

DETECTING MISBEHAVIOUR IN A

COMPLEX SYSTEM-OF-SYSTEMS

ENVIRONMENT

NATHAN SHONE BSC (Hons)

A thesis submitted in partial fulfilment of the requirements of Liverpool

John Moores University for the degree of Doctor of Philosophy

July 2014

This thesis is dedicated to my grandparents, Gerard and May Stanton, who were

sadly unable to witness its completion.

Acknowledgements

Firstly, I would like to thank the School of Computing and Mathematical Sciences at

LJMU for giving me the opportunity to undertake this research degree. Not only has

this opportunity allowed me to develop many new skills but it has also allowed me

to further my academic career.

The support and guidance I have received have been essential to the completion of

my research, and for this, I would like to thank my supervisory team. My sincerest

thanks go to my director of studies, Professor Qi Shi, for his guidance, advice,

critique, motivation and above all, his invaluable expertise during the course of this

research. He has helped me to continually progress and build upon my ideas,

ultimately resulting in the completion of this thesis. I would like thank my other

supervisors Professor Madjid Merabti and Dr Kashif Kifayat for their continued

advice and support.

I would also like to thank my parents Linda and Neville, and my brother Dan, who

have supported me not just throughout my research but also throughout my life.

Without them, I would never have reached this far. Their endless support,

encouragement, proofreading, patience and confidence in me has never gone

unappreciated, and has played a huge part in the completion of this research.

Finally, I would like to thank all my friends and colleagues at LJMU for their

invaluable advice, help and support. With particular thanks going to Rob Hegarty,

Andrew Attwood, William Hurst, Ibrahim Idowu, Mike Kennedy, Aine McDermott,

Lucy Tweedle, Tricia Waterson and Carol Oliver.

Abstract

Modern systems are becoming increasingly complex, integrated and distributed, in

order to meet the escalating demands for functionality. This has given rise to

concepts such as system-of-systems (SoS), which organise a myriad of independent

component systems into a collaborative super-system, capable of achieving

unmatchable levels of functionality.

Despite its advantages, SoS is still an infantile concept with many outstanding

security concerns, including the lack of effective behavioural monitoring. This can be

largely attributed to its distributed, decentralised and heterogeneous nature, which

poses many significant challenges. The uncertainty and dynamics of both the SoS’s

structure and function poses further challenges to overcome. Due to the

unconventional nature of a SoS, existing behavioural monitoring solutions are often

inadequate as they are unable to overcome these challenges. This monitoring

deficiency can result in the occurrence of misbehaviour, which is one of the most

serious yet underestimated security threats facing SoSs and their components.

This thesis presents a novel misbehaviour detection framework specifically

developed for operation in a SoS environment. By combining the use of uniquely

calculated behavioural threshold profiles and periodic threshold adaptation, the

framework is able to cope with monitoring the dynamic behaviour and suddenly

occurring changes that affect threshold reliability. The framework improves SoS

contribution and monitoring efficiency by controlling monitoring observations using

statecharts, which react to the level of behavioural threat perceived by the system.

The accuracy of behavioural analysis is improved by using a novel algorithm to

quantify detected behavioural abnormalities, in terms of their level of irregularity.

The framework utilises collaborative behavioural monitoring to increase the

accuracy of the behavioural analysis, and to combat the threat posed by training

based attacks to the threshold adaptation process. The validity of the collaborative

behavioural monitoring is assured by using the novel behavioural similarity

assessment algorithm, which selects the most behaviourally appropriate SoS

components to collaborate with.

The proposed framework and its subsequent techniques are evaluated via numerous

experiments. These examine both the limitations and relative merits when compared

to monitoring solutions and techniques from similar research areas. The results of

these conclude that the framework is able to offer misbehaviour monitoring in a SoS

environment, with increased efficiency and reduced false positive rates, false

negative rates, resource usage and run-time requirements.

Publications

Some key aspects, ideas and figures from this thesis have previously appeared in the

following publications:

N. Shone, Q. Shi, M. Merabti, and K. Kifayat, “Towards Efficient Collaborative

Behavioural Monitoring in a System-of-Systems,” in 10th IEEE International

Conference on Autonomic and Trusted Computing (ATC 2013), 2013.

N. Shone, Q. Shi, M. Merabti, and K. Kifayat, “Misbehaviour Monitoring on System-

of-Systems Components,” in 8th International Conference on Risks and Security of

Internet and Systems (CRiSIS 2013), 2013.

N. Shone, Q. Shi, M. Merabti, and K. Kifayat, “Securing Complex System-of-Systems

Compositions,” in 12th European Conference on Information Warfare and Security

(ECIW-2013), 2013.

N. Shone, Q. Shi, M. Merabti, and K. Kifayat, “Detecting Behavioural Anomalies in

System-of-Systems Components,” in 14th Annual Postgraduate Symposium on

Convergence of Telecommunications Networking and Broadcasting (PGNet 2013), 2013.

N. Shone, Q. Shi, M. Merabti, and K. Kifayat, “Securing a System-of-Systems From

Component Misbehaviour,” in 13th Annual Postgraduate Symposium on Convergence of

Telecommunications Networking and Broadcasting (PGNet 2012), 2012.

N. Shone, Q. Shi, M. Merabti, and K. Kifayat, “System-of-Systems Monitoring: A

Survey,” in 12th Annual Postgraduate Symposium on Convergence of Telecommunications

Networking and Broadcasting (PGNet 2011), 2011.

 i

Contents

Chapter 1 Introduction ... 1

1.1. Research Motivation .. 5

1.2. Research Aims and Objectives ... 6

1.3. Research Novelty .. 7

1.4. Research Findings .. 9

1.5. Thesis Structure .. 10

Chapter 2 Background... 12

2.1. System-of-Systems ... 12

2.1.1. Identifying a System-of-Systems .. 13

2.1.2. Types of System-of-Systems .. 16

2.1.3. The System-of-Systems Concept .. 18

2.1.4. Existing System-of-Systems Research.. 22

2.1.4.1. SoS Architecture .. 22

2.1.4.2. Emergence .. 24

2.1.4.3. Complexity ... 25

2.1.4.4. Applications ... 26

2.1.5. System-of-Systems Security Research ... 27

2.2. Misbehaviour .. 28

2.2.1. Types of Misbehaviour .. 29

2.2.2. Misbehaviour on a System-of-Systems .. 30

2.3. Monitoring ... 33

2.3.1. Monitoring Architecture .. 33

2.3.2. Location .. 35

2.3.3. Data Sources .. 37

2.4. Research Challenges .. 38

2.5. Behavioural Monitoring Requirements .. 40

2.6. Summary ... 42

Chapter 3 Related Work .. 44

3.1. Detecting Misbehaviour .. 44

 ii

3.1.1. Scoring Techniques ... 44

3.1.1.1. Reputation .. 45

3.1.1.2. Cost ... 46

3.1.1.3. Summary of Scoring Techniques .. 46

3.1.2. Knowledge-Based Techniques .. 47

3.1.2.1. Descriptive Policies and Languages ... 47

3.1.2.2. Finite State Machine ... 48

3.1.2.3. Expert Systems .. 48

3.1.2.4. Summary of Knowledge Based Techniques ... 49

3.1.3. Pattern/Signature Based Techniques ... 49

3.1.4. Machine Learning Based Techniques .. 50

3.1.4.1. Bayesian Networks ... 50

3.1.4.2. Markov Models ... 51

3.1.4.3. Artificial Neural Networks .. 52

3.1.4.4. Game Theory ... 53

3.1.4.5. Fuzzy Logic .. 54

3.1.4.6. Genetic Algorithms ... 54

3.1.4.7. Clustering & Data Outliers .. 55

3.1.4.8. Summary of Machine Learning Based Techniques 56

3.1.5. Statistical Techniques ... 57

3.1.6. Summary of Existing Techniques ... 58

3.2. Behavioural Thresholds ... 61

3.2.1. Threshold Creation ... 62

3.2.2. Threshold Adaptation .. 66

3.3. Collaborative Monitoring .. 68

3.4. Summary ... 72

Chapter 4 Secure System-of-Systems Composition (SSC) Framework 74

4.1. SSC Framework .. 75

4.2. SSC Framework Design Overview .. 77

4.3. SSC Framework Run-time Operation.. 81

4.4. Behavioural Threshold Management .. 88

4.4.1. Behavioural Threshold Creation .. 88

4.4.2. Threshold Calculation Algorithm .. 91

 iii

4.4.3. Behavioural Threshold Adaptation ... 94

4.4.4. Threshold Adaptation Algorithm .. 98

4.5. Misbehaviour Quantification.. 102

4.5.1. Behavioural Relationship Weighting Values .. 105

4.5.2. Calculating the Misbehaviour Score .. 107

4.5.2.1. Statistical Analysis of Problem Metric ... 108

4.5.2.2. Outlier Analysis of Related Metrics ... 111

4.5.2.3. Calculating the Final Score .. 115

4.6. Using Statecharts to Control Monitoring Resource Usage 118

4.7. Collaborative Behavioural Monitoring ... 126

4.7.1. MACCS Method .. 128

4.7.2. Similarity Measures .. 131

4.7.3. MACCS Similarity Calculation Overview .. 133

4.7.4. Detailed MACCS Method Explanation ... 136

4.7.5. Integrating Collaborative Behavioural Monitoring into SSC 140

4.8. Summary ... 141

Chapter 5 Implementation .. 143

5.1. SSC Framework .. 143

5.2. Data Collection, Monitoring and Storage ... 145

5.3. Threshold Management .. 150

5.4. Decision Algorithm .. 151

5.5. Statechart ... 152

5.6. SSC Evaluation .. 153

5.7. Collaborative Behavioural Monitoring ... 157

5.8. Collaborative Behavioural Monitoring Mechanism Evaluation 159

5.9. Summary ... 160

Chapter 6 Evaluation of Proposed Framework and Methods 161

6.1. Detection Performance .. 162

6.2. Monitoring Management .. 167

6.3. Analysis Strategy .. 168

6.4. Monitoring Resource Usage ... 169

6.5. Summary ... 174

Chapter 7 Comparison with Existing Work ... 177

 iv

7.1. Misbehaviour Detection .. 177

7.2. Behavioural Threshold Creation .. 179

7.3. Behavioural Threshold Adaptation ... 181

7.4. Misbehaviour Quantification.. 184

7.5. CBM Formation .. 187

7.6. Summary ... 194

Chapter 8 Conclusion and Future Work .. 196

8.1. Thesis Summary ... 198

8.2. Novel Contributions and Publications .. 201

8.3. Limitations ... 203

8.4. Future Work .. 204

8.5. Concluding Remarks ... 206

References .. 208

 v

List of Figures

Figure 1. Example SoS Architecture ... 19

Figure 2. Illustration of the Dynamic Composition and Structure of a SoS 20

Figure 3. Example SoS Scenario .. 21

Figure 4. Illustration of an Example Small-Scale Normal SoS .. 30

Figure 5. Illustration of the Cascading Effect of Misbehaviour throughout the SoS .. 31

Figure 6. Example Markov Chain ... 51

Figure 7. SSC Architectural Positioning .. 76

Figure 8. Illustrated Overview of the SSC Framework ... 78

Figure 9. Example Excerpt of S3LA Configuration File ... 79

Figure 10. SSC Runtime Flowchart ... 82

Figure 11. Comparison of Average Threshold Difference against Database Size 84

Figure 12. Illustration of the SSC Framework’s Main Runtime Process 87

Figure 13. Illustration of the SSC Framework’s Training Process 87

Figure 14. Illustrative Example of SSC Threshold Profile ... 89

Figure 15. Illustration of an Example Threshold Profile ... 95

Figure 16. Illustrative Example of Non-Gaussian Distribution...................................... 96

Figure 17. An Example Quartile Calculation .. 97

Figure 18. Illustrative Example of Gaussian Distribution ... 98

Figure 19. Illustrative Overview of the Misbehaviour Quantification Process 104

Figure 20. Illustration of Example LoOP Results ... 112

Figure 21. Example XML Configuration Excerpt ... 122

Figure 22. Structure of Metric Array Entry ... 122

Figure 23. SSC Threat Level UML Statechart .. 124

Figure 24. Flow Chart of the State Engine Process ... 125

Figure 25. Example CBM Scenario ... 127

Figure 26. Illustration of MACCS Process ... 130

Figure 27. MACCS Flowchart ... 130

Figure 28. Cosine of Angle between Vectors .. 135

Figure 29. Example Frequency-of-occurrence Vector Conversion 136

Figure 30. SSC Screenshot .. 144

Figure 31. Code Excerpt from the Kernel Data Collection Function 146

Figure 32. Code Excerpt Showing the inotify Setup .. 147

Figure 33. A Chart to Compare Database Performance .. 149

Figure 34. Example Queue Message .. 151

Figure 35. An Excerpt from the SSC Framework Detection Log 151

Figure 36. Code Excerpt Showing the State Transition Table Structure 152

Figure 37. Code Excerpt Showing the Group State Array Setup 153

Figure 38. Illustration of the Test-bed Used to Evaluate the SSC Framework 154

Figure 39. Code Excerpt from the Internal Misbehaviour Simulator 155

 vi

Figure 40. Example Misbehaviour Configuration File .. 155

Figure 41. Example of the Shell Script Used to Log Performance Data 157

Figure 42. An Excerpt of the MACCS Algorithm Code .. 158

Figure 43. Example SOAP Message for Comparing Behaviour 158

Figure 44. Test-bed Used to Evaluate the CBM Method ... 159

Figure 45. An Example Command Used to Delay Packets to 192.168.1.254 160

Figure 46. Illustration of How SSC Response Time is affected by SoS Load 165

Figure 47. A Breakdown of Metric Storage Usage ... 170

Figure 48. A Chart Illustrating the Resource Usage of SSC .. 171

Figure 49. A Chart Illustrating the Resource Usage per State 172

Figure 50. A Comparison of Detection Performance against Existing Solutions 178

Figure 51. A Comparative Illustration of Threshold Calculation Techniques 180

Figure 52. Illustration of Maximum Threshold Adaptation Comparison 183

Figure 53. Illustration of Minimum Threshold Adaptation Comparison 183

Figure 54. Comparison of the Data Selection Techniques ... 185

Figure 55. Comparison of Quantification Techniques ... 187

Figure 56. A Chart Illustrating the Produced Component Rankings 191

Figure 57. A Bar Chart Illustrating the Time Taken to Compute Similarity 193

 vii

List of Tables

Table 1. Comparison between SoS and Traditional Systems.. 16

Table 2. Behavioural Detection Techniques Summary .. 59

Table 3. Comparison of Existing Techniques against Monitoring Requirements 60

Table 4. Results from the Training Duration Assessment ... 83

Table 5. Monitoring Data Sources .. 145

Table 6. Database Performance Statistics .. 148

Table 7. SSC Detection Performance .. 163

Table 8. SSC Response Times .. 164

Table 9. SSC Scalability Performance Results ... 166

Table 10. Framework Offline Storage Requirements ... 169

Table 11. SSC Resource Utilisation ... 170

Table 12. Statechart-Controlled Resource Usage in Each State 172

Table 13. Time Spent in Each State ... 173

Table 14. Comparing Detection Performance Whilst Using the Statechart Engine .. 174

Table 15. Summary of Design Requirement Evidence .. 175

Table 16. A Comparison of Detection Performance ... 178

Table 17. A Comparison of Threshold Calculation Techniques 180

Table 18. Threshold Adaptation Technique Comparison Results 182

Table 19. Experiment Setup ... 185

Table 20. Calculated Misbehaviour Scores .. 185

Table 21. Comparison of Behavioural Irregularity Scores .. 186

Table 22. Component Configuration for MACCS Evaluation Test-bed 189

Table 23. Calculated MACCS Score.. 190

Table 24. Order of Component Preference .. 191

Table 25. MACCS Performance Evaluation .. 192

 viii

List of Abbreviations

ADS: Anomaly Detection System

ANN: Artificial Neural Networks

CBM: Collaborative Behavioural Monitoring

CSV: Comma Separated Values

DB: Database

DBDLP: Distance-based Distributed Lookup Protocol

DBSCAN: Density-based Spatial Clustering of Applications with Noise

FPGA: Field Programmable Gate Array

FSM: Finite State Machine

GA: Genetic Algorithms

HIDS: Host Intrusion Detection System

HIPS: Host Intrusion Prevention System

IDS Intrusion Detection System

IPC: Inter-Process Communication

JNI: Java Native Interface

KNN: K-Nearest Neighbours

LoOP: Local Outlier Probability

MACCS: Most Appropriate Collaborative Component Selection

NBA: Network Behaviour Analysis

NIDS: Network Intrusion Detection System

NIPS: Network Intrusion Prevention System

OS: Operating System

QoS: Quality of Service

S2T: System Snapshot

S3LA: SoS Supplementary Service Level Agreement

SNMP: Simple Network Management Protocol

SoS: System-of-Systems

SSC: Secure System-of-Systems Composition

SVM: Support Vector Machine

XML: Extensible Markup Language

WSBPEL: Web Services Business Process Execution Language

Chapter 1

Introduction

In recent years, the increasing demand for online functionality has begun to

outstretch the abilities of some systems. Such systems are often constrained by

technical, financial or resource limitations. Despite this, systems are still expected to

continually improve their online functionality, whilst maintaining their security,

reliability and availability. A quick yet often short-term solution to achieve desired

functionality is to integrate and collaborate with other third party systems, which

unfortunately then increases the overall complexity of the system. An example of

this is the integration of multiple third party systems to provide functionality in

modern ecommerce stores. These can often include product reviews being handled

by cloud based platforms such as Revoo [1], login authentication being handled by

Google or Facebook and payments being handled by PayPal or Amazon. In this

scenario, the relationship between these systems is based purely upon financial

incentives, with fixed service level agreements.

The increasing popularity of inter-system collaboration and integration has led to the

emergence of concepts such as System-of-Systems (SoS) [2]. SoS can organise a

myriad of independent components to create a collaborative super-system. It

provides a highly efficient solution to gaining additional functionality, without

incurring financial costs or performance losses. Its aims are to create an environment

whereby systems sharing a common goal can collaborate to achieve a level of

functionality that is greater than those achievable by each of its constituent parts,

and also to minimise the complexity for end users [3]. SoS components voluntarily

contribute and collaborate, meaning that their contribution can vary and is never

guaranteed. This results in components becoming stakeholders in the SoS [4], often

Chapter 1 - Introduction

 2

motivated by a desire to fulfil a shared goal, whether this be at a local or global level

[5]. Although still in an infantile stage, the SoS concept offers huge benefits and can

be implemented into a variety of different scenarios. Despite this, there are still

fundamental security issues that are still yet to be resolved.

One of such issues is security monitoring, which is an essential part of any modern

network, but is of particular importance in complex systems, the boundaries of

which can often span multiple domains [4]. One main aspect of security monitoring,

which is fundamental for any collaboratively orientated system such as a SoS, is

behavioural monitoring. Behavioural monitoring is the process of observing

anomalies or unusual trends in the behaviour of a system. Given the vast number of

variables in a SoS environment that could potentially influence system behaviour,

this is a particularly important process. As a SoS is a trust based collaborative

environment where components are highly dependent upon the services and

resources provided by other components, misbehaviour can have catastrophic

consequences. The inter-dependency between components means that the

occurrence of any misbehaviour (e.g. service corruption) can result in a cascading

affect and the initial or subsequent problems can rapidly spread throughout the SoS.

Misbehaviour can also have wider implications for both the SoS as a whole and for

its component systems. The environment is heavily based around trust (i.e. trust to

provide promised contributions and to an acceptable standard), which if abused

either accidentally or deliberately can lead to complications, such as unwillingness of

new components to join, withdrawal of existing components, withdrawal or

reduction of contributions. Ultimately, this will lead to loss of functionality or

capabilities and in the worst-case scenario the complete collapse of the SoS.

Component misbehaviour is currently one of the greatest threats facing any SoS but

is commonly overlooked. The detection of internally based threats in any

environment is notoriously difficult but this is exacerbated within a SoS

environment by the many significant challenges that it poses. These challenges can

Chapter 1 - Introduction

 3

be mainly attributed to the unique architecture and characteristics of a SoS, which

culminate in the creation of a dynamic, heterogeneous, distributed, decentralised,

unstandardized and complex environment. This architecture poses many difficulties

including the lack of central authority, regulation or enforcement and the legal

complications surrounding responsibility and jurisdiction of monitoring data.

The ad-hoc nature of the SoS composition leads to the dynamic, uncertain and

unpredictable nature of its structure, functionality, capabilities and contributions.

Combined with its undefined boundaries, heterogeneity, support of emergence,

evolutionary capabilities and freedom of components (i.e. to join, leave or change

their contribution at any time) it makes the process of distinguishing between

misbehaviour and genuine dynamic behaviour extremely difficult. Additionally, in

these types of environments, system changes are often required in order to facilitate

integration or functionalities with other heterogeneous systems. These changes often

include security changes, which can have adverse effects on the system exposing or

creating weaknesses in the system, as well as exposing it to non-malicious

manipulation by emerging behaviour. These changes can affect the system’s

operation and behaviour, and can potentially lead to the occurrence of misbehaviour

on the component.

The severity of the threat posed by misbehaviour is highlighted by the fact that the

majority of existing behavioural monitoring techniques are largely inadequate for a

SoS. When considering existing techniques for application in a SoS, the vast majority

rely on an expected norm, static behaviour or some form of predictability, none of

which can be assured in a SoS. Some solutions also struggle to cope with the SoS’s

lack of a hierarchy, central or authoritative agent or its relatively undefined system

boundaries. The high levels of heterogeneity in a SoS result in a lack of

standardisation amongst components and therefore no system-wide approach to

monitoring behaviour can be used. Without a doubt, the main problem is the

inability of existing solutions to account for the dynamic and uncertain behaviour,

Chapter 1 - Introduction

 4

function, structure and load. This is predominantly caused by the support of

emerging behaviour and the ability for components to join, leave or change roles and

contribution at any time. Given the level of dynamics in a SoS, it is difficult to

reliably measure the behaviour in a uniform manner, nor is it easy to distinguish

between dynamic behaviour and misbehaviour. The majority of existing behavioural

monitoring techniques are unsuitable, ineffective or impractical in a SoS

environment.

A SoS is a collaborative environment, which is usually driven by the contribution of

services and resources by its components. These contributions allow SoSs to

maintain their high levels of functionality but also create another plane on which

misbehaviour can manifest itself (either deliberately or accidentally). The work in

this thesis focuses specifically on the problem of service-orientated misbehaviour,

which includes service availability misbehaviour (e.g. DoS attack, service corruption

or service exploitation) and resource utilisation misbehaviour (e.g. over-

consumption, buffer overflow or resource exploitation). The solution proposed in

this thesis aspires to improve the detection of service-orientated misbehaviour. It

will not detect every kind of misbehaviour associated with service contribution nor

does it provide a generic misbehaviour detection solution.

Currently, there is no identifiable solution that can provide adequate protection

against misbehaviour occurring on SoS component systems. The inadequacies of

existing solutions stem from the dynamic and uncertain nature as well as ad-hoc

infrastructure. This inability to monitor or detect misbehaviour poses many concerns

for system owners, potential contributors and current contributors regarding data

integrity, confidentiality, availability and potential repercussions. As the SoS is

dependent on voluntary contribution, any apprehension this problem could cause,

may potentially reduce the contribution and therefore the overall functionality of the

SoS. There is therefore a need to develop a behavioural monitoring system that can

overcome the challenges posed by the SoS environment. Presented in this thesis is

Chapter 1 - Introduction

 5

the proposed Secure SoS Composition (SSC) monitoring framework, which aspires

to address these issues.

1.1. Research Motivation

The general motivation behind this research project stems from the fact that SoS is

still an emerging concept and is currently a proactive area of research [6], with

existing literature highlighting links to several critical system applications including

healthcare, aerospace and military [7]. Despite the many benefits the SoS concept

could bring, its outstanding security concerns are limiting its suitability for

deployment into mission critical environments. Its future success depends on these

security concerns being addressed. The motivation to address the specific issue of

component misbehaviour was inspired by the fact that in a collaborative system it

poses one of the most significant risks but is frequently overlooked and

underestimated.

This work is motivated by wanting to address three main research challenges, which

are:

 Lack of SoS Behavioural Monitoring: The unusual nature of the SoS means

that not many existing techniques can efficiently operate in a SoS. Usually this

is related to its ad-hoc architecture, on-demand security changes, support of

emergence or lack of defined boundaries. SoS behavioural monitoring is

further complicated by legal issues such as ownership or control disputes,

which relate to its decentralisation. The motivation for overcoming this

challenge is to develop a reliable and accurate solution that can secure future

SoS implementations in order to prevent cascading behavioural issues and

premature failure.

Chapter 1 - Introduction

 6

 Behavioural Dynamics and Uncertainty: The complexity and dynamics of the

SoS architecture is heavily reflected in its behaviour. Therefore, the perceived

normality of experienced behaviour needs to be contextualised with regards

to the system and not against a generic profile. The reason behind focusing on

this challenge is the changeable nature of the system’s functionality, structure

and purpose. This makes it extremely difficult to differentiate between what is

considered dynamic behaviour or misbehaviour.

 Unpredictability: Given the characteristics of a SoS and its associated

dynamics, it is unsurprising that its behaviour is unpredictable and does not

conform to expected patterns. Unfortunately, many solutions depend upon

predictability in order to identify anomalous behaviour. The motivation

behind addressing existing solutions’ dependency on predictability is to

produce a stable solution that can yield a low false alarm rate.

1.2. Research Aims and Objectives

Monitoring for behavioural irregularities is a notoriously difficult task, particularly

in a dynamic and evolving system where the boundaries and goals are constantly

changing [4]. Dynamics and uncertainty runs through every part of a SoS [8], which

causes the majority of the problems for existing behavioural monitoring solutions.

These inadequacies range from reliance on behavioural predictability, infrastructure

complications, lack of assured availability and lack of support for emergence or

system evolution. Protecting both components and the SoS as a whole against the

threat of misbehaviour is currently untenable.

The aims of this research are to identify the limitations of existing solutions and

techniques, and then to develop a solution that is able to accurately and efficiently

combat the threat posed by component misbehaviour in a SoS environment. The

resultant solution should be able to overcome complications that have thwarted

Chapter 1 - Introduction

 7

existing behavioural monitoring solutions and techniques. Ultimately, it should be

able to identify misbehaviour on component systems and then take necessary action

depending on its severity, in order to prevent it affecting other components.

The main objectives of this thesis required to overcome the existing limitations in

SoS misbehaviour monitoring are:

1) Develop a behavioural monitoring solution to detect misbehaviour within a

SoS component system in real-time, whilst ensuring that it consumes low

levels of resources, to increase potential SoS contributions.

2) Create a technique to establish changeable behaviour thresholds from which

temporally orientated abnormalities can be identified.

3) Create a technique to analyse and quantify behavioural irregularities using

only relevant data.

4) Create a technique to harness the collaborative capabilities of a SoS for use in

improving the accuracy of behavioural monitoring.

5) Demonstrate that the devised solution and subsequent techniques are capable

of accurately detecting misbehaviour and within a tolerable timeframe.

1.3. Research Novelty

This thesis makes the following novel contributions to the field of SoS Security:

1) A SoS misbehaviour monitoring framework, that can detect and classify

misbehaviour on SoS components in real-time, whilst operating with a small

system footprint. This features a state-chart controlled data collection to lower

resource wastage, in order to ensure improved SoS contribution. The state-

chart evaluates the perceived level of overall misbehaviour on the system and

automatically adjusts the number of monitored metrics and sampling rate

Chapter 1 - Introduction

 8

accordingly. Currently, the literature survey has been unable to identify any

existing solutions that are able to detect misbehaviour on SoS components

with a satisfactory level of accuracy. Nor has it identified a solution that is

able to lower resource wastage to improve SoS contribution.

2) A statistical behavioural threshold calculation technique that adopts a hybrid

approach to calculation, thus overcoming the accuracy limitations of existing

techniques when applied to a SoS. The resultant thresholds are stored in a

proposed behavioural threshold profile to maintain multiple temporal

thresholds, which is used to separate the base-system behaviour from the

anticipated dynamic behaviour. This profile structure also helps with

adapting these thresholds to system changes.

3) A statistical technique that can adapt calculated threshold profiles to account

for the SoS evolution. Adaptations are calculated based on current evolving

behavioural trends in the system, thus helping to ensure the longevity of

threshold validity. Unlike existing approaches, the proposed technique is

fully automated, not reliant on prediction and is not susceptible to slow

threshold manipulation attacks.

4) A statistical technique that can quantify the level of misbehaviour associated

with an observed behavioural threshold deviation (in the context of the SoS

component). The technique conducts a comprehensive two-stage analysis to

produce a representative misbehaviour score. It uses a combination of

statistical and outlier analysis, and utilises data from other metrics that are

both selected and weighted by the proposed behaviourally related approach.

Overall, this technique is able to overcome the limitations associated with

inadequate behavioural quantification or the incorrect selection of monitoring

data. It is also able to offer superior accuracy when compared with existing

techniques.

Chapter 1 - Introduction

 9

5) A statistical technique to refine the selection of components chosen to partake

in an ad-hoc collaborative behavioural monitoring group. This technique

ensures only behaviourally similar component systems are utilised. This can

improve the accuracy and applicability of the results produced from the

process, compared to existing selection techniques.

1.4. Research Findings

The research presented in this thesis has identified a security weakness pertaining to

the occurrence of misbehaviour in SoS components. This weakness is primarily

caused by the inadequacies and limitations of existing monitoring techniques, which

can allow misbehaviour to go undetected.

In keeping with the aims set out for this research, this thesis identifies the main

limitations of existing techniques in order to ensure that future solutions do not

inherit the same problems. The research found that the majority of existing

techniques do not offer a sufficiently comprehensive evaluation of behavioural

anomalies, whereby the wider system behaviour or behavioural implications of an

event are not considered. The complexity and dynamics of the environment along

with the tolerance of some behavioural anomalies means the results produced using

such techniques are flawed. The research highlighted the main problems with

existing solutions as being their reliance on predictability, behavioural norms or

existing knowledge, all of which are untenable in a dynamic and uncertain SoS

environment.

The research project has culminated in the devising of a novel misbehaviour

monitoring framework that is able to accurately detect misbehaviour despite the

dynamics and uncertainty of the environment. However, it became evident during

its development that some of the constituent techniques used were unreliable or

inaccurate, so further improvements were necessary.

Chapter 1 - Introduction

 10

1.5. Thesis Structure

The remainder of the thesis is arranged into seven subsequent chapters; the order

and contents of these chapters are as follows:

Chapter Two: Background

This chapter provides detailed background information on the three main concepts

involved in this research: system-of-systems, misbehaviour and monitoring. This

gives the reader the required level of insight into the area in order to understand

how the work in this thesis relates to the inadequacies that currently exist. This

chapter also outlines the devised design requirements for an efficient and effective

SoS behavioural monitoring framework.

Chapter Three: Related Work

This chapter presents a critical review of the existing literature that focuses on the

benefits and shortcomings of earlier work, which provides the motivation for the

approach proposed in this thesis. This review will also focus upon how the

challenging aspects of the work presented can address these shortcomings. This

section predominately focuses on existing monitoring techniques, their applicability

to monitor behaviour in a SoS and how they can be built upon to provide a suitable

solution to the outlined problems.

Chapter Four: SSC Monitoring Framework

The chapter presents the design of the proposed Secure System-of-Systems

Composition (SSC) Monitoring Framework. The sections of this chapter will present

the proposed novel techniques and algorithms specifically developed for this

solution. These include controlling monitoring performance, calculating behavioural

thresholds, adapting behavioural thresholds, quantifying misbehaviour and,

implementing and optimising a collaborative behavioural monitoring group.

Chapter 1 - Introduction

 11

Chapter Five: Implementation

This chapter provides an insight into the software developed as a tool for evaluating

the framework. It details how the framework and techniques were implemented and

how the software was used to evaluate the proposed techniques. It also details the

implementation of the test-beds used for evaluation purposes.

Chapter Six: Evaluation of Proposed Methods and Framework

This chapter evaluates the framework and its constituent techniques presented in

this thesis against the requirements outlined in Chapter 2. It discusses how the

proposed work fulfils the requirements set out and overcomes identified limitations.

Subsequently, the conclusions drawn from this will be used to validate the

accomplishment of the aims and objectives set out in Chapter 1.

Chapter Seven: Comparison with Existing Work

This chapter compares various aspects of the framework and its constituent

techniques against those from existing work. It presents the details of the

experiments performed, the results produced and the conclusions that can be drawn.

Chapter Eight: Conclusion and Future Work

This chapter summarises the findings of this thesis and describes the extent of the

success in overcoming the challenges previously identified. It also includes a section

focusing on future work, which details potential research that could be carried out

based on the results of this work or in relation to this work. The thesis then

concludes by summarising the work presented and the challenges it has overcome.

Chapter 2

Background

This chapter provides background information on the three main areas related to the

work contained in this thesis, all of which is fundamental to understanding the

context of the challenges being addressed. This chapter will begin by explaining the

concept of a SoS and outlining existing research efforts in Section (§) 2.1. §2.2 will

examine the term misbehaviour and focus on how it can be applied to a SoS. Then §2.3

will look at monitoring; examining the types of monitoring, monitoring

architectures, and their suitability within a SoS. §2.4 will outline the main research

challenges for this area that can be identified by examining existing work. This

chapter concludes in §2.5 by presenting a list of monitoring requirements that

potential behavioural monitoring solutions must possess to be considered for

application within a SoS environment.

2.1. System-of-Systems

The term “system-of-systems” currently has no widely accepted definition, despite

the notion itself being widely accepted and recognised. The term refers to an

emerging class of large-scale, collaborative and task-orientated system, which is built

from components that are large-scale systems in their own right. Unfortunately, the

varying interpretation of the term between research disciplines has led to the lack of

a widely accepted definition. This causes confusion over what constitutes a SoS and

has led to it becoming a relatively loose concept. Despite this, there have been

numerous contributions aspiring to define a SoS in terms of computing. Some of the

most commonly cited definitions include:

Chapter 2 - Background

 13

 “Systems of systems are large-scale concurrent and distributed systems the components

of which are complex systems themselves” - Kotov [5]

 “Systems of systems are large-scale integrated systems which are heterogeneous and

independently operable on their own, but are networked together for a common goal.” -

Jamshidi [7]

 “System of systems is a collection of task-oriented or dedicated systems that pool their

resources and capabilities together to obtain a new, more complex, 'meta-system' which

offers more functionality and performance than simply the sum of the constituent

systems.” – Kole [9]

 “A System of Systems is a “super system” comprised of other elements which themselves

are independent complex operational systems and interact among themselves to achieve a

common goal. Each element of a SoS achieves well-substantiated goals even if they are

detached from the rest of the SoS.” - Jamshidi [10].

Unfortunately, despite the numerous proposed definitions, little progress has been

made towards a unified definition.

2.1.1. Identifying a System-of-Systems

Due to the disagreement over a unified definition, some researchers have taken a

different approach by focusing on identifying characteristics that are unique to a

SoS. These characteristics can therefore be used to distinguish between traditional

systems and a SoS. Characterisation provides a more comprehensive, precise and

widely applicable taxonomy, unlike the more abstract definitional approach. The

leading ideas on SoS characterisation are those proposed by Maier [2] and Boardman

et al [11].

In 1998, Maier, who is considered to be one of the foremost contributors to the field

of SoS research, proposed for the first characterisation approach to distinguish

Chapter 2 - Background

 14

between a “monolithic” system and a SoS [2]. The characteristics he proposed that a

SoS should have are: Operational Independence of the Elements, Managerial Independence

of the Elements, Evolutionary Development, Emergent Behaviour and Geographic

Distribution.

In 2006, Boardman and Sauser [11] expanded on Maier’s work and produced their

set of SoS characteristics, which are:

 Autonomy: The reason a system exists is to be free to pursue its purpose; this

applies to both the whole SoS and constituent systems.

 Belonging: The component systems can choose to belong to the SoS based on their

needs and enhance the value of the system’s purpose.

 Connectivity: There has to be the means provided for the systems to communicate

with each other for the exchange of information.

 Diversity: The SoS should be diverse and exhibit a variety of functions as a system

compared to the limited functionality of the constituent systems.

 Emergence: The formation of new behaviours due to development or evolutionary

processes.

© 2006 IEEE

Despite the majority of existing SoS focused research citing either of the previous

characteristic sets, there is still no universally agreed interpretation. As a result, there

have been numerous eligible contributions towards the elusive unified

interpretation. So, in 2010, Firesmith [4] provided a summation of all the prominent

ideas on SoS definitions and characteristics and created an extensive list of

mandatory characteristics for both a SoS and their component systems. The most

commonly incorporated characteristics are as follows:

 System-of-systems: Complexity, Emergence, Evolution, Size and Variability

Chapter 2 - Background

 15

 Component systems (subsystems): Autonomy, Governance, Heterogeneity, Physical

Distribution and Reuse

There are other characteristics of a SoS that are not detailed in the previously

discussed works. These characteristics are important to the motivation of the work in

this thesis, these include:

 Collaboration: Components collaborate by contributing different sets of functions,

services, capabilities and resources in order to achieve the objective(s).

 Complexity: The interoperation and infrastructure for both the systems and their

end users are technically complex. The use of a SoS approach will be most

beneficial when integrated into complex environments.

 Decentralised: Component systems choose to belong to the SoS in accordance with

the benefits or to fulfil their own purposes or belief in the global SoS purpose. In

this environment, there is no central authority that can enforce security, monitor

or administrate the SoS.

 Distribution: The SoS is highly distributed, with components in varying

geographical locations and importantly also in different legal jurisdictions.

 Heterogeneity: The components involved in a SoS are from differing environments

and lack standardisation in terms of the technologies used, configurations and

behavioural characteristics.

 Independent: Each component remains an individual entity and does not depend

on the SoS to function. Components may also retain roles outside of the SoS.

 Large-scale: The SoS is composed of a myriad of component systems, and the

more component systems, the greater the potential of the system.

Chapter 2 - Background

 16

 Localised: No component has a global view of the SoS, or the SoS is too complex

for a component to make any use of such knowledge.

 Objectivity: A SoS is integrated by shared high-level goals that are of significant

interest to its stakeholders.

Gorod et al. present Table 1 in their paper [12], which provides a useful comparison

between traditional system engineering and SoS engineering. In the table, the

question mark indicates work that is still to be completed.

Table 1. Comparison between SoS and Traditional Systems

 System Engineering SoS Engineering

Focus Single complex system Multiple integrated complex

systems

Objective Optimisation Satisficing, Sustainment

Boundaries Static Dynamic

Problem Defined Emergent

Structure Hierarchical Network

Goals Unitary Pluralistic

Approach Process Methodology

Timeframe System life cycle Continuous

Centricity Platform Network

Tools Many Few

Management

Framework

Established ?

© 2007 IEEE

2.1.2. Types of System-of-Systems

As the management and structure of a SoS can differ greatly, Maier also proposed

that SoSs can be separated into classifications, based on factors such as architecture,

organisational structure and purpose [2]. Originally, he proposed three classes [2],

but a later revision by Dahmann [13] appended the “Acknowledged” class. These

classifications can be defined as follows:

Chapter 2 - Background

 17

 Collaborative: A collaborative SoS largely depends on voluntary interaction

between component systems to fulfil a centrally agreed purpose. There is no

central management authority but collaborative coercion can be used to manage

the SoS components. An example of this is the Internet, for which standards are

produced but there is no central authority to enforce them. However,

enforcement can be achieved by using the main contributors to block those that

do not adhere to the standards.

 Directed: A directed SoS is constructed to fulfil specific purposes and is centrally

managed to ensure their fulfilment. Component systems maintain their

operational independence but their normal mode of operation is as part of the

SoS. An example of this is an air defence network, which is deployed to defend a

region against attacks. Despite being centrally managed, the component systems

retain the ability to operate independently if circumstances require.

 Virtual: A virtual SoS lacks a central management authority and a centrally

established purpose. Large-scale behaviour emerges which may be desirable but

the SoS relies on relatively invisible mechanisms to maintain it. An example of

this is the World Wide Web, which has no central control authority, but retains

some control by the use of open standards.

 Acknowledged: An acknowledged SoS has identified objectives, designated

managers, and SoS resources. However, the component systems still retain their

independence, objectives, funding, and development and sustainment methods.

Changes in the component systems are based on the collaboration between the

SoS and the components. An example of this is most modern military systems.

Chapter 2 - Background

 18

2.1.3. The System-of-Systems Concept

SoS is a concept that has emerged into many different research domains. Its aim is to

facilitate levels of functionality that cannot be achieved on standalone systems. The

concept involves the integration of many independent, autonomous and

heterogeneous component systems to form a complex large-scale, distributed and

decentralised super-system.

The heterogeneity of a SoS permits the involvement of systems with varying

configurations, OSs, capabilities and sizes. The architecture of a SoS shares many

similarities with peer-to-peer networks including geographical distribution, no

centralised authority and relatively undefined system boundaries. Figure 1

illustrates the diversity of a SoS environment particularly in relation to the

components and their capabilities. It also illustrates how the independent

components still belong to other organisations, thus retaining additional roles

outside of the SoS, which could affect their ability to contribute.

Chapter 2 - Background

 19

O
rg

a
n

is
a

ti
o

n
 D

O
rg

a
n

is
a

ti
o

n
 A

O
rg

a
n

is
a

ti
o

n
 B

O
rg

a
n

is
a

ti
o

n
 E

O
rg

a
n

is
a

ti
o

n
 C

Internet

Component from A

Component
 from B

Component from CComponent from D

Component
 from E

Figure 1. Example SoS Architecture

A SoS is established with the purpose of achieving a shared goal; integrated

components are willing to contribute and collaborate in order to fulfil this goal.

However, the evolving nature of these systems means that this goal constantly

changes and can never be completely fulfilled. Contribution is normally voluntary

and usually consists of sharing resources and services. The availability and

contribution of components are normally promised to the SoS but not governed by

any service level agreement, therefore no assurances can be offered. This ad-hoc

approach to contribution means that functionalities, contributions and components

Chapter 2 - Background

 20

can be added, removed or modified at any time. This is why there are such high

levels of dynamics and uncertainty in both the functionality and structure. Figure 2

illustrates how the addition or removal of a component will result in structural and

functional changes to the SoS. It also illustrates how the restructuring process can

affect the loads that are placed on the remaining components.

-

+

Figure 2. Illustration of the Dynamic Composition and Structure of a SoS

The ability to make such changes at will means that the SoS is constantly evolving to

adapt to them, and to meet the changing demands of the shared goal. Therefore, this

also affects other component systems, as their demands and system loads will

change. As the number of systems, interconnections and interfaces increases, the

system becomes increasingly complex [14] and difficult to secure, but also becomes

more powerful and capable. The SoS will have greater potential functionality, as

there is no prejudice against components that are unable to guarantee contribution.

Using a SoS has many benefits for all of the components, including levels of

functionality that are not achievable using standalone systems and the ability to

overcome issues faced in complex systems such as integration, interoperation,

complexity for end users, reliability, infrastructure constraints, scalability and cost

effectiveness. The benefits of contribution and utilisation of functionality in a SoS are

usually mutual, which means that components essentially become stakeholders in

Chapter 2 - Background

 21

the system. Becoming stakeholders often provides motivation for greater

involvement in the SoS. Besides the benefits a SoS has to offer, motivation to

contribute is usually related to the achievement of either local or global goals.

It is stated that the functionality available to a SoS is greater than the sum of its

constituent systems [15]. Initially this statement can be somewhat confusing, but it

can provide the reasoning behind establishing a SoS and highlights their efficiency.

Consider a hypothetical scenario involving the four systems illustrated in Figure 3.

Each system has a specifically assigned role and is configured to optimise it for this

role. Each system in Figure 3 also has an illustrated usage indicator, where green

represents free resources.

Figure 3. Example SoS Scenario

If each of the systems desires the functionality of another system (e.g. the web

hosting system wishes to utilise a database), the free resources on each system would

allow for these functionalities to be added. However, the addition of these

functionalities would be costly in terms of overheads and resource wastage and it

would also reduce the efficiency of the system’s primary role. Instead, the free

system resources can be contributed to the SoS, meaning it is promising to contribute

a percentage of free resources to process the requests of another system (e.g. process

the database for the web hosting system). Using the system for its original purpose

and collaborating by sharing requests with capable systems, ensures greater

Chapter 2 - Background

 22

efficiency, accuracy and speed. This produces higher levels of functionality than

would have been possible if standalone systems had implemented these additional

functionalities.

2.1.4. Existing System-of-Systems Research

Due to the abstract nature of the SoS concept, most existing work is theoretically

focused. Predominantly this focus has been upon creating universal or application

specific definitions, or a set of characteristics such as those presented in §2.1.1.

However, other research also exists, focusing on various other areas of SoS; some of

this work is outlined in the subsequent sections.

2.1.4.1. SoS Architecture

The needs and technological requirements of a SoS are constantly changing as

constituent components and functions are added, removed and modified. Therefore,

the architecture of a SoS is also a constantly evolving process. Some of the existing

research focuses on proposing techniques to establish a SoS architecture or outlines

the challenges in doing so.

The work by Selberg et al [14] proposes various techniques that can be used to

establish a formal SoS architecture, that evolves with the SoS. The proposed

evolutionary architecture conforms to two main principles, which are:

1) The complexity of the SoS framework does not grow as component systems

are added, removed or replaced.

2) Component systems do not need to be re-engineered when other components

are added, removed or replaced.

The main suggestion in the paper is the need for universal standards amongst

component systems, particularly for factors that need to remain consistent if a

Chapter 2 - Background

 23

component is replaced (e.g. interfaces). Another suggestion is the use of interface

layers that can mask or minimise disruption associated with required architectural

changes to the interface. The last main suggestion is the use of a “continual system

verification and validation” mechanism to ensure the evolutionary system does not

stray from its intended path.

Caffall et al. [16] propose a SoS architectural framework that is based on the

construct that a SoS is composed of three key features. These features are controlling

software (managing activities and workflow), information transport network (managing

transport, behaviour and activities using controlling software) and contract interfaces

(interfaces defined with respect to the required services the component system

provides towards achievement of the SoS goal).

Corsello [17] discusses SoS architectural considerations and concerns regarding the

operation in complex and evolving environments. It discusses non-technical aspects

such as core purpose, organisational support, vendor neutrality, organisational

politics and security. The technical considerations include component systems, core

capabilities and provider systems. In addition, the paper also discusses the need for

standardisation, problems affecting component integration both in terms of data and

system interfaces, problems associated with using independent heterogeneous

component systems, and SoS management.

Maier [18] discusses the challenges involved in the architectures for complex and

evolving systems. He states that complex systems with stable intermediate

(invariant) forms evolve more effectively than those that do not (e.g. the Internet).

Currently, little attention is paid to invariants; instead, the main focus is on

individual system design. He suggests that a good set of invariants can be used in

the design of multiple systems rather than one. Therefore, optimisation methods

should look for invariants instead of individual solutions.

Chapter 2 - Background

 24

Dagli and Kilicay-Ergin [19] propose a framework for SoS architectures and reiterate

the point that further architectural research is needed to address the challenges

posed by the demands of SoS environments. The paper focuses on establishing a SoS

architecture by creating meta-architectures from collections of different systems. The

authors also discuss the possibility of using artificial life tools for the design and

architecture of SoS.

2.1.4.2. Emergence

The terms “emergence” and “emergent behaviour” are frequently used in SoS

literature and are often used to explain its dynamic and uncertain behaviour.

However, the concept is often poorly understood and usually the terms are used in a

loose context. Some of the existing research focuses exclusively on explaining the

concept of emergence in terms of a SoS.

The papers by Karcanacias et al. [20][21] aim to provide a definition for the term

“emergence”. By examining the philosophical meaning and applying it to a SoS

environment, the authors propose that emergence is dependent on the properties of

a system. It states that in a SoS and other complex systems, emergence arises from

the confluence of many strong synergistic effects by the autonomous complex

component systems. It can also originate due to the underlying architecture,

topology and component systems.

Stacey [22] provides a simplified explanation by defining it as the production of

global patterns of behaviour by component systems whilst interacting according to

their own local rules, without intending the global patterns of behaviour that come

about. In emergence, global patterns cannot be predicted from the local rules of

behaviour that produce them.

Chapter 2 - Background

 25

Boardman and Sauser [11][23] explain their interpretation of emergence by using

some real-world examples. They also explain how emergence can provide

differences between traditional systems and a SoS.

The work by Yang et al. [24] proposes a method of detecting the unpredictable

emergent behaviours of a SoS using semi-autonomous agent modelling. Feedback

from this can be used to verify whether emergent properties are useful to the SoS or

not.

Emergence is a concept that is considered by others to be one of the main

contributory factors to the dynamic behaviour of a SoS. However, in this research

dynamic behaviour is considered as an entity, rather than being concerning with its

actual composition.

2.1.4.3. Complexity

Complexity is another term closely associated with SoS research, which can have

different connotations dependant on the context in which it is used. This is why

many researchers have focused on defining what complexity means in the context of

a SoS. Some of the existing work examining complexity is outlined in this section.

Efatmaneshnik et al. [8] outlined the qualities of complex uncertainties on a SoS and

characterised them. The authors proposed that complex uncertainties exhibit the

following behaviour: dynamic, governed by feedback, nonlinear, adaptive and evolving,

time lag, counterintuitive and policy resistance. The paper discusses the logical

relationship between functional complexity and structural complexity and the use of

adaptive solutions to harness uncertainty.

The paper by Ji and Xueshi [25] describes the complexity of both the technologies

and equipment involved in SoS engineering. It focuses on examining key issues, as

Chapter 2 - Background

 26

well as composition and architecture analysis. It aims to highlight the required

research effort to deal with SoS complexity.

Simpson and Simpson [26] examine classical system engineering techniques and

evolutionary algorithms to address the cognitive and computational complexity

associated with a SoS lifecycle.

The work by Yingchau [27] analyses the characteristics of a SoS in terms of its

complexity regarding monolithic emergence, component systems adaptation and

uncertainty in SoS evolution. It also discusses the effect of SoS complexity on SoS

decision making and outlines the problems that need to be addressed.

Lowe and Chen [28] provide a comprehensive insight into the relationships between

a SoS, complexity, modelling and simulation. Their paper also explores metrics that

can be used to define the complexity of a SoS.

Delaurentis [29] analyses the role of human participation in SoS complexity and

outlines how complexity can be better managed using modelling of human

behaviour and decision-making.

Mane [30] presents an approach to measure complexity of SoSs in the context of

system development time by using Markov chains.

2.1.4.4. Applications

Considerable existing research also focuses on the potential application of the SoS

concept to different domains. Warfare is the most popular proposed application of a

SoS and is covered in many different research papers, including its consideration for

Integrated Joint Combat Systems [31], ballistic missile defence systems [16],

Department of Defence systems [15], military weapons [32] and command and

control systems [33]. Aerospace is also another popular area of application including

Chapter 2 - Background

 27

communication and navigation systems for space exploration [34] and the use of SoS

in space exploration [35].

Other proposed uses include healthcare systems [36], telecoms networks [37], electric

power grid control systems [38], robotic sensor networks [39], vehicle sensor

networks [40], and threat detection systems [41].

2.1.5. System-of-Systems Security Research

Security is an essential aspect of any system but it is of particular importance on

open systems such as a SoS. This is especially prudent considering that security is

often offset in order to achieve functionality. However, there is currently limited

existing research that focuses on SoS security, and some of the existing work is

outlined in this section.

Gorod et.al [12] propose a SoS management framework by reviewing existing

proposed SoS characteristics and the “best practices” approach to network

management. The framework focuses on five main principles of network

management, which are fault, configuration, accounting, performance and security.

Bodeau [42] presents a security engineering process for a SoS. This aims to address

issues such as identifying and mitigating risks resulting from connectivity,

integrating into architecture and how to address constraints of legacy systems. The

security engineering process involves activities including information gathering,

flow analysis, security evaluation and testing, integration into architecture to

account for evolution, modelling, security policies and risk management.

Trivellato [43] proposes a security framework to address the security concerns

within a SoS, utilising both ontology and trust management based approaches. It

proposes ways in which these methods can be used reliably whilst overcoming the

associated limitations of both these approaches.

Chapter 2 - Background

 28

Maier [2] outlines the importance of interfaces in a SoS, relating to both their

function and structure and also the security risk that they pose.

Redmond et al [44] propose a technique to conduct interface hazard analysis for

SoSs. As SoSs are large and complex environments that are heavily based on trust

and component interaction, hazard analysis of component interfaces is essential. In

the paper, the authors discuss the characteristics of a SoS that render existing

techniques ineffective and the requirements that must be met for successful

operation.

Pinto et al [45] analyse the traditional view of risk identification, analysis and

management and highlight the inadequacies these entail when applied to a SoS. The

authors propose a modernised approach to describing and managing risk with

respect to SoSs.

2.2. Misbehaviour

The use of anthropomorphic (human characteristics and attributes assigned to an

inanimate object) terms such as ‘behaviour’ and ‘misbehaviour’ is becoming

increasingly common in computer science. In the case of computing, behaviour

refers to activities carried out by a program, operating system or computer in

response to a triggering event. Fundamentally, it refers to how these activities can be

observed to cause changes to the system over time. These observations are made

using parameters known as metrics, which are used to measure particular aspects of

the system.

The term misbehaviour is broadly defined as “to behave badly” [46]. In the context of

computing, this is used to describe any behaviour (observed through metric values)

that strays from defined boundaries, an established norm or exhibits uncharacteristic

changes. It can manifest itself in a variety of ways, by affecting individual metrics,

multiple metrics or groups of metrics. This is why detecting and monitoring for

Chapter 2 - Background

 29

misbehaviour is such a difficult process. In addition, there is no pre-determined level

of behavioural deviation that can be classified as misbehaviour. Instead, this is a

complex process that is heavily influenced by numerous system variables such as

configuration, roles, and capabilities. Hence, misbehaviour can range from very

small changes to drastic changes, depending upon the system on which it occurs.

Misbehaviour can also have undesirable knock-on effects, whereby other parts of the

system can be affected by the existing misbehaviour.

2.2.1. Types of Misbehaviour

There are two main classifications of misbehaviour, both of which can signify

different things; these classifications are as follows:

Accidental Misbehaviour: This refers to an event that unintentionally causes

misbehaviour on the system. Examples include inability to function due to

connectivity issues, hardware or software malfunction, incorrect configuration and

interoperability issues. In co-operative systems (such as a SoS), accidental

misbehaviour is often caused by selfish components. They give higher precedence to

their own function rather than those of other components, thus resulting in network

degradation and further complications.

Deliberate Misbehaviour: This refers to an event with malicious intentions that has

been purposely engineered to cause misbehaviour on the system. Examples include

corruption of contributed services, excessive consumption of resources and failure to

provide promised services.

Chapter 2 - Background

 30

2.2.2. Misbehaviour on a System-of-Systems

Misbehaviour is a problem that is often overlooked on traditional systems, but in a

SoS it poses a far greater threat. Some types of SoSs lack any central authority to

regulate behaviour and as such, their components are exceptionally trusting of each

other. Only those SoSs without centralised authority are considered in this thesis. In

a system that is orientated around trust and collaboration, any misbehaviour can

easily cause localised problems such as loss of inter-component trust or service

faults, as well as more wide spread problems such as system degradation or

reduction in functionality. The reliance of some components on the data produced

by others can result in misbehaviour on one component quickly cascading to cause

problems throughout the system. An example of this is illustrated in Figures 4 and 5;

it illustrates how misbehaviour in a single service (highlighted black) can easily

spread, corrupting other services (highlighted red) and potentially affecting the

component systems that are hosting the services (highlighted orange) and ultimately

affecting the SoS as a whole.

Figure 4. Illustration of an Example Small-Scale Normal SoS

Chapter 2 - Background

 31

Figure 5. Illustration of the Cascading Effect of Misbehaviour throughout the SoS

As Figures 4 and 5 illustrate, the effect that a single service can have upon the SoS is

huge. Not only can it cause problems locally on components, but also the

interdependencies can cause the cascading of problems throughout the entire SoS. It

can spread rapidly and easily, escalating into damaging consequences for the SoS,

such as reduced efficiency, reduced functionality, loss of contributing components

and in extreme cases the collapse of the SoS.

There can be many different causes of misbehaviour within computing, such as

various failures or incorrect configuration. However, this section will focus

exclusively on those that are specific to causing misbehaviour within a SoS. The

main identified causes of misbehaviour are listed below.

Independency: All component systems remain independent from the SoS throughout

the entire process. Therefore, they belong to a third party and normally still have

roles or duties to perform outside of the SoS. This dual existence has the potential to

produce new and unexperienced behaviour or incompatibilities that prevent the two

existences from operating in parallel. This could culminate in the creation of

misbehaviour. The independent nature poses problems for detecting misbehaviour,

Chapter 2 - Background

 32

as system owners will not always be willing or legally able to implement any form of

standardisation or restrictions.

Heterogeneity: SoS components have a high level of heterogeneity, meaning they have

different hardware, OSs, software and configuration. Therefore, each system can

have a unique approach when undertaking certain tasks. If any unhandled

discrepancies occur within these different approaches, this can lead to them being

mishandled or result in corruption. An example of this problem is the use of

different file formats. For instance if one system stores values in a CSV file and

another in an Excel file, the data structure may be similar but the parsing of these

files is handled completely differently. If these files were to be used interchangeably,

errors would occur as a result.

Interoperability Issues: As the systems are heterogeneous, they will be of varying ages

and implement varying technologies. This can pose problems for some newer

systems that may operate technologies that are not backwards compatible.

Alternatively, the configuration supported by some operating systems may not be

identical to that supported by others. These issues have the potential to cause

problems when systems are collaborating and sharing services and resources, which

could lead to the occurrence of misbehaviour.

System Changes: Component systems often have to make system changes to facilitate

functionality, which often includes making changes to security. Generally, this

process is used to overcome compatibility issues between components (e.g. opening

or changing system ports). However, these changes are normally made as a quick fix

but little consideration is given the potential side effects. These changes can create or

expose weaknesses in the system, which in turn can cause or allow misbehaviour to

occur on the system.

Evolution: A SoS is a constantly evolving system, whether it is to accommodate

changes in functionality, structure or the end-goal. Therefore, the behaviour on the

Chapter 2 - Background

 33

component systems will also evolve alongside the system. This could potentially

lead to undesirable behaviour evolving and misbehaviour occurring as a result.

2.3. Monitoring

Unfortunately, there is no “out of the box” solution when it comes to monitoring.

Each environment and monitoring task requires an individually tailored solution.

Achieving an optimum monitoring solution is a careful balancing procedure

between monitoring efficiency, accuracy and resource utilisation. Whilst creating

and implementing each solution, many choices must be taken into consideration.

Often these decisions directly influence the available options for subsequent choices.

In order to understand the difficulties faced, this section will outline the main

considerations for a monitoring solution. This will provide a clear understanding as

to the appropriate monitoring choices for a SoS, and highlight why other existing

techniques may not be feasible. However, actual monitoring techniques are not

discussed, instead they are analysed in Chapter 3.

2.3.1. Monitoring Architecture

The architecture of a monitoring solution is an important decision, as it must

compliment the nature (i.e. static or dynamic) and architecture of the environment in

which it will operate. There are five main categories of monitoring architecture,

which are:

 Centralised: A central authoritative system monitors multiple components using

data polled through the Simple Network Monitoring Protocol (SNMP) or

gathered by software installed in each node [47]. Data monitored is usually

related to the operating system or general performance of the component. This

approach can operate as both hardware and software but it provides poor

scalability and a single point of failure.

Chapter 2 - Background

 34

 Distributed: Arranged in a tree architecture, the authoritative “master” node

organises the system monitoring by assigning “master slave” nodes, which in

turn assign “slave” nodes to monitor the components. Although the master node

is responsible for organisation, it is possible for the monitoring process to

continue if it becomes unavailable. This approach can operate as hardware or

software, is suited to large-scale and distributed networks, and provides good

scalability.

 Host-based/Stand-alone: A stand-alone monitoring software application is installed

on every component. The software is used to monitor the host component,

similar to how a home anti-virus program operates. Normally the data monitored

by this solution can be far more detailed, including data from operating system

behaviour, application behaviour, resource utilisation or system calls. However,

this solution does affect component resources and performance and cannot be

controlled or standardised by external parties. This is ideally suited to individual

or isolated systems.

 Centralised-Host Hybrid: It is an approach combining elements of both the host-

based and centralised monitoring. Components have host-based monitoring

software installed but results, problems and observations are reported to a

central authority, which collates the data. In turn, it provides feedback or threat

information to other components. This would be efficient in ad-hoc or mobile

environments, but only on a relatively small scale, as this solution is not

particularly scalable.

 Ad-hoc-Host Hybrid: It is an approach commonly used in collaborative

monitoring, whereby components monitor themselves using host based

monitoring software. They can also compare monitoring data or share

information (e.g. regarding threats) with other components. As the term suggests,

this is ad-hoc and therefore components are responsible for controlling and

Chapter 2 - Background

 35

managing this approach between themselves. It has many benefits but it is

susceptible to inaccurate, false or malicious data being supplied.

When considering the most practical architecture for a SoS behavioural monitoring

solution, it is evident that the ad-hoc-host hybrid method offers the best solution.

This is because the SoS environment is decentralised with no authority or

responsible party, which rules out the use of centralised and centralised-host hybrid.

The distributed approach is also unsuitable as in a SoS there is no real form of

hierarchy, nor is there always a component willing to act as an authority.

Additionally, consolidating components just for monitoring purposes is both a waste

of potential functionality and difficult to manage given that component availability

cannot be assured. A host-based approach could be used, but it is too isolated from

the rest of the system. As a SoS is an evolving system, the observation and utilisation

of trending behaviour amongst similar components is essential.

2.3.2. Location

The location where the monitoring will take place is also an important choice, which

is entirely influenced by what the desired monitoring objectives are (e.g. speed,

accuracy or detail), and the infrastructural constraints that exist. The available

location options are discussed below:

 Network: Network-based monitoring is increasingly common in corporate

networks and to some extent home networks. It is predominantly used for

firewalls, deep packet analysis, DoS protection, filtering, anti-malware scanning,

load balancing and performance monitoring. Network monitoring is nearly

exclusively hardware based (e.g. monitoring using FPGAs [48]) and is able to

offer extremely high speeds. It is used to protect the perimeters of a network [49]

(e.g. Network Intrusion Prevention System (NIPS), Network Intrusion Detection

System (NIDS) and Network Behavioural Analysis (NBA)); therefore, problems

Chapter 2 - Background

 36

occurring within the network are usually missed. Monitoring on the network also

means that encryption can often cause additional complications, and the

spectrum of data utilisable for monitoring is somewhat limited. This approach

can also be costly in terms of finance and resources, as these devices must be able

to cope with the volume of network traffic (e.g. devices monitoring ISP networks

require greater capacity than those monitoring enterprise networks), otherwise a

network bottleneck will develop.

 Host: Host-based monitoring is predominantly used for anti-virus protection but

is also used for Host Intrusion Detection System (HIDS) and Host Intrusion

Prevention System (HIPS). It is unable to match the speed of network monitoring

and it also incurs resource and performance overheads. However, it is able to

access a greater spectrum of data to monitor, allowing more intensive

monitoring. It also has the capability to identify problems originating from both

inside and outside the network. As the monitoring happens on the host, the

problems concerning encryption are not as prevalent.

 Hybrid: There are also hybrid monitoring approaches that combine both network

and host based monitoring to achieve maximum system coverage. These hybrid

approaches are efficient at correlating network observations and their impact on

host systems. However, they can be difficult to manage and quite costly in both

financial and performance terms.

The most efficient location option for SoS monitoring would be on the host. This is

because the use of a network based hardware device is too costly and not particularly

feasible given the SoSs highly distributed and ad-hoc nature. Additionally,

misbehaviour occurs within the component systems, so the use of network data

would not offer sufficient amounts of monitoring data. The hybrid option is again too

expensive for the limited reward that would be gained.

Chapter 2 - Background

 37

2.3.3. Data Sources

The data used during the monitoring process is an important choice when designing

a monitoring system. Data sources should be selected for their ability to provide data

in a reliable and efficient manner but the following factors must also be taken into

consideration:

 Monitoring Location: The location of the monitoring system defines the breadth of

data sources available for use. Network-based is limited to the data of packets

passing through the network (i.e. packet headers, packet payloads and network

traffic behaviour). Host-based has access to a greater spectrum of data sources

covering the entire operating system as well as incoming and outgoing traffic.

 Platform Interoperability: In a heterogeneous environment, the availability and

variances in the data supplied between different platforms should be considered.

As some platforms may measure in a different way (e.g. time on Windows and

Linux) or in different units.

 Monitoring Purpose: The purpose of the monitoring system can also dictate the

data sources used. Often monitoring has a specific purpose such as monitoring

system calls or performance. The data sources used need to reflect the purpose of

the monitoring solution. Data sources are selected based on their ability to

reliably represent a specific aspect of the system that needs monitoring. The more

specific the monitoring purpose, the more refined the selected data sources need

to be.

 Detection Speed: The speed at which monitoring occurs can affect which data

sources are suitable. Many critical monitoring systems require data collection to

occur in real-time, whilst others are less stringent and tolerate post-event

collection. This can influence the data sources used, as some are unsuitable for

Chapter 2 - Background

 38

real-time operation such as log files, which are written to post-event, which

would cause an unacceptable delay.

 Resource Usage: Monitoring can be a resource intensive process dependant on the

aspects of the system being monitored, the number of observations and the rate

of these observations. The observations need to be proportional to the capabilities

and size of the system being monitored (e.g. minimal monitoring on a mobile

device and more intense monitoring on a mission critical server).

Monitoring solutions must be carefully constructed to ensure the fulfilment of the

requirements and ensure the balance between all of the factors that must be

considered. This is because excessive or incorrectly configured monitoring can

negatively affect performance and normal operation.

2.4. Research Challenges

The background information provided in this chapter provides sufficient

information to understand the challenges that are currently faced in relation to

monitoring for and detecting misbehaviour on SoS components. This section will

summarise these research challenges.

 The first main category of challenges originates from the architecture and

structure of a SoS, which poses problems for the application of existing

solutions. As SoSs are large-scale, it is a necessity that any potential solution

needs to be able to scale alongside the system and have the potential to grow

significantly with no issues or implications. Their ad-hoc, dynamic and

uncertain structure and function create an environment that is constantly

changing (particularly the system boundaries). Therefore, any form of

boundary orientated (e.g. network-based) monitoring would be largely

ineffective. As a SoS is a collaborative system formed by independent

systems, which are both highly distributed (this can refer to geographical and

Chapter 2 - Background

 39

network distance) and decentralised. This means there is no central authority

to manage the monitoring task, nor take responsibility or liability for the

process. This lack of a central location means that the majority of existing

distributed solutions are unsuitable, as they require a fixed central node.

Contribution to a SoS is voluntary meaning that component availability and

contribution cannot be assured. Additionally there is no traditional form of

hierarchical structure to a SoS. Monitoring techniques that rely on a “fixed”

node or fixed structure (e.g. tree structure) are unsuitable. Component

systems in the SoS are heterogeneous meaning they have varying capabilities

and run varying technologies. Hence, any solution needs to be both OS

independent and able to run on a vast array of components with varying

capabilities (i.e. run on both a mainframe and mobile device).

 The second main category that causes challenges is the characteristics of the

behaviour originating within a SoS. Behavioural monitoring is based on the

concept of identifying abnormal behaviour. However, for this concept to work

there has to be sound knowledge of, or an ability to profile behaviour that is

considered “normal”. SoS components are given an unusually high level of

freedom enabling them to join, leave or change their roles and contribution at

any time. Additionally, the support of emerging behaviour creates difficulties

as this encourages the development of novel behaviour. SoSs are evolving

systems, which constantly adapt to meet their changing goals. This means

that the behaviour of the system will also constantly change, presenting new

and unseen behaviour. All of these factors culminate in the highly dynamic

and unpredictable behaviour that is exhibited on SoS components. It also

explains the difficulties that are faced in establishing “normal” behaviour and

providing effective misbehaviour monitoring.

Chapter 2 - Background

 40

2.5. Behavioural Monitoring Requirements

By using the information identified from the background research, it is possible to

create a set of requirements, which define the characteristics that potential

monitoring solutions must possess. These requirements can therefore be used to

assess the suitability of existing solutions, help to ensure the success of the proposed

framework and provide a useful mechanism to evaluate the framework at a high-

level. These requirements were devised by examining the attributes of a SoS

environment and its monitoring needs, they are as follows:

 Accurate: It must produce low levels of detection errors including both false

positives and false negatives.

 Adaptable: It must be able to adapt on-the-fly to changes that occur within the

SoS, with particular consideration towards roles, contributions, functionality and

structure.

 Autonomous: It should be able to handle the vast majority of normal operational

tasks without requiring human intervention.

 Detection Speed: It must facilitate an acceptable timeframe from event

occurrence to detection and processing. This acceptable timeframe should also

allow the solution to operate in real-time.

 Diverse Analysis: It must be able to analyse a diverse selection of behavioural

metrics covering various aspects of the system in order to formulate an accurate

decision.

 Dynamics: It must be able to cope with the high level of behavioural changes and

dynamic system loads that occur on component systems during normal

operation.

Chapter 2 - Background

 41

 Efficient: It must operate seamlessly to provide satisfactory levels of protection

to both the SoS and its components, whilst not affecting their operation.

 High Performance: It must be able to handle high volumes of data analysis in a

timeframe that can match or improve those achieved by existing solutions,

without crashing or causing delays.

 Low Maintenance: It must not require much human or offline maintenance to

ensure accuracy or operation.

 Lightweight: It must be lightweight in terms of its permanent storage

requirements, which includes the framework and all of its ancillary data (e.g.

recorded observations, profiled data or knowledge).

 No Prior Knowledge: The operation of the solution should not depend on any

prior knowledge, whether this is relating to potential threats or details regarding

the system and behaviour. This is because such knowledge is highly susceptible

to change and could easily become outdated, which is a source of additional

maintenance requirements.

 Novel Threats: It must possess the ability to detect novel threats, as there is a

high probability of new behavioural threats being created through component

interaction in a SoS.

 Protection Against Attacker Training: It should be able to resist the vulnerability

of attackers being able to train the system. This requirement is specifically aimed

at the methods used to maintain and adapt the behavioural thresholds.

 Real-Time: In order to prevent problems or malicious activity from occurring,

the solution must operate in real-time.

 Reliable: It must be able to operate constantly without crashing and maintain a

stable yet acceptable level of accuracy and efficiency.

Chapter 2 - Background

 42

 Scalable: It must be able to automatically scale alongside the SoS without

hindrance, in order to adapt for its constantly changing monitoring needs.

 Self-resolving: It must have the ability to attempt to resolve identified issues,

rather than issuing alerts to administrators, as this would not be practical on a

large-scale SoS, particularly those composed of independently owned systems.

 Small System Footprint: It should consume low levels of system resources and

observe the minimum number of metrics required for successful operation. This

is to increase the free resources the component has available for SoS contribution.

 Unselfish: It must be able to consider the needs of the SoS and other components

rather than making decisions for self-gain.

These requirements will guide the research in terms of analysing the suitability

existing techniques and developing a solution that tries to fulfil them.

2.6. Summary

This chapter has provided the necessary background information to understand the

main concepts involved in this research. It has also outlined the challenges faced by

misbehaviour monitoring in the context of a SoS. The main problems discussed in

this chapter revolve around the complications that arise from the distributed,

decentralised and ad-hoc nature of the SoS. The dynamics and uncertainty this

produces, is reflected in its structure, functionality and behaviour. This poses many

limitations for existing techniques in terms of infrastructure constraints, availability

and predictability. Ultimately, this makes it extremely difficult for existing

approaches to differentiate between normal behaviour and misbehaviour, thus

providing motivation for this research. The challenges outlined in this chapter do not

consider the technical and methodological unsuitability of existing methods and

solutions; instead, these are discussed in Chapter 3. Finally, this chapter has

Chapter 2 - Background

 43

presented a list of key requirements that any potential behavioural monitoring

solution must fulfil. These requirements will be used throughout this thesis to gauge

the suitability of existing solutions and as a means of evaluating the proposed

framework.

Chapter 3

Related Work

This chapter focuses on critically analysing existing work and solutions, by outlining

their merits and highlighting their shortcomings. Ultimately, it aims to provide

evidence to emphasise the inadequacies of existing approaches and therefore justify

the motivation behind this research. SoS is still an infantile concept and currently

lacks significant security research. Therefore, the work discussed in this chapter is

collated from monitoring and detection techniques from multiple areas of

computing research, including P2P and intrusion detection (comprising of both

misuse and anomaly detection).

3.1. Detecting Misbehaviour

The aim of this research is to create a solution capable of detecting misbehaviour on

a SoS component. In order to facilitate this, it is necessary to understand what

techniques currently exist in similar research areas and to determine their

inadequacies when applied to a SoS. This section will review and analyse behaviour

monitoring techniques from various research domains within computing.

3.1.1. Scoring Techniques

Scoring techniques are particularly popular in behavioural monitoring on P2P and

ad-hoc systems. They work by calculating a score for each system based on

observations from other systems, whilst searching for desirable attributes or

characteristics. As P2P systems share several SoS characteristics, their misbehaviour

Chapter 3 – Related Work

 45

detection approaches are examined and their applicability assessed. The most

common techniques are discussed in this section.

3.1.1.1. Reputation

One of the most frequently encountered techniques for scoring is the use of node

reputation. This is achieved by using either higher ranking [50] or neighbouring

nodes [51] to monitor fellow nodes and compute a reputation score based on

interactions or observations. Reputation based scoring can be used for malicious

node identification [50], [52], [53], selfish node identification [54], [55] as well as

establishing optimum nodes to co-operate with [56]. Some authors such as Visan et

al [51] propose that peers that compute such values for other nodes should be

offered anonymity.

This reputation-based approach can overcome the problems encountered by the

decentralisation, distribution and ad-hoc network structure. However, when this

approach is applied to a SoS, several problems are encountered. A SoS is a highly

heterogeneous environment, with components having various attributes (e.g. OS,

resources and technologies used) and varying roles. Nodes may have dissimilarities

or varying tolerances meaning that the computed reputation score on one node may

not necessarily be the same as another. Given the inability to enforce any form of

standardisation concerning the computation of the score, this can result in unfair

scores being given. Additionally, the monitoring purposes differ; P2P monitoring is

orientated around the protection of individual components, whereas SoS monitoring

aims to protect both the SoS and its components. Lastly, a SoS is based upon the

provision of functionality and in some circumstances it may be beneficial for selfish

nodes to discredit other honest nodes in order to gain additional functionality or

resources. It is unclear how trustworthy these evaluations by other peers can be or

how they can be validated. If anonymity is given to these nodes, as suggested by

Chapter 3 – Related Work

 46

Visan et al [51], they will not be held accountable, which provides huge potential for

misuse.

3.1.1.2. Cost

Another common approach to the scoring technique is to evaluate the cost of

interacting with certain nodes, whereby cost refers to some form of overhead

incurred. These overheads often include time [57], [58], energy consumption [59],

[60] or detection [61], [62]. These approaches discourage the use of certain nodes or

paths, such as that proposed by Rice [63], which charges higher prices for choosing

nodes that can degrade the network’s resistance to malicious propagation. Although

this can improve performance and efficiency in a distributed and decentralised

environment, when applied to a SoS it can cause further difficulties. A SoS is a

collaborative system formed by the voluntary contributions of components.

However, costing functions are a self-orientated approach, not taking into account

the wider implications. Using this approach could result in unwanted incentives,

which can potentially lead to load instability, a decrease in collaboration,

functionality and efficiency.

3.1.1.3. Summary of Scoring Techniques

Scoring techniques are capable of operating in distributed and decentralised

environments, similar to that of a SoS. However, the main problem with these

techniques is their self-orientated approach. The SoS is a collaborative environment

and any monitoring techniques used must consider what is best for both the

component and the SoS. Unfortunately, the application of such a scoring technique

would result in a more complex, unstable and segregated system.

Chapter 3 – Related Work

 47

3.1.2. Knowledge-Based Techniques

Knowledge-based techniques are another method of identifying misbehaviour on

systems. It involves the use of existing knowledge of the system and rule based

reasoning to monitor for and detect abnormalities. There are several techniques that

fall under the knowledge-based classification, the majority of which are discussed in

this section.

3.1.2.1. Descriptive Policies and Languages

A popular approach to misbehaviour detection amongst anomaly detection systems

is the use of descriptive or ontological methods to define system behaviour or

boundaries. With a detailed knowledge of the system, this approach describes (via

policies or languages) the behaviour and boundaries that will be tolerated by the

system using sets of rules.

Examples of solutions using descriptive policies include BlueBox [64] whose policies

aim to define security boundaries, and the approach proposed in [65] which uses

policy driven metrics to measure security. There are also solutions using various

forms of descriptive languages including n-gram [66], UML [67], [68] and WSBPEL

[69].

The advantages of this method are that no prior training, patterns or signatures are

required and it is also capable of detecting novel attacks. However, these approaches

require high levels of maintenance particularly when considered for use on SoS

components. Descriptions of the components would require constant updates as the

system evolves, or the composition changes. This descriptive approach is not flexible

in terms of behavioural change either, meaning it would be unsuitable for

supporting emerging behaviour, which is a key characteristic of a SoS. Due to the

complexity, uncertainty and dynamics of a SoS, it would be impractical to

implement such a method.

Chapter 3 – Related Work

 48

3.1.2.2. Finite State Machine

Finite State Machines (FSM) are used to model system behaviour by representing it

as a set of states, transitions and actions. In this model, a state stores information

about the present and past condition of the system. A transition is a change of state,

which is initiated by a condition being fulfilled. An action is an activity that is

performed at a given moment in a given state. The FSM approach has been used to

detect attacks on protocols [70], [71] and abnormalities in system calls [72]. Using

this technique has the advantage of detecting abnormal behaviour without requiring

any training data or signatures. However, the disadvantage in terms of its

application within a SoS is that for it to be implemented, the system must have

known and fixed boundaries and must be relatively predictable in terms of

transition conditions occurring to initiate state change.

3.1.2.3. Expert Systems

Expert systems use qualitative models [73] based on available knowledge of the

system to formulate decisions regarding behaviour. Expert systems operate by using

a chain of manually created rules [66]. These typically describe the functional

relationships between the system entities, in the context of particular processes or

relationships between system failures and repercussive effects [74]. Expert systems

have been implemented in intrusion detection [75]–[78] and monitoring and

diagnostics [79]–[82]. They are also highly efficient at solving complicated problems

such as diagnosing failures and determining the effects [73]. However, when applied

to complex systems such as a SoS, it has proven to be limited in terms of

inconsistencies, incompleteness, long search time, lack of portability and

maintainability [83].

Chapter 3 – Related Work

 49

3.1.2.4. Summary of Knowledge Based Techniques

Unfortunately, knowledge based systems are largely ineffective when used in a SoS

environment. This can be attributed to their dependency on existing knowledge of

the system (i.e. configuration, structure or behaviour), the system remaining

relatively static and the occurring events being predictable. Regrettably, none of

these are available on SoS components due to their dynamic and unpredictable

nature. Therefore, the accuracy attainable using these techniques is somewhat

limited.

3.1.3. Pattern/Signature Based Techniques

Pattern based and signature based detection are interchangeable terms and refer to

one of the most widely implemented techniques that features in the majority of anti-

malware programs [84][85]. The technique involves detecting the presence of

predefined or preconfigured patterns (which are also known as signatures), which

are indicative of particular threats. Differing solutions and approaches express and

utilise patterns in varying forms, including event sequences [86], graphs [87],

numerical values, file content [88] or network packet characteristics [85].

Pattern/Signature based techniques have the advantage of being relatively simple to

deploy and implement, high operational speed, high levels of accuracy and low

levels of false positives. However, they are unable to detect novel threats, as the

creation of patterns/signatures requires previous knowledge of the threat. This

means that constant maintenance would be required, which is both costly and time

consuming. It also means that no full real-time protection could be offered. In terms

of a SoS, it is essential to be able to handle novel threats, as the dynamics of the

environment and emerging behaviour mean that new behaviour (and misbehaviour)

is easily created.

Chapter 3 – Related Work

 50

3.1.4. Machine Learning Based Techniques

Complex systems are proving increasingly difficult to monitor reliably whilst using

techniques specifically developed for small-scale, localised or isolated systems.

These difficulties have led to the development of complex monitoring methods,

which are commonly based on various machine learning techniques (also known as

artificial intelligence). Some of the common derivative techniques are detailed in this

section along with a discussion regarding their capability to monitor for

misbehaviour on a SoS.

3.1.4.1. Bayesian Networks

Bayesian networks are directed acyclic graphs [89], which graphically represent the

probabilistic relationships between a set of random variables. They facilitate the

modelling of variables and their dependencies, and the probabilistic relationships

among the variables (e.g. relationships between symptoms and cause).

This technique is commonly utilised in intrusion detection systems [66], with

existing work focusing on applications within both misuse detection [89] and

anomaly detection [90]. It is predominantly used in the classification of data, such as

alerts [90], false alarms [91] or network packets [92], due to its ability to handle novel

data. The classification operates based on evidence and reasoning, and can be used

to categorise threats or to improve the accuracy of existing categorising techniques.

Advantages of using Bayesian networks include the capability to profile

interdependencies between variables thus allowing the handling of situations where

data is incomplete or missing [93]. Another advantage is the capability to combine

both existing knowledge and data. However, the efficiency of this technique is

highly dependent upon the probabilistic assumptions made regarding the behaviour

of the system. Deviation from this assumption leads to an increase in detection

errors. Another disadvantage, as highlighted by Kruegel et al. [91], is that Bayesian

Chapter 3 – Related Work

 51

networks offer no significant improvements over threshold-based statistical

techniques but consume considerably more computational resources.

3.1.4.2. Markov Models

There are two commonly used approaches of Markov models: Markov chains and

hidden Markov models. A Markov chain is a set of states that are interconnected

through various transition probabilities, which determine the topology and the

capabilities of the model. This is illustrated in Figure 6, which shows the numerical

probability values assigned to each transition (represented by orange arrows)

between state A and state B. An initial training period is required to calculate the

probabilities associated with each transition based on the normal behaviour of the

system. The detection of anomalies is carried out by comparing the anomaly score

(associated probability) obtained for the observed sequences with a fixed threshold.

Figure 6. Example Markov Chain

A hidden Markov model is usually a Markov process in which states and transitions

are hidden. The task is to determine the hidden parameters from the observable

parameters. Unlike a regular Markov model, where the state transition probabilities

are the only parameters and the state of the system is directly observable, in a

hidden Markov model, the only visible elements are the variables of the system that

are influenced by the state of the system.

Chapter 3 – Related Work

 52

Both Markov model-based techniques have been used extensively in the context of

intrusion detection and anomaly detection. Existing work predominantly uses

Markov-based techniques in host based IDSs, usually modelling system calls [94],

[95], [96], [97]. However, they are also used in network-based IDSs [98], [99] and for

behavioural sequences [100].

The main advantages of Markov-based models is that they are relatively easy to

implement and can offer fast speeds and minor computational requirements for

smaller models. However, as the scale of the number of states in the model increases

so does the computational requirements. Similar to Bayesian networks, Markov-

based models are also dependent on the probabilistic assumptions made about the

system behaviour. The accuracy of a Markov-based model depends on the ability of

the training data to accurately forecast the system’s behaviour.

3.1.4.3. Artificial Neural Networks

An artificial neural network (ANN) is a modelling technique inspired by the

neurological operation of the human brain. It aims to solve complex problems by

simulating the interconnected neurons and synapses of the brain. ANNs are

typically used to predict the behaviour of users, programs or the system, based on

previous training. The flexibility, tolerance towards environmental changes and

ability to generalise learned data, have led to ANN becoming popular in detecting

anomalies in IDSs [101]. They have been used to detect anomalies in system calls

[102], traffic patterns [103], [104], user behaviour [105], processes [106] and command

sequences [107].

The advantages of using an ANN stem from the flexibility they offer, enabling the

use of imprecise or uncertain information to infer solutions and without the need for

prior knowledge of data regularities. Unfortunately, they have several drawbacks.

Firstly, they have the potential to fail to find a solution either because of the lack of

Chapter 3 – Related Work

 53

training data or feasible solutions. Additionally, ANN training data is both slow and

computationally expensive to gather. Another drawback is that it does not provide a

descriptive model to explain why a particular detection decision has been reached.

3.1.4.4. Game Theory

Game theory is a mathematical modelling approach used to analyse the interactions

in a given scenario to find the optimal solution. Each scenario is modelled as a non-

cooperative game, with a set of players and strategies, to analyse interactions

between players. The idea behind the model is to establish an optimal strategy

against the opponent to solve the “game”. Solving the “game” means that the Nash

equilibrium is established, which is a situation where no player can get any more

benefits or losses by selecting a strategy other than the equilibrium strategy. Existing

applications of this approach are commonly utilised in mobile ad-hoc networks.

They have been used to optimise intrusion detection strategies [108], DoS prevention

[109], malicious node detection [110], attack prediction [111] and network intrusion

[112][113].

The game theory approach has several advantages, which include capability of

handling uncertainty, comprehensive analysis of the situation and the examination

of wider implications that other solutions may not consider. However, the

shortcomings are that it is a time and resource intensive process that could not be

applied in a real-time scenario. It also requires extensive knowledge of all systems

involved, their boundaries and the trade-off values for each strategy on each system.

The game theory approach is therefore largely unsuitable in a SoS, especially due to

its requirement of a fixed goal in order to calculate the optimal approach, as a SoS’s

goal continually changes and evolves. Additionally, the unpredictable nature of a

SoS means there are too many variable factors that would need to be implemented

and modelled, rendering this method highly impractical.

Chapter 3 – Related Work

 54

3.1.4.5. Fuzzy Logic

Fuzzy logic is a technique derived from fuzzy set theory and deals with approximate

logical reasoning rather than fixed and exact. Essentially, instead of something being

considered either true of false, the truth is graded between 0 and 1 enabling the

handling of partial truth. It is considered as an expression of uncertainty but this is

disputed by many [66]. This capability of handling imprecise data has proved

beneficial in its application within anomaly detection, as features can be considered

fuzzy variables. It has been particularly effective when implemented to detect port

scans [114], security risk management [115], intrusion detection alert prioritisation

[116], detecting botnets, human recognition [117], fault detection and diagnosis [118],

healthcare monitoring [119], and detection of radioisotopes [120].

The advantages of using fuzzy logic are that it is tolerant of imprecise data and it is

easy to understand and implement. However, it cannot be considered a

comprehensive solution and often precise techniques can yield drastically more

efficient results. Additionally, the process can consume high levels of resources and

requires extensive prior knowledge of what characteristics need to be observed for

particular problems. This technique could be applied to a SoS but its lack of accuracy

and precision may not be considered robust or effective enough for dealing with

misbehaviour.

3.1.4.6. Genetic Algorithms

Genetic algorithms are adaptive heuristic search algorithms modelled loosely on the

principles of evolution by natural selection. Its features include variation-inducting

methods such as mutation, inheritance, selection and recombination. They are

particularly useful in applications involving design and optimisation, where there

are a large number of variables or situations where procedural algorithms are either

non-existent or extremely complicated. The capabilities of GA allow them to

Chapter 3 – Related Work

 55

undertake complex optimisation problems. This therefore allows for greater degrees

of freedom in the selection of the proposed model’s structure. Genetic algorithms

have previously been utilised in intrusion detection systems [121]–[123],

predominantly for their capability to select appropriate features and optimal

parameters for the detection process. They are often used in conjunction with other

machine learning techniques such as neural networks [101], Bayesian networks [124]

and fuzzy logic [125][126].

The main advantage of GA is its flexible and robust approach that can create a

solution by assembling data from multiple locations, whilst requiring no prior

knowledge about the system behaviour. However, its main disadvantage is the high

level of computational resources required.

3.1.4.7. Clustering & Data Outliers

Clustering and data outlier techniques aim to identify anomalous data by a process

of examining conformity. Various clustering algorithms exist such as KNN, k-means,

hierarchical or DBSCAN, which are used to group observed data into clusters. Data

is assigned to clusters based on the data values that are contained in each cluster

being measurably closer than those belonging to another cluster. Measurements

used in this context are usually based on distance (e.g. Euclidean distance or

Mahalanobis distance) or a similarity measure. The clustering algorithm is often

repeated numerous times in order to achieve an optimum clustering solution. Once

the clustering process is finished, some data points may not belong to any cluster.

Such data points are termed data outliers and represent the anomalous data in the

set, these can be analysed to provide further information (e.g. degree of outlier).

The use of clustering and data outlier analysis is well-established within the realms

of both statistics and data mining [127]. More recently, these techniques have been

applied to other research areas. The high levels of accuracy and the lack of required

Chapter 3 – Related Work

 56

training or knowledge has appealed to IDSs. Many solutions include or are based

upon this technique [128]–[131]. Additionally, its lack of required supervision has

seen its usage in unsupervised detection systems such as [132].

The advantages to using this approach are its efficiency, lack of required existing

knowledge and its limited computational expense. The main disadvantage is that

some clustering algorithms require the number of clusters to be defined beforehand,

which can be difficult to predict in dynamic datasets. This approach could be useful

in a SoS environment; however, it assumes that the majority of data is normal. This

may cause issues if for instance there is a vast fluctuation between the values of

normal data, which could lead to the identification of erroneous data outliers.

3.1.4.8. Summary of Machine Learning Based

Techniques

Machine learning based approaches are efficient at solving complex problems or

operating on complex systems with uncertainties. The majority of the techniques are

unsuitable due to the requirement of prior extensive knowledge of the local and

occasionally other remote systems. This knowledge includes variables,

predictability, boundaries, roles or goals.

These techniques are suited to selecting the best solution from a given selection to

achieve a fixed goal. The uncertainty handled by these methods, usually refers to

changes in variables rather than the structure, boundaries or functionality as with a

SoS. Some of these approaches could be applied in a SoS environment but none of

them could provide a comprehensive solution; instead, they provide a partial

solution or can solve specific problems (e.g. optimisation).

Chapter 3 – Related Work

 57

3.1.5. Statistical Techniques

Statistical techniques are commonly utilised on both NIDS and HIDS, as they offer

high levels of accuracy. The technique involves capturing and profiling the

stochastic behaviour of the system. The profile typically includes such measures as

activity intensity, audit record, categorical (distribution of activity over various

categories) and ordinal (e.g. CPU usage). Current system behaviour is compared

against the pre-calculated stochastic profile and if the behavioural measures are

outside of the stipulated thresholds, the event is considered as misbehaviour.

However, some approaches instead calculate an anomaly score to indicate the

degree of irregularity for the event [133], which is considered as misbehaviour if it is

not within the stipulated thresholds. There are several main approaches to statistical

techniques, which include:

 Univariate Analysis: This approach uses the measurements obtained from an

individual variable, metric or attribute to measure behavioural change or

calculate an irregularity score [66]. This is often utilised when monitoring a

specific variable or small subset of variables [134].

 Multivariate Analysis: Multiple variables, metrics or attributes are measured or

used to calculate an irregularity score [66]. It allows examination of the

correlation that exists between the multiple metrics [135]. Usually these metrics

belong to the same group (e.g. monitoring various parts of system memory) or

monitor the same object (e.g. monitoring free RAM and used RAM). This can

provide greater monitoring accuracy as usually threats affect multiple metrics

collectively [136].

 Time-referenced Analysis: This is used in conjunction with other statistical

techniques and is used to observe values to determine the timing and chronology

of events [66]. This takes into consideration other time related information such

as the day of the week or hour of the day. This is of particular importance in

Chapter 3 – Related Work

 58

environments that may encounter peak periods such as NIDS (e.g. [137]). This

form of analysis is also referred to as temporal analysis [133], and is a popular

approach amongst adaptive solutions such as [138], [139].

Statistical approaches have a number of advantages. Firstly, they do not require

prior knowledge of the system nor of existing security threats and are able to detect

novel threats. They are able to provide real-time detection due to their fast operating

speeds and are computationally inexpensive in the long term. In addition, statistical

approaches can provide accurate indication of threats that occur over extended

periods of time such as DoS attacks. However, the disadvantages are that training

periods are required and profiles can easily become outdated if the system changes

(e.g. software update) as the approach assumes the system is in a quasi-stationary

state. Statistical techniques are also highly susceptible to being trained over time by

attackers. They are also prone to high false positive rates if not correctly configured

with regards to the metrics and thresholds used. In relation to a SoS, this technique

would be suitable (predominantly for the accuracy it offers) if methods were

implemented to ensure accurate thresholds were used, thresholds could be adapted

to cope with system changes and that attacker training could be prevented.

3.1.6. Summary of Existing Techniques

Table 2 provides a summary of the techniques discussed in this section, along with

the pros and cons when considered for application within a SoS. Table 3 compares

the existing techniques discussed in this chapter against the requirements set out in

§2.5.

Chapter 3 – Related Work

 59

Table 2. Behavioural Detection Techniques Summary

Technique Basic Concept Sub-

techniques

Pros Cons

Score Based Scoring of

distributed

observations

1) Reputation

2) Cost

 Unaffected by

decentralisation

or distribution

 Can be bias

 Produces

unwanted

incentives

 Different goals

to that of SoS

monitoring

Pattern

Based

Identification of

previously created

patterns/signatures

N/A

 Detection

accuracy

 Ease of

implementation

 Detection

speed

 High

maintenance

 Unable to detect

novel threats

Knowledge

Based

Detect abnormal

activity based on

prior

knowledge/data or

predictions

1) Descriptive

policies &

languages

2) Finite state

machines

3) Expert

systems

 Robust

 Flexible

 Can detect

novel attacks

 High

maintenance

 Requires high-

quality

knowledge/data.

 Long detection

times

Machine

Learning

Based

Intelligent and

adaptive

classification of

complex/uncertain

or partially

complete

behaviour

1) Bayesian

networks

2) Markov

models

3) Artificial

neural networks

4) Game Theory

5) Fuzzy logic

6) Genetic

algorithms

7) Clustering

and data

outliers

 Flexible

 Designed for

complex

environments

 Accounts for

interdependenc

ies

 Tolerates

incomplete

data

 Dependent on

behavioural

assumptions

 Dependent on

knowledge of

system

boundaries and

goals

 Higher resource

consumption

but limited

benefits when

compared to

statistic based

Statistic

Based

Observe or

calculate deviance

from profiled

stochastic

behaviour

1) Univariate

Analysis

2) Multivariate

Analysis

3) Time

referenced

Analysis

 No prior

knowledge

about normal

activity, goal or

boundaries of

the system

needed.

 Able to detect

novel threats.

 Fast detection

times

 Accurate

 Reliable

 Can be trained

by attackers

 Difficult to set

thresholds and

metrics

 Unrealistic

assumption of

quasi-stationary

state

 Easy to result in

high false

positive or false

negative rates

Chapter 3 – Related Work

 60

Table 3. Comparison of Existing Techniques against Monitoring Requirements

Scoring

Knowledge-

Based

P
attern

/S
ig

n
atu

re

Machine Learning

S
tatistical

R
ep

u
tatio

n

C
o

st

D
escrip

tiv
e

F
S

M

E
x

p
ert S

y
stem

B
ay

esian
 N

etw
o

rk

M
ark

o
v

 M
o

d
els

A
. N

eu
ral N

etw
o

rk

G
am

e T
h

eo
ry

F
u

zzy
 L

o
g

ic

G
en

etic A
lg

o
rith

m
s

C
lu

sterin
g

 &
 O

u
tliers

Accurate

Adaptable

Autonomous

Detection

Speed

Diverse

Analysis

Dynamics

Efficient

High

Performance

Low

Maintenance

Lightweight

No Prior

Knowledge

Novel

Threats

Protection

Against

Attacker

Training

Real-time

Reliable

Scalable

Self-

resolving

Small

System

Footprint

Unselfish

=Requirement not met, =Requirement partially met, =Requirement met

Chapter 3 – Related Work

 61

By examining the existing work along with the suitability within a SoS environment,

it is evident that no single existing technique would be entirely suitable; a point

reinforced by Tables 2 and 3. From the existing work, it can be surmised that a

statistical multivariate-based approach with temporal support shows the greatest

potential. This is because it does not require any comprehensive knowledge of the

system, it is able to identify novel threats, it can operate in real-time and it offers

high levels of accuracy. There are however limitations with this technique, including

its lack of specificity in determining behavioural anomalies, use of unnecessary

behavioural metrics, lack of quantification, assumption of a quasi-stationary state

and its susceptibility to hacker training. This is why the solution proposed in this

thesis is only loosely based upon the technique. It will be necessary to employ other

techniques and mechanisms to overcome these limitations.

3.2. Behavioural Thresholds

In the previous section, statistical monitoring techniques were identified as the most

suited technique to monitoring a SoS. It is a highly effective technique but heavily

relies on the accuracy of its setup, particularly the behavioural thresholds.

A behavioural threshold is a point that defines the boundary between the behaviour

being perceived as good and bad. These thresholds are unique to each system and

are often tailored to suit their specific roles. However, establishing these thresholds

is a difficult process [135], especially for metrics that continually vary by random

amounts (i.e. there is no set level of variation). Difficulties arise from the fact that

each system is unique, and its behaviour is largely determined by its current

configuration and characteristics. Additionally, the point at which good behaviour

becomes bad is often blurred and difficult to distinguish. This is because different

circumstances require different behavioural tolerances, which is particularly difficult

on dynamic systems. For example, higher bandwidth would be tolerated at peak

periods but this may be deemed as bad behaviour at off-peak periods. There are also

Chapter 3 – Related Work

 62

systems such as those involved in a SoS that continually change or evolve. Therefore,

for these types of systems, continual threshold adaptation is necessary and is equally

as difficult as establishing behavioural thresholds.

This section will examine the existing techniques for establishing the thresholds, in

relation their suitability for calculating SoS behavioural thresholds. It will also

examine existing techniques for adapting thresholds and their applicability within

the SoS environment.

3.2.1. Threshold Creation

Thresholds are used in many areas of computing, so there are various approaches

that can be used to establish a threshold. Below are the main approaches that could

be used to create behavioural thresholds:

 Histogram-Based Thresholds: This is a technique utilised in image analysis [140]

(e.g. distinguishing the foreground from the background) and network traffic

monitoring [141]. A histogram is used to represent the probability density of

multiple attributes, which define the good behaviour [93]. This approach is useful

for creating thresholds for multiple homogeneous systems, whereby systems

have similar behavioural thresholds. However, its application within a SoS

environment would be highly ineffective, as each system is unique and prone to

change, meaning it would be maintenance intensive approach. In addition, it is

unable to capture the relationship or interactions between different metrics [133].

 Fixed Thresholds: Permanent thresholds are created by the system designers, who

have extensive knowledge regarding what is considered good or bad behaviour

[142]. Exceptions are triggered once a value changes from that specified in the

thresholds. This approach is only suitable for static environments (e.g. isolated

systems that perform a specific set of routine functions) or for specific metrics

where there are no intermediary values (e.g. its status is either on or off). Given

Chapter 3 – Related Work

 63

the changeable structure and function of a SoS, its unpredictability and the

number of metrics being monitored, this is a highly impractical approach. It is

unable to adapt to load changes over time and would yield high levels of both

false positives and false negatives [143].

 History Based Thresholds: Thresholds are created based on historical values that

occur at a defined time (e.g. last week or last month). Exceptions are triggered if

current values differ from the historic values by a set percentile (e.g. 10%). This

approach overcomes the limitations of Fixed Thresholds as the thresholds are

automatically generated (not set by system designers) and can be used with

metrics with intermediary values. However, there are limitations with this

approach too, as it is not particularly tolerant of variability. For example, if

previous values are slightly lower than normal and the current values are slightly

higher than normal; this would be considered an exception rather than allowable

deviation. This intolerance of variability means that this approach is rarely used

in variable environments or for frequent observations over durations such as

minutes or hours (it is used for larger periods such as weeks or months). This

approach results in difficulties in detecting problems in real time and observing

small changes. Ultimately, given the dynamic nature of a SoS environment, this

would result in a high volume of false positives, and combined with the lack of

real-time support this is not considered as a feasible approach.

 Historical Average Thresholds: Thresholds are created by averaging n historical

values, where n is typically between 10 and 30 [135]. These historical values often

include those gathered during training periods. This approach overcomes the

limitations of the History Based Thresholds, as it provides an average

representative value rather than comparing against the last recorded value [78],

[84]. However, there are shortcomings with this approach too, that affects its

suitability for application in a SoS. The main problem is that it does not account

for temporal related activity. For example, legitimate behavioural spikes may be

Chapter 3 – Related Work

 64

caused by a weekly update. If a daily average is taken, the averaging process

would reduce the degree of this legitimate behavioural spike. Therefore, the

occurrence of the weekly update could trigger an exception. Another problem is

the variability of metric values, i.e. the averaging of metrics with high variability,

means that much larger deviations are required to be considered as an exception.

Although this approach can tolerate a certain degree of variability, it cannot

facilitate the level of dynamic behaviour exhibited by a SoS component.

Therefore, the use of this approach would yield high levels of detection errors.

 Statistical Filtering Thresholds: This is a statistical technique, which offers

significant improvements over the Historical Averaging technique. The resultant

thresholds have a greater tolerance towards behavioural variance on the system.

The threshold is created by averaging the historical (or training) data, and upper

and lower thresholds are set a distance of d away from this average value [135].

The distance represents the metric’s level of variance from its mean, which is

most commonly measured using standard deviation. The value of d is set to three

standard deviations, which is considered as an accepted practice. This is because

when the data is considered to be normal (a Gaussian assumption) 95% of the

data should lie within two standard deviations of the mean and 99% of data

should be within three standard deviations. Therefore, any data outside of this is

considered highly likely to be anomalous [143]. Whilst Gaussian assumptions are

not detrimental to the efficiency of the thresholds, it is considered that techniques

not reliant on restrictive normality assumptions are more appropriate.

Additionally, this technique does not rectify the problems associated with

temporal activity.

 Adaptive Statistical Filtering Thresholds: This technique is similar to the Statistical

Filtering technique, in that it uses the same process to establish lower and upper

threshold boundaries. However, the main improvement is that it is able to

establish temporal thresholds [135]. Therefore, thresholds can account for the

Chapter 3 – Related Work

 65

relationship between the metrics and the time of day or the day of the week [144].

Out of all the techniques discussed, this offers the most superior solution, whilst

overcoming the limitations of the other techniques. Unfortunately, even this

technique is still not entirely suitable for operation in a SoS environment. The

problem stems from the monitoring requirements of the component systems, on

account of their dual existence (local role and SoS role). The thresholds must

account for normal base-system activity, base-system dynamics, SoS

contributions and incurred dynamics from the contributions.

Statistically-based threshold creation techniques can be divided into two main

categories based upon the data and the techniques used. These two categories are as

follows.

Non-parametric Threshold Creation: This type of technique is considered less

statistically powerful due to the approach using less information in its calculation. It

is a more abstract technique, focusing on ordinal positioning rather than statistical

information such as the mean or deviation. For example in a race, this technique

would examine the order in which the competitors finished rather than their times.

The benefit of this approach is that it does not rely on any assumptions as to data

distribution (or shape of data distribution), characteristics or parameters. It uses the

variability of data over an extended period of time to characterise estimated data

variability and calculate threshold limits based on historical data.

Parametric Threshold Creation: This type of technique calculates thresholds based

on assumptions regarding the shape (or behaviour) of the data distribution and uses

knowledge gained from studying historical data. This technique can produce more

accurate and precise thresholds than non-parametric techniques but if the

assumptions made are incorrect, the results produced can be misleading.

It is important to note that many threshold creation techniques conduct data pre-

processing prior to calculating the thresholds [143]. This pre-processing often

Chapter 3 – Related Work

 66

includes the “cleaning” of data, which is essentially the removal of data considered

invalid or spurious enough to affect the results of the threshold calculation process.

Data smoothing is also used, in which noise (irregularities) is removed from the

data, without affecting the main trends. These techniques predominantly include

moving average smoothing, wavelet transforms, exponential smoothing or Fourier

transform smoothing [143]. The problem with this pre-processing is that all of the

data gathered during the training period is valid and this should be reflected in the

thresholds. System activities run according to many different schedules, so

infrequent activities cannot be dismissed as spurious. Additionally, the actions of

smoothing are also counterproductive, the metrics used in behavioural monitoring

are exact measures and the thresholds need to reflect this. Therefore, in this situation

data pre-processing would not be beneficial to the threshold creation process.

Unfortunately, none of the existing techniques found in the literature survey are

wholly suitable for SoS behavioural threshold calculation. These difficulties lie in the

dynamics of the behaviour and the number of constituent parts that create this

behaviour. Therefore, it is necessary for a custom solution to be devised to calculate

adequate behavioural thresholds to use in the monitoring for misbehaviour.

3.2.2. Threshold Adaptation

Some systems and their characteristics will change or evolve over time (e.g.,

software or hardware updates). Therefore, the threshold values, irrelevant of the

calculation method will have a limited lifespan, after which the monitoring accuracy

cannot be guaranteed [145]. Therefore, the thresholds used to monitor such systems

need to be able to adapt alongside these changes. However, it is equally important

that changes in the threshold do not affect the reliability of the solution using them.

Threshold adaptation is an important requirement for the behavioural thresholds

used for SoS components. Hence, the existing techniques in this section are

examined in relation to their applicability within a SoS environment.

Chapter 3 – Related Work

 67

This statistical process should be largely automated, requiring little or no human

intervention. It is referred to by numerous terms including adaptive thresholds,

threshold adjustment, threshold adaptation and threshold refinement. Essentially,

the process works by slowly learning the current behavioural trends of the system,

in order to calculate the required modification to its thresholds. The following

approaches are those commonly found in existing literature.

Approaches such as those proposed by Ali et al. [145], Agosta [146] and Jiang [147]

use adaptive threshold calculation for anomaly detection, based on prediction

techniques. Whereby anticipated scores are predicted and the difference between

them and the actual scores (known as the error score) is used to calculate necessary

threshold adaptation. However, the problem is that this approach is inefficient in a

SoS environment due to its uncertainty. The metric values can vary drastically,

which reduces the efficiency of any prediction based on previous instances. This

level of variance would falsely increase the error score, thus resulting in unnecessary

computation and threshold adaptation.

Yu et al. [148] proposed a real-time IDS tuning algorithm, which claims to offer

performance improvements. As an extension to their previous work, Yu et al. [149]

also proposed an adaptive tuning mechanism using a prediction filter, used to

identify suspicious events. The problem with this approach is that it is not

automated and heavily relies on human intervention, which in terms of a SoS would

be highly impractical.

Other approaches include the use of entropy-based techniques such as that proposed

by Leung [150]. This uses Shannon’s entropy measure to determine the level of

uncertainty of the up-to-date profiles and calculate the level of necessary threshold

adaptation. Some approaches also use Support Vector Machine (SVM) based

techniques such as that proposed by Liu [151]. Here, the SVM is used to analyse the

Chapter 3 – Related Work

 68

input, estimated output and error, in order to calculate the required threshold

adaptation.

The main problem with these existing techniques, is that by enlarge they are based

on some form of prediction. However, with the high levels of dynamics and

uncertainty in a SoS environment, this is not a feasible option and would result in

monitoring inefficiencies. It is therefore necessary to develop a custom solution that

is both automated and does not rely on any prediction.

Another major problem with threshold adaptation is its vulnerability to training

based attacks. These are attacks delivered over a long period of time; by simulating

small changes in system behaviour, the attacker can influence the changes made to

the thresholds. The authors of [145] proposed that the calculated difference should

be normalised to reduce noise and therefore training based attacks. The problem

with this is that although normalisation may remove unwanted training attacks, it

can also remove legitimate data. There is no predictable or stable level of variance on

a SoS, so it is difficult to partition this data and therefore accuracy could be lost

using this approach. Hence, alternative mechanisms need to be put in place to

prevent this problem from occurring.

3.3. Collaborative Monitoring

Recent years have seen a rise in the number of collaborative-based threats, which are

increasingly more efficient, scalable [152] and dangerous, such as those involved in

DDoS attacks and botnets. The benefits of such collaborative approaches have led to

the concept being adopted by countermeasures, such as collaborative monitoring.

In many modern systems, there is a demand for high levels of functionality. So in

order to minimise any potential impact on the normal operation of the system, only a

limited amount of resources are assigned for monitoring. Collaborative monitoring

is particularly useful in this situation, as well as in large-scale, distributed and

Chapter 3 – Related Work

 69

decentralised systems such as P2P. This is why a considerable amount of existing

research is focused on P2P systems.

Collaborative monitoring involves the formation of new organisational structures

each with shared monitoring objectives (e.g. prevention of a threat or protection of a

particular weakness). Each member of the organisational monitoring group

voluntarily contributes towards the group, thus making them stakeholders. These

groups are used to share monitoring results, information, data as well as collectively

analysing the results and learning how to improve. Predominantly, collaborative

monitoring does not need to be introduced as a brand-new concept, rather an

improvement of the monitoring that already occurs. Most of the benefits of a

collaborative monitoring scheme, such as greater efficiency and increased

monitoring accuracy, result from the collective pooling of resources for a single

purpose. It can also serve as an advanced warning mechanism for novel threats, by

sharing identifiable behavioural patterns or characteristics for others to use.

Several approaches have implemented collaborative monitoring as a form of

security. Rao et al [153] propose a system architecture for collaborative security and

privacy in multi-domain networks. Altshuler et al [152] propose a collaborative

application monitoring algorithm called Time-To-Live Probabilistic Flooding which

harnesses the collective resources of multiple mobile devices to analyse installed

applications for maliciousness. Conclusions are then reported to several other mobile

devices, which then propagate the report to others. Wang and Zhou [154] propose a

collaborative monitoring mechanism to support accountability for a multitenant

database used in a centralised external service such as Amazon EC2.

Collaborative monitoring has been implemented for many other different purposes

outside of security including: forestry [155], ecology [156], robotics [157], QoS, signal

processing [158] and healthcare [159].

Chapter 3 – Related Work

 70

For a SoS there are many potential benefits to be gained through the use of

collaborative monitoring. The main benefit is the sharing of patterns/data that

indicate novel threats, which would not normally be possible due to the

decentralised and dynamic structure of a SoS. There is also no implementable form

of monitoring standardisation. Therefore, it is self-regulated, which over time may

lead some systems to become more tolerant of different behaviours than others.

Collaborative monitoring would provide a mechanism to compare against other

similar systems. Lastly, collaborative monitoring is an efficient additional form of

security, and it is not compulsory so it does not place any restrictions on the system.

Hence, if the system needs extra resources, the collaborative monitoring can be

temporarily suspended.

The main problem with collaborative monitoring is the approaches used to form the

monitoring groups. It is important to remember that these groups are often used to

compare or standardise behaviour, or validate behavioural decisions, against other

components in the group. Therefore, the behavioural similarity of the components

selected to partake in these groups is highly important. The selection of

behaviourally similar components in a SoS is difficult, as no single component has

overall knowledge of the structure of the SoS, nor the capabilities of its fellow

components. When combined with the issues of scale and complexity this becomes

an increasingly difficult task. However, if behaviourally dissimilar components are

selected, this could produce highly inefficient and potentially dangerous results.

Despite the majority of existing collaborative monitoring work focusing on complex

and distributed environments, few elaborate on how the collaborative components

are initially selected. The main techniques identified from existing literature are:

 Pre-set nodes: Static or controlled nodes are pre-selected by system designers,

thus acting as a central point. For example, in [159] the proposed system

features static storage repositories and clinicians. This technique is only

Chapter 3 – Related Work

 71

feasible in relatively static environments, where the availability of

components can be assured. In addition, this approach is not scalable,

considering the potential size of a SoS. Given that both the functionality and

structure of a SoS are subject to drastic changes at any time, this technique is

not suitable in a SoS environment.

 Reputation: A technique heavily utilised in other areas of computing, whereby

components are selected based on a reputation score. Neighbouring or

specialist components monitor or interact with components in order to

calculate a score to indicate their reputation [160]. However, a reputation

score can only offer limited assurances regarding the integrity of a

component. It is not indicative of its similarity or its timeliness. Additionally,

the voluntary (and unpredictable) nature of SoS contribution would severely

impair any reputation-based approach.

 Cost function: This technique selects components based on their respective cost

to the component. These costs can be in terms of time, distance, network

congestion, energy or resources. Using this technique can account for the

timeliness but not the similarity between components.

 Distance: Components are selected based on either the network or

geographical distance. This is often perceived as a quick and reliable method.

However, it does not account for the similarity between the components.

 Distributed lookup protocol: This technique uses a protocol to allow components

to lookup other components using the same protocol. It is a technique able to

cope with high levels of distribution or large-scale and is commonly utilised

with additional requirements such as geographical distance [161]. However,

again it does not account for the similarity between components.

Chapter 3 – Related Work

 72

 Discovery Object and Advertisements: This technique involves components

detailing their services in the form of an advert. These advertisements can be

discovered by other components desiring particular functionalities and

encourage direct connections [162]. This technique offers limited similarity

checks, as usually advertisements only feature key services and contributions

and could not be considered adequate. In addition, it is unclear how practical

this technique would be in terms of scalability in a large-scale, multi-domain

and distributed environment with undefined boundaries.

It is evident that some of these techniques offer limited assurances and similarity

comparisons but are insufficient for ensuring the reliability of results produced by

CBM. These inadequacies have provided the motivation for the development of a

novel solution capable of providing a superior and comprehensive method for

selecting the most behaviourally suitable CBM components.

3.4. Summary

This chapter has provided a summary of related work from many different areas of

research that could applied to monitoring a SoS for misbehaviour. It has reviewed

the plausible identified techniques, providing an overview and outlining both the

benefits and shortcoming with respect to use in a SoS. It has also examined related

work for techniques that could be used to calculate behavioural profiles for SoS

component systems. These techniques were also analysed for both their benefits and

shortcomings. Lastly, this chapter examined the concept of collaborative monitoring

and its existing applications. It also detailed the potential benefits to a SoS and

outlined the potentially dangerous limitations of existing techniques used in their

formation.

During the literature review each of these requirements were examined, and it can

be concluded that there are no currently defined methods that fulfil the requirements

Chapter 3 – Related Work

 73

for SoS behavioural monitoring. It identifies solutions that could be built upon to

create a successful SoS misbehaviour detection solution. It has also identified that the

majority of the shortcomings of existing works when applied to a SoS, stem from the

complexity of the environment along with its dynamic and uncertain nature [8]. This

emphasises the inadequacies of existing techniques required for behavioural

monitoring and the problems that their usage could cause. This chapter justifies why

a novel approach and novel techniques are essential to addressing the issue of SoS

component misbehaviour monitoring. The inadequacies of existing solutions

provide both the motivation and aims for the solution proposed in this thesis.

Chapter 4

Secure System-of-Systems

Composition (SSC) Framework

The SoS environment presents numerous challenges to existing monitoring

techniques, which were developed for static and predictable systems. Existing

approaches lack the capability to protect both component systems and the SoS as a

whole from misbehaviour, and still maintain high detection and low false alert rates.

It is obvious from the previous chapters that there is a need for a new and capable

behavioural monitoring solution to cope with the challenging structure, uncertainty

and complexity of a SoS environment. The literature review has shown there are no

entirely suitable solutions, and it highlighted the shortcomings of many existing

popular techniques. Therefore, a novel approach is required to establish and

maintain the behavioural thresholds. Additionally, a new viable approach is

required to analyse suspicious behaviour and determine its irregularity in a reliable

and accurate way, whilst ensuring this is conducted within an acceptable timeframe.

This approach also needs to adhere to the aims and objective set out in §1.2 and the

requirements outlined in §2.5.

This chapter proposes a novel framework for behavioural monitoring on SoS

components. The framework aspires to overcome the limitations of existing

approaches and provide efficient and effective behaviour monitoring, assisting both

SoS components and the SoS as a whole. The contents of this chapter are structured

as follows. A high-level overview of the framework is given in §4.1, whilst §4.2

provides a detailed explanation of its design. §4.3 provides an explanation of the

proposed framework’s runtime operation. §4.4 details the algorithms used to create

Chapter 4 – SSC Framework

 75

and maintain the behavioural thresholds. §4.5 presents the algorithms used to

quantify the level of misbehaviour. §4.6 outlines the statechart mechanism used to

reduce resource wastage during monitoring. §4.7 details the collaborative

behavioural monitoring and the algorithm used to enhance this setup. Lastly, §4.8

provides a summary of the framework.

4.1. SSC Framework

So far, this thesis has discussed in detail the extent of the limitations of existing

solutions and the challenges that are faced during SoS behavioural monitoring. In

order to combat this, a novel solution has been devised called the Secure System-of-

Systems Composition (SSC) Framework [163]. It is a behavioural monitoring

framework that has been specifically designed to monitor behaviour in a complex,

decentralised, distributed, uncertain and dynamic SoS environment. It focuses

exclusively on protection against component misbehaviour. This in turn helps to

protect the integrity and availability of individual component systems as well as the

integrity, availability and functionality of the SoS as a whole. The SSC framework

focuses on the detection of deliberate and accidental misbehaviour relating to the

SoS service contribution, including service resource utilisation (e.g. buffer overflow

attacks or exploitation of SoS interface weaknesses) and service availability (e.g. DoS

attacks).

SSC is a self-contained hybrid framework, which operates and resides on the host

component but also utilises collaborative monitoring features. Allowing the

framework to remain self-contained is an important feature as it allows components

to maintain their independency and addresses any concerns over third party control

or agenda. It has been designed to ensure it fulfils the requirements set out in §2.5

and that it causes limited intrusion, yet still achieves improved speed and efficiency.

This is to increase the potential SoS contribution can be obtained from components.

Chapter 4 – SSC Framework

 76

SSC uses a statistical approach to behavioural monitoring, utilising data throughout

different levels of abstraction. The framework resides on top of the OS, yet has the

capability to obtain data from, and to control lower-level OS functions, as illustrated

in Figure 7.

Figure 7. SSC Architectural Positioning

The SSC framework as proposed in [164] operates by monitoring the live behaviour

of the component system in real-time, against a set of pre-calculated time-referenced

behavioural threshold profiles. It monitors various OS-level metrics using both

categorical (activity distribution over metric categories) and ordinal (individual

metric values e.g. CPU usage) measures. These metrics and their usage are discussed

in detail in §4.3. Each monitored metric has its own time referenced threshold profile

that is calculated by the novel threshold calculation algorithm (as detailed in §4.4.2).

These profiles are specifically designed to cope with the dynamic behaviour

encountered in a SoS environment. By comparing live behaviour against these

profiles, subtle changes in behaviour that may indicate misbehaviour can be quickly

detected.

The framework is also able to refine these threshold profiles periodically, using the

novel threshold adaptation algorithm. This is in order to adapt the thresholds to

Chapter 4 – SSC Framework

 77

system evolution or changes. The adaptation process uses collaborative monitoring

to reduce the threat posed by training based attacks. By comparing threshold

adaptations against those of similar systems, anomalous adaptations can be easily

identified. Additionally, in order to improve efficiency and reduce resource wastage,

the number of metrics being monitored and the rate at which the monitoring occurs,

is controlled by a statechart dependent on the level of threat perceived by the

system.

As the SoS is so dynamic and diverse, behaviour that deviates from the calculated

thresholds is not immediately treated as misbehaviour. Instead, it is analysed using

the novel misbehaviour quantification algorithm (detailed in §4.5) which quantifies

the likelihood of the event being misbehaviour. This process uses the proposed novel

behaviourally related multivariate approach to selecting the data for analysis. In

turn, it enables the framework to make decisions regarding behaviour with greater

levels of accuracy. From this, the necessary corrective action to be taken by the

system can be determined, and the scores are also used in determining the overall

threat to the system. For serious, repetitive or uncertain behaviour, the framework

uses collaborative behavioural monitoring to compare behaviour with similar

component systems in order to improve monitoring accuracy.

4.2. SSC Framework Design Overview

Before explaining the details of the techniques involved in SSC, it is imperative to

have an understanding of the framework itself. This section will explain the overall

structure and design of the framework, whilst drawing reference to the illustrative

overview in Figure 8.

Chapter 4 – SSC Framework

 78

Figure 8. Illustrated Overview of the SSC Framework

Monitoring Module (*)

This module serves several purposes; firstly, it hosts the Data Logger, which gathers

training data from the component system prior to joining the SoS and stores it in the

Training Data database. This module also operates the main monitoring process that

constantly monitors metrics on the live system in real-time. It compares the live data

against the calculated behavioural profiles stored in the Threshold Profiles database,

whilst also storing this data in the Historical Data Store database. If any behavioural

deviations are detected, then this module reports them directly via an IPC queue to

the Decision Module.

It also hosts the Statechart Engine, which uses statecharts to govern the range of

monitored metrics and their sampling rates, depending on the threat level of the

system. The statechart engine is examined in detail in §4.6.

Chapter 4 – SSC Framework

 79

Training Data Database

This is a database containing all of the data gathered by the data logger during the

duration of the training period. This is used to calculate behavioural thresholds and

metric relationships.

Threshold Calculation and Adaptation Module

This module houses the novel threshold calculation algorithm, which is examined in

detail in §4.4.1 and the novel threshold adaptation algorithm, which is examined in

§4.4.3. It is therefore responsible for calculating and managing all of the metric

threshold profiles.

SoS Supplementary Service Level Agreement (S3LA) Module

This module is responsible for parsing the user created S3LA configuration file and

extracting values on behalf of other modules. When components join a SoS, their

owners know how much of their system they wish to contribute in terms of

resources, services and time. SSC requires system owners to describe the levels of

contribution, limitations and restrictions concerning the SoS, in an XML based file

(S3LA). An example XML S3LA configuration file is shown in Figure 9.

Figure 9. Example Excerpt of S3LA Configuration File

Chapter 4 – SSC Framework

 80

In the example shown in Figure 9, the contributions and restrictions for the

component whilst actively contributing to the "EvalSoS" SoS are defined. Under the

“metrics” tag, the minimum and maximum contributions have been stipulated for

all of the monitored system metrics. Under the “services” tag, details of the service

provisions to the SoS, and its limitations are defined. The “processRestrictions” and

“userRestrictions” tags define the respective restrictions, detailing those that should

indicate a problem if identified by the monitoring framework.

The S3LA is not strictly a service level agreement, in that it is neither enforceable nor

contractual. Instead, it provides a way of accurately describing the contributions

promised to the SoS as well as limitations and restrictions. All of this information is

essential in the calculation of the behavioural thresholds used to monitor the

component’s behaviour.

Threshold Profiles Database

This is a database containing all of the time referenced behavioural threshold

profiles for each metric, calculated by the Threshold Calculation module.

Historical Data Store Database

This is a round-robin database, storing the latest 10 days’ worth of observation

values for each metric, as observed by the main monitoring module.

Decision Module

When a behavioural deviation is detected on a metric, the event is reported to this

module. It calculates a score to quantify the level of misbehaviour associated with

the reported event, using the scale of 0 (normal) to 1 (misbehaviour). This score is

used by both the Statechart Engine (to assess the system threat level) and the

Implementation Module (to organise any required remedial action). Any decisions

made regarding behaviour will be handled by the novel behavioural decision

algorithm, which is examined in detail in §4.5.

Chapter 4 – SSC Framework

 81

Implementation Module

The misbehaviour score calculated by the Decision Module is used in this module to

determine whether it is necessary to implement an action. Actions are pre-defined by

the user and differ based on the score. The higher the behavioural irregularity, the

more severe the actions are, but they could range from ignoring the event to

disconnecting the component from the SoS.

MACCS Web Service

This is the mechanism used to provide collaborative behavioural monitoring to the

framework (as detailed in §4.7.1). As the web service is written in Java, it uses a JNI

interface to provide connectivity between the MACCS web service and the SSC

framework.

4.3. SSC Framework Run-time Operation

This section will provide a more detailed explanation as to the run-time operation of

the SSC framework. The operation can be simplified into five main phases, as

illustrated by the different colours in the runtime flowchart in Figure 10. This

flowchart only illustrates the successful run-time operation of SSC, as potential

failure points and their consequences are not considered.

Chapter 4 – SSC Framework

 82

Initial Startup
System

Training
Threshold

Calculation
Behavioural
Monitoring

Behavioural
Anomaly
Analysis

Threshold
Adaptation

Implement
Necessary

Action

Disconnect

Yes

Anomaly
Detected

No

Yes

No

Does threat
warrant

disconnection?

Is anomaly a
measurable risk?

Has threshold
expiry time been

reached?

Yes

No

Figure 10. SSC Runtime Flowchart

The initial start-up of the framework will trigger the system training to initiate, as

without this SSC cannot be used. Subsequent re-training should not be required

unless major changes are made to the system.

Setup Phase (Yellow)

In the setup phase, the host system undergoes a training period in which all of the

monitored metrics are observed for 10 days. During this time, the system will

continue its normal activities without being connected to the SoS. The data observed

during this training is stored in the Training Data database. It is assumed that at the

time of training the system is malware and fault free. The observation process may

sometimes affect metric values (e.g. RAM usage). In order to combat the

repercussions this may have, a compensation value is calculated and added to the

Chapter 4 – SSC Framework

 83

recorded value. This helps to ensure the accuracy of the training data but this

process could never be considered 100% accurate.

The 10-day duration for the training period was selected after experimentation

proved it offered the best compromise between threshold efficiency and storage

requirements. To evaluate this, different training durations of 1, 3, 5, 7, 10, 12 and 14

days were tried. Training data was collected for the specified duration and used to

calculate a threshold profile. This was repeated three times and the average

difference between the three profiles was calculated, in order to assess their

reliability and precision. The size of the database file that holds the training data was

also measured. This was repeated for each of the proposed durations and the results

obtained from this evaluation are detailed in Table 4 and illustrated in Figure 11.

Table 4. Results from the Training Duration Assessment

Duration of

Training (Days)

Avg. Difference for

Maximum Threshold

(%)

Avg. Difference for

Minimum Threshold

(%)

Training DB

Size (MB)

1 69.5 50 3.63

3 45.6 38.5 10.00

5 18.7 19.4 16.31

7 10.5 7.76 22.72

10 3.77 1.53 32.37

12 2.84 0.74 51.46

14 1.93 0.48 70.54

Chapter 4 – SSC Framework

 84

Figure 11. Comparison of Average Threshold Difference against Database Size

The results from this experiment highlight that the 10-day duration offers the most

advantageous balance between threshold efficiency and database storage

requirements. Using durations above 10 days offers little increase in accuracy for the

significant increase in storage space requirements. It must be noted that the 10-day

duration is specific to the test-bed configuration utilised throughout this research,

and is not a universal approach.

Monitoring Phase (Green)

In this phase, the system is monitored in real-time by comparing the live behaviour

of monitored system metrics against the corresponding pre-calculated behavioural

threshold profile. It uses both categorical (behaviour distribution throughout

categories) and ordinal measures (exact numerical changes) of these metrics. The

metrics cover five key areas of the system, which are Performance, Hardware,

Security, Trending and SoS interface. It has the use of 108 metrics spanning 11

categories, which are:

 Bandwidth

 CPU

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

1 3 5 7 10 12 14

D
B

 S
iz

e
(M

B
)

T
h

re
sh

o
ld

 D
if

fe
re

n
ce

 (
%

)

Duration (Days)

Training DB Size

Maximum Threshold

Difference

Minimum Threshold

Difference

Chapter 4 – SSC Framework

 85

 File System

 Interface

 Kernel

 Load

 Memory

 Physical

 Ports

 Processes

 Users

The selection of metrics used and the rate at which they are observed, is governed by

the state-engine, which assesses the present threat level posed by the system

behaviour. However, it requires a minimum of 46 metrics to maintain basic

functionality. As an example of the types of metrics utilised, some of the metrics in

the Memory category include ‘Free RAM’, ‘Used Swap’ and ‘Cache Size’. All of the

metric values in this example are calculated using the values extracted from

/proc/meminfo (more details about this are given in §5.2). The framework is able to

gather monitoring data from multiple levels of abstraction, meaning that greater

quantities of monitoring data and faster data collection speeds can be obtained.

Analysis Phase (Orange)

Once a behavioural deviation occurs, the event is reported and is examined using the

misbehaviour quantification algorithm. This process involves using various

statistical analysis, outlier analysis and data mining techniques to analyse both the

problem metric and those that have a statistically proven relationship with the

problem metric. The result is a score between 0 and 1 that indicates the level of

misbehaviour associated with that particular event. The score from this process is

used by the statechart engine as part of the process to measure the level of system

threat; it is also used to determine any relevant remedial action that is necessary.

Chapter 4 – SSC Framework

 86

Adaptation Phase (Blue)

As thresholds have a limited lifespan, the framework will periodically initiate a

review of the behavioural thresholds in order to determine whether they require

adaptation. This is in order to ensure that any system change or evolution is

reflected in the threshold profiles, thus ensuring their accuracy. These adaptations

are scheduled activities, the timing of which can be altered to suit the system; the

default schedule is on a weekly basis.

Action Phase (Red)

Once the score has been calculated in the Analysis Phase for a reported behavioural

event, it is then used in this phase to determine any necessary action. The user sets

preconfigured actions based on the nature of the metric and the severity of the score.

These actions can be graded into four severities:

 Negligible: Ignore the event as it is of little significance.

 Precautionary: Flag the event for closer monitoring or deploy minor

restrictions.

 Remedial: Attempt to resolve issues automatically, e.g. changing

configuration.

 Evasive: Take action to prevent threats from materialising or damaging the

system, e.g. stop service contributions, modify contributions or disconnect

from the SoS.

The diagrams in Figures 12 and 13 illustrate the run-time operation of the

framework.

Chapter 4 – SSC Framework

 87

Start
Monitoring

Historical
Data Store

Threshold

Has system
been trained?

Monitoring
Daemon

SoS
Disconnection

S3LA Parser

S3LA
Configuration

File

Yes

S2T
Statechart

Engine

Anomaly
Detected

Decision
Module

Implementation

No

Have
thresholds
expired?

Adapt
Thresholds

Training
(Figure 13)

Yes

No

State change
required?

Disconnection
Conditions Met?

Yes No

Yes

Is threat
detrimental?

No

Yes

Reconfigure
Monitoring

No

Figure 12. Illustration of the SSC Framework’s Main Runtime Process

Data Logger S3LA Parser

S3LA
Configuration

File

Training

S2T

Threshold
Calculation
Algorithm

End Training & Return to the
main process (Figure 12)

Threshold

Figure 13. Illustration of the SSC Framework’s Training Process

Chapter 4 – SSC Framework

 88

4.4. Behavioural Threshold Management

In order to ensure the accuracy and efficiency of SSC, and to lower the number of

false positives and false negatives produced, it is imperative that accurate thresholds

are utilised to monitor behaviour against. Given the problems with existing

approaches detailed in Chapter 3, custom threshold profiles and calculation

algorithms have been developed for SSC to create and manage its behavioural

thresholds. This section will provide a detailed insight into both the threshold

calculation algorithm in §4.4.1 and the threshold adaptation algorithm in §4.4.3.

4.4.1. Behavioural Threshold Creation

As previously discussed in §3.2.1, there are many difficulties to overcome when

creating behavioural thresholds for a SoS component. Predominantly this can be

attributed to the dynamics and uncertainty of the SoS environment. As deduced

from §3.2.1, statistical thresholds offer the best overall solution, but are not without

limitation. The novel threshold profile structure and threshold calculation algorithm

outlined in this section aspire to overcome the difficulties and limitations of existing

solutions.

The proposed threshold profile provides a temporal threshold for the behaviour of

system metrics for a twenty-four hour period. There is a high level of detail involved

in these profiles as they contain data for every ten seconds for every monitored

metric. This 10-second interval was selected for normal monitoring as it provides a

suitable balance between accuracy and storage requirements. The dynamic and

variable nature of the system means that longer intervals will reduce accuracy,

whereas shorter intervals consume excessive resources. Hence, producing week-long

profiles would result in excessively large profile sizes, which would yield little

additional benefit. The reasoning behind the twenty-four hour profile is based on the

fact that the additional storage costs did not outweigh the benefits. This does not

Chapter 4 – SSC Framework

 89

significantly affect the threshold accuracy as the proposed novel algorithm already

factors sufficient tolerance for base-system dynamics for off-peak activities into the

profile, and it is then refined with additional tolerance specifically for intensive

scheduled activities.

The proposed threshold profile is designed specifically with the dynamics of the SoS

in mind, and also the ease of threshold adaptation. The proposed profile structure is

illustrated in Figure 14. It consists of two sets of thresholds for each monitored

metric, which are defined as follows.

Soft SoS Thresholds (S2T): This threshold set details the anticipated normal

behaviour of the system whilst accounting for the promised contribution to the SoS

(as specified in the S3LA configuration file), as illustrated in Figure 14. This then

creates the minimum and maximum S2T threshold set for each sample point,

defining the expected normal system whilst contributing to the SoS.

Dynamically Adaptable Thresholds (DA): This threshold set extends the S2T

threshold to account for the expected level of data variability, as illustrated in Figure

14. This finalised threshold set is used for comparison against the live data.

Figure 14. Illustrative Example of SSC Threshold Profile

Chapter 4 – SSC Framework

 90

These thresholds enable the SSC framework to detect any behavioural anomalies

that may indicate misbehaviour relating to the SoS service contribution, including

service resource utilisation (e.g. buffer overflow attacks or exploitation of SoS

interface weaknesses) and service availability (e.g. DoS attacks).

The proposed threshold calculation algorithm calculates time referenced threshold

profiles, detailing each metric’s behavioural thresholds, according to the actual time

elapsed during the current twenty-four hour period. The algorithm was developed

for SSC to create its threshold profiles by combining both parametric and non-

parametric techniques. This combination allows the limitations associated with the

both parametric and non-parametric techniques to cancel each other out. The

limitation of parametric techniques is the use of Gaussian assumptions, which can be

overcome by integrating non-parametric techniques that do not rely on any

distribution assumptions. Additionally, the limitation of non-parametric techniques

is the comparatively lower level of accuracy, which can be overcome by utilising the

more accurate parametric techniques.

The threshold calculation algorithm uses the training data stored in the Training Data

database to create a behavioural threshold profile for each metric. This process is

split into three steps: averaging, S2T creation and DA creation.

 Averaging: For this first step, the training data that spans 10 days is averaged

to produce a single twenty-four hour profile (as is used by SSC). This data

provides an average representation of behavioural usage of the base-system.

This can then be built upon to create the threshold profiles.

 S2T Creation: The S2T thresholds are created by making several improvements

to the averaged dataset. For each observation made during the training

process, the deviation across the 10 samples taken (one per training day) is

calculated. By using triple this deviation value and the contribution amount

specified in the S3LA file, the threshold pair (minimum and maximum)

Chapter 4 – SSC Framework

 91

defining the upper and lower boundaries can be calculated. This enables the

profile to account for dynamics associated with the base-system and the

promised SoS contributions. This is considered as the parametric part of the

threshold creation.

 DA Creation: The DA thresholds are created by improving the S2T thresholds

to account for additional dynamics and off peak resource intensive activities.

This involves reviewing the training data against the newly created S2T

thresholds. For each observation point in the training data (spanning across

the 10 days), the data that is above the corresponding maximum S2T threshold

and below the minimum S2T threshold is split into subsequent groups. For

each group, the mean absolute deviation from the respective S2T threshold is

calculated, as is the standard deviation. These two values are then added to

(maximum) or deducted from (minimum) the corresponding S2T threshold

value. This is considered as the non-parametric part of the threshold creation.

This process is repeated for all of the system metrics that are used during the

monitoring process.

4.4.2. Threshold Calculation Algorithm

This section provides a detailed explanation of the threshold calculation algorithm,

with the aid of mathematical formulae.

Firstly, the ten days’ worth of training data gathered during the training process

must be averaged for every metric. This is because the threshold profiles are highly

detailed twenty-four hour based time-referenced (i.e. they detail every 10 seconds

throughout an entire day) profiles. This process will provide an average of the

system’s normal metric usage, taking into account any off-peak activities such as

updates. This averaging process is shown in equation (2), where A is the created

mean value dataset, m is the monitored metric, i is the time point (i.e. the time of

Chapter 4 – SSC Framework

 92

data collection), P is the training data (as defined in equation (1)) and j is the training

day.

𝑃 = {𝑃𝑚,𝑗,𝑖: 𝑚 ∈ ℕ, 1 ≤ 𝑗 ≤ 10, 𝑖 ∈ ℝ} (1)

𝐴𝑚,𝑖 =
∑ 𝑃𝑚,𝑗,𝑖

10
𝑗=1

10
 (2)

The maximum S2T threshold (𝑆𝑋𝑚,𝑖) for each metric is then calculated by combining

the average dataset with the maximum SoS contributions (as defined in the S3LA),

which essentially defines the static behaviour of the system (i.e. no dynamics). Triple

the standard deviation of the metric is also added and this serves two main

purposes: Firstly, it reduces the effect that any discrepancies in the training data

would have on the averaging process. Secondly, tripling the standard deviation is

used in this approach as the data is assumed to be Gaussian (the parametric part of

the threshold creation), meaning 99% of normal data should be within three

standard deviations [143] of the mean. By using this approach, it is able to build an

adequate tolerance towards the normal base system activities (i.e. excluding

dynamics) into the thresholds. This is shown in (3), where m is the metric, i is the

time point, 𝐶𝑋𝑚
 is the maximum contribution value (as defined in the S3LA file) and

σm,i is the standard deviation of metric m at time i, across the 10 days of training data.

𝑆𝑋𝑚,𝑖 = (𝐴𝑚,𝑖 + 𝐶𝑋𝑚
) + 3𝜎𝑚,𝑖 (3)

The minimum S2T threshold (𝑆𝑁𝑚,𝑖
) for each metric is then calculated in the same way

by combining the average dataset with the minimum SoS contributions (defined in

the S3LA) and triple the standard deviation of the metric. This is shown in (4), where

𝐶𝑁𝑚
 is the minimum contribution value (as defined in the S3LA file).

𝑆𝑁𝑚,𝑖
= (𝐴𝑚,𝑖 − 𝐶𝑁𝑚

) − 3𝜎𝑚,𝑖 (4)

Chapter 4 – SSC Framework

 93

The results from both equations (3) and (4) produce the S2T threshold set, which

details the theoretical expected static behaviour of the system whilst contributing to

the SoS.

To calculate the DA thresholds for the profile, it is necessary to analyse the original

training data to observe any values that are outside of either of the S2T thresholds.

This process is undertaken for every monitored metric. The values identified are

then added to the relevant group list with 𝑀𝑈𝑚
 for data above the maximum S2T

threshold and 𝑀𝐿𝑚
 for data below the minimum S2T threshold. This process is shown

in equations (5) and (6) for the respective groups. Here, P is the training dataset, m is

the monitored metric, i is the time point and n is the training set size of 8640 (24 x 60

x 6).

𝑀𝑈𝑚
= {𝑃𝑚,𝑖 ∈ 𝑃: 𝑖 ∈ ℤ, 1 ≤ 𝑖 ≤ 𝑛, 𝑃𝑚,𝑖 > 𝑆𝑋𝑚,𝑖} (5)

𝑀𝐿𝑚
= {𝑃𝑚,𝑖 ∈ 𝑃: 𝑖 ∈ ℤ, 1 ≤ 𝑖 ≤ 𝑛, 𝑃𝑚,𝑖 < 𝑆𝑁𝑚,𝑖

 } (6)

The final part of the DA threshold calculation is shown in equations (7-10), in which

the DA maximum threshold (𝐷𝑋𝑚,𝑖
) and the DA minimum threshold (𝐷𝑁𝑚,𝑖

) are

calculated. This process involves calculating the mean absolute deviation between

the values contained the two groups (MU or ML) and their respective S2T thresholds

(SX or SN). This calculates the average difference between threshold and profile

values, in order to determine how much adjustment is required to compensate for

dynamic variance (peaks or troughs outside of normal behaviour) in the behaviour.

The standard deviation is used to combat any undesired effects that a rogue training

value can have on the averaging process. Here, 𝜎𝑀𝑈𝑚
/𝜎𝑀𝐿𝑚

 is the standard deviation

of the values in the respective group, i is the time point, m is the monitored metric, c

is a count, k is the function shown in equation (11) that maps the position of the data

within the respective group to the corresponding time point in the respective

Chapter 4 – SSC Framework

 94

threshold, EU is the number of elements in set MU and EL is the number of elements

in set ML.

𝑑𝑋𝑚,𝑖 =
1

𝐸𝑈
∑(𝑀𝑈𝑚,𝑐

− 𝑆𝑋𝑚,𝑘(𝑐)) + 𝜎𝑀𝑈𝑚

𝐸𝑈

𝑐=0

 (7)

𝐷𝑋𝑚,𝑖
= 𝑆𝑋𝑚,𝑖 + 𝑑𝑋𝑚,𝑖 (8)

𝑑𝑁𝑚,𝑖
=

1

𝐸𝐿
∑(𝑆𝑁𝑚,𝑗

−𝑀𝐿𝑚,𝑘(𝑗)
) + 𝜎𝑀𝐿𝑚

𝐸𝐿

𝑐=0

(9)

𝐷𝑁𝑚,𝑖
= 𝑆𝑁𝑚,𝑖

+ 𝑑𝑁𝑚,𝑖
 (10)

𝑘:ℤ → ℤ (11)

The values (known as the DA threshold pair) produced by this algorithm are stored

in the Threshold Profile database and are used by SSC to monitor the live system.

Each threshold profile is entirely unique to the system on which it has been created.

These profiles are able to efficiently cope with the dynamics associated with the SoS

environment and reduce the number of false readings.

4.4.3. Behavioural Threshold Adaptation

One of the main problems faced by behavioural monitoring solutions operating in a

SoS is the limited lifespan of calculated behavioural thresholds. Their premature

expiration can normally be attributed to either system changes or evolution. These

system changes often include modifications to the contributions, roles and base-

system. All of which can affect the overall behavioural characteristics, therefore

reducing the effectiveness of the calculated behavioural thresholds. In order to

combat this problem, SSC uses a novel threshold adaptation algorithm, which offers

Chapter 4 – SSC Framework

 95

an automated approach for periodically reviewing trending behavioural patterns

and adapting the DA thresholds (§4.4) to account for them.

As outlined in §4.4, each threshold profile consists of four separate thresholds; these

are S2T maximum, DA maximum, S2T minimum and DA minimum. The DA

threshold pair defines the limits of tolerated behaviour; outside of these, behaviour

is considered as misbehaviour. The S2T thresholds are the ideal normal behaviour of

the system. As Figure 15 illustrates, this approach creates two behavioural zones,

which house the behaviour that is outside of the ideal norm but not outside the

tolerated limits. These two zones provide essential data for assessing the behavioural

trends on the system.

Figure 15. Illustration of an Example Threshold Profile

The threshold adaptation algorithm calculates the required adaptation by assessing

behavioural trends using live and recent historical data that lie between either S2T

maximum and DA maximum (Zone 2 in Figure 15) or S2T minimum and DA

minimum (Zone 1 in Figure 15). To do this, the algorithm examines the quartile

distribution of values across both Zone 1 and Zone 2. This is used to determine

whether the distribution is Gaussian (normal), and if not the level of DA threshold

adaptation required to correct this is calculated. However, as a security feature,

thresholds cannot be adapted above the S2T minimum or below S2T maximum

values. This is so that any malfunctions or even attacks cannot reduce the thresholds

Chapter 4 – SSC Framework

 96

to an extent that would dramatically increase the levels of false positives or false

negatives, or harm the system’s functionality.

The algorithm is described as a quartile distribution normalisation technique, which

works by first measuring the difference between the corresponding S2T and DA

threshold values at the relevant sample point. This difference is split into four equal

quartiles (Q1, Q2, Q3 and Q4) and the upper boundary limits of these quartiles are

calculated. This part of the process assumes the quartile distribution is Gaussian,

therefore 25% of the data lying between the two corresponding thresholds (i.e. S2T

maximum and DA maximum or S2T minimum and DA minimum) should be below

Q1 and above Q3. If this is found not to be the case, then threshold adaptation is

required. If more than 25% of the data lies in either Q1or Q3, this indicates that the

DA threshold needs to be lowered or raised respectively. Using the maximum

behavioural threshold as an example, Figure 16 illustrates a non-Gaussian quartile

distribution between the two thresholds.

Figure 16. Illustrative Example of Non-Gaussian Distribution

As Figure 16 illustrates, there is more than 25% of data above the Q3 limit value, and

the majority of data is therefore trending towards the DA threshold value. This

indicates a trending increase in data values and it is therefore necessary to raise the

DA threshold. In order to calculate the exact amount by which to raise the DA

threshold, all of the data points in the zone are first sorted into ascending order. The

Chapter 4 – SSC Framework

 97

data points then need to be partitioned into three groups based on their quartile

distribution, these groups are Lower (data between S2T threshold and Q1 limit) Middle

(data between Q1 limit and Q3 limit) and Upper (data between Q3 limit and DA

threshold). In order to partition this data, the quartile limit values need to be

calculated.

The distribution of quartiles can be expressed as percentages (i.e. Q1 is 25% and Q3 is

75%), hence calculating the location of the quartile limits in the ordered dataset is

possible using the total number of data entries. In the example given in Figure 17,

there are 9 data entries, so the quartile location for Q1 would be data entry number

2.5 (0.25*9) and for Q3 would be data entry number 7.5 (0.75*9). To calculate the

actual quartile limit, the values that are stored at these data entries are used.

However, there are no data entry values corresponding to either 2.5 or 7.5.

Therefore, the quartile limit values are found by calculating the median of the values

belonging to the two closest data entries. For the example shown in Figure 17, the Q1

limit is found by calculating the median of the two values that fall each side of 2.5

(i.e. 4 and 6) and the Q3 limit uses the values that fall each side of 7.5 (i.e. 14 and 16).

Figure 17. An Example Quartile Calculation

The calculated Q1 and Q3 limit values are deducted from those Q1 and Q3 values for

the existing thresholds (or vice versa depending on which quartile does not

conform). These differences provide values that represent the level of behavioural

Chapter 4 – SSC Framework

 98

change that has occurred, which should be reflected in the thresholds. The two

difference values are then added together, which creates the value by which the DA

threshold is adjusted (in this example it is raised), thus re-establishing the Gaussian

quartile distribution of values, as illustrated in Figure 18.

Figure 18. Illustrative Example of Gaussian Distribution

4.4.4. Threshold Adaptation Algorithm

In this section, the process behind the threshold adaptation algorithm is explained

using mathematical formulae. The algorithm operates in two parts; firstly, analysis is

undertaken to ascertain whether any adaptation is necessary. If adaptation is

required then the level of required threshold change is calculated. To avoid

confusion, this section will first discuss the adaptation calculation for the DA

maximum threshold and then for the DA minimum threshold.

The first step in the threshold adaptation algorithm is to ascertain the first quartile

(Q1) and the third quartile (Q3) of the zone between the DA maximum and S2T

maximum. The equations for calculating the quartile boundaries are shown in

equations (12) and (13). Here, 𝐷𝑋𝑚,𝑖
 is the DA maximum threshold, 𝑆𝑋𝑚,𝑖 is the S2T

maximum threshold, m is the monitored metric and i is the time reference.

𝑄1 =
3

4
𝑆𝑋𝑚,𝑖 +

1

4
𝐷𝑋𝑚,𝑖

 (12)

Chapter 4 – SSC Framework

 99

𝑄3 =
1

4
𝑆𝑋𝑚,𝑖 +

3

4
𝐷𝑋𝑚,𝑖

 (13)

Now that the quartile boundaries have been calculated, the data (the values in Zone

2 in Figure 15) needs to be classified into three groups to measure quartile

distribution, as shown in equation (14). These three groups indicate the quartile

groups in which the data is located, i.e. QL contains data from Q1, QF contains data

from Q2 and Q3 and QU contains data from Q4. In equation (14), Hm is the data

obtained from both the live system and recent historical data (all data gathered after

the last threshold adaptation), 𝑆𝑋𝑚,𝑖 is the S2T maximum threshold, 𝐷𝑋𝑚,𝑖
 is the DA

maximum threshold, m is the metric and i is the time reference.

𝑄𝐿 = {𝐻𝑚,𝑖: ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛,𝐻𝑚,𝑖 > 𝑆𝑋𝑚,𝑖, 𝐻𝑚,𝑖 ≤ 𝑄1}

𝑄𝐹 = {𝐻𝑚,𝑖: ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛,𝐻𝑚,𝑖 > 𝑄1, 𝐻𝑚,𝑖 ≤ 𝑄3}

𝑄𝑈 = {𝐻𝑚,𝑖: ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛,𝐻𝑚,𝑖 > 𝑄3, 𝐻𝑚,𝑖 ≤ 𝐷𝑋𝑚,𝑖
}

 (14)

The quartile distribution of the data must be checked for Gaussian conformity, to

determine the level of adaptation required to the DA threshold. In equation (15), QL

is checked to confirm it contains no more than 25% of data, otherwise the threshold

is lowered. By lowering the threshold, the range between the S2T and DA thresholds

decreases, which lowers the quartile boundaries and rebalances the quartile

distribution. It also checks that QU contain no more than 25% of the data, otherwise

the threshold is raised and by following a similar principle, the quartile distribution

can be rebalanced. Here, Zm is a master group conglomerating the contents of the QL,

QF and QU groups, Yr() and Yl() are functions (shown in equations (16) and (17)

respectively) to calculate the level of threshold adaptation, Hm is the data gathered

after the last threshold adaptation and 𝐷𝑋′
𝑚,𝑖

 denotes an updated 𝐷𝑋𝑚𝑖
.

Chapter 4 – SSC Framework

 100

𝐷𝑋′
𝑚,𝑖
=

{

𝐷𝑋𝑚,𝑖

+ 𝑌𝑟() 𝑖𝑓(|𝑄𝑈𝑚
| ≥ 0.25|𝑍𝑚|)

𝐷𝑋𝑚,𝑖

− 𝑌𝑙() 𝑖𝑓(|𝑄𝐿𝑚
| ≥ 0.25|𝑍𝑚|)

𝐷𝑋𝑚,𝑖

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (15)

The Yr() function calculates the necessary adaptation to adequately raise the DA

threshold as shown in equation (16). The value used to adapt the threshold value is

calculated by finding the total difference between the existing threshold quartile

limits and the new data quartile limits. Here, Q1 and Q3 are the quartile limits

calculated earlier in equations (12) and (13), median() is a function that returns the

median value of two data samples, 𝑒𝑡= 0.75|Zm|(75% of the current dataset) and 𝑒𝑓=

0.25|Zm|(25% of the current dataset).

𝑌𝑟: ((median (𝐻𝑚,⌊𝑒𝑓⌋
, 𝐻𝑚,⌈𝑒𝑓⌉

) − 𝑄1) + (median(𝐻𝑚,⌊𝑒𝑡⌋
, 𝐻𝑚,⌈𝑒𝑡⌉

) − 𝑄3)) (16)

The Yl() is the function used to lower the DA threshold as shown in equation (17)

and follows the same methodology as the previous function. The only exception is

that because the new threshold quartile values will be larger than the existing values,

they are deducted (rather than the other way round as in equation (16)).

𝑌𝑙: (

(Q 1 −median (𝐻𝑚,⌊𝑒𝑓⌋
, 𝐻𝑚,⌈𝑒𝑓⌉

)) + (Q 3 − median(𝐻𝑚,⌊𝑒𝑡⌋
, 𝐻𝑚,⌈𝑒𝑡⌉

)))

 (17)

So far, this section has explained how to adapt the DA maximum threshold. It will

now explain how to adapt the DA minimum threshold; the reasoning and

methodologies are largely the same, except for several small differences.

In equations (18) and (19) the boundaries for the first quartile (𝑄𝑎1
) and the third

quartile (𝑄𝑎3
) are ascertained. Here, 𝐷𝑁𝑚,𝑖

 is the DA minimum threshold, 𝑆𝑁𝑚,𝑖
 is the

S2T minimum threshold, m is the monitored metric and i is the time reference.

Chapter 4 – SSC Framework

 101

𝑄𝑎1
=
1

4
𝑆𝑁𝑚,𝑖

+
3

4
𝐷𝑁𝑚,𝑖

 (18)

𝑄𝑎3
=
3

4
𝑆𝑁𝑚,𝑖

+
1

4
𝐷𝑁𝑚,𝑖

 (19)

The data from Zone 1 (previously illustrated in Figure 15) is classified into three

groups (𝑄𝑎𝐿
, 𝑄𝑎𝐹

 and 𝑄𝑎𝑈
) to measure quartile distribution, as shown in equation

(20). Here, Hm is the data obtained from both the live system and recent historical

data (all data gathered after the last threshold adaptation), 𝑆𝑁𝑚,𝑖
 is the S2T maximum

threshold, 𝐷𝑁𝑚,𝑖
 is the DA maximum threshold, m is the metric and i is the time

reference.

𝑄𝑎𝐿
= {𝐻𝑚,𝑖: ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛,𝐻𝑚,𝑖 > 𝐷𝑁𝑚,𝑖

, 𝐻𝑚,𝑖 ≤ 𝑄𝑎1
}

 𝑄𝑎𝐹
= {𝐻𝑚,𝑖: ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛,𝐻𝑚,𝑖 > 𝑄𝑎1

, 𝐻𝑚,𝑖 ≤ 𝑄𝑎3
}

 𝑄𝑎𝑈
= {𝐻𝑚,𝑖: ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛,𝐻𝑚,𝑖 > 𝑄𝑎3

, 𝐻𝑚,𝑖 ≤ 𝑆𝑁𝑚,𝑖
}

 (20)

The quartile distribution of the data is checked for Gaussian conformity, to

determine the level of adaptation required to the DA threshold, as shown in

equation (21). In the equation, 𝑄𝑎𝐿
 is checked to confirm it contains no less than 25%

of data (otherwise the threshold value is lowered) and that 𝑄𝑎𝑈
contains no more

than 25% of data (otherwise the threshold value is raised). Here, 𝐷𝑁′
𝑚𝑖

 is an

updated 𝐷𝑁𝑚𝑖
, 𝑍𝑎𝑚

 is a master group conglomerating the contents of the 𝑄𝑎𝐿
, 𝑄𝑎𝐹

and

𝑄𝑎𝑈
 groups, and 𝑌𝑎𝑟

() and 𝑌𝑎𝑙
() are the functions used to calculate the threshold

adjustment values (shown in equations (22) and (23) respectively).

𝐷𝑁′
𝑚𝑖
=

{

𝐷𝑁𝑚𝑖

+ 𝑌𝑎𝑟
() 𝑖𝑓 (|𝑄𝑎𝑈𝑚

| ≥ 0.25|𝑍𝑎𝑚
|)

𝐷𝑁𝑚𝑖

− 𝑌𝑎𝑙
() 𝑖𝑓(|𝑄𝑎𝐿𝑚

| ≥ 0.25|𝑍𝑎𝑚
|)

𝐷𝑁𝑚𝑖

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (21)

Chapter 4 – SSC Framework

 102

This technique follows the same principle as the calculation for the maximum

threshold but has several small differences. Equations (22) and (23) show the 𝑌𝑎𝑟
 and

𝑌𝑎𝑙
 functions. Here, 𝑄𝑎1

 and 𝑄𝑎3
 are the quartile limits calculated earlier in equations

(18) and (19), median() is a function that returns the median value of two data

samples, 𝑒𝑎𝑡 = 0.75|𝑍𝑎𝑚
| and 𝑒𝑎𝑓 = 0.25|𝑍𝑎𝑚

| .

𝑌𝑎𝑟
: (

(median (𝐻
𝑚,⌊𝑒𝑎𝑓 ⌋

, 𝐻
𝑚,⌈𝑒𝑎𝑓 ⌉

) − 𝑄𝑎1) + (median (𝐻𝑚,⌊𝑒𝑎𝑡⌋
, 𝐻𝑚,⌈𝑒𝑎𝑡⌉

) − 𝑄𝑎3
))

 (22)

𝑌𝑎𝑙
:
(

(

𝑄𝑎1
− median (𝐻

𝑚,⌊𝑒𝑎𝑓 ⌋
, 𝐻

𝑚,⌈𝑒𝑎𝑓 ⌉
))

+ (𝑄𝑎3
− median (𝐻𝑚,⌊𝑒𝑎𝑡⌋

, 𝐻𝑚,⌈𝑒𝑎𝑡⌉
)))

 (23)

This proposed algorithm allows the behavioural thresholds to be adapted based on

currently trending behaviour. This is an essential requirement for SSC, due to the

dynamic and evolving nature of a SoS, with particular reference to emerging

behaviour. It is important to note that although this approach can resolve the issue of

outdated thresholds causing high false positive and false negative rates, it in turn

makes the thresholds vulnerable to exploitation by training based attacks. To combat

this issue, SSC implements a collaborative behavioural monitoring mechanism,

which is outlined in §4.7.

4.5. Misbehaviour Quantification

The large number of dynamic variables in the SoS environment results in component

behaviour also becoming highly dynamic, unpredictable and difficult to monitor.

Therefore, when component behaviour deviates from its established thresholds, this

does not automatically indicate misbehaviour. Initiating responses that treat events

as such would be a highly inefficient method of operation. Instead, each behavioural

event that deviates from its corresponding threshold must be analysed in detail to

reliably quantify the potential misbehaviour. Given the limitations of existing

Chapter 4 – SSC Framework

 103

approaches (as outlined in Chapter 3), SSC uses a proposed novel misbehaviour

quantification algorithm.

The proposed misbehaviour quantification algorithm expresses the level of

misbehaviour associated with a behavioural deviation as a real score. The algorithm

performs a comprehensive two-stage analysis in order to calculate this score. The

first stage ascertains the average level of change in key behavioural characteristics of

the problem metric (the metric on which the deviation has been observed). The

second stage analyses the extent to which the data at the time of the reported

deviation is considered an outlier in relation to existing data. This second stage is

also repeated for “other” metrics on the system. The results from both phases are

combined to produce the final misbehaviour score. This algorithm has been

specifically designed for use with SSC in a SoS environment, so it is able to offer an

improved accuracy of misbehaviour detection on SoS components.

The selection of “other” metrics used in the outlier analysis is an important process,

as incorrect selection can drastically affect the accuracy of the results. In SSC, this is

handled by the proposed behaviourally related selection approach. The

methodology behind the approach is that behaviourally related metrics exhibit

varying degrees of behavioural similarity. Therefore, by examining their response to

a behavioural event, it is possible to ascertain whether the behaviour of a particular

metric is warranted. This process is largely dependent on the strength of the

relationships between metrics, which is calculated using a correlation coefficient

algorithm, as detailed in §4.5.1. An overview of the entire quantification process is

illustrated in Figure 19.

Chapter 4 – SSC Framework

 104

Behavioural Anomaly Detected
on metric m at time t

Identify Related Metrics
for m by determining
which metrics have a
relationship score > 0

Conduct outlier
analysis for related

metric

Weight and
combine values

Weight outlier score
using relationship

score

All related
metrics

analysed?

Yes

Statistical Analysis of
m’s behavioural

characteristics at time t

Extract outlier score
for data at time t

No

Final quantification
score

* Relationship weighting table is pre-
calculated upon initial framework setup*

* Relationship weighting table is pre-
calculated upon initial framework setup*

Figure 19. Illustrative Overview of the Misbehaviour Quantification Process

The remainder of the section will explain the pre-requisites and detail the operation

of the algorithm.

Chapter 4 – SSC Framework

 105

4.5.1. Behavioural Relationship Weighting Values

The accuracy of the results produced by the outlier analysis is highly dependent

upon the metrics utilised. These metrics need to be carefully selected based on their

relevancy and ability to represent the system behaviour. The incorrect selection of

metrics can drastically alter the results, which is why SSC uses a novel approach

whereby metrics are selected based on the strength of their behavioural relationship.

The calculation of these behavioural relationship weighting values is a prerequisite

of the misbehaviour quantification algorithm.

The idea behind using behavioural relationships is that the more similar the

behavioural patterns are between two metrics, the more likely they will endure

similar behaviour in the future. Therefore, metrics with a behavioural relationship

can provide reliable indicators as to the presence of a problem. For example, CPU

usage is closely related to RAM usage, and if RAM usage rapidly increased

uncharacteristically, the examination of CPU usage would indicate whether a similar

increase has occurred thus signifying the probability of a real problem. The stronger

the relationship between the metrics, the more likely the metrics would change in a

similar way and therefore the more significant these observations are. In some

circumstances, this can help distinguish bad from good behaviour but

predominantly it is used to indicate the likelihood of a problem.

The relationship weighting values are calculated using the training data gathered

from all monitored system metrics prior to joining a SoS. Obviously, the training

data provides a perspective of the system during normal operation and cannot

foresee any metric relationships that may form as the result of SoS changes or rare

occurrences on the system. It is therefore assumed that the training has taken place

with the system correctly configured, no attacks have occurred, and no malware

currently resides on the system. The behavioural relationship calculation measures

the behavioural correlation of each metric in turn, against all of the other monitored

Chapter 4 – SSC Framework

 106

metrics. A behavioural relationship refers to an existence of a positive correlation

between the behaviour of two system metrics. The strength of the relationship

reflects the degree of similarity in the behavioural patterns exhibited on two metrics.

The Kendall’s Tau-c correlation coefficient [165] is used to calculate these

relationship values by measuring the association between two metrics and testing

for statistical dependence. The proposed work originally used the Kendall’s Tau-b

technique, which is designed for square datasets (i.e. same number of columns as

rows). However, as the number of metrics and training data increased during SSC’s

development it was necessary to utilise Kendall’s Tau-c instead, which is a variant

specifically designed for larger and non-square datasets. It produces a coefficient

value between -1 (100% negative association) and 1 (100% positive association) to

represent the strength of the correlation. This method is utilised as it is considered an

effective non-parametric association test for ordinal data, and is considerably quicker

to calculate than similar methods. In SSC, the difference in the units used to measure

each of the metrics means that their scales can differ drastically, therefore a non-

parametric association test is the most suitable. Kendall’s Tau-c was selected over

other techniques including Pearson’s coefficient (as this uses actual data which is

inefficient in this application where the scales differ greatly), and Spearman’s

coefficient (as the confidence intervals are less reliable and less interpretable than

Kendall’s Tau [166]).

To calculate Kendall’s Tau-c, two metrics are required and two observations need to

be made on each. Suppose these metrics are X and Y and the observations are i and j,

this would be represented as Xi, Yi and Xj, Yj. The numbers of concordant and

discordant pairs are then calculated. For a pair to be concordant, the observations

must move in the same direction on both metrics (e.g. Xi < Xj and Yi < Yj or Xi > Xj and

Yi > Yj). For a pair to be discordant, the observations must move in opposite

directions on both metrics (e.g. Xi < Xj and Yi > Yj or Xi > Xj and Yi < Yj). The Kendall’s

tau correlation coefficient (𝜏𝐶) equation is shown in (24). Here, vo is the number of

Chapter 4 – SSC Framework

 107

concordant pairs, vw is the number of discordant pairs, v is the total number of

observations and z is equal to the smallest value out of the number of columns and

the number of rows in the dataset used.

𝜏𝐶 = (𝑣𝑜 − 𝑣𝑤) ∗ (

2𝑧

(𝑣2(𝑧 − 1)))

 (24)

These behavioural relationship weighting values are used extensively in the

misbehaviour quantification algorithm. Firstly, they are used to select the metrics

that have a behavioural relationship with a particular metric and should therefore be

used in the outlier analysis. Additionally, when these metrics have been analysed,

their values are used to weigh the results, based on the strength of relationship and

therefore the importance of the results produced.

4.5.2. Calculating the Misbehaviour Score

Once a behavioural deviation is detected by SSC, it is the responsibility of the

algorithm proposed in this section to calculate the level of misbehaviour associated

with the event. This level of misbehaviour is expressed as a score, which is a real

value based on a scale between 0 and 1 (where 0 is normal and 1 is misbehaviour).

Ultimately, this process decides the level of threat the event poses to both the

component and the SoS.

The term “problem metric” features prominently in these explanations, and it is a

term used to refer to the metric on which the behavioural deviation has been

detected. The algorithm explanation is split into the following three subsections:

§4.5.2.1 explains the statistical analysis of the problem metric, §4.5.2.2 explains the

outlier analysis of a given metric and §4.5.2.3 outlines how the final score is

produced using the analyses undertaken in the previous subsections.

Chapter 4 – SSC Framework

 108

4.5.2.1. Statistical Analysis of Problem Metric

The first phase of the algorithm is the statistical analysis of key behavioural

characteristics of the problem metric in order to assess the level of behavioural

change. It calculates the level of change between the reported value of the problem

metric and recent data, historical data, corresponding behavioural thresholds, event

occurrence frequency and the average value by which the thresholds have been

historically exceeded. These statistical tests and their corresponding formulae are

detailed in the following explanations. Throughout these formulae, B represents the

problem metric and j represents the time count at which the problem was detected.

In equation (25) the relative change between the reported data at time count j and

the last recorded data value of the problem metric is calculated (T1). Here, ∆𝑡 is the

time delta. This score is used to represent how significantly the data between these

two critical points has changed.

𝑇1 =
𝐵𝑗 − 𝐵𝑗−1

𝐵𝑗−1
∆𝑡 (25)

In equation (26) the relative change between the mean value of the retained historical

data and the current data is calculated (T2). This score represents how significantly

the current value differs from the historical average of normal observed values.

𝑇2 =
𝐵𝑗 − �̅�

�̅�
 (26)

In equation (27) the relative change between the current data and the corresponding

threshold value that has been exceeded is calculated (T3). Here, 𝐷𝑁𝐵,𝑗
is the minimum

threshold and 𝐷𝑋𝐵,𝑗
 is the maximum threshold. This score represents the extent that

the reported data deviates from its respective threshold.

Chapter 4 – SSC Framework

 109

𝑇3 =

{

 𝐷𝑁𝐵,𝑗

− 𝐵𝑗

𝐵𝑗
 𝑖𝑓 𝐵𝑗 < 𝐷𝑁𝐵,𝑗

𝐵𝑗 − 𝐷𝑋𝐵,𝑗

𝐷𝑋𝐵,𝑗

 𝑖𝑓 𝐵𝑗 > 𝐷𝑋𝐵,𝑗

 (27)

In equation (28) the frequency of which the problem metric exceeds its

corresponding threshold (T4) is calculated. Here, 𝑠𝑋 is the number of values from the

problem metric exceeding the minimum threshold, 𝑠𝑁 is the number of values from

the problem metric exceeding the maximum threshold, and O is the total number of

recorded observation values. This score represents the regularity of which the

threshold is exceeded by the metric. A regularly occurring deviation is less likely to

indicate misbehaviour than a one off occurrence.

𝑇4 =
{

1 − (

𝑠𝑁
𝑂
) 𝑖𝑓 𝐵𝑗 < 𝐷𝑁𝐵,𝑗

1 − (
𝑠𝑋
𝑂
) 𝑖𝑓 𝐵𝑗 > 𝐷𝑋𝐵,𝑗

 (28)

In equation (29) the relative change between the problem metric value and the

average value of previous events that have deviated outside of the threshold (T5) is

calculated. Here, 𝐺𝑁𝑘
is a group containing a list of recorded values that exceed the

minimum threshold, 𝐺𝑋𝑘
 is the same for those exceeding the maximum threshold,

ℎ = |𝐺𝑁𝑘
| which indicates the total number of entries for the 𝐺𝑁𝑘

 group, 𝑐 =

|𝐺𝑋𝑘
| which indicates the total number of entries in the 𝐺𝑋𝑘

 group and k is an iterative

value. This score provides a quantification of how the current metric value's

deviation compares to that of historical deviations. This measurement can identify

how a problem relates to any previous occurrences (i.e. increasing, decreasing or

remaining the same), which can be crucial in identifying its severity.

Chapter 4 – SSC Framework

 110

 𝑇5 =

{

(

∑ (𝐺𝑁𝑘

)ℎ
𝑘=1

ℎ)

−𝐵𝑗

𝐵𝑗
 𝑖𝑓 𝐵𝑗 < 𝐷𝑁𝐵,𝑗

𝐵𝑗 − (

∑ (𝐺𝑋𝑘

)𝑐
𝑘=1

𝑐)

(

∑ (𝐺𝑋𝑘

)𝑐
𝑘=1
𝑐)

 𝑖𝑓 𝐵𝑗 > 𝐷𝑋𝐵,𝑗

 (29)

Combining the results produced by each of the previously discussed statistical tests,

greatly improves the overall statistical power and effectiveness at expressing the

level of change in key behavioural characteristics. However, in situations where one

test result is significantly different than the others, the combined value can often

suppress the magnitude of this difference (i.e. it will lower the score). This is why the

proposed approach features hypothesis conformity weighting, which penalises the

combined value based on the level of unconformity of the test results to a

hypothesis. In this approach, the hypothesis is that the observed behaviour is

normal, in which case each of the test values should be equal to 0 (indicating normal

behaviour). The further each of the test results lie from their hypothesised 0 value,

the greater the penalisation inflicted on the combined value.

The first step in measuring the hypothesis conformity is to calculate the t-statistic for

the test results using a heteroscedastic t-test. Unlike traditional student t-tests, a

heteroscedastic t-test does not assume that there are equal variances between

variables in the datasets, which is a trait essential for the dynamic SoS environment.

The Welch-Aspin t-test is used in this proposed approach, as it is the most well-

established heteroscedastic t-test. The formula to calculate the t-statistic t is shown in

equation (30), where T is the set of actual results from the tests, E is the expected

hypothesised results from the tests (meaning it is equal to 0), V is the sample

variance, and d is number of datum in each dataset (as they are both the same size).

Chapter 4 – SSC Framework

 111

𝑡 =
�̅� − �̅�

√

𝑉𝑇
2

𝑑
+
𝑉𝐸
2

𝑑

(30)

The two-tailed p-value represents the consistency between the statistical tests results

and the hypothesised results. The calculation of the p-value is shown in equation

(26), where n is degrees of freedom, Γ is the gamma function and t is the t-

distribution score produced in equation (31).

𝑝 =
Γ (
𝑛 + 1
2

)

√𝑛 ∙ 𝜋 Γ (
𝑛
2
)
 ∫(1 +

𝑥2

𝑛
)

−(
(𝑛+1)
2

)

𝑑𝑥

𝑡

−∞

 (31)

The resultant p-value can now be used as the penalisation weighting value, which

reflects the conformity of the tests results to the expected results. Therefore, data

with less conformity would have a greater p-value, thus increasing the overall score

value further from 0 (which indicates normal behaviour).

The calculation of the final value for this analysis phase a is shown in equation (32).

This combines each of the statistical tests’ results T and applies the hypothesis

conformity penalisation weighting value p.

𝑎 = (
∑ 𝑇𝑘

5
𝑘=1

5
) + 𝑝 (32)

4.5.2.2. Outlier Analysis of Related Metrics

The second phase of the algorithm seeks to measure the extent to which the data

occurring at the reported time could be considered an outlier of existing data.

During this outlier analysis, both current and historical datasets are used. This

outlier measure is universal and can therefore be applied to any metric, allowing for

easy comparisons. In this approach the Local Outlier Probability (LoOP) algorithm

[167] is used to calculate the probability of each data point being an outlier of the

Chapter 4 – SSC Framework

 112

whole dataset. The LoOP algorithm is based on the concept of local density and

identifies anomalous data points by measuring the “outlierness” with respect to k

neighbours.

Previous designs of SSC used a k-means clustering approach [168] to identify outliers

and measured their extent using the Euclidean distance. However, during further

evaluation, it was identified that this technique was causing instable misbehaviour

quantification scores. This was due to the dynamic nature of the datasets used in the

outlier analysis and the value of k that was used. Fortunately, one of the main

benefits of using the LoOP algorithm is that it uses inexpensive local statistics to

make it less sensitive to the initial k value set.

The LoOP algorithm is used to analyse a given dataset and it assigns each data point

a score indicating the probability that it is an outlier of the set, based on comparisons

with k neighbours. An example of this is illustrated in Figure 20, where datum that

are further from the majority of their neighbours are assigned higher value scores

indicating a higher probability of being an outlier.

Figure 20. Illustration of Example LoOP Results

The following equations show how the method proposed in this thesis interacts with

the LoOP algorithm [167]. The l() function shown in equation (33) is used to return a

LoOP score that represents the outlier probability between an entire dataset Dg for a

Chapter 4 – SSC Framework

 113

given metric g and a single entry from the dataset at time j. Here, F is the conversion

from raw data to the required k-neighbourhood (as outlined in the following

explanations).

𝑙(𝐷𝑔, 𝑗) ≔ 𝐿𝑜𝑂𝑃 (𝐹(𝐷𝑔, 𝑗)) (33)

However, before the LoOP algorithm can be used the dataset must be converted into

a k-neighbourhood, represented by F. To do this, the Euclidean distance between the

single entry and every other member of the dataset must be calculated and stored in

a vector, as shown in equation (34). Here, n is the dataset size, v is a vector, y is an

iterative value and the upper bar represents the Euclidean distance.

∀𝑦 ∈ {0…𝑛} ∙ 𝑣𝑔[𝑦] = (𝐷𝑔,𝑗𝐷𝑔,𝑦
̅̅ ̅̅ ̅̅ ̅̅) (34)

Next, the k-neighbourhood is built by selecting the closest k neighbouring data

values based on the radius surrounding the single entry. In order to do this, all the

members contained in vector v must be sorted in ascending order based on their

Euclidean distance value. This is shown in equation (35), where edist() is a function

to sort the vector members based on their Euclidean distance value and 𝑍𝑔 is the new

sorted vector.

𝑍𝑔 = 𝑒𝑑𝑖𝑠𝑡(𝑣𝑔) (35)

Next, the k nearest data values are assigned from the sorted vector to a new

container for the remainder of the LoOP calculation and the radial centre is also set.

These processes are shown in equations (36) and (37) respectively. Here, t is an

iterative value, k is the number of neighbours to be used in the LoOP calculation (the

proposed solution uses 5), S is the k-neighbourhood container, c is the radial centre

of the set (i.e. the value assigned to Dg,j), Zg is the sorted vector and q() is a function

used to map the Euclidian distance value within the vector to an integer that

represents its position within the original dataset, as shown in equation (38).

Chapter 4 – SSC Framework

 114

𝐹(𝐷𝑔, 𝑗) ≔ ∀𝑇 ∈ {1…𝑘 + 1} ∙ 𝑆𝑇 = 𝐷𝑔,𝑞(𝑍𝑔,𝑇)
 (36)

𝑆𝑐 = 𝐷𝑔,𝑞(min{𝑍𝑔})
 (37)

𝑞:ℝ → ℤ (38)

The LoOP [167] score calculation is shown in equation (39), which produces the

outlier probability score, which is close to 0 for points within dense regions and close

to 1 for density-based outliers. Here, S is the newly created k-neighbourhood, c is the

centre of this set (i.e. the value assigned to Dg,j), λ is a normalisation factor, PLOF is

the Probabilistic Local Outlier Factor (its calculation is shown in equation (41)),

nPLOF is the aggregate value obtained from the computation of PLOF (its calculation

is shown in equation (40)) and erf is the Gaussian error function.

𝐿𝑜𝑂𝑃(𝑆) ≔ max {0, erf(
𝑃𝐿𝑂𝐹𝜆,𝑆,𝑆𝑐

𝑛𝑃𝐿𝑂𝐹∙√2
)} (39)

The nPLOF is used to normalise and convert the PLOF value into a probability value,

and is shown in equation (41), where E is a container for expected values.

𝑛𝑃𝐿𝑂𝐹 ≔ 𝜆 ∙ √𝐸[
(𝑃𝐿𝑂𝐹𝜆,𝑆,𝑆𝑐)

2
] (40)

PLOF is the Probabilistic Local Outlier Factor, which calculates the ratio of the

estimation for the density around c which is based on S, and the expected value of

the estimations for the densities around all objects in the set S. This process is shown

in equation (41) where PSD is a function defined in equation (42).

𝑃𝐿𝑂𝐹𝜆,𝑆,𝑆𝑐 ≔ (
𝑃𝑆𝐷(𝜆,𝑆𝑐,𝑆)

𝐸𝑠∈𝑆[𝑃𝑆𝐷(𝜆,𝑆𝑐,𝑆)]
) − 1 (41)

The PSD function calculates the Probabilistic Set Distance that estimates the density

around c based on set S, as shown in equation (42) where σ is a function defined in

equation (43).

Chapter 4 – SSC Framework

 115

𝑃𝑆𝐷(𝜆, 𝑆𝑐, 𝑆) ≔ 𝜆 ∙ 𝜎(𝑆𝑐, 𝑆) (42)

The sigma (σ) function is used to calculate the standard distance between each

member of set S. This function is shown in equation (43) where |S| is the size of set S

and d() is a function used to measure Euclidean distance.

𝜎(𝑆𝑐, 𝑆) ≔
√

∑ 𝑑(𝑆𝑐, 𝑆)
2

𝑠∈𝑆

|𝑆|
 (43)

The equation in (44) shows how the function b() is used to calculate the outlier

analysis score for a given metric. It also shows how the value returned from the l()

function is multiplied by the weighting value that represents the relationship

strength between the specified metric and the problem metric (§4.5.1). Thus, the

value is weighted according to its significance in measuring misbehaviour on the

problem metric. In equation (44), Dg is the dataset for the given metric g, i is the

problem metric ID, j is the time of the reported behavioural problem, 𝜏𝐶 is the

relationship weighting value and l() is the function (defined in equation (33)) used to

return the relevant LoOP score.

𝑏(𝐷𝑔, 𝑖, 𝑗) ≔ 𝑙(𝐷𝑔, 𝑗) × 𝜏𝑐𝑖,𝑔 (44)

4.5.2.3. Calculating the Final Score

The final score is used to quantify the misbehaviour associated with a particular

event. This is achieved by using the two analysis stages outlined in the previous

subsections.

In the outlier analysis phase (§4.5.2.2), each metric that is related to the problem

metric is analysed and an average is taken. Related metrics are those with a

statistically proven relationship, whose weighting value (as calculated in §4.5.1),

whilst paired against the problem metric, is greater than 0. Behaviourally related

Chapter 4 – SSC Framework

 116

metrics exhibit some degree of similarity in their behavioural patterns. The greater

the strength of the behavioural relationship (as calculated in §4.5.1), the greater the

likelihood that behavioural patterns will be replicated. Disparity between the

behaviour of a metric and that of its related metrics indicates a higher probability of

misbehaviour. Unlike existing approaches, unrelated metrics are not used and can

therefore not dilute the severity of the calculated misbehaviour quantification. This

approach enables a better overall view of the system and greater accuracy in

calculation value.

Equation (45) shows how the final score is calculated; firstly, the outlier analysis

function (defined in equation (44) in §4.5.2.2) is called for every potential metric and

an average is taken. However, the use of the relationship weighting values ensures

that the average only accounts for those metrics with a relationship score greater

than 0 when paired with the problem metric. The value returned from the statistical

analysis of the problem metric (defined in equation (32) in §4.5.2.1) is then added.

It is possible that the results of some of the previously defined statistical tests can

force the final score value outside of the scale (0 - 1) used by SSC. Hence, the max()

function is used to cap the score value at 1, as values outside of this scale offer no

additional benefit to either the operation of the framework or quantification of

misbehaviour.

As shown in equation (45), the two parts of the misbehaviour quantification process

are weighted 40:60. This is because the values produced by the first part (§4.5.2.1) are

noticeably larger than that of its counterpart (§4.5.2.2). Therefore, by weighting the

values from both parts it reduces the bias when they are combined to produce the

final score. The 40:60 weighting ratio was selected by experimenting with various

ratios to find which offered the least average variance between the two parts.

In equation (45), R is the final score, i is the problem metric ID, j is the time at which

the problem occurred, g is an incremental potential metric ID value, n is the total

Chapter 4 – SSC Framework

 117

number of metrics, b() is the outlier function, 𝜏𝑐 is the relationship weighting score

between two metrics and a is the value returned from the statistical analysis of the

problem metric.

𝑅𝑖 = max

(

(

(

∑ (

1

|𝜏𝑐𝑖 > 0|
(0.6 × 𝑏(𝐷𝑔, 𝑖, 𝑗)))

0≤𝑔≤𝑛
𝜏𝑐𝑖,𝑔>0

)

+ (0.4 × 𝑎)

)

, 1

)

 (45)

In order to aid the understanding of this section, the equation shown in (46) provides

an overall summary of the entire quantification process presented in §4.5.

𝑅𝑖,𝑗 = 𝑚𝑎𝑥 (0.4 (𝑎𝑣𝑒 (𝑇𝑛𝑖,𝑗) + 𝑝) +

 +0.6 (𝑎𝑣𝑒(𝑏(𝐷𝑔, 𝑚, 𝑗): 𝜏𝑐(𝑔, 𝑖) > 0)) , 1)
(46)

Where:

𝑅𝑖,𝑗 is the calculated score for the problem metric ID i at time j,

ave() is the average function,

𝑇𝑛𝑖,𝑗 is the value for the nth statistical analysis test for metric i at time j,

p is the p-value for the statistical analysis tests,

g is an incremental metric ID,

b() is the function returning the weighted LoOP value,

Dg is the dataset for the metric g,

𝜏𝐶(𝑔, 𝑖) is the relationship strength between metrics g and i.

This resultant score quantifies the level of overall misbehaviour that is associated

with the reported behavioural deviation. The score is used to categorise the severity

and risk of the behaviour based upon its positioning on the scale, where a score less

than 0.3 indicates normal behaviour. This score is of significant importance and is

utilised by the remainder of the SSC framework. The combination of techniques used

Chapter 4 – SSC Framework

 118

in this approach offers a vastly superior level of accuracy than those achievable

using existing approaches.

4.6. Using Statecharts to Control Monitoring Resource

Usage

The lack of efficient security and trust mechanisms in a SoS environment has

resulted in monitoring becoming increasingly relied upon as a primary form of

security. Unfortunately, the use of host-based monitoring systems (including SSC)

often results in both performance (e.g. time taken for computations) and resource

costs (e.g. CPU and RAM usage). These incurred costs are highly dependent on the

configuration and setup of the monitoring system and the capabilities of the host.

Nevertheless, in a SoS, the contribution and availability of resources for use by

contributed services are fundamental in establishing the desired levels of

functionality. For example, in small and highly demandable components such as

sensors, the high resource consumption of monitoring solutions can lead to loss of

performance, functionality or other complications such as power drainage (in battery

operated sensors). This can lead to complications concerning both the component

system as a single entity and the entire SoS. It is therefore imperative to ensure that

host-based misbehaviour monitoring is as effective, yet minimally parasitic on

resources and performance as possible. Ensuring that monitoring does not

significantly affect a SoS component’s level of contribution or its ability to contribute

is essential.

One of the main difficulties in host-based monitoring is establishing an optimal

balance between the required level of security and the incurred system overheads.

For each system, there are many factors to be considered when introducing a

security monitoring system, but even more so in a dynamic and uncertain system. If

this balance is misjudged, it can easily lead to unnecessary overheads or inadequate

Chapter 4 – SSC Framework

 119

monitoring. The majority of existing solutions are unable to meet all of the complex

requirements of monitoring a SoS environment. These solutions often utilise a fixed

approach to monitoring, in terms of the number of metrics needed to function and

the rate at which these are sampled. This can have a dramatic impact on resource

utilisation and the performance of the component. Deciding which of the component

system’s metrics to include, and when to do so, is a difficult task especially as roles,

system load and system behaviour can change dramatically. This is often why

existing solutions adopt an overcautious approach, which leads to unnecessary

performance and resource overheads. This then reduces the potential contribution a

component system can make or is able to handle.

In order to reduce the resource consumption, the SSC framework utilises the

proposed statechart controlled approach to monitoring the system. The approach

aspires to both improve the performance and reduce the resource wastage on SoS

component systems, whilst not jeopardising its efficiency. It involves the use of

statecharts to provide automated adjustments to the selection of metrics being

monitored and their sampling rate, all of which occurs in accordance with the real-

time level of threat perceived by the system. This section will provide a detailed

examination of the proposed methodology.

Choosing which metrics to monitor on a system is a difficult process. It involves

ensuring a balance between meaningfulness, indicative characteristics, monitoring

efficiency and system overhead. Often solutions adopt an overcautious approach,

which in some situations may be beneficial, but not on a SoS component. System

metrics are generally chosen for their ability to indicate a problem or a change of

status on a system. However, occasionally additional metrics are also monitored for

various other reasons. Some of these include requiring a more detailed analysis

when a particular problem occurs, ensuring the nonrepudiation of critical metric

values or more comprehensive monitoring in a weak area of the system. Often, there

are no added benefits to monitoring these additional metrics, until a triggering event

Chapter 4 – SSC Framework

 120

occurs on the system. In the meantime, the observation of these metrics could be

deactivated until they were required. An example of such a scenario is the

monitoring of system memory, which is conducted using two main metrics (total

memory and free memory). High-level monitoring would focus exclusively on free

memory, which is a dynamic value and provides an adequate indication of current

memory usage. The total memory value on the other hand is highly unlikely to

change and regularly monitoring would be of little benefit and would waste both

resources and time. If the free memory value was to surpass its threshold due to a

physical fault or sophisticated malware (which also affects the total memory), the

lower-level monitoring would be activated, which would then include the total

memory value. The monitoring of the total memory value would then allow the

problem to be easily located. In normal system operations, there would be no

additional benefit to using the lower-level monitoring and the additional metric

could be deactivated until required.

The proposed statechart based approach involves integrating a statechart engine into

the core of the SSC framework, as illustrated earlier in this chapter in Figure 8. The

engine uses statecharts to control the framework and automate the task of adjusting

the selection of monitored metrics. These adjustments include the range of metrics

being monitored for each categorical group and the rate at which these metrics are

sampled. These adjustments are designed to change the depth of monitoring to

reflect the real-time perceived threat level of the host system, as SoS components will

endure many unpredictable changes. Therefore, by allowing the monitoring of

additional metrics to be activated and deactivated, they would only be utilised when

they are beneficial to the system. This approach ensures an effective balance between

the required security, depth of monitoring and resource consumption is maintained.

The proposed statechart engine uses four different states, NORM, LOW, HIGH and

DISC (these are explained in detail later in this section), to denote the current system

threat level. Each state is assigned a specified set of usable metrics from each

Chapter 4 – SSC Framework

 121

categorical group and a sampling rate. Behavioural feedback is constantly gathered

from the misbehaviour quantification algorithm, when it analyses reported

behavioural deviations. Depending on the value of the score produced, this can be

categorised as a high risk (1.00 - 0.60), low risk (0.59 - 0.31) or ineligible (0.30 – 0.00)

score. This scale was devised by observing the scores produced whilst simulating

attacks of varying magnitudes and dynamic SoS interactions. The engine uses these

scores to assess the current system threat level, and to raise or lower the threat level

when required (as illustrated in Figures 23 and 24). The higher the threat level

becomes, the more detailed the monitoring becomes, using a greater number of

metrics at a higher sampling rate.

The behavioural feedback of the system is split into various groups, whereby each

monitored metric belongs to a particular group, based on what they are observing

(e.g. bytes sent and bytes received belong to the bandwidth group). The success of

this approach relies on the flexibility and accuracy of the engine configuration,

which currently uses a highly customisable and easily updatable XML configuration

file. An example configuration excerpt is shown in Figure 21, where the bandwidth

group and its limits, timeout value and members are defined. Group limits (shown

in Figure 21 as *h and *l, where * denotes each of the states) are fixed limits of how

many low and high scores a group can possess in each state at any time. The timeout

value specifies the length of time that a score is recorded against the group. It acts as

a mechanism that allows some tolerance towards small behavioural deviations

(which is to be expected in such a dynamic system) and allows the system to return

to a lower state if such behaviour desists.

Chapter 4 – SSC Framework

 122

<groupid=0,name=”bandwidth”,noMembers=10,NORMh=2,NORMl=3,

 LOWh=2,LOWl=3,HIGHh=2,HIGHl=3,timeout=10>

<metric id=0,name=”bytesSent”,activeStates=”NORM,LOW,HIGH”/>

<metric id=1,name=”bytesRcvd”,activeStates=”NORM,LOW,HIGH”/>

< … />

</group>

Figure 21. Example XML Configuration Excerpt

The data from the configuration file is used by the framework to generate an array,

which details every monitored metric (as illustrated by the UML diagram in Figure

22). Low and high scores are stored in the respective array along with their expiry

time. A clean-up process run by the engine removes any expired scores thus

allowing the statechart engine to keep current track of each group.

Figure 22. Structure of Metric Array Entry

Explanations of the four system states used in the proposed method are as follows:

NORM: The system behaviour is normal, with no metrics possessing high or low

scores (it will tolerate scores between 0.00 and 0.30). The minimum number of metric

observations is used, and the sample rate is set to 1 second.

LOW: The system behaviour is a low risk, with one or more metrics possessing low

scores (between 0.31 and 0.59), but the number of scores is below the respective

limit. An increased number of more detailed metric observations are used, and the

sample rate is increased to 0.75 second.

HIGH: The system behaviour is a high risk, with one or more metrics possessing a

number of high scores (between 0.60 and 1.00) that remain below the respective

Chapter 4 – SSC Framework

 123

limit. Additionally, if the number of low scores exceeds a metric’s respective limit, it

will be upgraded to a high risk. All available metric observations are used, and the

sample rate is increased to 0.5 second.

DISC: The system behaviour is a severe risk, with one or more metrics possessing a

number of high scores that exceed the respective limit. The behaviour is considered

too dangerous for the component to be participating in the SoS. An overall system

snapshot is taken, so further analysis can be conducted, and the component system

is disconnected from the SoS. The monitoring process is then suspended, pending

further investigation, thus requiring a manual reset to re-join the SoS.

Generally, once a group limit is reached, it causes the system state to rise to the next

state. However, the exception to this is in the NORM state, as when the high limit is

reached the system will move to the HIGH state (as shown in Figures 23 and 24). If

considerable risk is detected, the system will keep raising the state until it is placed

in the DISC state.

A UML diagram illustrating the statechart used to control SSC’s monitoring

configuration is shown in Figure 23. It shows how changes in system behaviour

trigger different state changes, based on the behavioural feedback provided by the

quantification scores of the system. When the number of scores reaches the

respective low or high limit the state level will rise (thus increasing the system

monitoring). However, these scores are only valid for a finite amount of time (this

differs between metric groups) and as such, they will be removed as shown by the

“Score Timeout” process in Figure 23. The flowchart illustrated in Figure 24 provides

an easier to follow logical overview of the statechart engine process described in this

section.

Chapter 4 – SSC Framework

 124

Figure 23. SSC Threat Level UML Statechart

Chapter 4 – SSC Framework

 125

Figure 24. Flow Chart of the State Engine Process

Chapter 4 – SSC Framework

 126

4.7. Collaborative Behavioural Monitoring

Collaborative behavioural monitoring (CBM) is an approach to monitoring that is

often used in distributed, decentralised and dynamic environments. The term

reflects the collaboration between independent components to accomplish the goal

of monitoring for behavioural abnormalities. In these environments, there are

usually high levels of uncertainty and unpredictability as well as no authority or

behavioural definitions with which to make comparisons. In this situation, the use of

CBM is the most reliable method of either detecting or clarifying behavioural

irregularities.

The process of CBM involves establishing a small subgroup of component systems,

which can collaborate by assisting each other in the identification of anomalous

behaviour. The behaviour of each member of the subgroup is used as a reference,

with which another component can compare its own behaviour. It is often used to

compare experienced behaviour for the purposes of verification (e.g. ensuring that

the encountered behaviour is similar) or validation (e.g. analysing behaviour and

ensuring a similar decision can be reached). This therefore can provide greater

accuracy and certainty when identifying misbehaviour or threats and can provide a

way of sharing information in order to prevent them. It also means that there is no

dependence on a central server, it is unaffected by scalability issues and can operate

fully given the unknown availability of components.

However, the main problem with this approach is ensuring that appropriate

components are selected to form the CBM subgroup. Each component is essentially a

self-contained entity, it does not have any knowledge regarding the entire structure

of the SoS, nor does it have knowledge regarding the capabilities of its fellow

components. Given the heterogeneity, geographical distribution and large scale of a

SoS, there is potentially a myriad of components to consider when establishing a

CBM subgroup. There are also many different factors to be taken into consideration,

Chapter 4 – SSC Framework

 127

including response time, network distance and levels of similarity. The accuracy of

the results produced by CBM are highly dependent on the similarity of the

behavioural characteristics, configuration, capability and roles of the component

systems. If unsuitable CBM components are selected, then the repercussions of this

can be detrimental. Additionally, in relatively static environments the selection of

CBM components could be achieved as a manual process. However, in a SoS, the

components can join, leave and modify their contribution instantly, rendering any

manual selection process extremely inefficient. Additionally, SoS components that

utilise SSC’s threshold adaptation algorithm will be susceptible to training based

attacks, which the proposed approach detailed in §4.7.1 aims to resolve.

As previously outlined, the main problem with CBM approaches is that if the initial

component selection is incorrect, then the results produced are relatively

meaningless. In consequence, these incorrect results can be used to incorrectly

classify behavioural irregularities. The majority of existing approaches are based on

either a distance value or a cost associated with particular components.

Figure 25. Example CBM Scenario

Chapter 4 – SSC Framework

 128

In Figure 25, the web server (circled in red) represents the component wanting to

form a CBM group. The rest of the systems in the diagram have varying roles (e.g.

file server, web server and mail server) and capabilities. Using existing approaches

such as distance based selection (selected components are circled in blue) do not

always form the most appropriate CBM, as the nearest components are not

necessarily the most behaviourally similar. Another technique used is a score

function (e.g. time) (selected components are circled in purple) and it is obvious that

given the heterogeneity and scale of the SoS, the highest scoring functions are not

necessarily the most similar.

If the components selected using these approaches were to be used, the CBM would

yield highly inefficient results due to vast behavioural differences. Instead, a more

robust method is required, whereby a comprehensive similarity check is performed.

Traditionally this selection would be a manual process. However, given the dynamic

nature of the SoS and that changes can occur at any time, this would be a time-

consuming process requiring constant reconfiguration.

The following sections describe the Most Applicable Collaborative Component

Selection (MACCS) solution used in SSC, as presented in [169]. They detail the

proposed solution for forming CBM groups and the calculation of component

similarity.

4.7.1. MACCS Method

This section will explain the proposed method used by SSC, called MACCS. The

method refines the selection of components identified by a Distance Based

Distributed Lookup Protocol (DBDLP) [161] to select the most appropriate

components to engage in CBM. It helps to overcome the problems that arise from

existing ineffective CBM component selection. MACCS allows users to filter and

refine components identified based on behavioural similarity criteria.

Chapter 4 – SSC Framework

 129

Prior to the MACCS method being initiated, three key values need to be set by the

user. These are as follows.

Number of Collaborative Components (k): This is the minimum number of other

components that the user stipulates to be used in collaborative monitoring. In order

to facilitate redundancy, the minimum accepted value is 3.

Number of components in initial DBDLP search (n): This indicates the initial

number of components to be searched for by DBDLP and processed by MACCS.

This is a changeable value so that is can reflect the size of the system.

Tolerance Threshold (h): This is a value between 0 and 1 that indicates the

minimum MACCS score that is required for a component to be considered for CBM.

Again, this is a user defined value, so it can be changed to suit the size or diversity of

the system. For example, in a larger system the tolerance threshold can be more

specific as there are a greater number of potential components but in a smaller

system the scarcity of components means the threshold needs to be more

ambiguous.

The MACCS method works by searching the SoS by using a DBDLP from the host

component (illustrated as a black node in Figure 26). The DBDLP searches for the

nearest n components, where n is the number of components set by the user in the

initial DBDLP search. The DBDLP used by this approach is based on [161] and

allows the identification of geographically close components. The returned

components (illustrated as white nodes in Figure 26) are used by the MACCS

method to calculate similarity scores. If an insufficient number of components have

been found with similarity values above the set tolerance threshold h, then the

DBDLP searches again but the value of n is doubled. Each search will examine

further into the system until the stipulated number of components are found (as

illustrated in Figure 26). On the rare occurrence that similar components cannot be

Chapter 4 – SSC Framework

 130

found, the MACCS method will issue an error, prompting users to alter either the k

or h value.

Figure 26. Illustration of MACCS Process

The flexibility of the method allows the component selection process to be tuned to

reflect the number and diversity of components in the SoS. Figure 27 is a flowchart

illustrating the high-level process of the MACCS method.

Start Selection

Analyse n identified
components using
MACCS algorithm

Are k
components above

h?

Double n value

NO

Return list of
components

ordered by MACCS
score

YES Exit
Are any MACCS

scores the same?
NO

Return list of
components

ordered by MACCS
score and then by

role sub-score

YES

Set k, n and h
values

Run DDLP for n
components

Figure 27. MACCS Flowchart

The similarity score used in the method is calculated by measuring the similarity of

four measures (roles, contribution, capabilities and network cost) as outlined in

§4.7.4. A similarity sub-score for each of these groups is calculated and these scores

are averaged to calculate an overall similarity score for the component. This score

indicates the level of similarity and therefore the suitability of each component to

Chapter 4 – SSC Framework

 131

engage in CBM with the host component. The score generated is on a scale from 0 to

1, where 0 is dissimilar and 1 is identical.

4.7.2. Similarity Measures

Many factors should be considered when identifying prospective components with

which to engage in CBM. It is a necessity that components exhibit some

characteristic similarities; otherwise, the results obtained from monitoring will be

meaningless. This section will outline the key characteristics that the proposed

method uses to assess the level of similarity between components. It is important to

understand that in such a diverse environment, it is unlikely that any two systems

will be identical. These measures are used to assess how closely related the system

characteristics are, e.g. a system with 4GB of RAM shares more similarity with a

system using 6GB rather than one with 1GB. The key characteristics considered by

the proposed method are detailed below.

Roles

Component systems in a SoS usually take on the responsibilities of either a single or

multiple role(s). These roles can vary drastically in terms of their function,

computational requirements and the load placed on the component system.

Therefore, component behaviour is highly influenced by the roles that a component

system performs. For example, on an identically equipped component, a highly

desirable or reliable service would result in different behaviour than that of a

common or unreliable service. It is imperative that behavioural comparisons drawn

between components occur on those that share a particular role, and therefore

theoretically endure a similar process and behavioural outcome. It is also important

to consider that components performing multiple roles are more likely to exhibit

differing behaviour. Hence, the similarity between both the roles performed and the

number of roles performed is one of the most important factors when measuring

component similarity.

Chapter 4 – SSC Framework

 132

Capabilities

The level of heterogeneity in a SoS means that components of all sizes and

capabilities can participate. In the context of this work, capabilities refer to both the

physical attributes of a system, such as the processor speed and available memory as

well as the software attributes, e.g. web server software. It is important that when

behaviour is compared, this occurs between systems with similar capabilities. For

example, behavioural comparison between a behavioural spike on a mainframe

server running a full Apache Tomcat server and an Android smartphone running an

embedded Mongoose web server, would produce relatively meaningless results.

Promised Contribution

Measuring promised contribution is also essential, as there is no ratio or agreement

between a component’s capabilities and SoS contributions. This is predominantly

due to restrictions pertaining to the involvement in other SoSs and other external

roles. In the context of this work, promised contribution refers to the amount of

allocated resources and the services that have been promised to the SoS. There

cannot be any assumptions made that because system capabilities are similar,

contribution will also be similar. This is why it is also an important factor considered

in a similarity calculation.

Network Cost

The network cost is another significant factor to consider, as not only are SoSs highly

distributed over vast geographical areas but CBM is essentially a real-time activity,

and any potential network delays can affect the real-time response. In terms of this

work, the network cost measures the potential waiting time for a response when

using a particular component. There are two main parts to this network cost, the

network distance and the response time.

Network distance can influence the cost of using a particular component, as the

greater the distance, the greater the potential for latency and delay. In this work, the

Chapter 4 – SSC Framework

 133

distance between component systems is measured using the number of hops (the

number of intermediary devices the packet is handled by) required for a packet to

reach its destination component. Distance provides an excellent indicator as to the

potential for delay, which could be incurred by using a particular component. For

example, a component requiring 10 hops to reach is more vulnerable to delay and

latency than a component requiring only 2 hops.

Response time is the second factor used in network cost; it measures in milliseconds

the time taken from a request being sent, to a reply being received. This provides a

measure of the responsiveness of the component and the potential waiting period

during the CBM process.

It is important that these two measures are used in conjunction with each other to

form the network cost. This is because the benefits of one measure may easily

outweigh the disadvantage of another. For example, a component with a greater

distance value may be able to offer a vastly superior response time than that of a

component with a lower distance value.

Whilst searching for behaviourally similar SoS components, it is essential to account

for those attributes that can define or influence behaviour, which is why the factors

discussed in this section are used. Of course, there are many other factors that could

be considered but the idea behind this approach is to provide a quick yet efficient

means of identifying potential components to collaborate with. By focusing on these

key characteristics, this establishes a balance between effectiveness and speed.

4.7.3. MACCS Similarity Calculation Overview

This section will outline the calculation process used by the MACCS method to

produce the similarity score, which represents the level of similarity between two

components. For the MACCS calculation to work efficiently, the assumption is made

that component systems are using a SoS-wide naming convention for describing

Chapter 4 – SSC Framework

 134

roles, capabilities and contributions, and that they are measured using the same

units on all systems.

The following sections feature the terms host and target. To clarify these terms, host is

the component running MACCS that is seeking components for CBM collaboration.

The target is a prospective component in the system that has been identified for

similarity analysis, and may be used in the future for CBM collaboration. In the

following processes, the vector space model is used, which allows datasets to be

represented as vectors.

Roles: Only target components offering at least one shared role with the host

component will be considered by the MACCS method. The roles offered by both the

host and target components are converted into two frequency-of-occurrence vectors.

This signifies the number and availability of roles offered by each component. The

similarity between these two vectors is measured using cosine similarity to produce

the sub-score.

Capabilities: The capabilities of both the host and target component are converted

into two frequency-of-occurrence vectors. This signifies the number and availability

of capability attributes. The similarity between these two vectors is measured using

the cosine similarity; this then produces the weighting value. The values for each of

the capabilities that are shared between both the host and target components are

assigned into two vectors. The similarity between these two vectors is calculated,

which represents the similarity between each pair of values and then this is

multiplied by the weighting value. Multiplying by the weighting value penalises the

similarity value for every capability that is not shared.

Contributions: The contributions of both the host and target components are

converted into two frequency-of-occurrence vectors. This signifies the number and

availability of contribution attributes. The similarity between these two vectors is

measured using cosine similarity; this then produces the weighting value. The

Chapter 4 – SSC Framework

 135

values for each of the contributions that are shared between both the host and target

components are assigned into two vectors. The similarity between these two vectors

is calculated, which represents the similarity between each pair of values and then

this is multiplied by the weighting value. Multiplying by the weighting value

penalises the similarity value for every metric that is not shared.

Network Score: Vectors for both the host and target components are created; the

vectors contain the values for the network distance and response time. In the case of

the host component, both of these values are set to 1. The reason for this is that 1 is

the value for both the distance and response times when a component contacts itself.

The cosine similarity between the two vectors is then calculated representing the

similarity between the network scores.

Cosine similarity is extensively used in the MACCS method. It provides an accurate

method of measuring similarity between two vectors. It measures the cosine angle

between two vectors of an inner product space (as illustrated in Figure 28). The

similarity is 1 if the angle is 0°, and less if the angle is greater than 0°. Cosine

similarity provides an ideal way to measure similarity whilst not inducing expensive

computational overheads.

Figure 28. Cosine of Angle between Vectors

Chapter 4 – SSC Framework

 136

4.7.4. Detailed MACCS Method Explanation

This section will provide detailed explanations and mathematical formulae to

describe how the MACCS similarity calculation method works.

The cosine similarity function similarity() is used frequently in the following

explanations, which is represented in equation (47). Here, A and B are vectors, A·B is

the dot product of the two vectors (the inner product of two vectors) and ||x|| is the

magnitude of the vector x (the length of a vector).

similarity(𝐴,𝐵) =
𝐴∙𝐵

∥𝐴∥ ∥𝐵∥
 (47)

In the MACCS method, the capabilities, contributions and roles are defined by

component systems in the form of string arrays. The freq() function is used to convert

these string arrays into frequency-of-occurrence (FoO) vectors, an example is shown

in Figure 29.

Host String Array: Attribute1, Attribute2, Attribute3

Target String Array: Attribute1, Attribute3, Attribute4

Host Frequency-of-occurrence Vector: 1, 1, 1, 0

Target Frequency-of-occurrence Vector: 1, 0, 1, 1

Figure 29. Example Frequency-of-occurrence Vector Conversion

Capabilities

To establish the similarity of components’ capabilities, it is necessary to ascertain

both the number of shared capabilities and the variation in the values assigned to

these capabilities.

Firstly, the similarity between the number of shared capabilities (P) on the host and

target components is calculated as shown in equation (48). This observes whether the

target component offers the same number of capabilities and the same required

Chapter 4 – SSC Framework

 137

capabilities. Here, Hc is the capabilities FoO vector for the host, created by converting

the host capabilities string array (𝐴ℎ𝑐
), 𝐻𝑐 = 𝑓𝑟𝑒𝑞(𝐴ℎ𝑐

). Tc is the capabilities FoO vector

for the target, created by converting the target’s capability string array (𝐴𝑡𝑐
),

𝑇𝑐 = 𝑓𝑟𝑒𝑞(𝐴𝑡𝑐
).

𝑃𝑐 = similarity(𝐻𝑐, 𝑇𝑐) (48)

The value calculated by equation (48) is used as a weighting value used to penalise

the target component for any additional or missing capabilities in comparison to the

host component.

Next, the similarity between the host’s and target’s capability values is calculated

but only for similarities shared by both components. This is accomplished by

calculating the absolute relative change, as this allows the difference between the

target to be determined with respect to the value of the host, as shown in equation

(49). Here, j is an iterative vector or array member, nc is the number of shared

capabilities, Lc is the vector to which all of the calculated values are assigned, 𝑉𝑡𝑐𝑗
is

the capability value array for the target and 𝑉ℎ𝑐𝑗
is the capability value array for the

host.

∀𝑗 {0…𝑛1} ∙ 𝐿𝑐 = 1 −
|

|(𝑉𝑡𝑐𝑗
− 𝑉ℎ𝑐𝑗

)

𝑉ℎ𝑐𝑗
|

|
 (49)

As shown in equation (49) the relative change is deducted from 1, this is because in

the scale used to express similarity, 1 signifies that the components are identical.

However, in a relative change calculation, 0 would indicate no change, so this must

be reversed by deducting the value from 1, thus ensuring the same scale is used.

In equation (50) the capability sub-score (S1) is produced by calculating the cosine

similarity between the Lc vector (from equation (49)) and the Dc vector. The Dc vector

is of equal size to Lc but all the contained values are 1. This is because Dc represents

Chapter 4 – SSC Framework

 138

the host component and there will be no relative change on any of the values. The

resultant value is multiplied by Pc, which acts as a weighting value to penalise target

components.

𝑆1 = similarity(𝐷𝑐, 𝐿𝑐) ∗ 𝑃𝑐 (50)

Contribution

This method is largely the same as that used for the capabilities. Initially, the FoO

vectors for the host (Ho) Ho=freq(𝐴ℎ𝑜
) and the target (To) To=freq(𝐴𝑡𝑜

) are created. The

similarity between the two vectors is then calculated in equation (51) to represent the

similarity between the contributions of the two components (Po). Where, 𝐴ℎ𝑜
 is the

string based host contribution array and 𝐴𝑡𝑜
 is the string based target contribution

array.

𝑃𝑜 = similarity(𝐻𝑜, 𝑇𝑜) (51)

Then the relative changes between the contributions that are shared by both the host

and target are calculated and assigned to the Po vector, as shown in equation (52).

Here, 𝑉𝑡𝑜𝑗
 is the contribution value array for the target, 𝑉ℎ𝑜𝑗

 is the contribution value

array for the host, n2 is the total number of shared contributions and j is an iterative

array or vector member.

∀𝑗{0…𝑛2} ∙ 𝐿𝑜 = 1 − |
𝑉𝑡𝑜𝑗

− 𝑉ℎ𝑜𝑗

𝑉ℎ𝑜𝑗

| (52)

The contribution sub-score is produced as shown in equation (53) by calculating the

cosine similarity between the host value vector Do and target value vector Lo and

then multiplying this by Po, which acts as the penalisation value for the target

component. As in the capabilities calculation, the Do vector is of equal size to Lo but

again all the contained values are 1.

𝑆2 = similarity(𝐷𝑜, 𝐿𝑜) ∗ 𝑃𝑜 (53)

Chapter 4 – SSC Framework

 139

Network Cost

The network cost sub-score is calculated in equation (54) by determining the

similarity between the host network vector DN and target network vector LN.

𝑆3 = similarity(𝐷𝑁 , 𝐿𝑁) (54)

The LN vector consists of both the network distance and response time values for the

target component. However, the DN vector consists of two values of 1, as there is no

additional network cost involved in communicating with the host. Therefore,

components with smaller network distance and response time values (closer to 1)

would have greater similarity.

Roles

The roles sub-score is calculated in equation (55) by determining the similarity

between the occurrence frequency vectors for the host Hr=freq(𝐴ℎ𝑟
) and the target

Tr=freq(𝐴𝑡𝑟
).

𝑆4 = similarity(𝐻𝑟, 𝑇𝑟) (55)

Final Score

To calculate this final score C, an average of the four sub-values Si calculated in the

previous steps is taken, as shown in equation (56).

𝐶 =
∑ 𝑆𝑖
4
𝑖=1

4
 (56)

Chapter 4 – SSC Framework

 140

4.7.5. Integrating Collaborative Behavioural

Monitoring into SSC

It has been previously stated in this chapter that CBM is utilised within the SSC

framework. This section will provide details regarding how SSC uses CBM to

improve both its efficiency and accuracy.

The approach used by SSC’s behavioural threshold adaptation algorithm (as

proposed in §4.4.4) solves the problem of outdated behavioural thresholds.

However, in doing so, it makes the system vulnerable to training based attacks.

These are generally slow attacks that occur over a prolonged period of time. By

occurring slowly, the adjustment process is tricked into thinking that the small

behavioural changes are part of the evolution of the system. Therefore, this

behaviour is then accepted as the norm and as such, any threshold adjustments will

account for this.

However, the use of CBM is able to combat this problem, by comparing the

calculated adjustments against those of behaviourally similar components. Given the

vast scale of a SoS, there is no way of knowing in advance which components will be

selected for behavioural comparison. Additionally, there is no overall knowledge of

the SoS structure, so any attacker would have launch simultaneous attacks against

all of the potential CBM components, which would be extremely unlikely, if not

impossible.

The process works by SSC first calculating the threshold adjustment value, which is

then compared against those of behaviourally similar components. The values are

then used to calculate the difference. If this difference is within the user specified

tolerance, then implementation of the adjustment is allowed to proceed but

otherwise it is forfeited and the user will be informed. The tolerance value reflects

the permitted level of difference between behaviourally identical systems (e.g. 2%),

Chapter 4 – SSC Framework

 141

and can be set according to how strict the system needs to be. Obviously, it can be

very difficult to find an identical system within a SoS. This is factored into the

process, so that the lower the similarity score produced for the component (as

calculated by the MACCS method), the more this tolerance value is increased (the

greater the dissimilarity, the greater the tolerance needs to be).

CBM is also used to validate the behavioural legitimacy of frequently occurring

events. These can sometimes turn out to be slow training based attacks but are

mostly attributed to system changes (e.g. software updates) which have not yet been

included in the threshold adjustment. These are commonly occurring behavioural

events that are detected by SSC and usually manifest themselves as low risk events

(i.e. their calculated irregularity scores are quite high but are not considered as

misbehaviour). Their repetitive nature means they waste a vast amount of resources

whilst conducting unnecessary behavioural analysis.

In order to combat this problem, SSC uses CBM to pass the details of the behavioural

event to behaviourally similar components. These components will analyse the

reported event and return the scores they would have issued, had the event occurred

on one of their own metrics. By comparing the differences between these scores, the

framework will be able to ascertain whether it is being too harsh or too lenient

regarding the event. It is then able to take action for future occurrences; using its

discretion the framework can create an exception for the event to be ignored (thus

preventing time and resources being wasted) or it can flag the event forcing it to be

treated as a greater threat (e.g. to protect known weaknesses in the system).

4.8. Summary

This chapter has presented a high-level overview of the SSC framework in §4.1 and a

detailed explanation of both the design in §4.2 and runtime operation in §4.3. These

sections provided details and justification regarding both the structural and design

choices of the framework.

Chapter 4 – SSC Framework

 142

This chapter presented the novel techniques developed specifically for the SSC

framework, in order to overcome the challenges faced by the complexity,

decentralisation and dynamics of the SoS environment. Firstly, in §4.4, the structure

of the behavioural profiles used by SSC were presented. The algorithm used to

calculate the initial threshold values for the behavioural profiles, and the algorithm

used to maintain these behavioural profiles in the dynamic SoS environment were

also presented.

The technique used to quantify behavioural events in terms of misbehaviour was

outlined in §4.5. The algorithm uses a comprehensive two-part analysis to represent

the level of misbehaviour as a score. It combines the statistical analysis of key

behavioural characteristics of the metric with a reported deviation, as well as

undertaking comparative outlier analysis of behaviourally related metrics. This

section also presented the approach of selecting metrics for outlier analysis based on

the strength of their behavioural relationships.

The integral technique used to balance resource usage, monitoring performance and

security demands was proposed in §4.6. Using the results from the analysis of

behavioural events occurring on the system, the statechart based technique provided

a novel approach to assessing the overall behavioural threat. The statechart was then

able to control the scale and frequency of the monitoring observations dependent

upon the perceived system threat.

In §4.7, the MACCS technique was presented, which is used to ensure the formation

of behaviourally similar groups for the purpose of CBM collaboration. These provide

a mechanism for creating a CBM group composed of suitably behaviourally similar

components. It detailed the measures used in the calculation of the comprehensive

component similarity check and the algorithm devised to accomplish this. It also

explained how the CBM process is used within the SSC framework.

Chapter 5

Implementation

In order to evaluate the success of the SSC framework proposed in this thesis, it is

essential that a working implementation is used. This allows the validation of claims

made and the verification that SSC meets the aims, objectives and requirements set

out. This chapter details the implementation of the proposed SSC framework

(Chapter 4), its constituent techniques, the evaluation tools and the evaluation test-

beds. This work requires two separate approaches for evaluation. The first is for the

localised SSC framework and the second is for the CBM component selection. These

two approaches are covered by the two main sections in this chapter.

5.1. SSC Framework

The requirements of SSC stipulate that it must have a small system footprint and it

must be able to operate in real-time. Additionally, some of the monitoring data

required by SSC is gathered from lower-level operating system functions. Given

these requirements, the framework itself was written in C, as this provides greater

low-level operating system integration and is able to operate at faster speeds.

Furthermore, SSC is largely automated and requires little human intervention, so it

has been implemented as a command-line based application (as illustrated in Figure

30).

Chapter 5 – Implementation

 144

Figure 30. SSC Screenshot

The evaluation of the framework is conducted on a Linux operating system. This is

because of the ease of access to low-level OS data, ease of development and lack of

licencing or proprietary complications. Due to this, the framework implementation is

geared towards Linux usage, although it can be easily ported onto other OSs.

The framework is split into two separate yet interdependent processes called sscd

and sscdd, which are integrated via an IPC queue. The sscd process is the main

monitoring process and deals with data collection, threshold comparisons, threshold

management and state engine control. The sscdd process deals exclusively with

misbehaviour quantification, which is fed via an event queue from sscd. There are

two main reasons behind splitting the framework into two processes. First, the sscdd

process can be quite intensive at times, so it was separated in order to reduce the

threat of it affecting monitoring or data collection performance. For the remainder of

the time if the event queue is empty, sscdd enters an idle state with negligible

resource consumption. The second reason was as a failsafe feature, as neither process

can run without the other. If for whatever reason either process closes unexpectedly

or crashes, the other has the ability to suspend SoS activities as a precaution.

The framework is self-contained and includes full training and threshold profile

database. When compiled the framework measures 9.66 MB (excluding the

Chapter 5 – Implementation

 145

databases) and only requires one software prerequisite to operate, which is the cURL

library. This size excludes the databases, as these will vary drastically in size

depending upon the type and scale of the system, as well as the number of

monitored metrics. To enhance its operational performance, the SSC framework is

compiled using the –o3 optimisation flag (under the gcc compiler).

5.2. Data Collection, Monitoring and Storage

As the SSC framework is implemented on a Linux OS, the data collection is also

specific to this OS. The data used by SSC is gathered using the functions in its data

collection library, which is also written in C. The library functions collect raw data

from various sources within the OS, which are detailed in Table 5.

Table 5. Monitoring Data Sources

Source Source Description Purpose

/proc A virtual filesystem that facilitates

real-time data observations as

supplied directly from the kernel.

Collect the majority of

data relating to the

system.

sysinfo A callable system function that

provides overall system statistics.

Collect data relating to

uptime and system load.

Jolokia A third party web application that

converts JMX monitoring data to

HTTP.

Collect data from SoS

interface (Geronimo) and

services (Daytrader).

/sys A memory based filesystem that

facilitates observations of hardware,

driver and bus statistics as supplied

by the kernel.

Collect hardware data.

UTMP A file that stores the system’s login

records.

Collect data relating to

active users and logins.

auth.log Log file used to store authentication

data.

Collect data relating to

root, su and sudo logins.

These functions convert the raw data into a usable format and perform any

necessary calculations or conversions. As an example, part of the function for

gathering kernel data is shown in Figure 31. These functions allow SSC to gather

real-time data from up to 108 system metrics, and the usage of these metrics is

Chapter 5 – Implementation

 146

governed by the statechart. The data collected by this process is temporarily stored

into an in-memory struct, where it can then be used for threshold comparison.

Figure 31. Code Excerpt from the Kernel Data Collection Function

However, the data collection for the filesystem monitor (such as metadata changes or

permission changes on key files) is handled separately by inotify. SSC requires a

configuration file detailing a list of directories or files of interest (e.g. important

configuration files), which is parsed and subsequent inotify instances are created (as

illustrated in Figure 32). These instances are watched for deletion, attribution

changes, modification and movement.

Chapter 5 – Implementation

 147

Figure 32. Code Excerpt Showing the inotify Setup

Inotify is part of the Linux kernel and can observe changes to the filesystem (there

are other alternatives for different OSs). Any observed changes from the inotify

instances are added to an internal queue. When data collection occurs, the contents

of this queue are parsed (and deleted from the queue) and the corresponding data

added to the in-memory struct, ready for the threshold comparison.

Whilst the monitoring data is collected from the system, SSC simultaneously loads

the corresponding threshold profiles for the active metrics, from the threshold

database and stores them into another in-memory struct. The SSC threshold profiles

are retrieved based on the current time in the 24-hour period. The collected data is

then compared against its corresponding threshold values to ensure its conformity.

If any values that are outside of these thresholds, then the details of the event are

added to the IPC queue (where it will be further analysed). By using in-memory

structs, the process avoids any additional read-write delays and produces a faster

and less computationally expensive monitoring operation. Once the collected data

has been compared against the threshold profiles, it is then moved to the Historical

Data database by SSC for potential further usage, and the collection process starts

again.

Chapter 5 – Implementation

 148

The storage and manipulation of collected data is an important part of SSC,

particularly in relation to training, threshold management and irregularity analysis.

It is an important performance choice, as databases can often form bottlenecks. The

two main considerations for SSC were between an embedded database (SQLite) and

a traditional server maintained database (in this case MySQL).

SQLite is a headless, embedded database, which is renowned for its small footprint

and fast operating speeds. It is written in C, which facilitates easy integration with

the SSC framework (also written in C). However, SQLite uses a single file for data

storage, so it is more susceptible to data loss if failure occurs.

MySQL is one of the most popular open source relational database servers and is

renowned for its reliability and efficiency. It offers greater resilience against data loss

during a failure and greater functionality, but the required standalone server

application produces a larger system footprint.

In order to ensure the efficiency of SSC, the performance of both database solutions

being considered were evaluated. The evaluation involved measuring the time

taken, CPU usage and RAM usage to perform tasks frequently requested by SSC.

These were reading a metric’s threshold profile and writing collected metric data.

Neither solution was enhanced with any performance-orientated configuration or

allowed to use cached queries. The findings of this experiment are shown in Table 6

and Figure 33.

Table 6. Database Performance Statistics

 SQLite MySQL

Time Taken for Read (s) 0.017 0.019

Time Taken for Write (s) 0.033 0.073

CPU Usage for Read (%) 0.00 0.00

CPU Usage for Write (%) 0.00 0.00

RAM Usage for Read (%) 0.17 0.63

RAM Usage for Write (%) 0.03 0.20

Chapter 5 – Implementation

 149

Figure 33. A Chart to Compare Database Performance

From the results, it is apparent that SQLite offers significant performance benefits;

which when combined with its other desirable attributes, makes it the most feasible

solution. Hence, SSC uses the SQLite 3.7.15.1 amalgamated library (written in C) for

all of its database related activities.

Chapter 5 – Implementation

 150

5.3. Threshold Management

The SSC framework has two modes of function, training mode and normal mode,

both of which are described below.

Training mode: SSC’s training mode is initiated by using the “-s” flag and

deactivates the majority of the framework. It utilises a high frequency data collection

to obtain and store the training data. Once the ten-day training period (as detailed in

Section 4.3.1) has elapsed, the threshold calculation process begins. The training data

is used by the threshold calculation algorithm to produce the threshold profiles for

all monitored metrics. The XML based S3LA configuration file used during the

threshold calculation is parsed using the ezXML library, which is also written in C.

The resultant threshold profiles are then written to the Threshold Profile database,

thus completing the actions in training mode.

Normal mode: The normal mode is not usable until the training mode has been

completed to generate the behavioural thresholds. It uses thresholds retrieved from

the threshold database to compare against the data collected. In the normal mode,

the threshold profiles are reviewed on a routine basis. SSC uses a counter to measure

the time elapsed since the last review and when necessary it initiates a new

threshold review. To enable a smooth transaction between threshold profile versions

and to avoid concurrency issues, the SSC framework creates a temporary in-memory

database. It copies data from the threshold profiles that it will need for monitoring in

the short term, whilst the original profiles are being reviewed. Once the reviewing

process is complete (this usually takes around 30 seconds), then monitoring from the

main database resumes and the temporary database is destroyed.

Chapter 5 – Implementation

 151

5.4. Decision Algorithm

As outlined earlier in this chapter, the misbehaviour quantification algorithm runs in

a separate process (sscdd). When misbehaviour is detected, the behavioural event is

passed to sscdd via an IPC queue, using the message structure illustrated in Figure

34.

Figure 34. Example Queue Message

In Figure 34, A is the name of the metric, B is the threshold that has been exceeded (2

indicates the minimum threshold and 3 indicates the maximum threshold), C is the

collected data value and D is the SSC timestamp (number of seconds since

midnight). After parsing the message, the metric name (A) and timestamp (D) are

used as database keys to retrieve the relevant data from the historical data database.

The misbehaviour quantification algorithm is implemented within the SSC

framework and is therefore also written in C. The integral LoOP algorithm is also

implemented in C. It uses various data from the historical data database to perform

its analysis. If the resultant irregularity score is 0.3 or more (thus requiring some

form of action to be taken), the decision is returned to the sscd process to be

actioned, and the event is then logged in a text-based log file. An excerpt from the

log file is shown in Figure 35.

Figure 35. An Excerpt from the SSC Framework Detection Log

The log file is designed to assist in the evaluation of the framework, by recording

behavioural event data in a way that makes event correlation an easier process. In

Chapter 5 – Implementation

 152

Figure 35, A is the timestamp of the event, B is the risk classification level and a

generic log message and C contains data concerning the monitoring event. It records

which metric the behavioural deviation has occurred on, the threshold that was

deviated from (Type 2 represents the minimum and Type 3 represents the

maximum) and lastly it records the score calculated to quantify the associated level

of misbehaviour.

5.5. Statechart

The statechart is implemented as a state transition table, which is a virtual table

where each state is a column, each event is a row and each table entry defines the

state change that occurs. By calling defined functions, the state can be moved to next

corresponding state in the table depending on the event. An excerpt of this code is

shown in Figure 36.

Figure 36. Code Excerpt Showing the State Transition Table Structure

SSC operates using 8 categorical groups, an array for each of which is constructed at

runtime from a group configuration file. Here, each group is assigned a permitted

limit of high scores, low scores, a timeout period and an initial state. The code

excerpt in Figure 37 shows the array construction.

Chapter 5 – Implementation

 153

Figure 37. Code Excerpt Showing the Group State Array Setup

Every time a behavioural analysis score of 0.31 or above is calculated, the score is

graded into either a high threat or low threat score. This is marked in the array of the

particular group and an expiry time is set. The function handling this determines

whether the high or low score limit is reached and will action any necessary state

changes. The statechart also runs a clean-up function before each data collection

interval. This removes any expired scores that are recorded in a group’s array.

5.6. SSC Evaluation

The test-bed used to evaluate the SSC framework was implemented on a VMWare

ESXi 5.1 bare metal hypervisor server. All the virtual machines used in the test-bed

were implemented on a 32-bit Linux Mint 14 OS and were assigned 2GB RAM and 1

core of an i7 2.4GHz processor. An overview of the test-bed used to evaluate SSC is

illustrated in Figure 38.

Chapter 5 – Implementation

 154

Figure 38. Illustration of the Test-bed Used to Evaluate the SSC Framework

As there are currently no SoS frameworks that can be implemented to evaluate the

SSC framework, web services are used as an abstraction of a SoS interface. This

allows the simulation of dynamic interaction and service usage between

independent components and the effects this dynamic usage has on the component.

As illustrated in Figure 38, this interface functionality was implemented on the

component system using an Apache Geronimo 3 application server. To provide

consumable services through this interface, the DayTrader web application was

used. DayTrader is a load testing application that simulates a stocks and shares

trading platform, providing multiple services. The component system was also

equipped with the SSC framework and an Internal Misbehaviour Simulator.

The Internal Misbehaviour Simulator (IMS) is a highly configurable python script

used to simulate misbehaviour on the host component system, and a code excerpt is

shown in Figure 39. It applies additional load to specified system metrics to alter

their value, in order to simulate misbehaviour on that metric. Additionally, it

supports multi-threaded misbehaviour simulation, enabling misbehaviour to be

simulated on multiple metrics concurrently. The desired misbehaviour is highly

configurable and is specified in a configuration file, allowing delays and the length

and amount of metric load to be stipulated. An example configuration file is shown

in Figure 40, where each line defines the exact metric misbehaviour to be simulated

Chapter 5 – Implementation

 155

by the along with the duration and amount (amount is only available for some

metrics). The multi function is used to simulate several metrics simultaneously and

the sleep function is used to delay the simulation for a specified number of seconds.

Figure 39. Code Excerpt from the Internal Misbehaviour Simulator

Figure 40. Example Misbehaviour Configuration File

The IMS maintains a comprehensive log file, which details all undertaken activities

and timestamps for the start of every event. This makes correlating simulated

Chapter 5 – Implementation

 156

misbehaviour with that detected by SSC a much easier task. As the experiments

performed using this tool are time sensitive, the timestamps are created for both the

initiation and completion of the event simulation.

The other machines in the test-bed as illustrated in Figure 38 are the SoS Load

Simulator and External Misbehaviour Simulator. The SoS Load Simulator is

equipped with jMeter, which is a load testing application able to simulate the

dynamic usage of hundreds of components. jMeter is configured for each

experiment via a test plan to simulate the dynamic load of other SoS components.

Lastly, the External Misbehaviour Simulator is used to simulate other forms of

misbehaviour such as service failure, corruption or overuse using the hPing tool.

hPing is a DoS tool that can be configured to orchestrate DoS attacks of varying

magnitudes. By launching a DoS attack against both the DayTrader services and the

SoS interface (Geronimo), it can accurately represent misbehaviour occurring within

them. The hPing tool is also used in conjunction with a comprehensive logging

mechanism, allowing the timings of the attacks to be easily correlated with the SSC

framework’s findings.

The evaluation of the SSC framework is conducted by observing the detected

behavioural deviations whilst simulating varying degrees of misbehaviour in the

test-bed environment. The results logged by the SSC framework are correlated

against the logs generated by the misbehaviour simulators. This will enable

comparisons of detection timings, accuracy and also the calculated misbehaviour

quantification score for the event.

Additionally, the CPU usage and RAM usage of the SSC framework are also

analysed as part of the evaluation. These are measured by the shell script shown in

Figure 41 and use the top command, which is a task monitoring utility found in

many *NIX systems. Using the script shown in Figure 41, top will gather information

Chapter 5 – Implementation

 157

on both the sscd and sscdd processes and log this data at one-second intervals until

the requested duration has expired.

Figure 41. Example of the Shell Script Used to Log Performance Data

5.7. Collaborative Behavioural Monitoring

The CBM refinement mechanism proposed in Chapter 4 involves selecting similar

components from within a distributed and decentralised SoS. Therefore, a different

approach and test-bed are required for evaluation. The proposed MACCS method is

implemented as a Java web application, as this creates an easy to deploy solution

that is platform-independent. The MACCS algorithm is implemented within the web

application as a Java function, an excerpt of which is shown in Figure 42.

Chapter 5 – Implementation

 158

Figure 42. An Excerpt of the MACCS Algorithm Code

The MACCS method acts as a refinement layer on top of a DBDLP (§ 4.7.1), which

has also been implemented in Java. The DBDLP used in the evaluation was provided

by a implementing a distributed hash table using JDHT [170] and assigning fixed

distance values based on the structure of the test-bed, which is outlined in §5.8.

The MACCS web service uses SOAP based communication between component

systems, for comparing behavioural data and requesting component configuration

files (which are implemented as XML files). An example SOAP message to compare

behaviour is shown in Figure 43.

Figure 43. Example SOAP Message for Comparing Behaviour

Additionally, the MACCS web application uses JNI to interact with the component’s

SSC framework.

Chapter 5 – Implementation

 159

5.8. Collaborative Behavioural Monitoring

Mechanism Evaluation

In order to evaluate the CBM mechanism, the test-bed is required to simulate a

distributed environment with multiple heterogeneous components that have

varying physical and software based configurations. The test-bed was implemented

on a VMWare ESXi 5.1 bare metal hypervisor server. All the virtual machines used

in the test-bed were implemented on a 32-bit Linux Mint 14 OS. Figure 44 provides

an illustrative overview of the devised test-bed.

Figure 44. Test-bed Used to Evaluate the CBM Method

In the test-bed illustrated in Figure 44, HC indicates the host component, R indicates

a router, TD indicates a traffic delay and RC indicates a remote component. The

metrics that are used by the MACCS mechanism are easily configurable on the RC

component systems themselves. However, two of the metrics used are network

distance (measured by the hop count) and network response time, which are

physically related values. Hence, these values need to be simulated by the test-bed

architecture. By implementing Vyatta 6.1 machines as routers, the network path

between the host component and the remote components is controlled in accordance

with the test-bed architecture illustrated in Figure 44. By doing this, each router that

is utilised, increases the hop count, thus increasing the network distance value.

Traffic delays are implemented via software on the host component; they are shown

as hardware devices in Figure 44 to aid understanding of which remote components

Chapter 5 – Implementation

 160

they will affect. The traffic delays are achieved using the tc qdisc command, which is

used for traffic shaping. In this instance, it is used to delay packets by the configured

amounts of time, dependent upon the destination IP address; this is used to replicate

the variance in network response time. An example command is illustrated in Figure

45.

Figure 45. An Example Command Used to Delay Packets to 192.168.1.254

Evaluation of the proposed method is achieved by applying various configurations

to the remote components and the host component, and then comparing the

similarity between them. The host component configuration can then be

reconfigured and the method repeated to evaluate how the results are affected.

5.9. Summary

This chapter has detailed the implementation of the SSC framework and its

subsequent techniques, as well as outlining how the MACCS collaborative

behaviour monitoring mechanism is implemented. It has provided details about the

structure and operation of the two test-beds that will be used to evaluate the

proposed framework. It also details the tools that have been integrated into the test-

beds and those that have been developed to aid with evaluation.

Chapter 6

Evaluation of Proposed

Framework and Methods

The SSC framework proposed in this thesis has been developed specifically to

overcome the limitations of existing techniques and provide efficient behavioural

monitoring to SoS components. SSC utilises a number of subsequent novel

techniques developed specifically to facilitate these capabilities. In this chapter, the

proposed solution is evaluated against the requirements set out in Chapter 2, which

validate its suitability to monitor behaviour in a SoS environment. The results of this

validation will be used to discuss whether the research aims and objects from

Chapter 1 have been fulfilled. The remainder of this section is split into subsections

with each evaluating the proposed SSC framework against a specific group of

characteristics.

All the experiments detailed in this chapter were conducted on the test-bed outlined

in §5.6. To ensure fairness, all were conducted under the same operational scenario,

which is as follows. The machine uses a base-install (i.e. no additional packages were

installed) of the Linux Mint 14 OS and the only additional software installed is SSC

and Apache Geronimo with the DayTrader web application. In this scenario, the

machine is designed to resemble a web application server that serves as a SoS

component by contributing access to web services. The monitoring by SSC observes

various characteristics from DayTrader, Geronimo and bandwidth to detect

misbehaviour affecting availability. It also observes characteristics from the system’s

CPU, file system, kernel, load, memory, HDD, ports, processes and users in order to

detect misbehaviour relating to both resource utilisation and availability.

Chapter 6 – Evaluation of Proposed Framework and Methods

 162

During the experiments outlined in this chapter, SSC is tasked with evaluating a

varying amount (yet repeatable) of simulated misbehaviour under differing

circumstances. SSC is designed to detect misbehaviour relating to the service

contribution to the SoS, focusing on service resource utilisation (e.g. over-

consumption or buffer overflow) and service availability (e.g. DoS attack). The

simulation of resource utilisation misbehaviour is handled by the IMS (§5.6) and

service availability misbehaviour is handled by hPing (§5.6).

6.1. Detection Performance

One of the most important aspects of SSC that requires supporting evidence is that

of its detection capabilities and false alarm rate. This section will evaluate its ability

to detect misbehaviour, focusing on the following requirements: Accurate, Detection

Speed, Dynamics, High Performance, Real-Time and Scalable.

SSC is designed to detect misbehaviour relating to the SoS service contribution,

focusing on service resource utilisation and service availability. In the following

experiments, SSC’s capability to detect varying levels of misbehaviour is examined.

By varying the type and severity of the simulated behavioural events, it allows the

detection rate along with the false positive and false negative rates to be measured. It

is important to note that during these experiments, all counteraction capabilities

available to the framework have been removed (e.g. disabling services or

disconnecting from the SoS). Details of the experiments and the results are presented

in Table 7.

Chapter 6 – Evaluation of Proposed Framework and Methods

 163

Table 7. SSC Detection Performance

Number of

Misbehaviour

Events

Misbehaviour Event

Description

Detection

Rate (%)

False

Positive

Rate (%)

False

Negative

Rate (%)

1
Exceed metric utilisation

threshold
100 0 0

2
Exceed metric utilisation

thresholds
100 0 0

3
Exceed metric utilisation

thresholds
100 0 0

5
Exceed metric utilisation

thresholds
100 0 0

10
Reduce service availability

100 0 0

15

Exceed metric utilisation

thresholds & reduce

service availability

100 0.1 0

20

Exceed metric utilisation

thresholds & reduce

service availability

100 0.2 0

The results from these experiments show that SSC is able to offer a high detection

rate, whilst maintaining both low false negative and false positive rates thus

satisfying the Accurate requirement. This performance can be attributed to the

accuracy of the thresholds used and the detailed analysis techniques used to

investigate behaviour that deviates from these thresholds. However, the false

positive rate does increase slightly, when there is a large amount of misbehaviour

being simulated. The reasoning behind this is that metrics can often share similar

behavioural relationships. If a particular metric uses multiple related metrics for

misbehaviour quantification analysis that are currently involved in other forms of

misbehaviour, it can potentially lead to a slight increase in misbehaviour

quantification scores. However, this situation is purely hypothetical, as levels of

misbehaviour would not normally be allowed to reach this high. Normally

counteractions would have been implemented long before this stage could be

Chapter 6 – Evaluation of Proposed Framework and Methods

 164

reached, and it has only occurred because the counteractions were removed for the

purpose of these experiments.

SSC’s response time (i.e. the time between misbehaviour occurring and the

completion of the behavioural analysis) during normal SoS interaction must also be

evaluated. In these experiments, various SoS loads are placed on the component

using the jMeter application. The IMS then opens additional ports on the system,

which forces the number of open ports to exceed its corresponding threshold value.

This therefore creates a misbehaviour event, which is not linked to the SoS load

being applied. The effect these loads have on SSC’s response times are observed by

comparing the difference between the timestamps generated by IMS and SSC. The

results of these experiments are shown in Table 8 and illustrated in Figure 46.

Table 8. SSC Response Times

Simulated SoS Load Response Time (sec)

None 0.34

10% of promised contribution 0.43

20% of promised contribution 0.42

40% of promised contribution 0.39

60% of promised contribution 0.43

80% of promised contribution 0.39

100% of promised contribution 0.38

Chapter 6 – Evaluation of Proposed Framework and Methods

 165

Figure 46. Illustration of How SSC Response Time is affected by SoS Load

The results show that SSC can achieve fast response times despite the dynamic SoS

load being applied, meaning that the requirements for Real-time and Detection Speed

can be met. Considering the high level of analysis that is undertaken in these short

time periods, the requirement of High Performance can also be met. Overall, the

response times remain relatively constant despite the various levels of system load

being applied, which supports the Dynamics requirement. The graph illustrated in

Figure 46 shows that when the system load is applied, the response times increase

slightly. The reasoning for this is that SSC monitors the top consuming processes in

terms of both CPU and RAM. It produces a score based on the level of change to

these process tables. When the system is idle, the Java process handling the

Geronimo application server (acting as the interface and therefore the DayTrader

application acting as the services) will be quite low in the process tables. However,

when system load is applied, this process will rise rapidly through the process

tables. The value representing this change will therefore trigger the state engine to

increase the threat level, meaning a greater number of metrics will be observed and

hence a greater number of metrics are used in the calculation of the misbehaviour

quantification.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

None 10 20 40 60 80 100

A
v

er
ag

e
R

es
p

o
n

se
 T

im
e

(s
ec

)

Simulated SoS load from promised contribution usage (%)

Response Time

Chapter 6 – Evaluation of Proposed Framework and Methods

 166

SSC is a host-based solution and does not depend on any central or hierarchical

agent; therefore, the scale of the SoS is not an issue. However, SSC needs to be able

to scale to handle the varying number of metrics that are being observed. The

following experiment examines the impact that the number of metrics has on SSC’s

performance. It also utilises two different forms of misbehaviour so that their effects

on response times and scalability can be compared.

Table 9. SSC Scalability Performance Results

No. of

Metrics

Monitored

Resource Utilisation Misbehaviour Availability Misbehaviour

Data

Collection

Time (sec)

Analysis

Time

Excluding

D/T* (sec)

Analysis

Time

Including

D/T* (sec)

Data

Collection

(sec)

Analysis

Time

Excluding

D/T* (sec)

Analysis

Time

Including

D/T* (sec)

5 0.00012 0.0009 0.017 0.00012 0.0008 0.013

25 0.00152 0.0043 0.085 0.00152 0.0039 0.064

50 0.0065 0.0084 0.171 0.0065 0.0078 0.120

100 0.049 0.019 0.342 0.049 0.024 0.271

* D/T = Data Transfer between sscd and sscdd processes

The results in Table 9 show that the increasing number of metric observations has a

limited effect on monitoring performance (throughout both data collection and

analysis), thus adhering to the Scalable requirement. These results also add

additional support to the requirements for Real-time and Detection Speed. The results

also show how SSC’s performance is marginally different between the two types of

misbehaviour. This is simply due to the fact that more metrics are used in the

analysis of resource utilisation misbehaviour than in availability misbehaviour. It is

evident that the transfer of data between the analysis and data collection processes

has a measurable effect on the time taken. However, given the amount of data that is

transferred, this effect is considered acceptable.

Chapter 6 – Evaluation of Proposed Framework and Methods

 167

6.2. Monitoring Management

Monitoring is a never-ending process that can involve analysing vast quantities of

data, and in complex and large-scale systems this becomes difficult to manage. This

section will discuss the manageability and control of the SSC framework with

particular focus on the following requirements: Adaptable, Autonomous, Self-resolving,

Low Maintenance and Reliable.

Given the changeability of a SoS’s behaviour, the thresholds used to detect

abnormalities must be able account for evolution and system changes. The SSC

framework features a threshold adaptation algorithm as outlined in §4.4.4, which

enables it to periodically review and modify its behavioural thresholds in order to

adapt to behavioural changes. This ability to adapt to changes in the system fulfils

the Adaptable criteria.

Another key aspect is the framework’s ability to operate unassisted; SSC was

designed to operate unattended and only require human intervention if a significant

problem or failure arises. All decisions relating to the behavioural analysis and

required actions are handled by the framework (as outlined in §4.2). The framework

also uses a statechart to monitor the health of the underlying system and activate or

deactivate monitoring metrics as it deems necessary. Therefore, it is able to resolve

the majority of issues on its own and meets both the Autonomous and Self-resolving

criterion. Its lack of required human intervention and the core statistical methods it

utilises means that only in exceptional circumstances will any maintenance be

required, enabling the framework to fulfil the Low Maintenance requirement.

Unlike some existing solutions the statistical method utilised to formulate

behavioural decisions (§4.5) will always return a valid conclusion regarding any

reported behaviour. Even in the highly unlikely event of the framework failure, the

component will be disconnected from the SoS as a matter of precaution. Behavioural

monitoring is of particular importance in a SoS, which is why potential risk for

Chapter 6 – Evaluation of Proposed Framework and Methods

 168

failure is reduced by making the framework self-contained with the exception of one

software pre-requisite. All of these measures are undertaken to ensure it meets the

requirement of being Reliable.

6.3. Analysis Strategy

This section will discuss the behavioural analysis strategy of the framework, whilst

focusing upon the following requirements: Diverse Analysis, No Prior Knowledge,

Novel Threats, Protection Against Attacker Training and Unselfish.

Unlike the majority of existing approaches, SSC does not require any prior

knowledge to operate. Its statistical mode of operation (as outlined in §4.3) allows it

to easily detect new threats without requiring any definitions regarding the structure

of the system, expected threats or behavioural predictability. This allows it to fulfil

both the Novel Threats and No Prior Knowledge requirements. A major flaw with

existing solutions when applied to a SoS is the failure to consider either relevant data

or a representative spectrum of data when formulating a decision regarding

behaviour. SSC features a novel approach to selecting all relevant metrics for

analysis (presented in §4.5.1), which helps to ensure the requirement of Diverse

Analysis is met.

A known threat posed to adaptive systems (including SSC) is their vulnerability to

attacker training. To combat this threat and fulfil the Protection Against Attacker

Training requirement, SSC utilises collaborative monitoring as explained in §4.7.5.

Furthermore it uses the MACCS mechanism outlined in §4.7.1 to select the best (i.e.

most behaviourally similar) SoS components to undertake collaborate monitoring

with.

This research project is focused upon the security needs of SoS compositions, so the

concept of a SoS is at the heart of the design. Therefore, considering the needs of the

SoS as an entity, other SoS components, as well as the host component itself was

Chapter 6 – Evaluation of Proposed Framework and Methods

 169

fundamental. Hence, the framework ensures that any actions or decisions taken are

Unselfish and are made for the common good, not for self-benefit.

6.4. Monitoring Resource Usage

Component contribution is essential to the success of a SoS. Therefore, by

minimising the resource consumption of SSC, greater SoS contributions can be made.

This section will evaluate the resource usage of the framework with particular

emphasis on the following requirements: Efficient, Lightweight and Small System

Footprint. To validate these requirements, a series of experiments were undertaken

using SSC in order to assess its resource consumption.

In order to ascertain the storage requirements for the framework, its size was

initially measured whilst it was offline and the results are presented in Table 10.

Table 10. Framework Offline Storage Requirements

Description of Measurement Size (MB)

SSC Framework Excluding Databases Contents 9.66

SSC Framework Including Databases Contents 58.1

The databases used by SSC account for the majority of the storage consumption, as

highlighted by the results from Table 10. The sizes of these databases highly depend

upon the number of metrics monitored and their types of value (e.g., a float value

consumes more space than a binary value). Overall, the design of SSC ensures that

its storage consumption is kept to a minimum, thus fulfilling the Lightweight

requirement. Each metric monitored by SSC requires approximately 0.38 MB of

storage space but this size depends of the type of value being observed. An

illustrated breakdown of the storage usage is shown in Figure 47.

Chapter 6 – Evaluation of Proposed Framework and Methods

 170

Figure 47. A Breakdown of Metric Storage Usage

Storage is not the only resource considered in the evaluation of the system footprint,

so the following experiments aim to determine the usage of the main system

resources. By simulating varying levels of misbehaviour (using IMS) on the system,

it is possible to observe the varying resource usage. The results of these experiments

are shown in Table 11 and illustrated in Figure 48.

Table 11. SSC Resource Utilisation

Simulated

Misbehaviour

Events

Avg. CPU

Utilisation (%)

Avg. RAM

Utilisation (%)

Avg. Storage

Utilisation (MB)

None 0.01 0.70 58.1

1 7.5 0.80 58.1

2 7.7 0.80 58.1

3 7.6 0.80 58.1

5 8.5 0.90 58.1

10 8.4 0.90 58.1

15 8.7 0.90 58.1

Storage Breakdown

Training Data

S2T Profile

DA Profile

S3LA

Weightings

Historical Data Store

Chapter 6 – Evaluation of Proposed Framework and Methods

 171

Figure 48. A Chart Illustrating the Resource Usage of SSC

The results of these experiments show that SSC’s low resource usage enables the

fulfilment of the Small System Footprint requirement. It is important to note that the

measured storage requirements include both the framework and the full threshold

profiles (which take up the vast majority of the space used). The core SSC framework

is designed to operate on a wide variety of different systems. However, its resource

usage is highly dependent on the scope of metrics being monitored (which depends

on the size and type of system).

As Figure 48 illustrates, there is an increase in CPU usage once the misbehaviour

events start (but it does remain relatively stable). This is due to the behavioural

analysis (which had previously remained idle) having to retrieve the large quantities

of data required for the misbehaviour quantification calculations. The RAM usage

also increases as the number of misbehaviour events increase; this is due to the

additional storage requirements for the behavioural analysis, as additional

observations are activated in response to the threat level increase.

Efficiency is another important factor in resource utilisation; this refers to the

wastage of the resources consumed. To improve resource availability for

0

10

20

30

40

50

60

70

0

2

4

6

8

10

12

None 1 2 3 5 10 15

A
v

er
ag

e
S

to
ra

g
e

U
sa

g
e

(M
B

)

A
v

er
ag

e
R

es
o

u
rc

e
U

sa
g

e
(%

)

Number of Misbehaviour Events

CPU

RAM

Storage

Chapter 6 – Evaluation of Proposed Framework and Methods

 172

contribution, SSC utilises an integrated statechart to enable additional resource

savings, which would otherwise be wasted. The following experiments aim to

highlight the extent of the resource savings and to prove that the use of the

statechart controlled monitoring does not impact on the detection capabilities of SSC.

To examine the increased efficiency offered by SSC’s statechart approach, the

average resource usage was measured in each of the three main states (as there is no

monitoring in the fourth DISC state) and without using a statechart. Whilst

monitoring resource usage for each state, the statechart engine was prevented from

changing states. These results are presented in Table 12 and illustrated in Figure 49.

Table 12. Statechart-Controlled Resource Usage in Each State

State Monitoring

Avg. CPU (%)

Monitoring Avg.

RAM Usage (%)

Analysis Avg.

CPU Usage

(%)

Analysis Avg.

RAM Usage

(%)

NORM 0.01 0.6 3.7 0.1

LOW 0.01 0.6 7.8 0.2

HIGH 0.01 0.6 8.9 0.3

No

Statechart

0.01 0.6 8.9 0.3

Figure 49. A Chart Illustrating the Resource Usage per State

0

2

4

6

8

10

12

Monitoring

CPU

Monitoring

RAM

Decision CPU Decision RAM

R
es

o
u

rc
e

U
ti

li
sa

ti
o

n
 (

%
)

NORM State

LOW State

HIGH State

No Statechart

Chapter 6 – Evaluation of Proposed Framework and Methods

 173

It is also important that the system is observed under normal circumstances, to

examine the extent of the potential resource savings by measuring the average

amount of time spent in each state. Table 13 presents the results showing how long

the framework spends in each state.

Table 13. Time Spent in Each State

State Avg. Time Spent in State (%)

NORM 97.4

LOW 2.6

HIGH 0

DISC 0

 Overall, the results show that the majority of SSC’s operational time was spent in

the NORM state whilst some time was spent in the LOW state. Therefore, by

comparing the resource usage between using the statechart and no statechart it is

possible to achieve a resource saving of 57.23% CPU and 65.8% RAM in the analysis

part of the framework (which is the most computationally expensive), thus

satisfying the Efficient requirement. The results show that the monitoring part of the

framework achieved no resource savings by using the statechart. This is because the

monitoring process gathers data for all the metrics regardless of which state they

should be used in. Instead, it uses the statechart to determine which metrics to check

against their corresponding threshold. The reasoning behind this is to enable the

framework to immediately implement the increased number of observations used in

the behavioural analysis. Consider a scenario where the most recently gathered data

presents multiple metrics that require misbehaviour quantification analysis. During

the analysis of these metrics, the results produced force the threat level to be

increased, therefore increasing the number of metrics used in the analysis. This

additional data is then available immediately, rather than having to wait for the next

data collection, thus providing a more accurate representation of the system

behaviour.

Chapter 6 – Evaluation of Proposed Framework and Methods

 174

The following experiments were used to verify that the resource savings achieved by

using the statechart control, did not sacrifice the monitoring accuracy of SSC. In

these experiments, both service and resource misbehaviour was simulated on the

component system. The response time and detection rate of SSC were measured,

both with and without the statechart. These experiments were conducted without

simulating any SoS load on the system; the results are shown in Table 14.

Table 14. Comparing Detection Performance Whilst Using the Statechart Engine

Type of Simulated

Misbehaviour

Statechart Used? Avg. Response

Time (sec)

Avg. Detection

Rate (%)

Service 0.34 100

 0.35 100

Resource 0.35 100

 0.36 100

As the results show, the average detection rate was unaffected by the use of the

statechart control, whilst the effect on the response time was negligible. This

difference in the response times can be attributed to the state change occurring,

which causes the reconfiguration of selected metrics to be monitored and their

sampling rates. Overall, the statechart has no negative effect; the timing difference

between the two types of attacks can be attributed to the behavioural analysis (as

resource analysis uses far more metrics than service analysis) and not the statechart.

6.5. Summary

This chapter has evaluated the SSC framework and its constituent techniques against

the high-level design requirements set out in §2.5. These requirements defined the

necessary characteristics that SSC must possess to be considered suitable for

misbehaviour monitoring in a SoS environment. These requirements were separated

into four sections, each focusing on different aspects of the system. A summary of

the supporting evidence for each design requirement is shown in Table 15.

Chapter 6 – Evaluation of Proposed Framework and Methods

 175

Table 15. Summary of Design Requirement Evidence

Design Requirement Evidence of Fulfilment

Accurate Experimental analysis in §6.1

Adaptable Theoretical analysis in §6.2 and supported by experimental

analysis in §7.3.

Autonomous Theoretical analysis in §6.2 and supported by framework

design in §4.2

Detection Speed Experimental analysis in §6.1

Diverse Analysis Theoretical analysis in §6.3, supported by algorithm design in

§4.5.2 & data selection approach in §4.5.1

Dynamics Experimental analysis in §6.1

Efficient Experimental analysis in §6.4

High Performance Experimental analysis in §6.1

Low Maintenance Theoretical analysis in §6.2 and supported by framework

design in §4.2

Lightweight Experimental analysis in §6.4

No Prior Knowledge Theoretical analysis in §6.3 and supported by framework

design in §4.2

Novel Threats Theoretical analysis in §6.2 and supported by framework

design in §4.2

Protection Against

Attacker Training

Theoretical analysis in §6.3 and supported by CBM usage and

integration approach in §4.7.5

Real-time Experimental analysis in §6.1

Reliable Theoretical analysis in §6.2 and supported by framework

design in §4.2 & misbehaviour quantification approach in §4.5

Scalable Experimental analysis in §6.1

Self-resolving Theoretical analysis in §6.2 and supported by framework

design in §4.2

Small System Footprint Experimental analysis in §6.4

Unselfish Theoretical analysis in §6.4 and supported by framework

design in §4.2

The misbehaviour detection capabilities of the SSC framework were evaluated

against several performance based characteristics in §6.1. The results from these

experiments highlighted the high detection accuracy and low false alarm rates that

SSC and its constituent techniques can achieve. The monitoring management and

analysis strategy were discussed in §6.2 and §6.3 respectively, with regards to SSC’s

conformity to the outlined requirements. The resource usage of the SSC framework

was evaluated in §6.4. It identified the low resource consumption and it also

examined the potential resource gains that can be achieved by using its statechart-

Chapter 6 – Evaluation of Proposed Framework and Methods

 176

controlled approach. It can be concluded from this chapter that SSC has met all of

the outlined design requirements.

Although the results in this chapter are promising, it must be noted that they only

reflect the fixed set of simulated misbehaviour events and the specific test-bed

configuration used in the experiments. These experiments have not been designed to

fully stress test the framework. Therefore, the extent to which the results are specific

to the simulated misbehaviour or the test-bed configuration is uncertain.

The aims of the research outlined in §1.2 were to identify the problems and

limitations of existing behavioural monitoring techniques and to develop a solution

that can identify misbehaviour on SoS components. The SSC framework proposed in

this thesis is a misbehaviour monitoring solution for SoS components, and can

therefore amply satisfy these aims.

The research objectives outlined in §1.2 summarised more specific targets that this

research needed to fulfil. The proposed SSC framework provides a behavioural

monitoring solution specifically designed to cope with the difficulties of the

dynamics and uncertainty of SoS components. It is able to detect misbehaviour,

whilst ensuring low resource usage. It has devised a method to calculate behavioural

thresholds against which behaviour can be monitored and it proposes a technique of

analysing and quantifying the irregularity of behavioural anomalies. Additionally, it

proposes the integration of a CBM scheme and an algorithm to ensure the selection

of the most applicable participating component systems. This being the case, it

allows many of the objectives (the remaining objectives will be examined in the

following chapter) of this research to be fulfilled.

Chapter 7

Comparison with Existing Work

It is imperative that the improvements that SSC claims to offer over existing

techniques can be proven. The following sections detail various experiments that

demonstrate the ability of SSC and its subsequent algorithms and techniques, in

comparison to those of existing techniques. Each of the following sections will

concentrate on comparing various aspects of SSC and its constituent techniques

against existing solutions. The experiments featured in these sections all assume the

same operational scenario as that defined in Chapter 6.

7.1. Misbehaviour Detection

In this section, the monitoring performance of SSC is compared against that of two

industry leading open source infrastructure monitoring solutions, Nagios [171] and

Munin [172]. All of the solutions had an identical series of misbehaviour events

simulated. During these experiments, random load was created but was applied

equally in every instance using the jMeter application on a separate virtual machine.

SSC has been designed with the complexities of a SoS in mind; hence, it is a self-

contained host-based framework. Unfortunately, there are no suitable host-based

behavioural monitoring systems with which SSC could be compared. The two other

solutions used in this evaluation offer a broader higher level of monitoring which

does share several monitoring metrics with SSC. However, their breadth of utilisable

metrics was limited when compared with SSC. So to make it a fair evaluation,

misbehaviour was only simulated on metrics that all solutions were capable of

monitoring. The thresholds used in both these solutions were the default values set.

Chapter 7 – Comparison with Existing Solutions

 178

The results of these experiments are shown in Table 16 and can be used to draw

comparisons between the misbehaviour detection capabilities of these solutions.

Table 16. A Comparison of Detection Performance

Misbehaviour

Events

SSC Nagios Core Munin

 D.T.

(sec)

F.P.

(%)

F.N.

(%)

D.T.

(sec)

F.P.

(%)

F.N.

(%)

D.T.

(sec)

F.P.

(%)

F.N.

(%)

0 N/A 0 N/A N/A 0 N/A N/A 0 N/A

1 0.36 0 0 1.2 0 0 0.9 0 0

2 0.35 0 0 1.8 0 50 1.0 0 0

3 0.36 0 0 2.1 0 33.33 1.0 0 33.33

5 0.36 0 0 2.4 0 80 1.1 0 20

10 0.38 0.1 0 3.2 0 60 1.4 0 40

D.T. = Average Detection Time, F.P. = False Positive Rate, F.N. = False Negative Rate

Figure 50. A Comparison of Detection Performance against Existing Solutions

The experiments undertaken in this section produced some unexpected results, as

Nagios and Munin both significantly underperformed (as illustrated in Figure 50)

when tasked with detecting misbehaviour. The main problem with these existing

solutions is that the thresholds used to define tolerated behaviour are static.

0

0.5

1

1.5

2

2.5

0

5

10

15

20

25

30

35

40

45

50

SSC Nagios Munin

D
et

ec
ti

o
n

 T
im

e
(s

ec
)

F
al

se
 A

le
rt

 R
at

e
(%

)

Avg. False Positive

Avg. False Negative

Avg. Detection Time

Chapter 7 – Comparison with Existing Solutions

 179

Unfortunately, this results in unnecessary behavioural leniency, which is not a

desirable characteristic in a SoS environment, hence the high false negative rates

observed during the evaluation.

Therefore, these results contribute towards validating the statement made, that SSC

is able to offer improved misbehaviour detection performance over existing

solutions. The achievable accuracy can be attributed to the more accurately

calculated and refined thresholds, and the behaviourally related multivariate

approach used in the comprehensive analysis of behavioural deviations.

7.2. Behavioural Threshold Creation

This section aims to support the claim that the novel threshold calculation algorithm

can create thresholds that have a greater level of accuracy. The experiments

undertaken compare the technique proposed in this thesis against two prominent

techniques (Statistical Filtering [135] and Adaptive Statistical Filtering [135]) utilised

in existing work. Each of the threshold calculation methods will be used to calculate

separate behavioural profiles for SSC. In turn, these profiles will be used to monitor

the component system, whilst it is placed into various operational states. The

misbehaviour used in these experiments requires the simulation of 10 metrics

exceeding their threshold values by varying amounts (although identical simulations

were used throughout). The results from these experiments are shown in Table 17

and illustrated in Figure 51.

Chapter 7 – Comparison with Existing Solutions

 180

Table 17. A Comparison of Threshold Calculation Techniques

 SSC Threshold

Calculation

Statistical Filtering Adaptive

Statistical Filtering

F.P. (%) F.N. (%) F.P. (%) F.N. (%) F.P. (%) F.N. (%)

Disconnected 0 N/A 21.02 N/A 20.29 N/A

50% contribution

load

0 N/A 23.91 N/A 23.18 N/A

50% contribution

load and

misbehaviour

0.12

0

25.40

2.89

24.81

1.45

F.P. = False Positive, F.N. = False Negative

Figure 51. A Comparative Illustration of Threshold Calculation Techniques

The results show that the thresholds produced by both the existing methods, cause a

significantly higher rate of false positives, even when monitoring the system at idle

(which could be caused by the way the techniques interpret the training data). The

false positive rate increases as the component is placed in progressively strenuous

circumstances (i.e. applying SoS load and then simulating misbehaviour). This

highlights the fact that these techniques produce thresholds that are largely

unsuitable for use in a SoS environment. Their high false positive rates make them

extremely inefficient to use, particularly in terms of the time and resources that

would be unnecessarily wasted. Worryingly, the thresholds produced by both

0

5

10

15

20

25

30

Disconnected 50% load

contribution

50% load

contribution and

misbehaviour

F
al

se
 P

o
si

ti
v

e
R

at
e

(%
)

SSC False Positive

Rate

Statistical Filtering

False Positive Rate

Dynamic Thresholds

False Positive Rate

Chapter 7 – Comparison with Existing Solutions

 181

existing methods also had false negatives, meaning that genuine misbehaviour

events went undetected. The results therefore conclude that the thresholds produced

by SSC’s threshold calculation algorithm can provide superior levels of accuracy for

behavioural monitoring tasks.

7.3. Behavioural Threshold Adaptation

The adaptation of behavioural thresholds is imperative to ensure reliable monitoring

amidst the continuing evolution of the system. The experiments outlined in this

section aspire to highlight the adaptation accuracy, when compared with existing

techniques. However, the majority of solutions previously identified for threshold

adaptation rely on behavioural predictions. Due to the dynamic and uncertain

behaviour of SoS components [8], drawing comparisons against these techniques

will prove very little and will not help to validate the claims made about the

proposed approach. Instead, this evaluation will compare the proposed statistical

calculation technique against similar statistical techniques.

There are several existing statistical techniques that could have been used to

calculate the necessary threshold adaptation. The following experiments aim to

compare the capabilities of the proposed quartile distribution normalisation

approach against those of mean difference [144], sample standard deviation [144]

and median absolute deviation (MAD) [173] techniques. In the following

experiments, each of these techniques is used to analyse the recorded monitoring

observations of one metric and determine the necessary threshold adaptation value.

Hence, this can demonstrate which method offers the most accuracy. The metric’s

DA threshold values have been carefully modified to alter the monitoring data

distribution, thus creating three different evaluation scenarios:

Experiment 1: This experiment is designed to test whether the techniques are able to

determine that a dataset requires no adaptation.

Chapter 7 – Comparison with Existing Solutions

 182

Experiment 2: This experiment is designed to test whether the techniques are able to

determine the exact amount by which the thresholds need to be lowered. The

existing maximum DA threshold was increased by 10% and the existing minimum

DA threshold was decreased by 10%.

Experiment 3: This experiment is designed to test whether the techniques are able to

determine the exact amount by which the thresholds need to be raised. The existing

maximum DA threshold was decreased by 10% and the existing minimum DA

threshold was increased by 10%.

The results from these experiments are shown in Table 18 and illustrated in Figures

52 and 53. The ‘Expected Change’ in Table 18 indicates the actual 10% change value

that is added or deducted from the DA threshold.

Table 18. Threshold Adaptation Technique Comparison Results

 Experiment

No.

Expected

Change

Quartile

Distribution

Normalisation

(SSC)

Mean

Difference

Sample

Standard

Deviation

Median

Absolute

Deviation

Maximum

Threshold

Change

1 0 0 +34.64 +16.15 +13.53

2 -13 -12.75 -47.65 0 -0.44

3 +13 +14 +21.65 0 +1.14

Minimum

Threshold

Change

1 0 0 +11.35 +4.37 +4.03

2 +13 +13.5 +1.65 0 +1.21

3 -13 -12.5 -24.35 0 -8.35

Chapter 7 – Comparison with Existing Solutions

 183

Figure 52. Illustration of Maximum Threshold Adaptation Comparison

Figure 53. Illustration of Minimum Threshold Adaptation Comparison

The results illustrated in Figures 52 and 53 show that the three existing techniques

have varying levels of inadequacies, with Sample Standard Deviation fairing the

worst. The reason behind this inaccuracy is that these techniques rely on the actual

values of the data (parametric), which means that repetitive and spurious data can

significantly affect their accuracy. However, SSC’s quartile distribution

-60

-50

-40

-30

-20

-10

0

10

20

30

40

Expected

Change

SSC Mean

Difference

Sample

Standard

Deviation

Median

Absolute

Deviation

A
m

o
u

n
t

o
f

th
re

sh
o

ld
 c

h
an

g
e

Experiment 1

Experiment 2

Experiment 3

-30

-25

-20

-15

-10

-5

0

5

10

15

20

Expected

Change

SSC Mean

Difference

Sample

Standard

Deviation

Median

Absolute

Deviation

A
m

o
u

n
t

o
f

th
re

sh
o

ld
 c

h
an

g
e

Experiment 1

Experiment 2

Experiment 3

Chapter 7 – Comparison with Existing Solutions

 184

normalisation method is able to ascertain whether a threshold requires adaptation,

thus preventing resource wastage. SSC’s approach offers a vastly superior level of

adjustment accuracy for both the maximum and minimum thresholds.

7.4. Misbehaviour Quantification

The misbehaviour quantification algorithm is a core component of the SSC

framework. It is therefore necessary to evaluate whether the algorithm and approach

proposed in this thesis are able to offer increased accuracy. The following evaluation

focuses on the accuracy of both the quantification algorithm and the data selection

approach. The data available to the algorithm to compute its score was carefully

controlled, thus ensuring fairness throughout the experiments undertaken. During

these experiments, only 15 metrics were used as the focus was on accuracy rather

than scalability. To provide a benchmark that techniques could be compared against,

the “Approximate Expected Scores” were calculated for both parts of the evaluation

in the section. The control and prior knowledge of the data and misbehaviour used

in the experiments allowed these approximation scores to be calculated, by

measuring the simulated misbehaviour against the respective behavioural

thresholds.

The first part of this evaluation seeks to identify the potential accuracy that could be

gained by using the proposed behaviourally related approach to select data for

analysis. In these experiments, the proposed approach is compared against two

commonly utilised statistical approaches [143], which are time-referenced univariate

analysis and time-referenced multivariate analysis. The aim of these experiments is

to determine which selection method enables the most accurate and reliable

misbehaviour quantification. Using all three methods, a misbehaviour quantification

score was calculated for the same set of the simulated misbehaviour events. These

misbehaviour events involve increasing the observed value of various metrics by a

Chapter 7 – Comparison with Existing Solutions

 185

specified amount, as detailed in Table 19. The results of this experiment are shown in

Table 20 and illustrated in Figure 54.

Table 19. Experiment Setup

Experiment No. No. Misbehaviour Events Threshold Exceeded By (%)

1 1 5

2 1 10

3 5 25

4 7 50

5 9 100

Table 20. Calculated Misbehaviour Scores

Experiment No.
Avg. Misbehaviour Score Approximate

Expected Score BRM U M

1 0.184 0.658 0.164 0.180

2 0.211 0.676 0.191 0.209

3 0.288 0.684 0.302 0.276

4 0.407 0.697 0.381 0.400

5 0.633 0.784 0.608 0.626

BRM=Behaviourally Related Multivariate, U=Univariate, M=Multivariate

Figure 54. Comparison of the Data Selection Techniques

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

S
co

re
 V

al
u

e

Expected Proposed Approach Univariate Multivariate

Chapter 7 – Comparison with Existing Solutions

 186

The results show that the univariate method exponentially overestimates the

severity of the misbehaviour; this is because of the limited diversity of the system

metrics used for the calculation. It also shows that both the proposed approach and

the multivariate closely follow the expected score. However, it is also evident that in

the majority of the experiments, the multivariate approach underestimates the

severity of the behaviour; this is because of its inclusion of unnecessary data. Similar

to the effect of including a spurious value during an averaging process, the inclusion

of unnecessary data (whose values will indicate normal behaviour) will reduce the

severity of true behavioural anomalies. Overall, it is apparent that the proposed

approach produces scores that are the closest to the expected scores.

The second part of this evaluation focuses on the accuracy of the misbehaviour

quantification technique itself. In these experiments, the results obtained using the

proposed method are compared against those produced by two prominent

techniques, which are Histogram [141] and KNN Prediction [174]. Misbehaviour was

simulated as detailed for the previous experiment in Table 19, and each method was

used to compute a misbehaviour quantification score. During these experiments, the

value of k used in the KNN algorithm was set to 5, as this is the same number of

neighbours used in the proposed approach. The scores produced are presented in

Table 21 and also illustrated in Figure 55.

Table 21. Comparison of Behavioural Irregularity Scores

Experiment

No.

Approximate

Expected

Score

Proposed

Algorithm Score

Histogram

Score

KNN Prediction

Score

1 0.180 0.184 0.592 0.629

2 0.209 0.211 0.636 0.675

3 0.276 0.288 0.746 0.783

4 0.400 0.407 0.888 0.907

5 0.626 0.633 1.000 1.000

Chapter 7 – Comparison with Existing Solutions

 187

Figure 55. Comparison of Quantification Techniques

The results show that the scores produced by the three methods loosely follow the

same trend during the evaluation experiments. However, when considering the

accuracy, the results achieved by the proposed method are closest to the expected

score. The Histogram scores proved to be marginally closer to the expected score

than those produced by the KNN prediction method. However, both of these

techniques significantly over-exaggerated the severity of misbehaviour events.

Application of these techniques in SSC would ultimately yield an unacceptably high

level of false positives. It must be remembered that not every reported behavioural

irregularity will be misbehaviour. The results clearly indicate that the method

proposed in §4.5 offers significant advantages over existing techniques.

7.5. CBM Formation

CBM is an important aspect of the SSC framework, and the similarity of the

components used in the process is vital to its success. The MACCS solution proposed

in §4.7 offers a superior mechanism for selecting the most appropriate component

systems. In this section, the accuracy of the CBM selection process and its

performance, are both evaluated.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

4

5

PRODUCED SCORE

E
X

P
E

R
IM

E
N

T
 N

U
M

B
E

R

EXPECTED SCORE KNN PREDICTION HISTOGRAM PROPOSED ALGORITHM

Chapter 7 – Comparison with Existing Solutions

 188

Due to the nature of these experiments, they are conducted on a separate test-bed as

outlined in §5.8. Each of the components in the test-bed system is configured with

various roles, characteristics, hop distances and response times. This experiment

simulates a SoS by using the components configured in accordance with Table 22.

The aim is for the host component (HC in Table 22) to analyse and calculate

similarity scores for all of the remote components (RC in Table 22) and rank them

according to their desirability. This ranking will then be compared against that

produced by a distance based technique [161], which is a commonly used selection

method.

Chapter 7 – Comparison with Existing Solutions

 189

Table 22. Component Configuration for MACCS Evaluation Test-bed

Name No.

Hops

Induced

Latency

(sec)

Role

IDs

Contributions

Capabilities

IDs Values IDs Values

HC 1 0 1 R,C,B,

H,S1

6144,1.73, 500,

1024, 1

R,C,B,

H,S1

4915,1.35,400

,819,1

RC1 1 0 2 R,C,B.

H

4096,

1.20,500,2048

R,C,B,

H

3195,0.94,390

,1597

RC2 1 0 1,3 R,C,B,

H,S2

26624, 2.13,

1000, 500, 1

R,C,B,

H,S2

15176,0.92,57

0,285,1

RC3 1 0.30 1 R,C,B,

H,S1,D

8192,2.13,750,2

048,1,3000

R,C,B,

H,S1,D

6144,1.60,563

,1536,1,2250

RC4 2 0 3,5 R,C,B,

H,S1

12288,2.90,1024

, 2048,1

R,C,B,

H,S1

8479,2.00,707

,1413,1

RC5 2 0 1,2,3,

4,5

R,C,B,

H,D

262144,

3.30,1024,

6144,8000

R,C,B,

H,D

123208,1.55,4

81,2888,3760

RC6 2 0.30 2 R,C,B,

H,S2

65536, 2.40,750,

1024, 1

R,C,B,

H

26870,1.00,30

8,420

RC7 3 0 1,4,5 R,C,B,

H,S4,D

131072,

3.30,1024,12288

,1, 4000

R,C,B,

S4,D

79954,2.01,

625,7496,1,24

40

RC8 3 0.30 1,5 R,C,B,

H,S3,S

4

12288,

2.26,1024,1024,

1,1

R,C,B,

S3

3686,0.68,307

,307,1

RC9 5 0.30 1,4,5 R,C,B,

H,S1,S

3

131072,3.10,102

4,2048,1,1

R,C,B,

S1,S3

93061,2.20,72

7,1454,1,1

RC10 7 0 1 R,C,B,

H,S1

71868,1.80,1024

,1024,1

R,C,B,

H,S1

33059,

0.83,471,471,

1

R=RAM(MB), C=CPU(GHz), B=Bandwidth(MB), H=HDD(GB), Sx=Service Number x,

 D=Databases (Count)

The configurations from this table are applied to the evaluation test-bed outlined in

§5.8. The Name column specifies which component the configuration is applied to.

The No. Hops indicates the number of routers that are to be used to pass packets

between the HC and the specified component. The Induced Latency column details

the network traffic delay to be induced on the component. The Role IDs indicates the

Chapter 7 – Comparison with Existing Solutions

 190

roles carried out by the component. The Contributions has IDs and Values sub-

columns; the IDs indicate each contribution metric and the Values detail the amount

of contribution corresponding to each metric. The Capabilities has IDs and Values sub-

columns; the IDs indicate each metric the component is capable of contributing and

the Values indicate the exact amount of contribution the component is capable of

contributing for each metric. Using the component configuration shown in Table 22,

the similarity scores were calculated for each component by the MACCS method and

the results are shown in Table 23.

Table 23. Calculated MACCS Score

Component Name MACCS Score

RC1 0.62820

RC2 0.76213

RC3 0.85506

RC4 0.59236

RC5 0.42126

RC6 0.58444

RC7 0.47585

RC8 0.72500

RC9 0.69845

RC10 0.63142

Table 24 shows the components ranked in order of their desirability by both the

DBDLP [161] and MACCS methods. In order to identify the accuracy achieved, the

‘Expected Component’ was determined by calculating the similarity between the

configuration of each of the remote components (RC) and that of the host component

(HC) as defined in Table 22.

Chapter 7 – Comparison with Existing Solutions

 191

Table 24. Order of Component Preference

Similarity Rank Expected

Component

DBDLP Selected

Component

MACCS Selected

Component

1 RC6 RC1 RC6

2 RC2 RC2 RC2

3 RC1 RC5 RC1

4 RC7 RC3 RC7

5 RC10 RC4 RC10

6 RC8 RC10 RC8

7 RC9 RC6 RC9

8 RC3 RC8 RC3

9 RC4 RC9 RC4

10 RC5 RC7 RC5

The results show that there is a 97.8% improvement in the rankings created by the

MACCS method, opposed to those produced by DBDLP. This improvement is

quantified by calculating Kendall’s Tau rank correlation coefficient and converting

this value into a percentage. Figure 56 illustrates the correlation between the two

approaches, highlighting their dissimilarity.

Figure 56. A Chart Illustrating the Produced Component Rankings

0

1

2

3

4

5

6

7

8

9

10

RC1 RC2 RC3 RC4 RC5 RC6 RC7 RC8 RC9 RC10

C
o

m
p

o
n

en
t

R
an

k
 P

o
si

ti
o

n

Expected Rank

DBDLP Rank

MACCS Rank

Chapter 7 – Comparison with Existing Solutions

 192

These results highlight the improvement that MACCS can offer to the CBM selection

process and therefore to the end results produced.

It is necessary to demonstrate that the MACCS method is also capable of scaling

alongside the system. For this evaluation, performance tests were conducted using

various network sizes as detailed in Table 22. The aim of the experiments was to

show how long the evaluation process takes to examine all the components and then

to create a selection of components for a CBM group. For the purposes of this

experiment, each component used had its number of roles capped at five and the

number of both capabilities and contributions capped at ten.

Table 25. MACCS Performance Evaluation

Simulated

SoS Size

Time taken to

analyse all

components (sec)

CBM Size CBM

Similarity

Threshold

Time taken to

create MACCS

CBM group (sec)

10 0.310 5 0.6 0.307

20 0.362 9 0.6 0.332

30 0.406 14 0.6 0.376

50 0.481 23 0.6 0.449

75 0.537 34 0.6 0.498

100 0.570 45 0.6 0.533

Chapter 7 – Comparison with Existing Solutions

 193

Figure 57. A Bar Chart Illustrating the Time Taken to Compute Similarity

The results show that the MACCS evaluation process is quick, even when examining

every component, which would ordinarily not be necessary. This means that in most

circumstances it would be possible to achieve real-time CBM group formation. The

illustration of the results in Figure 57 shows that the MACCS method offers potential

speed gains in CBM group formation, particularly for larger SoSs. This is because the

incrementing distance-based similarity search employed by the MACCS method

offers significant performance benefits over the analysis of all the components in the

SoS.

The CBM group size for the experiments (as outlined in Table 25) was set to forty-

five percent of the overall SoS size (some values have been rounded up). Therefore,

all experiments have been given the same task, with respect to the scale of the SoS.

The results presented in this section prove that the MACCS technique is able to offer

increased accuracy in the selection process, when compared with distanced based

techniques (which is one of the most popular approaches). It also demonstrates that

it is able to quickly and efficiently analyse and compute the most appropriate CBM

components in various sized SoSs.

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 50 75 100

T
im

e
T

ak
en

 (
se

c)

Number of components in SoS

Similarity analysis of all

components

MACCS incremental

distance-based similarity

analysis

Chapter 7 – Comparison with Existing Solutions

 194

7.6. Summary

It is important to understand how SSC and its techniques can contribute to

continued progression of the research area. The evaluations undertaken in this

chapter performed multiple comparisons between many different aspects of the SSC

framework including capabilities, performance and accuracy against those of

existing solutions from similar research areas. This section provided evidence that

existing solutions are inefficient for use in the dynamic and uncertain environment

of a SoS, highlighting the need for a solution such as SSC. Most importantly, it

highlighted SSC’s significant benefits in regards to accuracy, efficiency and

capabilities, when undertaking the same tasks as the leading solutions in the areas.

However, as with the previous chapter, it is important to note that although the

results are promising, they only reflect the fixed set of simulated misbehaviour

events and the specific test-bed configuration. These experiments have not been

designed to fully stress test the framework. Therefore, the extent to which the results

are specific to the simulated misbehaviour or the test-bed configuration is uncertain.

In §7.1, the detection capabilities of SSC were compared against those of industry

leading monitoring solutions. This comparison included the detection time, false

positive rate and false negative rate. The results obtained demonstrated the potential

improvements in false alarm rate and response times that can be achieved by using

SSC.

In §7.2, the threshold calculation technique developed specifically for SSC was

compared against existing approaches. The results highlighted the vast differences

in the final thresholds produced, as well as the number of false positives and false

negatives occurring as a result of using these thresholds. Ultimately, this section

justified the decision to use a custom calculation technique and outlined the benefits

that can be achieved.

Chapter 7 – Comparison with Existing Solutions

 195

In §7.3, the accuracy of the threshold refinement algorithm was demonstrated by

comparing the devised method against other statistical techniques. The results of

these experiments highlighted the benefits of using the proposed method in terms

accuracy and adaptation frequency. This section also discussed the benefits of using

the devised threshold profile structure and how it improves the threshold

refinement process.

In §7.4, the misbehaviour quantification calculation algorithm was evaluated by

comparing it against other existing solutions. The experiments undertaken

highlighted the accuracy issues of using existing approaches of metric selection for

behavioural analysis. It also demonstrated that the comprehensive behavioural

analysis proposed in this thesis offers superior results. Hence, this section provided

justification as to the development of this technique and the integral role it performs

within the SSC framework.

In §7.5, the CBM component selection rankings of MACCS were compared to those

produced by existing solutions. The results of these experiments demonstrated why

MACCS and its comprehensive similarity check are vital to the success of any CBM

group created by SSC. It also demonstrated the performance and scalability that the

MACCS method is capable of achieving.

Chapter 8

Conclusion and Future Work

The complex, large-scale, dynamic, decentralised and distributed nature of a SoS

makes it extremely difficult to monitor behaviour accurately. Misbehaviour

currently poses one of the most severe threats to both SoS compositions and their

constituent components. This thesis has presented the SSC behavioural monitoring

framework along with several of its novel constituent techniques and explained how

these can overcome the current challenges involved in SoS behavioural monitoring.

Unfortunately, the majority of existing monitoring techniques were not developed

with the highly dynamic, uncertain and complex behaviour of SoS components in

mind. For this reason, the dynamics, uncertainty, complexity and decentralisation

encountered in a SoS (which are characteristic traits) are regarded as the main

impediment to the application of existing monitoring techniques [8], [175]. This was

supported by the results obtained from the experiments undertaken in §7.1, whereby

monitoring for misbehaviour resulted in unacceptably high detection times, false

positive and false negative rates. This shows that accurately and reliably monitoring

for misbehaviour in such environments is beyond the capabilities of existing

techniques. The approach demonstrated in this thesis [164] shows that it is possible

to monitor SoS component’s behaviour for misbehaviour by combining a number of

novel techniques to overcome the challenges posed by such environments.

One aspect that existing techniques have difficulty with, is determining the

boundaries between acceptable and unacceptable behaviour. Existing static

techniques such as those used in Nagios are either impractical or produce inaccurate

results. This can be attributed to the dynamic and evolving nature of the behaviour,

Chapter 8 – Conclusion and Future Work

 197

as well as the highly fluctuating loads. The techniques developed for SSC allow

reliable behavioural thresholds to be calculated and maintained, which reflect the

dynamic and changeable behaviour of the component. This allows the framework to

maintain a low level of both false positive and false negative results, as

demonstrated in §6.2. Alongside the statechart, the threshold accuracy ensures that

resources are not wasted on unnecessary behavioural analysis. This is of particular

benefit to small or embedded devices, allowing them to contribute more to the SoS.

Quantifying misbehaviour is another area in which existing approaches struggle.

Existing statistical analysis techniques often utilise inefficient selections of monitored

metrics to calculate the level of misbehaviour. In such a diverse and uncertain

environment, the use of a single metric will produce meaningless results, whereas

the use of too many unnecessary metrics will weaken the accuracy of the result.

These problems are demonstrated in §7.4., and it is also shown that the increased

robustness and accuracy of the decisions are achievable by using behaviourally

related metrics. Additionally, the tolerated dynamics in a SoS environment means

the boundary between dynamic and misbehaviour is increasingly difficult to

distinguish. This is why SSC uses the proposed misbehaviour quantification

algorithm, which uses a comprehensive analysis to determine the level of

misbehaviour that is associated with a particular event.

Another area of difficulty stems from the isolated environment of a SoS, as there is

no central authority that can be referred to. Therefore, forming a CBM with similar

components is the only way to achieve any standardisation, assurance or validation.

However, existing techniques often create CBM groups with limited levels of

similarity. This is predominantly due to basing their similarity measure on a single

characteristic. Ultimately, this lack of behavioural similarity between components

reduces both the efficiency and accuracy of the results produced. To overcome this,

the MACCS technique devised for SSC uses comprehensive behavioural similarity

Chapter 8 – Conclusion and Future Work

 198

checks to form groups that offer more reliable, stable and accurate results, as

demonstrated in §7.5.

It is important to note that although the results obtained from this research are

promising, they do have limitations. The experiments undertaken in this thesis only

consider specific test-bed configurations and specific types of misbehaviour. Further

work is required to assess the full extent to which these results can be generalised,

and to ascertain how reliant these results are on the evaluation setup

The remainder of this chapter presents a summary of the thesis and an overview of

the novel contributions made in comparison with existing techniques to demonstrate

the benefits of the work in this thesis. It discusses some of the limitations associated

with the proposed approach. It then highlights potential avenues that could be

explored in future research and ways in which the techniques developed could be

applied to different areas. Finally, the concluding remarks draw together the

achievements and outcomes of the work contained in this thesis.

8.1. Thesis Summary

Chapter 1 of this thesis provided an introduction to the concept of SoS and the

difficulties encountered when attempting to monitor its behaviour. It highlighted the

challenges faced by existing techniques, which are unable to monitor behaviour

effectively and reliably on a SoS. It summarised the aims and objectives of this thesis,

as well as describing the motivation behind the research. Furthermore, it outlined

the novel contributions put forward by this thesis to overcome the research

challenges posed by monitoring for SoS component misbehaviour.

Chapter 2 presented background information covering the main concepts involved

in this research. This chapter presented the reader with sufficient information in

order to understand the context of both the research and the problems it aims to

solve. As SoS is such a core aspect of this work, the SoS concept was examined in

Chapter 8 – Conclusion and Future Work

 199

detail in this chapter. It focused on definitions, types, what the concept involves,

future potential applications and ongoing research relating to the SoS concept. This

chapter described the meaning of misbehaviour within computing and examined the

types of misbehaviour. It also examined the how misbehaviour manifests on a SoS,

potential causes and the problem of cascading misbehaviour. This chapter also

presented some of the various points that must be considered when selecting a

suitable monitoring solution, and its associated limitations. It provided a summary

of the research challenges that are identifiable from the background information.

Finally, it presented a comprehensive list of requirements that any proposed solution

must meet, in order to overcome the existing limitations.

Chapter 3 examined literature from existing work relating to the concepts

introduced in this thesis. The identified existing techniques were critically analysed

in relation to their applicability within a SoS, with particular focus on both their

merits and shortcomings. In doing so, this chapter was able to provide motivation

for the reasoning behind the developed methods presented in Chapter 4. Literature

that outlined or emphasised the challenges faced, was cited in order to provide

context to the challenges this work aspires to address.

Chapter 4 presented the proposed novel framework and subsequent techniques

developed to overcome the challenges previously outlined. An overall description of

the developed SSC framework was provided along with a more detailed

examination of its structure and operation. The subsequent sections detailed the

novel algorithms, techniques and methods used by SSC to fulfil its aims. Each

section provided a high-level overview, with particular reference to how it helped to

fulfil the overall goal of the framework. This was also accompanied by a more

advanced explanation of how each algorithm, technique or method operates. The

SSC framework proposed in this thesis can be considered an advancement of the

area of SoS security, in that it can prevent misbehaviour from causing damage to

either the component or the SoS, which was an outstanding security problem.

Chapter 8 – Conclusion and Future Work

 200

However, these techniques are not constrained to either behavioural monitoring or

SoS environments and could potentially be used to advance other areas of

monitoring.

Chapter 5 described how the proposed framework and its various constituent

elements were implemented in order to evaluate both the framework and its

constituent algorithms and methods. The chapter also describes the design,

configurability and implementation of the tools and test-beds used in the evaluation

of the SSC framework.

Chapter 6 evaluated the proposed framework and its constituent parts against the

comprehensive design requirements from Chapter 2. By undertaking this evaluation,

the conformity of the proposed solution to the aims and objectives set out in Chapter

1 could be discussed and validated. This chapter concludes that the proposed SSC

framework had met the requirements and therefore fulfilled the aims, objectives set

out in previous chapters.

Chapter 7 presented the details and results of the many experiments undertaken in

order to compare the proposed framework and constituent techniques against

existing work. The results also showed that SSC was able to offer significantly

improved levels of detection and accuracy, whilst maintaining suitably low levels of

false positives and false negatives, in comparison to existing solutions. It can

therefore be deduced from the results that the claims that SSC is a feasible solution

for monitoring behaviour in a SoS environment and detecting component

misbehaviour, have been validated.

Chapter 8 – Conclusion and Future Work

 201

8.2. Novel Contributions and Publications

This thesis provides a number of novel contributions to the field of SoS behavioural

monitoring:

1. A behavioural monitoring framework that overcomes the challenges of

monitoring in a SoS. The framework offers the ability to detect misbehaviour

on a SoS component system, whilst ensuring limited disruption, system

footprint and resource wastage. The SSC framework is considered novel, as

the literature survey has not identified any monitoring solution that is capable

of monitoring SoS component systems behaviour, particularly for identifying

misbehaviour. Nor was it able to identify a solution that uses monitoring

feedback and statecharts to control monitoring metrics, resource wastage and

monitoring efficiency.

2. Statistical techniques that overcome the challenges of producing and

managing accurate behavioural thresholds for such a complex and evolving

environment. The devised threshold profiles that store these thresholds offer

increased tolerance of system dynamics and increased support for post-

calculation adaptation to account for any changes. The threshold calculation

algorithm proposed is able to accurately calculate behavioural thresholds

without relying on existing knowledge, whilst the adaptation algorithm

designed is able to automatically refine the calculated thresholds based on

current trending behaviour. The techniques are considered novel as the

literature review has been unable to identify a threshold calculation technique

able to facilitate the uncertain, dynamic and evolutionary behaviour typically

involved in a SoS. Additionally, it has been unable to identify an approach

using the proposed dual threshold based profile, which is able to make the

process of threshold refinement easier and more reliable.

Chapter 8 – Conclusion and Future Work

 202

3. A statistical misbehaviour quantification algorithm that is able to quantify the

level of misbehaviour associated with reported behavioural deviations, in the

context of the individual system. The algorithm uses various techniques to

analyse both the metric on which deviation occurred, and those of other

selected metrics. To overcome the inaccuracies that occur as a result of using a

univariate or an all-inclusive multivariate approach, the devised

behaviourally related multivariate approach is used. Whereby only metrics

with a proven statistical relationship with the metric on which the deviation

occurred, are used. The algorithm is considered novel as the literature review

has shown that existing techniques do not utilise such extensive analysis, nor

do they select other metrics to analyse based upon the strength of the

behavioural relationships.

4. A statistical mechanism to select CBM components based on detailed

behavioural similarity analysis. The mechanism proposed provides a platform

agnostic method of CBM component selection for use in a distributed, large-

scale and decentralised environment. The mechanism offers in-depth

similarity checks in order to ensure the efficiency and the validity of the

results produced by any subsequent CBM process. The technique is

considered novel as the literature survey has shown that no existing

approaches offer a comparable level of behavioural similarity checking to

ensure result validity.

Aspects of the work and ideas contained in this thesis have been published in six

academic conferences. A comprehensive list of these publications can be found at the

beginning of this thesis.

Chapter 8 – Conclusion and Future Work

 203

8.3. Limitations

There are several limitations that are associated with the proposed solution; these are

discussed in this section.

 CBM – Unfortunately, the trust-centric nature of the CBM process means that

there is an inherent trust-related flaw that exists within this technique. The

stated roles, contributions and capabilities supplied by components to the

MACCS technique can be falsified. Therefore, it is also potentially possible to

fabricate similar components in order to interact with a specifically targeted

component. This established relationship can then be used to deliberately

sabotage the CBM results supplied to the targeted component. This is an issue

that still requires further research to resolve.

 Statistical Thresholds –Statistical thresholds have many advantages when

detecting misbehaviour but their level of detailed accuracy is an inherent

limitation. This is because of their “dumb” approach used to identify

misbehaviour. This refers to the belief that only behaviour that lies outside of

the threshold boundaries is misbehaviour. The possibility that misbehaviour

may fall inside of the thresholds boundaries is not considered. This limitation

is particularly prevalent in complex environments due to the dynamic

behaviour. Hence, there is the potential for this to lead to an increase in the

false negative rate.

 Failure Tolerance – As previously stated in §4.3, the design of the framework

only considers successful operations. Despite the fact that the framework has

built-in redundancy, there is still the potential for failure in all of the

framework modules. Unfortunately, the scope of SSC’s design does not

address the issue of what happens should failure occur. If SSC is to be

deployed into real-world mission critical scenarios, this is something that

needs to be addressed.

Chapter 8 – Conclusion and Future Work

 204

 Identifying Dynamic Behaviour – In this work, the difficulty of

distinguishing between genuine dynamic behaviour and misbehaviour has

been discussed. The behavioural dynamics in complex environments are

dictated by a vast array of constantly changing variables. As such, it is

extremely difficult for any technique to claim true accuracy. Although this

work goes some way to helping distinguish genuine dynamic behaviour from

misbehaviour (by building dynamic tolerances into the thresholds), there is

still a great deal of further research required on this issue.

8.4. Future Work

The work contained in this thesis can be applied to various domains. Therefore,

there are numerous ways in which the work could be improved, extended or used to

address other challenges.

 SSC could be enhanced by conducting further work into assessing how

metric relationships change over time. SSC currently uses fixed relationship

weighting tables that are established during training. However, like most of

the system, these are subject to change and therefore a mechanism could be

employed to periodically evaluate these relationships.

 All of the experiments undertaken in this thesis have been designed to

evaluate the success of various aspects of the framework. However, these

experiments are specific to the test-bed configuration and misbehaviour

simulated. Further analysis will be required in order to evaluate the true

extent of its limitations and wider applicability.

 SSC could be enhanced by integrating failure handling into the design of the

framework. This would enable the framework to recover from and action any

detected failure in any of the modules.

Chapter 8 – Conclusion and Future Work

 205

 SSC could be enhanced by integrating a method to authenticate other SoS

components. The decentralised and dynamic environment makes it difficult

to keep track of legitimate SoS members. The use of an authentication

method would ensure that banned components are unable to participate in

the SoS.

 An enhancement could also be made to SSC by implementing a throttling

mechanism to ensure contributions were not over-consumed. This would

also help to prevent the potential problems that could occur as a result of

leeching components.

 SSC could be extended to verify the functionality and availability of fellow

components’ promised contributions and to periodically evaluate the quality

of the contributions. This would allow SoS compositions to maintain a high

standard of contributions and high level of functionality and thus help to

raise the level of trust in the SoS.

 SSC could also be extended by evaluating which components cause the most

misbehaviour on the host system. This information could be used to increase

security for or restrict interactions with that particular component.

 The MACCS method utilised by SSC could be improved by implementing a

mechanism to authenticate requests for configuration files and comparison

checks.

 As more systems are moved into cloud environments, often with various IaaS

providers, it makes them highly distributed and difficult to monitor.

Therefore, the proposed SSC framework could be applied to these systems in

order to monitor their behaviour and interaction with each other.

 The concept of the Internet of Things and SoS are similar in their structure,

scale, unpredictability and decentralisation. Therefore, it is likely to face the

Chapter 8 – Conclusion and Future Work

 206

same problem as a SoS when it comes to behavioural monitoring. Obviously,

the metrics used during the monitoring process would be different but SSC

could be applied. Additionally, it may struggle with issues of

decentralisation, distribution and heterogeneity when establishing a CBM

group, therefore the CBM similarity mechanism developed in this thesis

could also be implemented.

8.5. Concluding Remarks

SoS still remains an infantile yet emerging concept; it has huge potential and has

gathered a great amount of interest from a multitude of different research areas.

Despite this, the nature of a SoS poses many significant problems when monitoring

the behaviour of its component systems. The threat of such misbehaviour could have

disastrous consequences for both individual components and the SoS as a whole,

especially due to the dependency that components have on each other for

functionality and services.

The proposed SSC framework combats the challenges faced whilst monitoring

behaviour on a SoS component. By using its novel behavioural threshold

management algorithms, it can maintain an accurate set of behavioural threshold

profiles against which the SoS component system can be monitored. Thus, it

overcomes the problem of system dynamics and evolution affecting the validity of

the thresholds. Additionally, its use of a novel misbehaviour quantification

algorithm ensures the accuracy of the misbehaviour analysis. The use of CBM

groups provides greater monitoring efficiency and misbehaviour detection. This

success can be attributed to the novel algorithm used to construct CBM groups based

on the in-depth behavioural similarity of the components. This helps to identify and

prevent misbehaviour in real-time thus limiting any potential damage. It reduces

both false positive and false negative behavioural detection rates. It also helps to

Chapter 8 – Conclusion and Future Work

 207

ensure low resource consumption, therefore allowing the majority of resources to be

used towards SoS contribution.

Through experimentation, the framework and the techniques it utilises have been

validated, demonstrating that they can overcome the challenges that a SoS poses to

behavioural monitoring. The benefits of this work are that SoS components can now

be monitored for misbehaviour in real-time, thus preventing potentially disastrous

consequences. It is able to ensure both the security and integrity of the component

systems and also the security, integrity and continuity of the overall SoS

composition. The SSC framework provides an efficient way of detecting and

analysing potential misbehaviour, and can hopefully be used in securing future SoS

implementations against the prevalent threat of component misbehaviour.

References

[1] “Revoo - Leading cloud-based social commerce and review solutions.”

[Online]. Available: http://www.reevoo.com/. [Accessed: 18-Sep-2013].

[2] M. W. Maier, “Architecting principles for systems-of-systems,” Syst. Eng., vol.

1, no. 4, pp. 267–284, 1998.

[3] D. A. Fisher, “An Emergent Perspective on Interoperation in Systems of

Systems,” Pittsburgh, Pennsylvania, 2006.

[4] D. Firesmith, “Profiling Systems Using the Defining Characteristics of Systems

of Systems (SoS),” Software Engineering Institute, 2010.

[5] V. Kotov, “System of Systems as Communicating Structures,” Hewlett Packard

Comput. Syst. Lab., vol. HPL-97–124, pp. 1–15, Mar. 1997.

[6] J. Dahmann, G. Rebovich, M. McEvilley, and G. Turner, “Security engineering

in a system of systems environment,” in 2013 IEEE International Systems

Conference (SysCon), 2013, pp. 364–369.

[7] M. Jamshidi, “System of systems engineering - New challenges for the 21st

century,” IEEE Aerosp. Electron. Syst. Mag., vol. 23, no. 5, pp. 4–19, May 2008.

[8] M. Efatmaneshnik, R. Nilchiani, and B. Heydari, “From complicated to

complex uncertainties in system of systems,” in 2012 IEEE International Systems

Conference SysCon 2012, 2012, pp. 1–6.

[9] R. Kole, G. Markarian, and A. Tarter, “System Terminology,” in Aviation

Security Engineering: A Holistic Approach, Artech House Publishers, 2011, pp.

60–63.

[10] M. Jamshidi, “Introduction to system of systems,” in System of Systems

Engineering: Principles and Applications, CRC Press, 2008, pp. 1–37.

[11] J. Boardman and B. Sauser, “System of Systems - the meaning of of,” in 2006

IEEE/SMC International Conference on System of Systems Engineering, 2006, pp.

118–123.

[12] A. Gorod, R. Gove, B. Sauser, and J. Boardman, “System of Systems

Management: A Network Management Approach,” in 2007 IEEE International

Conference on System of Systems Engineering, 2007, pp. 1–5.

References

 209

[13] J. S. Dahmann, G. Rebovich Jr, and J. A. Lane, “Systems Engineering for

Capabilities,” CROSSTALK J. Def. Softw. Eng., pp. 4–9, 2008.

[14] S. A. Selberg and M. A. Austin, “Toward an evolutionary system of systems

architecture,” in Proceedings of Eighteenth Annual International Symposium of The

International Council on Systems Engineering (INCOSE), 2008, no. 1, pp. 1–14.

[15] K. Baldwin, “Systems Engineering Guide for Systems of Systems,”

Washington DC, 2008.

[16] D. S. Caffall and J. B. Michael, “Architectural framework for a system-of-

systems,” in 2005 IEEE International Conference on Systems, Man and Cybernetics,

vol. 2, pp. 1876–1881.

[17] M. A. Corsello, “System-of-Systems Architectural Considerations for Complex

Environments and Evolving Requirements,” IEEE Syst. J., vol. 2, no. 3, pp. 312–

320, Sep. 2008.

[18] M. W. Maier, “Research Challenges for Systems-of-Systems,” in 2005 IEEE

International Conference on Systems, Man and Cybernetics, 2006, vol. 4, pp. 3149–

3154.

[19] D. Dagli and N. Kilicay-Ergin, “System of Systems Architecting,” in System of

Systems Engineering, Innovation for the 21st Century, M. Jamshidi, Ed. N.J. John

Wiley, 2009, pp. 77–100.

[20] N. Karcanias and A. G. Hessami, “System of Systems and Emergence Part 1:

Principles and Framework,” 2011 Fourth Int. Conf. Emerg. Trends Eng. Technol.,

pp. 27–32, Nov. 2011.

[21] N. Karcanias and A. G. Hessami, “System of Systems and Emergence Part 2:

Synergetic Effects and Emergence,” in 2011 Fourth International Conference on

Emerging Trends in Engineering & Technology, 2011, pp. 33–38.

[22] R. Stacey, Complexity and Creativity in Organizations. Berrett-Koehler, 1996.

[23] B. Sauser and J. Boardman, “FROM PRESCIENCE TO EMERGENCE :

TAKING HOLD OF SYSTEM,” in 27th Annual ASEM National Conference 2006:

Managing Change--managing People and Technology in a Rapidly Changing World,

2006, pp. 447–451.

[24] K. Yang, Y. Chen, Y. Lu, and Q. Zhao, “The study of guided emergent

behavior in system of systems requirement analysis,” in 2010 5th International

Conference on System of Systems Engineering, 2010, pp. 1–5.

References

 210

[25] W. Ji and S. Xueshi, “On the complexity of technology system-of-systems,” in

2012 International Conference on System Science and Engineering (ICSSE), 2012,

pp. 282–287.

[26] J. Simpson and M. Simpson, “System of systems complexity identification and

control,” in System of Systems Engineering, 2009. SoSE 2009. IEEE International

Conference on, 2009, pp. 1–6.

[27] Z. Yingchao, “System of Systems complexity and decision making,” in 2012 7th

International Conference on System of Systems Engineering (SoSE), 2012, no. July,

pp. 509–513.

[28] P. N. Lowe and M. W. Chen, “System of systems complexity: modeling and

simulation issues,” in SCSC ’08 Proceedings of the 2008 Summer Computer

Simulation Conference, 2008, no. 2, p. Article No. 36.

[29] D. Delaurentis, “Role of Humans in Complexity of a System-of-Systems,” in

ICDHM’07 Proceedings of the 1st international conference on Digital human

modeling, 2007, pp. 363–371.

[30] M. Mane, D. DeLaurentis, and A. Frazho, “A Markov perspective on system-

of-systems complexity,” in 2011 IEEE International Conference on Systems, Man,

and Cybernetics, 2011, pp. 1238–1243.

[31] L. Ma and C. Wang, “Study of decision-making progress and its emergence in

system of systems,” in Proceedings of the IEEE 2012 Prognostics and System

Health Management Conference (PHM-2012 Beijing), 2012, pp. 1–4.

[32] Z. Yu, Y. Tan, K. Yang, and Z. Yang, “Research on evolving capability

requirements oriented weapon system of systems portfolio planning,” 2012 7th

Int. Conf. Syst. Syst. Eng., pp. 275–280, Jul. 2012.

[33] M. Valero, A. Selcuk Uluagac, Y. Li, and R. Beyah, “Di-Sec: A distributed

security framework for heterogeneous Wireless Sensor Networks,” in 2012

Proceedings IEEE INFOCOM, 2012, pp. 585–593.

[34] K. B. Bahsin and J. L. Hayen, “Communication and Navigation Networks In

Space System of Systems,” in System of Systems Engineering, Innovation for the

21st Century, M. Jamshidi, Ed. New York: N.J. John Wiley, 2008, pp. 348–385.

[35] S. D. Jolly and B. Muirhead, “System of Systems Engineering in Space

Exploration,” in System of Systems Engineering, Innovation for the 21st Century,

M. Jamshidi, Ed. New York: N.J. John Wiley, 2008, pp. 317–348.

References

 211

[36] N. Wickramasinghe, S. Chalasani, R. V Boppana, and A. M. Madni,

“Healthcare System of Systems,” in 2007 IEEE International Conference on

System of Systems Engineering, 2007, pp. 1–6.

[37] K. Tsilipanos, I. Neokosmidis, D. Varoutas, and S. Member, “A System of

Systems Framework for the Reliability Assessment of Telecommunications

Networks,” IEEE Syst. J., vol. 7, no. 1, pp. 114–124, Mar. 2013.

[38] P. Korba and I. A. Hiskins, “Operation and Control of Electrial Power

Systems,” in System of Systems Engineering, Innovation for the 21st Century, M.

Jamshidi, Ed. New York: N.J. John Wiley, 2008, pp. 385–409.

[39] H. Azarnoush, B. Horan, P. Sridhar, A. M. Madni, M. Jamshidi, M. Madni, S.

Antonio, and I. Systems, “Towards optimization of a real-world Robotic-

Sensor System of Systems,” in 2006 World Automation Congress, 2006, pp. 1–8.

[40] W. Reckmeyer, “Systems of Systems Approaches in the U . S . Department of

Defense,” in 1st Annual SoS Engineering Conference, 2005, no. June, pp. 1–18.

[41] B. Horan, “System of systems approach to threat detection and integration of

heterogeneous independently operable systems,” in 2007 IEEE International

Conference on Systems, Man and Cybernetics, 2007, pp. 1376–1381.

[42] D. J. Bodeau, “System-of-systems security engineering,” in Tenth Annual

Computer Security Applications Conference, 1994, pp. 228–235.

[43] D. Trivellato, N. Zannone, and S. Etalle, “A Security Framework for Systems of

Systems,” 2011 IEEE Int. Symp. Policies Distrib. Syst. Networks, pp. 182–183, Jun.

2011.

[44] P. J. Redmond, J. B. Michael, and P. V. Shebalin, “Interface hazard analysis for

system of systems,” 2008 IEEE Int. Conf. Syst. Syst. Eng., pp. 1–8, Jun. 2008.

[45] C. A. Pinto, M. K. Mcshane, I. Bozkurt, and K. H. Rm, “System of systems

perspective on risk: towards a unified concept,” Int. J. Syst. Syst. Eng., vol. 3,

no. 1, p. 33, 2012.

[46] Cambridge Dictionaries Online, “Misbehave (verb) - Definition in the British

English Dictionary & Thesaurus - Cambridge Dictionaries Online.” .

[47] K. Shin, J. Jung, J. Cheon, and S. Choi, “Real-time network monitoring scheme

based on SNMP for dynamic information,” J. Netw. Comput. Appl., vol. 30, no.

1, pp. 331–353, Jan. 2007.

References

 212

[48] J. Mendozajasso, G. Ornelasvargas, R. Castanedamiranda, E. Venturaramos, a

Zepedagarrido, and G. Herreraruiz, “FPGA-based real-time remote

monitoring system,” Comput. Electron. Agric., vol. 49, no. 2, pp. 272–285, Nov.

2005.

[49] P. Porras, “Directions in Network-Based Security Monitoring,” IEEE Secur.

Priv. Mag., vol. 7, no. 1, pp. 82–85, Jan. 2009.

[50] X. Jin and S.-H. G. Chan, “Detecting malicious nodes in peer-to-peer streaming

by peer-based monitoring,” ACM Trans. Multimed. Comput. Commun. Appl.,

vol. 6, no. 2, pp. 1–18, Mar. 2010.

[51] A. Visan, F. Pop, and V. Cristea, “Decentralized Trust Management in Peer-to-

Peer Systems,” 2011 10th Int. Symp. Parallel Distrib. Comput., pp. 232–239, Jul.

2011.

[52] D. Fang, X. Chen, N. An, and J. Kang, “A novel method to anti-free-rider in the

unstructured P2P networks,” in 2011 6th International Conference on Pervasive

Computing and Applications, 2011, pp. 394–399.

[53] O. Xi, D. Li, J. Zhang, H. Liu, H. Zhu, and Y. Xin, “Malicious node detection in

wireless sensor networks using time series analysis on node reputation,” J.

Converg. Inf. Technol., vol. 7, no. 15, pp. 8–16, Aug. 2012.

[54] M. A. Paracha, S. Ahmad, A. Akram, and M. W. Anwar, “Cooperative

Reputation Index Based Selfish Node Detection and Prevention System for

Mobile Ad hoc Networks,” Res. J. Appl. Sci. Eng. Technol., vol. 4, no. 3, pp. 201–

205, 2012.

[55] M. T. Refaei, L. DaSilva, and M. Eltoweissy, “A reputation-based mechanism

for isolating selfish nodes in ad hoc networks,” in The Second Annual

International Conference on Mobile and Ubiquitous Systems: Networking and

Services, 2005, pp. 3–11.

[56] Z. Li and H. Shen, “Analysis the cooperation strategies in mobile ad hoc

networks,” in 2008 5th IEEE International Conference on Mobile Ad Hoc and Sensor

Systems, 2008, pp. 880–885.

[57] F. Entezami, T. A. Ramrekha, and C. Politis, “An enhanced routing metric for

ad hoc networks based on real time testbed,” in 2012 IEEE 17th International

Workshop on Computer Aided Modeling and Design of Communication Links and

Networks (CAMAD), 2012, pp. 173–175.

References

 213

[58] R.-C. Chen, “Optimal cost estimation with efficient link topology design based

on N -partite graph method in ad-hoc networks,” J. Stat. Manag. Syst., vol. 11,

no. 6, pp. 1151–1160, Nov. 2008.

[59] J. N. Al-Karaki and A. E. Kamal, “Stimulating Node Cooperation in Mobile Ad

hoc Networks,” Wirel. Pers. Commun., vol. 44, no. 2, pp. 219–239, Dec. 2007.

[60] W. Hao and D. Yi-ming, “Cooperation Enforcement Mechanism Considering

Battery Cost in Ad hoc Networks,” in 2007 International Symposium on

Microwave, Antenna, Propagation and EMC Technologies for Wireless

Communications, 2007, no. 60372093, pp. 134–137.

[61] Z. Zhang, P.-H. Ho, and F. Nait-Abdesselam, “On Achieving Cost-Sensitive

Anomaly Detection and Response in Mobile Ad Hoc Networks,” in 2009 IEEE

International Conference on Communications, 2009, pp. 1–5.

[62] A. K. Pinnaka, D. Tharashasank, and V. S. K. Reddy, “Cost performance

analysis of intrusion detection system in mobile wireless ad-hoc network,” in

2013 3rd IEEE International Advance Computing Conference (IACC), 2013, pp.

536–541.

[63] D. O. Rice, “Proposal for the Security of Peer-to-Peer Networks : a pricing

model inspired by the theory of complex networks .,” Inf. Age, pp. 812–813,

2007.

[64] S. Chari and P. Cheng, “BlueBox: A policy-driven, host-based intrusion

detection system,” in ACM Transaction on Information and System Security, 2003,

vol. 6, no. 2, pp. 173–200.

[65] C. Martin and M. Refai, “A Policy-Based Metrics Framework for Information

Security Performance Measurement,” in 2007 2nd IEEE/IFIP International

Workshop on Business-Driven IT Management, 2007, no. c, pp. 94–101.

[66] P. Garciateodoro, J. Diazverdejo, G. Maciafernandez, and E. Vazquez,

“Anomaly-based network intrusion detection: Techniques, systems and

challenges,” Comput. Secur., vol. 28, no. 1–2, pp. 18–28, Feb. 2009.

[67] S. J. Lincke, T. H. Knautz, and M. D. Lowery, “Designing System Security with

UML Misuse Deployment Diagrams,” 2012 IEEE Sixth Int. Conf. Softw. Secur.

Reliab. Companion, pp. 57–61, Jun. 2012.

[68] E. Fernandez-Medina, M. Piattini, and M. A. Serrano, “Specification of security

constraint in UML,” in Proceedings IEEE 35th Annual 2001 International

References

 214

Carnahan Conference on Security Technology (Cat. No.01CH37186), 2000, pp. 163–

171.

[69] J. M. Fuentes, J. E. L. De Vergara, and P. Castells, “An Ontology-Based

Approach to the Description and Execution of Composite Network

Management Processes for Network Monitoring,” in 17th IFIP/IEEE

International Workshop on Distributed Systems: Operations and Management,

DSOM 2006, 2006, pp. 86–97.

[70] Y. Ping, J. Xinghao, W. Yue, and L. Ning, “Distributed intrusion detection for

mobile ad hoc networks,” J. Syst. Eng. Electron., vol. 19, no. 4, pp. 851–859,

Aug. 2008.

[71] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou,

“Specification-based anomaly detection,” in Proceedings of the 9th ACM

conference on Computer and communications security - CCS ’02, 2002, p. 265.

[72] F. Yu, C. Xu, Y. Shen, J. An, and L. Zhang, “Intrusion Detection Based on

System Call Finite-State Automation Machine,” in 2005 IEEE International

Conference on Industrial Technology, 2005, pp. 63–68.

[73] P. M. Frankt, “Fault Diagnosis in Dynamic Systems Using Analytical and

Knowledge-based Redundancy A Survey and Some New Results *,”

Automatica, vol. 26, no. 3, pp. 459–474, 1990.

[74] Y. Papadopoulos, “Model-based system monitoring and diagnosis of failures

using statecharts and fault trees,” Reliab. Eng. Syst. Saf., vol. 81, no. 3, pp. 325–

341, Sep. 2003.

[75] H. Yong and Z. X. Feng, “Expert System Based Intrusion Detection System,” in

2010 3rd International Conference on Information Management, Innovation

Management and Industrial Engineering, 2010, pp. 404–407.

[76] T. F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. G. Neumann, and C.

Jalali, “IDES: a progress report (Intrusion-Detection Expert System),” in

Proceedings of the Sixth Annual Computer Security Applications Conference, 1990,

pp. 273–285.

[77] D. S. Bauer and M. E. Koblentz, “NIDX-an expert system for real-time network

intrusion detection,” in Proceedings of the Computer Networking Symposium,

1988, pp. 98–106.

[78] D. Anderson, T. F. Lunt, A. Javits, and H. S. Tamaru, “Detecting Unusual

Program Behavior Using the Statistical Component of the Next-generation

References

 215

Intrusion Detection Expert System (NIDES),” Technical Report, Computer

Science Laboratory SRI International, CA, USA, 1995.

[79] U. M. Schwuttke, J. R. Veregge, and a. G. Quan, “Cooperating expert systems

for the next generation of real-time monitoring applications,” Proc. Int. Conf.

Expert Syst. Dev., pp. 210–215, 1994.

[80] M. B. Jain, A. Jain, and M. B. Srinivas, “A web based expert system shell for

fault diagnosis and control of power system equipment,” in 2008 International

Conference on Condition Monitoring and Diagnosis, 2008, pp. 1310–1313.

[81] Y. Wang, C. Deng, Y. Xiong, and J. Wu, “A Mixed Expert System for Fault

Diagnosis,” in 2010 IEEE 17th International Conference on Industrial Engineering

and Engineering Management, 2010, pp. 916–919.

[82] L. Tinggui, “The building of expert system based on web for Fault Diagnosis,”

in 2012 IEEE International Conference on Computer Science and Automation

Engineering, 2012, pp. 539–542.

[83] L. W. Chen and M. Modarres, “HIERARCHICAL DECISION PROCESS FOR

FAULT DECISION PROCESS,” An Int. J. Comput. Appl. Chem. Eng., vol. 16, no.

5, pp. 425–448, 1992.

[84] M. A. Faysel and S. S. Haque, “Towards Cyber Defense : Research in Intrusion

Detection and Intrusion Prevention Systems,” J. Comput. Sci., vol. 10, no. 7, pp.

316–325, 2010.

[85] M. Roesch and S. Telecommunications, “SNORT — Lightweight Intrusion

Detection For Networks,” in LISA ’99: 13th Systems Administration Conference,

1999, pp. 229–238.

[86] J. Ren and H. Tian, “Sequential Pattern Mining with Inaccurate Event in

Temporal Sequence,” in 2008 Fourth International Conference on Networked

Computing and Advanced Information Management, 2008, pp. 659–664.

[87] H.-K. Pao, C.-H. Mao, H.-M. Lee, C.-D. Chen, and C. Faloutsos, “An Intrinsic

Graphical Signature Based on Alert Correlation Analysis for Intrusion

Detection,” in 2010 International Conference on Technologies and Applications of

Artificial Intelligence, 2010, pp. 102–109.

[88] D. Maiorca, G. Giacinto, and I. Corona, “A Pattern Recognition System for

Malicious PDF Files Detection,” in 8th International Conference on Machine

Learning and Data Mining in Pattern Recognition (MLDM 2012), 2012, pp. 510–

524.

References

 216

[89] W. Tylman, “Misuse-Based Intrusion Detection Using Bayesian Networks,” in

2008 Third International Conference on Dependability of Computer Systems DepCoS-

RELCOMEX, 2008, pp. 203–210.

[90] D. M. Farid and M. Z. Rahman, “Anomaly Network Intrusion Detection Based

on Improved Self Adaptive Bayesian Algorithm,” J. Comput., vol. 5, no. 1, pp.

23–31, Jan. 2010.

[91] C. Kruegel, D. Mutz, W. Robertson, and F. Valeur, “Bayesian event

classification for intrusion detection,” in 19th Annual Computer Security

Applications Conference, 2003. Proceedings., 2003, no. Acsac, pp. 14–23.

[92] Y. Meng, L. Kwok, and W. Li, “Towards Designing Packet Filter with A Trust-

based Approach using Bayesian Inference in Network Intrusion Detection,” in

8th International ICST Conference on Security and Privacy in Communication

Networks, SecureComm 2012, 2012, pp. 203–221.

[93] A. Patcha and J.-M. Park, “An overview of anomaly detection techniques:

Existing solutions and latest technological trends,” Comput. Networks, vol. 51,

no. 12, pp. 3448–3470, Aug. 2007.

[94] D.-Y. Yeung and Y. Ding, “Host-based intrusion detection using dynamic and

static behavioral models,” Pattern Recognit., vol. 36, no. 1, pp. 229–243, Jan.

2003.

[95] J. Hu, X. Yu, D. Qiu, and H.-H. Chen, “A simple and efficient hidden Markov

model scheme for host-based anomaly intrusion detection,” IEEE Netw., vol.

23, no. 1, pp. 42–47, Jan. 2009.

[96] S. Alarifi and S. Wolthusen, “Anomaly detection for ephemeral cloud IaaS

virtual machines,” in 7th International Conference on Network and System

Security, NSS 2013, 2013, pp. 321–335.

[97] W. Sha, Y. Zhu, T. Huang, M. Qiu, Y. Zhu, and Q. Zhang, “A Multi-order

Markov Chain Based Scheme for Anomaly Detection,” 2013 IEEE 37th Annu.

Comput. Softw. Appl. Conf. Work., pp. 83–88, Jul. 2013.

[98] Y. Yasami, M. Farahmand, and V. Zargari, “An ARP-based Anomaly Detection

Algorithm Using Hidden Markov Model in Enterprise Networks,” 2007 Second

Int. Conf. Syst. Networks Commun. (ICSNC 2007), no. Icsnc, pp. 69–69, Aug.

2007.

[99] E. Dorj and E. Altangerel, “Anomaly detection approach using Hidden

Markov Model,” in Ifost, 2013, vol. 1, no. i, pp. 141–144.

References

 217

[100] A. Sultana, A. Hamou-Lhadj, and M. Couture, “An improved Hidden Markov

Model for anomaly detection using frequent common patterns,” in 2012 IEEE

International Conference on Communications (ICC), 2012, pp. 1113–1117.

[101] J. Tian and M. Gao, “Network Intrusion Detection Method Based on High

Speed and Precise Genetic Algorithm Neural Network,” in 2009 International

Conference on Networks Security, Wireless Communications and Trusted Computing,

2009, pp. 619–622.

[102] B. Vaidya, “Anomaly Intrusion Detection for System Call Using the Soundex

Algorithm and Neural Networks,” in 10th IEEE Symposium on Computers and

Communications (ISCC’05), 2005, no. Iscc, pp. 427–433.

[103] Y. Liu, D. Tian, and A. Wang, “ANNIDS : INTRUSION DETECTION SYSTEM

BASED ON ARTIFICIAL NEURAL NETWORK,” no. November, pp. 2–5,

2003.

[104] K. Y. Chan, T. S. Dillon, J. Singh, and E. Chang, “Traffic flow forecasting neural

networks based on exponential smoothing method,” in 2011 6th IEEE

Conference on Industrial Electronics and Applications, 2011, pp. 376–381.

[105] K. Tan, “The application of neural networks to UNIX computer security,” in

Proceedings of ICNN’95 - International Conference on Neural Networks, 1995, vol. 1,

pp. 476–481.

[106] U. Ahmed and A. Masood, “Host based intrusion detection using RBF neural

networks,” 2009 Int. Conf. Emerg. Technol., pp. 48–51, Oct. 2009.

[107] J. Ryan, M. Lin, and R. Mikkulainen, “Intrusion Detection with Neural

Networks,” in Advances in Neural Information Processing Systems, 1998, pp. 942–

949.

[108] T. V. Lakshman, “Detecting network intrusions via sampling: a game theoretic

approach,” in IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of

the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428),

2003, vol. 3, no. C, pp. 1880–1889.

[109] A. Agah, K. Basu, and S. K. Das, “Preventing DoS attack in sensor networks: a

game theoretic approach,” in IEEE International Conference on Communications,

2005. ICC 2005. 2005, 2005, vol. 5, no. i, pp. 3218–3222.

[110] S. Liu, D. Y. Zhang, X. Chu, H. Otrok, and P. Bhattacharya, “A Game Theoretic

Approach to Optimize the Performance of Host-Based IDS,” 2008 IEEE Int.

Conf. Wirel. Mob. Comput. Netw. Commun., pp. 448–453, Oct. 2008.

References

 218

[111] D. Shen, G. Chen, J. B. Cruz, Jr., E. Blasch, and M. Kruger, “Game Theoretic

Solutions to Cyber Attack and Network Defense Problems,” in Twelfth

International Command and Control Research and Technology Symposium (12th

ICCRTS), 2007, no. Track 2.

[112] Y. B. Reddy, “A Game Theory Approach to Detect Malicious Nodes in

Wireless Sensor Networks,” 2009 Third Int. Conf. Sens. Technol. Appl., pp. 462–

468, Jun. 2009.

[113] M. Kodialam and T. V. Lakshman, “Detecting network intrusions via

sampling: a game theoretic approach,” in IEEE INFOCOM 2003. Twenty-second

Annual Joint Conference of the IEEE Computer and Communications Societies, 2003,

vol. 3, no. C, pp. 1880–1889.

[114] W. El-Hajj, F. Aloul, Z. Trabelsi, and N. Zaki, “On Detecting Port Scanning

using Fuzzy Based Intrusion Detection System,” in 2008 International Wireless

Communications and Mobile Computing Conference, 2008, pp. 105–110.

[115] Y. Badr and S. Banerjee, “Managing End-to-End Security Risks with Fuzzy

Logic in Service-Oriented Architectures,” in 2013 IEEE Ninth World Congress on

Services, 2013, pp. 111–117.

[116] K. Alsubhi, I. Aib, and R. Boutaba, “FuzMet: a fuzzy-logic based alert

prioritization engine for intrusion detection systems,” Int. J. Netw. Manag., vol.

22, no. 4, pp. 263–284, Jul. 2012.

[117] R. Badaoui and A. Al-jumaily, “Fuzzy Logic Based Human Detection for

CCTV Recording Application,” in 6th International Conference on Advanced

Information Management and Service (IMS), 2010, pp. 336–341.

[118] D. Gayme, S. Menon, C. Ball, D. Mukavetz, and E. Nwadiogbu, “Fault

detection and diagnosis in turbine engines using fuzzy logic,” in 22nd

International Conference of the North American Fuzzy Information Processing

Society, NAFIPS 2003, 2003, pp. 341–346.

[119] M. Mirza, H. Gholamhosseini, and M. J. Harrison, “A fuzzy logic-based system

for anaesthesia monitoring.,” in Annual International Conference of the IEEE

Engineering in Medicine and Biology Society., 2010, vol. 2010, pp. 3974–7.

[120] M. Alamaniotis, A. Heifetz, A. C. Raptis, and L. H. Tsoukalas, “Fuzzy-Logic

Radioisotope Identifier for Gamma Spectroscopy in Source Search,” IEEE

Trans. Nucl. Sci., vol. 60, no. 4, pp. 3014–3024, Aug. 2013.

References

 219

[121] B. a. Fessi, S. BenAbdallah, M. Hamdi, and N. Boudriga, “A new genetic

algorithm approach for intrusion response system in computer networks,” in

2009 IEEE Symposium on Computers and Communications, 2009, pp. 342–347.

[122] W. Li, “Using Genetic Algorithm for Network Intrusion Detection,” in

Proceedings of the United States Department of Energy Cyber Security Group 2004

Training Conference, 2004, pp. 24–27.

[123] R. Khanna, H. Liu, and H.-H. Chen, “Reduced Complexity Intrusion Detection

in Sensor Networks Using Genetic Algorithm,” in 2009 IEEE International

Conference on Communications, 2009, pp. 1–5.

[124] J. Lee and J. Lee, “Bayesian network-based non-parametric compact genetic

algorithm,” in 2008 6th IEEE International Conference on Industrial Informatics,

2008, no. Indin, pp. 359–364.

[125] Y.-P. Zhou, J.-A. Fang, and D.-M. Yu, “Research on Fuzzy Genetics-Based Rule

Classifier in Intrusion Detection System,” in 2008 International Conference on

Intelligent Computation Technology and Automation (ICICTA), 2008, pp. 914–919.

[126] W. Yunwu, “Using Fuzzy Expert System Based on Genetic Algorithms for

Intrusion Detection System,” in 2009 International Forum on Information

Technology and Applications, 2009, pp. 221–224.

[127] P.-N. Tan, M. Steinbach, and V. Kumar, “Cluster Analysis : Basic Concepts and

Algorithms,” in Introduction to Data Mining, Addison-Wesley Professional,

2005, pp. 487–568.

[128] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection with unlabeled data

using clustering,” in ACM CSS Workshop on Data Mining Applied to Security,

2001, pp. 5–8.

[129] L. Ertoz, E. Eilertson, A. Lazarevic, P.-N. Tan, V. Kumar, J. Srivastava, and P.

Dokas, “Chapter 3 MINDS - Minnesota Intrusion Detection System,” in Next

Generation Data Mining, MIT Press, 2004, pp. 1–21.

[130] K. Sequeira and M. Zaki, “ADMIT,” in Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery and data mining - KDD ’02, 2002,

p. 386.

[131] P. Yang and B. Huang, “Density Based Outlier Mining Algorithm with

Application to Intrusion Detection,” 2008 IEEE Pacific-Asia Work. Comput. Intell.

Ind. Appl., vol. 3, pp. 511–514, Dec. 2008.

References

 220

[132] D. Said, L. Stirling, P. Federolf, and K. Barker, “Data preprocessing for

distance-based unsupervised Intrusion Detection,” 2011 Ninth Annu. Int. Conf.

Privacy, Secur. Trust, pp. 181–188, Jul. 2011.

[133] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A Survey,”

ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, Jul. 2009.

[134] D. E. Denning, “An Intrusion-Detection Model,” IEEE Trans. Softw. Eng., vol.

SE-13, no. 2, pp. 222–232, Feb. 1987.

[135] J. P. J. P. Buzen and A. W. Shum, “MASF - Multivariate Adaptive Statistical

Filtering,” in CMG Conference, 1995.

[136] N. Ye, S. Member, S. M. S. M. Emran, Q. Chen, and S. Vilbert, “Multivariate

statistical analysis of audit trails for host-based intrusion detection,” IEEE

Trans. Comput., vol. 51, no. 7, pp. 810–820, Jul. 2002.

[137] A. Ahmed, A. Lisitsa, and C. Dixon, “A Misuse-Based Network Intrusion

Detection System Using Temporal Logic and Stream Processing,” in 2011 5th

International Conference on Network and System Security, 2011, pp. 1–8.

[138] W. Zhu and Q. Zhou, “Intrusion detection based on model checking timed

interval temporal logic,” in 2010 IEEE International Conference on Information

Theory and Information Security, 2010, pp. 503–505.

[139] S. Sengupta, B. A. S. W. Card, P. Kadam, S. Ranwadkar, K. Das, and S. Parikh,

“Temporal signatures for intrusion detection,” in IEEE Internation Workshop on

Intelligent Data Acquisition and Advanced Computing Systems, 2003, pp. 252–261.

[140] C. Qi, X. Bo-li, L. Jun, and K. Gang-yao, “An Approach on Analyzing

Histogram and Selecting Threshold,” 2008 Int. Conf. Comput. Sci. Softw. Eng.,

no. 1, pp. 185–188, 2008.

[141] A. Kind, M. Stoecklin, and X. Dimitropoulos, “Histogram-based traffic

anomaly detection,” IEEE Trans. Netw. Serv. Manag., vol. 6, no. 2, pp. 110–121,

Jun. 2009.

[142] P. Yogarajah, J. Condell, K. Curran, A. Cheddad, and P. McKevitt, “A dynamic

threshold approach for skin segmentation in color images,” in 2010 IEEE

International Conference on Image Processing, 2010, pp. 2225–2228.

[143] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield, and K.

Schwan, “Statistical techniques for online anomaly detection in data centers,”

References

 221

in 12th IFIP/IEEE International Symposium on Integrated Network Management

(IM 2011) and Workshops, 2011, pp. 385–392.

[144] M. A. Faizal, M. Z. M, S. Shahrin, Y. Robiah, S. R. S, and B. Nazrulazhar,

“Threshold Verification Technique for Network Intrusion Detection System,”

Int. J. Comput. Sci. Inf. Secur., vol. 2, no. 1, pp. 1–8, 2009.

[145] M. Q. Ali, E. Al-Shaer, N. Carolina, C. Uncc, H. Khan, and S. A. Khayam,

“Automated Anomaly Detector Adaptation using Adaptive Threshold

Tuning,” ACM Trans. Inf. Syst. Secur., vol. 15, no. 4, pp. 1–30, Apr. 2013.

[146] J. Agosta, C. Diuk-wasser, J. Chandrashekar, and C. Livadas, “An adaptive

anomaly detector for worm detection,” in 2nd USENIX Workshop on Tackling

Computer Systems Problems with Machine Learning Techniques, 2007, pp. 3:1–3:6.

[147] S. Papavassiliou, “A network fault diagnostic approach based on a statistical

traffic normality prediction algorithm,” in GLOBECOM ’03. IEEE Global

Telecommunications Conference (IEEE Cat. No.03CH37489), 2003, vol. 5, pp. 2918–

2922.

[148] Z. Yu, J. J. P. Tsai, and T. Weigert, “An Automatically Tuning Intrusion

Detection System,” IEEE Trans. Syst. Man Cybern. Part B, vol. 37, no. 2, pp. 373–

384, Apr. 2007.

[149] Z. Yu, J. J. P. Tsai, and T. Weigert, “An adaptive automatically tuning intrusion

detection system,” ACM Trans. Auton. Adapt. Syst., vol. 3, no. 3, pp. 1–25, Aug.

2008.

[150] V. C. M. Leung, “Towards adaptive anomaly detection in cellular mobile

networks,” in CCNC 2006. 2006 3rd IEEE Consumer Communications and

Networking Conference, 2006., 2006, vol. 2, pp. 666–670.

[151] H. Liu, C. Lu, W. Hou, and S. Wang, “An adaptive threshold based on support

vector machine for fault diagnosis,” in 2009 8th International Conference on

Reliability, Maintainability and Safety, 2009, pp. 907–911.

[152] Y. Altshuler, S. Dolev, Y. Elovici, and N. Aharony, “TTLed Random Walks for

Collaborative Monitoring,” in 2010 INFOCOM IEEE Conference on Computer

Communications Workshops, 2010, pp. 1–6.

[153] S. Rao, G. Bianchi, J. Garcia-Alfaro, F. Romero, B. Trammell, A. Berger, G.

Lioudakis, E. Papagianakopoulou, M. Koukovini, K. Mittig, and J. G.

Francisco, “System architecture for collaborative security and privacy

monitoring in multi-domain networks,” in 2011 IEEE 5th International

References

 222

Conference on Internet Multimedia Systems Architecture and Application, 2011, pp.

1–6.

[154] C. Wang and Y. Zhou, “A collaborative monitoring mechanism for making a

multitenant platform accountable,” in HotCloud’10 Proceedings of the 2nd

USENIX conference on Hot topics in cloud computing, 2010, pp. 18–18.

[155] T. Mutimukuru, W. Kozanayi, and R. Nyirenda, “Catalyzing Collaborative

Monitoring Processes in Joint Forest Management Situations: The Mafungautsi

Forest Case, Zimbabwe,” Soc. Nat. Resour., vol. 19, no. 3, pp. 209–224, Mar.

2006.

[156] E. J. Ens, G. M. Towler, and C. Daniels, “Looking back to move forward:

Collaborative ecological monitoring in remote Arnhem Land,” Ecol. Manag.

Restor., vol. 13, no. 1, pp. 26–35, Jan. 2012.

[157] T. Miyauchi, T. Takubo, T. Arai, and K. Ohara, “Collaborative Monitoring

Using UFAM and Mobile Robot,” in 2007 International Conference on

Mechatronics and Automation, 2007, pp. 1411–1416.

[158] V. Berisha and A. Spanias, “Real-Time Collaborative Monitoring in Wireless

Sensor Networks,” in 2006 IEEE International Conference on Acoustics Speed and

Signal Processing Proceedings, 2006, vol. 3, pp. III–1120–III–1123.

[159] P. J. Fortier, B. Puntin, and O. Aljaroudi, “Improved Patient Outcomes through

Collaborative Monitoring and Management of Subtle Behavioral and

Physiological Health Changes,” in 2011 44th Hawaii International Conference on

System Sciences, 2011, pp. 1–10.

[160] N. Kramer, A. Monger, L. Petrak, C. Hoene, and M. Steinmetz, “A

Collaborative Self-Monitoring System for highly reliable wireless sensor

networks,” in 2009 2nd IFIP Wireless Days (WD), 2009, no. 01, pp. 1–6.

[161] P. Lookups, L. Lehman, and S. Lerman, “Discovering Network Neighborhoods

Using Peer-to-Peer Lookups,” DSpace@MIT Massachusetts Inst. Technol., 2003.

[162] D. Qing and L. Yang, “The Design and Implementation of a Collaborative

Monitoring System Based on JXTA,” 2008 Int. Conf. Comput. Electr. Eng., pp.

625–629, Dec. 2008.

[163] N. Shone, Q. Shi, M. Merabti, and K. Kifayat, “Detecting Behavioural

Anomalies in System-of-Systems Components,” in 14th Annual Postgraduate

Symposium on Convergence of Telecommunications Networking and Broadcasting

PGNet 2013, 2013.

References

 223

[164] N. Shone, Q. Shi, M. Merabti, and K. Kifayat, “Misbehaviour Monitoring on

System-of-Systems Components,” in 8th International Conference on Risks and

Security of Internet and Systems (CRiSIS), 2013.

[165] M. G. KENDALL, “A NEW MEASURE OF RANK CORRELATION,”

Biometrika, vol. 30, no. 1–2, pp. 81–93, Jun. 1938.

[166] M. Kendall and J. D. Gibbons, Rank Correlation Methods, 5th ed. Edward

Arnold, 1990, pp. 1–272.

[167] H. Kriegel, P. Kröger, E. Schubert, and A. Zimek, “LoOP: Local Outlier

Probabilities,” in Proceeding of the 18th ACM conference on Information and

knowledge management - CIKM ’09, 2009, p. 1649.

[168] N. Shone, Q. Shi, M. Merabti, and K. Kifayat, “Securing Complex System-of-

Systems Compositions,” in 12th European Conference on Information Warfare and

Security ECIW-2013, 2013.

[169] N. Shone, Q. Shi, M. Merabti, and K. Kifayat, “Towards Efficient Collaborative

Behavioural Monitoring in a System-of-Systems,” in 10th IEEE International

Conference on Autonomic and Trusted Computing (ATC-2013), 2013.

[170] SICS, “JDHT: Java Distributed Hash Table,” 2009. [Online]. Available:

http://dks.sics.se/jdht/. [Accessed: 21-May-2013].

[171] Nagios, “Nagios - The Industry Standard in IT Infrastructure Monitoring.”

[Online]. Available: http://www.nagios.org/. [Accessed: 06-Jun-2014].

[172] Munin, “Munin.” [Online]. Available: http://munin-monitoring.org/.

[Accessed: 06-Jun-2014].

[173] V. Crnojevic, “Impulse noise filter with adaptive MAD-based threshold,” in

IEEE International Conference on Image Processing 2005, 2005, no. 5, pp. III–337.

[174] Y. Liao and V. R. Vemuri, “Use of K-Nearest Neighbor classifier for intrusion

detection,” Comput. Secur., vol. 21, no. 5, pp. 439–448, Oct. 2002.

[175] C. A. Pinto, M. K. McShane, and I. Bozkurt, “System of systems perspective on

risk: towards a unified concept,” Int. J. Syst. Syst. Eng., vol. 3, no. 1, p. 33, 2012.

