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ABSTRACT 

 

The continuous reduction of the dimensions of CMOS devices has increased the 

negative bias temperature instability (NBTI) of pMOSFETs to such a level that it is 

limiting their lifetime. This increase of NBTI is caused mainly by three factors: an 

increase of nitrogen concentration in gate dielectric, a higher operation electrical field, 

and a higher temperature. Despite of many years’ research work, there are questions on 

the correctness of the NBTI lifetime predicted through voltage acceleration and 

extrapolation. The conventional lifetime prediction technique measures the degradation 

slowly and it typically takes 10 ms or longer to record one threshold voltage shift. It has 

been reported that NBTI can recover substantially in this time and the degradation is 

underestimated. To minimize the recovery, ultra-fast technique has been developed and 

the measurement time has been reduced to the order of microseconds. Once the 

recovery is suppressed, however, the degradation no longer follows a power law and 

there is no industry-wide accepted method for lifetime prediction. The objective of this 

project is to overcome this challenge and to develop a reliable NBTI lifetime prediction 

technique after freezing the recovery. To achieve this objective, it is essential to have an 

in-depth knowledge on the defects responsible for the recovery. 

 

It has been generally accepted that the NBTI recovery is dominated by the 

discharge of trapped holes. For the thin dielectric (e.g. < 3 nm) used by current industry, 

all hole traps are within direct tunnelling distance from the substrate and their 

discharging is mainly controlled by their energy levels against the Fermi level at the 

substrate interface. As a result, it is crucial to have the energy distribution of positive 

charges (PC) in the gate dielectric, but there is no technique available for probing this 

energy profile. A major achievement of this project is to develop a new technique that 
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can probe the energy distribution of PCs both within and beyond the silicon energy gap. 

After charging up the hole traps, they are allowed to discharge progressively by 

changing the gate bias, Vg, in the positive direction in steps. This allows the Fermi level 

at the interface to be swept from a level below the valence band edge to a level above 

the conduction band edge, giving the required energy profile. Results show that PCs can 

vary by one order of magnitude with energy level. The PCs in different energy regions 

clearly originate from different defects. The PCs below the valence band edge are as-

grown hole traps which are insensitive to stress time and temperature, and substantially 

higher in thermal SiON. The PCs above the valence band edge are from the created 

defects. The PCs within bandgap saturate for either longer stress time or higher stress 

temperature. In contrast, the PCs above conduction band edge, namely the anti-

neutralization positive charges, do not saturate and their generation is clearly thermally 

accelerated. This energy profile technique is applicable to both SiON and high-k/SiON 

stack. It is found that both of them have a high level of as-grown hole traps below the 

valence band edge and their main difference is that there is a clear peak in the energy 

density near to the conduction band edge for the High-k/SiON stack, but not for the 

SiON. 

 

Based on this newly developed energy profile technique and the improved 

understanding, a new lifetime prediction technique has been proposed. The principle 

used is that a defect must be chargeable at an operation voltage, if it is to be included in 

the lifetime prediction. At the stress voltage, some as-grown hole traps further below Ev 

are charged, but they are neutral under an operation bias and must be excluded in the 

lifetime prediction. The new technique allows quantitative determination of the correct 

level of as-grown hole trapping to be included in the lifetime prediction. A main 

advantage of the proposed technique is that the contribution of as-grown hole traps is 
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experimentally measured, avoiding the use of trap-filling models and the associated 

fitting parameters. The successful separation of as-grown hole trapping from the total 

degradation allows the extraction of generated defects and restores the power-law 

kinetics. Based on this new lifetime prediction technique, it is concluded that the 

maximum operation voltage for a 10 years lifetime is substantially overestimated by the 

conventional prediction technique. This new lifetime prediction technique has been 

accepted for presentation at the 2013 International Electron Devices Meeting (IEDM).  
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 Introduction 
 

 

 

1.1 History of the MOSFETs’ Reliability  

 

The integrated circuits (ICs) were invented in 1958 by J.Kilby at Texas 

Instruments. Soon after, Frank Wanlass from Fairchild had described the first CMOS 

logic gate (NMOS and PMOS) in 1963. The first ICs produced in the early seventies 

had only a few hundreds of transistors integrated based on bipolar technology. The 

Metal Oxide Semiconductor (MOS) had only arrived several years later due to its 

instability caused by the presence of minute amounts of alkali elements in the gate 

dielectric, which subsequently leads to a shift of the threshold voltage of the transistor 

during operation.  

 

Due to the high power consumption in bipolar circuits, MOS technology had 

gradually made its way into the scene. The problem relating to the high power 

consumption can be dealt with as the dimensions of the MOS devices can be scaled 

down easily compared to other transistor types. Though MOS circuits have lower power 

consumption, the MOSFETs are relative slower than their bipolar counterparts. Initially 

the NMOS had obtained a wider acceptance but due to the increase in integration 
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density, its high power consumption became unacceptable once more. Eventually in the 

eighties, the CMOS processes were widely adopted. However even before the CMOS 

was widely accepted, the defects presented in the CMOS technologies had been 

investigated ever since its first generation in 1960s [1,2].    

 

The rapid miniaturization of circuits by the downscaling trend of the transistor sizes 

has been seen to evolve ever since. Through transistor scaling, one can obtain a better 

performance-to-cost ratio of products which induces the exponential growth of the 

semiconductor market. The Moores’ Law [3-7] is popular in the semiconductor industry 

which predicts the number of transistor used per chip to double every 18 months or so. 

The industry is currently faced with the increasing importance of new trends which are 

the “More Moore” and “More than Moore” (MtM) where added value to device is 

provided by incorporating functionalities that do not necessarily scale according to the 

Moore’s Law. These trends are made effective in microelectronic products where there 

are non-digital functionalities incorporated such as an assembly of various components, 

for instance passive components on a printed circuit board (PCB).  The combined need 

for digital and non-digital functionalities in an integrated system is distinctly reflected 

as a dual trend in the recent International Technology Roadmap for Semiconductors 

(ITRS). The “More Moore” trend is to define the rapid miniaturization of digital 

functions while the MtM defines functional diversification of semiconductor-based 

devices. The non-digital functionalities is claimed to be contributing to the rapid 

miniaturization of electronic systems too, though not to the same extent as that of the 

digital functionality. The relevance of this new trend in CMOS technologies has been 

extensively reported in the ITRS, 2011 edition [8]. 
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The rapid scaling for enhanced performance had also pushed existing CMOS 

materials closer to their intrinsic reliability limits and hence reliability issues are 

observed to be of significance and tend to change as the transistor dimensions are 

downscaled.  One of the early reliability issue emerged in the 1970s was the 

contamination, such as mobile ions which can induce instability [9]. This was 

eventually overcome by the realization of handling the devices in a clean-room 

environment. In the 1980s, even as the downscaling of the transistor dimensions 

continued, the operation voltage was maintained at a constant 5 V. This results in higher 

electrical field in the device and hot carriers were limiting the lifetime of nMOSFETs 

[10,11]. Gate leakage further became a big threat under the operating bias as the gate 

oxide was thinner than 3 nm. In the 1990s, the time-dependent-dielectric breakdown 

(TDDB) [12] was the main reliability concern. Later as the year steps into the new 

millennium, the lifetime of MOSFETs were threatened by negative bias temperature 

instability (NBTI), which will be elaborated in the following section.  In the future, the 

degradation–induced time dependent device variability is predicted to be of a major 

issue [13]. However this variability issue is out of the scope conducted in the work of 

this thesis, and hence will not be further elaborated. 

 

 

1.2  Negative Bias Temperature Instability  

 

The negative bias temperature instability (NBTI) is one of the dominant reliability 

concerns in analog and digital CMOS technologies. This instability specifically occurs 

in pMOSFETs employed by current technology generations. The common observation 

resulting to this instability is that the threshold voltage of the transistor may increase 
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over time, followed by a reduction in the drive current. This ultimately degraded the 

circuit performance and decreases its lifetime. 

 

The NBTI is one of the earliest reported instabilities occurring in the MOSFETs. In 

1967, Deal et al [2] had studied NBTI in integrated circuits and in 1977, Jeppson and 

Svennsson [14] developed a theory based on the generalized reaction-diffusion (RD) 

model to explain the kinetics of NBTI. They observed that the defect generation 

followed a power law dependence against time, with a power factor ranging from 0.2 to 

0.3. The role of relaxation and bulk traps were discussed.  

 

NBTI received relatively less attention in the early 1980s however, due to the 

emergence of the NMOS technology and the buried channel PMOS [15]. In the late 

1980s and early 1990s, the NBTI issue begins to become a concern due to the 

application of dual poly gate, though the hot carrier injection (HCI) dominates the 

device reliability issue. Not until the CMOS technology starts to scale below the 130 nm 

technology node [16-19] that the issue of NBTI is revisited. The rapid scaling of the 

CMOS technology results the following dominating trends: the first is that the oxide 

electric field increases significantly as a result the reduction in oxide thickness, without 

a corresponding reduction in the supply voltage. The voltage scaling reduces the HCI 

and TDDB effects, but the increase in field and temperature enhances the NBTI effects 

for both analog and digital circuits. Secondly, in order to reduce the gate leakage and 

boron penetration effects, oxynitride are adapted into the CMOS technology 

extensively. Since then, there were reports [20-22] to demonstrate that nitridation 

enhances NBTI and positive change formation.  
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The study of the NBTI involves the large negative bias stressing (which ranges 

from 5 – 12 MV/cm) at temperatures ranging from the room temperature to elevated 

temperatures (100° C - 200° C). After a preset stress time, the sample is cooled down to 

room temperature and its device characteristics are measured. The effects of the 

negative bias temperature stress is observed from the degradation suffered by the critical 

device parameters, specifically the threshold voltage, subthreshold slope, the 

transconductance, mobility and the drain current. This stress-measure-stress cycle is 

repeated and the time of stress extends to typically 10
3
 to 10

5
 s. 

 

 

1.3 Models of Negative Bias Temperature Instability  

 

There are various reports published in trying to explain the physical mechanism 

behind NBTI. The most prevalent of these reports are that of Alam [23] which suggests 

of the reaction-diffusion (RD) theory and Huard et al [24] which suggests the existence 

of two independent components (Recoverable, Dr, and Permanent, Dp) where each has 

its own different mechanism. In addition, Grasser et al [25] used a defect spectroscopy 

technique which entails the distribution map of defect properties. Another model which 

explains the kinetics of NBTI measured under the worst case condition is proposed by 

Z.Ji et al [26] which combines the effect of as-grown defects with that of the generated 

defects (The AG model).  
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1.3.1 Reaction-Diffusion (RD) model  

 

The RD model was first proposed by Jeppson and Svennsson [14] and the model 

was further adapted by Alam [23] and has since been used extensively to explain the 

mechanism of the NBTI [27-35]. The physical process behind this RD model is that the 

degradation is initiated by the electrochemical reaction at the SiO2/Si interface, which 

converts the precursors into interface states and releases a hydrogenous species. The 

hydrogenous species then diffuse away from the interface and this diffusion process 

limits the generation of interface states. The kinetic equation [36] that describes the 

interface reaction is as below  

                 HNkNNk
t

N
a

ititritf

it 1

0 )( 



              (1) 

                                       Generation      Annealing 

 

where kf is the oxide field dependent forward dissociation rate constant and kr the 

annealing rate constant. N0 denotes the initial number of electrically inactive Si-H bonds 

and Hit is the interfacial hydrogen concentration whereas a is the order of the reaction 

(a=1 for the atomic hydrogen, H0 and a=2 for the molecular hydrogen, H2) [37]. The 

forward and backward reaction is controlled by the hydrogen density at the interface. 

Therefore the transport mechanism of the hydrogen species away from the interface 

characterizes the degradation mechanism and thus controlling the device’s parameters 

for instance the threshold voltage shift. After sufficient trap generation, the rate of the 

generation of traps is limited by the diffusion of hydrogen. 
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Fig. 1.1 illustrates the schematic description of the reaction-diffusion model which 

interprets interface trap generation. Broken Si-H bonds at the Si-SiO2 interface create 

interface traps, Si+ and hydrogen species, H. Some H converts to hydrogen molecules, 

H2. Diffusion of hydrogen away from the Si/SiO2 interface controls the interface trap 

generation at the Si/SiO2 interface, thus resulting to NBTI. Thinner oxides have brought 

the polysilicon gate closer to the Si/SiO2 interface and therefore increasing NBTI 

susceptibility since hydrogen diffuse much faster in polysilicon than in oxide [38]. From 

the illustration presented in Fig. 1.1, it is obvious that as the gate oxide is further scaled 

to meet the current demand for scaled CMOS technologies, the interface trap 

concentration would significantly increase and thus, enhancing NBTI. 

 

 

Fig. 1.1 Schematic description of the reaction-diffusion model to interpret the BTI-induced interface trap 

generation phenomena. 

 

 

1.3.2 Hole Trapping and RD model  

 

There are reports [39] which claim the pitfalls of the reaction-diffusion model. It is 

claimed that the RD model is unable to reproduce recovery characteristics [40-43]. In 

contrast to the experimental observation of the different relaxation magnitudes at 
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different recovery biases, this model predicts a bias-independent recovery. Hence, some 

reports concluded that the RD model is not the answer in explaining the NBTI 

mechanism and that the NBTI is not controlled by diffusion. The RD model theory was 

widely accepted until around the year 2006 when the hydrogen diffusion was suggested 

to be dispersive instead [44-50]. The pioneering authors of the RD model had then 

revised the model [51] by claiming that in addition to ∆Nit, stresses may also cause hole 

trapping in pre-existing bulk oxide traps (∆Nhole) and at relatively higher stress bias, 

additional hole trapping in newly generated bulk oxide traps (∆Not). The authors had 

conducted a lifetime prediction for differently processed SiON pMOSFETs by utilising 

their H-H2 R-D framework for ∆Nit and link this framework with an analytical 

expression for ∆Nhole (= A*(1-exp(-t/τ)
β
)) in order to represent the mechanism for fast, 

quickly saturating (<1s) hole trapping in pre-existing bulk oxide defects.   

 

In addition to the theory based in the diffusion and dispersion of hydrogen, the 

concept of hole trapping is widely acknowledged, particularly in explaining the NBTI, 

by the concept of recoverable hole trapping. Elastic tunnelling is used to model the 

process of hole trapping in which the holes tunnel into pre-existing traps at various 

distances away from the interface. Elastic hole trapping is defined to be first-order 

temperature independent and linearly dependent on the stress field [52].  

 

There are also hole trapping models which are based on a dispersion of activation 

energies which results in a 1/f -noise behaviour for a homogeneous distribution. It was 

assumed that the holes can be captured through a thermally activated multiphonon 

emission (MPE) process into deep near-interfacial states/border traps and into oxygen 

vacancies called Eʹ centres. [53,54]. The difference between the MPE from the 
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conventionally invoked elastic tunnelling is that the MPE is temperature activated and 

its mechanism is assumed be derived under negligible electric fields. Hence, due to this 

non-field dependence assumption, it is difficult to use MPE to explain the mechanism of 

NBTI. An extension of the MPE is the multiphonon-field-assisted tunnelling (MPFAT) 

[55,56] in which it is an extension of the MPE to the large electric field, developed for 

the emission of particles from deep traps. Fig. 1.2 presents the energy band diagram of 

the MPFAT process for a clearer representation of this hole trapping mechanism.  

 

 

 

 

 

Fig. 1.2 The multiphonon-field-assisted tunneling (MPFAT) process used to explain the experimental 

data: elastic tunneling into deep states is only allowed when the excess energy of holes can be released 

via a multiphonon emission process during structural relaxation. The probability for a thermionic 

transition over the barrier ∆EB has been estimated as exp(-β∆EB) using 1D reaction-coordinate 

calculations, with β= 1/kBT. Application of an electric field shifts the total energy of the valence band 

state(dashed line), increasing the transition probability by exp( F
2
=F

2
c). [25] 

 

 

 

On the hole trapping kinetics and capture cross sections, after carefully eliminating 

the simultaneous neutralization and generation process by using the substrate hole 

injection technique, it has been shown that hole trapping follows the first order reaction 

model well with two well separated capture cross sections, σ: 

        


2

1

)]exp(1[
i

ii
QhNNe  (2) 
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where Ne is the effective density of trapped holes by assuming all traps are at the 

oxide/Si interface [57-60]. Ni is the saturation level of traps with a capture cross section 

of σi. Qh is the number of holes injected into the oxide that can fill traps. The two 

extracted capture cross sections are in the order of 10
-13

 ~ 10
-14

 cm
2
 and 10

-15
 cm

2
, 

respectively [57-60]. It is proposed that oxygen vacancies are hole traps [58,60] and the 

smaller trap is hydrogen-related [60]. 

 

However, the RD populist would suggest that hole trapping remains to give a non-

significant impact on the NBTI and had reflected that the hole trapping is merely a 

small threat in which its effect can be easily eradicated by removing the initial 

experimental data up to 1 sec so as to unveil the RD degradation mechanism [51]. 

 

1.3.3 Two-components Model (Huard) 

 

A break from the RD tradition was brought about by the work of Huard [61] from 

STMicroelecronics where the author strongly suggested that hole trapping made 

important contribution to the degradation. He had explained that the NBTI is made up 

of two independent components, which are the recoverable component and the 

permanent component and these two distinct components demonstrate different voltage, 

temperature and process dependences. Fig. 1.3 describes the general scheme of the 

model presented by Huard et al [61]. The permanent component is suggested to be 

consisting of equal proportion of the interface states and positive fixed charges (1:1 

relationship). It was also shown that this component will gradually reach total recovery 

after long thermal anneals [62].  
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Fig. 1.3 General scheme of NBTI degradation consisting of permanent and recoverable parts [61].  

 

 

 

 

Fig.1.4 ∆Vt Charge Pumping-induced recovery observed after one week of anneal. The Vt shift continue 

to recover to reach the same level as Nit. [61] 
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Fig. 1.4 is the experimental observation which demonstrates the recovery of the 

threshold voltage after one week of annealing, eventually leading to the recovery of the 

positive charge to the same level as the Nit. Hence leading to the justification that of the 

1:1 correlation between the interface states and the positive fixed charges which makes 

up the permanent component. The recoverable component on the other hand comprises 

of the hole trapping/detrapping processes to pre-existing defects in the dielectrics.  

 

1.3.4 CET Mapping Model  

 

Recently a physics-based analytic model was proposed by [63] to capture the BTI 

degradation mechanism during DC, AC and duty-factor dependent stress as well as BTI 

mechanism during recovery. The model is essentially based on the earlier proposed 

capture/emission time (CET) maps [64,65] which are used to extract  accurate NBTI-

relevant defect parameters. The extraction of capture and emission time constants, τc 

and τe , which corresponds to stress and recovery respectively, were reported in earlier 

literatures [66,67]. The CET map is formed by also including the information extracted 

from the temperature- and field-dependencies (τcs and τes) in order to gain insight in the 

physical processes. A determination of averaged time constants is obtained by 

extracting the averaged values for τc and τe from repetitive measurements. The typical 

number of measurements that needed for the formation of this model can resort to 

hundred or more and the main parameters are the gate voltage, the length of excitation 

pulse and the temperature.  
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1.3.5 As-grown Generation (AG) Model  

 

It has been reported in many literatures that lifetime prediction using quasi-dc 

measurement may result in a substantial error due to the significant recovery which may 

occur during the measurement. This resorts in the use of ultra-fast pulse measurements, 

where time was reduced to the order of microseconds, when carrying out the Vg 

acceleration tests. Ji et al [26] however, has reported of the substantial error of the 

lifetime prediction at a worst case scenario when the recovery is suppressed and the Vg-

acceleration method was used. The Vg acceleration models commonly used by various 

literatures in lifetime prediction are the power law model, |Vg_st|
-α 

and the exponential 

model exp(-|Vg_st|). The detailed [26] investigation reports on how these models failed 

to predict the correct lifetime under operational voltage, Vg_op. This is since the NBTI 

kinetics no longer follow a simple power law. 

 

Ji et al [26] proposed a new model to predict the NBTI lifetime at the operational 

bias, Vgop, and the ultra-fast pulse measurements were used to validate this model. 

They had observed a distinct ‘shoulder’ in the NBTI kinetics, which is insensitive to 

temperature. Fig.1.5 presents the kinetic feature of the ‘shoulder’ sensed by the ultra-

fast pulse measurement. The presence of this ‘shoulder’ is claimed to be the effect of the 

saturated charging of as-grown defects which dominated during the initial period of 

stress. Subsequent to this initial period, a rise in the ∆Vth is observed suggesting the 

generation of new defects.  
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Fig. 1.5 Kinetic feature of a ‘shoulder’ measured by the ultra-fast pulse measurement ∆Vth sensed at |Vg| 

=1.2V. [26] 

 

The charging kinetics of the AHT is reported to generally follow the first-reaction 

model [57,58], whereas the generation of new defects follows a power law [68-70]. 

Hence, by combining the first-reaction model and the power law, the authors proposed 

the following expression to reflect the kinetics of the NBTI under the worst case 

scenario: 

                   *1 ttn
th ectAV

                     (3) 

where for a given stress temperature and bias, A, n, c and t* are constants and were 

obtained by fitting experimental data with the least-square errors.  

 

All the models mentioned above have been shown to be able to fit the test data, but 

the real acid-test for a model is whether it can predict NBTI when test data are not 

available. Unfortunately, little information and efforts have been made to test the 
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prediction ability of the proposed models. The AG model is the only model that the 

authors [26] demonstrated that it can not only fit the test data over ten orders of 

magnitude in time, but also predict the ΔVth two orders of magnitude ahead where no 

test data were used to fit the model. By combining the first-order model for the AHTs 

and the power law for generating new defects, ∆Vth can be modelled over ten orders of 

stress time. This kinetic model is then used to predict the NBTI lifetime. This prediction 

ability makes the AG model stand out from the rest. 

 

1.4 Positive Charges Formation in Gate Dielectric 

 

1.4.1 Confusions in Positive Charges  

 

Positive charges (PC) in gate dielectrics play an important role in NBTI. There are 

confusions relating to their understanding of their generation mechanisms and 

dependencies. Extensive works have been carried out in an attempt to characterize them. 

Two types of positive charges have been reported. One of them is the trapped hole that 

once fully recovered to its precursor state, will need a further hole injection to be 

recharged. Another type of positive charge is known to be recoverable and easily be 

positively recharged under a negative bias without switching on the hole injection 

[71,72]. This type of positive charge is referred to by various names, including 

anomalous positive charges [73,74], slow states [75], border traps [76], and switching 

oxide traps [77]. The formation of the anomalous positive charge (APC) remains to be a 

confusion among the published literatures and the understanding of the characteristics 

of this positive charge type is still poor. There might be more than one type of APC and 

there have been a lack of evidence to clarify the relation between the APC and the 

trapped hole.  
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This confusion has been brought to light by Zhang et al [78] in which they showed 

that the anomalous behaviour originates from the simultaneous presence of different 

types of positive charges in SiO2. This is further elaborated in the next section where the 

framework of the positive charge is given.  

 

 

1.4.2 Framework 

 

It has been reported [78-81] that there are three different types of hole traps in the 

SiO2 : the cyclic positive charge (CPC), the anti-neutralization positive charge (ANPC), 

and the as-grown hole trapping (AHT). It was shown that the CPC and ANPC are 

generated traps and that the AHT, regardless of its distance from the SiO2 interface, 

does not contribute to the generation of the new traps. The CPC can be repeatedly 

charged and discharged under Eox = ±5 MV/cm. Another interesting property of the 

CPC is that it is insensitive to temperature. The ANPC can be easily positively charged 

without hole injection and but is difficult to neutralize. The ANPC, which is a thermally 

activated defect, can eventually be neutralised by high electron injection. However, the 

higher the energy level of the ANPC, the less number of electrons are able to reach the 

defect in order to neutralize it.   In contrast to the ANPC, subsequent to neutralization, 

AHT cannot be recharged without hole injection. The initial charge state of the as-

grown hole traps is neutral since it is energetically located below Ev. 

 

Fig.1.6 [80] describes the separation of the three types of positive charges. Fig 1.6 

(a) illustrates the procedure of how these positive charges was separated. A pMOSFET 

was stressed by Substrate Hole Injection (SHI) to form the positive charges. Subsequent 
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neutralization was carried out by Fowler Nordheim Injection (FNI). After the 

neutralization, a positive and negative bias with the magnitude of oxide field of Eox=±5 

MV/cm, was alternately applied with all other terminals grounded.  

 

Figs.1.6 (b) and (c) [80] illustrate the energy levels of each types of these positive 

charges during their neutralization and recharging respectively. It was reported that the 

neutralization and charging of the CPC only involves the electron tunnelling at the same 

energy level. The ANPC on the other hand has an energy level above the conduction 

band edge of Si hence making its neutralization difficult. AHT cannot be recharged 

under the same Eox=-5 MV/cm without switching on of SHI, since their energy level is 

well below Si Ev and can only be reached by hot holes. 

 

It was also shown that this framework can be applied to the PCs formed under 

different stress conditions, such as NBTI stresses, and in high-k/SiON stacks. For 

example, Figs. 1.7 (a) and (b) [80] present the positive charges in the HfO2 and Hf-

Silicate respectively after NBTI stresses. It has been reported that the PCs in high-

k/SiON stack are dominated by the interfacial SiON layer [81].  
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Fig.1.6 Separation of three types of positive charges: as-grown hole trapping (AHT), cyclic positive 

charges (CPC) and anti neutralization positive charges (ANPC). [80] 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 (b) (c)      
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Fig.1.7 Separation of three types of positive charges: AHT, CPC and ANPC in Si-based Hf devices [80] 

 

 

1.5 The rationale of the project work 
 

Although a framework has been proposed for the PCs in gate dielectrics, it only 

gives a rule-of-the-thumb estimation of the energy levels of different types of PCs. 

Before this project, there is no probing technique that can extract the energy of PCs both 

within and beyond Si bandgap. Without this detailed energy distribution, not only our 

understanding of PCs is limited, but also there is a lack of confidence in the predicted 

NBTI lifetime for the threshold voltage. As a result, there is an urgent need for 

developing a new probing technique that can give detailed energy distribution of PCs in 

gate oxides both within and beyond Si bandgap. The central objective of this project 

is to develop such a technique and then use it to show the shortcomings of the lifetime 

prediction technique currently used by the industry.    

 

Part of the PhD period (1 ½ years) was conducted in Kuala Lumpur, whereby the 

background research on NBTI was conducted together with initial simulation and 

experimental work. The work conducted in Kuala Lumpur had resulted in 3 journal 
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papers and 3 conference papers. The later part of the PhD period (2 years), consisting 

fully of experimental work, was conducted in Liverpool John Moores University 

(LJMU). The major output from the work conducted at the LJMU is the publication in 

the IEEE Transaction of Electron Devices and the invitation for a presentation at the 

2013 International Electron Devices Meeting.  

 

 

1.6 Organization of the thesis 

 

 

This thesis is organized as follows: 

 

Chapter 2 comprises a review of the characterization techniques used in investigating 

Negative Bias Temperature Instability (NBTI), which includes both conventional and 

fast techniques. The DC transfer characteristic, capacitance-voltage (C-V), On-The-Fly 

(OTF) and fast pulse Id-Vg measurements are reviewed. 

 

Chapter 3 comprises of the comprehensive demonstration of the probing technique in 

obtaining the energy distribution of positive charges (PCs) in the dielectric which is 

extracted within and beyond the Si bandgap. The study will show that the PCs have a 

broad energy distribution and the results strongly support the existence of different 

types of PCs.  

 

Chapter 4 comprises of the impact of CMOS processes on the defects and their energy 

distributions. It will be demonstrated that the newly proposed energy distribution 
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technique is applicable not only to conventional single-layered SiON devices but also to 

various advanced high-k gate stacks. The energy distribution of different high-k devices 

will be investigated, including both HfO2/SiON and the AlO-capped high-k/SiON stack. 

Attention will be paid to their differences from the pure SiON samples.  

 

In Chapter 5, the application of the newly developed technique will be explored to 

predict the device lifetime. It will demonstrate how the current conventional technique 

used by the industry, as well as the advanced fast pulse measurement method suggested 

by other works is not suitable for lifetime prediction due to their incorrect inclusion of 

defects in the prediction. A new lifetime prediction method which can readily be 

implemented in the industry will be proposed, based on the energy distribution 

technique.  

 

Chapter 6 summarizes the work presented in this thesis. Finally the direction for future 

work is suggested. 
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Devices and Test Facilities 

   

 

 

 

2.1 Introduction 

 

 

In this chapter, the test systems for the conventional measurement techniques, 

including the transfer characteristics (I-V), charge pumping (CP) and capacitance-

voltage (C-V), are reviewed. The devices used in the experiments are also presented. 

Fast measurements, including the On-The-Fly (OTF), fast pulse Id-Vg and single point 

measurements are further described, due to their significance to this project. The system 

accuracy checks of the pulse measurement are calibrated. 

 

The essential equipment required for a standard wafer-level device characterization 

is illustrated in Fig. 2.1 (a). The device-under-test (DUT) is placed on a stage of a probe 

station and the probe station is housed in a black box to minimize interferences to the 

measurement from the outside environment. Four micro-positioners are used, of which 

each positioner is connected to one of the four terminals of a DUT. The micro-

positioners are also connected to the semiconductor analyser and pulse generator 

controlled by a personal computer. Fig. 2.1 (b) presents a photo of the micropositioners 

located in the probe station. As depicted in the photograph, the SSMC-to-SMA cables 

2 
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are needed to connect the amplifier circuit to the micropositioners. In order to avoid 

impedance mismatch, all system components must possess a 50Ω impedance and the 

length of the SSMC-to-SMA cables are minimized. The BNC cables between the circuit 

and the oscilloscope is required to be of the same lengths in order to synchronise the 

multiple output channels. 

 

 

 

 

 

 

                                   (a) 

 

 

 

              (b) 

 

Fig. 2.1 (a) Schematic diagram of the conventional measurement system and (b) Photograph of the 

SSMC-to-SMA BNC cable to connect the testing device and circuit. 

 

 

For the pulse measurement conducted in this work, the pulse generator used is the 

Arbitrary Waveform Generator Agilent HP 81150 A. An external circuit containing an 

op-amplifier is used to measure the drain current. The description of this circuit will be 

further elaborated in the following sections. The pulse system is able to provide a 

Computer  
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Command 

Data 
   Output 
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minimum measurement time of 100 ns with a noise margin of 5 mV. A program written 

in Visual Basic is used to control the pulse generator and automate the measurements 

conducted in this work. For the quasi-DC and the capacitance-voltage (CV) 

measurements, the CASCADE probe station and industrial standard parameter 

analysers, the Agilent E5270A and the Keithley 4200-SCS were used. It typically takes 

20~150 ms for measuring one point and in order to obtain a transfer characteristic, tens 

of points are needed and the total measurement time will be in the order of seconds. 

Most of the experiments conducted in this work characterizes thin (< 3nm) gate oxides. 

Since both recovery and degradation can occur during the quasi-DC measurement, it 

becomes essential to increase the measurement speed by using the pulse measurements, 

which will be discussed later in this chapter. However, the DC measurement will still be 

carried out in order to compare the work conducted in this thesis to the standard slow 

measurement typically conducted in the industry. 

 

For experiment conducted in this work, the value of the Vd is chosen differently for 

the different devices used. These values were chosen according to the maximum current 

a particular device can output. The higher Vd will lead to a high maximum current. 

However, the maximum current needs to be limited not higher than 150 μA , due to the 

limitation of the measurement system. For the measurement conducted in this work, a 

feedback resistance of 10kΩ was used in the external circuit containing the op-

amplifier. If the maximum current is higher than this set value, this might lead to the 

breakdown of the system. A tradeoff by having a lower Vd is that the current might be 

lower and hence will introduce noise interference to the measurement. Therefore, prior 

in commencing each experiment, the best Vd need to be chosen in order to avoid such 

noise, but at the same time, is able to maintain a well working measurement system.  
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2.2 Devices 

 

The gate dielectric of the conventional pMOSFETs used in this project includes the 

1.4 nm, 1.85 nm, 2.0 nm and 2.3 nm plasma-nitrided (PNO) SiON and the 2.7 nm 

thermally-nitrided (TNO) SiON. High-k gate stacks used in this work were the 1.13 nm 

(equivalent oxide thickness) Ta/HfO2/SiON stack, a 2.0 nm Al-capped HfO2/SiO2 stack, 

FUSI gated 1.52 nm Hf-Silicate, a 1.53 nm TiN/HfSiON/SiON stack and a 2.13 nm 

TaN/HfSiON/SiON. The 2.3 nm and 2.0 nm PNO SiON devices are standard devices 

used in the industry hence providing a good benchmark for the research presented in 

this thesis. Various types of high-k devices were used to demonstrate that the newly 

proposed energy probing technique is applicable not only to conventional devices, but 

also to advanced high-k processes. Figures 2.2 (a)-(f) depict the cross-section of the 

devices used in this work. 
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      (a) 

  

                                   (b)                                                                    (c) 

 

                                        (d)                                                                             (e) 

 

 

    

 

 

(f) 

Fig. 2.2 Cross section of the devices used in this work. (a) Single Layer SiON device. The table shows the 

different W/L of the devices used. High-k gate stack of (b) 1.13 nm HfO2/SiON, (c) TaN/HfSiON with 

varying IL, (d) 1.53 nm TiN/HfSiON, (e) 1.52 nm FUSI/HfSiON and (f) 2.0 nm Al-capped HfO2/SiO2. 
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2.3 Conventional characterization and stress techniques 

 

In this section, the conventional characterization and stress techniques for SiO2-

based MOSFETs will be presented. It includes system and equipment setup, samples 

used in the experiments, techniques for characterizing degradation, and techniques for 

stressing devices.  

 

2.3.1 Conventional Id-Vg technique 

 

The conventional transfer characteristics (Id-Vg) of a device are measured by 

applying DC voltages using a DC parametric analyser. This type of measurement is 

called the ‘slow measurement’ since the total time for one Id-Vg measurement is 

typically in the order of 1-10 seconds. The threshold voltage of the device is 

extrapolated from the Id-Vg curve by either applying the gm-max method [82] or the 

constant current method [83]. Fig. 2.3 (a) and (b) demonstrates how the threshold 

voltage, Vt is extracted by the gm-max extrapolation method and the constant current 

method respectively. The gm-max extrapolation method requires the transconductance 

which is calculated by differentiating the Id-Vg curve. The threshold voltage is extracted 

from the gate voltage axis intercept of the linear extrapolation of the Id-Vg curve at 

maximum transconductance. The experimental data presented in these figures were 

measured by the author, using the measurement system presented in section 2.1. 

 

The conventional method of the negative bias temperature instability (NBTI) is 

carried out using the stress-measure-stress methodology. The test is started by 

characterising the properties of a fresh device, such as the measuring the threshold 
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voltage. The fresh value is then used as the reference for measuring the shift of 

parameters during the stress due to degradation. In order to produce a measurable 

degradation within a practical test time, the stress biases applied are typically 

considerably higher than that used in the real operation. The device under test is stressed 

at a certain temperature and the measurement can be either at the stress temperature or a 

value between the room and stress temperature. The measurement is interrupted at 

preset times to measure the Id-Vg transfer characteristics. The stressed Id-Vg transfer 

characteristics are expected to be shifted in the negative direction, which signifies the 

generation of positive charges. Figs. 2.4 (a) and (b) presents the typical shift of the Id-Vg 

curve, compared with the fresh Id-Vg and the typical threshold voltage shift under NBTI 

stress. 

 

 

 

 

 

(a)                                                                                     (b) 

 

Fig.2.3 (a) demonstrates how the threshold voltage Vt is extracted by the gm-max extrapolation method 

and (b) demonstrates how the threshold voltage Vt is extracted by the constant current method. 

 

 

 

 

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

0.25

0.30

0.35

0.40

0.45

0.50

 gm transconductance

 Drain Current (uA)

Vg(V)

T
ra

n
s
c
o
n
d
u
c
ta

n
c
e
 (

A
/V

)

0

100

200

300

400

500

D
ra

in
 C

u
rre

n
t (u

A
)

2.3nm SiON.RT

Vt-ext

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

1

10

100

Vt-ext

2.3nm SiON.RT

 

 

L
o
g
 D

ra
in

 C
u
rr

e
n
t 

(u
A

)

Vg(V)

 Drain Current (uA)



29 

 

 

 

    

 

 

   

(a)  (b) 

  

Fig. 2.4 (a) A typical result obtained by using the pulse measurement technique. Id-Vg curves were 

measured after stressing the device under NBTI for a 10 ks. After stress, Id-Vg curve is shifted towards 

higher |Vg|. Threshold voltage is extracted by using the constant current method. The standard industry 

practice is to use a constant current of W/L*100 nA. (b) Typical NBTI degradation against stress time. 

 

 

2.3.2 Conventional Charge Pumping (CP) technique  

 

The charge pumping is a technique used in this work for measuring the interface 

states in MOS devices. It was first introduced by Brugler and Jespers in 1969 [84] and 

this technique is widely accepted due to the excellent accuracy and applicability to 

small geometry MOS transistors, compared to the capacitance-voltage method which 

requires large area devices.  

 

There are two standard types of the charge pumping technique namely the fixed 

amplitude charge pumping and the variable amplitude (fixed based) charge pumping. 

The basic experimental set up of the charge pumping measurement is presented in Fig. 

2.5 (a).  A pulse waveform is applied to the transistor gate using a pulse generator, and 

the corresponding charge pumping current Icp is measured at the substrate. The source 
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and drain of the transistor are connected together to a certain reverse bias voltage with 

respect to the substrate or grounded. For the fixed amplitude charge pumping, the Vbase 

is stepped, while for the variable amplitude charge pumping, the Vtop is stepped. The 

waveform applied to the gate voltage is shown in Fig. 2.5 (b). Fig. 2.5 (c) demonstrates 

the schematic of the fixed amplitude CP and the variable amplitude CP.  

 

Proper selection of charge pumping pulse amplitude, falling time and rising time is 

important in order to obtain reliable results. In this work, only the PMOS device was 

used and the pulse amplitude was fixed at 1.0 V and the fall time, tf = rise time, tr = 0.02 

μs, the frequency, f = 1 MHz with duty cycle of 50. Using rise and fall time shorter than 

these criteria will induce parasitic effects such as geometric effect [85] which may cause 

significant errors to the results.  

 

The basic charge pumping principle is described in the following. We start the gate 

voltage, Vg from Vtop and for demonstration purposes, a pMOSFET is used as an 

example. When the magnitude of gate voltage is higher than the threshold voltage |Vt|, 

inversion occurs and all interface traps up to the Fermi Level, Vfb are filled with holes. 

These holes are drawn into the device from the source and drain. When the gate voltage 

drops below |Vt|, the Fermi level moves further above the valence band and the interface 

hole concentration is reduced exponentially with the decrease in Fermi level. When the 

Vg increases from Vbase to Vt, the emission of holes from interface traps only reaches the 

energy level, Eem,h, by [86]  
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where Ei is the intrinsic energy level,  

k is the Boltzmann’s constant,  

T is the absolute temperature,  

Vth is the thermal velocity of carriers,  

p is the capture cross section for holes,  

ni is the intrinsic concentration,  

tem,h is the time available for the emission of holes from the interface traps during 

the fall time of the gate pulse, and  Ef,acc is the Fermi level in inversion. 
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    (c)  

Fig. 2.5 (a) Illustration of the experimental set up for charge pumping measurement and (b) The 

waveform applied on the gate during the charge pumping measurement. (c) Schematic of waveform for 

different charge pumping measurement techniques. 
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The holes still trapped in the interface states between Eem,h and Ef,inv will recombine 

with electrons from the source and drain. The repetitive occurrence of recombination 

processes gives rise to a net current, Icp, which can be measured either at the substrate or 

at the source and drain. Icp is determined by [87] the equation 2.2. Once all other 

parameters are known, Dit can be determined by measuring Icp. 

 

          hemeempnithitgcp ttnVDTkAfqI ,,ln2           (2.2) 

 

where f is the gate pulse frequency,  

Ag is the transistor area, and 

Dit is the average interface state density between Eem,e and Eem,h.  

The tem,e and tem,h are determined by the rising time, tr, and falling time, tf, respectively. 

 

   f

G

THfb

eem t
V

VV
t 






||

||
,                  (2.3)

    

r

G

THfb

hem t
V

VV
t 






||

||
,             (2.4)

   

Fig. 2.6 presents an example of the result obtained from the variable amplitude 

charge pumping measurement. The experimental data presented in these figures were 

measured by the author, using the measurement system presented in section 2.1. 
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Fig. 2.6 Demonstration of charge pumping results obtained by fixed base charge pumping. 

 

 

2.3.3 Conventional Capacitance-Voltage (C-V) technique 

 

 

The capacitance-voltage measurements are a standard measurement used in 

studying the gate-oxide quality. Various MOS devices parameters such as the oxide 

thickness, flatband voltage, threshold voltage, bulk and interface charges information 

can be extracted from the C-V measurement. The capacitance-voltage behaviour of a 

MOS device can be described using the equivalent circuit presented in Fig. 2.7. 

Capacitance of a MOS capacitor is described by the change in the charge (Qg) of a 

device, in which a simultaneous change in voltage (Vg) is also occurring:  

         
dV

dQ
C

g

g
                                   (2.5) 

If to assume that there is no charge trapping in the dielectric, the concept of charge 

neutrality is upheld whereby Qg = - (Qs + Qit ). Here, Qs is the substrate charge and Qit is 

the trapped interface charge. The gate voltage on the other hand has a partial drop across 
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the dielectric and the semiconductor substrate: , Soxfbg VVV   where Vfb is the flat-

band voltage, Vox is the voltage drop across the oxide and the  s
 is the Si surface 

potential.  By taking in this assumption, the equation (2.5) is re-written as 
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Fig. 2.7 Equivalent circuit of a MOS structure 

 

The contribution of the majority, minority and the depletion charge associated with 

the substrate varies, depending on the Si surface potential. From the equivalent circuit, 

the total gate capacitance can also be written as: 
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The low-frequency substrate capacitance is given by [88] : 
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where the dimensionless surface electric field F(US, UF) is defined by: 
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US and UF are normalized potentials, defined as US = kTq s /  and UF = kTq F / . The 

Fermi potential is calculated by 
F = (kT/ q)ln(NA /ni ) where NA is the acceptor 

concentration and ni the intrinsic carrier concentration in the Si substrate.  

The symbol SU


 stands for the sign of the surface potential and is given by 
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Where 


U S  = 1 for U S  > 0 and 1


SU  for U S < 0. The extrinsic Debye length LD is: 
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The basic setup of the C-V measurement conducted in this work is presented in Fig. 2.8 

(a) and (b) where the gate-channel capacitance, Cgc and gate-bulk capacitance, Cgb is 

separately obtained through the split C-V technique [89]. The total gate capacitance is 

obtained by combining the Cgc and the Cgb. Fig. 2.9 (a) and (b) respectively presents the 

Cgc and the Cgb, and the combination of these two measurements.  Parasitic capacitance 



37 

 

has been accounted for in the measurements. Parasitic capacitance will lead to an offset 

of the measurement, and this has been considered by nulling back to zero.  

 

 

 

 

 

 

                 (a)                                                                   (b) 

Fig. 2.8 Spilt C-V measurement technique configuration to obtain (a) Cgate-channel against the Gate voltage 

and (b) Cgate-bulk against the Gate voltage. 

 

 

 

  

 

 

 

 

Fig. 2.9 Spilt CV measurement profiles (a) obtained from separate C-V measurement and (b) final profile 

obtained by the combination of the Cgc and Cgb measurement.  

 

The total gate capacitance measurement can also be conducted using a single C-V 

measurement, as oppose to the split C-V measurement conducted in this work. 

Capacitance-Voltage measurement is conducted by superimposing a small oscillating 

AC voltage on a DC voltage, which is applied to the gate. The resulting AC current 

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Gate-Channel CV 

curve (C
gc

)

-measured through

 source and drain

 

 

C
a
p
a
c
it
a
n
c
e
 (

p
F

)

V
g
 (V)

Gate-Bulk CV curve

(C
gb

) 

-measured through 

substrate)

Device: 1.0nm Al/2.0nm HfO2/SiO2

Fresh, RT
(a)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

2.0

2.5

 

 

CV Measurement

Fresh,RT

Device: 1.0nm Al/ 2.0nm HfO2/Sio2

C
a

p
a

c
it
a

n
c
e

 (
F

)

Vg (V)

(b)



38 

 

through the source, drain or substrate is measured from which the capacitance, which is 

the change in charge in response to the AC voltage, is calculated.  

 

The combined C-V can be divided into three regions: accumulation, depletion, and 

inversion, as described below for a p-type substrate.  

Accumulation Region 

When a negative voltage is applied to the gate of an n-type substrate MOS 

capacitor, the accumulation region of the C-V curve can be observed. The negative 

polarity will attract the majority carriers, which are the holes, towards the gate. These 

holes will accumulate at the oxide/substrate interface due to the oxide being a good 

insulator. The C-V measurement measures the oxide capacitance in the strong 

accumulation region at which the voltage is negative enough and the C-V curve is 

essentially flat. Hence, the oxide thickness can be extracted from the oxide capacitance.  

Depletion Region 

As the gate voltage moves toward the positive, the holes are repelled from the 

substrate oxide interface. Subsequently, a carrier- depleted area forms beneath the 

oxide. As the gate voltage becomes more positive, the depletion zone become deeper. 

The depletion capacitance thus becomes smaller and the total measured capacitance 

becomes smaller consequently.  

Inversion Region  

As the gate voltage increases, the mid-band energy level eventually falls below the 

Fermi-level at the interface, so that the interfacial region is inverted from p-type into n-

type. The positive gate bias attracts, the minority carriers, which are the electrons, 

towards the gate. Due to the oxide being a good insulator, these minority carriers will 
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pile-up at the oxide/substrate interface and form an inversion layer. As a result, the 

positive charges on the gate are separated from the electrons in the oxide and the total 

capacitance returns to the oxide capacitance. The electrons in the inversion layer screen 

the positive charges on the gate from the substrate, so that the depletion depth will not 

increase further with Vg.   

 

2.4 On-The-Fly (OTF) techniques 

 

 

The primary motivation in the development of the OTF technique is to counter the 

occurrence of recovery during measurement. The conventional measurement techniques 

particularly the DC measurement can result in significant underestimation of 

degradation due to recovery during the measurement where the |Vg| was lowered from 

the stress level, as shown in Fig. 2.9 (a). Numerous literatures [90-96] detail the 

recovery effect that happens during the interruption of stress, leading to the conclusion 

that the relaxation of the NBTI degradation is dependent on the instrumentation and 

measurement technique applied. The common feature of the OTF is to ensure that the 

stress voltage is always applied to the gate, and the degradation of the drain current is 

measured at stress voltage. The OTF technique evaluates ∆Vt at the stress gate bias so 

that the stress is always maintained during the measurement. The OTF technique 

monitors both Id and the transconductance, gm, at preset intervals under a low drain bias. 

To evaluate gm, the stress Vg is perturbed by a small amount of ± DV and the 

corresponding current variation is recorded. The gm  at a time “n” is estimated from the 

equation 2.13.  

 



40 

 

The first OTF technique was developed by Rangan et al [97]. The author had 

initially measured Id-Vg with the Vg ramped to the stress voltage. Subsequently the 

author recorded the drain current Id0 at Vg = Vgst and the threshold voltage Vt0. The drain 

current is then continuously sampled at Vg=Vgst in the consequent electrical stress. The 

threshold voltage shift is then calculated from the following equation 

                      VV
I

I
V tg

d

d
t 0

0




                     (2.12) 

where the change in the drain current is ∆Id = Id – Id0.  Further to the development of this 

technique by Rangan et al [16], other groups [98-102] further developed the OTF 

technique to mitigate the uncertainty such as the lack of the consideration of mobility 

variation with Vg in the eq. (2.12). The 2
nd

 order OTF technique was proposed by 

Denais et al [86] as shown in Fig.2.10 (b). In order to take the mobility degradation into 

consideration, the transconductance, gm is evaluated. To estimate the transconductance, 

gm(n), Vg was perturbed by a small ±DV, where D signifies perturbation.  

          
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                  (2.13) 

The degradation of drain current between two measurement points ‘n’ and ‘n-1’ is, 

     1 nInInI ddd                           (2.14) 

The shift of threshold voltage between these two points can be evaluated by, 
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The accumulative shift of threshold voltage is, 
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where M is the number of I
d 

measurements and g
m

(n) is the mean value of the trans-

conductance between the n
th 

and n-1
th 

I
d 

measurements, as shown in Fig. 2.11. Hence, 

periodical three point I
d 

measurements are enough to monitor ΔI
d
, g

m
, ΔV

t 
during stress. 

 

(a) 

 

       (b) 

Fig 2.10 (a) Traditional NBTI test sequence (b) The 2
nd

 order On-The-Fly measurement sequence 
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Fig. 2.11 The nth and n-1th Id measurements, together with the transconductance gm(n), can give the 

threshold voltage shift, ΔVt, between nth and n-1th measurement points. 

 

 

2.5 Pulse Id-Vg techniques 

 

It is well known that conventional measurement techniques developed for SiO2-

based gate dielectrics are not capable of measuring the fast transient instabilities in 

high-k materials. Hence faster measurement techniques are required. 

 

The pulse I-V technique is used to measure the transfer characteristics with a much 

faster speed than the conventional Id~Vg measurement techniques. A pulse signal 

generated by the pulse generator is applied to the gate of the transistor. The drain 

current can be recorded by a digital oscilloscope during the pulse edges. The transfer 

characteristic Id~Vg can be determined from the gate voltage and the corresponding 

drain current. The advantage of this technique is that the threshold voltage (Vt) can be 

determined after the application of a pulse by capturing the Id~Vg during the falling 
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edge of the stress pulse. This can minimize the trapping/detrapping during 

measurement.  

 

2.5.1 Experimental Setup 

 

The first pulse Id-Vg technique was developed by Kerber et al [87], in which he 

employed this technique to investigate on the large charge trapping occurring in high-k 

dielectric. The schematic measurement setup of the pulse measurement he had 

employed is presented in Fig. 2.12. The MOSFET is connected to an inverter circuit 

with the resistor load (RL). A small constant DC bias (100mV) is applied to the resistor 

which subsequently works together with the channel resistor to form a voltage divider. 

The Id~Vg characteristic is obtained by applying a trapezoidal (triangular) pulse to the 

gate and the drain voltage is subsequently recorded using a digital oscilloscope.  From 

the measured voltage traces the Id~Vg characteristic can be determined using 

 

)
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L

D

D
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I


                    (2.17) 

 

where VD is the measured drain voltage and RL the resistive load of the inverter circuit. 
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Fig 2.12 Schematic setup for the ultra fast pulse Id-Vg technique 

 

The use of a voltage divider can potentially cause the drain voltage to change 

during the measurement. This effect can be eliminated by normalizing the extracted 

drain current to a constant drain voltage, which is given by the term 100 mV/VD in 

equation (2.17). It should be noted that this normalization is correct only when the 

MOSFET operates in the linear region, which limits the range for the DC bias applied to 

the resistor. To reduce the noise and further increase the accuracy of the measurement, 

this impedance along the signal path of this circuit needs to be matched and hence the 

resistive load should be around 50 Ω. However, this limits the gain of the circuit 

significantly. 

 

An improved approach to increase the gain of the circuit while maintaining 

impedance matching along the signal path is to use an op-amplifier (op-amp), as 

presented in Fig. 2.13. The drain of the MOSFET is connected to the negative input of 

the op-amp. Since the voltages at the two input terminals are approximately equal when 

RL 
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negative feedback is present through R, the drain voltage of the MOSFET is fixed at Vd 

supplied by the voltage source.  

 

Fig.2.13 Schematic of our modified pulse Id-Vg 

 

Due to the fact that the input bias current of the op-amp is very low, the drain 

current flows almost entirely through the gain resistor, R. Resistors ranging from 1 to 

10kΩ are used for different gain. The output voltage of the op-amp, in terms of the 

MOSFET drain current is given by the following equation: 

VRIV ddout                      (2.18) 

 

2.5.2 Calibration of Pulse Measurement System 

  

This section details the various check conducted on the pulse measurement system 

in ensuring that the system has an acceptable noise level and performance. 
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2.5.2.1 Calibration of the Op-amp Circuit  

 A calibration exercise was first carried out for the op-amp circuit without 

connecting it to the device under test. To start, the system noise without connecting the 

pulse generator is checked by grounding the 10 kΩ resistor in Fig. 2.14 (a). Fig. 2.14 (c) 

shows that the Id can be measured with an accuracy of 0.09%, so that the noise is 

negligible. The response of the op-amp circuit to a pulse input is studied next. As shown 

in Fig. 2.14 (a), a pulse was applied to the input and the current at the pulse edge was 

measured. Fig. 2.14 (d) compares the measured current with different pulse edge times. 

The good agreement confirms that the op-amp circuit can respond in a time of a few 

micro-seconds. 

 

2.5.2.2 Calibration with transistor connected 

 After connecting the device under test, the Vg waveform used for calibration is 

shown in the insets of Figs. 2.15 (a) to (c). In Fig. 2.15 (a) and (b), the Id-Vg was 

measured from the pulse edges. The Vt was extracted from the Vg at a constant current 

in Fig. 2.15 (a) and an accuracy of 0.8 mV can be achieved when the same measurement 

was repeated many times. In Fig. 2.15 (b), Vt was extracted from the maximum Gm 

extrapolation and an accuracy of 2 mV was obtained. The Vg waveform in Fig. 2.15 (c) 

is different from that in Figs. 2.15 (a) and (b). The Vg was stepped to -0.41 V with an 

edge time of 100 ns and no measurement was made at the edge. Once Vg reached -0.41 

V, Id was measured within 1 µs and Fig. 2.15 (c) shows the accuracy is better than 0.032 

µA. This accuracy is considered as acceptable. 
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        (a) 

 

                                           (b) 

 

 

 

  

 

 

    

                       (c)                                                                             (d) 

 

Fig. 2.14 Calibration of the op-amp circuit without connecting a MOSFET. (a) The 10 kΩ resistor is 

grounded. (b) The 10 kΩ resistor is connected to the pulse generator. (c) and (d) are the measured Id 

obtained from configuration (a) and (b) respectively. 
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                                       (a) 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

       (c) 

 

Fig. 2.15 Calibration of the pulse measurement with DUT connected by repeating the same 

measurement many times. The Vg waveforms applied are given by the insets. The threshold voltage 

was extracted at constant current in (a) and by gm-extrapolation method in (b). (c) shows the 

measurement variation at a constant voltage. 
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2.6 Data Smoothing Procedures 

 

The measured TC obtained from the pulse measurement is smoothed by utilizing 

the smooth functions available in Curve Fitting Toolbox of MATLAB 7.0, prior to 

threshold voltage extraction in order to obtain better accuracy. There are several options 

for the smoothing of the measured data, namely implementing the moving average, or 

using the Savitzky-Golay filters. Alternatively there are also methods using local 

regression with and without weights and robustness (lowess, loess, robust-lowess and 

robust-loess).  

 

Moving Average Filtering 

A moving average filter smoothes the data by replacing each data point with the 

average of the neighbouring data points defined within the data span. This smoothing of 

the data is given by the difference equation given below: 

 

    )(....1)(
12

1 NiyNiyNiyiy
Ns




           (2.19) 

 

Savitky-Golay Filtering 

The Savitzky-Golay filter was developed in 1964 by Abraham Savitzky and Marcel 

J.E. Golay. The Savitky-Golay filtering can be claimed to be a generalized moving 

average. It is a filter that performs a local polynomial regression on a series of equally 

spaced data points and that the smoothed values or numerical derivatives are obtained 

from the coefficients of the polynomials. It can also be taken as a digital-smoothing 

polynomial filter or a least-squares smoothing filter due to that the filter coefficients are 
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derived by performing an unweighted linear least-squares fit using a polynomial of a 

given degree. The plots below present the smoothing conducted using the Savitky-

Golay, with the span and the degree input varied accordingly. 

 

Lowess and Loess Filtering 

These smoothing methods uses locally weighted linear regression to smooth the 

data. Similar to the moving average method, each smoothed value is determined by 

neighbouring data points defined within a span. The process of smoothing the data is 

weighted because a regression weight function is defined for the data points contained 

within the span. The methods are then differentiated by the model used in the regression 

whereby the Lowess smoothing uses a linear polynomial while the Loess smoothing 

uses a quadratic polynomial.  

 

 

 

 

 

 

 

 

 

 



51 

 

-2.5 -2.0 -1.5 -1.0
0

10

20

30

40

50

 

 


V

t 
 (

m
V

)

V
g
 (V)

Symbol : Raw Vt

Line : Smoothed Vt using 

          Savitzky-Golay (Span =7, Degree =1)

Vt obtained by constant current extraction 

at Id=4A 

(b)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.16 Smoothing of data by using Savitzky- Golay method with varying smoothing variable. 
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Fig. 2.17 Smoothing of data using Loess method applied with varying smoothing variable. 

 

Selection of the smooth method 

A comparison of the Id in Figs. 2.16 (a), (c) and (e) with that in Figs. 2.17 (a) and 

(c) shows that the Loess Smoothing follows the raw data better. For the Loess 

smoothing given in Figs. 2.17 (b) and (d), it is shown that a span of 0.1 should be used. 

Loess smoothing applies local weighting methodology and outbounded data will not be 

considered in the smoothing process. Also, from the observation, smoothed result 

agrees very well with the measurement. As a result, the Loess smoothing with a span of 

0.1 will be applied in this work.   

-0.8 -0.6 -0.4 -0.2
0

2

4

6

8

10

-1.2 V

 

 

I d
 (

A

)

V
g
 (V)

2.3nm SiON PNO. W/L=1/ 0.2m

Symbol : Raw TC 

Line: Smoothed TC using Loess

         Smoothing (Span 0.1) 

 

t
f
 =t 

r 
= 3 A 

t
gs

= 1 A 

0V

(a) 

-0.8 -0.6 -0.4 -0.2
0

2

4

6

8

10

t
gs 

=1 A 

 

 

I d
 (

A

)

Vg (V)

2.3nm SiON PNO.W/L=1/0.2 m

Symbol : Raw TC

Line : Smoothed TC using Loess 

          Smoothing (Span=0.3)

t
f
 = t

r
 = 3 A 

0V

-1.2V

(c)

-2.5 -2.0 -1.5 -1.0
0

10

20

30

40

50

 

 


V

t 
 (

m
V

)

V
g 
(V)

Symbol  : Raw Vt

Line : Smoothed Vt using Loess Smoothing 

          (Span = 0.3) 

Vt obtained by constant current extraction 

at Id = 4 A

(d)



53 

 

2.7 Conclusions 

 

In this chapter, the principles of various techniques for characterising the gate 

dielectrics in MOS devices are described. The different methods for extracting the 

threshold voltage have been demonstrated. The capacitance-voltage (C-V), charge 

pumping, the on-the-fly (OTF) technique and the pulse I-V measurement system have 

been presented and the mechanism behind the measurements has been discussed. The 

accuracy of the pulse I-V measurement is calibrated and the smoothing procedure is 

selected. 
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Energy Distribution of Positive Charges in 

Gate Dielectric : Probing Technique and 

Impacts of Different Defects 
 

 

 

3.1 Introduction 

 

Negative bias temperature instability (NBTI) causes time dependent device 

variability [103] and is a major threat to the reliability of CMOS circuits. It originates 

from the positive charge formation within gate dielectric and the generation of interface 

states [24, 104-109]. Positive charges in dielectric have been investigated since 1960s 

[110] and their complex behaviour has puzzled the international community ever since 

[76, 111-112]. Many terms were used to reflect their different properties, such as 

anomalous positive charges [111], slow states [112], and border traps [76]. To explain 

the complex dependence of PCs on biases, time, and temperature, it has been proposed 

that there are three different types of PCs: as-grown hole traps (AHT), cyclic positive 

charges (CPC), and anti-neutralization positive charges (ANPC) [80], [105], [113-115], 

as illustrated in Fig. 3.1. AHT has energy levels below the top edge of silicon valence 

band, i.e. Ev, making them easy to neutralize, but hard to charge. The as-grown hole trap 

(AHT) is a pre-existing defect in the device. Hence, initially, the defect is a precursor 

and is transformed into a positive charge when bias is applied. The defect can be 

3 
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charged positively through carrier tunnelling.   In contrast, ANPC has energy level 

above the bottom edge of silicon conduction band, i.e. Ec, making them hard to 

neutralize, but easy to charge. CPC is energetically located within the bandgap and can 

be repeatedly charged and discharged by alternating gate bias polarity. Although the 

above framework gives a broad picture of defect energy levels, a detailed energy 

distribution of PCs is still missing. This knowledge is useful for assessing the impact of 

PCs on circuits, since it gives PCs for each surface potential. Early works on NBTI 

generally divide the threshold voltage shift, ΔVth, into two components: recoverable and 

permanent [24], [104], [116].  Recoverable component is fully charged only at the stress 

Vg, while permanent component is measured at either Vg=0 or a certain positive level 

after some time. This effectively gives PCs at only two Vg points: Vg(stress) before 

recovery and the Vg used for recovery. The PCs at other Vg levels are generally 

unknown.  

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 3.1 An example of three different types of positive charges in gate dielectric. (a) shows the test 

sequence and (b) gives their energy location. Positive charges (PCs) built up during negative bias 

temperature stress (NBTS). Thereafter, when negative (Vg<0) and positive (Vg>0) gate biases with 

an oxide field of |Eox|=5 MV/cm were applied alternately, some PCs can be repeatedly charged and 

discharged and are referred to as cyclic positive charges (CPC). Some PCs have energy level above 

Ec, cannot be neutralized, and are called as anti-neutralization positive charges (ANPC). Some PCs 

have energy level below Ev, cannot be recharged at Eox= -5 MV/cm, and originates from as-grown 

hole traps (AHT) [115]. 
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It has been recognized that, when |Vg| reduces from the stress level, neutralization 

already occurs well before it reaches zero [26], [109], [117,118], indicating a continuous 

energy distribution of PCs, rather than an abrupt change at Vg=0. Efforts were made to 

extract the energy distribution of PCs [106,107], but they were based on the slow quasi-

DC measurement, hence did not capture the defects that discharged rapidly. Moreover, 

they only provide distribution within the bandgap. As a result, two types of PCs, AHT 

and ANPC, were not covered by these early works [106, 107]. The central objective of 

this work is to develop a fast pulse technique that can evaluate the energy distribution of 

all types of PCs. It will be shown that PCs in different energy ranges originate from 

different types of defects.  

 

3.2 Devices and Experiments 

 

The gate dielectric of pMOSFETs used in this work includes a 2.3 nm plasma 

nitrided SiON and a thermally nitrided 2.7 nm SiON. For the case of the 2.3 nm plasma 

nitride SiON, two different devices of different nitiridation levels were investigated. 

The typical channel length is 0.25 m and the width is 10 m.  

 

The typical Vg waveform and the circuit setup for the pulse measurement used in 

this work are given in Fig. 3.2. An op-amp is used to convert Id into a voltage, which 

was recorded together with Vg by an oscilloscope. Care has been exercised to ensure 

impedance match and suppression of parasitic effects [26,119]. The ‘Measurement time’ 

is the time for a single pulse used to record one ∆Vth point. The ‘Discharge time’ is the 

time under a given Vdischarge. While the discharge time can be hundred of seconds, the 

measurement time was fixed at 500 ns in this work, with the exception of Fig. 3.3.   
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Prior to stress, a reference Id-Vg curve was recorded by applying a Vg pulse under 

Vd = -25 mV. After stress at Vg=Vgst for a pre-specified time, Fig. 3.2 (b) shows that Vg 

was changed to Vdischarge,1 to start the discharge and ΔVth was monitored against the 

‘Discharge time’ marked in Fig. 3.2 (b). Following the early work [120], ΔVth was 

measured as the Vg shift at a constant sensing Id= 100 nA×W/L. To reach this sensing 

Id, a Vg pulse is used to suppress discharging during the measurement itself [104, 105]. 

Fig. 3.3 shows that the discharging is substantial in ms, so that quasi-DC measurement, 

that takes tens of ms for one point, cannot be used here [26], [105] [109],[117].  

 

The discharging becomes negligible for a measurement time less than 10 μs and 

500 ns will be used hereafter, to freeze discharging during the measurement time 

marked out in Fig. 3.2 (b). 

 

As compared to the DC technique, the pulse probing technique is definitely 

important in this work. In principle, discharging can occur under a given Vdischarge and 

during the measurement itself. Hence, to measure the discharge under a given Vdischarge, 

it is required to freeze the discharge during the measurement. If the DC measurement is 

used, one could not separate discharging under a given Vdischarge from that induced by 

the measurement itself.   
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                  (b) 

 

Vdischarge,1 ---
Vdischarge,2 ---

Vdischarge,i ---

Vdischarge,j ---

Stressing
Discharge,1

Discharge,2 Discharge,i Discharge,j

Tdischarge,i (1 to N)

Vgst

Fig. 3.2 The measurement setup (a) and the Vg waveform (b). After stress, discharging occurs 

at Vdischarge,1 and PCs were periodically monitored by applying a pulse to the gate and 

recording the drain current at the pulse top through the op-amp, until the discharge completes. 

The gate bias was then changed to Vdischarge,2 for the next discharging phase and the same 

procedure is applied.  

Measurement Time 

Discharge Time 

(a) 
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Fig. 3.3 Effect of measurement time on PCs. The measurement time is the pulse width, as marked in 

Fig. 2(b). When it is shorter than 10 μs, PCs are insensitive to measurement time, indicating discharge 

during measurement is negligible. A measurement time of 500 ns is used in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ΔVth was monitored under Vdischarge,1 until its variation between two points becomes 

negligible (< 1 mV) [122, 123].  For thick oxides (e.g. > 7 nm), early work [123] shows 

that discharge can continue for days. Fig. 3.4 (a), however, shows that further discharge 

becomes insignificant beyond 500 sec, since the thin oxide (< 3 nm) used here allows 

efficient tunneling. After completing discharge at |Vdischarge,1|, |Vg| was further reduced 

to |Vdischarge,2| and the same procedure is followed. To capture a wide energy range, 

Vdischarge eventually becomes more positive than the Vg for the sensing current level and 

the direction of the applied pulse is changed. ∆Vth will not include interface states, Dit 

changing occupancy over discharging time, since it is widely accepted Nit will not 

recover. ∆Vth is always sensed at constant surface potential and therefore, the Vit will 

always the same inrespective of discharge time. 

 

A typical discharge result under different Vdischarge is given in Fig. 3.4 (a). Fig. 3 4 

(b) plots the Vg corresponding to the last point of each curve in Fig. 3.4(a), together 

with the reference Id-Vg, measured on a fresh device. 
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Fig. 3.4 Typical results for discharging under different Vdischarge. The ‘Discharge time is the time 

under a given Vdischarge., as marked in Fig. 2(b).  The device was stressed at Vgst=-3.0 V under room 

temperature for 10 ksec. The total threshold voltage shift before discharge is given by the symbol 

‘•’ in (a). The discharge under each Vdischarge was monitored against time. The Vg corresponding to 

the last point for each Vdischarge in (a) at the sensing Id=4 µA was plotted as the symbol ‘o’ in (b), 

together with the reference Id-Vg measured on a fresh device. 
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3.3 The Technique for Energy Distribution 

 

Fig. 3.5 illustrates the principle of extracting the energy distribution of PCs. As a 

first order approximation, we follow early works [106, 107,124] by assuming that below 

the Fermi level, Ef, PCs will be neutralized throughout the thin oxide, if a sufficient 

discharge time is applied. As Vdischarge increases towards positive for each discharging 

step, the energy level of PCs is lowered against the substrate, thus accommodating a 

new shaded region below Ef for discharging, as shown in Fig. 3.5. By varying Vdischarge 

over a sufficiently large range, one can sweep Ef over a wide energy range at the 

interface, including the region beyond bandgap of silicon.  

 

Although PCs within SiON is located close to the substrate [57], [125], we point 

out that they are not exactly at the Si/SiON interface and have a spatial distribution 

across the dielectric. As illustrated in Fig. 3.5, the vertical depth of the shaded area 

increases towards gate, namely, namely ΔΦg>ΔΦs. For device and circuit simulation, it 

is useful to know the change in PCs for a given Φs. Hence, the energy level at the 

Si/SiON interface is used for their energy distribution. The energy distribution defined 

in this way is considered as an “effective” energy distribution, as describe in details 

below. 

 

On the spatial distribution of PCs, early works gave a rule-of-the-thumb estimation: 

the IBM group used photo-IV and found that the centroid of positive charges is within 5 

nm from the interface [125]. There are also early works that reports that the positive 

charges are dominated by the interfacial layer [57],[126]. Hence it had been concluded 

that PCs pile up towards the substrate interface. A trap spectroscopy by charge injection 

and sensing (TSCIS) technique was developed to profile the energy and spatial 
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distribution of pre-existing electron traps in dielectric [127]. TSCIS requires a full 

discharge, which cannot be achieved for PCs under typical test conditions [116]. It also 

requires that there is no generation of new traps, but new defects are created during 

NBTI tests [26, 109]. As a result, TSCIS cannot be used to probe the spatial and energy 

distribution of PCs in dielectrics.   

 

                

 

 

 

 

 

 

 

 

 

 

 When the spatial distribution of PCs is not known, the concept of ‘effective charge 

density’ often was used by early works [128,129]. If there is a sheet of positive charges 

with an area density of N at a distance of X from the gate interface, it will induce a 

threshold voltage shift of ∆Vth = - qNX/CoxXox, where Cox and Xox is oxide and 

Fig. 3.5 An illustration of the principle for extracting the energy distribution of PCs. When Vdischarge 

was stepped towards positive direction each time, a shaded area with an energy depth of ΔΦs at the 

interface falls below Ef and the PCs within it start discharging. By sweeping Vdischarge from the 

negative stress level to positive, Ef can be driven from below Ev to above Ec. 
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thickness capacitance. The “effective charge density”, Neff is the equivalent charge at 

the oxide/substrate interface that induces the same ∆Vth,, as expressed below: 

           
ox

eff

oxox

oxeff

oxox

th
C

qN

XC

XqN

XC

qNX
V








                                (3.1) 

 

PCs were assumed to be at the substrate interface and the effective density is required 

to induce the same ΔVth as that by the real spatially distributed PCs. Since the spatial 

distribution of the defects is unknown, an effective charge density is obtained by 

assuming the charge centroid is at the SiO2/Si or SiON/Si interface, to comply with 

previous work in this area. This work also uses the effective density for PCs and 

assumes that they are neutral below Ef. It indeed will take time for a trapped charge 

away from the substrate to discharge.  If the discharge time in the measurement is too 

short, it may not be able to discharge, thus invalidating the proposition that positive 

charges are neutral below Ef. Hence, to ensure that this proposition is valid, the 

discharge time under a given Vdischarge must be sufficiently long so that the PCs in 

dielectric below Ef can discharge, as shown in Fig. 3.4 (a) and the ∆Vth saturates. The 

energy distribution extracted in this way is referred to as “effective” energy distribution. 

 

∆Vth after completing discharge for 1000 sec under each Vdischarge is converted to 

the effective charge density, i.e. ΔNox, and plotted against Vdischarge in Fig. 3.6 (a).  From 

the ∆Vth plotted against the discharging time in Fig. 3.4 (a), it is observed that the 

discharging has saturated at discharging time of 1000 sec. To obtain the energy density 

of PCs, a differentiation of these data will be needed. To improve the accuracy of 

differentiation, the data were smoothed by a robust-loess method which uses locally 
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weighted linear regression [130]. Care has been exercised for not altering the character 

of the data by the smoothing treatment, as shown in Fig. 3.6 (a).  

 

The next task is to convert Vdischarge to the energy level of Ef with respect to Ev at 

the Si/SiON interface, i.e. (Ef-Ev). As shown by the inset of Fig. 3.6 (b), the difference 

between Ef and Ev at the interface is evaluated from, Ef-Ev = Eg/2 + ΦB – ΦS, where Eg is 

the Si bandgap. Fig. 3.6 (b) was obtained in three steps. First, following early works 

[122,131], the dashed curve was calculated from the CVC simulator [132] by inputting 

the equivalent oxide thickness, doping densities for both substrate and gate. Second, the 

Vth of stressed sample was evaluated from Vth=Vth0+∆Vth, where ΔVth is the measured 

shift and Vth0 is the threshold voltage of fresh sample and was obtained by the 

maximum transconductance extrapolation method [105, 109]. Third, to align the 

theoretical curve with the test sample, the solid curve was obtained by shifting the 

dashed curve to the left until Ef-Ev=Eg/2-ΦB occurs at Vg=Vth.  

 

Fig. 3.6 (c) plots ΔNox against Ef-Ev, converted from the Vdischarge in Fig. 3.6 (a). 

The measurement is taken after 1000 sec discharging and therefore the static ∆Vth is 

measured which is assumed to be corresponding to the energy level aligned to Ef. In 

principle, the  Fermi Direct statistics may have a smearing effect. However, by 

changing the Vg step interval, the measured distribution is kept the same.  

 

A differentiation of ΔNox against Ef-Ev gives the energy density, i.e. ΔDox, as shown 

in Fig. 3.6 (d).  In the evaluation above, the impact of interface states has not been taken 

into account. The stress-induced interface states, i.e. ΔDit, affect the measurement in 
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two ways: (i) they contribute to the ΔNox measured at a constant Id and (ii) they affect 

the Vg ~ (Ef-Ev) relation and, in turn, the evaluation of ΔDox. 

  

 

 

 

 

 

 

 

 

 

Fig. 3.6 Energy profile extraction for PCs. ΔNox in (a) is the PCs after competing discharge at each 

Vdischarge. The device was stressed at Vg=-3.0 V under room temperature for 10 ksec. The ‘□’ was obtained 

by smoothing raw data. In (b), the dashed curve is the theoretical value. The Φs was calculated from the 

CVC simulator [32] and then converted into Ef-Ev=Eg/2+ΦB-Φs, as illustrated by the inset. The solid line 

is obtained by aligning Ef-Ev=Eg/2-ΦB to the threshold voltage of stressed device. (c) is obtained after 

converting Vdischarge to Ef-Ev by using (b). The ΔDox in (d) is the energy density of PCs, obtained by 

differentiating the data in (c).  The symbol ‘+’ denotes the data after ΔNit contribution is corrected. The 

device used was a 2.3 nm plasma nitride SiON. 

 

It has been reported that ΔNit will not recover [24] and we also found that ΔNit 

changes little after stress and during our measurements, as shown in Fig. 3.6 (a). At a 

given surface potential and Id, an unchanging ΔNit will give a fixed level of charging. In 

this technique, ΔVth always was probed at a constant Id, so that charges from ΔNit can 

be treated as ‘fixed charges’, which contribute to the measured ΔNox by introducing an 

offset, as shown in Fig. 3.6 (a). The energy distribution of ΔNit is not included in that of 
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ΔNox. To quantitatively estimate this offset, we measured ∆Dit = 2.1 x 10
10

 cm 
-2

 eV
-1

 by 

using the charge pumping technique. The ∆Vth was sensed at the constant Id 

corresponding to 0.4 eV below the midgap at the interface, i.e. Ei. The PCs from ΔDit at 

this energy level can be estimated as ΔNit=ΔDit*0.4 = 8.5x10
9
 cm

-2
, as shown in Fig. 3.6 

(a). The contribution of ΔDit to ΔNox will be removed hereafter. A demonstration in the 

later section of this chapter will purposely show that the measurement technique will 

not significantly be affected even at a substantially higher ΔNit. Although the PCs from 

ΔDit can be treated as ‘fixed’ when correcting the ΔNox measured at a constant Id, they 

can no longer be treated as ‘fixed’ when evaluating ΔDox. To sweep the surface 

potential, different Vdischarge must be used and the PCs from ΔDit change with Vdischarge. 

The charge neutrality level of interface states is Ei and ΔDit is acceptor-like above Ei 

and donor-like below Ei [134,135]. As a first-order approximation, we assume a 

uniform distribution of ΔDit in the bandgap. The charges from interface states are 

calculated from Qit=qΔDit x (Ei-Ef) and it shifts Vg by ∆V = –Qit/Cox.   

 

 

 

 

 

 

 

 

Fig 3.7. A fresh device was stressed at -3.0 V and room temperature for 100 s, followed by the first 

discharging measurement. The results are denoted by the symbol ‘□’. The test was then repeated on the 

same device and the data for the second discharge phase is represented by the ‘×’. Since the differences 

between the two sets of data are small, the additional degradation during discharging phase must be 

insignificant, when compared with the degradation during the stress phase. 
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The (Ef-Ev)~Vg with and without introducing ΔDit = 2.1 ×10
10

 cm
-2

eV
-1

 are 

compared in Fig. 3.6 (b). Based on each (Ef-Ev)~Vg, ∆Nox~Vg can be converted to 

∆Nox~(Ef-Ev) in Fig. 3.6 (c), leading to the evaluation of ∆Dox in Fig. 3.6 (d). The 

impact on ΔDox is insignificant and is taken into account in this work. To apply this 

technique, one would like to keep further degradation during the discharge phase 

negligible, when compared with that during the preceding stress by using sufficiently 

long stress time. This is the case for a stress time of 100 sec or longer, since the 

difference in results is found being insignificant when repeating the test twice in Fig. 

3.7.  

 

3.4 Results and Discussion 

 

3.4.1 Different Types of PCs 

 

The first impression of the energy distribution in Figs. 3.6 (a) and 3.6 (c) is that the 

PCs are sensitive to energy level and vary substantially over the energy range. This 

energy dependence should be taken into account when assessing the impact of PCs on 

devices and circuits. 

 

A closer observation of Figs. 3.6 (a) and 3.6 (c) indicates that PCs behave 

differently in different regions of Vg and Ef-Ev. When Ef is below Ev, i.e. Ef-Ev<0, Fig. 

3.6 (c) shows that ΔNox initially drops quickly, giving a high energy density, ΔDox, as 

shown in Fig. 3.6 (d) which is in the order of  10
12

 cm
-2

 eV
-1

. The declining of ΔNox, 

however, slows down abruptly around Ef-Ev=-0.2 eV, creating a plateau before reaching 

Ev, where ΔDox becomes insignificant. Early works [105, 115] propose that the PCs 
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below Ev are as-grown hole traps (AHT) that are easiest to discharge, in agreement with 

the observed rapid discharging in (Ef-Ev) < -0.2 eV. Further support will be given in the 

next section to confirm that PCs below Ev are indeed as-grown hole traps.    

 

Once above Ev, i.e. Ef-Ev>0, Fig. 3.6 (c) shows that the PCs start to decrease again, 

although at a rate substantially lower than that for (Ef-Ev) < -0.2 eV. Above midband, 

however, a rate increase can be observed, leading to a ΔDox peak around Ev+0.8 eV, in 

agreement with early work [124]. Although ΔDox within the bandgap is substantially 

lower than that in (Ef-Ev) < -0.2 eV, Fig. 3.6 (c) shows that the total PCs within the 

bandgap is comparable with the PCs below Ev When Ef reaches beyond Ec, Figs. 3.6 (a) 

and 3.6 (c) show that the decrease become insignificant, resulting in the second plateau. 

Early works [105,113,115] propose that these PCs are anti-neutralization positive 

charges (ANPC), whose energy levels are above Ec and thus making them beyond the 

reach of electrons for neutralization (see Fig. 3.1(b)). Further results will be given to 

confirm this.      

 

3.4.2 Effects of stress time 

 

The energy distributions of PCs after different stress times are compared in Figs. 

3.8 (a) to (c). To separate the as-grown hole traps from those created during stress, one 

test was carried out by minimizing stress time. Unlike the typical procedure shown in 

Fig. 3.2 (b) in which the device was stressed at Vgst and then discharged by sweeping 

Vdischarge towards positive, a fresh device was used in this test and Vg was swept from 

positive towards negative with a time of only 1s at each point. It has been reported that 

generation is negligible within 1s and the filling of as-grown hole traps (AHT) 
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dominates during this time [26]. The result is shown as the symbol ‘▲’ in Figs. 3.8 (a) 

to (c). PCs are negligible both within bandgap and above Ec in a fresh device. However, 

once below Ev, Fig. 3.8 (b) shows that ΔNox becomes substantial and its ΔDox in Fig. 3.8 

(c) agrees with that after stress, supporting that the PCs below Ev originates from AHT. 

As stress time increases, both ANPC and the PCs within bandgap increase. Fig. 3.8 (c) 

shows that PCs within bandgap saturate after long stress time, in agreement with the 

saturation of creation of cyclic positive charges (CPC) [80, 105, 113].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 Dependence of the energy distribution of PCs on stress time. Four devices were stressed at -3.0 V 

and room temperature for different time. The symbols ‘▲’ were obtained on a fresh device and Vg was 

swept from +1.5 V towards negative and the time for each point is only 1 sec to minimize defect 

generation. All other symbols were measured by sweeping from stress Vg towards positive. The ΔNox was 

plotted against Vg in (a) and Ef-Ev in (b) and it increases with stress time. The ΔDox in (c) shows that the 

PCs below Ev actually do not increase with stress time, PCs within bandgap increase initially and then 

saturate. 
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3.4.3 Impacts of stress temperature 

 

The results reported in Fig. 3.8 were obtained by stresses at room temperature. Figs. 

3.9 (a) and (b) give the result after stressing at different temperatures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9 Effects of stress temperature on the energy distribution of PCs. Devices were stressed at -3.0 V at 

different temperatures for 10 ksec. After cooling down to room temperature, Vg=-3.0 V was applied for  

another 10 ksec to recharge the neutralized defects during cooling. All data were measured at room 

temperature. (a) shows that higher stress temperature mainly lifts ΔNox up by increasing ANPC above Ec. 

(b) confirms that ΔDox is insensitive to stress temperature both within bandgap and below Ev for a stress 

time of 10 ksec. 
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As expected, AHT below Ev are the same for different stress temperature, since 

they are pre-existing defects. The PCs within bandgap are also insensitive to stress 

temperature, because the applied stress time of 10 ksec is long enough for them to reach 

saturation even at room temperature. Their number of precursors must be fixed and does 

not increase with stress temperature. 

 

In contrast, the ANPC above the measurable energy level of (Ef-Ev) ~ 1.3 eV is 

substantially more for higher temperature and no saturation was observed [80, 105, 

113]. This different dependence on temperature strongly supports that ANPC is a 

different type of defects. Since its generation does not saturate, its relative importance 

will increase for longer stress time. To avoid dielectric breakdown, tests were stopped at 

Vdischarge= +2 V where (Ef-Ev) ~ 1.3 eV and ANPC remains charged. As a result, the 

ΔDox of ANPC were not covered in Fig. 3.9 (b). The operation voltage for modern 

CMOS technologies is less than 2 V and the ANPC can be considered as ‘fixed 

charges’. In this ecperiment, it is assumed that there is negligible impact of the electron 

trapping.  

 

3.4.4 Effects of nitridation technique 

 

It has been reported that the nitridation technique has a large impact on NBTI 

[24,108] and we compare the energy distribution of plasma and thermally nitrided SiON 

in Fig. 3.10. When compared with plasma nitrided SiON, the thermal nitridation has 

different impacts on different types of defects in their respective energy regions. In the 

region above Ev, thermal nitridation increases AHTs substantially and its ΔDox is over 

three times of that for the plasma SiON. AHTs are the least stable PCs and contribute to 
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the recoverable components strongly. As a result, the large AHTs in thermal SiON 

observed here is in agreement with the early reports that thermal SiON generally has 

higher recoverable components than plasma SiON [24,108].  Two plasma SiON with 

different nitridation levels in Fig. 3.10 were compared, along with the results of a 

thermal SiON. Unlike the thermal SiON, the PCs in these two plasma SiON do not 

cross over in Fig. 3.10 (a) and a reduction of nitrogen level leads to smaller PCs over 

the whole energy range. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig. 3.10 Impacts of nitridation on the energy distribution of PCs. The samples were stressed at the same 

oxide field of 11 MV/cm at room temperature for 10 ksec. The thermally nitrided SiON has significantly 

higher as-grown hole traps (AHT) below Ev. Its ΔDox in the lower half of bandgap is also higher, but can 

be similar to that of plasma SiON in the upper half. The ANPC above Ec is not higher than the plasma 

SiON used here. For plasma nitrided SiON, an increase of nitridation leads to an increase of PCs over the 

whole energy range.  
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Despite the substantially higher PCs below Ev, Fig. 3.10 (a) show that PCs reduce 

at a faster rate for thermal SiON, eventually crossing over the plasma SiON of high 

nitridation and resulting in a lower ANPC above Ec. Fig. 3.10 (b) shows that ΔDox of 

thermal SiON is higher in the lower half of the bandgap, but similar to that of plasma 

SiON in the upper half. The permanent component of thermal SiON is not always 

higher than that of plasma SiON, therefore.  

 

3.4.5 Effects of interface states 

 

Fig.3.6 in section 3.3 demonstrates the technique applied to a case when the level of 

generated interface states is low. This section presents the results when the technique is 

applied to a case when the ∆Dit is more significant.  

 

A device was stressed heavily to generate a ∆Dit = 2.8 x 10
11

 cm
-2

eV
-1 

, as shown in 

Fig.3.11, which is one order of magnitude higher that that presented in section 3.3 of 

this chapter. Under this stress condition, Fig. 3.12 shows that ∆Vth > 88 mV in the 

whole energy spectrum. Since device lifetime is often defined as the time for ΔVth to 

reach 50 mV, one can consider that this ΔDit as significant.  By applying the correction 

method demonstrated in the section 3.3, Fig. 3.13 (a) shows the impact of ΔDit on ΔNox. 

Figs. 3.13 (b) and (c) show that the effects of ΔDit on Ef -Ev and ΔDox are insignificant. 

Since the contribution of ΔDit to ΔNox and ΔDox can be corrected and its effect on ΔDox 

is small anyway, the proposed technique is generally applicable to NBTI stresses, rather 

than limited to the stress condition of ΔDit ~ 10
10

 cm
-2

eV
-1

. 
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Fig. 3.11 Charge pumping measurement which measures the interface states of a heavily stressed device. 

The generated interface states is ΔDit =2.8 x10
11

 cm
-2

eV
-1

  

    

 

 

       

 

 

 

 

 

       

Fig. 3.12 Threshold voltage shift after heavy stress which consequently generated interface states of ΔDit 

=2.8 x10
11

 cm
-2

eV
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(a)                                                                       (b)    

 

 

                                                 (c )                                                 (d)  

 

 

Fig. 3.13 (a) The impact of the generated interface states on the ΔNox measured at a constant Id, 

respectively. (b) shows the impact on the Vg versus (Ef-Ev) relation. (c) shows the impact of the interface 

states on ΔNox versus (Ef-Ev). (d) shows the impact on ΔDox. 
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3.5 Conclusion 

 

A fast pulse technique has been developed and, for the first time, the energy 

distribution of positive charges (PCs) in the dielectric is extracted both within and 

beyond Si bandgap. It is found that these PCs have a broad energy distribution and 

should be taken into account when assessing their impacts on devices and circuits. The 

results strongly support the existence of different types of PCs and each of them 

dominates different energy regions. The PCs below Ev originate from as-grown hole 

traps (AHT), whose energy density increases rapidly once (Ef-Ev) is below -0.2 eV and 

becomes significantly higher than the density within the bandgap. The AHT does not 

increase with either stress time or temperature and its energy density in a thermal SiON 

can be three times of that in a plasma SiON. The PCs distributed within the bandgap 

have a clear peak around Ev+0.8 eV. They are created by stresses and can reach 

saturation after long stress time. Moreover, the saturation level is independent of stress 

temperature. In contrast, the anti-neutralization positive charge (ANPC) above Ec is the 

only type of PCs, whose creation does not saturate with stress time and is substantially 

enhanced for higher stress temperature. This non-saturation characteristic increases its 

relative importance as stress continues.  
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Application of Energy Probing Technique 

on High-k devices 
 

 

 

 4.1 Introduction 

 

Deep-sub-micron device scaling is rapidly evolving and requires stringent control of 

short-channel effects (SCE) and sub-threshold behaviour. With this in mind, the gate 

dielectrics should be thinned to less than 1.0–1.5 nm equivalent oxide thickness (EOT) 

[136]. It has been reported that due to quantum mechanical tunnelling, the typical 

leakage current of SiO2 at gate voltage, Vg of 1 V can increase from 10
-12

 A/cm
2
 with 

EOT of 3.5 nm to 10 A/cm
2
 with EOT of 1.5 nm [137]. To achieve the EOT target and 

to counter the issue of leakage currents, dielectric materials with higher permittivity as 

compared to SiO2 (k ≈ 3.9) are introduced. Compounds of hafnium (Hf), zirconium 

(Zr), and aluminium (Al) were proposed as potential high-k dielectric materials and 

hafnium-based dielectrics have emerged as the winner to replace the conventional SiO2 

due to its high dielectric constant (k up to 25), wide bandgap (5.7 eV) [138], acceptable 

band offset with respect to silicon (Ec offset = 1.5 eV) [138], and process conditions 

which are compatible with silicon process flow. 

 

4 
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 The knowledge of energy distribution of hole traps in these stacks is incomplete. 

The characterization of energy distribution of both as-grown and stress-induced hole 

traps will benefit the understanding of the stress induced degradation of CMOS devices. 

There are only a few of reports [139-142] that address the energy/voltage dependency of 

hole traps. The methods and conditions used in these works for extracting the energy 

distribution have several shortcomings. Most of the existing works uses slow dc 

measurements [124, 143-145] or very low measurement temperature [146] in order to 

characterize the energy distribution. Some hole traps will be neutralized during the 

measurement delay and consequently will not be detected. Another clear limitation of 

the early published works [147-149] is that they can only probe the energy profile 

within the bandgap. 

 

This chapter is dedicated to demonstrate a method which gives the energy profiling 

of as-grown hole traps and generated hole traps that are located either beyond or within 

the bandgap. It demonstrates that the energy probing technique developed in the 

Chapter 3 for the conventional SiON can also be applied to high-k/SiON stacks. 

Attention will be paid to the difference in the energy differences in the energy 

distribution between SiON and high-k/SiON stacks.  

 

4.2 Devices and Experiments  

 

The gate dielectrics of PMOSFETs used in this chapter include a 1.13 nm 

HfO2/SiON, and a 2.0 nm Al-capped HfO2/SiO2. To investigate the effect of different 

gate metals on the energy distribution an EOT = 1.52 nm FUSI-gated HfSiON/SiON 

and an EOT = 1.53 nm TiN/HfSiON/SiON were used. To study the impact of the 
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thickness of the interfacial SiON on the energy distribution, the interfacial SiON was 

slant-etched and the HfSiON thickness was kept the same in a TaN/HfSiON/SiON 

wafer. The discharging during the measurement itself were effectively suppressed by 

applying fast technique (tm=500 ns). The stress and measurements were carried out at 

room temperature.  

 

The energy probing technique was comprehensively demonstrated in Chapter 3. 

The technique uses fast pulses for measurement and the novelty in the technique is that 

the energy distribution of positive charges in the dielectric is extracted both within and 

beyond the Si bandgap. The results obtained from the technique demonstrate the 

existence of different types of positive charges (PCs) whereby each type of PCs will 

dominate different energy regions. Hence, the results of this technique support earlier 

works [80, 105,113- 115] which proposed that there are three different types of PCs in 

gate dielectrics: As-grown hole traps (AHTs), cyclic positive charges (CPCs) and anti-

neutralization positive charges (ANPCs)  

 

4.2.1 Comparison of Energy Probing at Constant current vs Constant voltage  

 

The positive charges can be probed at either a constant voltage or a constant 

current. For comparison purposes, this section presents the results obtained at either a 

constant voltage or a constant current. The drawback of the constant voltage sensing 

will be pointed out and the advantages of probing at constant current will be discussed.   

 

Fig. 4.1 (a) and (b) present how the constant voltage sensing and constant current 

sensing is obtained from the fresh Id-Vg transfer characteristics. The experiment was 
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conducted on the 2.7 nm thermal nitrided SiON, at stress and measurement temperature 

of 125 °C. The stress voltage applied is -3.1 V (≈ 10 MV/cm), and the device was 

stressed for 10 ksec.  

 

 

 

 

 

(a)        (b) 

Fig. 4.1 Energy probing technique by (a) constant voltage sensing and (b) constant current sensing. The 

filled symbol in both figures denotes the fresh Id-Vg measurement and the empty symbols denotes the 

discharging results, after 1 ks discharging time at each discharging level. 

 

Figs. 4.2 (a) - (c) present the results obtained on the 2.7 nm thermal nitrided SiON. 

The energy probing technique was conducted either by constant current sensing or by 

constant voltage sensing. The temperature for the stress and measurement is the same in 

Figs. 4.2 (a) and (c), but different in Fig. 4.2 (b).When the stress and measurement 

temperature were the same, the discharging procedure was carried out immediately after 

the stress had been conducted for the pre-specified time. However, for the case of when 

the stress and measurement temperature are different, as shown in Fig. 4.2 (b), the 

device was initially stressed at 125 °C for 10 ks. After the stress, the device was cooled 

down to room temperature with the stress being turned off before it was recharged at Vg 

= - 3.1 V for around 5 ks and followed by the discharging procedure at room 

temperature. 
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Figs. 4.2 (a)-(c) show that there are differences between the constant current and 

constant voltage measurements and a decision has to be made on which one should be 

used. To probe the energy distribution of the positive charges (PCs), PCs should be 

sensed at a fixed surface potential. A change of surface potential for the measurement 

itself introduces uncertainties in extracting the energy distribution and must be avoided. 

On one hand, under a constant voltage, a change of positive charges in the gate 

dielectric will change the substrate surface potential, so that the PCs are actually 

measured at different surface potential as charging or discharging progresses. As a 

result, the constant voltage sensing is not the best method for charging sensing. On the 

other hand, for a given current, the surface potential is essentially fixed, so that it 

minimizes the uncertainty and will be used in this project.  

  

 The surface potential-based compact models of MOS transistor, based on the 

surface potential equation [143] is (Vgb – Vfb - Ψs)
2
= γ

2
φtH(u) where H(u) = 

(ɛsEs
2
)/(2qφtPb), represents the normalized square of the surface electric field Es. Vfb is 

the flat-band voltage,   φt=KbT/q is the thermal potential where q is the absolute value of 

the electron’s charge, ɛs is the absolute dielectric constant of Si, Pb is  the bulk 

concentration of holes and Ψs  denotes the surface potential.  

 

To show the advantages of constant current sensing over the constant voltage 

sensing, Fig. 4.3 (a) gives the energy probing results conducted by constant voltage 

sensing at different stress and measurement temperature conditions, while Fig.4.3 (b) 

presents that of the constant current sensing. It is observed in Fig. 4.3 (a) that there is 

little dependence in the Region 4, though in principle [113] the ANPC should be smaller 

for the device stressed and consequently measured at 125°C, denoted by the empty 
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symbol ‘o’. The energy level of ANPC is located above the bottom edge of the silicon 

conduction band.  

 

 

 

 

 

 

(a)     (b) 

 

 

 

 

 

 

                      (c) 

Fig. 4.2 Comparison of constant current sensing to constant voltage sensing for different stress and 

measurement temperature conditions (a) Stress and measurement temperature is at room temperature 

(RT), (b) Stress and measurement temperature is at 125 °C and RT respectively, (c) stress and 

measurement temperature are both at 125 °C. 

 

In principle, for the curves denoted by ‘o’ and ‘□’, the ∆Vt in the region 4 (Ef – 

Ev ≥ 1.1 eV,; where ANPC should be observed) obtained from high temperature 

measurement should be lower than the ∆Vt obtained from the room temperature 

measurement. The increase in temperature enhances the number of electrons that can 

reach the ANPC and, consequently neutralize them. The results obtained from the 

constant voltage sensing do not agree with the results reported in early works [113], 

therefore. Fig. 4.3 (b), on the other hand, exhibits a clear difference in the energy 
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profiling for the three different cases. The effect of the stress and measurement 

temperature conditions can be observed clearly in the region 4. It agrees with earlier 

works [148] that ANPC increases for lower measurement temperature. 

 

 

 

 

 

 

 

 

                                                                                 

            (a) 

 

 

 

 

 

 

 

                (b) 

Fig. 4.3 Energy probing technique by constant voltage sensing.. The symbol ‘▪’ denotes the discharging 

result when both stress and measurement was at room temperature. The symbol ‘□’ denotes the 

discharging result when the stress temperature was 125 °C and the measurement temperature was at room 

temperature. The symbol ‘o’ denotes the discharging result when both stress and measurement at 125 °C. 
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 4.3 Comparison of the energy distribution in Hf-based devices of 

different gate stacks 

 

The ever evolving advanced of sub-micron technology results in the complex 

and varying structures of the high-k gate stacks. By using the newly developed energy 

probing technique, the energy density of the hole traps in these devices can be 

investigated. This section presents the comparison of the energy distribution of the 

different types of positive charges existing in the Hf-based devices with different gate 

stacks. Through comparative analysis, the correlation of the energy density is observed 

for different high-k stacks with varying gate material, high-k bulk material and 

interfacial layer (IL) thicknesses. The amount of the AHT and the CPC will be 

compared, and the correlation in respect to the location of the peaks within and beyond 

the bandgap will be reviewed. The different location of the peaks observed from the 

energy density profiling may suggest different types of PCs exist in the different 

devices.  

 

 

 

 

 

 

 

 

Fig. 4.4 Overall positions of the peaks observed within bandgap for the devices discussed. 

 

Fig 4.4 presents the overall location of the peaks that can be observed from the 

investigated Hf-based stacks. The defects are perceived to only be hole traps since if 

there are contributions of electron traps, they can be activated once positive voltage is 
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applied. However, this has not been observed experimentally since only negative stress 

is applied. Furthermore, only |∆Vth| reduction was observed during the discharging 

 

4.3.1 Energy Distribution of positive charges in HfO2/SiON 

 

Fig. 4.5 shows the schematic of the HfO2/SiON gate stack device presented in this 

section. This stack has an EOT of 1.13 nm. This device was prepared by atomic layer 

deposition. Before depositing the HfO2, the chemical SiO2 was nitrided in NH3 at 900 

°C for 60 s. A 2 nm HfO2 was then prepared, resulting in an equivalent oxide thickness 

(EOT) of 1.13 nm. A 1000 °C spike anneal was used to activate the source and drain 

dopant, and the gate is TaN. The channel length and width of the pMOSFET is 0.25 μm 

and 10 μm respectively.        

 

 

 

Fig. 4.5 Schematic of the HfO2/SiON gate stack 

 

  

The energy probing measurement was conducted on this device in order to 

observe its energy profiling. The device was stressed at -1.8 V (≈10 MV/cm) for 10 ks 

and Fig. 4.6 (a) presents the discharging result under different Vdischarge. It is observed 

that the ∆Vt has almost no change after discharging for 1 ksec. This indicates that all 

hole traps within the dielectric which are energetically located below Vdischarge can be 

completely discharge. To further support this statement, Fig. 4.6 (b) presents the 
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threshold voltage shift after discharging for 1 ks and 5 ks, against the discharging 

voltage. The good agreement allows the selection of 1 ks of discharging in time 

hereafter for each discharging level. 

 

 

 

 

 

 

 

 

  

 

 

(a)                                                                         (b) 

  

 

 

 

 

 

 

 

 

 

 

(c) 

 

Fig. 4.6 (a) Results for discharging under different Vdischarge . (b) Discharging time of 1 ks compared that of 

5 ks. It is shown that the discharging time of 1 ks is sufficient.  (c) Threshold voltage shift against the 

discharging voltage of the first discharging compared to the second discharging. It is shown that there is 

no significant traps generation during the first discharge.   
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Since discharging takes some time to complete, it is necessary to ensure that there 

is no further generation of defects during the discharging period. This is checked by 

recharging the same device for another 10 ks at the same stress bias level and then 

followed by the 2
nd

-discharging. As it is shown in Fig. 4.6 (c), there is no significant 

difference of energy profile from the 1
st
 and 2

nd
 discharge.  

 

 

 

 

 

 

 

 

(a)                         (b) 

 

 

 

 

 

 

 

 

(c) 

Fig. 4.7 (a) Trap density of the PCs against the discharging voltages. (b) is obtained by converting the 

Vdischarge to Ef - Ev . (c) Energy density of the PCs obtained by differentiating (b). Inset shows the 

magnified view of the energy density within bandgap. 
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Fig. 4.7 presents the energy density obtained from the energy probing technique for 

the HfO2/SiON gate stack device. From Fig. 4.7 (b), it is observed that the PCs beyond 

the Ec are insignificant under this stress condition suggesting low level of ANPC above 

Ec.  The significant energy density below Ev in Fig. 4.7 (c) suggests substantial as-

grown trap (AHT) exist in this device. Early work conducted [113] suggests that the 

cyclic positive charges (CPC) is energetically located within the bandgap giving rise to 

the significant peak near to the Ec observed in Fig. 4.7 (c). Additionally, there is also a 

small peak at the lower half of the bandgap, located around Ef- Ev = 0.4 eV. 

 

In order to investigate how the energy distribution of the positive charges in the 

high-k device varies from the conventional single-layered SiON, Fig. 4.8 (a) and (b) 

compares the energy profiling of the high-k stack with that of the single-layered 2.3 nm 

plasma-nitrided SiON devices (highly nitrided and low nitrided devices), which was 

used in Chapter 3 for the demonstration of the energy probing technique. It is observed 

that both the high-k and the conventional processes comprise of substantial AHT 

indicated from the significant peak below the Ev. It is worth to note that the amount of 

the AHT is nearly tripled in the high-k HfO2/SiON gate stack, as shown in Fig. 4.8 (b). 

As far as the PCs within the bandgap is concern, the location of the peaks observed in 

the conventional SiON is at Ef- Ev = 0.2 eV and 0.8 eV, while in the HfO2/SiON gate 

stack one low peak can be observed at Ef- Ev = 0.4 eV and another significant peak 

near the Ec . Another noteworthy observation is that the CPC can be substantially small 

in the conventional SiON as compared to the HfO2/SiON gate stack.  
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(b) 

 

Fig. 4.8 Comparison of the energy distribution of the HfO2/SiON gate stack with that of the conventional 

2.3 nm plasma nitrided SiON (High and Low Nitridation). The results of the 2.3 nm SiON devices plotted 

here had been demonstrated in Chapter 3. (a) The trap density, ∆Nox against the surface potential. (b) The 

energy density, ∆Eox against the surface potential.  The red symbols denote the positions of the peak 

observed. 
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4.3.2 Energy Distribution of positive charges in TaN/HfSiON with varying IL 

SiON  

 

The wafer investigated in this sub-section is a slant-etched SiON IL layer of 

varying thickness. The IL thickness of this 8-inch wafer gradually thins from one side of 

the wafer to the other. Fig. 4.9 (a) and (b) present the wafer map of the slanted wafer 

and the schematic illustration of the device respectively. The device has a 10 nm TaN –

gate and the high-k layer is a 2.0 nm hafnium silicate.  

 

 

The EOT of each block on the wafer is different due to the slanted feature of the 

IL. Hence, in order to investigate further on this wafer, the EOT of each block needs to 

be known. A capacitance-voltage (CV) measurement was conducted using the Keithley 

4200-SCS. The measurement was on an NMOS capacitor, of W/L= 70 μm/ 70 μm, 

located at each block across the wafer. The voltage was swept from -3.0 V to 3.0 V, 

with a step of 0.1 V and at a frequency of 200 kHz. The result of the CV measurement 

was then inputted into the CVC simulator to extract the EOT. The simulated CV and the 

measured CV can be compared in order to ensure that the error margin of the simulated 

result is small. Fig. 4.10 (a) and (b) exhibits the comparison carried out between the 

simulated and the measured CV, which in this demonstration, is block A17 of the 

slanted wafer. Fig. 4.10 (b) is a magnified view of Fig. 4.10 (a) indicating that there is 

negligible difference between the simulated and the measured CV, beyond the Ec. Fig. 

4.10 (c) shows the calculated EOT of the each of the block across the wafer. The solid 

line in this figure is a guide for the eyes to observe how the thickness varies across the 

wafer. 
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 (b) 

 

     

Fig. 4.9 (a) Wafer map of the slanted wafer TaN/HfSiON/SiON. The arrow indicates how the IL 

thickness is slanted. The green block (block A3 and A29) were used in this work to demonstrate the 

energy profiling of the slanted wafer. (b) Schematic illustration of the slanted TaN/HfSiON/SiON gate 

stack. 
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Fig. 4.10 (a) CV measurement conducted on an NMOS capacitor of block 17, compared to the 

simulated CVC measurement. (b) A magnified view of (a) above the Ec energy band. The symbol in red 

in (a) and (b) marks the Ec band. (c) EOT measurement of the device thickness according to the blocks 

on the wafer. 
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For the energy probing exercise conducted on this wafer, the thinnest IL and the 

thickest IL PMOS devices (of block A3 and A29, as depicted in green in Fig.4.9 (a)) 

were chosen, thus to observe how the varying IL thicknesses can affect the energy 

distribution. The thin IL and thick IL devices have an EOT of 2.13 nm and 3.89 nm 

respectively.  Both devices have a width and length of 10 μm and 0.25 μm respectively. 

Fig. 4.11 (a) presents the transfer characteristics, along with the extracted threshold 

voltage, Vt of both devices. The Vd applied for the measurements is of -50 mV. The 

stress and measurement temperature is set at room temperature. The measurement was 

conducted by constant current sensing, whereby the oxide field for the constant current 

of each experiment was maintained to be constant in order for an effective comparison 

to be made. Hence, both measurements were conducted at a constant current with the 

oxide field, Eox_CCS of -0.33 MV/cm (Eox_CCS = (Vg-Vt)/ EOT). The discharging time 

at each discharging level is 1 ks. Subsequent to the measurement of the reference Id-Vg 

on a fresh device, the devices were stressed at -10 MV/cm (-3.5 V and -3.0 V for the 

thick and thin device respectively), for a stress time of 10 ks at room temperature.  
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    (a) 

 

 

 

 

 

(b)              (c) 

    

Fig. 4.11 (a) Transfer characteristics (TC) of a thin IL PMOS device (EOT = 2.13 nm, block A3) and 

thick IL PMOS device (EOT=3.89 nm, block A29). The threshold voltage of each TC was extracted.  (b) 

The threshold voltage shifts resulted from the discharging under different Vdischarge. The devices were 

stressed at 10 MV/cm (-3.5V and -3.0V, for the thick IL and thin IL respectively). (c) A magnified view 

of (b) which shows the threshold voltage shift above Vg=0 V, and the indication of the ANPC generation. 
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                                                                            (c) 

 

Fig. 4.12 (a) and (b) are the profiles of the trap density against the discharging voltages and surface 

potential respectively, for different IL thicknesses of the slanted wafer TaN/HfSiON/SiON. (c) The 

energy density as a result of the energy probing technique, for the different IL thickness of the slanted 

wafer.   
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An inspection of Fig. 4.12 (a) and (b) indicates that the PCs behave qualitatively 

similar for the thin and thick devices. Below the Ev, the ∆Nox will initially drop for both 

of the device as Ef - Ev increases. Although ∆Nox in Fig. 4.12 (b) is clearly higher for 

thinner IL, this does not mean that there are more hole traps for the thin IL below Ev. 

Fig. 4.11 (c) shows that the ∆Dox is insensitive to the IL thickness below Ev. As a result, 

the as-grown hole traps (AHT) must pile up towards the SiON/Si interface, since an 

increase of the bulk volume contributes little to AHTs.  The real interface traps, ∆Nit, 

measured experimentally by charge pumping, is always quite low in such devices and 

thus it it perceived that the profiling is not from the contribution of Dit.  

 

Within the bandgap, three peaks are observed: peaks 4 and 2 are in the lower and 

upper half of bandgap, while the peak 3 is close to Ec. The position of peak 4 and 2 is 

similar in a single layer SiON as shown in Fig 4.13 (a). The thinner IL clearly has 

higher peaks compared to the thicker IL, although the energy positions of these peaks 

appear insensitive to the IL thickness. This thickness effect is not fully understood at 

present. One may speculate that an increase of IL thickness allows the strained bond 

near the interface to relax more and slows down the generation of CPC. The sharp 

contrast in the IL thickness dependence for defects below Ev and within bandgap 

strongly supports that they are different types of defects. The energy density below the 

Ev of the thinner device is considerably significant compared to that of the thicker 

device, hence to suggest that the AHT is higher as the IL is reduced.  

 

To downscale the EOT for future generation of CMOS technologies, the IL 

thickness must be reduced. Fig. 4.12 (b) clearly shows that the positive charging will be 

higher for thinner IL even if the stress was under the same field. Since the operation 

voltage cannot be reduced proportionally with the oxide thickness, it is expected that the 
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oxide field will rise in the future. As a result, NBTI will become increasingly important 

for future generation of CMOS technologies. 
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(b) 

 

Fig. 4.13 Energy distribution of PCs in different Hf-based devices. (a) Comparing the TaN/HfSiON/SiON 

gate stack with the single layer SiON. (b) To observe the effect on energy profiliing for different high-k 

bulk : Comparison of TaN/HfO2/SiON with the TaN/HfSiON/SiON. 
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Fig. 4.13 (a) presents the energy profile of the single layer SiON compared with 

the TaN/HfSiON/SiON high-k gate stack. It can be seen that while the locations of the 

peaks within the bandgap is similar, the peak 3 near the Ec is absent in the single 

layered SiON device. Fig. 4.13 (b) shows that the energy distribution for the two 

devices of different Hf-dielectric layer has similar structure. It can be seen that the peak 

3 near the Ec is present for both devices. However, there are some differences in the 

locations of the peaks within the bandgap. 

 

 

4.3.3 TiN / HfSiON/ SiON 

 

 

The high-k process investigated in this subsection is the TiN/HfSiON/SiON PMOS 

transistor of an EOT of 1.53 nm. The device has a width and length of 10 μm and 0.25 

μm respectively.  Fig. 4.14 depicts the schematic illustration of this high-k gate stack.  

 

 

 

Fig. 4.14 Schematic illustration of the 2.0nm TiN/ HfO2/ SiO2 gate stack 
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The Vd applied in the energy probing measurement is -25 mV and the oxide field 

for the constant current sensing, Eox_CCS is of -0.13 MV/cm. The discharging time at 

each discharge level is 1 ks. The stress gate voltage is -10 MV/cm (-2.4 V) on the gate 

with other terminals grounded. The device was stressed for 10 ks at room temperature. 

The discharging measurement by constant current sensing was conducted at room 

temperature. Fig. 4.15 (a) – (d) presents the results obtained from the energy probing 

technique. The traps were completely discharged at Vg ≈ +1.5 V, where no ANPC can 

be observed for the stress condition applied.  

 

Fig. 4.15 (c) shows an initial steep drop of the ∆Nox resulting in the significant 

energy density, ∆Dox. Once above Ev, the PCs reduce at a slower rate until the traps had 

completely discharged. The energy profile presented in Fig. 4.15 (d) exhibits three 

major peaks similar to those in the Fig. 4.12 (c), reproduced here in Fig 4.16 (b) where 

the energy profiling of the 1.53 nm TiN/HfSiON/SiON is compared to that of the 2.13 

nm TaN/HfSiON/SiON. The highest peak again can be seen close to Ec. This suggests 

that the feature of the energy distribution of positive charges in high-k stack is 

insensitive to the fabrication condition. 
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(a)         (b) 

 

 

 

 

 

 

   (c)                (d)  

 

 

Fig. 4.15 Results of the energy probing technique on the 1.53 nm TiN/HfSiON/SiON. (a) Threshold 

voltage shifts against the discharging voltages, subsequent to -2.4 V stress for 10 ks at room temperature. 

(b) and (c) are the trap density against the discharging voltage and surface potential respectively. (d) 

Energy density obtained through the differentiation of (c). Inset is the magnified view of the energy 

density within the bandgap. Measurements were also conducted at room temperature. 
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(b) 

 

Fig. 4.16 Energy distribution of PCs in different Hf-based devices. (a) Comparing the TaN/HfSiON/SiON 

gate stack with the single layer SiON. (b) To observe the effect on energy profiliing for different gate 

material: Comparison of TiN/HfSiON/SiON with the TaN/HfSiON/SiON. 
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4.3.4 FUSI/ HfSiON / SiON 

 

 

The high-k process investigated in this subsection is the FUSI/ HfSiON/ SiON  

PMOS transistor with an EOT of 1.52 nm. The device has a width and length of 10 μm 

and 0.25 μm respectively. Fig. 4.17 depicts the schematic illustration of this high-k gate 

stack.  

 

 

 

Fig. 4.17 Schematic illustration of the 1.52 nm FUSI/ HfSiON/ SiON gate stack 

 

 

The Vd applied in the energy probing measurement is -50 mV and the oxide field of 

the constant current sensing is -0.13 MV/cm. The discharging time at each discharge 

level is 1 ks. The stress gate voltage applied is -2.5 V and the device was stressed for 10 

ks at room temperature. The measurement was also conducted at room temperature. 

Figs. 4.18 (a) – (d) present the results obtained from the energy probing technique. 
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(a)       (b)   

 

  

 

 

 

 

 

 (c)       (d) 

 

Fig. 4.18 Results of the energy probing technique on the 1.52 nm FUSI/HfSiON/SiON. (a) Threshold 

voltage shifts against the discharging voltages, subsequent to -2.5 V stress for 10 ks at room temperature. 

(b) and (c) are the trap density against the discharging voltage and surface potential respectively. (d) 

Energy density obtained through the differentiation of (c). Inset is the magnified view of the energy 

density within the bandgap. Measurements were also conducted at room temperature. 

 

 

Fig. 4.18 (c) shows that the ∆Nox initially drops rapidly which in turn results in 

the high energy density presented in Fig.4.18 (d). As the discharging level reaches Ev 

and beyond, the drop in ∆Nox persists although less rapidly. Reaching beyond Ec, Fig. 

4.18 (a) shows the ∆Vt saturates at 30 mV, indicating the presence of generated ANPC. 
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A clear observation that can be deduced from Fig. 4.18 (d) is of the large peak near the 

Ec band caused by cyclic positive charges (CPC). 

 

When compared with the energy distribution of other high-k samples presented earlier, 

the peak near Ec in Fig. 4.14 (d) is larger, indicating higher CPC in this sample. Early 

work [81,105] shows that the precursors of CPC are fixed by the fabrication processes 

and CPC generation is sensitive to hydrogen exposure during the fabrication. It is 

possible that the sample with FUSI gate contains a higher density of hydrogenous 

species. 

 

4.4 Energy Distribution of the Al-capped HfO2 

 

Devices with a high-k/metal gate (HKMG) stack result in low gate leakage and 

scaled EOT for advanced technology. However, threshold voltage control in these 

HKMG devices remains challenging [150-152] and requires gate workfunction tuning 

to control threshold voltage using new materials and new integration schemes [153-155] 

. To realize higher Vt controllability, Vt-control cap materials such as Al2O3 and La2O3 

are incorporated into the MG/High-k stacks of PMOS and NMOS respectively [156-

158]. The AlO capping layer incorporated in metal gated high-k stack devices have been 

reported to effectively shift the work function of the gate stack with respect to the 

referenced gate stack [159-161]. This leads to the ease of Vt tuning of the device. The 

introduction of AlO cap layer also acts as a buffer layer [162] between the MG and the 

dielectric, hence making the device thermally stable.  
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This section of the chapter investigates the characteristics of the Al/HfO2/SiO2 gate 

stack and the energy probing technique is applied in order to study the energy 

distribution of the PCs. 

 

4.4.1 Device characteristics 

 

The investigated Al/HfO2/SiO2 gate stack has an EOT of around 2.0 nm. Fig. 4.19 

(a) and (c) respectively depicts the wafer map of the device and the schematic 

illustration of this particular high-k gate stack, while Fig. 4.19 (b) shows the schematic 

of the terminals on the device. A 0.5 nm thin Al-capping layer is located in between the 

TiN gate and a 1.2 nm HfO2 bulk dielectric. The structure of the wafer under test is IL- 

slanted at which the thickness of the interfacial layer at the middle of the wafer 

gradually thickens as it widens towards the edge. This work had only used the PMOS 

transistor in investigating the device’s characteristics and its energy distribution. 

 

The Keithley 4200-SCS was used to conduct a CV measurement on a W/L= 10 μm 

/ 10 μm PMOS transistor located at each block of the wafer under test. The 

measurement, which was conducted at room temperature, had been carried out in order 

to obtain the IL thickness of each block across the wafer. The result of the CV 

measurement is further inputted into the CVC simulator in order to obtain the specific 

EOT of a particular block. Fig. 4.20 presents the CV measurement results. Figs. 4.20 (a) 

and (b) are the screen captures of the quasi-DC split CV measurement, whereby (a) 

exhibits the Cgb plot while (b) gives the Cgc plot. Figs. 4.20 (c) and (d) each present the 

calculated IL thickness for the blocks across the wafer under test. 
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(c) 

 

Fig. 4.19 Details on the investigated Al/HfO2/SiO2 gate stack. Figs (a) and (b) are the scanned image from 

IMEC documentation on the SALSA2 300mm mask set (last updated on 13 November 2009). (a) presents 

the wafer map of the wafer under test, where the dotted red lines indicate the part of the wafer being 

investigated. The interfacial layer (IL) gradually thickens from the middle of the wafer to edge. (b) gives 

the schematic of the probing layout of the PMOS transistor terminals. (c) Schematic illustration of the 2.0 

nm Al/HfO2/SiO2 gate stack 
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(a)            (b)  

 

 

   

(c)                      (d) 

 

 

Fig 4.20 Capacitance-Voltage (CV) measurement conducted on the wafer under test to obtain the IL 

thickness of each block across the wafer. (a) and (b) are screen captures of the Cgb and Cgc 

measurement. (c) and (d) are the calculated IL thicknesses for the different blocks across the wafer. The 

dotted line is a guide for the eyes to indicate how the thickness varies across the wafer. Measurement is 

conducted at room temperature. 
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Fig. 4.21 Energy distribution measurement. (a) Threshold voltage shift, ∆ Vt against the discharging 

voltage after stressing at -2.6 V for 10 ks, in room temperature. (b) presents the constant current sensing 

at Id = 4 μA denoted by ‘□’. 
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(a)         (b) 

 

 

 

 

 

 

 

 

                              (c) 

 

Fig. 4.22 Energy profiling of the Al-capped HfO2/SiO2. (a) and (b) Trap density of the Al/HfO2/SiO2 after 

stress, against the discharging voltage and surface potential respectively. (c) Energy density of the 

Al/HfO2/SiO2 gate stack compared to the HfO2/SiON. The result of the HfO2/SiON was previously 

presented in Fig. 4.7 (b). The red symbols indicate peaks within the bandgap formed subsequent to the 

stress applied. The inset is the magnified view of the energy density within the bandgap. 
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The energy distribution measurement technique was applied to the Al/HfO2/SiO2 

gate stack and the threshold voltage shifts observed and the current sensing applied are 

presented in Figs. 4.21 (a) and (b) respectively. The device under test is taken from 

block 162 (IL=1.35 nm) and the device’s width and length are 10 μm and 0.35 μm 

respectively. Both stress and measurement were conducted at room temperature. After 

the measurement of the reference Id-Vg on a fresh device, the device was stressed at -2.6 

V for 10 ks. After stress, the discharging was conducted until the Vdischarge reaches 1.7 

V. The discharging time at each Vg level was 1 ks.  

 

Fig. 4.22 presents the results obtained from the energy profiling technique applied 

on this gate stack. The steep initial decline of the trap density ∆Nox, below the Ev, 

become less so as the Ef –Ev reaches 0 eV. Fig. 4.22 (c) presents the energy density of 

the gate stack obtained through the differentiation of Fig. 4.22 (b). The energy density 

of the 1.13 nm HfO2/SiON was plotted together with that of the Al/HfO2/SIO2 gate 

stack for comparison. The peak 3 is apparent in the Al-capped device, as observed in the 

Hf-based devices presented previously, suggesting that it is Hf-related. Peak 1 is 

slightly wider in this device which might be due to the incorporation of the Al-cap. A 

closer inspection shows that the peak 2 is also present in this device.  
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4.5 Conclusion 

 

 

The energy distribution technique developed in Chapter 3 has been applied to high-

k gate stack devices. This chapter comprehensively demonstrate the applicability of the 

technique, not only to conventional single-layered device but also to various advanced 

high-k gate stacks. Energy profiling of different Hf-based devices were investigated and 

the distribution of PCs generated subsequent to stress were reviewed. The energy 

profiling of the high-k gate stacks were compared to that of the single layer SiON 

device.  

 

Similar to SiON, a high level of as-grown hole traps were observed below Ev for 

high-k dielectric stacks. Within the bandgap, although peaks were observed for both 

SiON and the stack, their energy positions are not always the same. All Hf-dielectric 

stacks have a clear peak near to Ec, which was not observed for SiON. The defect which 

results in this peak may be induced by the incorporation of Hf since it only exhibits 

itself in the hf-based devices and not in any of the conventional single layered SiON 

devices. The SiON has a clear peak in the upper half of the bandgap, but there is no 

clear peak in the lower half. In contrast, some high-k stacks have clear peaks in both 

upper and lower half and the peak in the lower half can be higher than the one in the 

upper half. For the stress conditions used here, the positive charges in high-k stack are 

dominated by AHTs below Ev and CPCs within the bandgap, although modest ANPC 

was observed in some samples above Ec. 
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Reducing the IL SiON has little effect on AHT below Ev, but increases CPC within 

the bandgap, indicating higher NBTI for future CMOS technologies. The metal gate can 

impact NBTI substantially. The FUSI gate results in a high peak near Ec. Process 

optimization is essential for minimizing NBTI of high-k stack.   

 

The Al-capped HfO2 stack was also investigated in this chapter in order to observe 

how the Al-cap can affect the energy profiling of the HfO2/SiO2. It is observed that the 

presence of the capping do not affect the presence of the significant peak near the Ec 

(peak 3) which can be seen in most hf-based devices, and the capping apparently results 

in the widening of the peak 1, located around 0.4 eV, near the Ev energy band. 
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Negative Bias Temperature Instability 

Lifetime Prediction: Problems and Solutions 
 

 

 

5.1 Introduction 

 

After developing the technique for probing the energy distribution of positive 

charges in dielectric, this chapter will explore how to use it to improve the accuracy of 

NBTI lifetime prediction. The current CMOS manufacturers are using the NBTI 

lifetime, i.e. τ, as one of the criteria for determining the maximum operating voltage 

[163] and the assessment of lifetime prediction is used as a figure-of-merit for process 

screening [164]. In order to reduce the test time and reach a measurable degradation 

level, the classical lifetime prediction typically accelerate the tests by stressing devices 

at a bias level higher than that used in the real operation of a technology level . Tests at 

high stress levels are carried out on individual devices and the resultant lifetimes will be 

extrapolated towards 10 year to obtain the maximum operating voltage, Vgop_max 

[165].  

 

Degradation is conventionally evaluated by threshold voltage, Vt extracted from 

slow DC Id-Vg measurement which takes several seconds to complete. It has been 

widely accepted that the negative bias temperature instability (NBTI) degradation 

5 
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recovers substantially upon the removal of stress, particularly when the conventional 

stress-measure-stress (SMS) techniques are used. Due to the significant recovery during 

the slow measurement, the monitored degradations can be highly under-estimated and 

thus resulting in the overestimation of device lifetime.  

 

Various fast techniques have been proposed to suppress the recovery in the 

measurement [99,166], but these proposed techniques do not give an industry-wide 

accepted method for τ prediction, because of the problems which will be detailed in the 

following section. Since a reliable prediction technique is not available without 

recovery, some industrial researchers [167] purposely inserted a delay between stress 

and measurement to give a level of recovery. It is not known, however, what is the 

correct standardised level of recovery that should be used.  

 

The objective of this chapter is to show that neither the DC nor the pulse 

measurement is suitable for lifetime prediction due to either over-estimation or under-

estimation of the maximum operational voltage, Vgop_max. After analysing the sources 

of errors by using the newly developed energy probing technique this chapter will 

propose a new technique that can correct these errors. This new lifetime prediction 

technique can readily be implemented in industry. 

 

 

5.2 Pitfalls of the Lifetime Prediction based on the slow DC and fast 

pulse measurements 

 

After suppressing recovery, one would expect that the larger degradation shortens 

the τ. It was reported, however, that the extracted τ can either be similar, as depicted in 
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Fig.5.1 (a) [168] or even longer, as presented in Fig. 5.1 (b) [51]. Such reported results 

obviously do not make sense since larger degradation should result in shorter lifetime. 

Lifetime prediction requires extrapolation from high stress bias, Vg_st to low 

operational Vg_op. After suppressing recovery, log(τ) versus log(|Vg_st|) does not 

always follow a straight line, as presented in Figs.5.1 (c) and (d) [169]. There is an 

apparent change in the slope as the gate voltage stress, Vg_st reduces towards the 

operational voltage, Vg_op, as indicated in the figures. This invalidates the 

extrapolation. 

 

The occurrence in the change of the slope as the stress voltage is reduced towards 

the Vg_op has also been examined by early published reports [169-171] in which they 

had remarked of such ‘turn-around points’ occurring in the lifetime measurement. This 

occurs to both conventional single layered devices as well as high-k devices. Hence, 

these existing experimental methods should be perceived as unreliable due to the 

defective extrapolation towards the 10 years criteria.  
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(c)       (d) 

 

Fig. 5.1 Problems with using fast techniques: I. Lifetime, τ, from fast techniques can be similar (a) or 

even longer (b) than that from slow measurements. II. Lifetime cannot be reliably extracted by Vg-

acceleration method because of the non-linearity between log(τ) and log(|Vgstr|). Data in (c) was 

reproduced from this work.  Data in (d) shows a similar trend observed by the work reproduced from 

Chen et al [169].  
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5.2.1 The Sources of Overestimation and Underestimation of the Lifetime  

 

 

Fig. 5.2 (a) shows the energy profile of positive charges (PCs) after 10 ks stress 

obtained from the energy distribution method developed in Chapter 3. In principle, a 

defect must be chargeable at the operation field E(Vg_op), if it is to be included in τ 

prediction. However, the existing lifetime measurements applied by most academic 

works [91, 172-174] as well as the semiconductor industry [175-178] is to initially 

stress at substantially high gate voltages and consequently carry out the lifetime 

extrapolation. During stress at high |Vg_st|, the defects below E(Vg_op) are charged, 

but they are not chargeable at |Vg_op| and, consequently should be excluded in τ 

prediction. 

 

On the other hand, the fast techniques published in early works [164,165] freeze the 

defects after stress, leading to the marked ‘Over-estimation’ of |ΔVt| in Fig. 5.2 (a), 

which induces an extra lowering of τ for higher |Vg_st| and causes the problems in Figs. 

5.1 (a) – (d). On the other hand, the defects that are charged at E(Vg_op) can be 

partially neutralized at E(Vt) during a slow DC measurement, resulting in the marked 

‘Under-estimation’ of |ΔVt|. Fig. 5.2 (b) presents the threshold voltage shifts, ∆Vt, 

obtained from the energy profiling measurement, for stress times of 1 s, 300 s and 10 ks. 

It can be seen that the three curves below Ev are parallel-shifted. Above Ev, the |∆Vt| 

increases with stress time. This observation will be discussed in terms of the defects in 

the following section. 
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In future, the oxide field during operation will further increase, driving E(Vg_op) 

lower [51] and, in turn, exasperating the over-estimation of ∆Vt . The challenge is how 

to avoid both the over- and the under- estimation in τ prediction.  
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(b) 

 

Fig. 5.2 (a) An illustration of the origins of problems: ΔVt depends on Ef-Ev and, in turn, Vg. After stress 

under Vg_st, the fast technique freezes recovery and charges. Under Vg_op, ‘ΔVt(Vg_st)’ was used 

wrongly, leading to the ‘Over-estimation’. For DC method, ΔVt was measured at Vg= Vt, resulting in the 

‘Under-estimation’. The correct ΔVt for τ prediction under Vg_op should be ‘ΔVt(Vg_op)’. Note the 

different scales for Ef below and above Ev. (b) ΔVt at different stress time of 1 s, 300 s and 10 ks; each 

stress time are denoted by the symbols ‘o’, ‘∆’ and ‘□’ respectively. ‘GD’ and ‘AHT’ marks the generated 

defects and as-grown hole traps respectively. 
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5.3 A new method for Lifetime Prediction 

 

The waveform of the gate bias for the new experimental method to predict the 

lifetime is presented in Fig. 5.3 (a). A fresh device is initially stressed under Vg_st for a 

pre-specified time, and subsequently the Vg is stepped towards positive, to Vg_op1, in 

order to discharge. After completing discharge at Vg_op1, Vg is consequently stepped 

to Vg_op2 and the same procedure is followed until Vg reaches the threshold voltage, 

Vt. The Vg_st then is re-applied for the next pre-specified time.  

 

For the purpose of demonstrating this new technique, the measurement procedure 

was applied on a fresh 2.0 nm plama-nitrided SiON. Fig. 5.3 (b) presents the threshold 

voltage shift, ∆Vt obtained against the discharging time of 1 ks. The ∆Vt is monitored at 

different discharging voltages, of which the discharging voltage increases towards the 

positive, in steps of 0.3 V from a Vg_op of -2.0 V to a Vg_op of +0.7 V. The 

measurement was taken during the pulse edges of 3 µs at constant current of 

Id=100nA*W/L.  

 

Fig. 5.4 (a) presents the ∆Vt after full discharge at each Vg_op. Before modeling 

ΔVt versus time, the defects are analysed first. The Fig. 5.2 (b) shows the energy 

profiles after different stress times. From this figure, two groups of defects can be 

identified : i) The defects below E(AHT=0) are fully filled after only 1sec and do not 

increase further with stress time, as confirmed by the parallel shift of the three curves, 

supporting that they are “as-grown hole traps” and depicted as “AHT” in the figure 
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[179] ; ii) Defects above E(AHT=0) are negligible at 1sec but increase with stress time, 

indicating they are generated defects, which is depicted as “GD” in the figure. 
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Fig. 5.3 (a) The test Vg waveform. After stressing for a pre-specified time, |Vg| was lowered in steps. 

Under each Vg_op, ∆Vt is monitored against discharge time at the pulse edge of 3µs. (b) Typical results 

for discharging under different Vg_op. The device was stressed at Vg_st = -2.3 V under 125 
o
C for 10 

ksec. The sample is a 2.0 nm plasma-nitrided SiON. 
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To separate the threshold voltage shifts due to the AHT, ∆Vt(AHT), from the 

threshold voltage shifts resulting from the generated defects, ∆Vt(GD), a test was first 

carried out to find the Vg_op for AHT=0. Fig. 5.4 (a) and (b) demonstrates the 

experimental procedure for separating the generated defects from the as-grown defects. 

Fig. 5.4 (a) presents the ∆Vt for different Vg_op, plotted against stress time. The stress 

voltage, Vg_st is – 2.5 V and the total ∆Vt was monitored at pre-specified times, from 

300 s up to 10 ks. After each pre-specified stress time, the device is discharged in steps, 

starting from Vg_op of -2.3 V until Vg_op of -0.7 V, in steps of 0.3 V. Each data point 

plotted in Fig. 5.4 (a) is taken after discharging time, Tdischarge of 80 sec, where the 

discharge essentially has completed as shown in Fig. 5.3 (b). Under a given |Vg_st|, ∆Vt 

at Vg_op(AHT=0) (denoted as ‘ ’ in the Fig. 5.4 (a)) can originate only from generated 

defects, since the as-grown traps are not charges at Vg_op(AHT=0). Fig. 5.4 (a) shows 

that the ∆Vt(GD) follows a power law [180]. Fig. 5.4 (b) presents ∆Vt(AHT) against 

stress time. The ∆Vt(AHT) for each Vg_op is obtained from ∆Vt(Vg_op) - ∆Vt(GD). It 

can be seen that the higher the |Vg_op| is, hence the higher |∆Vt(AHT)| will be. Fig. 5.4 

(b) also shows that the |∆Vt(AHT)| is a constant against stress time for a given Vg_op 

since AHT-filling saturates around 1s, as shown from the saturation that can be 

observed in the Fig. 5.5. Exclusion of these AHTs by subtracting ∆Vt at 1 s [181] 

overestimates the lifetime.  

 

The characteristic of the AHT is that the traps are pre-existing and hence should not 

be affected by the stress. Fig. 5.6 shows that the ∆Vt(AHT) is independent of the Vg_st, 

therefore confirming their ‘as-grown’ nature. It is worth to note that the ∆Vt(AHT) is 

directly determined from the measured data, without the application of any trap filling 

model.  
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Fig. 5.4 Separation of generated defects (GD) from as-grown hole traps (AHT).  (a) |∆Vt(Vg_op)| against 

stress time. The ∆Vt for each different Vg_op and at each stress time was taken after Tdischarge = 80 s. 

The solid line is fitted with a power law. (b) ∆Vt(AHT) against stress time . ∆Vt(AHT) under each Vg_op 

is determined from ∆Vt(Vg_op) - ∆Vt(GD). 
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Fig. 5.5 A comparison of the total degradation |Vt(Vg_st)| (‘□’) and the generated |Vt(GD)| (‘○’). 

∆Vt(AHT) (‘∆’) is evaluated from ∆Vt(Vg_st) - ∆Vt(GD) and saturates around 1 sec. 

 

Fig. 5.6 presents the impact of the different stress voltages on AHT and the 

generated defects. It is clearly observed that the ΔVt(AHT) is not at all affected by the 

different stress biases, justifying the characteristics of the as-grown hole traps. For 

ΔVt(GD)=Gt
n
, the prefactor, G follows a power law against the stress voltage, Vg_st as 

shown in the Fig. 5.6 (b). Fig. 5.6 (c) shows a constant power factor, n against the 

Vg_st. Hence, it warrants the Vg-extrapolation. 
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Fig. 5.6 Impact of Vg_st on AHT and GD: (a) The independence of ΔVt(AHT) on the stress Vg_st 

confirms they originating from ‘as-grown hole traps’. At |Vg_op|=1.5 V, |ΔVt(AHT) |=17 mV. (b) The 

prefactor ‘G’ in ΔVt(GD)=Gt
n
 follows a power law against Vg_st. (c) The time power exponent ‘n’ is 

independent of Vg_st.        
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5.3.1 A step-by-step guide for lifetime prediction  

 

This subsection gives a step-by-step guide for the proposed new lifetime prediction 

method. The device used in this demonstration is the 2.0 nm plasma-nitrided SiON. The 

device was stressed typically for 10 ks. For this demonstration, the operational 

voltage,Vg_op = -1.5 V is chosen. The lifetime criterion, |∆Vt(τ)| is selected to be of 

100 mV.  

 

Fig. 5.7 illustrates the step-by-step procedure for the lifetime prediction. The 

threshold voltage shifts due to the generated defects, |∆Vt(GD)| for different stress 

voltages, Vg_st from – 2.5 V to -1.7 V , in steps of -0.1 V as shown in Fig. 5.7 (a). The 

Vg_st of each measured dataset is given in Fig. 5.6 (a). From Fig. 5.6 (a), for a |Vg_op| 

= 1.5 V, the |∆Vt(AHT)| is 17 mV. Hence, with the lifetime criterion of 100 mV, the 

allowable |∆Vt(GD, τ)| = ∆V(τ) - ∆V(AHT) = 100 -17= 83 mV. This allowable 

maximum generation is indicated by the black dotted line in Fig. 5.7 (a). The lifetimes, 

τ, predicted under different Vg_st are extrapolated from the allowable maximum 

generation and are indicated by the coloured dotted lines denoted by τ1 to τ9. Each 

lifetime is then plotted against the stress voltages as presented in Fig. 5.7 (b). The 

lifetime at Vg_op is consequently obtained by extrapolating |Vg_st| to the predefined 

|Vg_op|, which in this demonstration is 1.5 V. 
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Fig. 5.7 An example of the lifetime prediction under a Vg_op= -1.5 V and a criterion of a permitted 

|∆Vt(τ)| =100 mV, giving an allowed ΔV(GD,τ)= ΔV(τ)-ΔV(AHT)=100-17=83 mV. (a) τ prediction 

under different Vg_st. The Vg_st for each dataset is given in Fig. 5.6 (a). (b) Lifetime at Vg_op is 

obtained by extrapolating |Vg_st| to |Vg_op|=1.5 V. τ1 to τ9 in (b) were taken from (a). 
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The step-by-step guide for the lifetime prediction is summarised is as below. For a 

given Vg_op (e.g. -1.5 V) and a permitted ΔVt(τ) (e.g. 100 mV): 

 

i. Find ΔVt(AHT)= 17 mV at this Vg_op as shown in Fig. 5.6 (a) ; 

ii. Work out ΔVt(GD,τ)=ΔVt(τ)-ΔVt(AHT)=83mV; 

iii. Extract τ from ΔVt(GD) vs stress time, see Fig. 5.7 (a); 

iv. Estimate τ(Vg_op=-1.5 V) by extrapolating τ against Vg_st as presented in Fig. 

5.7 (b). 

 

 

5.3.2 Estimating Vg_op (max) for a τ of 10 years 

 

A standard practice in the industry is to find the maximum operational voltage, 

Vg_op(max) for a lifetime of 10 years. The Vg_op is now varied and for each Vg_op, 

the lifetime, τ is estimated by following the steps detailed in the previous subsection. 

This procedure is conducted until the calculated τ covers the lifetime above and below 

the 10 years criterion. The maximum Vg_op of τ =10 years, Vg_op(max), is then 

determined by interpolation from the two neighbouring points as shown in Fig. 5.8 (a). 

In this case, the |Vg_op(max)| extrapolated is of 1.3 V. Fig. 5.8 (a) shows that this value 

is substantially lower than the extrapolated value of 1.6 V where the extrapolation was 

conducted from the dataset obtained using the conventional DC method (see Fig. 5.8 

(b).  
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Fig. 5.8 (a) τ at different Vg_op. ‘’ was taken from Fig. 5.7 (b) for |Vg_op|=1.5 V. Each τ for other 

Vg_op (‘□’) was obtained by following the procedure in Fig. 5.7. The maximum allowable Vg_op, 

Vg_op(max) (‘X’), for τ=10 years was obtained by interpolating between two neighbouring points. ‘●’ is 

the Vg_op(max) extracted by the conventional DC method, as shown in (b). 
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Fig. 5.9 plots the estimated Vg_op(max) under different lifetime criterion 

obtained from the proposed technique, as compared to that of the conventional DC 

method. It is evident that the difference in Vg_op(max) by the new and DC methods is 

insensitive to the lifetime criteria. This may be due to that both the |ΔVt(AHT)| and 

|ΔVt(GD)| reduce for smaller |ΔVt(τ)|, and smaller |ΔVt(τ)| always leads to lower | 

Vg_op(max)|. It can also be seen that the relative difference (‘ ’) is higher for lower 

|ΔVt(τ)|. From the figure, it is apparent that the DC method substantially overestimates 

Vg_op(max).   

 

 

 

 

 

 

 

 

 

Fig. 5.9 Vg_op(max) estimated under different lifetime criteria. Smaller |ΔVt(τ)| leads to lower 

|Vg_op(max)|, but DC method always overestimates Vg_op(max) and the ratio (‘▲’) increases for 

smaller |ΔVt(τ)|. 
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5.4 Application of the proposed lifetime prediction technique to devices 

from different fabrication processes 

 

This section applies the newly proposed lifetime prediction technique to devices 

fabricated under different process conditions. Two different processes were selected: a 

2.3 nm plasma-nitided SiON with low ΔVt(AHT) and another is a 2 nm/1 nm 

HfSiON/SiON stack with high ΔVt(AHT). The ΔVt(AHT) against the Vg_op extracted 

from the two processes are presented in Fig. 5.10. 

 

 

 

 

 

 

 

 

 

Fig. 5.10 Vt(AHT) vs Vg_op extracted from two processes. (a) A plasma 2.3 nm SiON with relatively 

low AHTs. (b) A 2nm/1nm HfSiON/SiON stack with relatively high AHTs. 

 

The difference in the extracted Vg_op(max), as shown in Fig. 5.11 for the 2.3 nm 

SiON with relatively low AHT from the new and DC methods is small, which is 

expected. Fig. 5.12 presents that of the HfSiON/SiON high-k stack, which is large. 
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Fig. 5.11 Vg_op(max) evaluation for the 2.3 nm SiON. The relatively small difference between the new 

and the DC methods is because of the small ∆Vt(AHT)~8 mV at Vg_op(max), as shown in Fig. 5.10(a). 

 

 

 

 

 

 

 

 

 

 

Fig. 5.12 Vg_op(max) evaluation for the 2 nm/1 nm HfSiON/SiON. The large difference between the 

new and the DC methods is because of the large ∆Vt(AHT) ~30 mV at Vg_op(max) in Fig. 5.10 (b). 
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5.5 Conclusion 

 

The DC method used by the current industry substantially overestimates 

Vg_op(max) due to NBTI recovery during measurements. The fast techniques suppress 

recovery, but wrongly include defects that are not chargeable at Vg_op for lifetime 

prediction. A new technique is proposed to include the correct amount of recoverable 

components (AHTs) in τ prediction. It does not need a trap-filling model and, 

consequently minimizes the number of fitting parameters and uncertainties. A major 

feature of this new technique is that the contribution of as-grown hole traps to the 

threshold voltage shift is experimentally determined. At a given temperature, it only 

uses two fitting parameters: G and n, the same as the DC technique, making it readily 

implementable in industry. The parameter ‘G’ covers Vg acceleration effect and the 

time exponent ‘n’ specifies the degradation kinetics.   

 

The extracted Vg_op(max) is above typical Vg_op used in industry for the oxides 

studied here. In the future, Vg_op will reduce at a lower rate than EOT and the 

operation electrical field across the oxide will increase. A higher oxide field will drive 

Ef further below Ev and charge up more AHTs. A larger ΔVt(AHT) will shorten the 

device lifetime and NBTI can limit Vg_op(max) in the future.   
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Conclusion and Future Work 
 

 

 

6.1 Conclusions 

 

The work presented in this thesis has focused on the negative bias temperature 

instability (NBTI) and the positive charges responsible for this key reliability issue. 

Chapter 1 reviewed the existing models which including the RD model, hole trapping 

model, two components model, the CET mapping model and the as-grown generation 

model, whereby each model has its own way in explaining the physical and electrical 

dynamics of the NBTI. The framework of the positive charges in dielectric was also 

been reviewed, and the chapter concluded with the rationale in the new work 

undertaken. Chapter 2 had described the test facilities available and the 

characterization techniques applied in this work. The main research works undertaken 

are covered in the next three chapters. Chapter 3 describes the newly proposed energy 

profiling technique which extracts the energy distribution of positive charges (PCs) in 

the dielectric, within and beyond the Si bandgap. The results obtained showed that the 

PCs vary significantly with energy level and that the PCs in different energy regions 

clearly originate from different defects. Chapter 4 demonstrates that the newly 

proposed energy distribution technique is applicable not only to conventional single-

layered SiON device but also to various advanced high-k gate stacks. The energy 

profiling of different Hf-based devices were investigated and the distribution of the PCs 

6 
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generated subsequent to stress were reviewed. Chapter 5 describes a newly proposed 

technique in the device lifetime prediction which adapts the energy profiling method 

and most importantly this technique can readily be implemented in industry.  It is 

demonstrated that neither the conventional DC nor the pulse measurement is suitable for 

lifetime prediction due to their incorrect inclusion of PCs in the prediction.  

A more detailed conclusion on the main three chapters of this thesis is given below: 

 

 

6.2 Conclusions on the Energy distribution of Positive Charges in Gate 

Dielectric: Probing Technique and Impacts of Different Defects 

 

The focus of this chapter was to develop a fast pulse technique that can evaluate the 

energy distribution of all types of PCs. Previously, a general framework which 

described a broad picture of the defect energy levels in the dielectric was proposed, but 

a detailed energy distribution of the PCs is still missing. The existing methods of NBTI 

measurements typically only give two levels of degradation: one before the recovery 

and one after the recovery at either Vg = 0 V or a certain positive level. This effectively 

offers information of the PCs at only two Vg points which are the stress bias before 

recovery and the bias used for recovery. The PCs at other bias level remain unknown. 

Hence, this work filled in the knowledge gap by providing a detailed energy profile in 

which to evaluate the PCs in the gate dielectric, within and beyond the Si bandgap. The 

information on the energy distribution of PCs is beneficial for assessing the impact of 

PCs on circuits since it gives the amount of PCs for each surface potential. Step-by-step 

procedure for extracting the energy distribution is summarised as below: 
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i. A reference Id-Vg curve is recorded on a fresh device 

ii. Device is stressed for a pre-specified time 

iii. Immediately after stress, the bias is changed from Vg=Vg_st to Vdischarge,1. ∆Vth 

is measured under Vdischarge,1 until its variation between two points become 

negligible. 

iv. After completing discharge at | Vdischarge,1|, |Vg| is reduced to | Vdischarge,2| and the 

step iii was repeated, until eventually Vdischarge reaches the highest positive 

value allowable.  

v. .∆Vth is converted to effective charge density, ∆Nox, and plotted against. 

Vdischarge 

vi. Convert Vdischarge to the energy level of Ef with respect to Ev at the Si/SiON 

interface (ie. Ef-Ev). 

vii. Differentiate ∆Nox to obtain the energy density of the PCs, ∆Dox. 

 

The results obtained from the energy distribution had shown that the PCs are 

sensitive to energy level and vary substantially over the energy range. Further 

investigation was carried out to observe the effects of the stress time, stress temperature 

and nitridation technique on the energy distribution. The results strongly support the 

existence of different types of PCs and each of them dominates different energy regions. 

The PCs below Ev originate from as-grown hole traps (AHT). The AHT does not 

increase with either stress time or temperature and its energy density in a thermal SiON 

can be three times of that in a plasma SiON. The PCs distributed within the bandgap 

have a clear peak around the upper half of the bandgap for SiON. In contrast, the anti-

neutralization positive charge (ANPC) above Ec is the only type of PCs, whose creation 

does not saturate with stress time and is substantially enhanced for higher stress 

temperature.  
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6.3 Conclusions for Application of Energy Probing Technique on High-

k devices 

 

The focus of this chapter is to demonstrate that the energy probing technique 

developed in Chapter 3 is applicable not only to the single layered devices, but also to 

the advanced high-k devices. Attentions had been paid to the differences in the energy 

distributions between the single layered SiON and the high-k/SiON stacks. The gate 

dielectrics of PMOSFETs that was used to demonstrate the technique include a 1.13 nm 

HfO2/SiON, a 2.0 nm Al-capped HfO2/SiO2, a 1.52 nm FUSI-gated HfSiON/SiON, a 

1.53 nm TiN/ HfSiON/SiON, and a slant-etched TaN/ HfSiON/SiON. Through 

comparative analysis, the correlation of the energy density is observed for different 

high-k stacks with varying gate material, high-k bulk material and interfacial layer (IL) 

thicknesses. The amount of the AHT and the CPC had been compared, and the 

correlation in respect to the location of the peaks has been reviewed. Similar to SiON, a 

high level of as-grown hole traps were observed below Ev for high-k dielectric stacks. 

An obvious peak had been observed near to Ec for all of the high-k stacks but this peak 

is missing in the single layered SiON. The defect which is responsible for this peak may 

be induced by the incorporation of hafnium. It was also observed that the SiON has a 

clear peak in the upper half of the bandgap, but there is no clear peak in the lower half. 

In contrast, some high-k stacks have clear peaks in both upper and lower half and the 

peak in the lower half can be higher than the one in the upper half. The effect of the 

reduction in the IL SiON of the high-k gate stack has little effect on AHT below Ev, but 

increases CPC within the bandgap, indicating higher NBTI for future CMOS 

technologies. It was concluded that process optimization is essential for minimizing 

NBTI of high-k stack.   

 



137 

 

6.4 Conclusions for Negative Bias Temperature Instability Lifetime 

Prediction: Problems and Solutions 

 

The focus of this chapter was to overcome the limitations in the lifetime prediction 

by the existing techniques, including both the conventional DC and the fast 

measurements. Device degradation is conventionally evaluated by threshold voltage 

shift, ∆Vt extracted from a slow DC Id-Vg measurement which can take from 10 ms up 

to several seconds long to complete. Due to the significant recovery during the slow 

measurement, the monitored degradations can be considerably under-estimated and thus 

result in the overestimation of device lifetime.  

 

Fast techniques using pulse measurements have been proposed by many to suppress 

the recovery in the measurement but these proposed techniques do not give an industry-

wide accepted method for lifetime prediction. The fast techniques tend to freeze the 

defects after stress, leading to an overestimation of the |ΔVt| which induces an extra 

lowering of lifetime particularly at high |Vg_st|. This chapter proposed a new technique 

which was based from the energy profiling of the PCs. The method in general is based 

on the principle that a defect must be chargeable at the operation E(Vg_op), if it is to be 

included in lifetime prediction. A step-by-step guide for the lifetime prediction is 

summarised as below. The AHT and GD denotes the as-grown hole traps and generated 

defects respectively. For a given operational voltage, Vg_op and a permitted lifetime 

criterion, ΔVt(τ): 
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i.  Find ΔVt(AHT) at this Vg_op ; 

ii. Work out ΔVt(GD,τ)=ΔVt(τ)-ΔVt(AHT); 

iii. Extract τ from ΔVt(GD) vs stress time 

iv. Estimate τ(Vg_op) by extrapolating τ against Vg_st 

 

To estimate the maximum operation al voltage, Vg_op (max) for a device lifetime of 

10 years, Vg_op is now varied and for each Vg_op, the lifetime,τ is estimated by 

following the steps i to iv. This procedure is conducted until the calculated τ covers the 

lifetime above and below the 10 years criterion. The Vg_op(max), is then determined by 

interpolation at the intersection of the 10 year criterion and the measured Vg_op points. 

 

It is observed that the |Vg_op(max)| obtained from this technique was substantially 

lower from the |Vg_op(max)| obtained from the conventional DC measurement. It was 

also found that the difference in Vg_op(max) by the new and DC methods is insensitive 

to the lifetime criteria. Demonstration of the applicability of this new lifetime prediction 

technique to different device fabrication processes was also conducted. 
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6.5 Future Work 

 

Despite the progress made in this project, there are many problems remaining to be 

solved, including but not limited to, the following: 

 

Device lifetime prediction under AC stresses 

The stress in this work is DC stress, representing the worst degradation scenario. 

The pMOSFETs in some circuits, such as SRAM where a memory bitcell does not flip, 

are subjected to the DC stress. Many circuits, however, will operate under AC 

conditions, where recovery of NBTI will occur when the pMOSFETs were switched 

off. A typical practice to take this recovery into account is to use a duty cycle. The 

proposed new technique for lifetime prediction does not include this duty cycle and 

cannot be used for predicting the lifetime under the AC stress. Further work should be 

carried out to extend this technique to cover the AC stress. 

 

Device lifetime prediction for nano-size pMOSFETs 

The work in this project was carried out on relatively large devices, where the 

device-to-device variation is negligible. For the nano-meter-size MOSFETs, there are 

substabtial device-to-device variations. After fabrication, the variation originates from 

the random dopant fluctuation, line edge roughness, gate work function fluctuation, and 

oxide thickness variation. For NBTI, the discreteness of positive charges will introduce 

a time-dependent device-to-device variation. This time-dependent variation has not been 

taken into account by the newly proposed lifetime prediction technique and further work 

is needed to address this issue.    
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Energy Profiling for multi-gate MOSFETs and nano-wire MOSFETs: 

Multi-gate MOSFETs and nano-wire MOSFETs have been developed to increase 

the gate control on the substrate and reduce the drain-induced barrier lowering leakage 

current. However, there is limited information on the defects properties and their 

lifetime. Hence, the applicability of the proposed energy profile and lifetime techniques 

to these types of devices should be explored in the future. 

 

Energy Profiling for other dielectric/semiconductor structures: 

A lot of attentions have been paid to further improve transistor speed as the 

downscaling of silicon based MOSFETs reaches to its limit. The NBTI properties of 

both Germanium and III-V semiconductor MISFETs have been investigated. Due to the 

fact that the dielectric stack used in these transistors do not involve the well –known 

SiON, there are still significant gaps on the knowledge of the defect properties and the 

lifetime information on these new devices. It is worth to study the energy profiling of 

these devices in order to understand the devices characteristics and limitations.  
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