.358
33 42.062 0.359
34 42.053 0.360
35 42.020 0.389
36 42.012 0.390
37 42.004 0.391
38 41.997 0.392
39 41.989 0.393
40 41.982 0.394
41 41.974 0.394
42 41.966 0.394
43 41.958 0.395
44 41.950 0.394
45 41.942 0.394
46 41.935 0.394
47 41.928 0.393
48 41.921 0.393
49 41.915 0.393
50 41.910 0.393
51 41.895 0.424
52 41.887 0.423

Phase log10 Lbol std. dev.
(days) erg s−1

53 41.878 0.422
54 41.869 0.421
55 41.697 0.468
56 41.694 0.468
57 41.690 0.468
58 41.687 0.469
59 41.682 0.470
60 41.679 0.472
61 41.675 0.476
62 41.849 0.390
63 41.846 0.389
64 41.844 0.389
65 41.842 0.388
66 41.841 0.388
67 41.840 0.387
68 41.839 0.387
69 41.839 0.387
70 41.836 0.387
71 41.833 0.387
72 41.832 0.387
73 41.830 0.387
74 41.829 0.387
75 41.825 0.387
76 41.824 0.387
77 41.822 0.387
78 41.819 0.387
79 41.816 0.387
80 41.814 0.387
81 41.812 0.387
82 41.810 0.387

Table 6.5: Template bolometric light curve data for SNe Ic-BL
Phase log10 Lbol std. dev.
(days) erg s−1

-6 42.731 0.146
-5 42.743 0.340
-4 42.818 0.287
-3 42.859 0.282
-2 42.912 0.256
-1 42.924 0.256
0 42.928 0.256
1 42.925 0.255
2 42.916 0.255
3 42.903 0.254
4 42.886 0.253
5 42.868 0.253
6 42.849 0.252
7 42.829 0.251
8 42.809 0.251
9 42.789 0.250
10 42.770 0.250
11 42.746 0.250
12 42.718 0.250
13 42.688 0.249
14 42.707 0.266
15 42.679 0.266
16 42.651 0.266
17 42.624 0.267
18 42.598 0.268
19 42.573 0.269

Phase log10 Lbol std. dev.
(days) erg s−1

20 42.548 0.270
21 42.525 0.273
22 42.393 0.270
23 42.371 0.273
24 42.350 0.277
25 42.440 0.277
26 42.422 0.278
27 42.427 0.137
28 42.407 0.137
29 42.389 0.137
30 42.372 0.137
31 42.372 0.177
32 42.341 0.139
33 42.327 0.139
34 42.314 0.140
35 42.301 0.142
36 42.290 0.143
37 42.278 0.144
38 42.267 0.146
39 42.256 0.147
40 42.245 0.148
41 42.233 0.149
42 42.222 0.149
43 42.209 0.148
44 42.196 0.146
45 42.183 0.142

Phase log10 Lbol std. dev.
(days) erg s−1

46 42.168 0.138
47 42.160 0.099
48 42.150 0.104
49 42.139 0.108
50 42.129 0.114
51 42.118 0.116
52 42.108 0.118
53 42.097 0.120
54 42.086 0.121
55 42.075 0.121
56 42.065 0.122
57 42.054 0.123
58 42.043 0.124
59 42.033 0.126
60 42.022 0.125
61 42.135 0.123
62 42.126 0.124
63 42.117 0.125
64 42.108 0.126
65 42.099 0.127
66 42.091 0.128
67 42.082 0.129
68 42.074 0.130
69 42.066 0.131
70 42.059 0.132
71 42.051 0.133
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Figure 6.1: Photospheric phase model light curves of SE SNe.Top: the effect of changing
MNi at constantτm is shown. For a given rise time, the peak value is determined by MNi, the
value ofτm used is 9 days (i.e. a SN withMej ∼ 1 M⊙ andEK ∼ 1×1051 ergs).Bottom:the
effect of alteringτm at a constantMNi. τm dictates the rise time to peak and also the decay,
effectively determining the ‘width’ of the light curve and also the peak –MNi for this plot is
0.1 M⊙ for each model.
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Figure 6.2: Nebular phase model light curves of SE SNe. The solid black line indicates
the case of no mass and no energy being contained in the inner dense component. The
colour bar indicates varyingfE whenfM = 0.2. The corresponding photospheric phase fit
is shown (grey dashed) for comparison. The (outer layer) SN parameters used wereMNi =
0.1 M⊙, Mej = 1 M⊙ andEK = 1× 1051 ergs. VaryingfM andfE then allows an additional
contribution from an inner dense component to reveal itselfduring the late phase modelling.
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Figure 6.3: An example of extracting a photospheric velocity measurement from a SN spec-
trum. The emission from the FeII λ5169 transition is evident at the rest-frame wavelength
of the transition (black dotted line). A Gaussian (green dashed line) is fitted over the blue-
shifted absorption. The minimum of this Gaussian gives the velocity of the ion responsible
for the transition, approximately that of the photosphere in the case of Fe. The complications
arising from neighbouring features, which may skew the minimum of the feature (thus af-
fecting velocity measurements), are evident in this case asthe large emission feature peaking
at∼5000Å. (Spectrum is that of SN 2009jf, obtained from WISeREP.)
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Figure 6.4: Bolometric light curves of SN in the sample using the BC fits of Chapter5 (top).
The peak-normalised light curves are also displayed (bottom). Error bars are indicative of
the uncertainty of the BC only, which is found by taking the uncertainty in the colour and
translating that as an error on the BC fits. Distances, for example, will be a significant source
of uncertainty in the top plot.
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Figure 6.5: The peak magnitude of the evolution of the bolometric light curves against speed
(parameterised as∆m15,bol, see text); the direction of light curve evolution speed is denoted
by the labelled grey arrows. The thin, coloured arrows indicate the positions of SNe 2004dk
and 2008ax, which have been offset for clarity. SNe are colour-coded according to their type.



6.3. Results 152

−20 0 20 40 60 80

Phase from peak [days]

41.4

41.6

41.8

42.0

42.2

42.4

42.6

42.8

lo
g 1

0
L
u
m

in
os

it
y

[e
rg

/s
]

IIb

−20 −10 0 10 20 30 40 50 60 70

Phase from peak [days]

41.2

41.4

41.6

41.8

42.0

42.2

42.4

42.6

42.8

43.0
lo

g 1
0

L
u
m

in
os

it
y

[e
rg

/s
]

Ib

−20 0 20 40 60 80 100

Phase from peak [days]

41.0

41.5

42.0

42.5

43.0

lo
g 1

0
L
u
m

in
os

it
y

[e
rg

/s
]

Ic

−10 0 10 20 30 40 50 60 70 80

Phase from peak [days]

41.8

42.0

42.2

42.4

42.6

42.8

43.0

43.2

lo
g 1

0
L
u
m

in
os

it
y

[e
rg

/s
]

Ic-BL

Figure 6.6: Template bolometric light curves for SE SNe, indicating the median value (black
dashed line) and the standard deviation of the sample of light curves for that phase (coloured
filled regions).
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Table 6.6: Photospheric velocity measurements for SE SNe

SN name Type Line(s) used vph Phasea Notes

km s−1 (days)

1993J IIb FeII 8000 0 Agrees with FeII velocities found byOhta et al.(1994); Barbon et al.(1995);

Pastorello et al.(2008).

1994I Ic FeII 11500 −1 Agrees with spectral modelling value ofvph in Sauer et al.(2006).

1996cb IIb FeII 8500 1 Qiu et al.(1999), however, find a velocity of HeI of 8870km s−1 at epoch

−15 days which would indicate extremely lowvph at peak. Inconsistency

was found when measuring velocities on the same spectrum, and the FeII

measurement found here is preferred.

1998bw Ic-BL SiII 19500 1 FeII lines are largely blended.vph agrees with value found byPatat et al.

(2001) and is similar to SiII velocity found byPignata et al.(2011).

1999dn Ib FeII 10500 0 Taken fromBenetti et al.(2011)

1999ex Ib FeII 8500 1 Agrees with velocities given inHamuy et al.(2002)

2002ap Ic-BL FeII 13000 2 Gal-Yam et al.(2002) find the velocity of SiII to be 15000km s−1 at peak.

Features blended somewhat.

2003bg IIb HeI 10000 0 Taken fromHamuy et al.(2009).

2003jd Ic-BL SiII 13500 0 Taken fromValenti et al.(2008).

2004aw Ic FeII 11000 −2 Taubenberger et al.(2006) show a contemporaneous SiII velocity of

12500km s−1.
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2004dk Ib SiII 9200 1 Taken fromHarutyunyan et al.(2008).

2004dn Ic SiII 12500 1 Taken fromHarutyunyan et al.(2008).

2004fe Ic n/ab 8150 – –

2004ff Ic n/ab 8150 – –

2004gq Ib n/ab 7700 – Modjaz(2007) show a HeI velocity of 14000km s−1 at peak.

2005az Ib n/ab 7700 – –

2005bf Ib-pec FeII 7500 3 Matches value for FeII lines found byFolatelli et al.(2006).

2005hg Ib n/ab 7700 – Modjaz(2007) show a HeI velocity of 10000km s−1 at peak.

2005kz Ic-BL n/ab 14000 – –

2005mf Ic n/ab 8150 – –

2006T IIb n/ab 7700 – –

2006aj Ic-BL (SiII ) 18000 0 The value ofvph presented inPian et al.(2006) is used as the spectrum is

noisy and heavily blended. This value agrees with that foundby Pignata et al.

(2011) from measuring SiII .

2006el IIb n/ab 7700 – A velocity of Hβ, somewhat past peak, is given as 11500km s−1 in Blondin

et al.(2006).

2006ep Ib n/ab 7700 – –

2007C Ib n/ab 7700 – –

2007Y Ib FeII 9000 −2 Matches the values for FeII velocities found byStritzinger et al.(2009) and

Valenti et al.(2011).



6.3.
R

esults
155

2007gr Ic FeII 10000 0 Agrees with values from spectral modelling presented in Hunter et al.(2009).

2007ru Ic-BL SiII 19000 0 Taken fromSahu et al.(2009).

2007uy Ib FeII 14500 −3 Roy et al.(2013) find the velocity of HeI to be 15200km s−1 at the same

epoch.

2008D Ib FeII 9500 3 Modjaz et al.(2009) show HeI velocity as 11000km s−1 at this epoch;Soder-

berg et al.(2008) show the SiII velocity to be 9000–10000km s−1.

2008ax IIb FeII 7500 4 Matches the values for FeII velocities found byPastorello et al.(2008) and

Taubenberger et al.(2011).

2009bb Ic-BL FeII 17000 3 Pignata et al.(2011) find Si II velocities at this epoch to be 18000km s−1 and

find FeII lines to be at 17000km s−1 using a spectral modelling code.

2009jf Ib FeII 9500 3 Matches values found byValenti et al.(2011).

2010bh Ic-BL SiII 30000 0 Taken from a linear interpolation of the SiII velocities presented inChornock

et al.(2010).

2011bm Ic FeII 9000 0 Taken fromValenti et al.(2011).

2011dh IIb FeII 7000 0 Taken fromBersten et al.(2012).

a Approximate phase measured relative to the bolometric light curve peak of spectrum used to measurevph.

b No value ofvph could be measured or was available in the literature. The averagevph for the appropriate SN type was used from

Cano(2013) (see text).
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The results of the fitting are given in Table6.7and some example fits are shown in Fig.6.7.

Behaviour shortly after the photospheric phase is not well described by the assumptions

in either the photospheric or nebular model, which is shown particularly for SNe 2007gr

and 2011dh in Fig.6.7. As such data used to constrain the nebular model do not begin

immediately after the photospheric data points.

As may be expected, explosion parameters found here agree broadly with those in the lit-

erature where the same analytical model was applied to the SN(e.g.Valenti et al., 2008;

Benetti et al., 2011; Pignata et al., 2011; Taubenberger et al., 2011; Valenti et al., 2011; Oli-

vares et al., 2012; Cano, 2013; Roy et al., 2013). This modelling could take the form of

either a direct fitting of the entire model, as is done here, orscaling relations for the peak

and width (τm) of the light curve and appropriately scaling the values of abetter-studied SN

by assuming similarity in the other properties of the explosion. Given the often differing

choices ofΛ, κopt andvph employed by various authors, as well as variations arising from the

time-scales over which the data were fit, the agreement between the results is reassuring, as

it shows the method is not overly sensitive to such uncertainties. However, since here truly

bolometric light curves are being modelled, some differences from previous modelling on

pseudo-bolometric light curves is to be expected. Most notable was an increase in the de-

rived MNi found for the SNe. Since this is intrinsically linked to the peak of the bolometric

light curve, this is naturally explained by the light curvespresented here accounting for flux

that was not accounted for in previous modelling. The relatively large uncertainties in the

determinations ofMej andEK, coupled with the less straightforward effect that these BCs

have on the width of the light curve compared to a pseudo-bolometric light curve, makes

any offset in these parameters less obvious. Indeed the parameter ranges found here had

generally a large overlap with those previously published and as such there appears to be, at

most, an effect from the BC on these parameters that is at a level beyond the precision of this

modelling scheme.

Also presented in Table6.7are values for the explosion parameters determined for the SNe

as found by more detailed spectral or hydrodynamical modelling. It should be noted that

these values just encompass the ranges of preferred values or are the best-guess of the mod-

elling, and generally do not include uncertainties arisingfrom, for example, the distance
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Figure 6.7: Some examples of the fits found when modelling thebolometric light curves
with the analytical prescription. Data points in blue indicate those that were used in the fitting
routine for the photospheric phase, red data points show thedata that were used in the nebular
phase. The photospheric and nebular fits are shown as the blueand red lines respectively.
From top to bottom: IIb, Ib, Ic, Ic-BL, with an example of more poorly constrained fits on
the left and exemplary fits on the right.
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(see below). On the whole, given the simplifications inherent in the analytical model, the

agreement is very good and thus the analytical prescriptionprovides a good way to obtain

population statistics for SNe. Although larger uncertainties are inherent in this analytical

model compared to more involved studies, one must bear in mind these results are effectively

arising from just two-filter optical observations of the SNeand a single spectrum (compared

to multi-band UV/optical/NIR photometry and at least several epochs of spectral coverage,

required for more detailed modelling), making this is a remarkable method to dramatically

improve the current statistics of explosion parameters forvarious SN types.

As mentioned in Section6.2.1, the findings ofMaeda et al.(2003) indicate that modelling

of the nebular light curve is required to determine accurately the contribution of the inner,

denser region of the ejecta. This manifests itself as the parametersfM and fE. For the

cases where direct modelling could not determinefM andfE, due to a lack of data in the

nebular phase, the average values for the same SN type was used instead. Therefore, all

further discussion of explosion parameters relates to thetotal values, where the SNe without

nebular modelling (see Table6.7) had their photospheric values corrected by the averagefM

andfE values of its type.

Although such a simple treatment of the explosions allows populations of explosion param-

eters to be derived relatively cheaply, the uncertainties are consequently large compared to

more detailed studies. It is difficult to quantify the systematic uncertainties per object a pri-

ori. With more detailed modelling, aspects such as the asphericity, 56Ni mass distribution

andκopt can be constrained, but these are unknown for the majority ofthe SNe presented

here. Observational uncertainties come in the form of the distance determination, photomet-

ric errors andvph measurements.3

The error onMNi is primarily driven by the error in the distance to the SN, photometric

errors were found to affect the light curve comparatively little. Where possible, the error

on the distance modulus was based on the collection of distance determinations presented in

NED for each host (with a 2-sigma clipping applied to the distribution if there were sufficient

values). Otherwise literature uncertainties were used, or, finally, a reasonable error assumed

3Statistical uncertainties from the fit, along with those found from varying the epochs of data used in the fit
(within sensible limits), were found to be much less than these errors and as such are not included.
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based on the uncertainty of other hosts. As can be inferred from Fig. 6.1 (top panel), an

over (under) estimated distance would result in an over (under) estimated peak luminosity

and thusMNi, sinceτm will be unaffected. Additionally, SNe 2006T and 2006ep havemore

uncertain upper limits onMNi, found by assuming that they suffer the medianE(B − V )host

of the sample.

The errors onvph directly affects theMej/EK ratio at a givenτm. The uncertainties were esti-

mated by taking into account both intrinsic uncertainties in the fitting method (∼1000 km s−1)

as well as accounting for the fact that not all spectra were directly observed at peak. For ex-

ample, avph determination before peak could overestimatevph at peak and similarly under-

estimate it for a determination after peak. Thereforevph values derived from spectra before

(after) peak had an additional component to the lower (upper) error budget. The power law

of Branch et al.(2002) (vph ∝ t−2/(n−1), wheren = 3.6) was used as a gauge of the size

of this potential offset from thevph at peak. FeII and SiII lines were assumed to tracevph

although SN 2003bg, where the only velocity determination was found from HeI lines, had

an additional lower uncertainty invph of 2500 km s−1, found to be reasonable given the dis-

crepancies between HeI and SiII /Fe II line velocities around peak (e.g.Valenti et al., 2008;

Pastorello et al., 2008; Taubenberger et al., 2011). Errors on thevph values of SNe that were

assigned the averagevph for their type were taken to be 2500 km s−1. As an example, for a

SN with a fixedτm of 9 days andvph = 10000 km s−1, an uncertainty invph of 1000 km s−1

represents an uncertainty inMej andEK of ∼ 10 and∼ 30 per cent respectively. Each SN

was remodelled using the lower and upper limits tovph in order to obtain uncertainties on

the fitted parameters arising from inaccurate velocity determination.

One additional parameter that has a large impact on the derived Mej andEK values is the

choice ofκopt. An assumption within to the model is that the opacity is constant over the

optically thick, photospheric phase, however some gauge ofthe uncertainty this assumption

introduces can be probed by varyingκopt. Taking a 20 per cent uncertainty inκopt for fixed

τm andvph translates to an uncertainty of+25/−17 per cent inMej andEK (since both have

the same dependence onκopt
4).

4Using Eqs. (6.2) and (6.5): M3
ej/EK ∝ κ−2

opt → Mej ∝ κ−1
optvph, givenEK/Mej ∝ v2

ph – and therefore

EK ∝ κ−1
optv

3
ph.
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Uncertainties on the explosion parameters arising from theabove described sources of error

are included in the results, which are shown in Table6.7.

With such population studies, the statistical distribution of explosion parameters as a function

of SN type can be investigated. This was initially done by plotting the cumulative distribu-

tions of the parameters for each type, shown in Fig.6.8. This figure highlights the extreme

nature of the SNe Ic-BL in theMNi andEK distributions. SN Ic-BL are hugely more ener-

getic than any of the other subtypes (the least energetic SN Ic-BL has anEK value similar to

the most energetic of any of the other sub types), and also have much largerMNi values on

average, although it should be noted that SNe Ib and Ic can reach such highMNi values, but

the bulk of these SNe have much lower values. However,Mej distributions do not distinguish

SNe Ic-BL from other SE SNe clearly, indicating that the mass of the ejecta is not an impor-

tant factor in the explanation for these events. SNe IIb, Ib and Ic are indistinguishable in all

three parameters. There appears to be a hint that SNe IIb favour lower values ofMNi andEK

cf. SNe Ib and Ic, but theirMej do not show this to such an extent, which may be a result of

their additional envelope retention (i.e. having more massto be ejected on explosion).

The two-sample Kolmogorov-Smirnov test (K-S test) was applied to each pair of SN types

to ascertain the probability (p value) that the two samples are drawn from the same parent

population (i.e. the two cumulative distributions being tested are just differently sampled

realisations of a single, continuous, underlying distribution). Note, however, that the K-S

test does not give any indication on what this distribution is. Thep value is determined by

the sample sizes and theD parameter, whereD is the maximal difference between the two

normalised cumulative distributions. Succinctly put, a small p value indicates it is statisti-

cally unlikely the two samples are explained by a single population. The results of the K-S

test are given in Table6.8, which confirm the ‘by-eye’ judgements on the distributionsmade

above. Significant (p ≤ 0.01) differences are found between theMNi values of SNe Ic-BL

and SNe IIb and Ic, with Ib being also close to this significance limit. TheEK distribution of

SNe Ic-BL is statistically distinguished from those of SNe IIb and Ib at very high confidence

and SNe Ic to a lesser extent (∼ 2σ). As expected,Mej distributions cannot be distinguished

and all 4 subtypes are consistent with being drawn from any ofthe other samples. There are
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no significant values to distinguish between the samples of SNe IIb, Ib and Ic.5

These conclusions do not include results based on modellingdone on SN 2012bz (Chapter4)

since the SN is at a moderate redshift and as such requiresK-corrections to be applied to

the photometry. The construction of a bolometric light curve for SN 2012bz is not possible

using the method describe here and it is therefore neglected. Despite this, based on pseudo-

bolometric light curve modelling, SN 2012bz was a spectacular SN even by SNe Ic-BL

standards withMNi ∼ 0.6 M⊙, Mej ∼ 5.9 M⊙ EK ∼ 41 × 1051 ergs. Its inclusion in the

cumulative distribution or K-S tests, would only serve to enhance the statistical distinction

of SNe Ic-BL from other SE SNe types.

These results back up the findings ofCano(2013), where the use of SN 1998bw as a template

is used to make pseudo-bolometric light curves. The improvements of this investigation

include the use of truly bolometric light curves that are independent of the assumption that

SN 1998bw is an appropriate template for all SE SNe, the inclusion of SNe IIb as a sample,

and a larger proportion of SNe that have had theirvph value directly measured near peak.

Each of the parameters derived from the modelling are plotted against each other in Fig.6.9.

A zoom-in of theMej againstEK plot is also shown including only SNe IIb, Ib and Ic. The

bulk of these SNe appear to form a fairly tight correlation inthis plot. This is a result of the

fairly similar vph values they exhibit (which, in turn, dictates theMej/EK ratio). Conversely,

SNe Ic-BL, which can have very high velocities (Table6.6), are found at smallerMej/EK

ratios, as dictated by Eq.6.5.

5The discussion is largely unchanged when neglecting to correct the SNe without nebular modelling forfM

andfE, however, the significance levels of any differences drop slightly.
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Table 6.7: Results of explosion parameter modelling for SE SNe

This chapter Literature values

SN name Type MNi Mej EK MNi Mej EK Reference

( M⊙) ( M⊙) 1051 ergs ( M⊙) ( M⊙) 1051 ergs

1993J IIb 0.14±0.03 1.7+0.5
−0.4 1.4+0.7

−0.5 0.06–0.14 1.9–3.5 1–1.6 Utrobin (1994); Woosley

et al. (1994); Young et al.

(1995)

1994I Ic 0.08±0.02 0.6+0.2
−0.1 1.0+0.4

−0.4 0.07 0.9–1.3 1 Iwamoto et al.(1994); Young

et al. (1995); Sauer et al.

(2006)

1996cb IIb 0.12±0.03 2.3+0.7
−0.5 1.9+1.2

−0.7 – – – –

1998bw Ic-BL 0.75±0.09 7.0+1.9
−1.3 30.0+12.3

−7.0 0.4-0.7 ∼10 20–50 Iwamoto et al.(1998); Naka-

mura et al.(2001)

1999dna Ib 0.11±0.03 4.7+1.4
−1.1 7.1+2.9

−2.0 – – – –

1999exa Ib 0.17±0.01 3.2+1.1
−0.8 3.2+1.9

−1.0 0.16 – 2.7 Stritzinger et al.(2002)

2002apa Ic-BL 0.09±0.02 2.8+0.9
−0.5 6.7+4.1

−1.8 0.07 2.5–5 4–10 Mazzali et al.(2002)

2003bga IIb 0.21±0.03 6.0+1.7
−2.5 7.4+3.1

−5.5 0.2 4 5 Mazzali et al.(2009)

2003jd Ic-BL 0.51±0.09 2.7+0.7
−0.5 6.8+2.4

−1.8 – – – –

2004aw Ic 0.26±0.04 4.4+1.2
−1.2 6.6+2.6

−3.0 – – – –

2004dka Ib 0.25±0.04 3.6+1.2
−0.9 4.2+2.5

−1.3 – – – –
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2004dn Ic 0.23±0.03 3.8+1.1
−0.7 7.1+3.4

−2.0 – – – –

2004fea Ic 0.30±0.04 1.7+0.7
−0.6 1.5+1.8

−1.0 – – – –

2004ffa Ic 0.22±0.03 1.4+0.6
−0.5 1.2+1.5

−0.8 – – – –

2004gq Ib 0.13±0.05 1.4+0.7
−0.6 1.1+1.4

−0.8 – – – –

2005az Ib 0.37±0.07 3.2+1.5
−1.3 2.1+2.8

−1.5 – – – –

2005bfa Ib-pec 0.09±0.02 1.0+0.4
−0.3 0.8+0.8

−0.2 0.08 – – Maeda et al.(2007)

2005hg Ib 0.66±0.09 2.7+1.3
−1.1 2.4+3.3

−1.5 – – – –

2005kza Ic-BL 0.62±0.08 8.2+2.6
−2.1 22.8+15.5

−10.9 – – – –

2005mf Ic 0.24±0.03 1.5+0.7
−0.6 1.4+1.7

−1.0 – – – –

2006Tb IIb 0.10+0.05
−0.02 1.9+0.9

−0.8 1.4+1.9
−1.0 – – – –

2006aja Ic-BL 0.36±0.07 1.4+1.3
−0.9 6.4+7.0

−3.3 0.21 2 2 Mazzali et al.(2006)

2006ela IIb 0.27+0.07
−0.04 – – – – – –

2006epa,b Ib 0.08+0.04
−0.02 2.6+1.2

−1.1 2.1+2.9
−1.5 – – – –

2007C Ib 0.19±0.03 1.5+0.7
−0.6 1.3+1.8

−0.9 – – – –

2007Y Ib 0.051±0.004 1.9+0.5
−0.5 1.9+0.8

−0.9 0.06 1–2 0.5–2 Stritzinger et al.(2009); Mau-

rer et al.(2010)

2007gr Ic 0.10±0.03 2.4+0.7
−0.5 2.9+1.2

−0.9 – – – –

2007ru Ic-BL 0.52±0.05 2.8+0.7
−0.5 13.0+3.9

−2.9 – – – –

2007uy Ib 0.33±0.07 3.7+1.0
−1.0 9.9+3.3

−4.8 – – – –
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2008Da Ib 0.12±0.02 3.9+1.5
−0.9 4.4+4.0

−1.4 0.05–0.1 3–7 2–8.5 Soderberg et al.(2008); Maz-

zali et al.(2008); Tanaka et al.

(2009)

2008ax IIb 0.16±0.04 3.0+1.3
−0.7 2.6+2.8

−1.0 – – – –

2009bb Ic-BL 0.31±0.02 2.5+0.8
−0.5 9.2+6.6

−2.2 – – – –

2009jf Ib 0.24±0.04 4.2+1.7
−0.9 5.8+5.2

−1.9 – – – –

2010bh Ic-BL 0.37±0.05 1.2+0.3
−0.2 33.0+8.5

−5.9 – – – –

2011bm Ic 0.71±0.12 9.6+2.8
−2.1 10.0+4.5

−3.4 – – – –

2011dh IIb 0.09±0.02 1.8+0.6
−0.4 1.1+0.6

−0.4 0.06–0.07 2 0.6–1 Bersten et al.(2012); Shiv-

vers et al.(2013)

a Inner component modelling based on the averagefM andfE values for the SN type (see text).

b Only Galactic extinction is accounted for, thus theMNi value has a large upper uncertainty arising from the possibility of

significant, unaccounted for, reddening.

c Uncertain peakLbol value accounted for inMNi uncertainty.
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Table 6.8: Results of two-sample Kolmogorov-Smirnov test onexplosion parameters be-
tween SE SNe types

Sample 1 Sample 2 MNi Mej EK

D p D p D p
IIb Ib 0.253 0.887 0.372 0.515 0.358 0.561
IIb Ic 0.607 0.075 0.375 0.608 0.333 0.749
IIb Ic-BL 0.875 0.002 0.417 0.471 0.833 0.006
Ib Ic 0.365 0.428 0.317 0.611 0.269 0.800
Ib Ic-BL 0.644 0.017 0.288 0.726 0.8460.001
Ic Ic-BL 0.750 0.010 0.375 0.519 0.625 0.049

Specific SN notes

SN 2005bf SN 2005bf was a very unusual burst that displayed a double-humped light curve

(Fig.6.10). There have been various models proposed for the SN with various energy sources

powering the second, brighter hump. Among these,56Ni decay has been proposed, and,

given the high peak luminosity,∼ 5 × 1042 erg s−1, this requiresMNi ∼ 0.32 M⊙ to power

it (Tominaga et al., 2005). However,Maeda et al.(2007), from nebular modelling, find that

∼ 0.08 M⊙ of 56Ni was synthesised, inconsistent with a56Ni-powered explanation for the

second peak. Conversely, it is found from modelling here thatthe first peak is well matched

by a 56Ni mass similar to the value derived from nebular modelling (MNi ∼ 0.087 M⊙, see

Table6.7). This would suggest that the first hump is indeed powered by the56Ni synthesised

in the explosion, but also that the second hump has some otherpower source (e.g. magnetar

Maeda et al., 2007).

SN 2006el The light curve of SN 2006el lacks data to properly tie the fit.Although the

rise to peak is observed, no data exist beyond this on the decline before the end of the

photospheric phase in order to tie the width of the light curve and thus constrainMej andEK.

As such, theMNi determination is trusted, although an additional uncertainty is included,

arising from varying the true value ofLbol between reasonable limits and using equation 6

of Rest et al.(2011); theMej andEK values are not used.
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Figure 6.8: Cumulative distributions for explosion parameters of SE SNe (top:MNi, middle:
Mej, bottom: EK), divided by subtype. Where appropriate, values have been corrected for
contributions from the inner component (see text). The average values for each SN type are
indicated by the vertical dashed lines.
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Figure 6.9: Correlations between explosion parameters of SESNe, divided by subtype.
Where appropriate, values have been corrected for contributions from the inner component
(see text).
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Figure 6.10: As for Fig.6.7but for SN 2005bf. Although the second hump can also be well
fit by the analytical model, it requires a56Ni mass far above that determined from nebular
modelling. However, the first hump can be well modelled with a56Ni mass consistent with
nebular spectral modelling (blue line).

6.4 Summary

An analysis of a large sample of SE SN bolometric light curveshas been made. Peak bolo-

metric absolute magnitudes range from−16.3 to−19.2 mag, with both luminosity extremes

occupied by a SN Ib.∆m15,bol values range from 0.20 to 1.37 mag, with SNe Ic making

up the extremes of this distribution. No correlation between peak luminosity and light curve

width is found (cf. SNe Ia). The bolometric light curves weremodelled using an analytical

prescription utilising the velocity of the photosphere at peak light. These results agree well

with those found from more computationally and observationally expensive models, which

suggests a future, large-scale deployment of this method isfeasible and will provide accurate

results. The extreme nature of SNe Ic-BL was evident from the modelling, with theirMNi

andEK values being statistically distinct from all other SE SNe type by at least 2σ, with

p ≤ 0.01 for two of the three other subtypes in each parameter. Conversely, theMej values

for SNe Ic-BL are very similar to those of SNe IIb, Ib and Ic. This suggests the mass of

the cores are of similar masses to those of other SNe upon explosion, although the initial

zero-age main sequence masses may be different. As such, themass of the core does not

appear to play a major role in determining the presence of high velocity features, and this

must be dictated by another property of the core (e.g. composition or angular momentum)
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and/or the presence of a central engine that may initiate such high velocity features. Note

that for several SNe Ic-BL the presence of a central engine is known, and this occurs when its

jet axis is aligned with the line-of-sight and observed as a GRB or X-ray flash). The average

MNi, Mej andEK valuesall follow the same sequence of increasing value of IIb→ Ib → Ic

→ Ic-BL.



Chapter 7

Thesis summary and future research

7.1 Thesis summary

This thesis has continued the current effort that is being put into understanding the explosive

deaths of stars.

The pipeline CLASP has been developed to make image alignment and subtraction painless

for the purposes of transient follow-up and environmental studies. The pipeline is designed

for ease of use, with the ability to align any arbitrarily shifted, rotated, scaled images with

little or no parameter adjustment. The subtraction processalso works well in the cases of

reasonable seeing and has successfully subtracted data from a number of telescope and in-

strument configurations.

CLASP was employed to create Hα maps of the hosts of two peculiar types of transients

whose nature is very poorly known. Through observing the association with Hα emission

(recent SF), respective constraints were placed on the agesof the progenitor systems of these

transients, which will inform future modelling of the explosions and provide an additional

constraint for any proposed systems.

The GRB-SN 120422A/2012bz was investigated through construction of its pseudo-bolometric

light curve. A simple modelling treatment of this light curve revealed its spectacular nature,

being one of the brightest SN to have accompanied a GRB and alsobeing one of the most

170
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energetic SN known.

Given the usefulness of bolometric light curves in SN investigations, a method was sought to

relieve the observational and time costs involved in their production. Well-observed literature

SNe formed the basis of several polynomial fits that allows one to trivially create a bolometric

light curve with a simple two-filter optical light curve. Therms scatter around these fits was

found to be very small and, barring strongly interacting SNe(e.g. IIn, Ibn), an accurate

determination of the bolometric light curve can be made for any CCSN.

These BCs were applied to literature SNe to create the largest sample of SE SN bolometric

light curves, with each one modelled in the fashion of SN 2012bz. The simple modelling

scheme revealed fitted explosion parameters that agreed well with more involved modelling

of a sub-sample of the SNe. This modelling revealed the extreme nature of SNe Ic-BL in

energetics and56Ni mass, with the SN IIb, Ib and Ic explosion parameter distributions all

appearing indistinguishable. Continuous distributions oflight curve peaks and time scales

were observed, with no clear correlation between the two. Template bolometric light curves

for SNe IIb, Ib, Ic and IC-BL were also produced for the first time.

7.2 Future research

The research presented here has revealed a number of promising avenues for future research

in the field. A few of the current and future studies to be performed are presented here:

• The rates of the peculiar SN 2002cx-like and Ca-rich transients are currently very un-

certain. A calculation of these values is needed to further restrict potential progenitor

models. Current wide-field untargeted surveys will allow a robust determination of

these rates.

• A large number of PTF-discovered CCSN have been observed with the Liverpool Tele-

scope, alongside follow-up done by PTF. These light curves provide an excellent re-

source from which to continue the creation and modelling of SE SN bolometric light

curves. With a much less biased observational strategy, these will provide more com-
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plete samples of the sub-types to further investigate the properties that have been in-

vestigated here for literature SNe. Once enough light curves have been accumulated,

one can then begin to investigatewithin SN sub-types and investigate if the explosions

themselves have any knowledge about, for example, the environment in which they

are exploding. Given the methods presented, once the data exist, the creation of the

bolometric light curves and modelling requires no significant computational or labour

expense.

• Alongside this light curve investigation, the hosts of PTF CCSNe are being observed in

Hα. Utilising the statistical method presented here for peculiar low-luminosity SNe I,

the environments of these SNe can be investigated as a parallel line of study to the

light curve analysis.

• The BCs presented will be improved upon as more well-observed SNe exist. These

additions may increase the robustness of the fits or, more interestingly, produce SNe

who appear to have unusual BCs. A particular area to improve upon is to include a

sample of SNe observed in Sloan filters directly, to circumvent the need to transform

Johnson-Cousins data.

• The GRB-SN connection is an area of research that has been well-established over

the last 15 years, but still has a very low number of events. Many open questions

exist about the link between the two (e.g. does the GRB know about the properties of

the SN explosion and vice-versa), which will only be answered once a larger sample

exists – current and future wide-field surveys (especially ones with deep imaging) will

contribute heavily to this.

• The BCs presented are reliant upon a single colour and provide exceptionally tight

correlations. Nevertheless, it may be that further information can be gleaned from

optical observations. Since it is probable that SNe are followed in three (gri) or four

(BV RI) filters, perhaps utilising two colours, or somehow including information for

>2 filters to produce a fit could further reduce the scatter.

• Given the low scatter observed on the BC for even the very heterogeneous CCSNe,

it is expected that a similar investigation for SNe Ia would produce even tighter fits.
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The pursuit of this investigation is contingent however on the author’s desire to incur

the wrath of the SN Ia community with his disregard for systematic uncertainties and

ignorance of their value beyond very bright light bulbs, andas such may not come to

fruition.

• Although the analytic prescription used to model the light curves here produces good

agreement with other modelling, it may be that some of the simplifying assumptions

can be removed in place of more data constraints, when observations allow, in order

to reduce the systematic uncertainties in the model. This may include a description of

the evolution of the velocity of the SN, rather than using a single velocity, or allowing

for a treatment of the initial56Ni mass distribution, for example.

• Observe a Galactic SN (hopefully!)



Appendix A

The Normalised Cumulative Rank

method

The normalised cumulative rank (NCR) method is a pixel-based statistical analysis of loca-

tions (chosen pixels) within an astronomical image. Practically, it is a proxy for determining

how associated a particular location in the image is to the detected flux in the image, and,

given a large sample of such images and locations, can ascertain the statistical correlation

between locations and the tracer chosen1. By normalising to the total sum of the pixel values,

each pixel can be assigned an NCR value of between zero to one, where one is always the

brightest pixel in the image and zero represents any pixel with no detected flux.

The calculations involved in determining an NCR for a chosen pixel location (p) are:

• Sort all the pixels in the image by their value and note the index ofp in this array

• Cumulatively sum these values and then normalise by the totalsum of all pixel values

• The value of the normalised cumulative sum at the index ofp is the NCR value ofp

In reality, however, we are not dealing with ideal data and several measures must be taken

to ensure the NCR method is implemented consistently across different images. The NCR

1For the data analysis in this thesis, the chosen tracers wereHα and far- and near-UV emission, as proxies
for recent star formation, and the locations were those of various SN types; the method could plausibly be used
on imaging of various tracers and various transients.
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method has been packaged into a PYTHON script to handle the calculation and data manipu-

lation required. Details of the steps included in this script now follow.

Since we are cumulatively summing the pixel values, in a typical image, where all pixels

have a positive value, every location chosen would have a positive NCR. The NCR for a

‘background’ location (i.e. where there is no detected flux above that of the sky) would

differ from image to image due to the varying ratio between background pixel brightness

and detected flux pixel brightness, and each background location would have a differing

NCR due to the Poisson noise in the image. For this reason the NCRmethod is reliant on the

image having a sky-background mean of zero, i.e. the distribution of pixel values, caused

by noise in the image, must be centred on zero. This naturallysolves the above problem in

that the equally negative and positive pixel values of the background will cancel out in the

cumulative sum, leaving the sum at zero once we begin to encounter pixels with true detected

flux above the noise of the image. Any location with an NCR< 0 is set to zero since it is

buried in the noise of the image and would have a pixel value ofzero in idealised data. This

technique is shown visually in Fig.A.1.

Practically, obtaining an image background with a mean of exactly zero is not possible. For

the Hα data reduction in this thesis, CLASP (Section2.2) was used to perform image sub-

traction prior to performing the NCR analysis on an image. Thesubtraction routine attempts

to fit a varying background function to the images in order to make the difference image have

a near-zero background over the entire image. This can struggle, particularly in the cases of

large variations across the image background or different background variations for the im-

age and subtracted template frame. To improve upon this, a median-mesh grid is constructed

for the image after object masking via the IRAF taskOBJMASKS, or iterative sigma-clipping

of pixels. By taking the median values of background pixels, sampled across the entire im-

age, the tie points for a low-order spline function are made.2D-spline interpolation of the

median mesh is performed and this function is subtracted from the image.2 This results in

a background that has a mean closer to zero at all areas of the image (with careful attention

2A smoothing factor can be applied to the spline instead of strictly interpolating the median mesh in the
cases where object masking fails to completely mask all emission in the difference image. In these cases the
median of a mesh-point containing, for example, the transient host, may be anomalously high compared to
surrounding mesh-points, and a smoothed spline will be a better representation of the true background pixel
values.



176

0 Nt N

Sorted pixel number

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

is
ed

cu
m

u
la

ti
ve

su
m

/N
C

R
va

lu
e

Turnover from noise
to detected flux

Noise

Figure A.1: The NCR values in a typical image are shown (solid line) along with the true
value of the normalised cumulative sum (dotted line). At a certain turnover pixel, Nt, the
cumulative sum becomes positive and the NCR of any location inthe image with a pixel
value greater than Nt is just equal to the cumulative sum at that pixel (e.g. the gold star has
NCR = 0.2). However, below this the cumulative sum only consists of noise, with negative
values summing until the minimum of the cumulative sum and these being cancelled by
positive values until Nt, where subsequent pixels have truly positive values, i.e. above that
of the noise in the image – detected flux. For example, even though the pixel at the location
given by the silver star has a positive value, it is considered an NCR = 0 location since its
value is within the noise of the image.

paid to the area of interest in the image – the location of the transient and its host). This

technique is demonstrated in Fig.A.2.

The image is likely to contain artefacts that would erroneously affect the NCR value, for

example foreground stars and residuals left by image subtraction. The pixel coordinates of

these, along with a radius to mask in pixels, are used to pasteover the pixel values within

each mask. This is done using the standard manner of masking routines in other astronomical

packages. For each mask region, the median and standard deviation of pixels (after sigma-

clipping) in an annulus around the mask are determined and a random normal distribution

with these characteristics is constructed. This distribution is used to replace pixel values

within the mask, see Fig.A.3. A negative cut is also implemented, whereby pixels more than

5 standard deviations below the mean background value are set to zero value, since we do
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Figure A.2: An object-masked image is evenly sampled at 191-pixel intervals and a median
of each interval box is made. These median points form a sparsely sampled mesh (left) which
can be interpolated using a spline function to obtain the form of the background (right). This
function is subtracted from the image to produce a more uniform, near-zero background in
preparation for the NCR analysis. Colour bars indicate pixel values.

not expect such negative pixels in the subtracted image. Generally only a small portion of

the image is of interest: the limits of the host and the transient’s location. The images are

therefore trimmed so that small variations in the background have less influence (since we

will be summing fewer background pixels) and also to preventthe need to manually mask

every object/residual in the image that is outside the area of interest.

The desired location to investigate in an image is often defined by the RA and DEC of a

transient; as such, the NCR method is sensitive to incorrect WCSfits of images. Although

WCS fits are generally robust (from visual and star centre comparisons to catalogue values),

slight inaccuracies may still exist within the host galaxies where the WCS fit may be not

constrained due to a lack of point sources. To combat this, a binning factor can be specified

for the image (typically 3); the sectioning and binning of the image is performed such that

the pixel at the desired RA and DEC forms the centre of a binned super-pixel.

For ease of use, the section, mask regions and mask radius canbe defined interactively, via

XPA messaging to DS93. This makes the NCR trivial to perform in a few seconds for most

cases, once the data are properly reduced and a WCS is fitted. As well as intuitively defining

the section and the mask regions, a Digitized Sky Survey (DSS) image of the region can

3http://hea-www.harvard.edu/RD/ds9/site/Home.html

http://hea-www.harvard.edu/RD/ds9/site/Home.html
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Figure A.3: A star residual (left) is masked (right) using the routine described in the text.
Pixels within the annuli shown are used to determine the pixel distribution to use as replace-
ment. Colour bar values indicate pixel values and show that the residual is cleanly masked,
resulting in near-zero pixel values over the image section.

be displayed to aid in foreground star identification and determining host size. The DS9

interface is shown in Fig.A.4.

On the final, background-flattened, artefact-masked, sectioned and binned image, the NCR

calculations shown above are performed to obtain an NCR valuefor the desired pixel location

and maps of NCR values are provided for visual inspection. Some examples of what these

NCR maps look like are shown in Fig.A.5.
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Figure A.4: The DS9 interface for interactive NCR analysis. The SN location (red circle)
is shown to the user on the image. A DSS image of the region can be downloaded and
displayed on another frame to aid with identifying foreground stars, whose coordinates can
be marked for masking (yellow plus). The section is selectedas two corners of a rectangle
(blue crosses). These various commands are performed with key presses by the user and
hovering the cursor over the desired pixel.
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(a) NGC 2207

(b) NGC 2768

(c) UGC 12682 (d) NGC 5559

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure A.5: Examples of NCR heat maps for transient hosts in Hα imaging. The regions of
intense Hα emission have larger NCR values (see colour bar), with regions of no detected
flux at NCR = 0. The imperfections of the background being exactly and truly centred on
zero everywhere manifest themselves as pixels in background regions having very small, but
positive NCR values, this typically does not substantially affect the value of the NCR for a
given location. The location of the transient in each host investigated as part of Chapter3 is
marked by a star.
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B.1 CLASPusage manual

B.1.1 Quick Use

SUBPIPEis run from the scriptrun-subpipe.py (image alignment/subtraction) andPHOT-

PIPEfrom run-photpipe.py (photometry), or either via the GUI -CLASP.py , all found

in the main CLASP directory.

Prior to running the pipelines, a check ofPIPEcfg.py andHOTPanTScfg.py should be

made to ensure the parameters in there to suit the data (see AppendixB.1.3).

Below are quick, arbitrary examples how to run them. See AppendicesB.1.3to B.1.5for a

more in-depth look at the configuration files, the command line arguments, and the GUI.

Running from command line (including required arguments):

$ python run-subpipe.py imagedir template workdir

$ python run-photpipe.py workdir

Help on command line arguments:

$ python run-subpipe.py -h

$ python run-photpipe.py -h

Example use of parameters (including all possible optionalarguments):

$ python run-subpipe.py /path/to/imagedir /path/to/template.fits

/path/to/workdir -s " * .fits" -u -f /path/to/fringeframe.fits

-b /path/to/bpm.fits -ct -ti 1 -ii 1 -t 5 -c i

-stamps /path/to/mystamps.txt -d

$ python run-photpipe.py /path/to/workdir -c -sa 3 -la 15 -o
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345,678,234,567,567,678 -s /path/to/starcoords.txt -d

(Note the string quotes around the selection argument,-s , since it will often include a wild-

card. Imagedir may also be a file path to perform subtraction for a single image.)

B.1.2 Requirements

The following are required to run CLASP:

PYTHON (version 2.x, x≥ 7)

PYRAF

IRAF (the mosaic packageMSCRED is also required for defringing)

PYFITS

NUMPY (version 1.5.1+)

SCIPY (version 0.9.0+)

SEXTRACTOR (version 2.5.0+)

HOTPANTS (version 5.1.0+)

B.1.3 The configuration files

The CLASP pipelines can be run from either the command line orGUI. However, there are

two configuration files that need to be set properly for your data before you begin running

the pipelines.

The two configuration files are namedPIPEcfg.py andHOTPanTScfg.py , located in

the main CLASP directory. These files hold parameters that may need to be modified de-

pending on the data you are feeding the pipelines. Comments inthese files should explain

most of the parameters and the following can be used to guide you towards the parameters

that should be checked for the best success rate.

HOTPanTScfg.py holds all the parameters for the HOTPANTS code and in most cases

the parameter names are the same as when running HOTPANTS directly (these can be seen
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by running your HOTPANTS executable with no arguments, which will give you more infor-

mation on them). Particular attention should be paid to the pixel value limits and the number

of stamps in each direction,nsx ,nsy should be adjusted very roughly with the number

of objects in yourimage. In images with few point sources, it may be prudent to reduce

kernelorder to 1 as the kernel form can vary wildly if not sufficiently constrained (i.e.

not enough stamps sampled across the entire image). Thehotpantsdir should also point

to your HOTPANTS executable directory

PIPEcfg.py holds data-dependent parameters. Some of these relate to the names of FITS

headers which should be self-explanatory. Pay particular attention, however, to the param-

eters defining the min/max number of objects to find inimageandtemplate. The pipelines

run SEXTRACTOR to detect objects at the given thresholds (initiallyIMAGETHRESHand

TEMPTHRESH). This is adjusted (a limited number of times) by the pipeline to meet the

min/max object requirements. A judgement by eye of the number of sources inimage

and templateshould allow these to be set sensibly and to broadly enclose these estimates.

XYXYMATCHand WREGISTERrelate to their namesakes in IRAF, and can be switched

on and off as required. If both are true,WREGISTERwill only be used in the event that

XYXYMATCH fails to find a solution. The parameters forXYXYMATCH can also be set at the

bottom of this configuration file; see theXYXYMATCH docs for more information on these.

B.1.4 Command line

General command line argument help is obtained via:

$ python run-subpipe.py -h

$ python run-photpipe.py -h

run-subpipe.py

Required arguments:
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imagedir (string): the path to a directory containing science imagesto be subtracted.

Alternatively can be set to the file path of a single file to subtract a single image. Selected

files will not be altered as all images to be processed are copied toworkdir.

template (string): the file path totemplate. Again, this file will not be affected and will

be copied to the work directory in a subfolder, ‘template/’.

workdir (string): the path to a directory to store all the output fromSUBPIPE. If the path

doesn’t exist then it will be created. If the directory exists, SUBPIPEwill ask whether you

want to remove it, in which caseeverything contained within the directory, including all

sub-directories will be deleted.

Optional arguments:

-s SELECTION (string): the pattern for sub-selecting files withinimagedir (if it is in-

deed a directory). Note thatSELECTIONmust be enclosed in string quotes since it will

probably contain some kind of wildcard.Default = ’ * .fits’ .

-u : including this flag will runSUBPIPEin ‘update’ mode. In this case an existingworkdir

must be specified containing output from a previous run ofSUBPIPE. The log and report files

will be appended to rather than overwritten. This is useful should a small subset of images

have poor subtraction, for example. Parameters inPIPEcfg.py andHOTPanTScfg.py

can be altered, and rerunningSUBPIPE, passing just the image(s) for which subtraction needs

to be redone, will overwrite the previous output for the image(s). Similarly, extra subtractions

can be added to an existingworkdir using u, and these will be added alongside existing

output without destroying previous work. Each time aworkdir is updated, the configuration

files are checked for similarity to the copies already inworkdir, and if any changes are found

the configuration files are copied with a.[n].py suffix – theshelve file will keep track

of what images used what configuration file versions.

-f FRINGEFRAME (string): the file path to the appropriate fringe frame forimage. A

single extension FITS file of the same dimensions asimage.

-b BADPIXELMASK(string): the file path to the appropriate bad pixel mask forimage. A

single extension FITS file which must be of the same dimensions asimage(if not, it will be
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ignored). Zero at all good pixels and non-zero to indicate bad pixels.

-ct : including this flag will marktemplatefor cleaning also, i.e. defringing, bad pixel

removal (as supplied by-f and-b ).

-ti TEMP_ITER (integer): the number of cosmic ray cleaning iterations to perform on

template. Additional passes may find more cosmic rays not found by the first pass but

generally one or two will remove the bulk of them. Set to 0 to skip cosmic ray cleaning.

Default = 2 .

-ii IMAGE_ITER (integer): as above but forimage. Default = 2 .

-t TRIM (integer): the border size in pixels to fix to a value of zero around the edge of

the image. This can mask any instrumental effects at the edges of the image that may

look like cosmic rays hits to the removal algorithm and will cause significant slowing.

Default = 0 .

-c CONVOLVE(char): the frame to be convolved prior to subtraction. By default the

program will convolve the frame with the better-seeing (s),as measured by the median

FWHM of point sources. Alternatively, one can let HOTPANTS determine the best frame

for convolution (h) or to specify thattemplate(t) or image(i) should always be convolved.

Default = s .

-s STAMPS(string): the file path to a list of stamps to use for the subtraction (see HOTPANTS

docs for more info on how these are used). x and y centres of stamps should be in columns

1 and 2 respectively.

-d : include this flag to run verbosely to stdout. The log file willalways have full verbosity

but this flag signifies to output to the terminal verbosely also.

run-photpipe.py

Required arguments:

workdir (string): the path to the directory containing the output fromSUBPIPE, upon which

photometry is to be performed. Between callingrun-subpipe.py andrun-photpipe.py ,
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workdir should be unaltered (i.e. no renaming of files/directories or removal of files) or there

is likely to be unanticipated behaviour or failures!

Optional arguments:

-c : including this flag will clobber the existing lightcurve.txt file in workdir. Use this to

redo photometry, if a light curve file exists and this flag isn’t present, thenPHOTPIPEwill let

the user know and exit.

-sa SMALLAP (integer): an integer value denoting the radius of the aperture (in pixels) to

use for small aperture photometry. This is the aperture usedfor initial photometry before

applying an aperture correction toLARGEAP. Default = 3 .

-la LARGEAP (integer): an integer value denoting the radius of the aperture (in pixels) to

correct photometry to. Photometry will be performed on aperture correction stars in steps

betweenSMALLAPandLARGEAPto compute the curve of growth.Default = 15 .

-o OBJCOORDS(comma-separated floats): a string of the form"x1,y1,x2,y2,...,xn,yn"

denoting the x and y pixel positions of the object(s) to perform photometry on (i.e. the tran-

sients/variables). Centering will be applied to these so high accuracy at this stage is not

required. If omitted, a subtracted image will be displayed with instructions on how to pro-

vide the pipeline with the objects’ coordinates.

-s STARCOOLIST (string): the file path to a list of star coordinates that are to be used

for aperture correction andimage-templateoffset determinations (i.e. these should be non-

varying, foreground stars). Format is two column, white-space separated with x and y in

columns 1 and 2 respectively.

-d : include this flag to run verbosely to stdout. The log file willalways have full verbosity

but this flag signifies to output to the terminal verbosely also.

B.1.5 GUI

Optionally, either pipeline can be called from the GUI namedCLASP.py . Running this file

will open a window as below with input boxes for the various parameters and a box on the
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right to display the pipeline output.

Figure B.1: Screenshots of CLASP GUI window forSUBPIPE(top) andPHOTPIPE(bottom).
Output is redirected to the text widget on the right hand side.

SUBPIPEor PHOTPIPEare chosen using the radio buttons near the logo. The resultant boxes

relate directly to the arguments explained above and shouldbe self-explanatory.

When browsing for ‘Image Path’, choose ‘File’ to select a single image or ‘Dir’ to specify

you want to use a directory that contains many images.

The ‘PIPE config’ and ‘HOTPanTS config’ buttons will open the configuration files for edit-

ing prior to running the pipeline.

Once the boxes have been filled as desired, pressing the ‘Start’ button will call the selected
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pipe. Output will be shown on the right, which may include errors which cause the pipeline

to cancel (e.g.templatedoesn’t exist). A new call can be made after altering the parameters

by clicking ‘Start’ again. Once the pipeline is running, ‘Start’ will be replaced by a ‘STOP

(term)’ button, which, if pressed, will send theSIGTERMcommand to the pipeline. If this

doesn’t stop it aSIGKILL command can be sent by a subsequent click, effectively ending

the pipeline if desired. Note this may not be immediate if thepipeline is waiting to receive

a signal after an external call to SEXTRACTOR or HOTPANTS, for example. The pipeline

will end once the call to the external package is complete.

Should the pipeline require input (e.g. asking whether to removeworkdir or asking for the

stars which to use for aperture correction/offset calculations), then it will ask for it in the

right hand output box. You can interact with the pipeline viathe ‘response’ entry bar at the

bottom left. Type what you wish to send to the pipeline into this entry bar (e.g. ‘y’ for ‘yes,

remove the existing work directory’ when asked) followed bythe Return or Enter key to send

the contents as input to the pipeline.

B.1.6 Output

Ultimately the data products of interest will be theimage.sub.fits files (the subtracted images)

and lightcurve.txt (the photometry of the object(s) selected in thetemplatesystem), after

runningSUBPIPEandPHOTPIPErespectively.

Here is an explanation of the other (many!) output files you will see appear inworkdir and

what they contain.(template)here indicates the template file name minus the file extension,

(image)is the image file name minus the extension; there will be one ofeach of these files

in workdir for every input science image.

After runningSUBPIPEthe following files will appear inworkdir:

template/ A directory containing:

(template).stars SEXTRACTOR output catalogue of objects found intemplate.

(template).fits cleanedtemplate(defringed, bad pixels and cosmic rays removed, as
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specified).

(image).hotpants Output from HOTPANTS detailing the subtraction process.

(image).stars orig SEXTRACTOR output catalogue of objects found in the originalimage.

(image).stars SEXTRACTOR output catalogue of objects found in the alignedimage.

(image).fits cleaned (defringed, bad pixels and cosmic rays removed, as specified) and

alignedimage.

(image).png a quick look png of the alignedimage.

(image).sub.fits subtracted image (image– template).

(image).sub.png a quick look png of the subtracted image.

HOTPanTScfg.py a copy of theHOTPanTScfg.py file as it existed whenSUBPIPEwas

called; this makes it easy to see what parameters were used when returning to/repeating

subtractions. Additional configuration files may appear with a .[n].py suffix if

updates are made, see AppendixB.1.4.

pipe.shelvea shelve file used byPHOTPIPEto read in all the information produced by

SUBPIPE.

PIPEcfg.py as above forHOTPanTScfg.py but forPIPEcfg.py .

subpipe log.txt output fromSUBPIPEwith verbosity turned on.

subpipe report.txt breakdown of interesting values found for thetemplateand image, as

well as the outcome of the subtraction for each image. Good toquickly see if anything

went wrong and with what image(s).

Additionally, after callingPHOTPIPEthe following will appear:

template/ A directory containing:

(template).apcor aperture correction and error fortemplateas calculated byMKAP-

FILE.
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(template).apcorphot PHOToutput with apertures ranging fromSMALLAPtoLARGEAP.

(template).mkap MKAPFILE output with large aperture corrected photometry fortem-

platestars.

(template).objcoo x and y coordinates of object(s).

(template).starcoo x and y coordinates of stars used for aperture correction andoffset

calculations.

(image).apcor as above but forimage.

image().apcorphot as above but forimage.

(image).mkap as above but forimage.

(image).objcoo PHOT output of initial object photometry usingSMALLAP.

lightcurve.txt final photometry of object(s) intemplatesystem with name of image and

time of observation.

photpipe log.txt output fromPHOTPIPEwith verbosity turned on.

photpipe report.txt breakdown of photometry values at various stages and the associated

errors for every object within eachimage.
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Suntzeff, B. L. Lee, M. Hamuy, S. González, W. Krzeminski, M. Roth, W. Li, A. V. Filip-

penko, R. J. Foley, W. L. Freedman, B. F. Madore, S. E. Persson, D. Murphy, S. Boissier,
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S. R. Kulkarni, T. J. Maccarone, P. Ḿesźaros, E. Nakar, P. T. O’Brien, R. A. Overzier,

M. de Pasquale, J. Racusin, N. Rea, and D. G. York. An extremely luminous X-ray out-

burst at the birth of a supernova.Nature, 453:469–474, May 2008.

A. M. Soderberg, S. Chakraborti, G. Pignata, R. A. Chevalier, P.Chandra, A. Ray, M. H.

Wieringa, A. Copete, V. Chaplin, V. Connaughton, S. D. Barthelmy, M. F. Bietenholz,

N. Chugai, M. D. Stritzinger, M. Hamuy, C. Fransson, O. Fox, E. M. Levesque, J. E.

Grindlay, P. Challis, R. J. Foley, R. P. Kirshner, P. A. Milne, and M. A. P. Torres. A

relativistic type Ibc supernova without a detectedγ-ray burst.Nature, 463:513–515, Jan.

2010.



Bibliography 221

A. M. Soderberg, R. Margutti, B. A. Zauderer, M. Krauss, B. Katz,L. Chomiuk, J. A.

Dittmann, E. Nakar, T. Sakamoto, N. Kawai, K. Hurley, S. Barthelmy, T. Toizumi,

M. Morii, R. A. Chevalier, M. Gurwell, G. Petitpas, M. Rupen, K. D. Alexander,

E. M. Levesque, C. Fransson, A. Brunthaler, M. F. Bietenholz, N.Chugai, J. Grindlay,

A. Copete, V. Connaughton, M. Briggs, C. Meegan, A. von Kienlin, X. Zhang, A. Rau,

S. Golenetskii, E. Mazets, and T. Cline. Panchromatic Observations of SN 2011dh Point

to a Compact Progenitor Star.ApJ, 752:78, June 2012.

K. Z. Stanek, T. Matheson, P. M. Garnavich, P. Martini, P. Berlind, N. Caldwell, P. Challis,

W. R. Brown, R. Schild, K. Krisciunas, M. L. Calkins, J. C. Lee, N. Hathi, R. A. Jansen,

R. Windhorst, L. Echevarria, D. J. Eisenstein, B. Pindor, E. W.Olszewski, P. Harding, S. T.

Holland, and D. Bersier. Spectroscopic Discovery of the Supernova 2003dh Associated

with GRB 030329.ApJ Let., 591:L17–L20, July 2003.

S. G. Stewart, M. N. Fanelli, G. G. Byrd, J. K. Hill, D. J. Westpfahl, K.-P. Cheng, R. W.

O’Connell, M. S. Roberts, S. G. Neff, A. M. Smith, and T. P. Stecher. Star Formation

Triggering Mechanisms in Dwarf Galaxies: The Far-Ultraviolet, Hα, and H I Morphology

of Holmberg II. ApJ, 529:201–218, Jan. 2000.

M. Stritzinger, M. Hamuy, N. B. Suntzeff, R. C. Smith, M. M. Phillips, J. Maza, L.-G. Strol-
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J. P. U. Fynbo, C. C. Tḧone, R. Śanchez-Raḿırez, S. Schulze, P. Jakobsson, L. Kaper,

J. Sollerman, D. J. Watson, A. Cabrera-Lavers, C. Cao, S. Covino,H. Flores, S. Geier,

J. Gorosabel, S. M. Hu, B. Milvang-Jensen, M. Sparre, L. P. Xin, T. M. Zhang, W. K.

Zheng, and Y. C. Zou. Discovery of the Broad-lined Type Ic SN 2013cq Associated with

the Very Energetic GRB 130427A.ApJ, 776:98, Oct. 2013.

O. Yaron and A. Gal-Yam. WISeREP - An Interactive Supernova Data Repository.PASP,

124:668–681, July 2012.

Y. Yoshii, H. Tomita, Y. Kobayashi, J. Deng, K. Maeda, K. Nomoto, P. A. Mazzali,

H. Umeda, T. Aoki, M. Doi, K. Enya, T. Minezaki, M. Suganuma, and B. A. Peterson.

The Optical/Near-Infrared Light Curves of SN 2002ap for the First 140 Days after Dis-

covery.ApJ, 592:467–474, July 2003.

D. R. Young, S. J. Smartt, S. Valenti, A. Pastorello, S. Benetti, C. R. Benn, D. Bersier, M. T.

Botticella, R. L. M. Corradi, A. H. Harutyunyan, M. Hrudkova, I.Hunter, S. Mattila,

E. J. W. de Mooij, H. Navasardyan, I. A. G. Snellen, N. R. Tanvir, and L. Zampieri. Two

type Ic supernovae in low-metallicity, dwarf galaxies: diversity of explosions.A&A, 512:

A70, Mar. 2010.

T. R. Young, E. Baron, and D. Branch. Light Curve Studies of SN 1993J and SN 1994I.ApJ

Let., 449:L51, Aug. 1995.

F. Yuan, C. Kobayashi, B. P. Schmidt, P. Podsiadlowski, S. A. Sim, and R. A. Scalzo. Lo-

cations of peculiar supernovae as a diagnostic of their origins. MNRAS, 432:1680–1686,

June 2013.

B.-B. Zhang, B. Zhang, K. Murase, V. Connaughton, and M. S. Briggs.How Long does a

Burst Burst?ArXiv e-prints, Oct. 2013.



Bibliography 227

F.-Y. Zhao, R. G. Strom, and S.-Y. Jiang. The Guest Star of AD185 must have been a

Supernova.Chinese J. Astron. Astrophys., 6:635–640, Oct. 2006.

W. Zheng, J. M. Silverman, A. V. Filippenko, D. Kasen, P. E. Nugent, M. Graham, X. Wang,

S. Valenti, F. Ciabattari, P. L. Kelly, O. D. Fox, I. Shivvers,K. I. Clubb, S. B. Cenko,

D. Balam, D. A. Howell, E. Hsiao, W. Li, G. H. Marion, D. Sand, J.Vinko, J. C. Wheeler,

and J. Zhang. The Very Young Type Ia Supernova 2013dy: Discovery, and Strong Carbon

Absorption in Early-Time Spectra.ArXiv e-prints, Oct. 2013.

F. Zwicky. On the Frequency of Supernovae. II.ApJ, 96:28, July 1942.

T. Zwitter, U. Munari, and S. Moretti. Supernova 2004et in NGC 6946.IAU Circular, 8413:

1, Sept. 2004.


	Declaration
	Abstract
	Publications
	Acknowledgements
	Contents
	List of Tables
	List of Figures

	Introduction
	Historical origins
	Modern SN Discoveries
	Classification of SNe
	Physics of the explosions and progenitor properties
	Thermonuclear SNe
	Core-collapse SNe

	Thesis introduction

	Image subtraction and the CLASP pipeline
	Image subtraction
	CLASP
	subpipe
	photpipe
	Examples of usage


	The environments of low-luminosity type I supernovae
	Star-formation tracers in SN hosts as diagnostics for the progenitor systems
	The environments of low-luminosity type I supernovae
	Introduction
	Ca-rich transients
	SN2002cx-like transients

	Methods
	Transient samples and observations
	Individual properties of the transients and their environments
	Ca-rich transients
	SN 2002cx-like transients

	Strength of association of transients with ongoing SF
	Host galaxy classifications
	Transient locations and ongoing SF

	GALEX NCR analysis
	Discussion
	Summary

	Creating and modelling the bolometric light curve of SN 2012bz
	GRB-SNe and the case of GRB120422A/SN 2012bz
	The bolometric light curve of SN 2012bz
	Analytical modelling of SN 2012bz

	Bolometric corrections to optical light curves of CCSNe
	Investigating the progenitors of CCSNe and the role of bolometric light curves
	Data
	Photometry
	SN sample

	Method
	Interpolations of light curves
	SED construction

	Results
	Flux contributions with epoch
	Optical colours and bolometric corrections
	The radiatively-/recombination- powered phase
	The cooling phase
	Fits to other colours

	Discussion
	Treatment of the UV/IR
	Time-scales of validity
	Reddening
	Extracting Sloan magnitudes from Johnson--Cousins SEDs

	SNe 1987A and 2009jf and PTF 12dam -- test cases
	SN 1987A
	SN 2009jf
	PTF 12dam

	Summary

	Creating and modelling bolometric light curves of 36 literature SE SNe
	Data
	Method
	The analytical model

	Results
	Bolometric light curves
	Modelling

	Summary

	Thesis summary and future research
	Thesis summary
	Future research

	The Normalised Cumulative Rank method
	The CLASP pipeline
	CLASP usage manual
	Quick Use
	Requirements
	The configuration files
	Command line
	GUI
	Output


	Bibliography

