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Abstract

Abstract

In our modern society we are exposed to many natural and synthetic chemicals. The
assessment of chemicalgth regard tohuman safety is difficult but nevertheless of high
importance. Beside clinical studies, which are restricted to potential pharmaceuticals only,
most toxicity data relevant for regulatory decisioaking are based an vivodata. Due

to the ban o animal testing of cosmetic ingredients in the European Union, alternative

approaches, such asvitro andin silico tests havebecome more prevalent.

In this thesis existing netesting approachgse. studies without additional experiments)
have beerextendede.g. QSAR modelsand new noriesting approacheg.g. in vitro
data supported structural alert systems, have been createmhaithaspecof the thesis
dependson the determination of data quality, improving modelling performance and
supportirg Adverse Outcome Pathways (AOPSs) wdlifinitions of structural ales and
physicechemical propertiefurthermoretherewas a clear focus ahe transparency of
models,i.e. approaches using algorithmic feature selectinachine learninggtc. have
been avoided. Furthermore structural aleystems have been written in an
understandable and transparsr@nner Beside the methodological aspects of this work,
cosmetically relevant exampled modelshave been chosee,g skin penetration and

hepatic steatosis.

Interpretatios of models as well as the possibility afdjustments andxtensions, have
been discussed thoroughly. Amdels usually do not depirtality flawlessly, consensus
approaches of various ndesting approaches aivvitro tests shoulde used tsupport
decisionmaking in the regulatory context. For example within raembss, it is feasible
to use supporting information from QSAR models, dockimg,vitro tests etc By
applying a variety of models, results shouldad to coplusiors beng more

usable/acceptable within toxicology
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Within this thesis (and associated publications) novel methodologies oriohassess
and employ statisticadata qualityand howto screerfor potential livertoxicantshave

been described-urthermore computational toplsuch as models for skin permeability

and dermal absorptiohavebeen created.
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Introduction

1. Introduction

1.1.Safety assessment of chemicals

As modern society demands a safer environment, the assessment of the harmful effects of
chemicals has become a crucial elenwrit t o d a y 6.sThetdesixeifor thd usegof
safe chemicals arises, in part, from a consumer perspective, which includes the
requirement for safety opesticides, foods, pharmaceuticals, cosmetics, industrial
chemicalsetc. It also arises within occupational healtle, for the assessment of workers
who are exposed tachemicals in an industrial settingr it may come from an
environmental perspective, for example the effects of chemaal$ora, fauna and
ultimately humans, via the food chain. Advances in technolodii@ériast century have

led to an intensive production of drugs, cosmetics, food products, pesticides, munitions,
synthetic fibres and industrial chemicaSallo, 2001; Cronin, 20)3 There are many
other, often less recognised, sources of chemicals tohwié are exposed; substances
may originate, for exame| from fungi, botanicalsr from the petrechemical industry
(includingtheir combustion productsChemicals exposure may be localised or might be
long-range, for instance transportation via air ptidin (Alamet al, 2013) owia the food

chain (Chenget al, 2015).

The number of potential organic chemical compounds is almost unimaginably large, and
it is impossible to limit exposure of chemicalsr seas we live in a world made of
chemicals. Deste this, the toxicological/pharmacological effects are known for only a
very small proportiorof chemicalseven for commonly used compounds (Cronin, 2013).

As a result it is difficult to ensure the safety of chemicals, or the absence of associated
advere effects. Exposure to many chemicals, pharmaceuticals and pesticides being the
mostactiveextreme examples, is controlled through national regulations. It is the purpose

of regulatory authorities, such as the US Food and Drug Administration (FDA) efssass



Introduction

chemicals for their safety by gathering knowledge from experimentation (eteabn
methods), feedback from human exposure and utilising human expertise to evaluate the
data enabling risk assessment. Thus regulators use toxicological informatiorcific spe
substances to define thresholds, which are thought to be safe to man and the environment
for the intended use of the chemical (Merrill, 2001). It is important to distinguish between
contaminants and compounds used deliberately in food or cosmeticctspe.g.
preservatives. For the latter, there is usually more information available, for example how
to detect them analytically or the principal effects they have on biological systems.
Contaminants or impurities, on the other hand, vary widely in terms of dingil are

often dependent from eduaisedand/or the manufacturing process (Gallo, 200é&(rill,

2001; Feigenbaurret al, 2015), they may also be as a result of compound degradation
(biotic or abiotic). Despite the many substances created unknowinighinwthe
manufacturing process, mostly in low concentrations or even traces, a great number of
chemicals (and mixtures) are produced wittingly. These substances can be ingredients for
consumer produstor intermediates made for further chemical engingeffaustman

and Omenn, 2001).

In the context of better risk assessment for the higheauction volumechemicals, the
Registration, Evaluation, Authorisation and restriction of CHemicals (REACH)
regulation, which is enforced by the European Union andlatggl by the European
Chemicals Agency (EChA), has been an immense undertaking far awdecade.
REACH addresseproductionquantityand use of chemicals and their potential impacts
on human and environmental health. Here the focus lies on evaluatingcalserand
particularly those produced in large quantiteg. greater than ten tonnes per year (EC,
2006). For the appropriate evaluation of chemicals, not only within the context of

REACH, a sound understanding of toxicology and exposure is needed.
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1.2.Toxicology and its application

Toxicology is the science of poisons. It is a centuries old scientific discipline, with the
thoughts of the Swiss physician/alchemist Paracelsus from theelgury still relevant
today. Paracelsus stated thaly substancean be poisonous, only the dose differentiates
the nonpoisonous from the poisonous. This statement gives rise to our understanding that
the intrinsic risk of a chemical is a function of its implicit hazard and the exposure
scenario, as such toxicology red®itself as a notrivial task (Gallo, 2001). Historically
toxicology is an experimental and observational science with the use of animals to
identify hazard at the heart of most studies. Some of the more common, and relevant to
this thesis, toxicologidaprocedures that have been used for hazard identification are

introduced below.

1.2.1. Acute toxicity

A standard way to measure acute toxicity (normally associated with lethality) is the LD
(the single dose of a substance that causes death in 50% of an animal population). These
values, usually extracted from a dessponseurve, allow for the differentiation of

those chemicals with high acute toxicity from chemicals with low acute toxicity
However, acute toxicity may be influenced by many ¢nbamically related) factors

such as dosing regime and route, species, age, weight and sex. However lethality, as in
LDso, is not the only endpoint of interest when performing acute toxicity anirsiahge

Doses and exposure patterns, where for example blood chemistry or kidney and liver
histology is pathologically changed, can reveal potential risks of chemicals and form the

basis of longerm studies (Barile, 2004).

1.2.2. Chronic toxicity
In additionto testing for acute toxicityi.e. shortterm, high dose exposure, with the aim

of identifying a lethal dose), there is also a great interest ifatbal effects and toxicity

3
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caused by repeated dose exposure. Chronic or repeated dose toxicity isbyalosegl

term, continuous or fluctuating sublethal exposure of a toxicant. Typical repeated dose
exposure scenarios are subacute, subchronic or chronic, and definitions and exposure
guidelines for these may vary. This may be particularly important for asudest which

have a long halfife and a tendency to be accumulated and reveal adverse effects after
long-term exposure (Barile, 2004). In addition, identifying the relevant mechanistic
pathways and kinetics associated with chronic toxicity is a compldxinbreasingly
important, task. Further, there are compounds which interfere at low doses with the
human hormonal system, such as endocrine disruptors, which are likely to cause

pathological changes when exposed chronically (Fuhehah 2015).

1.2.3. Other dfects

Further genotoxicityd.g.due to mutagenicity) and immunotoxicological responses are of
great interest for applied toxicology and risk assessment as these can be triggered by very
low doses Faustman and Omenn, 2001; Barile, 2008hese may be @htified by
specific, often mechanistically derived, tests such the Anes$ for genotoxic
mutagenicity. These effects are outside the scope of this thesis and are not considered

further.

1.2.4. Experimental considerations when testing

When assessing the exjpeental determination of toxicity, the route of administration,
e.g.topical, oral, inhalation or subcutaneous, intravenous and intramuscular injection, and
the formulation of the drug/toxicant.€. particle size, excipientgtc) are important
parametersWhile an intravenous dose of a drug is ususyistemically availablean oral

dose is most often absorbed more slowly through the gastrointestinal tract and eventually
metabolised for example by the firgpass effeciand further metabolisrby repeated

passing through the liverFurther novel formulations can deliver drugs to specific target
4
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tissues,e.g. drugloaded nanoparticle systems. Hence, both route of administration and
formulation play important roles for the absorption, distribuaad finally the biological
effects of a drug/toxicant. These lessons, which were mainly learnt in the field of
pharmacology, are of great importance for understanding and applying modern
toxicology (Ranget al, 2007a; Barile 2004). The correct dosing eoist also essential to
understand the effects of a particular exposure scemnaia, pharmaceutical applied as

an oral dosage form should be tested orally in an attempt to mimic (within reason) the

kinetics of uptake, distribution and metabolism.

1.2.5. Dataavailability

It has historically been a great problem to obtain appropriate, high quality and relevant
toxicity data for a variety of chemicals. It is assumed thamywof the available toxicity
data arein private handsge.g. within pharmaceutical compas (Casest al, 2013;
Tralauet al, 2015). While there are often many data for acute toxieity,LDso values

for rodents, and local (adverse) reaction, such as skin and eye irritation, there isfa lack
publically available data and hence a shortt in understanding obiological
responses associated with chronic toyicithe ever increasingumberof chemicals
produced and the introduction of expectations, such as reducing or repdadmal
testing, is the settindor 215 Century Toxicology (Cronin, 2013; Grohet al, 2015;
Vinardell, 2015. Within this thesis €.9. Chapters 2 and 3) efforts to supplement the
availability of chronic toxicity data, as well as understand the quality of data, are

presented in response to this need.

1.2.6. Application of toxicological nformation
There are many applications of toxicological information, but for the purposes of this

thesis risk assessmemnglating to regulatory acceptance of a chemisatonsidered in
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more focus, as introduced in Section 1.3. A ferthapplication of toxicological
information is the requirement to find ethical, eeffective and scientifically valid
alternatives to animal testing that has been a driving force behind the researadieport

thisthesis; more details on this are giverSection 1.4.

1.3.Regulatory toxicology

Reguldory toxicology is a disciplinevhich is intended to ensure that the world, in
chemical terms, becomes a safer place. It combines toxicological expemise,
knowledge of exposure, kinetics and mechanisms, with risk assessment approaches to
create regulations. Regutay toxicological activities take plagartially in industrye.g.
companies launching new consumer products, and partially in governmeritatiors.
Taking the US as an example, the FDA is the responsible governmental institution for
licensing food and medical products, such as drugs. Cosmetics do not need gkcense
se but still they need to be regarded as safe before launching a pricelymbtentially
hazardous chemicals have to be excluded by regulatory toxicologists. With regard to
human and environmental health, the US Environmental Protection Agency (EPA) is
responsible for the assessment of the impact of pesticides or indak#alicals and

their exposure to man and environmental species (Merrill, 2001). In Europe there are
institutions, such as the European Medicines Agency (EMA) and the European
Environment Agency (EEA), with similar responsibilities as FDA and EPA respactivel
National regulations ofEU member tates still may vary, for example dueot
recommendations from domesiistitutes,e.g. the German Federal Institute for Risk

Assessment (Bundesinstitut fur Risikobewertung; BfR).
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1.3.1. Safety and legislation

When assessingafety for different types of products, it is important to consider
individual riskbenefit ratios. Drug safety for example, often dictated by therapeutic
necessities, has a quite unique and complex wapmdidering the riskenefit ratio for
potential @tients. This consideration is inevitably associated with pghecess of
regulatory approvabf pharmaceutical drugsGenerally pharmaceutical drugkave to

pass many stages before being launched for therapeutic purposes. After many years of
drug developrant and preclinical testingpased on animal trailsnly a fev drug
candidates will entethe clinical phases. IAthree clinical phaseseed to be passed
consecutivelywhereupon the last phasdifical phase Ilf would bea multicentred tral

with 1,000 to 3,000 patients. Only after thatin a drug be submitted to regulatory
authorities for licensingFollowing the launch of a new drug pestarket surveillance
(often referred to as pharmacovigilance or phase V) is the responsibility of the
pharmaeutical company; this means monitoring the drug for adverse drug reactions and
side effects, and withdrawing a drug from the market, should the need\agisél( et al.

2001; Barile, 2004Ranget al, 20071).

Legal requirements for ngpoharmaceutical q@ducts, such as biocidal and plant
protection productse(g. pesticides), food products and diverse consumer prodegs (
toys, textile products) can be quite different. In food safety, for example, food additives,
flavouring substances, novel ingredients, genetically modified orgamsed products

and contaminants need to be assessed as being safe before bringing thibve miairket.

The legal responsibility for consumer goods usually lies with the producing company.
With regard to the safety assessment of biocidal and plant protection products, the legal
focus lies on metabolites in food, feed and groundwater, and thessasent of

cumulative effects in organism and soils (Tradaal, 2015).
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1.3.2. The cosmetics legislation

According to the European Cosmetics Regulation, a cosmetic product made available on
the market has to be safe for humans when used normally and regsétatie, the
Cosmetic Directive places the responsibility for product safety clearly on the company.
Nevertheless, the Scientific Committee on Consumer Safety (SCGS)dgs the
EuropeanCommission (ECywith scientific advice on the safety of cosmetiogucts EC

2009;Vinardell, 205B).

Generally cosmetic ingredients should be iniegt,they should not have any significant
pharmacological or toxicological properties. Of course, there are exceptions such as, for
example zinc pyrithione, a fundbacterostatic substance used in antidandruff shampoo
(Marks et al, 1985), or hair dyes, such as aromatic azo dyes, which can act as
mitochondrial toxins (Nelmst al, 2015). Compounds of concern are often found in the
functional classes associated with colousa preservatives and UV filters. However,
exposurej.e. dose and type of application, plays an important role for the risk assessment
of a cosmetic ingredient. In other words, considering the quantity and type of usage is
also the responsibility of ingtry and regulatory authorities.§.through the SCCS in the

EU) (Vinardell, 2015).

Since March 2013, European legislation has banned animal testing for any cosmetic
ingredient marketed within the EUWEC, 2009. Proposed alternative testing methods
include in vitro tests €.g. mechanistically based mutagenicity assays) endgilico
approaches (such as computational methods, often based on histonoal toxicity

data). Current challenges revolve around the need for alternatives, especieliyofoc

and reproductive toxity (Adler et al, 2011). Examples where succeslsf validated
alternativesarepresent aréhe local lymph node assay (LLNA) used for skin sensitisation
and diverse alternativedor the Draize rabbit eye testo evaluaé of eye iritation.

8
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However, current alternative methods still have potential for optimisgtemicularly as
someof the methodsareex vivoassaydqi.e. using tissues of animals) and hence animals

are still used for testin@AltTox, 2015 Roberts, 2015Yinardell, 2015.

Whilst modern animal welfare is often considered to be driven by companies, such as
Lush (Lush, 2015) and organisations, such as the People for the Ethical Treatment of
Animals (PETA, 2015), there have Ineattempts to reduce the numlméranimat used

and to generally increase animal welfare standards for more than fifty years. For example
Russel |l and Bu referis tothe réplacemseat, reduction ant refinement of
animal tests, is a paradigm, which has existed since thd9ats (Russell and Burch,
1959). Considerable success regarding the 3Rs has already been seen within the
approaches adopted by institutions such as the Organisation for Econoimpei@ion

and Development (OECD)Y.he OECDaims to stimulate economic pregs and world

trade within a democratic and capitalistic frameworkoined by its European and
American member stateSThey play an important roldy providing international
guidelines not only in the field of toxicologyt-or instance, included within ¢hOECD

test guideline for acute eye irritation/corrosion (OECD, 2012), the usage of topical
anaesthetics and systemic analgesics is described with the aim to decrease animal
suffering. Furthermore, testsuch as reduced LLNA (rLLNA), which uses fewer
expermental animals as compared to the conventional LLNA (itself a less invasive test
using fewer animals than thguinea pigmaximisation tests), are promoted (Roberts,
2015). However, despite the importance of assessment of skin sensitisation for dermally
applied products, it must be pointed out that the rLLNA isiravivo assay,i.e. novel
cosmetic ingredients tested with the rLLNA would not be allowed for sale in the EU

accordingtdt he ECO6s Cos (E€t2009.s Directi ve
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133. The European Commi ssionb6s rol e
The EC plays an important role in the advantealternative testing methods, ost
notably with the SEURATL A Saf ety Evalwuation Ultimate
clusterr SEURATL i s a 50 million euro project f
Programme KP7) and Cosmetics Europe, the European trade association for cosmetic,
toiletry and perfumery industry. Within SEURAT, for five years (201:2015), research
facilities from industry and over 70 European universities and SMEs have been
developing noranimal test methods for systemic toxicity following repeated exposure
etc The SEURATL cluster is divided into sevenstinct projects (Gocht and Schwarz,
2014; SEURAT]1, 2015:
1T SCR&Tox, fnAnStem Cells for Relevant ef fi
Toxicol ogyo
1T HeMi Bi o, fAHepatic Microfluidic Bioreac
T DETECTI VE, ADetection of endpoints an
usinginvitros y st e ms 0
T COSMOS, A limstlio® godealst far the prediction of human repeated dose
toxicity of COSMetics to Optimise Saf
T NOTOX, A P r e-termctoxic effpctslusing gomputer models based on
systems characterisation of organotypi
T ToxBank, ASuppor t lysis@ndiserviciaggof alternatide tastang a
met hods in toxicologybo
T COACH, ACOordinati on of projects on

repeated dose systemic toxicity testi:]

10
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One of the research projects within the SEURRATIuster is the COSMOS Project. As

the full titte and sema c r o ny m, i siliecad nmodels fort thee gorediction of human
repeated dose toxicity of COSMetics to C
develop computational methods. Computationathm#s demand sufficient data, the
requirement for which is often neglected, but is actually a crucial part for anyrilza,
scientific approach. Therefore, building a databasevant for cosmeticwas one of the

major objectives of COSMOS. The-sal ed A COSMOS DBO0O was r el
freely available resource in December 2013. This database can be regarded as the
backbone for modelling and readross approaches used to assess cosmetic ingredients

within COSMOS (Richaret al, 2014).

In addition, the refinement of the Toxicological Threshold of Concern (TTC) approach
and its extension to cosmetics ingredients is a major aim of the COSMOS project. As
humans are likely to be exposed to thousands of chemicals in thdimigeand it is
impossibé to test every compoundgainst every possible endpoint, feasible and
pragmatic approaches for risk assessment are necessary. Originally deriving from the
food industry, the TTC approach applies margins of safety based-obseoveekeffect

levels (NOELs)i.e. the highest concentration of a substance not causing any toxic effects
in vivo. The so calculated acceptable daily intake (ADI) should ensure consumer safety

(Munroet al, 1996 Richarzet al, 2014; Feigenbauret al, 2015.

Many challenges of the COSMOS project lie within the field of kinetiespredicting
dermal absorption and modelling the distribution of chemi@afer tophysiologically

based pharmacokinetic models). The distribution of a chemical within tissuefs is
particular interest regarding potential target organ toxicity. Besides Kkinetic aspects,
specific mechanisms of toxicity we also investigated within COSMOS (Richatzal,

2014). For example, many mechanisms of toxicity have been identified latbin wie

11
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Adverse Outcome Pathway (AOQRlescribed in Section 1.4.2) framewokkr{ken et al,
2013. AOP-related QSAR models, for example for compounds causing fatty liver
(hepatosteatosis) via agonism of the liver X receptor (LXR; a nucleaptoece
responsible for lipid regulatiommongst othejsare under developmefiioravanzcet al,
2013;Richarzet al, 2014. Further screening toofsr hepatotoxicitypbased on structural
alerts and/or physieohemical properties have been developed within G@&SMOS

project €.g.Nelmset al, 2015 Steinmetzt al, 201%).

1.4. 215t Century Toxicology

There are many international endeavours, including projects within the Horizon2020
funding programme in Europe and Tox21 in the U&ltwidatetoxicity pathways at a
molecular, cellular and histological level. By employsystems biologyi.e. genomics,
proteomics and metabolomjcsand robotsupported quantitative higihroughput
screeningqHTS), a large amount of data aaed will be, genetad (AtteneRamoset al,,

2013; Gasparet al, 2012). Tox21, for example, screenkemicals usingover 75
biochemical and celbased assays resulting in information for different perturbations of
signalling pathways, inflammatory response induction, DNAmalge, general
cytotoxicity etc. If these,and the associated existimgvivo/ clinical, data are interpreted
well, a significant wealth of knowledge could be created and exploited for
pharmacological research and toxicological risk assessment. One »ample is the
work of AtteneRamos and colleagues regarding mitochondrial toxicity; they defined
chemical (sub)structures responsible for decreasing mitochondrial membrane potential

(AtteneRamoset al, 2015).

Overall the pharmacological and toxicologickhowledge obtained from research

projects, such as Tox21, will lead to new biomarkers, safer drugs and, in general, a

12
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deeper understanding of biochemical interactiangvo, which would benefit many life

science disciplines and regulatory bodi@agparet al, 2012;AtteneRamoset al, 2013.

1.4.1. Alternatives to animal testing

Animal testing is usually a means to obtain information regarding the safety (or specific
effects) of chemicals relevant to humans. Human trials, wieclsewould provide nore
relevant data, argenerallyregarded as unethical and limited to clinical triplstch tests

etc, where mostly nostoxic doses are administeredlithin 215 Century Toxicology
animal testing is becoming regarded as unethical, and even lackingdfiscezadibility,
leading to alternative methods being investigatdséell and Burch, 1959SEURAT-1

iIs a good example how toxicological research can be conducted without animal testing,
I.e. batteries of differenin vitro tests on the one hand and computational modelling on

the other.

Similar to species differences in susceptibility towards different cheminal#tyo to in

vivo extrapolation is a difficult challenge. Approaches for alternative testhads
principally come fromin vitro studies e.g. the hepatic microfluidic bioreactoi a
simulation of the human liver, andh silico studies mainly in the form of
physiologicallybased pharmacokinetic (PBPK) models predicting target organ
concentrations of chemical&odt and Schwarz, 2018EURAT-1, 2015) Furthermore
there are nottesting approaches aiming to make predictions of toxicity directly from
chemical structure and property, mainly based on QSAR;aeaxs and expert opinions,

which are sometimes summarisgwtier the banner of predictive toxicology.

13
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1.4.2. Predictive toxicology

Predicting the toxicity of an untested chemical is of great interest for many different
reasons, such as animal welfare, or simply to save the costs of testing and resources
involved. Whatever the motivation is, similar methods are applied. Better knothinase
include Quantitative Structwctivity Relationship (QSAR) models and the resatoss

(also known as the category formation) approach. While QSAR models are usually based
on one or more mathematical equation(s) exploiting physiemical and other
descriptors to predict toxic effects, reackoss, as the namsuggest, is a direct
extrapolation of toxicological effects from structurally similar compounds, usually
performed by expertsCfonin, 2004; Cronin, 20H3 Schultzet al, 2015. Further the
concept of the Adverse Outcome Pathway (AQI),describing a sequence of causally
linked events at different biological levels, is increasingly used to predict toxicity
(Vinken et al, 2013; Vinken, 2015). An AOP is shown schematically in Figure 1.1; the
first key event of an AOP, the molecular initiating event (MIE) is followed by cellular
and tissue responses, which may ultimately result in an adverse effect to an organ,
organism or population (Anklegt al, 2010). The MIE represents the initial intetran
between molecule and the target and hence represents a significant source of information
to develop structuractivity relationshig (SARs) as part of mechanistically based
computational profilers for toxicity. Examples of MIEs include covalent bigdo DNA

and receptor binding (Gutsell and Russell, 2013; Adieal, 2014). The AOP framework

is, for exampleused in Chapter 5 andt® predict potentially toxic compounds

14
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Adverse Outcome Pathway

\
Toxicant Molecular Level Cellular Level Tissue/Organ Level Organism Level
: Gene Activation 3
Receptor/Ligand Altered Physiology Lethality
Interaction
P Protein Production | ired
Chemical ‘ - ‘ Disrupted Homeostasis # mpaire
Properties DNA Binding Development/
Altered Signalling ducti
Altered Tissue Reproduction
Protein Oxidation ;
Protein Depletion Development/Functlon
Cancer

Figure 1.1: Schematic view of thAdverse Outcome Pathwéiyamework(adapted from
Ankley et al, 2010)

Computational approaches, sometimes referred o sifico testing or virtual screening,

are often based on QSAR models, which incorpopdtgsicachemical and structural
features in a mathematical context towards an endpoint. Endpoints which have been
successfully modelled by predictive QSAR models include aaagfeatic toxicity
(Kénemann, 1981; Verhaat al. 1996), hERG (human Ethérgo-go-Related Gene)
related toxicity (Gavaghaet al, 2007), mutagenicity (Benigni and Giuliani, 1994), skin
permeability (Potts and Guy, 1992) and skin sensitisation (Roberts and Williams, 1982).
Naturally QSAR models have been applied to numerous otheoiatsi@nd in many
other disciplines tooge.g. receptor binding within drug developmertiowever what
makes the models developed for aquatic toxicology, hHE&&ed binding, mutagenicity,

skin sensitisation and permeability so significant, is that the models are robust and
applicable to a large variety of chemical compounds. QSAR modelvetispecific

class of compounds.e. having a narrow applicability domain, are often referred to as

local QSARs.

The logarithm of the octanelater partition coefficient (log P) plays an important role in
many QSAR models, such as in aquatic toxicolagg skin permeability réfer toPotts
and Guy, 1992Verhaaret al, 1996). Log P, also known as log¥ (particularly in

environmental sciences), is a measure of lipophilicity and hence is assumed to be an
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excellent surrogate for the partitioning andakg of a compound through a biological
membrane. As well asxperimentally measuring lod?, it is well predicted from

topological descriptors or structural fragments (Ognichestlad, 2012).

As recognised in the late ¥%Cent ury by Charl es Ri chet
sol ubl es, moins ils sont toxiqueso (the
relationship of biological effects and watasolubility of chemical compounds is very

well established (Riakt, 1893). With regard to pharmacology and what characterises an
orally bioavailable drug, log P is an often mentioned parameter. The rationale is mostly
based on simple kinetics, such as passive diffusan,log P is used to describe the
ability of a @mpound to pass through a biological membrane (Lipieski, 2001), but

there are mechanistic rationales too, such as the binding affinity towards receptors and
transportersréfer to hydrophobic binding pockets) (Caron and Ermondi, 20QBAR

approachks, particularly involving log P, are usdédr examplein Chaptes 2 and 3.

Predictive toxicology does not have limitations regarding the techniques applied in order
to obtain the predictions of toxicity. That is why a wide range of methods, from machine
learning to local QSARs and expert systems, is applied and investigutted bene:

many approaches are combinations of different methods).

1.5.Aims of this work

Two worlds oftencollide in modern societythe commercial and the consunveorld.
Here the commrcial world, predominantly backed by large global industries, is
supplying the consumerés demand for iinno
This includes products such as pharmaceuticals, cosmetics, clothing, toys and food.
Within a capitaligt competitive environment it is important to deliver a product with an

acceptable safety profile without compromising costs and/or quality. From a chemical
16
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perspective, new compoundsleally cheap to produce and functional, need to be
assessed regarditigeir safety. As explained above, this is no easy task. To add a further
challenge to this task; animal tests asnned for new cosmetiogredients marketed
within the European Union. In a nutshell, there is a high demand fatro andin silico
methals applicable for safety and risk assessment. Regardsilico methods, the work
presented in this thesis is antdbution to the current state-the-art. The following

topics are addressed within this thesis.

- Data quality: Data are often erroneodigr many reasons. However, having the
appropriate quality of data is crucial for modelling and raaass. In particular,
biological data (in comparison to physical or chemical data) are often associated
with considerable error due to the complexity ebays and the difficulty of
assigningendpoints. For example, @harmacological dosesponse relationship
involves the formulation, dosing and administration of a substance to a group of
animals, measuring &iological endpoint and applying statistical aysis to
obtain an Elp value. To overcme thesepotential pitfalls, large dataes have
been investigated by statistical means to build tools for an unbiased way to assess
data quality (efer toChapter 2 and 3).

- Kinetics: Pharmace and toxicokinetics, Wwich by definition encompass
absorption, distribution, metabolism and elimination of a xenobiotic substance,
are of great importance for the assessment of safety of chemical compounds. For
cosmetics, in particular, skin permeability and dermal absorptienof great
interest as many products are applied dermally,shampoo, skin cream, make
up. Approaches, such #éisoseproposed by Lipinsket al. (2001) for oral drug

absorptionand Potts and Guy (1992) for skin permeability, have been refined and
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adjusted towards 241 Century Regulatory dxicology challenges, to support
regulatory decisiomaking ¢efer toChapters3 and 4).

- Mechanistically based modelling:There is a myriad of different modes of action
in the area of toxicology. For example genatdy, including mechanisms such
as DNA adduct formation, and different enzyraad receptemediated toxicities,
very often extensions of pharmacological research, have been investigated in the
last century.Highly relevant tocosmetics is hepatotoxicityaused by chronic
exposure. Different mechanisms of toxicity have been studied in thiss,thes
especially nuclear receptor interactiassociated with hepatosteatosis. Ligands
for these receptors can lead to adverse effaatn if absorbed in small quérds
T particularly if absorbedover an extended time period. Therefore larg&itro
datasets have been investigated additionallintgivo and clinical data to develop

screening tools for potential hepatotoxicamé$er toChaptes 5, 6 and 7).

Beyond the models and tools built, an overall aim is to propose ideas how to build
and interpret new models, and of couhssv to use them in combinatida support

safety assessment in the consumer care industry. This research has been undertakel
within the COSMOS project and hence, it is funded by the European Commission and

Cosmetics Europe.
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2. Methods for assigning confidence to toxicity data with multiple

valuesi identifying experimental outliers*

2.1.Introduction

High quality data are preferred for model development in predictive toxicology. They are
also required as a benchmark in the assessment of alternative assays and to enable
analysis of toxicological pathways. Recentlyitfier toxicity data have become available
through sources such as the OECD QSAR Toolbox, release of information from dossiers
submitted to theeCHA, the OECD eChemPortal and many other sour€eenfn and

Schultz, 2003Fourchet al, 2010; Przybylaletal., 2012; Péret al, 2013.

When using these expanding resources of toxicity data for risk assessment purposes anc
modelling, the qualityand reliabiliyy of the data must be assesdedr instance, given

dats et coul d be too A pQ@INARmodelling bt etill satsfaabofy g u
for the prioritisation of chemicals for testing or regulatory classification and labelling.
Whilst QSAR modelling is dependent on a sensitive statistical anagdygisnultivariate
regression, to define reasonable descriptors, regulatory use of toxicity data may only need
a rough estimation of hazard as a waate assumption, with extrapolation factors being

applied (Nendzat al, 2010).

Reliability is the measure ohé¢ extent of repeatability and reproducibility of a toxicity

test for a particular chemical (OECD, 2003). As repeatatality reproducibility are not
known for most data, a variety of approaches to assign reliability and confidence are used.
Assessing datquality in predictive and computational toxicology is, however, a difficult

task Klimisch et al, 1996; Przybylalet al, 2012;Yanget al, 2013. There are a number

* This chapter is based on a published article (Steinme#&t al, 2014)
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of established criteria to ascertain ttediability of toxicity data. The most commonly
applied are those proposed by Klimisat al. (1996). These authors discussed data
attributes such as reliability, relevance and adequacy and provided a scoring system to

categorise data into reliability classes:

[ERN

. reliable without restriction

N

. reliable with restrictions

w

not reliable

4. not assignable

Przybylaket al. (2012) applied the Klimisch scheme and an updated scoring approach,
based on ECHA guidance on information requirements and chemical safety assessment,
to dAreal | i towicity dpta babvésenmsin ttusfork, the focus was on
availability of information, consistency of study design, adherence to Good Laboratory

Practice (GLP), test chemical identity and toxicological data.

Whilst reliability (the backbone of an experiment and the resulting toxicity data), and
relevance (the usefulness of thesulting data for the desired purpose such as risk
assessment) in principle require interpretation by experts, the determination of the
reliability of data can be as welKlmisshuppo
et al, 1996; Przybylalet al, 2012;Yanget al, 2013. When dealing with large sets of
toxicity data, from multiple sources, there is often more than a single data entry for each
compound. I n this investigation these da
Even for a wi-defined assay such as the acute fish toxicity test, considerable variability

in potency is seen within the results for the same compound (Hebwat 2009). If

toxicity data are to be extracted for modelling from the increasing number of databases

then criteria to identify reliable values are required. In particular, it would be helpful to be
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Frequency

able to score data for reliability. In this way, it may be possibletionally combine

what may be considered to be low quality data to obtain a more red@bie

Another interesting aspect of the quality control and assurance of toxicity data was
investigated by Ruusmann and Maran (2013) who undertook an extended data harvest for
the Tetrahymena pyriformignhibition of growth assaytlie Tetratox assay). H®y
anal ysed t he Ati melineso associated wi t
experimental data and so examined when, and how, certain data were reported in the
scientific literature over time. These authors came to the conclusion that mathematical
manipulation (rounding, building average&) and, of course, human error has led to
differences in the data reported. For some compounds, there are many ttat@ifrom

the same testhere is, however, no unified strategy to select which of thetdaise, or

how to use them. Often these toxicity data for the same compound have a normal
distribution that makes it relatively easy to define a representative value wieethaen or
arithmetic mean. Datahich fall outside the normal distributiomay bet e r me d i d ¢
out | ii.e theydbmay be subject to considerable experimental error. Figure 2.1
illustrates the issues of the presence of a data outlier in reducing certainty in the

calculation of the mean or median.

31 Mean 5000 31 Mean 5500

A N StDev 1225 = StDev 1958
Median 5000 Median 5000
N 9 N 10

N

Frequency

-
[

] =

T T T T T 0 T T T T T
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
EC50 in ppm EC50 in ppm

Figure 2.1: Normalbell-shapedistribution bellfor a sample datet (representative E€values

for different sources f or o n stribotiom(p)aodnvtha wi t
dataset containing an outlier in the upper range (B) demonstrating theiskeay kring to the
distribution in addition to the elevated Standard Deviation (StDev)
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In principle, the arithmetic mean is a good way to consolidate associated data points to a
single value. Here, every data point is taken into consideration, in equal parts, to build a
new valuei the arithmetic mean. In contrast the median is the middieevaf a
distribution. When dealing with high individual spreads, the median is the more stable

approach (Rowe, 2007).

Confidence scoring is based on the number and variability of conflicting data. In this
context, the relative standard deviation (RSDmetimes referred as coefficient of
variation), as a quotient of standard deviation and arithmetic meanessgpr the
variability of a dataet of toxicity values for one compound (Rowe, 2007). Thus a high

number of entries per compound and a low RSD ledugh confidence andce versa

In order to investigate the role of variability in toxicity databases and explore the
possibility of applying statistical approaches to identify reliable toxicity data, historical
toxicity data, measured in the Microtoxsay (and its precursors), were considered. Such
data have been published since the early 138@sfutka and Kwan, 1981; Charyg al,

1981; Bulichet al, 1981; King and Painter, 1981; Curétal, 1982; Yates and Porter
1982; Dezwart and Slooff, 198Ribo and Kaiser, 1984) and by the company Beckman
Instruments,Iinc. (now Beckman Coulter, Ifc.The Aliivibrio fischeri toxicity assay
(Microtox) is a standardised aquatic toxicity test based on the marine bact&rium
fischeri (also known asPhotobacterium fischeriand Vibrio fischer). The phote
luminescent bacteria are exposed to a chemical at different concentrations with the
reduction of light emitted being regarded as the effect. The results from the Microtox
assay include the concentmatiof a compound where light intensity is reduced by 50%
(ECs0). The pT value is the negative logarithm of thesg&Qor the purposes of this
chapter the units are in mmoftLand the measurement has historically been taken at

different exposure times (85 and 30 minutes) (Kaiser and Palabrica, 198% theA.
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fischeri toxicity assay is a webtandardised study, little experimental variability is
assumed. However, there are some data, which can be regarded as low quality, which
may be attributed to iet-laboratory variation and experimental error. Cronin and Schultz
(1997) furthermore suggested that there is no significant influence of exposure times (5,
15 and 30 minutes) on the toxicity of compounds, which act bypotar narcosis. In this

study nonpolar narcosis is taken to be a rspecific mechanism of acute toxicity
brought about by membrane perturbation (van Wezel and Opperhuizen, 1995; &llison
al., 2008). As such, in aquatioxicology, it is wdl established that thiegarithm of the
octarol-water partition coefficientl¢g P) is strongly related to the toxic potency of such

compounds (Verhaaat al, 1992; Croniret al, 1998; Zhacet al, 1998).

The aim of this investigation was to develop methods and criteria to quantify the
reliability of toxicity data when multiple values from different experimental
determinations are available for the same chemical. To achieve this, historical literature
data, measured in thfe fischeriassay were used. The effect of data quality was assessed
by analping log P-based QSARs for nepolar narcosis. Specifically, this involved:
updating the Microtox data compilation of Kaiser and Palabrica (1991); identifying the
nonpolar narcotics within those data; developing statistical criteria for determining data
reliability and; the development of IoB-based QSARs for nepolar narcosis with

different levels of quality confidence score.

2.2.Methods

2.2.1. Toxicity data

A literature search was conducted to obtain a l&géscheritoxicity dataset ¢efer to
Appendix A.1). The toxity data of the compilation published by Kaiser and Palabrica

(1991), consisting of 135@\. fischeri ECso entries, were supplemented with more

23



Methods for assigning confidence to toxicity data with multiple values

recently publishedA. fischeri assay data Subsequently salts, mixtures, polymers,
organometals and dupdites(data from the same studyjere removed from the dait.

In the literature where different values for different exposure times were given, the result
for the | ongest exposure time within th
Toxicity datacorresponding to shorter or longer exposure times (t < 5 min; t > 30 min)
were not considered. All g values were converted to the negative logarithm of the
EGso in mmol LY. In common with the original terminology of Kaiser and Palabrica

(1991),thiswa t er med ApTOo.

2.2.2. Chemical structures

Simplified Molecular Input Line Entry Specification (SMILES) strings for all compounds
from the A. fischeri toxicity dateset were retrieved from the ChemSpider and
ChemlDplus online chemical databases. Furthermore Kjsl were created with the
OpenBabel software (OpenBabel, 2013) using SMILES strings as input to identify
identical compounds. ubsequently the daat was cleanedi.e. salts, polymers,
inorganics and redundant data (data already identified in othextlitey were omitted
from the dataet, so that only organic compounds with at least one unique toxicity value

per compound remained.

2.2.3. Assignment to mechanism of action for acute aquatic toxicity

To obtain information about the mechanism of action, the SI8IkEings of the toxicity
data wereentered into the Torte softwarev2.5.0(IDEAconsult, 2013) Toxtree holdsa
variety of toxicologicdly relevant decision trees useeither for classification of
chemicals or thelucidation of potential MoAsThe mainpurpose of the software is the
classification of chemicals in the area of hunzd aquatic toxicology (IDEAconsult,

20143. In this contexthe modified Verhaar algorithm (Verhaetral, 1992; Verhaaet
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al., 2000; Enochet al, 2008) was applietio idertify compounds acting asonpolar
narcotics(Class ). These compounds were subsequeefiiractedfrom the A. fischeri

dataset

2.2.4. Exposure times

The influence of exposure times (5, 15 and 30 minutes) on the toxicity value obtained
was compared for the ngpounds identified as acting by npolar narcosis. According to
Cronin and Schultz (1997), there was little or no influence of exposure time on the
toxicity value, such that it is justified to merge fischeritoxicity data from 5, 15 and 30
minute timepoints To verify this, triplets of datd,e. A. fischeritoxicity values for each
compound at 5, 15 and 30 minutes were identified and compared via linear regression

(refer toAppendix A.1).

2.2.5. Calculation of physicechemical properties
Calculated logP values were obtained from KOWWIX1.68from thefreely available
EPI Suited4.11 (EPA, 2013) softwareMolecular weights were calculated fraime MOE

2011.10software (MOE, 2013).

2.2.6. QSAR analysis

The relationships between pT amapl|P for nonpolar narcotics were examined using
linear regression analysis in Minitab (Minitab, 201B)e data were plotted and a linear
equation incluthg n (number of data points), Gtandard error)R%g (coefficient of
determination, adjusted for thember of degrees of freedom) and F and t statistics were

generated (Livingstone, 2004).
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2.2.7. Statistical analysis of toxicity data
2.2.7.10mission of toxicity data outliers
If the total number of different Elgvalues for one compound was greater than five
(n > 5),and single entries were outside of the range of £50% of the median, then
thesesceal | ed é@dsadbawewnueée !l bmi set A gunchtedomeantwhse d
calculated from the remaining E&values and the hence pT value wasakulated
(asshowninFigr e 2. 3) . lf n O 5 for one sHoOomMpoO
values was used to calculate the final pT value for a compound. As a result, there is a

single pT value per compound which was used for QSAR modelling.

2.2.7.2Confidence scoring

A confidencescore (CS) was assigned to the pT value for each compound. A
compound with a single entry (n = 1) was assigned a confidence score of one (CS = 1).
For n > 1 the confidence scores were calculated from the number of entries per
compound (n) divided by thelreat i ve st andard deviati on

ratio of the standard deviation (SD) and arithmetic mean (x):

Y"Y0 — (Eq.2.1)

0"Y — (Eq.2.2)

For the toxicity data, two confidence score (CS) thresholds were investigatedehere,

where CS(1) > 5 and CS(2) > 15 respectively.

2.3.Results
The outcome of the retrieval and the cleaning of gefischeri toxicity data and
subsequent identification of ngrolar narcotics are described below. Furthermore,

analysis of toxicity values with respect to exposure time, to investigate the significance of
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the duration of the assay, as well as the analysis withecedp data quality from

statistical assessment, is reported.

2.3.1. Retrieval and cleaning of A. fischeri toxicity data

A literature review revealed many sources of toxicity data fromAth&scheriassay.

These supplemented the compilation of Kaiser and Re#aly1991), which provided
references to 28 papers and approximately 1350 data. A further 600 data were obtained
giving a total of 1944A. fischeritoxicity entries for over 1300 compounds. After cleaning

the data to remove toxicity values for ambiguousctures, salts, polymers etc. a total of
1813 entries for 1227 compounds were obtained. This complete datasstablavas an

Excel table iMAppendix A.1

2.3.2. Identification of non-polar narcotics

Of the cleaned 181A. fischeritoxicity data for the 122 different chemical compounds,

203 of these compounds were identified as having a very strong probability of acting by
the nonpolar narcosis mechanisms of action. The initial assignment was performed using
the modified Verhaar rules, which provide a rsbstarting pointVerhaaret al, 1992;
IDEAConsult, 2013). It is appreciated that this may be a conservative approatttaiand
more compounds in the dat may fall within the nepolar narcosis domain, however,

the Verhaar rules were utilised to provide a defensible and repeatable method for the

selection of nospolarnarcotics.

2.3.3. Analysis of A. fischeri toxicity data with respect to exposure time
For thepurposes of considering data quality it would be highly beneficial to be able to
combine data from the different time points. In order to assess the feasibility of this, 99 of

the nonpolar narcotic triplets,e. compounds identified as being npaolar rarcotic, with
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data for all three exposure times, were considered. Figurangl Zquations 2.3 to 2.5

show the relationships between toxicity data from all three time points. There are no
significant differences between the toxicity data as illustratemhbptercept approaching

zero and a slope of unity for the regression equations between the exposure times. As a
result of this analysis, confirming insignificant differences between the toxicity data for
different exposure times, the data for differembei points were combined, with the

longest exposure being used by preference:

pT(30mn) =-0.04 + 0.97 pT(5min) (Eq.2.3)
n =99,R%q=0.99,S=0.14, t = 90.0, F = 8020

pT(15min) =- 0.02 + 0.99 pT(5min) (Eq.2.4)
n = 99,R%q=1.00,S=0.09, t = 133, F = 17700

pT(30nin) =- 0.02 + 0.98 pT(15min) (Eq.2.5)
n =99,R%q=1.00,S=0.08, t = 154, F = 23600
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Figure 2.2: Comparison of the effect of exposure times (5, 15 and 30 min) of the pT @l @S
non-polar narcoticsréfer toAppendix A.1)

2.3.4. Analysis of A. fischeri toxicity data with respect to data quality
Many compounds had more than a single toxicity value. In order to investigate the
concept of data reliability and quality, the (truncated) meas calculated for these

compounds. Taking methanol as an example, toxicity test data are available from ten
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separate publications. The full set of test results and data are shown in Figure 2.3.
Consideration of all ten data points gives a mean of 8.6¥ pdm and SD of 8.45 x 10

ppm. When data outliers were omitted, with a tolerance of + 50% of the median (Min,
Max), this resulted in only six michnge entries with a mean of 5.02 ¥ ppm and SD

of 1.61 x 18 ppm remaining for methanolréfer toFigure 3). As a consequence of the
removal of the fAdata outlierso there is
deviation and increase in the confidence score (CS). The ID numbers in Figure 3 are

identifiers usedluring the data collection (refer Appendix A.1).

Compound/Entry ECso (ppm) Reference
Methanol (ID 64) 1.14 x 104* Schiewe et al., 1985
Methanol (ID 1693) 2.95 x 104 Calleja et al., 1994
Methanol (ID 65) 422 x 104 Hermens et al., 1985
Methanol (ID 1616) 4.44 x 104 Jenning et al., 2001
Methanol (ID 63) 5.08 x 104 Speece, 1987
Methanol (ID 66) 5.70 x 104 McFeters et al., 1983
Methanol (ID 1529) 7.71x 104 Vighi et al., 2009
Methanol (ID 1411) 1.04 x 105* Kahru, 1993
Methanol (ID 67) 1.25x 105* Curtis et al., 1982
Methanol (ID 62) 3.20 x 105* Nacci et al., 1986

*data outlier (£ 50% of the median)

Arithmetic Mean:
X+SD =8.61x 104+ 845x 104 ppm

RSD = 0.98
n=10
CS=10/0.98=10.2

Truncated Mean: ’
X+SD=5.02x 104+ 1.61x 104 ppm
RSD =0.32

n==6
CS=6/0.32=18.8

Median: 5.39 x 104 ppm
— Min: 2.69 x 104 ppm
— Max: 8.08 x 104 ppm

Figure 2.3: Microtox toxicity data for methanol and analysis to identify

fifidata outlierso and calcul ate the confi

2.3.5. Investigation of the effect of datauglity on QSARSs
The same principle of data outlier omission and confidence scoring, as undertaken for

methanol, was applied to the whdle fischeridataset. Therefore, for compounds with
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more than five data points (n5), truncated means with a reduced influence of outliers

and higher confidence scores (CS) were created where such outliers were identified.

Figure 2.4 shows the relationship of toxicity and Bfpr nonpolar narcotics, where the
effect of data outlieomission and confidence scoring, have been applied: In the left
column (Figure 2.4A, 2.4C and 2.4E) no data outlier omission was applied and in the
right column (Figure 2.4B, 2.4D and 2.4F) data outlier omission was applied. In first row
(Figure 2.4A and2.4B) no confidence score threshold was applied, in the second row
(Figure 2.4C and 2.4D) a confidence score threshold of CS(1) > 5 was applied and in the

third row (Figure 2.4E and 2.4F) a confidence score threshold of CS(2) > 15 was applied.

The linear orrelations between pT and I&gn the first row of Figure 2.4A and 2.4B are
weak R%gjof 0.50 and 0.51 respectively). The confidence score thresholds for the second
and the third row (C, D and E, F) a¢sl owe
2.4C and 2.4D (CS(1) > 5) and Figures 4E and 4F (CS(2) > 15) show stronger linear
correlations R%g; > 0.79) than Figures 2.4A and 2.4B. As the confidence score threshold
of CS(2) is stricter than CS(1), the second row (Figure 2.4C and 2.4D) contaias m
compounds (n = 40 and n = 43 respectively) than the third row (Figure 2.4E and 2.4F)
with n = 12 and n = 17 respectively. Overall the following six QSAR equations (2.6 to

2.11), referring to Figure 2.4A to 2.4F, were developed:

A: pT = 0.68 logP - 1.14 (Eq.2.6)
n = 203,R%gj= 0.50,S=0.95,t = 14.3, F = 204.0

B: pT = 0.68 logP- 1.11 (Eq.2.7)
n = 203,R%g=0.51, S=0.93, t = 14.5, F = 211.0

C: pT = 1.08 logP - 2.21 (Eq.2.8)
n = 40,R2%q = 0.81, S= 0.65, t = 13.0, F = 168.0
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D: pT = 1.08 logP - 2.20 (Eq.2.9)
n =43,R%q=0.81, S=0.63,t=13.6, F = 185.0

E: pT =1.12 logP - 1.92 (Eg.2.10)
n =12,R%g=0.79,S=0.80, t = 6.5, F = 42.8

F: pT = 1.23 logP- 2.31 (Eq.2.11)
n=17,R2%q=0.83, S=0.75,t=9.0, F = 81.3
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Figure 2.4: Relationship betweeA. fischeritoxicity (pT) and logP: Figure 2.4A containingT
arithmetic meangn = 203);Figure 2.4B containing@T arithmetic means after an medisased
data outlier omissioiin = 203); Figure 2.4C containingl arithmetic means with a confidence
filter (CS(1) > 5; n= 40), Figure 2.4D containingT arithmeticmeans with a confidence filter
(CS(1) > 5; n = 43) after an medibased data outlieomission; Figure 2.4E containingl
arithmetic means with a confidence filter (CS(2) 5 h = 12);Figure 2.4F containingpT
arithmetic means with a confidence dilt(CS(2) > 15; n = 17) aftemedan-based data outlier
omission
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2.4.Discussion

There is an increasing availability of toxicity data from various relatively standardised
assayswhich have been brought together in REACH submissions, the OECD QSAR
Toolbox, eChemPaat and a variety of other freely available and accessible resaices
An often asked question is which value is representative when multiple data points are
available for the ame compound from the same tdstis analysis has providedmeans

to evaluée multiple data entries and thus, in part at least, bégianswer that question

as well as supporting regulatory decisi@msl the creation of robust dagds for model
building and reaéhcross. TheA. fischeriassay $ a wellstandardised techniqué; is
essentially a simplistic cytotoxicity assay, meaning variability of measurements within
and between laboratories should be low. Within tbhengled dataset, the nospolar
narcosisassociated toxicity data from th&. fischeri assay were chosen due tioe

number of available data.

For compounds with multiple toxicity data points, statistical analysis was undertaken
(refer toFigure 2.3). The purpose of this was to identify, and hence remove, data outliers.
These outliers were selected on an empirical statistical basis. It was not possible to
determine if there were experimental ano
available, as is common for online databases of toxicity values. Figure 2.3 illustrates this
concept; the approach of renmiog statistical outliers is transparent and clear. It provides

a useful analysis of the data, especially when combined with the confidence score (CS)
discussed below. In this analysis an arbitraryaftiof 50% of SD was applied. This was
identified following a process of trial and error (results not shown in this analysis) but

could be adaptee.g.if more or less variability was considered acceptable for a test.

The relationship between toxicity (pT) and lipophilicity (IBgfor nonpolar narcotics is

shown in Figure 2.4. The resulting QSAR equations are not significantly different from
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those published previously (Cronin and Schultz, 1997; \&glal, 2009). When no data
restrictions are selected (Figures 2.4A and 2.4B) the resultant QSARs arestéss jr

terms of statistical fit and robustness as compared to those developed using certain data
selections (from Figure 2.4C, 2.4D, 2.4E and 2.4F). Therefore an assessment and
guantification of data quality will assist in the development of more ra8#tRs and
computational models. To select the data in an objective maargtrary confidence
scores (CS(1) > 5 and CS(2) > 15) weaken as thresholds. Principaltiie higher the

CS the more evidence, in terms of similar results for one compoundilakde,i.e. the

result is regarded as more trustworthy than a compound with a low CS. Even with low
numbers of data (n) and high relative standard deviation (RSD), it is impossible for CS to
fall below one (CS < 1). Usually CS = 1 means that there ig omé data point per
compound. This can be regarded as the lowest (statistical) confidence that can be attachec
to a datum point. At this point it must be stressed that confidence does not necessarily
relate to reliability. For many compounds the resufta single toxicity test may be
highly reliable, it is simply that there is lower confidence as the value has not been
replicated. As such, the plots in Figure 4C to 4F show a smaller number of data points (n
=40, 43, 12 and 17 respectively) due to adilbn process based on confidence scoring.

In Figures 2.4C and 2.4E only data with high confidence scores (CS > 5 and > 15
respectively) were considered. Both show the strong linear relationship that is
fundamental to nopolar narcosis (Ellisoet al, 2008). The inclusion of data with the
lower confidence thresholdefer toFigure 2.4D) allows more data points (compounds)

to be considered in the QSAR.

The data outlier omission on its own leads to more centralised (closer to the median)
values, it alsaeduces the variabili/spread of an associated datiand so increases the

corresponding CS value. This leads to more confidence being associated with the data
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points in Figures 2.4D and 2.4F compared to Figures 2.4C and 2.4E respectively. It is
open fordiscussion which of Figures 2.4D (equation 2.9) or 2.4F (equation 2.11) is the
better model for noipolar narcosison the one hand Figure 4F has a better statistical fit

( R%g = 0.83), in contrast Figure 2.4D incorporates more contributing data points.

The effect of the data outlier omission between Figures 2.4A and 2.4B is only marginal
(R%4j 0.50 and 0.51 respectively). Both Figures contain 203 data points, but in Figure
2.4B fewer data points are orientated towards the line of best fit than ire RAgUA,

based on the stabilising effects of the data outlier omission and truncated mean
respectively. The effect isegligible as most compounds have only one data pamt,

one singleECso entry. The strength of the QSARSs reported in Figures 2.4D and 2.4F is
that data outlier omission incorporates more data points (than Figures 2.4C and 2.4E).
The greater the number of data points contributing to a correlation or QSAR, the greater
the weight of evidence for a correlation and QSAR respectively. This confirms that data

outlier omission is a useful tool, particularly in combination with CS thresholds.

The confidence scoring, particularly when combined with the mdzhaed data outlier
omission, is a mathematical methtml assess reliabilitgf toxicity data where there are
multiple entries for a single value. The metric confidence scores provided by this method
can be used as thresholds or asfactors for weighting as described by Przgyet al.

(2012) or Yanget al. (2013). The statistical tools useice. data outlier omission and
confidence scoring, show an i mprovement

(multiple and similar) data to be more reliable than single ofraproducible data.
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Figure 2.5: Detailed examination of Figures 2.4C addD showingcompounds with excess
toxicity

The investigation of Figures 2.4C and 2.4ief¢r to Figure 2.5) revealed three data

points with a high pT to lo@ ratio, indicating excess toxicity above npalar narcosis.

(0] Cl

B Cc
Figure 2.6 Chemical structures @fflatoxin B1(A), acetylacetonéB)
and pentachloroetharf€)

These three compounds are aflatoxif &etylacetone and pentachloroethane which are
known to have toxicityelated modes of action other than fplar narcosigrefer to Fig.

2.6). Aflatoxins are well known for their mutagenic, teratogenic, carcinogenic and in
higher doses hepatotoxic effectBypically aflatoxinis activated by enzymes of the
cytochrome P450 fanyilto an epoxide, which reacts withacromoleculs including
DNA, RNA and proteins. This mechanism is relevant not only for cancer and liver
disease but also for direct cytotoxic effects (Weheteal, 1978; McLean an Dutton,
1995; Frisvacket al, 2006). In 2004, acetylacetone (pent2pedione) was idntified as
genotoxic and subsequently banned by the EC as a food additiy@{&%). According

to the mechanistic studies of Enoehal. (2011) it is likely to act as a Schiff base and
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protein binder. Pentachloroethane on the other hand showed na finioiding potential

or any other related toxicity according to En@thal. (2011) but nevertheless most safety
sheets label this substance as toxic. Pentachloroethane and hexachloroethane
administered orally showed adverse effects, such as renal inflaanmlagpatocellular
carcinoma and increased lethality, in rats (Menngtaml, 1982). Classifying these
compounds as napolar narcotics (&ss 1) might not bean adequate decision by the
Toxtree software andhis provides someindication as tchow to imgove/modfy the
Verhaar rules in the Topde software. The excess toxicity, compared to thepwber
narcosisassociated toxicity, could be explained by these mechanisms (Liphiek,

1987).

2.5.Conclusiors

A transparent method to identify reliable toxyctdata and values for modelling, as well

as providing confidence for the use of multiple entries has been developed. This will
assist in the harvesting of reliable toxicity values from what may be considered as
variable quality data. The ability to assessflicting toxicity data is important not only

for developing models in computational toxicology, but also for the use of the increasing
number of toxicity databases available. It should be remembered that even toxicity data
with a low confidence scoreay be highly reliabléas a single, measured data point can
be accuratger s, however the approaches proposed in this study will be beneficial to
analysng some of the larger datets that are increasingly becoming available. The
analysis confirms thatata with higher confidence, as defined in this study, produce more

robust QSARSs.

The results from Chapter 2 show that a novel method to assess data quality from a

statistical perspective has been developed (and published as Steshmle2014). This
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provides a mans to evaluate the information from the increasiogber of databases
with multiple data for the same compound. This study has been extended in ChHapter 3
the use ofCSweighted regression to build QSAR models. Additionally a second dataset
with high relevance to the assessment of cosmetic ingredientscompilationof skin

permeability coefficient data, has been investigated.
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3. Using statistical confidence scoring to improve QSAR/QSPR

modelling*

3.1.Introduction

As already explained in detail in Chapter e tassessment of biologiftakicological,
data quality is crucial for many disciplines.g. QSARS, grouping and readcross
(Nendzaet al, 2010; Przybylalet al, 2012;Péryet al, 2013. There are two general
approaches to assess the qualithiofogical/toxicological datahased on the assessment
of the reported testing informatiq®LP etc) and based on statistical data quality (CS

etc) if multiple and comparable datae availablgéSteinmetzt al, 2014).

As the assignment of CS values to toxicological data is not a common method to date,
some theoretical examples are given to facdifaterpretationExamples of calculations

of CSvaluesare provided in Table 3.ilustrativdy representing scenarios of increasing
CSvalues Compound A is the defawdtenario the most common occurreneghereby a
compoundhas onlya single experimeat value), the CS is 1. Compound B has two
relatively divergent data values, differing by an order of magnitude. Clearly there will be
greater confidence for the ¥igity value than for compound ,Abut the significant
difference in the values introducests® uncertainty, raising CS marginally to 1i7&

this way there is slightly greater confidence associated with two relatively different
values than a single value. More data points are considered for compounds C and D, with
increasing precision of the @avalues. Whilst compound C (n = 4) has more data than
compound D (n = 3), the values are more divergent for C (represented by a higher RSD),
thus the highest CS is calculated for compound D for which there are three data points, all
relatively consistenin the light of the experimental error that might be associated with an
experimental test. As such, conymal D has the highest CS value.

*This chapter is based on a published article (Steinmet al,, 2015b)
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Table 3.1:Four examples of compounds with multiple data in the same toxicity tes))(BOng
with statistical critea and CS (refer tdppendix A.2)

Compound | ECso(mol/L) | x.NSD? RSD’ n° c¢

A 10 10 £ n/a n/a 1 1°
1

B 5.50 £ 6.36 1.16 2 1.73
10
1
80

C 57.75 £ 43.05 0.75 4 5.37
50
100
1

D 2 1.47 +0.50 0.34 3 8.74
14

®mean and standard deviation
brelative standard deviation
‘number of data

dconfidence sore

€CS of a compound with n = 1 is defined as 1 is the minimalone

As there is growing interest in techniques such as-aeeuks to fill data gaps for
regulatory purposes, and there is increasing accessibility to toxicity data through
resources such as the OECD QSAR Toolbox to perform-aeguts, there are more
possibilities to apply approaches such as the confidence scoring to improve the
robustness of modelling. In this study the relevance of the CS approach has been assesse:
with regard to established QSARs for two endpoints, namely skin permeability

coefficients and cytotoxicity for which large compilations of historical data are available.
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3.1.1. Skin permeability

There have been many efforts to develop Quantitative Struemaeability
Relationship (QSPR) models to predict various measures of dermal absorption
(Scheuplein and Blank, 197Rotts and Guy; 199Z4brahamet al, 1997; Magnussoat

al., 2004; Danciket al, 2013; Khajeha and Modarress, 2DIFhe most recognised and
applied QSPR to predict the skin permeability coefficiep) ikthat developed bipotts

and Guy in 1992 (Eg. B). Theyusedthe molecular weight (MW), to account for the size

of a permeant and log, as a descriptor for lipophilicity, as parameters to mogdel k
following an analysis based on the Flynn data compilation (Flynn, 1990). The
mechanistic explanation is that small, lipophilic compounds pass througstrétem
corneum the outermost layer of the skin, more easily than larger, more hydrophilic
compounds. As shown in Figure 3.1, the transport termed diffusion occurs within the

lipophilic phase between keratinocytes (Potts and Guy, 1992; Mitragatti 2011).

log k» (cm/h) =-2.7 + 0.71 logP - 0.0061 MW (Eq. 31)

Hair

Stratum corneum
pathway

| |

_ |

Sweat Gland v

Figure 3.1: Diagrammatic representation of thidn showing the inter
cellulartransport ofkenobiotics through thstratum corneun(black arrow)

Despite the significance of Eqg.13.the quality of data compiled from the literature by

Flynn, and hence the robustness of the Potts and Guy QSPR, has been the subject of
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considerable debate (Moss aBrbnin, 2002; Johnsoet al, 1995). More humam vitro
kndata have inevitably become available
seminal publication (Moss and Cronin, 20@hauhan and Shakya, 2010henet al,
2013; ten Berge, 201¢ thus theQSPR can be reassessed and rehwith a greater

consideration and understanding of data quality.

3.1.2. Aquatic toxicology

As describedmorein detail in Chapter 2, there is a myriadmfblically available eco
toxicological dataaccessible for example ieP A6 s ECOTOX dat g.base
The multitude of publishedA. fischeridata(as compiled inSteinmetzet al. (2014) and

Chapter 2 respectively) was used within this study.

These two exampleare illustrative of the possibilities of applying confidengcoring
metrics to historical comptions of toxicity informationThere are many opesccess
resources such as ChEMRR015), PDSP (2015), ACToREPA, 2015a), eChehortal
(OECD, 2015), TOXNETNIH, 2015), so the life sciences, and in particular toxigy)

has to deal increasingly with large and complex datasetsdzaly 2014). However, the

task of assessing the toxicity data for quality, particularly when contradicting data are
present, has not yet been accomplished. Any indication of the quialigta would be

very helpful for purposes such as risk assessment, but more crucially for modelling
including QSARs and reaakcross prediction (Przybylaét al, 2012; Steinmetzet al,

2014).

Therefore, the aim of this study was to investigate how uspmyoaches for statistical
data qualityj.e. CS, improves the development of QSAR/QSPR models. Specifically, the
effect of directly incorporating the CS into the training and testing of the models was

considered. To achieve this, the two endpoints destr@bove were chosen for analysis,
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namely humarn vitro skin permeability coefficients and the acute toxicity of compounds
acting by a nofpolar narcotic mechanism of action # fischeri The reasons for
choosing these endpoints included the fact tharet were many historical data of
variable and unknown quality, many compounds had been tested multiple times (a pre
requisite of applying the CS) and that there were simple, robust and mechanistically
interpretable QSAR modelfor them. Thus, for both dmets, QSARs were constructed

with and without reference to the CS.

3.2.Methods

3.2.1. Data harvest

In vitro skin permeability coefficients gkwere collected from the literature by compiling

and subsequently merging four of the most comprehensive datadetsnah skin k
values (Moss and Cronin, 2002hauhan and Shakya, 201thenet al, 2013;tenBerge,

2014. All kp values were converted to a standard unit (cm/h). Duplicate Jogllues

(and those within = 0.01 cm/h) were removed as they are most likélg derived from

the same source. SMILES and InChlKey strings were obtained for each compound from
the ChemSpider website (RSC, 2014). The Flynn (1990) dataset contavaldds for

94 compounds, however, 11 compounds (all substituted steroids) aiube identified

by ChemSpider (RSC, 2014) or ChemIDplus (US NIH, 2014) and hence no SMILES
were available to calculate descriptors. Since the structure of these compounds could not

be completely verified they were excluded from subsequent analysis.

TheA. fischeridata compilation fron€Chapter2 (Steinmetzet al, 2014)was used as the
resource for th@quatic toxicology dataset. Tlosbemical structures (as SMILES strings)

ofthecompri sed 1227 compounds were run th
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(modfied Verhaar) and nopolar narcotics were identified as being Class 1 according to

the Verhaar scheme (Verhaaral, 1992; IDEAconsult, 2013}.

3.2.2. Descriptor generation

Log P and molecular weight (MW) were caleéd for compounds in both dagéds. The
SMILES strings were used as the input format for all calculations.R.ags calculated

with KOWWIN v1.68 within EPI Suite 4.11 (8shated values exclusivelyEPA, 2014).

MW was <calculated with the CDK node fimc

(KNIME, 2014).

3.2.3. Calculation of confidence score (CS)

Confidence scores were calculatedthe compounds in both datts with regard to their
kpand EGoval ues respectively. For compounds
value, the arithmetic mean (x), number of data pointgn), SD and RSD were calculated
with reference to data in the units stated in Section 3.2.1 and before logarithmic
transformation. ACSwas assigned to the arithmetic mean of the experimental values for
each compound. Compounds with a gngntry (n = 1) were assigned a confidence score

of one (CS =1). For compounds with n > 1, the CS was calculated asarREq.

3.2.4. Development of QSARS/QSPRs

Uni- and multivariate linear regression was performed on the datasets using R Studio
0.98.501.19R, 2014). Linear equations were generated and the following statistical, and
other, criteria recorded: n (number of data points), S (standard erfg)cRefficient of
determination, adjusted for the number of degrees of freedom), t statistics for the
descriptors and F aistics for the equation. dgression analysis was performed to

develop the QSARs for both datasets with and without weighting.-véaghted
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regression analysis and weighted regression analysis was performed by applying CS
values as wights in R usingthe defaultpackagelm {stats}. Weighting in linear
regression means that each datum point is associated with a weight. A high weight
strengthens, and a low value weakens, the impact of the data point towards the linear
regression. In thisnanner, data for compounds associated with a high confidence score
would be more heavily weighted in the regression analysis than compounds with a lower
confidence score. Comparison of the statistics of the weighted and unweighted regression
analysis proides an indication of whether CS is able to improve the robustness of

models.

3.2.5. Evaluation of the predictivity of the QSARsS/QSPRs

Statistical evaluation of the predictive capability of thev@&ghted QSAR and the €S
weighted QSPR was performed usingfaf@l crossvalidation,i.e. the compounds were
ordered by kand pT respectively and every™.6ompound was removed in turn leading
to 10 training and validation sets. After applying the\@&ghted linear regression, the
10 datasets were investigatedtbg root mean square error (RMSE); predicted/érsus
experimental (y values. Additionally the root mean square error adjusted for CS
(RMSEcs) was calculated (Eq..3. It is expected that during the validation process, the
RMSEcs, which incorporate€Sweighting, will be lower than the standard RMSE. As
the residuals (f- yi) of the compounds with low CS values are weakened and the
residuals of high CS compounds are strengthened, the sum of (squared) errors of the
RMSEcs should be reduced in compamsto the conventional RMSE. The R script for

RMSEcs crossvalidation and te equations are availableAppendix C.2.

2.30%p 2 (Eq. 32)
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3.3.Results

Names of compounds, their InChiKeys and SMILES strings along withpahé& pT
values including references are asble for the two datasets iAppendix A.2.
Furthermore a glossary of relevant statistical equations is attached. In addition the R

script for RMSEks cross-validation is available il\ppendix C.2.

3.3.1. Data harvest

The compilation of humarn vitro k, data resulted in 342 values for 226 different
compounds. 55 of these compounds have more than a spwduk. The log kvalues
covered a broad range frof6.10 to 0.16. Thestructures included in the datt were
diverse in terms of physiechemical properties and structueeg. solvents, alkaloids,
steroids, sugars, nonsteroidal anflammatory drugsetc The solvents, sugars and
steroids in particulahad many multiple data points. Water, with 13 different data points,
had the most kvalues. The range of CS values is from 1 (for single entries) to 76.8 for
chlorphenamine (based on two data points). lllustrating the capability of the CS approach,
two compounds have moderately high CS values: the synthetic opioid sufentanyl with a
CS value of 9.97 (based on two data points) and the cytostatic diwgy&uracil with a

CS value of 5.00 (based on four data points).

From the complete dataset of acute tdyio/alues toA. fischerj comprising 1227
compounds, 203 were identified as potentially acting aspater narcotics according to

the Verhaar scheme as implemented in Toxtree v2.6.6 (IDEAconsulig)204A4otal of

418 different pT values were availabler these compounds, with 71 of the 203
compounds having more than a single experimental value. pT values covered a broad
range from-4.00 to 4.12. Thetructures included in the da&t were conservative in their
structural diversity as they had beerestd to represent the npolar narcosis domain,

including mainly solvents and medidrand longchained alkanes, partly branched and
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halogenated, with only a few functional groups, such as hydrarg aminegroups. The
compounds investigated have a nrade spread of MW and lodgand can generally be
regarded as lipophilicréfer to Table 3.2). The CS spread shows the diversity between
high confidence compounds, such as methyl isobutyl ketone (CS of 205 with 3 data
points) and acetone (CS of 43.7 with édtries) and the single entry low confidence

compounds (defined as CS = 1).

Table 3.2:Ranges of properties and CS for the two datasets considered in the analysis

Humanin vitro skin permeability coefficients pT of nonpolar narcotics té\. fischeri

MW (Da) 18.01to 764.4 32.04t0 342.3
LogP -6.76 to 8.39 -1.34 10 6.43
CS 1to 76.8 1to 205

3.3.2. Development of QSARS/QSPRs

QSAR/QSPR models were developed using linear regression with the experimengal log k
and pT as the dependent variables andPlagd MW (for k only) as descriptors. Linear
regression analysis was performed on both datasets, the resultant QSPRs for skin
permeability coefficients based on the Potts and Guy approach 8Hgn8ieighted), Eq.

3.4 (weighted), Fig. 3.2) and the Idbased QSARs for the acute toxicity of Rpolar
narcotics toA. fischeri(Eqg. 35 (unweighted), Eg. 8.(weighted), Fig. 3.3) are reported

below.

3.3.2.1QSPR: Modelling of he skin permeability coefficient
The unweighted QSPR for the dataset of skin permealaitifficients, using the

Potts and Guy approach, was:
log ko =-2.45 + 0.40 lod? - 0.0045 MW (Eq. 33)

n = 226,R%qj= 0.48,S = 0.82, itgp = 13.3, taw = -8.97, F = 105
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The reanalysis using G8eighted k provided the following, similarequation with

improved statistical fit:

log k, = -2.51 + 0.50 logP - 0.0051 MW (Eq. 34)

n =226, Ragi= 0.61,S = 1.39i0gp = 18.7, taw =-9.25, F = 177

Experimental Kvalues are plotted against predicted values from Bgn3igure 3.2,
demonstrating good overall predictivity. In particular, there is a good fit about the line
of unity, with a significant trend for compounds with the highest CS (represented by
larger circles) to be well predicted, and the significant astliending to be

compounds with low CS.e. single data points.
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Figure 3.2: Experimental log kversus predicted log, krom Eq. 34; the

area of circles correspoimg to the CS value; thiarger the CSthe greater
thearea of theircle; the solid line indicating slope ofunity and an intercept
of zero
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The QSPR model represented by Eg.\8as tested using #old crossvalidation. The
statisticalsummary is presented in Table 3.3. Notably the RMSE& lower than the

RMSE.

Table 3.3: Statistical summary of 1fbld crossvalidation based on Eq.48(skin permeability)

Training Test

Intercept LogP MW R2aq RMSE RMSEcs
-2.51 0.497 -0.0051 0.61 0.83 0.79
+0.09 +0.026 = 0.0004 +0.02 +0.21 +0.21

3.3.2.2QSAR:Modelling of A. fischeri nonrpolar narcosis
The unweighted QSAR for the nqgmolar narcotics in the Microtox dataset, using a
log P-based linear regression was:

pT =-1.14 + 0.68 logP (Eq. 35)

n = 203, Ragj = 0.50,S = 0.95}i0gp = 14.3, F = 204

The reanalysis using G8eighted pT provided the following equation with improved
statistical fit:

pT =-1.67 + 0.92 loP (Eq. 36)

n =203, Ragj= 0.68,S = 1.77tiogp = 20.9, F = 478

Figure 3.3 demonstrates the relatpredictivity of Equation &. There is a good fit
about the line of unity, with a significant trend for compounds with the highest CS
(represented by larger circles) to be well predicted, and the significant outliers tending

to be compounds with low C5e. single valuegsimilar to k modelling)
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Figure 3.3: Measured pT versyzredictedoT from Eq. 36; the area of
circles corresponding CS value; the lagg the CS, the greater the area
of the circle the solid line indicating slge of unity and amtercept of

zero
The QSAR model Eq. 8 was assessed with -f6ld crossvalidation. The summary of

the statistics for Eq. 8.is presented in Table 3.4. The RMSEs lower than the
RMSE.

Table 3.4: Statistical summary of dld crossvalidation based on Eq.&(aquatic toxicity)
Training

Test
Intercept LogP Rad? RMSE RMSkE:s
-1.67 0.92 0.68 0.99 0.87
+0.14 +0.04 +0.03 +0.12 +0.13

3.4.Discussion

There are many future challenges in human and environmental health sciences which
require the use of adequate and reliable data, these include toxicological risk assessment
for occupational health and consumer goods. As the quality of toxicological data is
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variable and often not stated, practical and feasié¢hods to overcome this issaee
crucial to many scientific and regulatory fields. Beside approaches such as Klimisch
scoring (Klimischet al, 1997), a purely statistidgsased method to suppartodelling
approaches was proposed in Chaptan@expanded within this Chaptdt is difficult to
determine the extent to which such a statistiedilyen approach could be used for
regulatory purposes, but neglecting the information multiple data fooldhe same

substance is not recommended if such data are available.

The aim of this work was not to build new QSAR/QSPR models, but to make two
existing models more robust using independent, heterogeneous datasets. The two QSARS
and associated datasetsosen are well established. In this study the datasets have been
extended by further data harvesting and collection. As part of the data collection activity,
multiple data were compiled for the same chemical, thus allowing for the application of
the CS aproach to determine the reliability of the data. This approach has not been
applied formally in the development of QSARs and there are no clear guidelines on how
to develop QSARs when multiple data are available for the same chemealséd of

the mean most conservative valuetc). In addition, there appear to be few, if any,
attempts to include information such as data quality as a metric or criterion for QSAR
development, this being despite it being logical and acknowledged that data quality will
affect the robustness of a QSAR (Wenlock and Carlsson, 2015). It should also be noted
that current means of documenting QSARs provide little opportunity for assessing the
quality of data. Therefore approaches that allow us to identify data quality quesittati

and withoutsubjective bias are of valuetime developnent ofin silico models.

Skin permeability is often assessed ibyitro experimentation, but also sonme vivo
work is undertakenin silico models are increasingly desirable in areas suchsés
assessment where there is dermal exposugefor cosmetics) and for assessing adverse

50



Using statistical confidence scoring tanprove QSAR/QSPR modelling

effects to the sking.g. skin sensitisation. Since the publication of the Flynn dataset
(1990), there have been a numberQ8HR analyses of skin permeability efficients
including refinements and extensions to the database (Mitragaiti 2011). The Potts

and Guy (1992) approach, based on fundamental and mechanistically comprehensible
descriptors, is one of the more commonly utilised QSPR modelling metlgoekld his

study has derived a Potts and Guy equation for a larger dataset not only increasing the
coverage of the model.€. greater chemical space) but also incorporating multiple data
points for the same chemical and allowing for an assessment dfygbatiugh CS. It is

noted that published skin permeability coefficients are highly variable, due in no small
part to high experimental error arising from the variable nature of the (human) skin
utilised and test protocols,g.use of solvents, enhancefisijte doses, vehicles, solvents

etc. (Moss and Cronin, 2002; Johnsehal, 1995). As such, it is to be expected that
models will not have a very significant statistical fie(a high R) and this is borne out

by many of the published models (Pott&la5uy, 1992; Moss and Cronin, 2002), indeed

models with significant fit should be treated with some caution as they may be overfitted.

Whilst high statistical fit was not achied for the skin permeability Q&8, the results

show a significant relationgh between log kand logP and MW with both variables

hauvng high tvalues. The new QSPR hamderately improved statistical fit as compared

to that of Potts and Guy (1992). It should be noted that some values within the Flynn
dataset were subsequently shown to be incorrect and would have increased the error in
the Potts and Guy @R (Johnsoretal., 1995). The novel QSPR modegfer toEq. 34

and Fig. 3.2) derived from the skin permeability data has some advantages over the
original Potts and Guy model. First of aihcreasedrobustness, due to model
development incorporating statistical datelity (refer toTable3.3); secondly a greater

applicability domain due to implementing a dataset with greater chemical diversity (in
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terms of properties and structure) than Flynn (1990); and thirdly due to the usage of
calculated logP (whereas the origal model used measured values which are more

di fficult to obtain consistently). Never:
3.1 and Eq. 3 are only marginal. It is recognised that there are many limitations to this
use of this model. For emgple it does not predict the effects of mixtures and
formulations on the penetration of single compounds, which could be of great importance
for risk assessment of products and dermal drug delivery (Samearas, 2012).
However, the QBR approach allow$ o r a fArelativeo estimat
which may be useful to rank compounds, or identify compounds with a high probability

of dermal absorption and hence prioritise such compounds in the risk assessment process

(e.g.for skin sensitisation).

Non-polar narcosis in the context of tide fischeriassay was discussed in Chapter 2
(Croninet al, 1991 Steinmetzt al, 2014. Even if the QSAR models of Chapter 2 and

3 are slightly different, they show the sasteong relationship betwedrydrophobicity

(log P) and toxicity as describefdr many species (Kénemann, 1981; Verhaaual,
1991).In both cases CS, used as a threshold (Chapter 2) and as used here (weighted

regression), improved the aquatic toxicology QSAR.

Consideration of the AR/QSPR modelsdeveloped in this study shows an
improvement in the models when @&ighted regression was utilised. The improvement
is in both the statistical fit as well as the slope for BPoghich approaches one when
employing CSweighting,i.e.from 0.68 to 0.90 refer toEq. 35to 36). A slope of one is

the theoretical optimum, which is commonly associated with models for simple
unicellular organismg,e. the absorption of the compound alone directly into the cellular
membrane is responsible forroasis, whereas in higher organisms other factors such as
distribution and clearance become important. The improvements following the
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application of CS are consistent with the notion that some historical data are of poor
quality (Cronin and Schultz, 199@6nd demonstrate the utility of an approach such as
this, where generalistic QSARse being developed for dats from various sources and

of unknown quality. The importance of the compounds with high CS values can be seen
in Fig. 3.3, when considering d@h all large C&ircles (representing compounds with
higher CS) are close to the line of best prediction. The quantity of data and the
incorporation of statistical data quality make a robust equation with an extensive
applicability domairi for non-polar rarcotics. Clearly this approach could be extended to

other data compilations for aquatic acute toxicity (Maetial, 2015).

The identification of compounds acting by the fpmiar narcotic mechanism of action is
essential to the development of mod#®larious approaches have been applied to identify
mechanisms of action including analysis of molecular descriptor space (Sehaltz
1997), multivariate analysis of mode and mechanism of action space (Agptala
2002), definition of molecular fragemts (Ellisonet al, 2008) as well as the Verhaar
classification scheme that was applied in this study due to its easge diollowing
coding in the Toxee software. However, there appear to be a number of anomalies in the
definition of the norpolar nacosis domain in the Topde software. For example,
aflatoxins(cf. Chapter 2; Fig. 2.&nd 2.9 are identified by the Torte software as being
Verhaar Class 1 compounds (mpolar narcotic) but, in reality, they are potent,
specifically acting, toxins ahtherefore do not act as npolar narcoticse.g. aflatoxin

B2 has pExperimenta= 1.17 (CS = 15.4) whereas Equation 3.7 calculategqEd= 0.54
(Steinmetzet al, 2014). This emphasises that continual development is required of
decision criterigpresented in approaches such as the Verhaar scheme as new knowledge

and understanding becomes apparent.
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Overall fa both dataets, applying CS as a weighting tool improves the training and
validation of the QSAR/QSPR models. The improvements are demexsés increases

in R? (Eq. 33 to 34 and Eq. 3 to 36) as a direct result of G8eighting. Whereas
increasing t and F values show improvements in the models as a result of weighting by
CS, the S value does not incorporate weights and so only indadzdekite, unweighted

error thus it actually increases when the -marghted regression is compared to the
weighted regression. Generally the higher the CS for the data associated with a
compound, the greater the evidence is, in terms of similar resutteatarompoundréfer

to Fig. 3.2 and 3.3). In the validation process, the RMSkhich incorporates GS
weighting, is lower than the standard RMSE. As residualsy{j of low CS compounds

are weakened and residuals of high CS compounds are strengtinensadn of (squared)
errors of the RMSEs becomes lower than in the conventional RMSE. Therefore this
approach could be used even for the validation of models where any metric could be
applied to imply confidencei.e. without calculating CS. For example reversed
Klimisch score (4 as the most reliable; 1 the least) could be used as a weight similar to
the fuzzy logic approach of Yargg al. (2013) In the context of validation these weights

then determine to what extent residuals should have impabedRMSE.

The CSweighting approach, whether in model development or validation, is limited by
the presence of multiple entries for one compound. Thus, if multiple values are available
for the dataset, more robust models may potentially be built (Steimihatz2014). This
robustness and the associated confidence are helpful in reducing uncertainty and hence
increasing acceptance for regulatory decisions. For example in the context of REACH,
there is a demand for robust QSAR models to support the toxicologiessas=nt of
chemicals. The approach described herein could thus be used to suppadrosacgnd

QSAR-based predictiongfonin, 2013Patlewiczet al, 2014.
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3.5.Conclusions

The assessment of data quality is not trivial. This study has shown thatoG8es a

means of assessing confidence in data when there are more than a single datum point.
The CS scores can be applied to develop QSAR models through the use of weighted
regression, as demonstrated in this study for historical data compilation&kneiim
variability in the quality of the data. Additionally cregalidation with RMSEks provides

a measure of the robustness of an equation utilising metrics (here CS) for weighting.

The results from Chapter 3 show that a novel method, which is applyitigtisal data
quality within modelling, leads to robust QSAR/QSPR models (as published in Steinmetz
et al. 2015b). Beside the methodological value, particularly the QSPR model is very
useful in the context of risk assessment of cosmetic ingredieahcethe relevance for

the CO3/0S project. Chapter 4, which dealsth dermal absorptionappliessimilar
principles of physioc-chemical propertiesThe two main differences are Chapter 4 deals
with asetof rules gimilarto anexpert systemsandonly specifc applicability domain of
substancesi.e. hair dyes and associated compounds)en if the data and the applied
methods are different, both chapteshare the same biochemical principles of skin

permeation.

55



Classifying dermal absorption of cosmetic ingredients

4. Classifying dermal absorption of cosmetic ingredients based on

physico-chemical properties to facilitate safety assessment*

4.1. Introduction

As described in Chapter 1, the European Cosmetic Regulation ZE&2D09) requires

that the ingredients in cosmetic products, as well as the formulation itself, need to be safe
for human usage and it is the responsibility of the manufacturer to ensure this. The safety
assessment of a product is generally based onidudiv safety assessments of the
product 6s i nregguiresdknaviedges of individuabkgredients(particularly

those in significant concentratipm a product as well dsnowledge aboutoxicological
profiling. Furthermore use scenarios and heagposure patterns of the product are
required o allow safety evaluation / risk assessmdittis information can subsequently

be used for the calculation of th&arginof safety (MoS). The MoS is the ratio of the-
obsenedadverse-effect kevel (NOAEL)and the systemic exposuresage (SED), which

can for example be dermal absorption per skin surface and time according to use
patterns iefer toEquation 4.1). Whereas the NOAEL is typically obtained from repeated
dose / reproductive toxicity animal tisathe SED can be obtained framvivoor in vitro

tests (SCCS/1501/12).

D€YY — (Eq. 4.9

Due to the ban on animal testing in the European cosmetic legislefentpoChapter 1)
and the absence of validatéd vitro alternatives, it is no longer possible to obtain
NOAEL valuesfrom in vivo experimentatiorto calculate the MoS for newly developed

cosmetic ingredientsHowever, considerains of exposure may be relevant for instance

*This chapter is based on my adribution to Ates et al.(2015)
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cosmetic ingredients with negligible dermal absorption may neequire systemic
toxicologicalassessment. Hence thergiisat interest in identifying compounds with low
dermal absorption. If this is the case, then systemic toxicological assessment can
effectively be waived and safety assessment nbh@base on local toxicity, e.g. skin

irritation, corrosion and sensitisai as well as mutagenicity/genotoxicity.

Dermal absorption means the uptake of chemical substances via the skin, sometimes alsa
referred to as percutaneous absorption. This includes skin permeation as described in
Chapter 3. However, the main difference the context of this thesis is that dermal
absorption data enogpasses data on the absorbgabntities of dermally applied
substances, whereas skin permeabiligfer to Chapter 3)exclusively describesthe

permeation through tretratum corneunfRangetal., 2007a).

The dermal absorption dataset investigated in this study is based on information
harvested from the expert opinions of th
on Consumer Safety (SCC®)hasa clear focus on hatdyes and associatedmpounds

due totheir potential toxicity,e.g.adverse effects on mitochondria (Neletsal, 2015).

SCCS opinions are publically available and contain summaries of studies on different
toxicological endpoints, as well as information on dermal absormiuh physice
chemical properties. The information is intended to support product development,
including internal safety assessment, andulaory decisiormaking in thefield of

personal care products.

The aim of this study was to classifiye dermal absgation of cosmetic ingredients.
Hence rule sets are proposed, which have the potential to support regulatory safety/risk
assessment. Therefore physatemical properties which may affect dermal absorption,

such as the logarithm of the octamadter partiton coefficient (log P), molecular weight
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(MW), topological polar surface area (TP$Aand the melting point (MP) were
investigated Through many studies in the field of skin permeabikty. Potts and Guy
(1992), Magnussoet al. (2004), and oral absotpt/bioavailability, e.g. Lipinski et al.

(2001), Newbyet al. (2015), the relationship between physaemical properties and
permeation through relevant biological barriers has been investigated and discussed
thoroughly. There is a strong consensus thage, hydrophilic and ionic molecules
permeate membranes to a lesser extent than small, (moderately) lipophilic and uncharged
molecules similar to the skin permeability QSPR in ChapteR2garding the additional
descriptors; TPSA expresses the polarface of a moleculei.e. it correlats with
hydrogen bonding ability and water solubility, and furthermbtié holds additional
information onthermodynamicastability (solidliquid phase changef a substancerhis
information which iseasily measure@IP) and calculated TPSA) respectively,might
support the prediction ofn vivo permeation and absorption (Pugt al, 2000;

Magnussoret al, 2004).

4.2. Methods

The dermal absorption data from the SCCS opinions, based on reports from 2000 to 2014,
were povided by theln Vitro Toxicology and Dermat@€osmetology research group of

the Vrije Universiteit Brussel (Atest al, 2015) as part of a egperative study in the
SEURAT-1 Cluster. Tvo datasets were constructasl follows: dataset A summarises all

the data without any information on MP and dataBesummarises the data, which
include measured MP values within the repoRegarding the classification of dermal
absorption, i.e. defining the absorption threshold for potential adverse effiw,
empiricaly derived values 0f1.3% and 2% resgutively were chosen pfivate
communication with Prof. Rogisifrom the Vrije Universiteit Brussgl The dataset is

attached in Appendix A.3.
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4.2.1. Data treatment and descriptor calculation/retrieval

The SCCS dermal absorptiodata are derived from various methodsy. different
species, varying exposure scenaraie Measurements using rat skin were discarded
from the dataset because of the relatively high uptake when compared to human or
porcine skin (Ravenzwaay and Leidpl2004). For compounds with more than one
measurement per compound arithmetic means were calculated. Descriptors were
calculated for the parent form of the compound, therefore SMILES strings were first
neutralised and desalted within MOE (MOE, 2013). 8gbsntly TPSA and MW were

cal cul ated using CDKés mol ecul ar propert
log P was calculated using KOWWIN v1.68 within EPI Suite (EPA, 2013). MP was

extracted from SCCS opinions if available.

4.2.2. Decision trees, clusteringnd modifying rules

For each dataset a set of rules, similar to Lipinski's rule of five, has been created in order
to classify compounds as being associated with a toxicologically significant level dermal
absorptionj.e. above or lowethanthe threboldsof 1.3% and 2%Besideempirically
derived approximationbased on the literature (Potts and Guy, 1992; Magnusisah

2004; Lipinskiet al, 2001; Newbyet al, 2015; Pugtet al, 2000), he KNIME's decision

tree learne(KNIME, 2015) employing log PMW, TPSA and MP (only in dataset B)
was used to determine relevant combinations of descriptenfisutThe decision tree
learner splits classas a binary mannerby minimising differences towards split points.
However,to avoid overfitting,final rule ets were defined manually by adjusting rules
iteratively. Granularity and statistical performance were analysed accorddwpieret

al. (1979, i.e. comparing sensitivity and specificity.
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4.3. Results and discussion
The dermal absorption dataset has bearncked by physio-chemical descriptors.
Furthermore the data have been split in dataset A (encompassing 116 compounds without

MP) and dataset B (encompassing 70 compounds including MP).

4.3.1. Results dataset A

The following physicechemicalcut-offs (based orthe KNIME decision tree learner and
empirical refinemen} weredefined and appliedThese cutoffs represent thresholds for

i ncreased permeability, hence they are r

following rule-based models.

T MW <180 Da

T  log P O 0.3

This i mplies that compounds with MW < 18
dermally absorbed in a greater magnitude. The results are illustrated in Figure 4.1, which

shows that as the number of alerts increases the dermal absarpteases.

2

log(dermal absorption [%])

n=18 n=74 n=24
-3
0 1 2

number of alerts

Figure 4.1: Boxplot of log (%) dermal absorption versus numbeplofsicochemical
alerts for datest A (n =116); the *symbol describing outliers
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If any violation of the rules,e. MW <180 Daorbg P i s O OcoBipound s f
wi || be predicted as potentially highly
applying the rules to dataset Ahe catulation of Speanan's rank correlation led jo =

0.38 (S = 162320, p < 0.001), which indicates a w@akt statisticdy significant)

correlationbetween number of alerts and logarithm of dermal absorption.

Table 4.1:Performance of the rules set for dataset A

Dataset A Predicted highly absorption Predicted low absorption | Total

Hi gh absorp 30 (25.9%) 0 (0%)| 30 (25.9%)

Low absorption €1.3%) 68 (58.6%) 18 (15.5%)| 86 (74.1%)

Total 98 (84.5%) 18 (15.5%)| 116 (100%)
Sensitivity = 100% Specificity = 20.9%

On the one handhe rule set shows high sensitivityg. all 30 compounds with true high
absorption have been identified, on titker hand specificity is poo88 compoundsvith
low absorption ar@redicted incorrectlyo havehigh absorption. However, the design of

the rule set is beneficial for regulatory purposes due to its cautious/restrictive design.

4.3.2. Results dataset B

The fdlowing physicochemical alerts were defined and applied:

T MW <180 Da
T log P O 0.3
1T MP<100°C

1 TPSA<40R&

This implies that compounds with MW < 18
and/or TPSA < 40 Aare more likely to be dermally absorbed. The results are illustrated
in Figure 4.2, which shows that as the number of alerts increases the dermal absorption

increases.
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log(dermal absorption [%])

proan

n=24

1 2

number of alerts
Figure 4.2: Boxplot oflog (%) dermal absorption versus numbephbj/sicechemical
alerts for dataset B (n =);@he *symbol describing outliers

4

In contrast to theule set of dataset A, there are two different ways to use the rule set for

dataset B. In the first scenario, the conservative apprdaaty violation of the rules,e.

MW < 180

Da, I

09

will be predited as having potentially high absorptionO1 . 3 %) .

P O 0. 32 isiddiified; theLodripduBd o r

Tabl e 4.

results of applying the rules to dataseflBe catulaion of Speaman's rank correlation

led to = 0.60 (S = 23111, p < Q stétstidally, w I
significantcorrelation between number of alerts and logarithm of dermal absorption.
Table42.Per f or mance of the rules set for dataset
Dataset B Predicted high absorptior| Predicted low absorption| Total

Hi gh absorp 23 (32.9%) 0 (0%) | 23 (32.9%)

Low absorption (<1.3%) 38 (54.3%) 9 (12.9%)| 47 (67.1%)

Total 61 (87.1%) 9 (12.9%)| 70 (100%)

Sensitivity = 100%

Specificity = 19.1%

In the second scenario, the realistic approach, violation of none or only one rule is

allowed, meaning that more than one violatidrthe ruleleads to the predion of high
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absorption for a&aompound. The statistical performance of scenario two is expressed in

Table 4.3.

Table4.3:Per f or mance of the rules set for dat as e

Dataset B Predicted high absorptio Predicted low absorption| Total

Highabsor pti o 19 (27.1%) 4 (5.7%)| 23 (32.9%)

Low absorption (<1.3%) 18 (25.7%) 29 (41.4%)| 47 (67.1%)

Total 37 (52.9%) 33 (47.1%)| 70 (100%)

Sensitivity = 82.6% Specificity = 61.7%

Scenario 1 and 2 can be directly compared as they use theleemad absorption cugff.

On the one hand the model based on scenario 2 is a better overall prediction with
moderate sensitivity (82.6%) and specificity (85)fespectively lefer toTable 4.3), on

the other hand the model based on scenario 1 is veseoative with a maximum
sensitivity (100%) but poor specificity (19.1%jefer to Table 4.2). Therefore the
iconser v a might beomonm tavberable for regulatory decisioaking, due to

high certainty of practicékloyphoohneér mal p:

However, in the third scenario, the flexible approach, a different threshold for dermal
absorption was taken (2%0he 2% threshold is empirically more favourable than 1.3%
threshold to classify the dataset Bhe violation of oneor morerules lead to the
prediction of a compounbavinghigh absorptionAll other compounds are classified as

havinglow absorption. The performance of the rule sehis scenario is shown in Table

4.4,

Table 4.4:Performance of the rules setforalat et B (scenari o 3; Afl ex|
Dataset B Predicted high absorptiof Predicted low absorptio| Total

Hi gh absor 13 (18.6%) 0(0%)| 13 (18.6%)

Low absorption (<2%) 24 (34.3%) 33 (47.1%)| 57 (81.4%)

Total 37 (52.9%) 33 (47.1%)| 70 (100%)

Sensitivity = 100% Specificity = 57.9%
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When shifting the dermal absorption -@if to 2%, it is possible to achieve maximum
sensitivity (100%) while still having moderate specificity (57.9%&fer to Takde 4.4).
While the assignment of the new dermad@iption cuoff seems to be favourable for the
model, it is questionable if 296 vivo dermal absorption is within an acceptable margin
regarding regulatory assessmgmbta bene the initially suggested cudff, before

modelling, was 1.3% based private communication with Prof. Rogiers)

Effects of physicechemical properties on dermal absorption have been confirmed with
similar concepts as the literature proposes that small, uncharged and (moderately)
lipophilic compounds pass easier thrbufe skin(Potts and Guy, 1992; Magnussen

al., 2004; Lipinskiet al, 2001; Newbyet al, 2015; Pughet al, 2000) Furthermore
similar physicechemical relationships on passing through $tr@atum corneumwere
confirmed bythe QSPR models presented @inapter 3.The official opinions of the
SCCSdo offeronly limited descriptions of the testing protocal®. it would be nearly
impossible to differentiate high and low data quality based on testing protdoolsver,
differences in the dermal absorption testing methodology are likely to have an impact on
the potentidly poor data quality of some dat@iherefore the focus of this study lies, as
often in applied sciences, on the overall picture by accepting the potemtiguality

associated with the dateefer toChapter 2 and 3).

Most cosmetic praacts are applied topically, whiamakes dermal absorption the main
route of exposure. Of coursgermal absorption is only one factor wittgafety and risk
assessmentoweverit is relevant for the calculation dfie¢ MoS (as described in E411).

For compounds with marginally low dermal absorption valiges.<0.01%) SED values

are very low, what may increase the MoS quite dramatically. When additionally
considering the usage of the uncertainty factor, for example for the animal to human

extrapolation, an experimental NOAEL value might not contribute as much adexkpec
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to the finalsafety evaluationFurthermore it must be noted that rodent diatemn which
NOAEL values are based on, are not always of that precise. \@lo¢gtmann and
colleagues investigated two datasets with experimental rodent carcinogenicithegta, t
only found a concordance of 57% between duplicates from different resources (Gottmann
et al, 2001). Keeping this mind, reatross and local QSAR<=.{. within one
functional/chemical class of cosmetic ingredients) may be excellent tools to alltve for
assessment of NOAElisparticularly as experimental testing to establish a NOAEL is no

longer feasible for cosmetic ingredients.

4.4. Conclusions and perspectives

In this study ann silico approach to predict (or to better classify) dermal absormtion
chemicals wasleveloped. Several models were developed with differing sensitivity and
specificity depending on the dermal absorption thresholds defined for classification and
the availability of melting point data. It must be pointed out that, as showtieby
performance of the models (Tables 4.2 and 4.3), high sensitivity usually compromises
specificity andvice versalt is common practice in risk assessment and regulatory affairs
to consider, or plan for, worsta s e scenari os by ammmsmi ng
cases of doubt, for example when few or no adequate data are available. However, a
conservative approach at multiple levels can cumulatively add up to an overly cautious
number,e.g.a very low MoS value. Generallyioim a scientifigpoint of view, the most
realistic equation, model @venfieducated) u e sheufd be used at every st@xposure,
absorption, MoAetc) within any risk assessmenapproach Rounding up/off to a
conservative, regulatory acceptable value should be done exclusivély aehd of the
approach. It is more transparent to increase the uncertainty factor at the end of the
mathematical part of the risk assessment than wsieged equations andodels for

example with 100% sensitivity and poor specificitfrefer to Tables4.1 and 4.2)
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Nevertheless, all tools presented in this study have the potential to support risk
assessment, at least on the SED side of the equation. According to the chakenge,
dealing with hair dyegtc. and splitting the data at 1.3% dermal absomtimodels are
presented with attributes such as MfAconse

20%).

Beyond the concrete dermal absorption classification models of haietyethis study
serves as well as a demonstration of how to createlesioipssification models for
dermal absorption to support ntesting approaches in the consumer and personal care
industry. Both of these interpretation$ this study, as a model and as a blueprint for
other classification modelsre relevant for the assessment of cosmetic ingredients, and
hence releant for the COSMOS project. Howewves dermabbsorptions only one pillar

of the assessmerdf cosmetic ingredients, toxicHgriving mechanisms need to be
investigated as wellTherefore Chapter 5, 6 and deal with mechanisticallpased
modelling with a specific focus on liver toxicifjas a relevant example for cosmetic

ingredients)
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5. Screening chemicals for regator-mediated toxicological and
pharmacological endpoints: Using public data to build screening

tools within a KNIME workflow*

5.1. Introduction

The assessment of potential toxicants is a multidisciplinary task. Whilst the previous
chapters dealt with issues, such as data quality (Cls&ptard 3) and kinetics (Chapser

3 and 4), the following Bapters (5 to 7) deal with mechanistically based modelling and
the identification of the molecular initiating events otestedcompoundsHence the

following chapters provide innovative tools and methodologies for hazard identification.

Generallyspeakingpredicting and understanding the properties of new chemical entities
is not trivial, whether in the development of novel pharmaceutioalén assessing
potential toxicity. Howeverin silico, QSAR and reaeacross approaches provide a means
of rapidly obtaining information (Blackburn and Stuard, 2014; Crastiral, 2013,
Patlewicz et al, 2013). Such models can be supported by, or deséldjpom,
mechanistic understanding (Zlet al, 2014). Additionally the concept of thOP, i.e.
describing a sequence of causally linked events at different biological levels, is
increasingly being applied to investigate adverse effects (Virdteal, 2013). As
described more in detail in Chapter 1 (Section 1.4.2)lefs may be developed from
knowledge of the first key event of an AOP, thelecular initiating eventIE). In AOP
terminology the MIE is followed by cellular and organ responses, whichuttiayately
result in an adverse effect to an organ, organism or population (Aekkdy 2010). The

MIE represents the initial interaction betwesemolecule andatarget. Examples of MIEs

include covalentbinding to DNA and, of relevancefor this study, receptor binding

* This chapter is based on a published article (Steinmet&t al, 2015a)
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(Gutselland Russell, 2013; Alleet al, 2014). In pharmacology the mode of action,
similar to an AOP, incorporates a MIE which describes how a condpmieracts with
specific proteinse.g.receptors, carriers and enzymes. However, rather than providing the
framework for describing the processes behind an adverse effect, the aim in
pharmacology is to achieve a beneficial effect, such as the preventtcgatment of a

disease (OECD, 2012; FDA, 2013).

Analogous to pharmacology, toxicity may also be brought about by interactions with
specific proteins,such as receptors. Endocrine disruptors, for example, are a class of
toxicants known to cause their efts by receptemediated mechanisms. As such,
models for endocrine disruption are usually built around knowledge of receptor
interactions, e.g. binding to the oestrogen receptor. For instance, one approach to
modelling these effects has been proposedrécé y by Kol gek and col
developed a tool to identify nuclear receptor ligands based on AutoDock Vina; a freeware
to investigate ligangbroteininteractions (Molecular Graphics Laboratory, 2014).
Limitations of this type of approach are asiated with several of the typical issues of
docking. First, nuclear receptors, particularly the-staroid receptors, are considered to

be flexible (Nettle®t al, 2007). An inflexible docking model, such as AutoDock Vina, is
unlikely to cope with theliversity of ligands including, for instance, full and partial
binding modes as well as inverse agonists and antagonists. The second limitation, when
docking is applied on its own, is that kinetics (on a cellular level) are systemically
ignored, which migh be vital forin vivo biological activity. The physicechemical
properties of the ligand play an important role, particulantyafusorption and distribution

at a histological and cellular level, which may all eventually contribute to, or define,

targetorgantoxicity (Campbell, 1983; Davis and Riley, 2004).
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The current study focuses on the retinoic acid receptor (RAR), a target relevant for
pharmacology and toxicology in equal measure. The RAR is a nuclear receptor which can
be divided into three subtypeRAR-U , FPARand-o RARBRound toget h
retinoid X receptor (RXR) as a heterodimer, RAR regulates genetic expression. All three
subtypes of the RAR are activateddilttransretinoic acid and €is retinoic acid, which

are derivatives of vitamin A (Liu et al., 2014). Ligands are used in the treatment of
dermal disease%.g. Acne vulgaris Psoriasis vulgaris Keratosis pilarisand specific

types of cancer, such as acute promyelocytic leukaemisa@ihet al, 2014; Allen and

Bloxham, 1989; Dicken, 1984; Leydehal, 2005).

The toxicological effects of RAR agonists include changes in lipid metabolism, which
may cause hepatosteatosis leading to liver inflammation, fibrosis and eventually liver
failure. Teratogenic effects and neural disorders, such as nausea and headache, have bee
also reported from retinoids (Adams, 1993; Biesalski, 1989; My, 2010; Shalita,

1988). There is, therefore, a great need to develop tools to identify compouictis wh

show these effects.

There are many open source software applications and open access databases supportin
modern life sciences and informatics. A number of these open access/source technologies
can be utilised to develop tools and approaches for pineliand/or computational

toxicology. Some technologies relevant to this study are described below.

The KoNstanz Information MinEr (KNIME) technology asfreely available software to
analyse and mine data, as well as to build and evaluate predictivesnibuelsoftware is
based on a graphical user interface util
process data in a Awor kfl owo. The basic

nodes and addns for chemanformatics, is available from wwwikme.org. Many types
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of data can be handled, including chemical formats, such as the Simplified Molecular
Input Line Entry System (SMILES) and SMiles ARDbitrary Target Specification
(SMARTS) (Daylight, 2014). KNIME has a strong community of developerdingjl
additional nodes for cherrioformatics applications (amongst others), to edit data,
calculate physicehemical properties, analyse structural feateteslt has been shown

to be useful in developing workflows for screening tools in the context exfigiive
toxicology (Saubermt al, 2011; KNIME, 2013). Furthermore, many other programming
languages, such as R, Python or Perl, can be used within a KNIME workflow (Bezthold

al., 2007; KNIME, 2014; Richaret al, 2013).

With regard to biological astity, there are an increasing number of resources available
to retrieve information. For instance, ChEMBL is a database of bioactive molecules
comprising over 1.5 million compounds and over 9,000 biological targets. Activity values
are reported for a vaty of endpoints including iK Kg, ACso, ICso, and EGo. The
database is curated manually and maintained by the European Molecular Biology
Laboratory (ChEMBL, 2014). A good example of the application of ChEMBL and the
utilisation of its resources was puied by Czodrowski (2013). In that study, a detailed
analysis of ChEMBL hERG assay data was used to build classification models relevant
for drug development and demonstrated the applicability of these data for modelling and

the value that may result frodata mining.

Another valuable resource is the Protein Data Bank (PDB, 2014) which contains over
100,000 crystallographic structures of proteins such as receptors, transporters and
enzymes. A quarter of these protein structures are of human origin, thesiotiogures

are from other mammals (mainly rodents) and bacteria. For some proteins, such as the
RAR, there are data for several subtypes, species and ligands (Betrrahn1999).
Besides the linked publications for every entry, liganoteininteractons can be
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investigated with specific software, for example PyMOL (2014). Visualisation of protein
structures of targets, such as receptors, transporters and enzymes, and their correspondin
ligands, helps to understand ligapibteirrinteractionsge.g.hydrogen bonds between the

ligand and the liganiinding-domain of the protein.

Whilst there is a growing number of computational resources, some of which have been
developed for computational toxicology, up until now there has been little effort, and few
publications demonstrating the utility ofcombining these disparate sources of
information. The aim of this investigation, therefore, was to present a-barasproach

to develop screening tools applicable for many pharmacological and toxicological
challenges. The methods applied are based firstly on gathering publically available data
on RAR ligands (from ChEMBL and PDB) and secondly extracting information on
physicechemical space and structural features that are relevant to activity. Thirdly, this
information was used to build a reb@sed screening tool within KNIME. The purpose of

the screening tool in this study was to identify potential RAR ligands. RAR is only one
example targetj.e. this approach was designed to provide a framework that can, in
principle, be used to create screening tools for other receptors should sufficient data be

available.

5.2. Methods
The RAR and its ligands were investigated solely using freewata benePyMOL is

free for academic users only) and open access databases.

5.2.1. Analysis of RAR ligands using the PDB
The PDB 3.3 was searched for human RAR structiv@sRAR-U , FPARaNndo RAR
(PDB, 2014). The structures obtained were investigated visually with regard to their

ligand-proteirrinteraction within PyMOL 1.3 (PyMOL, 2B}). Common structural
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features of the ligands, particularly when apparently responsible for similar digand
proteirtinteractions, were extractedanually The extracted structural features combined
information about molecular distances and molecular eleictrforces, which may be
responsible for hydrogen bonding or the occupation of lipophilic pockets. Subsequently
the structural features were coded manually into SMARTS strings. These SMARTS

strings were later used in the ridased workflow to predict pemtial RAR ligands

5.2.2. Extracting data from ChEMBL

The ChEMBL 19 database was searched for
data from compounds withiKbinding affinity), Ky (dissociation constant), Ag(50%

activity in molar units) and E{ (50% efect concentration in molar units) values towards
RAR-U , FPARRNnd-o RARre downl oaded, combined a
value. The pChEMBL value is an approach to standardise different types of activity
values (Bentet al, 2013). Every compound with value of five or greater was regarded

as being active due to binding towards RAR. This is consistent with the activity

interpretations of the ChEMBL database.

5.2.3. Physicachemical property calculation

The physicechemical properties of RAR ligands were cddted using the CDK node for
molecular proprties within KNIME 2.9.4 (includingommunity contributions) (KNIME,

2014). Rangesi.€. minimum and maximum values) for different types of calculated
descriptors for the active ligands were studied including: vertex adjacency information
magnitude (VAIM) for structural complexity, number of rotational bonds (RB) for
flexibility, molecular weght (MW) for molecular size and the logarithm of the octanol
water partition coefficient (XLogP CDK & s v e r s)ifar lipophilfcity.tThese | o g

four descriptors and their calculated property ranges were utilised to give an insight into
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