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Abstract 
 

Modern systems are becoming increasingly complex, integrated and distributed, in 

order to meet the escalating demands for functionality. This has given rise to 

concepts such as system-of-systems (SoS), which organise a myriad of independent 

component systems into a collaborative super-system, capable of achieving 

unmatchable levels of functionality.  

Despite its advantages, SoS is still an infantile concept with many outstanding 

security concerns, including the lack of effective behavioural monitoring. This can be 

largely attributed to its distributed, decentralised and heterogeneous nature, which 

poses many significant challenges. The uncertainty and dynamics of both the SoS’s 

structure and function poses further challenges to overcome. Due to the 

unconventional nature of a SoS, existing behavioural monitoring solutions are often 

inadequate as they are unable to overcome these challenges. This monitoring 

deficiency can result in the occurrence of misbehaviour, which is one of the most 

serious yet underestimated security threats facing SoSs and their components. 

This thesis presents a novel misbehaviour detection framework specifically 

developed for operation in a SoS environment. By combining the use of uniquely 

calculated behavioural threshold profiles and periodic threshold adaptation, the 

framework is able to cope with monitoring the dynamic behaviour and suddenly 

occurring changes that affect threshold reliability. The framework improves SoS 

contribution and monitoring efficiency by controlling monitoring observations using 

statecharts, which react to the level of behavioural threat perceived by the system. 

The accuracy of behavioural analysis is improved by using a novel algorithm to 

quantify detected behavioural abnormalities, in terms of their level of irregularity. 

The framework utilises collaborative behavioural monitoring to increase the 

accuracy of the behavioural analysis, and to combat the threat posed by training 

based attacks to the threshold adaptation process. The validity of the collaborative 

behavioural monitoring is assured by using the novel behavioural similarity 

assessment algorithm, which selects the most behaviourally appropriate SoS 

components to collaborate with. 

The proposed framework and its subsequent techniques are evaluated via numerous 

experiments. These examine both the limitations and relative merits when compared 

to monitoring solutions and techniques from similar research areas. The results of 

these conclude that the framework is able to offer misbehaviour monitoring in a SoS 

environment, with increased efficiency and reduced false positive rates, false 

negative rates, resource usage and run-time requirements. 
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Chapter 1  

 

Introduction 
 

In recent years, the increasing demand for online functionality has begun to 

outstretch the abilities of some systems. Such systems are often constrained by 

technical, financial or resource limitations. Despite this, systems are still expected to 

continually improve their online functionality, whilst maintaining their security, 

reliability and availability. A quick yet often short-term solution to achieve desired 

functionality is to integrate and collaborate with other third party systems, which 

unfortunately then increases the overall complexity of the system. An example of 

this is the integration of multiple third party systems to provide functionality in 

modern ecommerce stores. These can often include product reviews being handled 

by cloud based platforms such as Revoo [1], login authentication being handled by 

Google or Facebook and payments being handled by PayPal or Amazon. In this 

scenario, the relationship between these systems is based purely upon financial 

incentives, with fixed service level agreements.  

The increasing popularity of inter-system collaboration and integration has led to the 

emergence of concepts such as System-of-Systems (SoS) [2]. SoS can organise a 

myriad of independent components to create a collaborative super-system. It 

provides a highly efficient solution to gaining additional functionality, without 

incurring financial costs or performance losses. Its aims are to create an environment 

whereby systems sharing a common goal can collaborate to achieve a level of 

functionality that is greater than those achievable by each of its constituent parts, 

and also to minimise the complexity for end users [3]. SoS components voluntarily 

contribute and collaborate, meaning that their contribution can vary and is never 

guaranteed. This results in components becoming stakeholders in the SoS [4], often 
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motivated by a desire to fulfil a shared goal, whether this be at a local or global level 

[5]. Although still in an infantile stage, the SoS concept offers huge benefits and can 

be implemented into a variety of different scenarios. Despite this, there are still 

fundamental security issues that are still yet to be resolved. 

One of such issues is security monitoring, which is an essential part of any modern 

network, but is of particular importance in complex systems, the boundaries of 

which can often span multiple domains [4]. One main aspect of security monitoring, 

which is fundamental for any collaboratively orientated system such as a SoS, is 

behavioural monitoring. Behavioural monitoring is the process of observing 

anomalies or unusual trends in the behaviour of a system. Given the vast number of 

variables in a SoS environment that could potentially influence system behaviour, 

this is a particularly important process. As a SoS is a trust based collaborative 

environment where components are highly dependent upon the services and 

resources provided by other components, misbehaviour can have catastrophic 

consequences. The inter-dependency between components means that the 

occurrence of any misbehaviour (e.g. service corruption) can result in a cascading 

affect and the initial or subsequent problems can rapidly spread throughout the SoS. 

Misbehaviour can also have wider implications for both the SoS as a whole and for 

its component systems. The environment is heavily based around trust (i.e. trust to 

provide promised contributions and to an acceptable standard), which if abused 

either accidentally or deliberately can lead to complications, such as unwillingness of 

new components to join, withdrawal of existing components, withdrawal or 

reduction of contributions. Ultimately, this will lead to loss of functionality or 

capabilities and in the worst-case scenario the complete collapse of the SoS. 

Component misbehaviour is currently one of the greatest threats facing any SoS but 

is commonly overlooked. The detection of internally based threats in any 

environment is notoriously difficult but this is exacerbated within a SoS 

environment by the many significant challenges that it poses. These challenges can 
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be mainly attributed to the unique architecture and characteristics of a SoS, which 

culminate in the creation of a dynamic, heterogeneous, distributed, decentralised, 

unstandardized and complex environment. This architecture poses many difficulties 

including the lack of central authority, regulation or enforcement and the legal 

complications surrounding responsibility and jurisdiction of monitoring data.  

The ad-hoc nature of the SoS composition leads to the dynamic, uncertain and 

unpredictable nature of its structure, functionality, capabilities and contributions. 

Combined with its undefined boundaries, heterogeneity, support of emergence, 

evolutionary capabilities and freedom of components (i.e. to join, leave or change 

their contribution at any time) it makes the process of distinguishing between 

misbehaviour and genuine dynamic behaviour extremely difficult. Additionally, in 

these types of environments, system changes are often required in order to facilitate 

integration or functionalities with other heterogeneous systems. These changes often 

include security changes, which can have adverse effects on the system exposing or 

creating weaknesses in the system, as well as exposing it to non-malicious 

manipulation by emerging behaviour. These changes can affect the system’s 

operation and behaviour, and can potentially lead to the occurrence of misbehaviour 

on the component.  

The severity of the threat posed by misbehaviour is highlighted by the fact that the 

majority of existing behavioural monitoring techniques are largely inadequate for a 

SoS. When considering existing techniques for application in a SoS, the vast majority 

rely on an expected norm, static behaviour or some form of predictability, none of 

which can be assured in a SoS. Some solutions also struggle to cope with the SoS’s 

lack of a hierarchy, central or authoritative agent or its relatively undefined system 

boundaries. The high levels of heterogeneity in a SoS result in a lack of 

standardisation amongst components and therefore no system-wide approach to 

monitoring behaviour can be used. Without a doubt, the main problem is the 

inability of existing solutions to account for the dynamic and uncertain behaviour, 
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function, structure and load. This is predominantly caused by the support of 

emerging behaviour and the ability for components to join, leave or change roles and 

contribution at any time. Given the level of dynamics in a SoS, it is difficult to 

reliably measure the behaviour in a uniform manner, nor is it easy to distinguish 

between dynamic behaviour and misbehaviour. The majority of existing behavioural 

monitoring techniques are unsuitable, ineffective or impractical in a SoS 

environment.  

A SoS is a collaborative environment, which is usually driven by the contribution of 

services and resources by its components. These contributions allow SoSs to 

maintain their high levels of functionality but also create another plane on which 

misbehaviour can manifest itself (either deliberately or accidentally). The work in 

this thesis focuses specifically on the problem of service-orientated misbehaviour, 

which includes service availability misbehaviour (e.g. DoS attack, service corruption 

or service exploitation) and resource utilisation misbehaviour (e.g. over-

consumption, buffer overflow or resource exploitation). The solution proposed in 

this thesis aspires to improve the detection of service-orientated misbehaviour. It 

will not detect every kind of misbehaviour associated with service contribution nor 

does it provide a generic misbehaviour detection solution. 

Currently, there is no identifiable solution that can provide adequate protection 

against misbehaviour occurring on SoS component systems. The inadequacies of 

existing solutions stem from the dynamic and uncertain nature as well as ad-hoc 

infrastructure. This inability to monitor or detect misbehaviour poses many concerns 

for system owners, potential contributors and current contributors regarding data 

integrity, confidentiality, availability and potential repercussions. As the SoS is 

dependent on voluntary contribution, any apprehension this problem could cause, 

may potentially reduce the contribution and therefore the overall functionality of the 

SoS. There is therefore a need to develop a behavioural monitoring system that can 

overcome the challenges posed by the SoS environment. Presented in this thesis is 



Chapter 1 - Introduction 

  5 

 

the proposed Secure SoS Composition (SSC) monitoring framework, which aspires 

to address these issues. 

 

1.1. Research Motivation 

The general motivation behind this research project stems from the fact that SoS is 

still an emerging concept and is currently a proactive area of research [6], with 

existing literature highlighting links to several critical system applications including 

healthcare, aerospace and military [7]. Despite the many benefits the SoS concept 

could bring, its outstanding security concerns are limiting its suitability for 

deployment into mission critical environments. Its future success depends on these 

security concerns being addressed. The motivation to address the specific issue of 

component misbehaviour was inspired by the fact that in a collaborative system it 

poses one of the most significant risks but is frequently overlooked and 

underestimated. 

This work is motivated by wanting to address three main research challenges, which 

are: 

 Lack of SoS Behavioural Monitoring: The unusual nature of the SoS means 

that not many existing techniques can efficiently operate in a SoS. Usually this 

is related to its ad-hoc architecture, on-demand security changes, support of 

emergence or lack of defined boundaries. SoS behavioural monitoring is 

further complicated by legal issues such as ownership or control disputes, 

which relate to its decentralisation. The motivation for overcoming this 

challenge is to develop a reliable and accurate solution that can secure future 

SoS implementations in order to prevent cascading behavioural issues and 

premature failure.  
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 Behavioural Dynamics and Uncertainty: The complexity and dynamics of the 

SoS architecture is heavily reflected in its behaviour. Therefore, the perceived 

normality of experienced behaviour needs to be contextualised with regards 

to the system and not against a generic profile. The reason behind focusing on 

this challenge is the changeable nature of the system’s functionality, structure 

and purpose. This makes it extremely difficult to differentiate between what is 

considered dynamic behaviour or misbehaviour.  

 Unpredictability: Given the characteristics of a SoS and its associated 

dynamics, it is unsurprising that its behaviour is unpredictable and does not 

conform to expected patterns. Unfortunately, many solutions depend upon 

predictability in order to identify anomalous behaviour. The motivation 

behind addressing existing solutions’ dependency on predictability is to 

produce a stable solution that can yield a low false alarm rate. 

 

1.2. Research Aims and Objectives 

Monitoring for behavioural irregularities is a notoriously difficult task, particularly 

in a dynamic and evolving system where the boundaries and goals are constantly 

changing [4]. Dynamics and uncertainty runs through every part of a SoS [8], which 

causes the majority of the problems for existing behavioural monitoring solutions. 

These inadequacies range from reliance on behavioural predictability, infrastructure 

complications, lack of assured availability and lack of support for emergence or 

system evolution. Protecting both components and the SoS as a whole against the 

threat of misbehaviour is currently untenable. 

The aims of this research are to identify the limitations of existing solutions and 

techniques, and then to develop a solution that is able to accurately and efficiently 

combat the threat posed by component misbehaviour in a SoS environment. The 

resultant solution should be able to overcome complications that have thwarted 
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existing behavioural monitoring solutions and techniques. Ultimately, it should be 

able to identify misbehaviour on component systems and then take necessary action 

depending on its severity, in order to prevent it affecting other components.  

The main objectives of this thesis required to overcome the existing limitations in 

SoS misbehaviour monitoring are: 

1) Develop a behavioural monitoring solution to detect misbehaviour within a 

SoS component system in real-time, whilst ensuring that it consumes low 

levels of resources, to increase potential SoS contributions. 

2) Create a technique to establish changeable behaviour thresholds from which 

temporally orientated abnormalities can be identified.  

3) Create a technique to analyse and quantify behavioural irregularities using 

only relevant data. 

4) Create a technique to harness the collaborative capabilities of a SoS for use in 

improving the accuracy of behavioural monitoring. 

5) Demonstrate that the devised solution and subsequent techniques are capable 

of accurately detecting misbehaviour and within a tolerable timeframe. 

  

1.3. Research Novelty 

This thesis makes the following novel contributions to the field of SoS Security: 

1) A SoS misbehaviour monitoring framework, that can detect and classify 

misbehaviour on SoS components in real-time, whilst operating with a small 

system footprint. This features a state-chart controlled data collection to lower 

resource wastage, in order to ensure improved SoS contribution. The state-

chart evaluates the perceived level of overall misbehaviour on the system and 

automatically adjusts the number of monitored metrics and sampling rate 
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accordingly. Currently, the literature survey has been unable to identify any 

existing solutions that are able to detect misbehaviour on SoS components 

with a satisfactory level of accuracy. Nor has it identified a solution that is 

able to lower resource wastage to improve SoS contribution. 

2) A statistical behavioural threshold calculation technique that adopts a hybrid 

approach to calculation, thus overcoming the accuracy limitations of existing 

techniques when applied to a SoS. The resultant thresholds are stored in a 

proposed behavioural threshold profile to maintain multiple temporal 

thresholds, which is used to separate the base-system behaviour from the 

anticipated dynamic behaviour. This profile structure also helps with 

adapting these thresholds to system changes. 

3) A statistical technique that can adapt calculated threshold profiles to account 

for the SoS evolution. Adaptations are calculated based on current evolving 

behavioural trends in the system, thus helping to ensure the longevity of 

threshold validity. Unlike existing approaches, the proposed technique is 

fully automated, not reliant on prediction and is not susceptible to slow 

threshold manipulation attacks. 

4) A statistical technique that can quantify the level of misbehaviour associated 

with an observed behavioural threshold deviation (in the context of the SoS 

component). The technique conducts a comprehensive two-stage analysis to 

produce a representative misbehaviour score. It uses a combination of 

statistical and outlier analysis, and utilises data from other metrics that are 

both selected and weighted by the proposed behaviourally related approach. 

Overall, this technique is able to overcome the limitations associated with 

inadequate behavioural quantification or the incorrect selection of monitoring 

data. It is also able to offer superior accuracy when compared with existing 

techniques. 
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5) A statistical technique to refine the selection of components chosen to partake 

in an ad-hoc collaborative behavioural monitoring group. This technique 

ensures only behaviourally similar component systems are utilised. This can 

improve the accuracy and applicability of the results produced from the 

process, compared to existing selection techniques. 

 

1.4. Research Findings 

The research presented in this thesis has identified a security weakness pertaining to 

the occurrence of misbehaviour in SoS components. This weakness is primarily 

caused by the inadequacies and limitations of existing monitoring techniques, which 

can allow misbehaviour to go undetected.  

In keeping with the aims set out for this research, this thesis identifies the main 

limitations of existing techniques in order to ensure that future solutions do not 

inherit the same problems. The research found that the majority of existing 

techniques do not offer a sufficiently comprehensive evaluation of behavioural 

anomalies, whereby the wider system behaviour or behavioural implications of an 

event are not considered. The complexity and dynamics of the environment along 

with the tolerance of some behavioural anomalies means the results produced using 

such techniques are flawed. The research highlighted the main problems with 

existing solutions as being their reliance on predictability, behavioural norms or 

existing knowledge, all of which are untenable in a dynamic and uncertain SoS 

environment.  

The research project has culminated in the devising of a novel misbehaviour 

monitoring framework that is able to accurately detect misbehaviour despite the 

dynamics and uncertainty of the environment. However, it became evident during 

its development that some of the constituent techniques used were unreliable or 

inaccurate, so further improvements were necessary. 
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1.5. Thesis Structure 

The remainder of the thesis is arranged into seven subsequent chapters; the order 

and contents of these chapters are as follows: 

Chapter Two: Background 

This chapter provides detailed background information on the three main concepts 

involved in this research: system-of-systems, misbehaviour and monitoring. This 

gives the reader the required level of insight into the area in order to understand 

how the work in this thesis relates to the inadequacies that currently exist. This 

chapter also outlines the devised design requirements for an efficient and effective 

SoS behavioural monitoring framework.  

Chapter Three: Related Work 

This chapter presents a critical review of the existing literature that focuses on the 

benefits and shortcomings of earlier work, which provides the motivation for the 

approach proposed in this thesis. This review will also focus upon how the 

challenging aspects of the work presented can address these shortcomings. This 

section predominately focuses on existing monitoring techniques, their applicability 

to monitor behaviour in a SoS and how they can be built upon to provide a suitable 

solution to the outlined problems.  

Chapter Four: SSC Monitoring Framework 

The chapter presents the design of the proposed Secure System-of-Systems 

Composition (SSC) Monitoring Framework. The sections of this chapter will present 

the proposed novel techniques and algorithms specifically developed for this 

solution. These include controlling monitoring performance, calculating behavioural 

thresholds, adapting behavioural thresholds, quantifying misbehaviour and, 

implementing and optimising a collaborative behavioural monitoring group. 
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Chapter Five: Implementation 

This chapter provides an insight into the software developed as a tool for evaluating 

the framework. It details how the framework and techniques were implemented and 

how the software was used to evaluate the proposed techniques. It also details the 

implementation of the test-beds used for evaluation purposes. 

Chapter Six: Evaluation of Proposed Methods and Framework 

This chapter evaluates the framework and its constituent techniques presented in 

this thesis against the requirements outlined in Chapter 2. It discusses how the 

proposed work fulfils the requirements set out and overcomes identified limitations. 

Subsequently, the conclusions drawn from this will be used to validate the 

accomplishment of the aims and objectives set out in Chapter 1.  

Chapter Seven: Comparison with Existing Work 

This chapter compares various aspects of the framework and its constituent 

techniques against those from existing work. It presents the details of the 

experiments performed, the results produced and the conclusions that can be drawn. 

Chapter Eight: Conclusion and Future Work 

This chapter summarises the findings of this thesis and describes the extent of the 

success in overcoming the challenges previously identified. It also includes a section 

focusing on future work, which details potential research that could be carried out 

based on the results of this work or in relation to this work. The thesis then 

concludes by summarising the work presented and the challenges it has overcome.



Chapter 2 

 

Background 
 

This chapter provides background information on the three main areas related to the 

work contained in this thesis, all of which is fundamental to understanding the 

context of the challenges being addressed. This chapter will begin by explaining the 

concept of a SoS and outlining existing research efforts in Section (§) 2.1. §2.2 will 

examine the term misbehaviour and focus on how it can be applied to a SoS. Then §2.3 

will look at monitoring; examining the types of monitoring, monitoring 

architectures, and their suitability within a SoS. §2.4 will outline the main research 

challenges for this area that can be identified by examining existing work. This 

chapter concludes in §2.5 by presenting a list of monitoring requirements that 

potential behavioural monitoring solutions must possess to be considered for 

application within a SoS environment. 

 

2.1. System-of-Systems 

The term “system-of-systems” currently has no widely accepted definition, despite 

the notion itself being widely accepted and recognised. The term refers to an 

emerging class of large-scale, collaborative and task-orientated system, which is built 

from components that are large-scale systems in their own right. Unfortunately, the 

varying interpretation of the term between research disciplines has led to the lack of 

a widely accepted definition. This causes confusion over what constitutes a SoS and 

has led to it becoming a relatively loose concept. Despite this, there have been 

numerous contributions aspiring to define a SoS in terms of computing. Some of the 

most commonly cited definitions include: 
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 “Systems of systems are large-scale concurrent and distributed systems the components 

of which are complex systems themselves” - Kotov [5] 

 “Systems of systems are large-scale integrated systems which are heterogeneous and 

independently operable on their own, but are networked together for a common goal.” - 

Jamshidi [7] 

 “System of systems is a collection of task-oriented or dedicated systems that pool their 

resources and capabilities together to obtain a new, more complex, 'meta-system' which 

offers more functionality and performance than simply the sum of the constituent 

systems.” – Kole [9] 

 “A System of Systems is a “super system” comprised of other elements which themselves 

are independent complex operational systems and interact among themselves to achieve a 

common goal. Each element of a SoS achieves well-substantiated goals even if they are 

detached from the rest of the SoS.” - Jamshidi [10].  

Unfortunately, despite the numerous proposed definitions, little progress has been 

made towards a unified definition. 

 

2.1.1. Identifying a System-of-Systems 

Due to the disagreement over a unified definition, some researchers have taken a 

different approach by focusing on identifying characteristics that are unique to a 

SoS. These characteristics can therefore be used to distinguish between traditional 

systems and a SoS. Characterisation provides a more comprehensive, precise and 

widely applicable taxonomy, unlike the more abstract definitional approach. The 

leading ideas on SoS characterisation are those proposed by Maier [2] and Boardman 

et al [11]. 

In 1998, Maier, who is considered to be one of the foremost contributors to the field 

of SoS research, proposed for the first characterisation approach to distinguish 
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between a “monolithic” system and a SoS [2]. The characteristics he proposed that a 

SoS should have are: Operational Independence of the Elements, Managerial Independence 

of the Elements, Evolutionary Development, Emergent Behaviour and Geographic 

Distribution. 

In 2006, Boardman and Sauser [11] expanded on Maier’s work and produced their 

set of SoS characteristics, which are: 

 Autonomy: The reason a system exists is to be free to pursue its purpose; this 

applies to both the whole SoS and constituent systems. 

 Belonging: The component systems can choose to belong to the SoS based on their 

needs and enhance the value of the system’s purpose. 

 Connectivity: There has to be the means provided for the systems to communicate 

with each other for the exchange of information. 

 Diversity: The SoS should be diverse and exhibit a variety of functions as a system 

compared to the limited functionality of the constituent systems. 

 Emergence: The formation of new behaviours due to development or evolutionary 

processes. 

© 2006 IEEE 

Despite the majority of existing SoS focused research citing either of the previous 

characteristic sets, there is still no universally agreed interpretation. As a result, there 

have been numerous eligible contributions towards the elusive unified 

interpretation. So, in 2010, Firesmith [4] provided a summation of all the prominent 

ideas on SoS definitions and characteristics and created an extensive list of 

mandatory characteristics for both a SoS and their component systems. The most 

commonly incorporated characteristics are as follows: 

 System-of-systems: Complexity, Emergence, Evolution, Size and Variability 
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 Component systems (subsystems): Autonomy, Governance, Heterogeneity, Physical 

Distribution and Reuse  

There are other characteristics of a SoS that are not detailed in the previously 

discussed works. These characteristics are important to the motivation of the work in 

this thesis, these include: 

 Collaboration: Components collaborate by contributing different sets of functions, 

services, capabilities and resources in order to achieve the objective(s). 

 Complexity: The interoperation and infrastructure for both the systems and their 

end users are technically complex. The use of a SoS approach will be most 

beneficial when integrated into complex environments. 

 Decentralised: Component systems choose to belong to the SoS in accordance with 

the benefits or to fulfil their own purposes or belief in the global SoS purpose. In 

this environment, there is no central authority that can enforce security, monitor 

or administrate the SoS. 

 Distribution: The SoS is highly distributed, with components in varying 

geographical locations and importantly also in different legal jurisdictions. 

 Heterogeneity: The components involved in a SoS are from differing environments 

and lack standardisation in terms of the technologies used, configurations and 

behavioural characteristics.  

 Independent: Each component remains an individual entity and does not depend 

on the SoS to function. Components may also retain roles outside of the SoS. 

 Large-scale: The SoS is composed of a myriad of component systems, and the 

more component systems, the greater the potential of the system. 
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 Localised: No component has a global view of the SoS, or the SoS is too complex 

for a component to make any use of such knowledge.  

 Objectivity: A SoS is integrated by shared high-level goals that are of significant 

interest to its stakeholders. 

Gorod et al. present Table 1 in their paper [12], which provides a useful comparison 

between traditional system engineering and SoS engineering. In the table, the 

question mark indicates work that is still to be completed. 

 
Table 1. Comparison between SoS and Traditional Systems 

 System Engineering SoS Engineering 

Focus Single complex system Multiple integrated complex 

systems 

Objective Optimisation Satisficing, Sustainment 

Boundaries Static Dynamic 

Problem Defined Emergent 

Structure Hierarchical Network 

Goals Unitary Pluralistic 

Approach Process Methodology 

Timeframe System life cycle Continuous 

Centricity Platform Network 

Tools Many Few 

Management 

Framework 

Established ? 

© 2007 IEEE 

 

2.1.2. Types of System-of-Systems 

As the management and structure of a SoS can differ greatly, Maier also proposed 

that SoSs can be separated into classifications, based on factors such as architecture, 

organisational structure and purpose [2]. Originally, he proposed three classes [2], 

but a later revision by Dahmann [13] appended the “Acknowledged” class. These 

classifications can be defined as follows: 
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 Collaborative: A collaborative SoS largely depends on voluntary interaction 

between component systems to fulfil a centrally agreed purpose. There is no 

central management authority but collaborative coercion can be used to manage 

the SoS components. An example of this is the Internet, for which standards are 

produced but there is no central authority to enforce them. However, 

enforcement can be achieved by using the main contributors to block those that 

do not adhere to the standards. 

 Directed: A directed SoS is constructed to fulfil specific purposes and is centrally 

managed to ensure their fulfilment. Component systems maintain their 

operational independence but their normal mode of operation is as part of the 

SoS. An example of this is an air defence network, which is deployed to defend a 

region against attacks. Despite being centrally managed, the component systems 

retain the ability to operate independently if circumstances require. 

 Virtual: A virtual SoS lacks a central management authority and a centrally 

established purpose. Large-scale behaviour emerges which may be desirable but 

the SoS relies on relatively invisible mechanisms to maintain it. An example of 

this is the World Wide Web, which has no central control authority, but retains 

some control by the use of open standards. 

 Acknowledged: An acknowledged SoS has identified objectives, designated 

managers, and SoS resources. However, the component systems still retain their 

independence, objectives, funding, and development and sustainment methods. 

Changes in the component systems are based on the collaboration between the 

SoS and the components. An example of this is most modern military systems. 
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2.1.3. The System-of-Systems Concept 

SoS is a concept that has emerged into many different research domains. Its aim is to 

facilitate levels of functionality that cannot be achieved on standalone systems. The 

concept involves the integration of many independent, autonomous and 

heterogeneous component systems to form a complex large-scale, distributed and 

decentralised super-system.  

The heterogeneity of a SoS permits the involvement of systems with varying 

configurations, OSs, capabilities and sizes. The architecture of a SoS shares many 

similarities with peer-to-peer networks including geographical distribution, no 

centralised authority and relatively undefined system boundaries. Figure 1 

illustrates the diversity of a SoS environment particularly in relation to the 

components and their capabilities. It also illustrates how the independent 

components still belong to other organisations, thus retaining additional roles 

outside of the SoS, which could affect their ability to contribute. 
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Figure 1. Example SoS Architecture 

A SoS is established with the purpose of achieving a shared goal; integrated 

components are willing to contribute and collaborate in order to fulfil this goal. 

However, the evolving nature of these systems means that this goal constantly 

changes and can never be completely fulfilled. Contribution is normally voluntary 

and usually consists of sharing resources and services. The availability and 

contribution of components are normally promised to the SoS but not governed by 

any service level agreement, therefore no assurances can be offered. This ad-hoc 

approach to contribution means that functionalities, contributions and components 
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can be added, removed or modified at any time. This is why there are such high 

levels of dynamics and uncertainty in both the functionality and structure. Figure 2 

illustrates how the addition or removal of a component will result in structural and 

functional changes to the SoS. It also illustrates how the restructuring process can 

affect the loads that are placed on the remaining components.  

-

+

   

Figure 2. Illustration of the Dynamic Composition and Structure of a SoS  

The ability to make such changes at will means that the SoS is constantly evolving to 

adapt to them, and to meet the changing demands of the shared goal. Therefore, this 

also affects other component systems, as their demands and system loads will 

change. As the number of systems, interconnections and interfaces increases, the 

system becomes increasingly complex [14] and difficult to secure, but also becomes 

more powerful and capable. The SoS will have greater potential functionality, as 

there is no prejudice against components that are unable to guarantee contribution. 

Using a SoS has many benefits for all of the components, including levels of 

functionality that are not achievable using standalone systems and the ability to 

overcome issues faced in complex systems such as integration, interoperation, 

complexity for end users, reliability, infrastructure constraints, scalability and cost 

effectiveness. The benefits of contribution and utilisation of functionality in a SoS are 

usually mutual, which means that components essentially become stakeholders in 
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the system. Becoming stakeholders often provides motivation for greater 

involvement in the SoS. Besides the benefits a SoS has to offer, motivation to 

contribute is usually related to the achievement of either local or global goals.  

It is stated that the functionality available to a SoS is greater than the sum of its 

constituent systems [15]. Initially this statement can be somewhat confusing, but it 

can provide the reasoning behind establishing a SoS and highlights their efficiency. 

Consider a hypothetical scenario involving the four systems illustrated in Figure 3. 

Each system has a specifically assigned role and is configured to optimise it for this 

role. Each system in Figure 3 also has an illustrated usage indicator, where green 

represents free resources. 

 
 

Figure 3. Example SoS Scenario 

If each of the systems desires the functionality of another system (e.g. the web 

hosting system wishes to utilise a database), the free resources on each system would 

allow for these functionalities to be added. However, the addition of these 

functionalities would be costly in terms of overheads and resource wastage and it 

would also reduce the efficiency of the system’s primary role. Instead, the free 

system resources can be contributed to the SoS, meaning it is promising to contribute 

a percentage of free resources to process the requests of another system (e.g. process 

the database for the web hosting system). Using the system for its original purpose 

and collaborating by sharing requests with capable systems, ensures greater 
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efficiency, accuracy and speed. This produces higher levels of functionality than 

would have been possible if standalone systems had implemented these additional 

functionalities. 

 

2.1.4. Existing System-of-Systems Research 

Due to the abstract nature of the SoS concept, most existing work is theoretically 

focused. Predominantly this focus has been upon creating universal or application 

specific definitions, or a set of characteristics such as those presented in §2.1.1. 

However, other research also exists, focusing on various other areas of SoS; some of 

this work is outlined in the subsequent sections. 

 

2.1.4.1. SoS Architecture 

The needs and technological requirements of a SoS are constantly changing as 

constituent components and functions are added, removed and modified. Therefore, 

the architecture of a SoS is also a constantly evolving process. Some of the existing 

research focuses on proposing techniques to establish a SoS architecture or outlines 

the challenges in doing so. 

The work by Selberg et al [14] proposes various techniques that can be used to 

establish a formal SoS architecture, that evolves with the SoS. The proposed 

evolutionary architecture conforms to two main principles, which are: 

1) The complexity of the SoS framework does not grow as component systems 

are added, removed or replaced. 

2) Component systems do not need to be re-engineered when other components 

are added, removed or replaced. 

The main suggestion in the paper is the need for universal standards amongst 

component systems, particularly for factors that need to remain consistent if a 
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component is replaced (e.g. interfaces). Another suggestion is the use of interface 

layers that can mask or minimise disruption associated with required architectural 

changes to the interface. The last main suggestion is the use of a “continual system 

verification and validation” mechanism to ensure the evolutionary system does not 

stray from its intended path. 

Caffall et al. [16] propose a SoS architectural framework that is based on the 

construct that a SoS is composed of three key features. These features are controlling 

software (managing activities and workflow), information transport network (managing 

transport, behaviour and activities using controlling software) and contract interfaces 

(interfaces defined with respect to the required services the component system 

provides towards achievement of the SoS goal).  

Corsello [17] discusses SoS architectural considerations and concerns regarding the 

operation in complex and evolving environments. It discusses non-technical aspects 

such as core purpose, organisational support, vendor neutrality, organisational 

politics and security. The technical considerations include component systems, core 

capabilities and provider systems. In addition, the paper also discusses the need for 

standardisation, problems affecting component integration both in terms of data and 

system interfaces, problems associated with using independent heterogeneous 

component systems, and SoS management. 

Maier [18] discusses the challenges involved in the architectures for complex and 

evolving systems. He states that complex systems with stable intermediate 

(invariant) forms evolve more effectively than those that do not (e.g. the Internet). 

Currently, little attention is paid to invariants; instead, the main focus is on 

individual system design. He suggests that a good set of invariants can be used in 

the design of multiple systems rather than one. Therefore, optimisation methods 

should look for invariants instead of individual solutions. 
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Dagli and Kilicay-Ergin [19] propose a framework for SoS architectures and reiterate 

the point that further architectural research is needed to address the challenges 

posed by the demands of SoS environments. The paper focuses on establishing a SoS 

architecture by creating meta-architectures from collections of different systems. The 

authors also discuss the possibility of using artificial life tools for the design and 

architecture of SoS. 

 

2.1.4.2. Emergence 

The terms “emergence” and “emergent behaviour” are frequently used in SoS 

literature and are often used to explain its dynamic and uncertain behaviour. 

However, the concept is often poorly understood and usually the terms are used in a 

loose context. Some of the existing research focuses exclusively on explaining the 

concept of emergence in terms of a SoS. 

The papers by Karcanacias et al. [20][21] aim to provide a definition for the term 

“emergence”. By examining the philosophical meaning and applying it to a SoS 

environment, the authors propose that emergence is dependent on the properties of 

a system. It states that in a SoS and other complex systems, emergence arises from 

the confluence of many strong synergistic effects by the autonomous complex 

component systems. It can also originate due to the underlying architecture, 

topology and component systems. 

Stacey [22] provides a simplified explanation by defining it as the production of 

global patterns of behaviour by component systems whilst interacting according to 

their own local rules, without intending the global patterns of behaviour that come 

about. In emergence, global patterns cannot be predicted from the local rules of 

behaviour that produce them.  
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Boardman and Sauser [11][23] explain their interpretation of emergence by using 

some real-world examples. They also explain how emergence can provide 

differences between traditional systems and a SoS. 

The work by Yang et al. [24] proposes a method of detecting the unpredictable 

emergent behaviours of a SoS using semi-autonomous agent modelling. Feedback 

from this can be used to verify whether emergent properties are useful to the SoS or 

not. 

Emergence is a concept that is considered by others to be one of the main 

contributory factors to the dynamic behaviour of a SoS. However, in this research 

dynamic behaviour is considered as an entity, rather than being concerning with its 

actual composition. 

 

2.1.4.3. Complexity 

Complexity is another term closely associated with SoS research, which can have 

different connotations dependant on the context in which it is used. This is why 

many researchers have focused on defining what complexity means in the context of 

a SoS. Some of the existing work examining complexity is outlined in this section.  

Efatmaneshnik et al. [8] outlined the qualities of complex uncertainties on a SoS and 

characterised them. The authors proposed that complex uncertainties exhibit the 

following behaviour: dynamic, governed by feedback, nonlinear, adaptive and evolving, 

time lag, counterintuitive and policy resistance. The paper discusses the logical 

relationship between functional complexity and structural complexity and the use of 

adaptive solutions to harness uncertainty. 

The paper by Ji and Xueshi [25] describes the complexity of both the technologies 

and equipment involved in SoS engineering. It focuses on examining key issues, as 
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well as composition and architecture analysis. It aims to highlight the required 

research effort to deal with SoS complexity. 

Simpson and Simpson [26] examine classical system engineering techniques and 

evolutionary algorithms to address the cognitive and computational complexity 

associated with a SoS lifecycle. 

The work by Yingchau [27] analyses the characteristics of a SoS in terms of its 

complexity regarding monolithic emergence, component systems adaptation and 

uncertainty in SoS evolution. It also discusses the effect of SoS complexity on SoS 

decision making and outlines the problems that need to be addressed. 

Lowe and Chen [28] provide a comprehensive insight into the relationships between 

a SoS, complexity, modelling and simulation. Their paper also explores metrics that 

can be used to define the complexity of a SoS. 

Delaurentis [29] analyses the role of human participation in SoS complexity and 

outlines how complexity can be better managed using modelling of human 

behaviour and decision-making. 

Mane [30] presents an approach to measure complexity of SoSs in the context of 

system development time by using Markov chains. 

 

2.1.4.4. Applications 

Considerable existing research also focuses on the potential application of the SoS 

concept to different domains. Warfare is the most popular proposed application of a 

SoS and is covered in many different research papers, including its consideration for 

Integrated Joint Combat Systems [31], ballistic missile defence systems [16], 

Department of Defence systems [15], military weapons [32] and command and 

control systems [33]. Aerospace is also another popular area of application including 
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communication and navigation systems for space exploration [34] and the use of SoS 

in space exploration [35]. 

Other proposed uses include healthcare systems [36], telecoms networks [37], electric 

power grid control systems [38], robotic sensor networks [39], vehicle sensor 

networks [40], and threat detection systems [41]. 

 

2.1.5. System-of-Systems Security Research 

Security is an essential aspect of any system but it is of particular importance on 

open systems such as a SoS. This is especially prudent considering that security is 

often offset in order to achieve functionality. However, there is currently limited 

existing research that focuses on SoS security, and some of the existing work is 

outlined in this section. 

Gorod et.al [12] propose a SoS management framework by reviewing existing 

proposed SoS characteristics and the “best practices” approach to network 

management. The framework focuses on five main principles of network 

management, which are fault, configuration, accounting, performance and security. 

Bodeau [42] presents a security engineering process for a SoS. This aims to address 

issues such as identifying and mitigating risks resulting from connectivity, 

integrating into architecture and how to address constraints of legacy systems. The 

security engineering process involves activities including information gathering, 

flow analysis, security evaluation and testing, integration into architecture to 

account for evolution, modelling, security policies and risk management. 

Trivellato [43] proposes a security framework to address the security concerns 

within a SoS, utilising both ontology and trust management based approaches. It 

proposes ways in which these methods can be used reliably whilst overcoming the 

associated limitations of both these approaches.  
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Maier [2] outlines the importance of interfaces in a SoS, relating to both their 

function and structure and also the security risk that they pose.  

Redmond et al [44] propose a technique to conduct interface hazard analysis for 

SoSs. As SoSs are large and complex environments that are heavily based on trust 

and component interaction, hazard analysis of component interfaces is essential. In 

the paper, the authors discuss the characteristics of a SoS that render existing 

techniques ineffective and the requirements that must be met for successful 

operation.  

Pinto et al [45] analyse the traditional view of risk identification, analysis and 

management and highlight the inadequacies these entail when applied to a SoS. The 

authors propose a modernised approach to describing and managing risk with 

respect to SoSs. 

 

2.2. Misbehaviour 

The use of anthropomorphic (human characteristics and attributes assigned to an 

inanimate object) terms such as ‘behaviour’ and ‘misbehaviour’ is becoming 

increasingly common in computer science. In the case of computing, behaviour 

refers to activities carried out by a program, operating system or computer in 

response to a triggering event. Fundamentally, it refers to how these activities can be 

observed to cause changes to the system over time. These observations are made 

using parameters known as metrics, which are used to measure particular aspects of 

the system. 

The term misbehaviour is broadly defined as “to behave badly” [46]. In the context of 

computing, this is used to describe any behaviour (observed through metric values) 

that strays from defined boundaries, an established norm or exhibits uncharacteristic 

changes. It can manifest itself in a variety of ways, by affecting individual metrics, 

multiple metrics or groups of metrics. This is why detecting and monitoring for 
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misbehaviour is such a difficult process. In addition, there is no pre-determined level 

of behavioural deviation that can be classified as misbehaviour. Instead, this is a 

complex process that is heavily influenced by numerous system variables such as 

configuration, roles, and capabilities. Hence, misbehaviour can range from very 

small changes to drastic changes, depending upon the system on which it occurs. 

Misbehaviour can also have undesirable knock-on effects, whereby other parts of the 

system can be affected by the existing misbehaviour. 

  

2.2.1. Types of Misbehaviour 

There are two main classifications of misbehaviour, both of which can signify 

different things; these classifications are as follows: 

Accidental Misbehaviour: This refers to an event that unintentionally causes 

misbehaviour on the system. Examples include inability to function due to 

connectivity issues, hardware or software malfunction, incorrect configuration and 

interoperability issues. In co-operative systems (such as a SoS), accidental 

misbehaviour is often caused by selfish components. They give higher precedence to 

their own function rather than those of other components, thus resulting in network 

degradation and further complications. 

Deliberate Misbehaviour: This refers to an event with malicious intentions that has 

been purposely engineered to cause misbehaviour on the system. Examples include 

corruption of contributed services, excessive consumption of resources and failure to 

provide promised services.  
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2.2.2. Misbehaviour on a System-of-Systems 

Misbehaviour is a problem that is often overlooked on traditional systems, but in a 

SoS it poses a far greater threat. Some types of SoSs lack any central authority to 

regulate behaviour and as such, their components are exceptionally trusting of each 

other. Only those SoSs without centralised authority are considered in this thesis. In 

a system that is orientated around trust and collaboration, any misbehaviour can 

easily cause localised problems such as loss of inter-component trust or service 

faults, as well as more wide spread problems such as system degradation or 

reduction in functionality. The reliance of some components on the data produced 

by others can result in misbehaviour on one component quickly cascading to cause 

problems throughout the system. An example of this is illustrated in Figures 4 and 5; 

it illustrates how misbehaviour in a single service (highlighted black) can easily 

spread, corrupting other services (highlighted red) and potentially affecting the 

component systems that are hosting the services (highlighted orange) and ultimately 

affecting the SoS as a whole.  

  

Figure 4. Illustration of an Example Small-Scale Normal SoS 
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Figure 5. Illustration of the Cascading Effect of Misbehaviour throughout the SoS 

As Figures 4 and 5 illustrate, the effect that a single service can have upon the SoS is 

huge. Not only can it cause problems locally on components, but also the 

interdependencies can cause the cascading of problems throughout the entire SoS. It 

can spread rapidly and easily, escalating into damaging consequences for the SoS, 

such as reduced efficiency, reduced functionality, loss of contributing components 

and in extreme cases the collapse of the SoS. 

There can be many different causes of misbehaviour within computing, such as 

various failures or incorrect configuration. However, this section will focus 

exclusively on those that are specific to causing misbehaviour within a SoS. The 

main identified causes of misbehaviour are listed below. 

Independency: All component systems remain independent from the SoS throughout 

the entire process. Therefore, they belong to a third party and normally still have 

roles or duties to perform outside of the SoS. This dual existence has the potential to 

produce new and unexperienced behaviour or incompatibilities that prevent the two 

existences from operating in parallel. This could culminate in the creation of 

misbehaviour. The independent nature poses problems for detecting misbehaviour, 
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as system owners will not always be willing or legally able to implement any form of 

standardisation or restrictions.  

Heterogeneity: SoS components have a high level of heterogeneity, meaning they have 

different hardware, OSs, software and configuration. Therefore, each system can 

have a unique approach when undertaking certain tasks. If any unhandled 

discrepancies occur within these different approaches, this can lead to them being 

mishandled or result in corruption. An example of this problem is the use of 

different file formats. For instance if one system stores values in a CSV file and 

another in an Excel file, the data structure may be similar but the parsing of these 

files is handled completely differently. If these files were to be used interchangeably, 

errors would occur as a result. 

Interoperability Issues: As the systems are heterogeneous, they will be of varying ages 

and implement varying technologies. This can pose problems for some newer 

systems that may operate technologies that are not backwards compatible. 

Alternatively, the configuration supported by some operating systems may not be 

identical to that supported by others. These issues have the potential to cause 

problems when systems are collaborating and sharing services and resources, which 

could lead to the occurrence of misbehaviour.  

System Changes: Component systems often have to make system changes to facilitate 

functionality, which often includes making changes to security. Generally, this 

process is used to overcome compatibility issues between components (e.g. opening 

or changing system ports). However, these changes are normally made as a quick fix 

but little consideration is given the potential side effects. These changes can create or 

expose weaknesses in the system, which in turn can cause or allow misbehaviour to 

occur on the system. 

Evolution: A SoS is a constantly evolving system, whether it is to accommodate 

changes in functionality, structure or the end-goal. Therefore, the behaviour on the 
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component systems will also evolve alongside the system. This could potentially 

lead to undesirable behaviour evolving and misbehaviour occurring as a result. 

 

2.3. Monitoring 

Unfortunately, there is no “out of the box” solution when it comes to monitoring. 

Each environment and monitoring task requires an individually tailored solution. 

Achieving an optimum monitoring solution is a careful balancing procedure 

between monitoring efficiency, accuracy and resource utilisation. Whilst creating 

and implementing each solution, many choices must be taken into consideration. 

Often these decisions directly influence the available options for subsequent choices. 

In order to understand the difficulties faced, this section will outline the main 

considerations for a monitoring solution. This will provide a clear understanding as 

to the appropriate monitoring choices for a SoS, and highlight why other existing 

techniques may not be feasible. However, actual monitoring techniques are not 

discussed, instead they are analysed in Chapter 3. 

 

2.3.1. Monitoring Architecture 

The architecture of a monitoring solution is an important decision, as it must 

compliment the nature (i.e. static or dynamic) and architecture of the environment in 

which it will operate. There are five main categories of monitoring architecture, 

which are: 

 Centralised: A central authoritative system monitors multiple components using 

data polled through the Simple Network Monitoring Protocol (SNMP) or 

gathered by software installed in each node [47]. Data monitored is usually 

related to the operating system or general performance of the component. This 

approach can operate as both hardware and software but it provides poor 

scalability and a single point of failure.  
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 Distributed: Arranged in a tree architecture, the authoritative “master” node 

organises the system monitoring by assigning “master slave” nodes, which in 

turn assign “slave” nodes to monitor the components. Although the master node 

is responsible for organisation, it is possible for the monitoring process to 

continue if it becomes unavailable. This approach can operate as hardware or 

software, is suited to large-scale and distributed networks, and provides good 

scalability. 

 Host-based/Stand-alone: A stand-alone monitoring software application is installed 

on every component. The software is used to monitor the host component, 

similar to how a home anti-virus program operates. Normally the data monitored 

by this solution can be far more detailed, including data from operating system 

behaviour, application behaviour, resource utilisation or system calls. However, 

this solution does affect component resources and performance and cannot be 

controlled or standardised by external parties. This is ideally suited to individual 

or isolated systems.  

 Centralised-Host Hybrid: It is an approach combining elements of both the host-

based and centralised monitoring. Components have host-based monitoring 

software installed but results, problems and observations are reported to a 

central authority, which collates the data. In turn, it provides feedback or threat 

information to other components. This would be efficient in ad-hoc or mobile 

environments, but only on a relatively small scale, as this solution is not 

particularly scalable. 

 Ad-hoc-Host Hybrid: It is an approach commonly used in collaborative 

monitoring, whereby components monitor themselves using host based 

monitoring software. They can also compare monitoring data or share 

information (e.g. regarding threats) with other components. As the term suggests, 

this is ad-hoc and therefore components are responsible for controlling and 
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managing this approach between themselves. It has many benefits but it is 

susceptible to inaccurate, false or malicious data being supplied. 

When considering the most practical architecture for a SoS behavioural monitoring 

solution, it is evident that the ad-hoc-host hybrid method offers the best solution. 

This is because the SoS environment is decentralised with no authority or 

responsible party, which rules out the use of centralised and centralised-host hybrid. 

The distributed approach is also unsuitable as in a SoS there is no real form of 

hierarchy, nor is there always a component willing to act as an authority. 

Additionally, consolidating components just for monitoring purposes is both a waste 

of potential functionality and difficult to manage given that component availability 

cannot be assured. A host-based approach could be used, but it is too isolated from 

the rest of the system. As a SoS is an evolving system, the observation and utilisation 

of trending behaviour amongst similar components is essential. 

 

2.3.2. Location 

The location where the monitoring will take place is also an important choice, which 

is entirely influenced by what the desired monitoring objectives are (e.g. speed, 

accuracy or detail), and the infrastructural constraints that exist. The available 

location options are discussed below: 

 Network: Network-based monitoring is increasingly common in corporate 

networks and to some extent home networks. It is predominantly used for 

firewalls, deep packet analysis, DoS protection, filtering, anti-malware scanning, 

load balancing and performance monitoring. Network monitoring is nearly 

exclusively hardware based (e.g. monitoring using FPGAs [48]) and is able to 

offer extremely high speeds. It is used to protect the perimeters of a network [49] 

(e.g. Network Intrusion Prevention System (NIPS), Network Intrusion Detection 

System (NIDS) and Network Behavioural Analysis (NBA)); therefore, problems 
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occurring within the network are usually missed. Monitoring on the network also 

means that encryption can often cause additional complications, and the 

spectrum of data utilisable for monitoring is somewhat limited. This approach 

can also be costly in terms of finance and resources, as these devices must be able 

to cope with the volume of network traffic (e.g. devices monitoring ISP networks 

require greater capacity than those monitoring enterprise networks), otherwise a 

network bottleneck will develop. 

 Host: Host-based monitoring is predominantly used for anti-virus protection but 

is also used for Host Intrusion Detection System (HIDS) and Host Intrusion 

Prevention System (HIPS). It is unable to match the speed of network monitoring 

and it also incurs resource and performance overheads. However, it is able to 

access a greater spectrum of data to monitor, allowing more intensive 

monitoring. It also has the capability to identify problems originating from both 

inside and outside the network. As the monitoring happens on the host, the 

problems concerning encryption are not as prevalent. 

 Hybrid: There are also hybrid monitoring approaches that combine both network 

and host based monitoring to achieve maximum system coverage. These hybrid 

approaches are efficient at correlating network observations and their impact on 

host systems. However, they can be difficult to manage and quite costly in both 

financial and performance terms. 

The most efficient location option for SoS monitoring would be on the host. This is 

because the use of a network based hardware device is too costly and not particularly 

feasible given the SoSs highly distributed and ad-hoc nature. Additionally, 

misbehaviour occurs within the component systems, so the use of network data 

would not offer sufficient amounts of monitoring data. The hybrid option is again too 

expensive for the limited reward that would be gained.  
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2.3.3. Data Sources 

The data used during the monitoring process is an important choice when designing 

a monitoring system. Data sources should be selected for their ability to provide data 

in a reliable and efficient manner but the following factors must also be taken into 

consideration: 

 Monitoring Location: The location of the monitoring system defines the breadth of 

data sources available for use. Network-based is limited to the data of packets 

passing through the network (i.e. packet headers, packet payloads and network 

traffic behaviour). Host-based has access to a greater spectrum of data sources 

covering the entire operating system as well as incoming and outgoing traffic. 

 Platform Interoperability: In a heterogeneous environment, the availability and 

variances in the data supplied between different platforms should be considered. 

As some platforms may measure in a different way (e.g. time on Windows and 

Linux) or in different units. 

 Monitoring Purpose: The purpose of the monitoring system can also dictate the 

data sources used. Often monitoring has a specific purpose such as monitoring 

system calls or performance. The data sources used need to reflect the purpose of 

the monitoring solution. Data sources are selected based on their ability to 

reliably represent a specific aspect of the system that needs monitoring. The more 

specific the monitoring purpose, the more refined the selected data sources need 

to be. 

 Detection Speed: The speed at which monitoring occurs can affect which data 

sources are suitable. Many critical monitoring systems require data collection to 

occur in real-time, whilst others are less stringent and tolerate post-event 

collection. This can influence the data sources used, as some are unsuitable for 
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real-time operation such as log files, which are written to post-event, which 

would cause an unacceptable delay.  

 Resource Usage: Monitoring can be a resource intensive process dependant on the 

aspects of the system being monitored, the number of observations and the rate 

of these observations. The observations need to be proportional to the capabilities 

and size of the system being monitored (e.g. minimal monitoring on a mobile 

device and more intense monitoring on a mission critical server).  

Monitoring solutions must be carefully constructed to ensure the fulfilment of the 

requirements and ensure the balance between all of the factors that must be 

considered. This is because excessive or incorrectly configured monitoring can 

negatively affect performance and normal operation. 

 

2.4. Research Challenges 

The background information provided in this chapter provides sufficient 

information to understand the challenges that are currently faced in relation to 

monitoring for and detecting misbehaviour on SoS components. This section will 

summarise these research challenges. 

 The first main category of challenges originates from the architecture and 

structure of a SoS, which poses problems for the application of existing 

solutions. As SoSs are large-scale, it is a necessity that any potential solution 

needs to be able to scale alongside the system and have the potential to grow 

significantly with no issues or implications. Their ad-hoc, dynamic and 

uncertain structure and function create an environment that is constantly 

changing (particularly the system boundaries). Therefore, any form of 

boundary orientated (e.g. network-based) monitoring would be largely 

ineffective. As a SoS is a collaborative system formed by independent 

systems, which are both highly distributed (this can refer to geographical and 
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network distance) and decentralised. This means there is no central authority 

to manage the monitoring task, nor take responsibility or liability for the 

process. This lack of a central location means that the majority of existing 

distributed solutions are unsuitable, as they require a fixed central node. 

Contribution to a SoS is voluntary meaning that component availability and 

contribution cannot be assured. Additionally there is no traditional form of 

hierarchical structure to a SoS. Monitoring techniques that rely on a “fixed” 

node or fixed structure (e.g. tree structure) are unsuitable. Component 

systems in the SoS are heterogeneous meaning they have varying capabilities 

and run varying technologies. Hence, any solution needs to be both OS 

independent and able to run on a vast array of components with varying 

capabilities (i.e. run on both a mainframe and mobile device).  

 The second main category that causes challenges is the characteristics of the 

behaviour originating within a SoS. Behavioural monitoring is based on the 

concept of identifying abnormal behaviour. However, for this concept to work 

there has to be sound knowledge of, or an ability to profile behaviour that is 

considered “normal”. SoS components are given an unusually high level of 

freedom enabling them to join, leave or change their roles and contribution at 

any time. Additionally, the support of emerging behaviour creates difficulties 

as this encourages the development of novel behaviour. SoSs are evolving 

systems, which constantly adapt to meet their changing goals. This means 

that the behaviour of the system will also constantly change, presenting new 

and unseen behaviour. All of these factors culminate in the highly dynamic 

and unpredictable behaviour that is exhibited on SoS components. It also 

explains the difficulties that are faced in establishing “normal” behaviour and 

providing effective misbehaviour monitoring.  
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2.5. Behavioural Monitoring Requirements 

By using the information identified from the background research, it is possible to 

create a set of requirements, which define the characteristics that potential 

monitoring solutions must possess. These requirements can therefore be used to 

assess the suitability of existing solutions, help to ensure the success of the proposed 

framework and provide a useful mechanism to evaluate the framework at a high-

level. These requirements were devised by examining the attributes of a SoS 

environment and its monitoring needs, they are as follows: 

 Accurate: It must produce low levels of detection errors including both false 

positives and false negatives. 

 Adaptable: It must be able to adapt on-the-fly to changes that occur within the 

SoS, with particular consideration towards roles, contributions, functionality and 

structure.  

 Autonomous: It should be able to handle the vast majority of normal operational 

tasks without requiring human intervention.  

 Detection Speed: It must facilitate an acceptable timeframe from event 

occurrence to detection and processing. This acceptable timeframe should also 

allow the solution to operate in real-time. 

 Diverse Analysis: It must be able to analyse a diverse selection of behavioural 

metrics covering various aspects of the system in order to formulate an accurate 

decision. 

 Dynamics: It must be able to cope with the high level of behavioural changes and 

dynamic system loads that occur on component systems during normal 

operation. 
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 Efficient: It must operate seamlessly to provide satisfactory levels of protection 

to both the SoS and its components, whilst not affecting their operation. 

 High Performance: It must be able to handle high volumes of data analysis in a 

timeframe that can match or improve those achieved by existing solutions, 

without crashing or causing delays. 

 Low Maintenance: It must not require much human or offline maintenance to 

ensure accuracy or operation.  

 Lightweight: It must be lightweight in terms of its permanent storage 

requirements, which includes the framework and all of its ancillary data (e.g. 

recorded observations, profiled data or knowledge). 

 No Prior Knowledge: The operation of the solution should not depend on any 

prior knowledge, whether this is relating to potential threats or details regarding 

the system and behaviour. This is because such knowledge is highly susceptible 

to change and could easily become outdated, which is a source of additional 

maintenance requirements. 

 Novel Threats: It must possess the ability to detect novel threats, as there is a 

high probability of new behavioural threats being created through component 

interaction in a SoS. 

 Protection Against Attacker Training: It should be able to resist the vulnerability 

of attackers being able to train the system. This requirement is specifically aimed 

at the methods used to maintain and adapt the behavioural thresholds. 

 Real-Time: In order to prevent problems or malicious activity from occurring, 

the solution must operate in real-time. 

 Reliable: It must be able to operate constantly without crashing and maintain a 

stable yet acceptable level of accuracy and efficiency. 
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 Scalable: It must be able to automatically scale alongside the SoS without 

hindrance, in order to adapt for its constantly changing monitoring needs.  

 Self-resolving: It must have the ability to attempt to resolve identified issues, 

rather than issuing alerts to administrators, as this would not be practical on a 

large-scale SoS, particularly those composed of independently owned systems. 

 Small System Footprint: It should consume low levels of system resources and 

observe the minimum number of metrics required for successful operation. This 

is to increase the free resources the component has available for SoS contribution. 

 Unselfish: It must be able to consider the needs of the SoS and other components 

rather than making decisions for self-gain.  

These requirements will guide the research in terms of analysing the suitability 

existing techniques and developing a solution that tries to fulfil them.  

 

2.6. Summary 

This chapter has provided the necessary background information to understand the 

main concepts involved in this research. It has also outlined the challenges faced by 

misbehaviour monitoring in the context of a SoS. The main problems discussed in 

this chapter revolve around the complications that arise from the distributed, 

decentralised and ad-hoc nature of the SoS. The dynamics and uncertainty this 

produces, is reflected in its structure, functionality and behaviour. This poses many 

limitations for existing techniques in terms of infrastructure constraints, availability 

and predictability. Ultimately, this makes it extremely difficult for existing 

approaches to differentiate between normal behaviour and misbehaviour, thus 

providing motivation for this research. The challenges outlined in this chapter do not 

consider the technical and methodological unsuitability of existing methods and 

solutions; instead, these are discussed in Chapter 3. Finally, this chapter has 
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presented a list of key requirements that any potential behavioural monitoring 

solution must fulfil. These requirements will be used throughout this thesis to gauge 

the suitability of existing solutions and as a means of evaluating the proposed 

framework. 

 



Chapter 3 

 

Related Work 
 

This chapter focuses on critically analysing existing work and solutions, by outlining 

their merits and highlighting their shortcomings. Ultimately, it aims to provide 

evidence to emphasise the inadequacies of existing approaches and therefore justify 

the motivation behind this research. SoS is still an infantile concept and currently 

lacks significant security research. Therefore, the work discussed in this chapter is 

collated from monitoring and detection techniques from multiple areas of 

computing research, including P2P and intrusion detection (comprising of both 

misuse and anomaly detection). 

 

3.1. Detecting Misbehaviour 

The aim of this research is to create a solution capable of detecting misbehaviour on 

a SoS component. In order to facilitate this, it is necessary to understand what 

techniques currently exist in similar research areas and to determine their 

inadequacies when applied to a SoS. This section will review and analyse behaviour 

monitoring techniques from various research domains within computing. 

 

3.1.1. Scoring Techniques 

Scoring techniques are particularly popular in behavioural monitoring on P2P and 

ad-hoc systems. They work by calculating a score for each system based on 

observations from other systems, whilst searching for desirable attributes or 

characteristics. As P2P systems share several SoS characteristics, their misbehaviour 
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detection approaches are examined and their applicability assessed. The most 

common techniques are discussed in this section.  

 

3.1.1.1. Reputation 

One of the most frequently encountered techniques for scoring is the use of node 

reputation. This is achieved by using either higher ranking [50] or neighbouring 

nodes [51] to monitor fellow nodes and compute a reputation score based on 

interactions or observations. Reputation based scoring can be used for malicious 

node identification [50], [52], [53], selfish node identification [54], [55] as well as 

establishing optimum nodes to co-operate with [56]. Some authors such as Visan et 

al [51] propose that peers that compute such values for other nodes should be 

offered anonymity.  

This reputation-based approach can overcome the problems encountered by the 

decentralisation, distribution and ad-hoc network structure. However, when this 

approach is applied to a SoS, several problems are encountered. A SoS is a highly 

heterogeneous environment, with components having various attributes (e.g. OS, 

resources and technologies used) and varying roles. Nodes may have dissimilarities 

or varying tolerances meaning that the computed reputation score on one node may 

not necessarily be the same as another. Given the inability to enforce any form of 

standardisation concerning the computation of the score, this can result in unfair 

scores being given. Additionally, the monitoring purposes differ; P2P monitoring is 

orientated around the protection of individual components, whereas SoS monitoring 

aims to protect both the SoS and its components. Lastly, a SoS is based upon the 

provision of functionality and in some circumstances it may be beneficial for selfish 

nodes to discredit other honest nodes in order to gain additional functionality or 

resources. It is unclear how trustworthy these evaluations by other peers can be or 

how they can be validated. If anonymity is given to these nodes, as suggested by 
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Visan et al [51], they will not be held accountable, which provides huge potential for 

misuse. 

 

3.1.1.2. Cost 

Another common approach to the scoring technique is to evaluate the cost of 

interacting with certain nodes, whereby cost refers to some form of overhead 

incurred. These overheads often include time [57], [58], energy consumption [59], 

[60] or detection [61], [62]. These approaches discourage the use of certain nodes or 

paths, such as that proposed by Rice [63], which charges higher prices for choosing 

nodes that can degrade the network’s resistance to malicious propagation. Although 

this can improve performance and efficiency in a distributed and decentralised 

environment, when applied to a SoS it can cause further difficulties. A SoS is a 

collaborative system formed by the voluntary contributions of components. 

However, costing functions are a self-orientated approach, not taking into account 

the wider implications. Using this approach could result in unwanted incentives, 

which can potentially lead to load instability, a decrease in collaboration, 

functionality and efficiency.  

 

3.1.1.3. Summary of Scoring Techniques 

Scoring techniques are capable of operating in distributed and decentralised 

environments, similar to that of a SoS. However, the main problem with these 

techniques is their self-orientated approach. The SoS is a collaborative environment 

and any monitoring techniques used must consider what is best for both the 

component and the SoS. Unfortunately, the application of such a scoring technique 

would result in a more complex, unstable and segregated system. 
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3.1.2. Knowledge-Based Techniques 

Knowledge-based techniques are another method of identifying misbehaviour on 

systems. It involves the use of existing knowledge of the system and rule based 

reasoning to monitor for and detect abnormalities. There are several techniques that 

fall under the knowledge-based classification, the majority of which are discussed in 

this section. 

 

3.1.2.1. Descriptive Policies and Languages 

A popular approach to misbehaviour detection amongst anomaly detection systems 

is the use of descriptive or ontological methods to define system behaviour or 

boundaries. With a detailed knowledge of the system, this approach describes (via 

policies or languages) the behaviour and boundaries that will be tolerated by the 

system using sets of rules. 

Examples of solutions using descriptive policies include BlueBox [64] whose policies 

aim to define security boundaries, and the approach proposed in [65] which uses 

policy driven metrics to measure security. There are also solutions using various 

forms of descriptive languages including n-gram [66], UML [67], [68] and WSBPEL 

[69]. 

The advantages of this method are that no prior training, patterns or signatures are 

required and it is also capable of detecting novel attacks. However, these approaches 

require high levels of maintenance particularly when considered for use on SoS 

components. Descriptions of the components would require constant updates as the 

system evolves, or the composition changes. This descriptive approach is not flexible 

in terms of behavioural change either, meaning it would be unsuitable for 

supporting emerging behaviour, which is a key characteristic of a SoS. Due to the 

complexity, uncertainty and dynamics of a SoS, it would be impractical to 

implement such a method.  
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3.1.2.2. Finite State Machine 

Finite State Machines (FSM) are used to model system behaviour by representing it 

as a set of states, transitions and actions. In this model, a state stores information 

about the present and past condition of the system. A transition is a change of state, 

which is initiated by a condition being fulfilled. An action is an activity that is 

performed at a given moment in a given state. The FSM approach has been used to 

detect attacks on protocols [70], [71] and abnormalities in system calls [72]. Using 

this technique has the advantage of detecting abnormal behaviour without requiring 

any training data or signatures. However, the disadvantage in terms of its 

application within a SoS is that for it to be implemented, the system must have 

known and fixed boundaries and must be relatively predictable in terms of 

transition conditions occurring to initiate state change. 

 

3.1.2.3. Expert Systems 

Expert systems use qualitative models [73] based on available knowledge of the 

system to formulate decisions regarding behaviour. Expert systems operate by using 

a chain of manually created rules [66]. These typically describe the functional 

relationships between the system entities, in the context of particular processes or 

relationships between system failures and repercussive effects [74]. Expert systems 

have been implemented in intrusion detection [75]–[78] and monitoring and 

diagnostics [79]–[82]. They are also highly efficient at solving complicated problems 

such as diagnosing failures and determining the effects [73]. However, when applied 

to complex systems such as a SoS, it has proven to be limited in terms of 

inconsistencies, incompleteness, long search time, lack of portability and 

maintainability [83].  
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3.1.2.4. Summary of Knowledge Based Techniques 

Unfortunately, knowledge based systems are largely ineffective when used in a SoS 

environment. This can be attributed to their dependency on existing knowledge of 

the system (i.e. configuration, structure or behaviour), the system remaining 

relatively static and the occurring events being predictable. Regrettably, none of 

these are available on SoS components due to their dynamic and unpredictable 

nature. Therefore, the accuracy attainable using these techniques is somewhat 

limited. 

 

3.1.3. Pattern/Signature Based Techniques 

Pattern based and signature based detection are interchangeable terms and refer to 

one of the most widely implemented techniques that features in the majority of anti-

malware programs [84][85]. The technique involves detecting the presence of 

predefined or preconfigured patterns (which are also known as signatures), which 

are indicative of particular threats. Differing solutions and approaches express and 

utilise patterns in varying forms, including event sequences [86], graphs [87], 

numerical values, file content [88] or network packet characteristics [85]. 

Pattern/Signature based techniques have the advantage of being relatively simple to 

deploy and implement, high operational speed, high levels of accuracy and low 

levels of false positives. However, they are unable to detect novel threats, as the 

creation of patterns/signatures requires previous knowledge of the threat. This 

means that constant maintenance would be required, which is both costly and time 

consuming. It also means that no full real-time protection could be offered. In terms 

of a SoS, it is essential to be able to handle novel threats, as the dynamics of the 

environment and emerging behaviour mean that new behaviour (and misbehaviour) 

is easily created. 
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3.1.4. Machine Learning Based Techniques 

Complex systems are proving increasingly difficult to monitor reliably whilst using 

techniques specifically developed for small-scale, localised or isolated systems. 

These difficulties have led to the development of complex monitoring methods, 

which are commonly based on various machine learning techniques (also known as 

artificial intelligence). Some of the common derivative techniques are detailed in this 

section along with a discussion regarding their capability to monitor for 

misbehaviour on a SoS. 

 

3.1.4.1. Bayesian Networks 

Bayesian networks are directed acyclic graphs [89], which graphically represent the 

probabilistic relationships between a set of random variables. They facilitate the 

modelling of variables and their dependencies, and the probabilistic relationships 

among the variables (e.g. relationships between symptoms and cause). 

This technique is commonly utilised in intrusion detection systems [66], with 

existing work focusing on applications within both misuse detection [89] and 

anomaly detection [90]. It is predominantly used in the classification of data, such as 

alerts [90], false alarms [91] or network packets [92], due to its ability to handle novel 

data. The classification operates based on evidence and reasoning, and can be used 

to categorise threats or to improve the accuracy of existing categorising techniques. 

Advantages of using Bayesian networks include the capability to profile 

interdependencies between variables thus allowing the handling of situations where 

data is incomplete or missing [93]. Another advantage is the capability to combine 

both existing knowledge and data. However, the efficiency of this technique is 

highly dependent upon the probabilistic assumptions made regarding the behaviour 

of the system. Deviation from this assumption leads to an increase in detection 

errors. Another disadvantage, as highlighted by Kruegel et al. [91], is that Bayesian 
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networks offer no significant improvements over threshold-based statistical 

techniques but consume considerably more computational resources.  

 

3.1.4.2. Markov Models 

There are two commonly used approaches of Markov models: Markov chains and 

hidden Markov models. A Markov chain is a set of states that are interconnected 

through various transition probabilities, which determine the topology and the 

capabilities of the model. This is illustrated in Figure 6, which shows the numerical 

probability values assigned to each transition (represented by orange arrows) 

between state A and state B. An initial training period is required to calculate the 

probabilities associated with each transition based on the normal behaviour of the 

system. The detection of anomalies is carried out by comparing the anomaly score 

(associated probability) obtained for the observed sequences with a fixed threshold. 

 

Figure 6. Example Markov Chain 

A hidden Markov model is usually a Markov process in which states and transitions 

are hidden. The task is to determine the hidden parameters from the observable 

parameters. Unlike a regular Markov model, where the state transition probabilities 

are the only parameters and the state of the system is directly observable, in a 

hidden Markov model, the only visible elements are the variables of the system that 

are influenced by the state of the system. 
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Both Markov model-based techniques have been used extensively in the context of 

intrusion detection and anomaly detection. Existing work predominantly uses 

Markov-based techniques in host based IDSs, usually modelling system calls [94], 

[95], [96], [97]. However, they are also used in network-based IDSs [98], [99] and for 

behavioural sequences [100]. 

The main advantages of Markov-based models is that they are relatively easy to 

implement and can offer fast speeds and minor computational requirements for 

smaller models. However, as the scale of the number of states in the model increases 

so does the computational requirements. Similar to Bayesian networks, Markov-

based models are also dependent on the probabilistic assumptions made about the 

system behaviour. The accuracy of a Markov-based model depends on the ability of 

the training data to accurately forecast the system’s behaviour.  

  

3.1.4.3. Artificial Neural Networks 

An artificial neural network (ANN) is a modelling technique inspired by the 

neurological operation of the human brain. It aims to solve complex problems by 

simulating the interconnected neurons and synapses of the brain. ANNs are 

typically used to predict the behaviour of users, programs or the system, based on 

previous training. The flexibility, tolerance towards environmental changes and 

ability to generalise learned data, have led to ANN becoming popular in detecting 

anomalies in IDSs [101]. They have been used to detect anomalies in system calls 

[102], traffic patterns [103], [104], user behaviour [105], processes [106] and command 

sequences [107]. 

The advantages of using an ANN stem from the flexibility they offer, enabling the 

use of imprecise or uncertain information to infer solutions and without the need for 

prior knowledge of data regularities. Unfortunately, they have several drawbacks. 

Firstly, they have the potential to fail to find a solution either because of the lack of 
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training data or feasible solutions. Additionally, ANN training data is both slow and 

computationally expensive to gather. Another drawback is that it does not provide a 

descriptive model to explain why a particular detection decision has been reached.  

 

3.1.4.4. Game Theory 

Game theory is a mathematical modelling approach used to analyse the interactions 

in a given scenario to find the optimal solution. Each scenario is modelled as a non-

cooperative game, with a set of players and strategies, to analyse interactions 

between players. The idea behind the model is to establish an optimal strategy 

against the opponent to solve the “game”. Solving the “game” means that the Nash 

equilibrium is established, which is a situation where no player can get any more 

benefits or losses by selecting a strategy other than the equilibrium strategy. Existing 

applications of this approach are commonly utilised in mobile ad-hoc networks. 

They have been used to optimise intrusion detection strategies [108], DoS prevention 

[109], malicious node detection [110], attack prediction [111] and network intrusion 

[112][113]. 

The game theory approach has several advantages, which include capability of 

handling uncertainty, comprehensive analysis of the situation and the examination 

of wider implications that other solutions may not consider. However, the 

shortcomings are that it is a time and resource intensive process that could not be 

applied in a real-time scenario. It also requires extensive knowledge of all systems 

involved, their boundaries and the trade-off values for each strategy on each system. 

The game theory approach is therefore largely unsuitable in a SoS, especially due to 

its requirement of a fixed goal in order to calculate the optimal approach, as a SoS’s 

goal continually changes and evolves. Additionally, the unpredictable nature of a 

SoS means there are too many variable factors that would need to be implemented 

and modelled, rendering this method highly impractical. 
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3.1.4.5. Fuzzy Logic 

Fuzzy logic is a technique derived from fuzzy set theory and deals with approximate 

logical reasoning rather than fixed and exact. Essentially, instead of something being 

considered either true of false, the truth is graded between 0 and 1 enabling the 

handling of partial truth. It is considered as an expression of uncertainty but this is 

disputed by many [66]. This capability of handling imprecise data has proved 

beneficial in its application within anomaly detection, as features can be considered 

fuzzy variables. It has been particularly effective when implemented to detect port 

scans [114], security risk management [115], intrusion detection alert prioritisation 

[116], detecting botnets, human recognition [117], fault detection and diagnosis [118], 

healthcare monitoring [119], and detection of radioisotopes [120]. 

The advantages of using fuzzy logic are that it is tolerant of imprecise data and it is 

easy to understand and implement. However, it cannot be considered a 

comprehensive solution and often precise techniques can yield drastically more 

efficient results. Additionally, the process can consume high levels of resources and 

requires extensive prior knowledge of what characteristics need to be observed for 

particular problems. This technique could be applied to a SoS but its lack of accuracy 

and precision may not be considered robust or effective enough for dealing with 

misbehaviour. 

 

3.1.4.6. Genetic Algorithms 

Genetic algorithms are adaptive heuristic search algorithms modelled loosely on the 

principles of evolution by natural selection. Its features include variation-inducting 

methods such as mutation, inheritance, selection and recombination. They are 

particularly useful in applications involving design and optimisation, where there 

are a large number of variables or situations where procedural algorithms are either 

non-existent or extremely complicated. The capabilities of GA allow them to 
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undertake complex optimisation problems. This therefore allows for greater degrees 

of freedom in the selection of the proposed model’s structure. Genetic algorithms 

have previously been utilised in intrusion detection systems [121]–[123], 

predominantly for their capability to select appropriate features and optimal 

parameters for the detection process. They are often used in conjunction with other 

machine learning techniques such as neural networks [101], Bayesian networks [124] 

and fuzzy logic [125][126]. 

The main advantage of GA is its flexible and robust approach that can create a 

solution by assembling data from multiple locations, whilst requiring no prior 

knowledge about the system behaviour. However, its main disadvantage is the high 

level of computational resources required. 

 

3.1.4.7. Clustering & Data Outliers 

Clustering and data outlier techniques aim to identify anomalous data by a process 

of examining conformity. Various clustering algorithms exist such as KNN, k-means, 

hierarchical or DBSCAN, which are used to group observed data into clusters. Data 

is assigned to clusters based on the data values that are contained in each cluster 

being measurably closer than those belonging to another cluster. Measurements 

used in this context are usually based on distance (e.g. Euclidean distance or 

Mahalanobis distance) or a similarity measure. The clustering algorithm is often 

repeated numerous times in order to achieve an optimum clustering solution. Once 

the clustering process is finished, some data points may not belong to any cluster. 

Such data points are termed data outliers and represent the anomalous data in the 

set, these can be analysed to provide further information (e.g. degree of outlier). 

The use of clustering and data outlier analysis is well-established within the realms 

of both statistics and data mining [127]. More recently, these techniques have been 

applied to other research areas. The high levels of accuracy and the lack of required 
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training or knowledge has appealed to IDSs. Many solutions include or are based 

upon this technique [128]–[131]. Additionally, its lack of required supervision has 

seen its usage in unsupervised detection systems such as [132]. 

The advantages to using this approach are its efficiency, lack of required existing 

knowledge and its limited computational expense. The main disadvantage is that 

some clustering algorithms require the number of clusters to be defined beforehand, 

which can be difficult to predict in dynamic datasets. This approach could be useful 

in a SoS environment; however, it assumes that the majority of data is normal. This 

may cause issues if for instance there is a vast fluctuation between the values of 

normal data, which could lead to the identification of erroneous data outliers. 

 

3.1.4.8. Summary of Machine Learning Based 

Techniques 

Machine learning based approaches are efficient at solving complex problems or 

operating on complex systems with uncertainties. The majority of the techniques are 

unsuitable due to the requirement of prior extensive knowledge of the local and 

occasionally other remote systems. This knowledge includes variables, 

predictability, boundaries, roles or goals.  

These techniques are suited to selecting the best solution from a given selection to 

achieve a fixed goal. The uncertainty handled by these methods, usually refers to 

changes in variables rather than the structure, boundaries or functionality as with a 

SoS. Some of these approaches could be applied in a SoS environment but none of 

them could provide a comprehensive solution; instead, they provide a partial 

solution or can solve specific problems (e.g. optimisation). 
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3.1.5. Statistical Techniques 

Statistical techniques are commonly utilised on both NIDS and HIDS, as they offer 

high levels of accuracy. The technique involves capturing and profiling the 

stochastic behaviour of the system. The profile typically includes such measures as 

activity intensity, audit record, categorical (distribution of activity over various 

categories) and ordinal (e.g. CPU usage). Current system behaviour is compared 

against the pre-calculated stochastic profile and if the behavioural measures are 

outside of the stipulated thresholds, the event is considered as misbehaviour. 

However, some approaches instead calculate an anomaly score to indicate the 

degree of irregularity for the event [133], which is considered as misbehaviour if it is 

not within the stipulated thresholds. There are several main approaches to statistical 

techniques, which include: 

 Univariate Analysis: This approach uses the measurements obtained from an 

individual variable, metric or attribute to measure behavioural change or 

calculate an irregularity score [66]. This is often utilised when monitoring a 

specific variable or small subset of variables [134]. 

 Multivariate Analysis: Multiple variables, metrics or attributes are measured or 

used to calculate an irregularity score [66]. It allows examination of the 

correlation that exists between the multiple metrics [135]. Usually these metrics 

belong to the same group (e.g. monitoring various parts of system memory) or 

monitor the same object (e.g. monitoring free RAM and used RAM). This can 

provide greater monitoring accuracy as usually threats affect multiple metrics 

collectively [136]. 

 Time-referenced Analysis: This is used in conjunction with other statistical 

techniques and is used to observe values to determine the timing and chronology 

of events [66]. This takes into consideration other time related information such 

as the day of the week or hour of the day. This is of particular importance in 
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environments that may encounter peak periods such as NIDS (e.g. [137]). This 

form of analysis is also referred to as temporal analysis [133], and is a popular 

approach amongst adaptive solutions such as [138], [139]. 

Statistical approaches have a number of advantages. Firstly, they do not require 

prior knowledge of the system nor of existing security threats and are able to detect 

novel threats. They are able to provide real-time detection due to their fast operating 

speeds and are computationally inexpensive in the long term. In addition, statistical 

approaches can provide accurate indication of threats that occur over extended 

periods of time such as DoS attacks. However, the disadvantages are that training 

periods are required and profiles can easily become outdated if the system changes 

(e.g. software update) as the approach assumes the system is in a quasi-stationary 

state. Statistical techniques are also highly susceptible to being trained over time by 

attackers. They are also prone to high false positive rates if not correctly configured 

with regards to the metrics and thresholds used. In relation to a SoS, this technique 

would be suitable (predominantly for the accuracy it offers) if methods were 

implemented to ensure accurate thresholds were used, thresholds could be adapted 

to cope with system changes and that attacker training could be prevented. 

 

3.1.6. Summary of Existing Techniques 

Table 2 provides a summary of the techniques discussed in this section, along with 

the pros and cons when considered for application within a SoS. Table 3 compares 

the existing techniques discussed in this chapter against the requirements set out in 

§2.5. 
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Table 2. Behavioural Detection Techniques Summary 

Technique Basic Concept Sub-

techniques 

Pros Cons 

Score Based Scoring of 

distributed 

observations 

1) Reputation 

2) Cost 

 Unaffected by 

decentralisation 

or distribution 

 Can be bias 

 Produces 

unwanted 

incentives 

 Different goals 

to that of SoS 

monitoring 

Pattern 

Based 

Identification of 

previously created 

patterns/signatures 

 

 

N/A 

 Detection 

accuracy 

 Ease of 

implementation 

 Detection 

speed 

 High 

maintenance 

 Unable to detect 

novel threats 

Knowledge 

Based 

Detect abnormal 

activity based on 

prior 

knowledge/data or 

predictions 

1) Descriptive 

policies & 

languages 

2) Finite state 

machines  

3) Expert 

systems  

 Robust 

 Flexible 

 Can detect 

novel attacks 

 

 

 High 

maintenance 

 Requires high-

quality 

knowledge/data. 

 Long detection 

times 

Machine 

Learning 

Based 

Intelligent and 

adaptive 

classification of 

complex/uncertain 

or partially 

complete 

behaviour 

1) Bayesian 

networks 

2) Markov 

models  

3) Artificial 

neural networks  

4) Game Theory 

5) Fuzzy logic  

6) Genetic 

algorithms  

7) Clustering 

and data 

outliers  

 

 

 Flexible 

 Designed for 

complex 

environments 

 Accounts for 

interdependenc

ies 

 Tolerates 

incomplete 

data 

 

 Dependent on 

behavioural 

assumptions 

 Dependent on 

knowledge of 

system 

boundaries and 

goals 

 Higher resource 

consumption 

but limited 

benefits when 

compared to 

statistic based 

 

Statistic 

Based 

Observe or 

calculate deviance 

from profiled 

stochastic 

behaviour 

1) Univariate 

Analysis 

2) Multivariate 

Analysis 

3) Time 

referenced 

Analysis 

 No prior 

knowledge 

about normal 

activity, goal or 

boundaries of 

the system 

needed. 

 Able to detect 

novel threats. 

 Fast detection 

times 

 Accurate 

 Reliable 

 Can be trained 

by attackers  

 Difficult to set 

thresholds and 

metrics 

 Unrealistic 

assumption of 

quasi-stationary 

state 

 Easy to result in 

high false 

positive or false 

negative rates 
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Table 3. Comparison of Existing Techniques against Monitoring Requirements 

 
Scoring 

Knowledge-

Based 

P
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o
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G
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o
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m
s 

C
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sterin
g

 &
 O

u
tliers 

Accurate               

Adaptable               

Autonomous               

Detection 

Speed 
              

Diverse 

Analysis 
              

Dynamics               

Efficient               

High 

Performance 
              

Low 

Maintenance 
              

Lightweight               

No Prior 

Knowledge 
              

Novel 

Threats 
              

Protection 

Against 

Attacker 

Training 

              

Real-time               

Reliable               

Scalable               

Self-

resolving 
              

Small 

System 

Footprint 

              

Unselfish               

=Requirement not met, =Requirement partially met, =Requirement met 
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By examining the existing work along with the suitability within a SoS environment, 

it is evident that no single existing technique would be entirely suitable; a point 

reinforced by Tables 2 and 3. From the existing work, it can be surmised that a 

statistical multivariate-based approach with temporal support shows the greatest 

potential. This is because it does not require any comprehensive knowledge of the 

system, it is able to identify novel threats, it can operate in real-time and it offers 

high levels of accuracy. There are however limitations with this technique, including 

its lack of specificity in determining behavioural anomalies, use of unnecessary 

behavioural metrics, lack of quantification, assumption of a quasi-stationary state 

and its susceptibility to hacker training. This is why the solution proposed in this 

thesis is only loosely based upon the technique. It will be necessary to employ other 

techniques and mechanisms to overcome these limitations. 

 

3.2. Behavioural Thresholds 

In the previous section, statistical monitoring techniques were identified as the most 

suited technique to monitoring a SoS. It is a highly effective technique but heavily 

relies on the accuracy of its setup, particularly the behavioural thresholds.  

A behavioural threshold is a point that defines the boundary between the behaviour 

being perceived as good and bad. These thresholds are unique to each system and 

are often tailored to suit their specific roles. However, establishing these thresholds 

is a difficult process [135], especially for metrics that continually vary by random 

amounts (i.e. there is no set level of variation). Difficulties arise from the fact that 

each system is unique, and its behaviour is largely determined by its current 

configuration and characteristics. Additionally, the point at which good behaviour 

becomes bad is often blurred and difficult to distinguish. This is because different 

circumstances require different behavioural tolerances, which is particularly difficult 

on dynamic systems. For example, higher bandwidth would be tolerated at peak 

periods but this may be deemed as bad behaviour at off-peak periods. There are also 
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systems such as those involved in a SoS that continually change or evolve. Therefore, 

for these types of systems, continual threshold adaptation is necessary and is equally 

as difficult as establishing behavioural thresholds. 

This section will examine the existing techniques for establishing the thresholds, in 

relation their suitability for calculating SoS behavioural thresholds. It will also 

examine existing techniques for adapting thresholds and their applicability within 

the SoS environment. 

 

3.2.1. Threshold Creation 

Thresholds are used in many areas of computing, so there are various approaches 

that can be used to establish a threshold. Below are the main approaches that could 

be used to create behavioural thresholds: 

 Histogram-Based Thresholds: This is a technique utilised in image analysis [140] 

(e.g. distinguishing the foreground from the background) and network traffic 

monitoring [141]. A histogram is used to represent the probability density of 

multiple attributes, which define the good behaviour [93]. This approach is useful 

for creating thresholds for multiple homogeneous systems, whereby systems 

have similar behavioural thresholds. However, its application within a SoS 

environment would be highly ineffective, as each system is unique and prone to 

change, meaning it would be maintenance intensive approach. In addition, it is 

unable to capture the relationship or interactions between different metrics [133]. 

 Fixed Thresholds: Permanent thresholds are created by the system designers, who 

have extensive knowledge regarding what is considered good or bad behaviour 

[142]. Exceptions are triggered once a value changes from that specified in the 

thresholds. This approach is only suitable for static environments (e.g. isolated 

systems that perform a specific set of routine functions) or for specific metrics 

where there are no intermediary values (e.g. its status is either on or off). Given 
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the changeable structure and function of a SoS, its unpredictability and the 

number of metrics being monitored, this is a highly impractical approach. It is 

unable to adapt to load changes over time and would yield high levels of both 

false positives and false negatives [143]. 

 History Based Thresholds: Thresholds are created based on historical values that 

occur at a defined time (e.g. last week or last month). Exceptions are triggered if 

current values differ from the historic values by a set percentile (e.g. 10%). This 

approach overcomes the limitations of Fixed Thresholds as the thresholds are 

automatically generated (not set by system designers) and can be used with 

metrics with intermediary values. However, there are limitations with this 

approach too, as it is not particularly tolerant of variability. For example, if 

previous values are slightly lower than normal and the current values are slightly 

higher than normal; this would be considered an exception rather than allowable 

deviation. This intolerance of variability means that this approach is rarely used 

in variable environments or for frequent observations over durations such as 

minutes or hours (it is used for larger periods such as weeks or months). This 

approach results in difficulties in detecting problems in real time and observing 

small changes. Ultimately, given the dynamic nature of a SoS environment, this 

would result in a high volume of false positives, and combined with the lack of 

real-time support this is not considered as a feasible approach. 

 Historical Average Thresholds: Thresholds are created by averaging n historical 

values, where n is typically between 10 and 30 [135]. These historical values often 

include those gathered during training periods. This approach overcomes the 

limitations of the History Based Thresholds, as it provides an average 

representative value rather than comparing against the last recorded value [78], 

[84]. However, there are shortcomings with this approach too, that affects its 

suitability for application in a SoS. The main problem is that it does not account 

for temporal related activity. For example, legitimate behavioural spikes may be 
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caused by a weekly update. If a daily average is taken, the averaging process 

would reduce the degree of this legitimate behavioural spike. Therefore, the 

occurrence of the weekly update could trigger an exception. Another problem is 

the variability of metric values, i.e. the averaging of metrics with high variability, 

means that much larger deviations are required to be considered as an exception. 

Although this approach can tolerate a certain degree of variability, it cannot 

facilitate the level of dynamic behaviour exhibited by a SoS component. 

Therefore, the use of this approach would yield high levels of detection errors.  

 Statistical Filtering Thresholds: This is a statistical technique, which offers 

significant improvements over the Historical Averaging technique. The resultant 

thresholds have a greater tolerance towards behavioural variance on the system. 

The threshold is created by averaging the historical (or training) data, and upper 

and lower thresholds are set a distance of d away from this average value [135]. 

The distance represents the metric’s level of variance from its mean, which is 

most commonly measured using standard deviation. The value of d is set to three 

standard deviations, which is considered as an accepted practice. This is because 

when the data is considered to be normal (a Gaussian assumption) 95% of the 

data should lie within two standard deviations of the mean and 99% of data 

should be within three standard deviations. Therefore, any data outside of this is 

considered highly likely to be anomalous [143]. Whilst Gaussian assumptions are 

not detrimental to the efficiency of the thresholds, it is considered that techniques 

not reliant on restrictive normality assumptions are more appropriate. 

Additionally, this technique does not rectify the problems associated with 

temporal activity.  

 Adaptive Statistical Filtering Thresholds: This technique is similar to the Statistical 

Filtering technique, in that it uses the same process to establish lower and upper 

threshold boundaries. However, the main improvement is that it is able to 

establish temporal thresholds [135]. Therefore, thresholds can account for the 
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relationship between the metrics and the time of day or the day of the week [144]. 

Out of all the techniques discussed, this offers the most superior solution, whilst 

overcoming the limitations of the other techniques. Unfortunately, even this 

technique is still not entirely suitable for operation in a SoS environment. The 

problem stems from the monitoring requirements of the component systems, on 

account of their dual existence (local role and SoS role). The thresholds must 

account for normal base-system activity, base-system dynamics, SoS 

contributions and incurred dynamics from the contributions.  

Statistically-based threshold creation techniques can be divided into two main 

categories based upon the data and the techniques used. These two categories are as 

follows. 

Non-parametric Threshold Creation: This type of technique is considered less 

statistically powerful due to the approach using less information in its calculation. It 

is a more abstract technique, focusing on ordinal positioning rather than statistical 

information such as the mean or deviation. For example in a race, this technique 

would examine the order in which the competitors finished rather than their times. 

The benefit of this approach is that it does not rely on any assumptions as to data 

distribution (or shape of data distribution), characteristics or parameters. It uses the 

variability of data over an extended period of time to characterise estimated data 

variability and calculate threshold limits based on historical data.  

Parametric Threshold Creation: This type of technique calculates thresholds based 

on assumptions regarding the shape (or behaviour) of the data distribution and uses 

knowledge gained from studying historical data. This technique can produce more 

accurate and precise thresholds than non-parametric techniques but if the 

assumptions made are incorrect, the results produced can be misleading.  

It is important to note that many threshold creation techniques conduct data pre-

processing prior to calculating the thresholds [143]. This pre-processing often 
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includes the “cleaning” of data, which is essentially the removal of data considered 

invalid or spurious enough to affect the results of the threshold calculation process. 

Data smoothing is also used, in which noise (irregularities) is removed from the 

data, without affecting the main trends. These techniques predominantly include 

moving average smoothing, wavelet transforms, exponential smoothing or Fourier 

transform smoothing [143]. The problem with this pre-processing is that all of the 

data gathered during the training period is valid and this should be reflected in the 

thresholds. System activities run according to many different schedules, so 

infrequent activities cannot be dismissed as spurious. Additionally, the actions of 

smoothing are also counterproductive, the metrics used in behavioural monitoring 

are exact measures and the thresholds need to reflect this. Therefore, in this situation 

data pre-processing would not be beneficial to the threshold creation process.  

Unfortunately, none of the existing techniques found in the literature survey are 

wholly suitable for SoS behavioural threshold calculation. These difficulties lie in the 

dynamics of the behaviour and the number of constituent parts that create this 

behaviour. Therefore, it is necessary for a custom solution to be devised to calculate 

adequate behavioural thresholds to use in the monitoring for misbehaviour. 

 

3.2.2. Threshold Adaptation 

Some systems and their characteristics will change or evolve over time (e.g., 

software or hardware updates). Therefore, the threshold values, irrelevant of the 

calculation method will have a limited lifespan, after which the monitoring accuracy 

cannot be guaranteed [145]. Therefore, the thresholds used to monitor such systems 

need to be able to adapt alongside these changes. However, it is equally important 

that changes in the threshold do not affect the reliability of the solution using them. 

Threshold adaptation is an important requirement for the behavioural thresholds 

used for SoS components. Hence, the existing techniques in this section are 

examined in relation to their applicability within a SoS environment. 
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This statistical process should be largely automated, requiring little or no human 

intervention. It is referred to by numerous terms including adaptive thresholds, 

threshold adjustment, threshold adaptation and threshold refinement. Essentially, 

the process works by slowly learning the current behavioural trends of the system, 

in order to calculate the required modification to its thresholds. The following 

approaches are those commonly found in existing literature. 

Approaches such as those proposed by Ali et al. [145], Agosta [146] and Jiang [147] 

use adaptive threshold calculation for anomaly detection, based on prediction 

techniques. Whereby anticipated scores are predicted and the difference between 

them and the actual scores (known as the error score) is used to calculate necessary 

threshold adaptation. However, the problem is that this approach is inefficient in a 

SoS environment due to its uncertainty. The metric values can vary drastically, 

which reduces the efficiency of any prediction based on previous instances. This 

level of variance would falsely increase the error score, thus resulting in unnecessary 

computation and threshold adaptation. 

Yu et al. [148] proposed a real-time IDS tuning algorithm, which claims to offer 

performance improvements. As an extension to their previous work, Yu et al. [149] 

also proposed an adaptive tuning mechanism using a prediction filter, used to 

identify suspicious events. The problem with this approach is that it is not 

automated and heavily relies on human intervention, which in terms of a SoS would 

be highly impractical. 

Other approaches include the use of entropy-based techniques such as that proposed 

by Leung [150]. This uses Shannon’s entropy measure to determine the level of 

uncertainty of the up-to-date profiles and calculate the level of necessary threshold 

adaptation. Some approaches also use Support Vector Machine (SVM) based 

techniques such as that proposed by Liu [151]. Here, the SVM is used to analyse the 
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input, estimated output and error, in order to calculate the required threshold 

adaptation. 

The main problem with these existing techniques, is that by enlarge they are based 

on some form of prediction. However, with the high levels of dynamics and 

uncertainty in a SoS environment, this is not a feasible option and would result in 

monitoring inefficiencies. It is therefore necessary to develop a custom solution that 

is both automated and does not rely on any prediction. 

Another major problem with threshold adaptation is its vulnerability to training 

based attacks. These are attacks delivered over a long period of time; by simulating 

small changes in system behaviour, the attacker can influence the changes made to 

the thresholds. The authors of [145] proposed that the calculated difference should 

be normalised to reduce noise and therefore training based attacks. The problem 

with this is that although normalisation may remove unwanted training attacks, it 

can also remove legitimate data. There is no predictable or stable level of variance on 

a SoS, so it is difficult to partition this data and therefore accuracy could be lost 

using this approach. Hence, alternative mechanisms need to be put in place to 

prevent this problem from occurring. 

 

3.3. Collaborative Monitoring 

Recent years have seen a rise in the number of collaborative-based threats, which are 

increasingly more efficient, scalable [152] and dangerous, such as those involved in 

DDoS attacks and botnets. The benefits of such collaborative approaches have led to 

the concept being adopted by countermeasures, such as collaborative monitoring.  

In many modern systems, there is a demand for high levels of functionality. So in 

order to minimise any potential impact on the normal operation of the system, only a 

limited amount of resources are assigned for monitoring. Collaborative monitoring 

is particularly useful in this situation, as well as in large-scale, distributed and 
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decentralised systems such as P2P. This is why a considerable amount of existing 

research is focused on P2P systems. 

Collaborative monitoring involves the formation of new organisational structures 

each with shared monitoring objectives (e.g. prevention of a threat or protection of a 

particular weakness). Each member of the organisational monitoring group 

voluntarily contributes towards the group, thus making them stakeholders. These 

groups are used to share monitoring results, information, data as well as collectively 

analysing the results and learning how to improve. Predominantly, collaborative 

monitoring does not need to be introduced as a brand-new concept, rather an 

improvement of the monitoring that already occurs. Most of the benefits of a 

collaborative monitoring scheme, such as greater efficiency and increased 

monitoring accuracy, result from the collective pooling of resources for a single 

purpose. It can also serve as an advanced warning mechanism for novel threats, by 

sharing identifiable behavioural patterns or characteristics for others to use. 

Several approaches have implemented collaborative monitoring as a form of 

security. Rao et al [153] propose a system architecture for collaborative security and 

privacy in multi-domain networks. Altshuler et al [152] propose a collaborative 

application monitoring algorithm called Time-To-Live Probabilistic Flooding which 

harnesses the collective resources of multiple mobile devices to analyse installed 

applications for maliciousness. Conclusions are then reported to several other mobile 

devices, which then propagate the report to others. Wang and Zhou [154] propose a 

collaborative monitoring mechanism to support accountability for a multitenant 

database used in a centralised external service such as Amazon EC2. 

Collaborative monitoring has been implemented for many other different purposes 

outside of security including: forestry [155], ecology [156], robotics [157], QoS, signal 

processing [158] and healthcare [159]. 
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For a SoS there are many potential benefits to be gained through the use of 

collaborative monitoring. The main benefit is the sharing of patterns/data that 

indicate novel threats, which would not normally be possible due to the 

decentralised and dynamic structure of a SoS. There is also no implementable form 

of monitoring standardisation. Therefore, it is self-regulated, which over time may 

lead some systems to become more tolerant of different behaviours than others. 

Collaborative monitoring would provide a mechanism to compare against other 

similar systems. Lastly, collaborative monitoring is an efficient additional form of 

security, and it is not compulsory so it does not place any restrictions on the system. 

Hence, if the system needs extra resources, the collaborative monitoring can be 

temporarily suspended. 

The main problem with collaborative monitoring is the approaches used to form the 

monitoring groups. It is important to remember that these groups are often used to 

compare or standardise behaviour, or validate behavioural decisions, against other 

components in the group. Therefore, the behavioural similarity of the components 

selected to partake in these groups is highly important. The selection of 

behaviourally similar components in a SoS is difficult, as no single component has 

overall knowledge of the structure of the SoS, nor the capabilities of its fellow 

components. When combined with the issues of scale and complexity this becomes 

an increasingly difficult task. However, if behaviourally dissimilar components are 

selected, this could produce highly inefficient and potentially dangerous results. 

Despite the majority of existing collaborative monitoring work focusing on complex 

and distributed environments, few elaborate on how the collaborative components 

are initially selected. The main techniques identified from existing literature are: 

 Pre-set nodes: Static or controlled nodes are pre-selected by system designers, 

thus acting as a central point. For example, in [159] the proposed system 

features static storage repositories and clinicians. This technique is only 
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feasible in relatively static environments, where the availability of 

components can be assured. In addition, this approach is not scalable, 

considering the potential size of a SoS. Given that both the functionality and 

structure of a SoS are subject to drastic changes at any time, this technique is 

not suitable in a SoS environment. 

 Reputation: A technique heavily utilised in other areas of computing, whereby 

components are selected based on a reputation score. Neighbouring or 

specialist components monitor or interact with components in order to 

calculate a score to indicate their reputation [160]. However, a reputation 

score can only offer limited assurances regarding the integrity of a 

component. It is not indicative of its similarity or its timeliness. Additionally, 

the voluntary (and unpredictable) nature of SoS contribution would severely 

impair any reputation-based approach. 

 Cost function: This technique selects components based on their respective cost 

to the component. These costs can be in terms of time, distance, network 

congestion, energy or resources. Using this technique can account for the 

timeliness but not the similarity between components. 

 Distance: Components are selected based on either the network or 

geographical distance. This is often perceived as a quick and reliable method. 

However, it does not account for the similarity between the components. 

 Distributed lookup protocol: This technique uses a protocol to allow components 

to lookup other components using the same protocol. It is a technique able to 

cope with high levels of distribution or large-scale and is commonly utilised 

with additional requirements such as geographical distance [161]. However, 

again it does not account for the similarity between components. 
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 Discovery Object and Advertisements: This technique involves components 

detailing their services in the form of an advert. These advertisements can be 

discovered by other components desiring particular functionalities and 

encourage direct connections [162]. This technique offers limited similarity 

checks, as usually advertisements only feature key services and contributions 

and could not be considered adequate. In addition, it is unclear how practical 

this technique would be in terms of scalability in a large-scale, multi-domain 

and distributed environment with undefined boundaries.  

It is evident that some of these techniques offer limited assurances and similarity 

comparisons but are insufficient for ensuring the reliability of results produced by 

CBM. These inadequacies have provided the motivation for the development of a 

novel solution capable of providing a superior and comprehensive method for 

selecting the most behaviourally suitable CBM components. 

 

3.4. Summary 

This chapter has provided a summary of related work from many different areas of 

research that could applied to monitoring a SoS for misbehaviour. It has reviewed 

the plausible identified techniques, providing an overview and outlining both the 

benefits and shortcoming with respect to use in a SoS. It has also examined related 

work for techniques that could be used to calculate behavioural profiles for SoS 

component systems. These techniques were also analysed for both their benefits and 

shortcomings. Lastly, this chapter examined the concept of collaborative monitoring 

and its existing applications. It also detailed the potential benefits to a SoS and 

outlined the potentially dangerous limitations of existing techniques used in their 

formation. 

During the literature review each of these requirements were examined, and it can 

be concluded that there are no currently defined methods that fulfil the requirements 
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for SoS behavioural monitoring. It identifies solutions that could be built upon to 

create a successful SoS misbehaviour detection solution. It has also identified that the 

majority of the shortcomings of existing works when applied to a SoS, stem from the 

complexity of the environment along with its dynamic and uncertain nature [8]. This 

emphasises the inadequacies of existing techniques required for behavioural 

monitoring and the problems that their usage could cause. This chapter justifies why 

a novel approach and novel techniques are essential to addressing the issue of SoS 

component misbehaviour monitoring. The inadequacies of existing solutions 

provide both the motivation and aims for the solution proposed in this thesis. 



Chapter 4 

 

Secure System-of-Systems 

Composition (SSC) Framework 
 

The SoS environment presents numerous challenges to existing monitoring 

techniques, which were developed for static and predictable systems. Existing 

approaches lack the capability to protect both component systems and the SoS as a 

whole from misbehaviour, and still maintain high detection and low false alert rates. 

It is obvious from the previous chapters that there is a need for a new and capable 

behavioural monitoring solution to cope with the challenging structure, uncertainty 

and complexity of a SoS environment. The literature review has shown there are no 

entirely suitable solutions, and it highlighted the shortcomings of many existing 

popular techniques. Therefore, a novel approach is required to establish and 

maintain the behavioural thresholds. Additionally, a new viable approach is 

required to analyse suspicious behaviour and determine its irregularity in a reliable 

and accurate way, whilst ensuring this is conducted within an acceptable timeframe. 

This approach also needs to adhere to the aims and objective set out in §1.2 and the 

requirements outlined in §2.5.  

This chapter proposes a novel framework for behavioural monitoring on SoS 

components. The framework aspires to overcome the limitations of existing 

approaches and provide efficient and effective behaviour monitoring, assisting both 

SoS components and the SoS as a whole. The contents of this chapter are structured 

as follows. A high-level overview of the framework is given in §4.1, whilst §4.2 

provides a detailed explanation of its design. §4.3 provides an explanation of the 

proposed framework’s runtime operation. §4.4 details the algorithms used to create 
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and maintain the behavioural thresholds. §4.5 presents the algorithms used to 

quantify the level of misbehaviour. §4.6 outlines the statechart mechanism used to 

reduce resource wastage during monitoring. §4.7 details the collaborative 

behavioural monitoring and the algorithm used to enhance this setup. Lastly, §4.8 

provides a summary of the framework. 

  

4.1. SSC Framework 

So far, this thesis has discussed in detail the extent of the limitations of existing 

solutions and the challenges that are faced during SoS behavioural monitoring. In 

order to combat this, a novel solution has been devised called the Secure System-of-

Systems Composition (SSC) Framework [163]. It is a behavioural monitoring 

framework that has been specifically designed to monitor behaviour in a complex, 

decentralised, distributed, uncertain and dynamic SoS environment. It focuses 

exclusively on protection against component misbehaviour. This in turn helps to 

protect the integrity and availability of individual component systems as well as the 

integrity, availability and functionality of the SoS as a whole. The SSC framework 

focuses on the detection of deliberate and accidental misbehaviour relating to the 

SoS service contribution, including service resource utilisation (e.g. buffer overflow 

attacks or exploitation of SoS interface weaknesses) and service availability (e.g. DoS 

attacks). 

SSC is a self-contained hybrid framework, which operates and resides on the host 

component but also utilises collaborative monitoring features. Allowing the 

framework to remain self-contained is an important feature as it allows components 

to maintain their independency and addresses any concerns over third party control 

or agenda. It has been designed to ensure it fulfils the requirements set out in §2.5 

and that it causes limited intrusion, yet still achieves improved speed and efficiency. 

This is to increase the potential SoS contribution can be obtained from components. 
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SSC uses a statistical approach to behavioural monitoring, utilising data throughout 

different levels of abstraction. The framework resides on top of the OS, yet has the 

capability to obtain data from, and to control lower-level OS functions, as illustrated 

in Figure 7.  

 

Figure 7. SSC Architectural Positioning 

The SSC framework as proposed in [164] operates by monitoring the live behaviour 

of the component system in real-time, against a set of pre-calculated time-referenced 

behavioural threshold profiles. It monitors various OS-level metrics using both 

categorical (activity distribution over metric categories) and ordinal (individual 

metric values e.g. CPU usage) measures. These metrics and their usage are discussed 

in detail in §4.3. Each monitored metric has its own time referenced threshold profile 

that is calculated by the novel threshold calculation algorithm (as detailed in §4.4.2). 

These profiles are specifically designed to cope with the dynamic behaviour 

encountered in a SoS environment. By comparing live behaviour against these 

profiles, subtle changes in behaviour that may indicate misbehaviour can be quickly 

detected.  

The framework is also able to refine these threshold profiles periodically, using the 

novel threshold adaptation algorithm. This is in order to adapt the thresholds to 
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system evolution or changes. The adaptation process uses collaborative monitoring 

to reduce the threat posed by training based attacks. By comparing threshold 

adaptations against those of similar systems, anomalous adaptations can be easily 

identified. Additionally, in order to improve efficiency and reduce resource wastage, 

the number of metrics being monitored and the rate at which the monitoring occurs, 

is controlled by a statechart dependent on the level of threat perceived by the 

system. 

As the SoS is so dynamic and diverse, behaviour that deviates from the calculated 

thresholds is not immediately treated as misbehaviour. Instead, it is analysed using 

the novel misbehaviour quantification algorithm (detailed in §4.5) which quantifies 

the likelihood of the event being misbehaviour. This process uses the proposed novel 

behaviourally related multivariate approach to selecting the data for analysis. In 

turn, it enables the framework to make decisions regarding behaviour with greater 

levels of accuracy. From this, the necessary corrective action to be taken by the 

system can be determined, and the scores are also used in determining the overall 

threat to the system. For serious, repetitive or uncertain behaviour, the framework 

uses collaborative behavioural monitoring to compare behaviour with similar 

component systems in order to improve monitoring accuracy. 

 

4.2. SSC Framework Design Overview 

Before explaining the details of the techniques involved in SSC, it is imperative to 

have an understanding of the framework itself. This section will explain the overall 

structure and design of the framework, whilst drawing reference to the illustrative 

overview in Figure 8. 
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Figure 8. Illustrated Overview of the SSC Framework 

Monitoring Module (*) 

This module serves several purposes; firstly, it hosts the Data Logger, which gathers 

training data from the component system prior to joining the SoS and stores it in the 

Training Data database. This module also operates the main monitoring process that 

constantly monitors metrics on the live system in real-time. It compares the live data 

against the calculated behavioural profiles stored in the Threshold Profiles database, 

whilst also storing this data in the Historical Data Store database. If any behavioural 

deviations are detected, then this module reports them directly via an IPC queue to 

the Decision Module.  

It also hosts the Statechart Engine, which uses statecharts to govern the range of 

monitored metrics and their sampling rates, depending on the threat level of the 

system. The statechart engine is examined in detail in §4.6. 
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Training Data Database 

This is a database containing all of the data gathered by the data logger during the 

duration of the training period. This is used to calculate behavioural thresholds and 

metric relationships. 

Threshold Calculation and Adaptation Module 

This module houses the novel threshold calculation algorithm, which is examined in 

detail in §4.4.1 and the novel threshold adaptation algorithm, which is examined in 

§4.4.3. It is therefore responsible for calculating and managing all of the metric 

threshold profiles. 

SoS Supplementary Service Level Agreement (S3LA) Module 

This module is responsible for parsing the user created S3LA configuration file and 

extracting values on behalf of other modules. When components join a SoS, their 

owners know how much of their system they wish to contribute in terms of 

resources, services and time. SSC requires system owners to describe the levels of 

contribution, limitations and restrictions concerning the SoS, in an XML based file 

(S3LA). An example XML S3LA configuration file is shown in Figure 9.  

 

Figure 9. Example Excerpt of S3LA Configuration File 
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In the example shown in Figure 9, the contributions and restrictions for the 

component whilst actively contributing to the "EvalSoS" SoS are defined. Under the 

“metrics” tag, the minimum and maximum contributions have been stipulated for 

all of the monitored system metrics. Under the “services” tag, details of the service 

provisions to the SoS, and its limitations are defined. The “processRestrictions” and 

“userRestrictions” tags define the respective restrictions, detailing those that should 

indicate a problem if identified by the monitoring framework. 

The S3LA is not strictly a service level agreement, in that it is neither enforceable nor 

contractual. Instead, it provides a way of accurately describing the contributions 

promised to the SoS as well as limitations and restrictions. All of this information is 

essential in the calculation of the behavioural thresholds used to monitor the 

component’s behaviour. 

Threshold Profiles Database 

This is a database containing all of the time referenced behavioural threshold 

profiles for each metric, calculated by the Threshold Calculation module. 

Historical Data Store Database 

This is a round-robin database, storing the latest 10 days’ worth of observation 

values for each metric, as observed by the main monitoring module.  

Decision Module 

When a behavioural deviation is detected on a metric, the event is reported to this 

module. It calculates a score to quantify the level of misbehaviour associated with 

the reported event, using the scale of 0 (normal) to 1 (misbehaviour). This score is 

used by both the Statechart Engine (to assess the system threat level) and the 

Implementation Module (to organise any required remedial action). Any decisions 

made regarding behaviour will be handled by the novel behavioural decision 

algorithm, which is examined in detail in §4.5. 
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Implementation Module 

The misbehaviour score calculated by the Decision Module is used in this module to 

determine whether it is necessary to implement an action. Actions are pre-defined by 

the user and differ based on the score. The higher the behavioural irregularity, the 

more severe the actions are, but they could range from ignoring the event to 

disconnecting the component from the SoS. 

MACCS Web Service 

This is the mechanism used to provide collaborative behavioural monitoring to the 

framework (as detailed in §4.7.1). As the web service is written in Java, it uses a JNI 

interface to provide connectivity between the MACCS web service and the SSC 

framework. 

 

4.3. SSC Framework Run-time Operation 

This section will provide a more detailed explanation as to the run-time operation of 

the SSC framework. The operation can be simplified into five main phases, as 

illustrated by the different colours in the runtime flowchart in Figure 10. This 

flowchart only illustrates the successful run-time operation of SSC, as potential 

failure points and their consequences are not considered. 
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Figure 10. SSC Runtime Flowchart 

The initial start-up of the framework will trigger the system training to initiate, as 

without this SSC cannot be used. Subsequent re-training should not be required 

unless major changes are made to the system. 

Setup Phase (Yellow) 

In the setup phase, the host system undergoes a training period in which all of the 

monitored metrics are observed for 10 days. During this time, the system will 

continue its normal activities without being connected to the SoS. The data observed 

during this training is stored in the Training Data database. It is assumed that at the 

time of training the system is malware and fault free. The observation process may 

sometimes affect metric values (e.g. RAM usage). In order to combat the 

repercussions this may have, a compensation value is calculated and added to the 
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recorded value. This helps to ensure the accuracy of the training data but this 

process could never be considered 100% accurate. 

The 10-day duration for the training period was selected after experimentation 

proved it offered the best compromise between threshold efficiency and storage 

requirements. To evaluate this, different training durations of 1, 3, 5, 7, 10, 12 and 14 

days were tried. Training data was collected for the specified duration and used to 

calculate a threshold profile. This was repeated three times and the average 

difference between the three profiles was calculated, in order to assess their 

reliability and precision. The size of the database file that holds the training data was 

also measured. This was repeated for each of the proposed durations and the results 

obtained from this evaluation are detailed in Table 4 and illustrated in Figure 11. 

 
Table 4. Results from the Training Duration Assessment 

Duration of 

Training (Days) 

Avg. Difference for 

Maximum Threshold 

(%) 

Avg. Difference for 

Minimum Threshold 

(%) 

Training DB 

Size (MB) 

1 69.5 50 3.63 

3 45.6 38.5 10.00 

5 18.7 19.4 16.31 

7 10.5 7.76 22.72 

10 3.77 1.53 32.37 

12 2.84 0.74 51.46 

14 1.93 0.48 70.54 
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Figure 11. Comparison of Average Threshold Difference against Database Size 

The results from this experiment highlight that the 10-day duration offers the most 

advantageous balance between threshold efficiency and database storage 

requirements. Using durations above 10 days offers little increase in accuracy for the 

significant increase in storage space requirements. It must be noted that the 10-day 

duration is specific to the test-bed configuration utilised throughout this research, 

and is not a universal approach. 

Monitoring Phase (Green) 

In this phase, the system is monitored in real-time by comparing the live behaviour 

of monitored system metrics against the corresponding pre-calculated behavioural 

threshold profile. It uses both categorical (behaviour distribution throughout 

categories) and ordinal measures (exact numerical changes) of these metrics. The 

metrics cover five key areas of the system, which are Performance, Hardware, 

Security, Trending and SoS interface. It has the use of 108 metrics spanning 11 

categories, which are: 
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The selection of metrics used and the rate at which they are observed, is governed by 

the state-engine, which assesses the present threat level posed by the system 

behaviour. However, it requires a minimum of 46 metrics to maintain basic 

functionality. As an example of the types of metrics utilised, some of the metrics in 

the Memory category include ‘Free RAM’, ‘Used Swap’ and ‘Cache Size’. All of the 

metric values in this example are calculated using the values extracted from 

/proc/meminfo (more details about this are given in §5.2). The framework is able to 

gather monitoring data from multiple levels of abstraction, meaning that greater 

quantities of monitoring data and faster data collection speeds can be obtained. 

Analysis Phase (Orange) 

Once a behavioural deviation occurs, the event is reported and is examined using the 

misbehaviour quantification algorithm. This process involves using various 

statistical analysis, outlier analysis and data mining techniques to analyse both the 

problem metric and those that have a statistically proven relationship with the 

problem metric. The result is a score between 0 and 1 that indicates the level of 

misbehaviour associated with that particular event. The score from this process is 

used by the statechart engine as part of the process to measure the level of system 

threat; it is also used to determine any relevant remedial action that is necessary. 
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Adaptation Phase (Blue) 

As thresholds have a limited lifespan, the framework will periodically initiate a 

review of the behavioural thresholds in order to determine whether they require 

adaptation. This is in order to ensure that any system change or evolution is 

reflected in the threshold profiles, thus ensuring their accuracy. These adaptations 

are scheduled activities, the timing of which can be altered to suit the system; the 

default schedule is on a weekly basis. 

Action Phase (Red) 

Once the score has been calculated in the Analysis Phase for a reported behavioural 

event, it is then used in this phase to determine any necessary action. The user sets 

preconfigured actions based on the nature of the metric and the severity of the score. 

These actions can be graded into four severities: 

 Negligible: Ignore the event as it is of little significance. 

 Precautionary: Flag the event for closer monitoring or deploy minor 

restrictions. 

 Remedial: Attempt to resolve issues automatically, e.g. changing 

configuration. 

 Evasive: Take action to prevent threats from materialising or damaging the 

system, e.g. stop service contributions, modify contributions or disconnect 

from the SoS. 

The diagrams in Figures 12 and 13 illustrate the run-time operation of the 

framework. 
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Figure 12. Illustration of the SSC Framework’s Main Runtime Process 
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Figure 13. Illustration of the SSC Framework’s Training Process 
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4.4. Behavioural Threshold Management 

In order to ensure the accuracy and efficiency of SSC, and to lower the number of 

false positives and false negatives produced, it is imperative that accurate thresholds 

are utilised to monitor behaviour against. Given the problems with existing 

approaches detailed in Chapter 3, custom threshold profiles and calculation 

algorithms have been developed for SSC to create and manage its behavioural 

thresholds. This section will provide a detailed insight into both the threshold 

calculation algorithm in §4.4.1 and the threshold adaptation algorithm in §4.4.3. 

 

4.4.1. Behavioural Threshold Creation 

As previously discussed in §3.2.1, there are many difficulties to overcome when 

creating behavioural thresholds for a SoS component. Predominantly this can be 

attributed to the dynamics and uncertainty of the SoS environment. As deduced 

from §3.2.1, statistical thresholds offer the best overall solution, but are not without 

limitation. The novel threshold profile structure and threshold calculation algorithm 

outlined in this section aspire to overcome the difficulties and limitations of existing 

solutions. 

The proposed threshold profile provides a temporal threshold for the behaviour of 

system metrics for a twenty-four hour period. There is a high level of detail involved 

in these profiles as they contain data for every ten seconds for every monitored 

metric. This 10-second interval was selected for normal monitoring as it provides a 

suitable balance between accuracy and storage requirements. The dynamic and 

variable nature of the system means that longer intervals will reduce accuracy, 

whereas shorter intervals consume excessive resources. Hence, producing week-long 

profiles would result in excessively large profile sizes, which would yield little 

additional benefit. The reasoning behind the twenty-four hour profile is based on the 

fact that the additional storage costs did not outweigh the benefits. This does not 



Chapter 4 – SSC Framework 

  89 

 

significantly affect the threshold accuracy as the proposed novel algorithm already 

factors sufficient tolerance for base-system dynamics for off-peak activities into the 

profile, and it is then refined with additional tolerance specifically for intensive 

scheduled activities. 

The proposed threshold profile is designed specifically with the dynamics of the SoS 

in mind, and also the ease of threshold adaptation. The proposed profile structure is 

illustrated in Figure 14. It consists of two sets of thresholds for each monitored 

metric, which are defined as follows.  

Soft SoS Thresholds (S2T): This threshold set details the anticipated normal 

behaviour of the system whilst accounting for the promised contribution to the SoS 

(as specified in the S3LA configuration file), as illustrated in Figure 14. This then 

creates the minimum and maximum S2T threshold set for each sample point, 

defining the expected normal system whilst contributing to the SoS.  

Dynamically Adaptable Thresholds (DA): This threshold set extends the S2T 

threshold to account for the expected level of data variability, as illustrated in Figure 

14. This finalised threshold set is used for comparison against the live data. 

 

Figure 14. Illustrative Example of SSC Threshold Profile 
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These thresholds enable the SSC framework to detect any behavioural anomalies 

that may indicate misbehaviour relating to the SoS service contribution, including 

service resource utilisation (e.g. buffer overflow attacks or exploitation of SoS 

interface weaknesses) and service availability (e.g. DoS attacks). 

The proposed threshold calculation algorithm calculates time referenced threshold 

profiles, detailing each metric’s behavioural thresholds, according to the actual time 

elapsed during the current twenty-four hour period. The algorithm was developed 

for SSC to create its threshold profiles by combining both parametric and non-

parametric techniques. This combination allows the limitations associated with the 

both parametric and non-parametric techniques to cancel each other out. The 

limitation of parametric techniques is the use of Gaussian assumptions, which can be 

overcome by integrating non-parametric techniques that do not rely on any 

distribution assumptions. Additionally, the limitation of non-parametric techniques 

is the comparatively lower level of accuracy, which can be overcome by utilising the 

more accurate parametric techniques. 

The threshold calculation algorithm uses the training data stored in the Training Data 

database to create a behavioural threshold profile for each metric. This process is 

split into three steps: averaging, S2T creation and DA creation. 

 Averaging: For this first step, the training data that spans 10 days is averaged 

to produce a single twenty-four hour profile (as is used by SSC). This data 

provides an average representation of behavioural usage of the base-system. 

This can then be built upon to create the threshold profiles. 

 S2T Creation: The S2T thresholds are created by making several improvements 

to the averaged dataset. For each observation made during the training 

process, the deviation across the 10 samples taken (one per training day) is 

calculated. By using triple this deviation value and the contribution amount 

specified in the S3LA file, the threshold pair (minimum and maximum) 
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defining the upper and lower boundaries can be calculated. This enables the 

profile to account for dynamics associated with the base-system and the 

promised SoS contributions. This is considered as the parametric part of the 

threshold creation. 

 DA Creation: The DA thresholds are created by improving the S2T thresholds 

to account for additional dynamics and off peak resource intensive activities. 

This involves reviewing the training data against the newly created S2T 

thresholds. For each observation point in the training data (spanning across 

the 10 days), the data that is above the corresponding maximum S2T threshold 

and below the minimum S2T threshold is split into subsequent groups. For 

each group, the mean absolute deviation from the respective S2T threshold is 

calculated, as is the standard deviation. These two values are then added to 

(maximum) or deducted from (minimum) the corresponding S2T threshold 

value. This is considered as the non-parametric part of the threshold creation. 

This process is repeated for all of the system metrics that are used during the 

monitoring process. 

 

4.4.2. Threshold Calculation Algorithm 

This section provides a detailed explanation of the threshold calculation algorithm, 

with the aid of mathematical formulae. 

Firstly, the ten days’ worth of training data gathered during the training process 

must be averaged for every metric. This is because the threshold profiles are highly 

detailed twenty-four hour based time-referenced (i.e. they detail every 10 seconds 

throughout an entire day) profiles. This process will provide an average of the 

system’s normal metric usage, taking into account any off-peak activities such as 

updates. This averaging process is shown in equation (2), where A is the created 

mean value dataset, m is the monitored metric, i is the time point (i.e. the time of 
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data collection), P is the training data (as defined in equation (1)) and j is the training 

day. 

𝑃 = {𝑃𝑚,𝑗,𝑖: 𝑚 ∈ ℕ, 1 ≤ 𝑗 ≤ 10, 𝑖 ∈ ℝ} (1) 

𝐴𝑚,𝑖 =
∑ 𝑃𝑚,𝑗,𝑖

10
𝑗=1

10
 (2) 

The maximum S2T threshold (𝑆𝑋𝑚,𝑖) for each metric is then calculated by combining 

the average dataset with the maximum SoS contributions (as defined in the S3LA), 

which essentially defines the static behaviour of the system (i.e. no dynamics). Triple 

the standard deviation of the metric is also added and this serves two main 

purposes: Firstly, it reduces the effect that any discrepancies in the training data 

would have on the averaging process. Secondly, tripling the standard deviation is 

used in this approach as the data is assumed to be Gaussian (the parametric part of 

the threshold creation), meaning 99% of normal data should be within three 

standard deviations [143] of the mean. By using this approach, it is able to build an 

adequate tolerance towards the normal base system activities (i.e. excluding 

dynamics) into the thresholds. This is shown in (3), where m is the metric, i is the 

time point, 𝐶𝑋𝑚
 is the maximum contribution value (as defined in the S3LA file) and 

σm,i is the standard deviation of metric m at time i, across the 10 days of training data. 

𝑆𝑋𝑚,𝑖 = (𝐴𝑚,𝑖 + 𝐶𝑋𝑚
) + 3𝜎𝑚,𝑖 (3) 

The minimum S2T threshold (𝑆𝑁𝑚,𝑖
) for each metric is then calculated in the same way 

by combining the average dataset with the minimum SoS contributions (defined in 

the S3LA) and triple the standard deviation of the metric. This is shown in (4), where 

𝐶𝑁𝑚
 is the minimum contribution value (as defined in the S3LA file).  

𝑆𝑁𝑚,𝑖
= (𝐴𝑚,𝑖 − 𝐶𝑁𝑚

) − 3𝜎𝑚,𝑖  (4) 
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The results from both equations (3) and (4) produce the S2T threshold set, which 

details the theoretical expected static behaviour of the system whilst contributing to 

the SoS.  

To calculate the DA thresholds for the profile, it is necessary to analyse the original 

training data to observe any values that are outside of either of the S2T thresholds. 

This process is undertaken for every monitored metric. The values identified are 

then added to the relevant group list with 𝑀𝑈𝑚
 for data above the maximum S2T 

threshold and 𝑀𝐿𝑚
 for data below the minimum S2T threshold. This process is shown 

in equations (5) and (6) for the respective groups. Here, P is the training dataset, m is 

the monitored metric, i is the time point and n is the training set size of 8640 (24 x 60 

x 6). 

𝑀𝑈𝑚
= {𝑃𝑚,𝑖  ∈ 𝑃: 𝑖 ∈ ℤ, 1 ≤ 𝑖 ≤ 𝑛, 𝑃𝑚,𝑖 > 𝑆𝑋𝑚,𝑖}  (5) 

 

𝑀𝐿𝑚
= {𝑃𝑚,𝑖 ∈ 𝑃: 𝑖 ∈ ℤ, 1 ≤ 𝑖 ≤ 𝑛, 𝑃𝑚,𝑖 < 𝑆𝑁𝑚,𝑖

 }  (6) 

The final part of the DA threshold calculation is shown in equations (7-10), in which 

the DA maximum threshold (𝐷𝑋𝑚,𝑖
) and the DA minimum threshold (𝐷𝑁𝑚,𝑖

) are 

calculated. This process involves calculating the mean absolute deviation between 

the values contained the two groups (MU or ML) and their respective S2T thresholds 

(SX or SN). This calculates the average difference between threshold and profile 

values, in order to determine how much adjustment is required to compensate for 

dynamic variance (peaks or troughs outside of normal behaviour) in the behaviour. 

The standard deviation is used to combat any undesired effects that a rogue training 

value can have on the averaging process. Here, 𝜎𝑀𝑈𝑚
/𝜎𝑀𝐿𝑚

 is the standard deviation 

of the values in the respective group, i is the time point, m is the monitored metric, c 

is a count, k is the function shown in equation (11) that maps the position of the data 

within the respective group to the corresponding time point in the respective 
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threshold, EU is the number of elements in set MU and EL is the number of elements 

in set ML. 

𝑑𝑋𝑚,𝑖 =
1

𝐸𝑈
∑(𝑀𝑈𝑚,𝑐

− 𝑆𝑋𝑚,𝑘(𝑐)) + 𝜎𝑀𝑈𝑚

𝐸𝑈

𝑐=0

 (7) 

𝐷𝑋𝑚,𝑖
= 𝑆𝑋𝑚,𝑖 + 𝑑𝑋𝑚,𝑖 (8) 

𝑑𝑁𝑚,𝑖
=

1

𝐸𝐿
∑(𝑆𝑁𝑚,𝑗

−𝑀𝐿𝑚,𝑘(𝑗)
) + 𝜎𝑀𝐿𝑚

𝐸𝐿

𝑐=0

 
(9) 

𝐷𝑁𝑚,𝑖
= 𝑆𝑁𝑚,𝑖

+ 𝑑𝑁𝑚,𝑖
 (10) 

𝑘:ℤ → ℤ (11) 

The values (known as the DA threshold pair) produced by this algorithm are stored 

in the Threshold Profile database and are used by SSC to monitor the live system. 

Each threshold profile is entirely unique to the system on which it has been created. 

These profiles are able to efficiently cope with the dynamics associated with the SoS 

environment and reduce the number of false readings. 

 

4.4.3. Behavioural Threshold Adaptation 

One of the main problems faced by behavioural monitoring solutions operating in a 

SoS is the limited lifespan of calculated behavioural thresholds. Their premature 

expiration can normally be attributed to either system changes or evolution. These 

system changes often include modifications to the contributions, roles and base-

system. All of which can affect the overall behavioural characteristics, therefore 

reducing the effectiveness of the calculated behavioural thresholds. In order to 

combat this problem, SSC uses a novel threshold adaptation algorithm, which offers 
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an automated approach for periodically reviewing trending behavioural patterns 

and adapting the DA thresholds (§4.4) to account for them. 

As outlined in §4.4, each threshold profile consists of four separate thresholds; these 

are S2T maximum, DA maximum, S2T minimum and DA minimum. The DA 

threshold pair defines the limits of tolerated behaviour; outside of these, behaviour 

is considered as misbehaviour. The S2T thresholds are the ideal normal behaviour of 

the system. As Figure 15 illustrates, this approach creates two behavioural zones, 

which house the behaviour that is outside of the ideal norm but not outside the 

tolerated limits. These two zones provide essential data for assessing the behavioural 

trends on the system.  

 

Figure 15. Illustration of an Example Threshold Profile 

The threshold adaptation algorithm calculates the required adaptation by assessing 

behavioural trends using live and recent historical data that lie between either S2T 

maximum and DA maximum (Zone 2 in Figure 15) or S2T minimum and DA 

minimum (Zone 1 in Figure 15). To do this, the algorithm examines the quartile 

distribution of values across both Zone 1 and Zone 2. This is used to determine 

whether the distribution is Gaussian (normal), and if not the level of DA threshold 

adaptation required to correct this is calculated. However, as a security feature, 

thresholds cannot be adapted above the S2T minimum or below S2T maximum 

values. This is so that any malfunctions or even attacks cannot reduce the thresholds 
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to an extent that would dramatically increase the levels of false positives or false 

negatives, or harm the system’s functionality. 

The algorithm is described as a quartile distribution normalisation technique, which 

works by first measuring the difference between the corresponding S2T and DA 

threshold values at the relevant sample point. This difference is split into four equal 

quartiles (Q1, Q2, Q3 and Q4) and the upper boundary limits of these quartiles are 

calculated. This part of the process assumes the quartile distribution is Gaussian, 

therefore 25% of the data lying between the two corresponding thresholds (i.e. S2T 

maximum and DA maximum or S2T minimum and DA minimum) should be below 

Q1 and above Q3. If this is found not to be the case, then threshold adaptation is 

required. If more than 25% of the data lies in either Q1or Q3, this indicates that the 

DA threshold needs to be lowered or raised respectively. Using the maximum 

behavioural threshold as an example, Figure 16 illustrates a non-Gaussian quartile 

distribution between the two thresholds.  

 

Figure 16. Illustrative Example of Non-Gaussian Distribution 

As Figure 16 illustrates, there is more than 25% of data above the Q3 limit value, and 

the majority of data is therefore trending towards the DA threshold value. This 

indicates a trending increase in data values and it is therefore necessary to raise the 

DA threshold. In order to calculate the exact amount by which to raise the DA 

threshold, all of the data points in the zone are first sorted into ascending order. The 
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data points then need to be partitioned into three groups based on their quartile 

distribution, these groups are Lower (data between S2T threshold and Q1 limit) Middle 

(data between Q1 limit and Q3 limit) and Upper (data between Q3 limit and DA 

threshold). In order to partition this data, the quartile limit values need to be 

calculated. 

The distribution of quartiles can be expressed as percentages (i.e. Q1 is 25% and Q3 is 

75%), hence calculating the location of the quartile limits in the ordered dataset is 

possible using the total number of data entries. In the example given in Figure 17, 

there are 9 data entries, so the quartile location for Q1 would be data entry number 

2.5 (0.25*9) and for Q3 would be data entry number 7.5 (0.75*9). To calculate the 

actual quartile limit, the values that are stored at these data entries are used. 

However, there are no data entry values corresponding to either 2.5 or 7.5. 

Therefore, the quartile limit values are found by calculating the median of the values 

belonging to the two closest data entries. For the example shown in Figure 17, the Q1 

limit is found by calculating the median of the two values that fall each side of 2.5 

(i.e. 4 and 6) and the Q3 limit uses the values that fall each side of 7.5 (i.e. 14 and 16). 

 

Figure 17. An Example Quartile Calculation 

The calculated Q1 and Q3 limit values are deducted from those Q1 and Q3 values for 

the existing thresholds (or vice versa depending on which quartile does not 

conform). These differences provide values that represent the level of behavioural 
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change that has occurred, which should be reflected in the thresholds. The two 

difference values are then added together, which creates the value by which the DA 

threshold is adjusted (in this example it is raised), thus re-establishing the Gaussian 

quartile distribution of values, as illustrated in Figure 18. 

 

Figure 18. Illustrative Example of Gaussian Distribution 

 

4.4.4. Threshold Adaptation Algorithm 

In this section, the process behind the threshold adaptation algorithm is explained 

using mathematical formulae. The algorithm operates in two parts; firstly, analysis is 

undertaken to ascertain whether any adaptation is necessary. If adaptation is 

required then the level of required threshold change is calculated. To avoid 

confusion, this section will first discuss the adaptation calculation for the DA 

maximum threshold and then for the DA minimum threshold. 

The first step in the threshold adaptation algorithm is to ascertain the first quartile 

(Q1) and the third quartile (Q3) of the zone between the DA maximum and S2T 

maximum. The equations for calculating the quartile boundaries are shown in 

equations (12) and (13). Here, 𝐷𝑋𝑚,𝑖
 is the DA maximum threshold, 𝑆𝑋𝑚,𝑖  is the S2T 

maximum threshold, m is the monitored metric and i is the time reference. 

𝑄1 =
3

4
𝑆𝑋𝑚,𝑖 +

1

4
𝐷𝑋𝑚,𝑖

 (12) 
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𝑄3 =
1

4
𝑆𝑋𝑚,𝑖 + 

3

4
𝐷𝑋𝑚,𝑖

 (13) 

Now that the quartile boundaries have been calculated, the data (the values in Zone 

2 in Figure 15) needs to be classified into three groups to measure quartile 

distribution, as shown in equation (14). These three groups indicate the quartile 

groups in which the data is located, i.e. QL contains data from Q1, QF contains data 

from Q2 and Q3 and QU contains data from Q4. In equation (14), Hm is the data 

obtained from both the live system and recent historical data (all data gathered after 

the last threshold adaptation), 𝑆𝑋𝑚,𝑖  is the S2T maximum threshold, 𝐷𝑋𝑚,𝑖
 is the DA 

maximum threshold, m is the metric and i is the time reference. 

𝑄𝐿 = {𝐻𝑚,𝑖: ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛,𝐻𝑚,𝑖 > 𝑆𝑋𝑚,𝑖, 𝐻𝑚,𝑖 ≤ 𝑄1}   

𝑄𝐹 = {𝐻𝑚,𝑖: ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛,𝐻𝑚,𝑖 > 𝑄1, 𝐻𝑚,𝑖 ≤ 𝑄3}      

𝑄𝑈 = {𝐻𝑚,𝑖: ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛,𝐻𝑚,𝑖 > 𝑄3, 𝐻𝑚,𝑖 ≤ 𝐷𝑋𝑚,𝑖
}  

 (14) 

The quartile distribution of the data must be checked for Gaussian conformity, to 

determine the level of adaptation required to the DA threshold. In equation (15), QL 

is checked to confirm it contains no more than 25% of data, otherwise the threshold 

is lowered. By lowering the threshold, the range between the S2T and DA thresholds 

decreases, which lowers the quartile boundaries and rebalances the quartile 

distribution. It also checks that QU contain no more than 25% of the data, otherwise 

the threshold is raised and by following a similar principle, the quartile distribution 

can be rebalanced. Here, Zm is a master group conglomerating the contents of the QL, 

QF and QU groups, Yr() and Yl() are functions (shown in equations (16) and (17) 

respectively) to calculate the level of threshold adaptation, Hm is the data gathered 

after the last threshold adaptation and 𝐷𝑋′
𝑚,𝑖

 denotes an updated 𝐷𝑋𝑚𝑖
.  
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𝐷𝑋′
𝑚,𝑖
=

{  
   
   
   
   
   
 
𝐷𝑋𝑚,𝑖

+ 𝑌𝑟()   𝑖𝑓(|𝑄𝑈𝑚
| ≥ 0.25|𝑍𝑚|)

 
𝐷𝑋𝑚,𝑖

− 𝑌𝑙()   𝑖𝑓(|𝑄𝐿𝑚
| ≥ 0.25|𝑍𝑚|)  

  
𝐷𝑋𝑚,𝑖

             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

 (15) 

The Yr() function calculates the necessary adaptation to adequately raise the DA 

threshold as shown in equation (16). The value used to adapt the threshold value is 

calculated by finding the total difference between the existing threshold quartile 

limits and the new data quartile limits. Here, Q1 and Q3 are the quartile limits 

calculated earlier in equations (12) and (13), median() is a function that returns the 

median value of two data samples, 𝑒𝑡= 0.75|Zm|(75% of the current dataset) and 𝑒𝑓= 

0.25|Zm|(25% of the current dataset). 

𝑌𝑟: ((median (𝐻𝑚,⌊𝑒𝑓⌋
, 𝐻𝑚,⌈𝑒𝑓⌉

) − 𝑄1) + (median(𝐻𝑚,⌊𝑒𝑡⌋
, 𝐻𝑚,⌈𝑒𝑡⌉

) − 𝑄3) ) (16) 

The Yl() is the function used to lower the DA threshold as shown in equation (17) 

and follows the same methodology as the previous function. The only exception is 

that because the new threshold quartile values will be larger than the existing values, 

they are deducted (rather than the other way round as in equation (16)). 

𝑌𝑙: (  
   
 
 

(Q 1 −median (𝐻𝑚,⌊𝑒𝑓⌋
, 𝐻𝑚,⌈𝑒𝑓⌉

)) + (Q 3 − median(𝐻𝑚,⌊𝑒𝑡⌋
, 𝐻𝑚,⌈𝑒𝑡⌉

)))  
   
 
 

 (17) 

So far, this section has explained how to adapt the DA maximum threshold. It will 

now explain how to adapt the DA minimum threshold; the reasoning and 

methodologies are largely the same, except for several small differences. 

In equations (18) and (19) the boundaries for the first quartile (𝑄𝑎1
) and the third 

quartile (𝑄𝑎3
) are ascertained. Here, 𝐷𝑁𝑚,𝑖

 is the DA minimum threshold, 𝑆𝑁𝑚,𝑖
 is the 

S2T minimum threshold, m is the monitored metric and i is the time reference. 
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𝑄𝑎1
=
1

4
𝑆𝑁𝑚,𝑖

+
3

4
𝐷𝑁𝑚,𝑖

 (18) 

 

𝑄𝑎3
=
3

4
𝑆𝑁𝑚,𝑖

+
1

4
𝐷𝑁𝑚,𝑖

 (19) 

The data from Zone 1 (previously illustrated in Figure 15) is classified into three 

groups (𝑄𝑎𝐿
, 𝑄𝑎𝐹

 and 𝑄𝑎𝑈
) to measure quartile distribution, as shown in equation 

(20). Here, Hm is the data obtained from both the live system and recent historical 

data (all data gathered after the last threshold adaptation), 𝑆𝑁𝑚,𝑖
 is the S2T maximum 

threshold, 𝐷𝑁𝑚,𝑖
 is the DA maximum threshold, m is the metric and i is the time 

reference. 

𝑄𝑎𝐿
= {𝐻𝑚,𝑖: ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛,𝐻𝑚,𝑖 > 𝐷𝑁𝑚,𝑖

, 𝐻𝑚,𝑖 ≤ 𝑄𝑎1
}

   𝑄𝑎𝐹
= {𝐻𝑚,𝑖: ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛,𝐻𝑚,𝑖 > 𝑄𝑎1

, 𝐻𝑚,𝑖 ≤ 𝑄𝑎3
}      

 𝑄𝑎𝑈
= {𝐻𝑚,𝑖: ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛,𝐻𝑚,𝑖 > 𝑄𝑎3

, 𝐻𝑚,𝑖 ≤ 𝑆𝑁𝑚,𝑖
} 

  (20) 

The quartile distribution of the data is checked for Gaussian conformity, to 

determine the level of adaptation required to the DA threshold, as shown in 

equation (21). In the equation, 𝑄𝑎𝐿
 is checked to confirm it contains no less than 25% 

of data (otherwise the threshold value is lowered) and that 𝑄𝑎𝑈
contains no more 

than 25% of data (otherwise the threshold value is raised). Here, 𝐷𝑁′
𝑚𝑖

 is an 

updated 𝐷𝑁𝑚𝑖
, 𝑍𝑎𝑚

 is a master group conglomerating the contents of the 𝑄𝑎𝐿
, 𝑄𝑎𝐹

and 

𝑄𝑎𝑈
 groups, and 𝑌𝑎𝑟

() and 𝑌𝑎𝑙
() are the functions used to calculate the threshold 

adjustment values (shown in equations (22) and (23) respectively). 

𝐷𝑁′
𝑚𝑖
=

{  
   
   
   
   
   
 
𝐷𝑁𝑚𝑖

+ 𝑌𝑎𝑟
()  𝑖𝑓 (|𝑄𝑎𝑈𝑚

| ≥ 0.25|𝑍𝑎𝑚
|)

  
𝐷𝑁𝑚𝑖

− 𝑌𝑎𝑙
()   𝑖𝑓(|𝑄𝑎𝐿𝑚

| ≥ 0.25|𝑍𝑎𝑚
|)  

 
𝐷𝑁𝑚𝑖

              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        

  (21) 
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This technique follows the same principle as the calculation for the maximum 

threshold but has several small differences. Equations (22) and (23) show the 𝑌𝑎𝑟
 and 

𝑌𝑎𝑙
 functions. Here, 𝑄𝑎1

 and 𝑄𝑎3
 are the quartile limits calculated earlier in equations 

(18) and (19), median() is a function that returns the median value of two data 

samples, 𝑒𝑎𝑡 = 0.75|𝑍𝑎𝑚
| and 𝑒𝑎𝑓 = 0.25|𝑍𝑎𝑚

| . 

𝑌𝑎𝑟
: (  
   
 
 

(median (𝐻
𝑚,⌊𝑒𝑎𝑓 ⌋

, 𝐻
𝑚,⌈𝑒𝑎𝑓 ⌉

) − 𝑄𝑎1) + (median (𝐻𝑚,⌊𝑒𝑎𝑡⌋
, 𝐻𝑚,⌈𝑒𝑎𝑡⌉

) − 𝑄𝑎3
) )  
   
 
 

 (22) 

𝑌𝑎𝑙
:
(  
   
   
 

(  
   
 
 

𝑄𝑎1
− median (𝐻

𝑚,⌊𝑒𝑎𝑓 ⌋
, 𝐻

𝑚,⌈𝑒𝑎𝑓 ⌉
))  
   
 
 

+ (𝑄𝑎3
− median (𝐻𝑚,⌊𝑒𝑎𝑡⌋

, 𝐻𝑚,⌈𝑒𝑎𝑡⌉
)))  
   
   
 

 (23) 

This proposed algorithm allows the behavioural thresholds to be adapted based on 

currently trending behaviour. This is an essential requirement for SSC, due to the 

dynamic and evolving nature of a SoS, with particular reference to emerging 

behaviour. It is important to note that although this approach can resolve the issue of 

outdated thresholds causing high false positive and false negative rates, it in turn 

makes the thresholds vulnerable to exploitation by training based attacks. To combat 

this issue, SSC implements a collaborative behavioural monitoring mechanism, 

which is outlined in §4.7. 

 

4.5. Misbehaviour Quantification 

The large number of dynamic variables in the SoS environment results in component 

behaviour also becoming highly dynamic, unpredictable and difficult to monitor. 

Therefore, when component behaviour deviates from its established thresholds, this 

does not automatically indicate misbehaviour. Initiating responses that treat events 

as such would be a highly inefficient method of operation. Instead, each behavioural 

event that deviates from its corresponding threshold must be analysed in detail to 

reliably quantify the potential misbehaviour. Given the limitations of existing 
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approaches (as outlined in Chapter 3), SSC uses a proposed novel misbehaviour 

quantification algorithm.  

The proposed misbehaviour quantification algorithm expresses the level of 

misbehaviour associated with a behavioural deviation as a real score. The algorithm 

performs a comprehensive two-stage analysis in order to calculate this score. The 

first stage ascertains the average level of change in key behavioural characteristics of 

the problem metric (the metric on which the deviation has been observed). The 

second stage analyses the extent to which the data at the time of the reported 

deviation is considered an outlier in relation to existing data. This second stage is 

also repeated for “other” metrics on the system. The results from both phases are 

combined to produce the final misbehaviour score. This algorithm has been 

specifically designed for use with SSC in a SoS environment, so it is able to offer an 

improved accuracy of misbehaviour detection on SoS components. 

The selection of “other” metrics used in the outlier analysis is an important process, 

as incorrect selection can drastically affect the accuracy of the results. In SSC, this is 

handled by the proposed behaviourally related selection approach. The 

methodology behind the approach is that behaviourally related metrics exhibit 

varying degrees of behavioural similarity. Therefore, by examining their response to 

a behavioural event, it is possible to ascertain whether the behaviour of a particular 

metric is warranted. This process is largely dependent on the strength of the 

relationships between metrics, which is calculated using a correlation coefficient 

algorithm, as detailed in §4.5.1. An overview of the entire quantification process is 

illustrated in Figure 19. 
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Statistical Analysis of 
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Extract outlier score 
for data at time t

No

Final quantification 
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* Relationship weighting table is pre-
calculated upon initial framework setup*

* Relationship weighting table is pre-
calculated upon initial framework setup*

 

Figure 19. Illustrative Overview of the Misbehaviour Quantification Process 

The remainder of the section will explain the pre-requisites and detail the operation 

of the algorithm. 
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4.5.1. Behavioural Relationship Weighting Values 

The accuracy of the results produced by the outlier analysis is highly dependent 

upon the metrics utilised. These metrics need to be carefully selected based on their 

relevancy and ability to represent the system behaviour. The incorrect selection of 

metrics can drastically alter the results, which is why SSC uses a novel approach 

whereby metrics are selected based on the strength of their behavioural relationship. 

The calculation of these behavioural relationship weighting values is a prerequisite 

of the misbehaviour quantification algorithm.  

The idea behind using behavioural relationships is that the more similar the 

behavioural patterns are between two metrics, the more likely they will endure 

similar behaviour in the future. Therefore, metrics with a behavioural relationship 

can provide reliable indicators as to the presence of a problem. For example, CPU 

usage is closely related to RAM usage, and if RAM usage rapidly increased 

uncharacteristically, the examination of CPU usage would indicate whether a similar 

increase has occurred thus signifying the probability of a real problem. The stronger 

the relationship between the metrics, the more likely the metrics would change in a 

similar way and therefore the more significant these observations are. In some 

circumstances, this can help distinguish bad from good behaviour but 

predominantly it is used to indicate the likelihood of a problem. 

The relationship weighting values are calculated using the training data gathered 

from all monitored system metrics prior to joining a SoS. Obviously, the training 

data provides a perspective of the system during normal operation and cannot 

foresee any metric relationships that may form as the result of SoS changes or rare 

occurrences on the system. It is therefore assumed that the training has taken place 

with the system correctly configured, no attacks have occurred, and no malware 

currently resides on the system. The behavioural relationship calculation measures 

the behavioural correlation of each metric in turn, against all of the other monitored 
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metrics. A behavioural relationship refers to an existence of a positive correlation 

between the behaviour of two system metrics. The strength of the relationship 

reflects the degree of similarity in the behavioural patterns exhibited on two metrics. 

The Kendall’s Tau-c correlation coefficient [165] is used to calculate these 

relationship values by measuring the association between two metrics and testing 

for statistical dependence. The proposed work originally used the Kendall’s Tau-b 

technique, which is designed for square datasets (i.e. same number of columns as 

rows). However, as the number of metrics and training data increased during SSC’s 

development it was necessary to utilise Kendall’s Tau-c instead, which is a variant 

specifically designed for larger and non-square datasets. It produces a coefficient 

value between -1 (100% negative association) and 1 (100% positive association) to 

represent the strength of the correlation. This method is utilised as it is considered an 

effective non-parametric association test for ordinal data, and is considerably quicker 

to calculate than similar methods. In SSC, the difference in the units used to measure 

each of the metrics means that their scales can differ drastically, therefore a non-

parametric association test is the most suitable. Kendall’s Tau-c was selected over 

other techniques including Pearson’s coefficient (as this uses actual data which is 

inefficient in this application where the scales differ greatly), and Spearman’s 

coefficient (as the confidence intervals are less reliable and less interpretable than 

Kendall’s Tau [166]). 

To calculate Kendall’s Tau-c, two metrics are required and two observations need to 

be made on each. Suppose these metrics are X and Y and the observations are i and j, 

this would be represented as Xi, Yi and Xj, Yj. The numbers of concordant and 

discordant pairs are then calculated. For a pair to be concordant, the observations 

must move in the same direction on both metrics (e.g. Xi < Xj and Yi < Yj or Xi > Xj and 

Yi > Yj). For a pair to be discordant, the observations must move in opposite 

directions on both metrics (e.g. Xi < Xj and Yi > Yj or Xi > Xj and Yi < Yj). The Kendall’s 

tau correlation coefficient (𝜏𝐶) equation is shown in (24). Here, vo is the number of 
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concordant pairs, vw is the number of discordant pairs, v is the total number of 

observations and z is equal to the smallest value out of the number of columns and 

the number of rows in the dataset used. 

𝜏𝐶 = (𝑣𝑜 − 𝑣𝑤) ∗ (  
   
 
 

2𝑧

(𝑣2(𝑧 − 1)))
   
   
 

 (24) 

These behavioural relationship weighting values are used extensively in the 

misbehaviour quantification algorithm. Firstly, they are used to select the metrics 

that have a behavioural relationship with a particular metric and should therefore be 

used in the outlier analysis. Additionally, when these metrics have been analysed, 

their values are used to weigh the results, based on the strength of relationship and 

therefore the importance of the results produced. 

 

4.5.2. Calculating the Misbehaviour Score 

Once a behavioural deviation is detected by SSC, it is the responsibility of the 

algorithm proposed in this section to calculate the level of misbehaviour associated 

with the event. This level of misbehaviour is expressed as a score, which is a real 

value based on a scale between 0 and 1 (where 0 is normal and 1 is misbehaviour). 

Ultimately, this process decides the level of threat the event poses to both the 

component and the SoS.  

The term “problem metric” features prominently in these explanations, and it is a 

term used to refer to the metric on which the behavioural deviation has been 

detected. The algorithm explanation is split into the following three subsections: 

§4.5.2.1 explains the statistical analysis of the problem metric, §4.5.2.2 explains the 

outlier analysis of a given metric and §4.5.2.3 outlines how the final score is 

produced using the analyses undertaken in the previous subsections. 
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4.5.2.1. Statistical Analysis of Problem Metric 

The first phase of the algorithm is the statistical analysis of key behavioural 

characteristics of the problem metric in order to assess the level of behavioural 

change. It calculates the level of change between the reported value of the problem 

metric and recent data, historical data, corresponding behavioural thresholds, event 

occurrence frequency and the average value by which the thresholds have been 

historically exceeded. These statistical tests and their corresponding formulae are 

detailed in the following explanations. Throughout these formulae, B represents the 

problem metric and j represents the time count at which the problem was detected.  

In equation (25) the relative change between the reported data at time count j and 

the last recorded data value of the problem metric is calculated (T1). Here, ∆𝑡 is the 

time delta. This score is used to represent how significantly the data between these 

two critical points has changed. 

𝑇1 =
𝐵𝑗 − 𝐵𝑗−1

𝐵𝑗−1
∆𝑡 (25) 

In equation (26) the relative change between the mean value of the retained historical 

data and the current data is calculated (T2). This score represents how significantly 

the current value differs from the historical average of normal observed values. 

𝑇2 =
𝐵𝑗 − �̅�

�̅�
      (26) 

In equation (27) the relative change between the current data and the corresponding 

threshold value that has been exceeded is calculated (T3). Here, 𝐷𝑁𝐵,𝑗
is the minimum 

threshold and 𝐷𝑋𝐵,𝑗
 is the maximum threshold. This score represents the extent that 

the reported data deviates from its respective threshold. 
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𝑇3 =

{  
   
   
   
   
   
 𝐷𝑁𝐵,𝑗

− 𝐵𝑗 

𝐵𝑗
   𝑖𝑓 𝐵𝑗 < 𝐷𝑁𝐵,𝑗

 
𝐵𝑗 − 𝐷𝑋𝐵,𝑗

𝐷𝑋𝐵,𝑗

   𝑖𝑓  𝐵𝑗 > 𝐷𝑋𝐵,𝑗

      (27) 

In equation (28) the frequency of which the problem metric exceeds its 

corresponding threshold (T4) is calculated. Here, 𝑠𝑋  is the number of values from the 

problem metric exceeding the minimum threshold, 𝑠𝑁  is the number of values from 

the problem metric exceeding the maximum threshold, and O is the total number of 

recorded observation values. This score represents the regularity of which the 

threshold is exceeded by the metric. A regularly occurring deviation is less likely to 

indicate misbehaviour than a one off occurrence. 

𝑇4 =
{  
   
   
   
 
1 − (

𝑠𝑁
𝑂
)    𝑖𝑓 𝐵𝑗 < 𝐷𝑁𝐵,𝑗

 

1 − (
𝑠𝑋
𝑂
)    𝑖𝑓 𝐵𝑗 > 𝐷𝑋𝐵,𝑗

      (28) 

In equation (29) the relative change between the problem metric value and the 

average value of previous events that have deviated outside of the threshold (T5) is 

calculated. Here, 𝐺𝑁𝑘
is a group containing a list of recorded values that exceed the 

minimum threshold, 𝐺𝑋𝑘
 is the same for those exceeding the maximum threshold, 

ℎ = |𝐺𝑁𝑘
| which indicates the total number of entries for the 𝐺𝑁𝑘

 group, 𝑐 =

|𝐺𝑋𝑘
| which indicates the total number of entries in the 𝐺𝑋𝑘

 group and k is an iterative 

value. This score provides a quantification of how the current metric value's 

deviation compares to that of historical deviations. This measurement can identify 

how a problem relates to any previous occurrences (i.e. increasing, decreasing or 

remaining the same), which can be crucial in identifying its severity. 
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 𝑇5 =

{  
   
   
   
   
   
   
 
   
   
   
   
   
   
   
 
 

(  
   
 
 
∑ (𝐺𝑁𝑘

)ℎ
𝑘=1

ℎ )  
   
 
 

−𝐵𝑗

𝐵𝑗
  𝑖𝑓  𝐵𝑗 < 𝐷𝑁𝐵,𝑗

 

𝐵𝑗 − (  
   
 
 
∑ (𝐺𝑋𝑘

)𝑐
𝑘=1

𝑐 )  
   
 
 

(  
   
 
 
∑ (𝐺𝑋𝑘

)𝑐
𝑘=1
𝑐 )  

   
 
   𝑖𝑓  𝐵𝑗 > 𝐷𝑋𝐵,𝑗

         (29) 

Combining the results produced by each of the previously discussed statistical tests, 

greatly improves the overall statistical power and effectiveness at expressing the 

level of change in key behavioural characteristics. However, in situations where one 

test result is significantly different than the others, the combined value can often 

suppress the magnitude of this difference (i.e. it will lower the score). This is why the 

proposed approach features hypothesis conformity weighting, which penalises the 

combined value based on the level of unconformity of the test results to a 

hypothesis. In this approach, the hypothesis is that the observed behaviour is 

normal, in which case each of the test values should be equal to 0 (indicating normal 

behaviour). The further each of the test results lie from their hypothesised 0 value, 

the greater the penalisation inflicted on the combined value. 

The first step in measuring the hypothesis conformity is to calculate the t-statistic for 

the test results using a heteroscedastic t-test. Unlike traditional student t-tests, a 

heteroscedastic t-test does not assume that there are equal variances between 

variables in the datasets, which is a trait essential for the dynamic SoS environment. 

The Welch-Aspin t-test is used in this proposed approach, as it is the most well-

established heteroscedastic t-test. The formula to calculate the t-statistic t is shown in 

equation (30), where T is the set of actual results from the tests, E is the expected 

hypothesised results from the tests (meaning it is equal to 0), V is the sample 

variance, and d is number of datum in each dataset (as they are both the same size). 
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𝑡 =
�̅� − �̅�

√

𝑉𝑇
2

𝑑
+
𝑉𝐸
2

𝑑

      
(30) 

The two-tailed p-value represents the consistency between the statistical tests results 

and the hypothesised results. The calculation of the p-value is shown in equation 

(26), where n is degrees of freedom, Γ is the gamma function and t is the t-

distribution score produced in equation (31). 

𝑝 =
Γ (
𝑛 + 1
2

)

√𝑛 ∙ 𝜋 Γ (
𝑛
2
)
 ∫(1 +

𝑥2

𝑛
)

−(
(𝑛+1)
2

)

𝑑𝑥

𝑡

−∞

 (31) 

The resultant p-value can now be used as the penalisation weighting value, which 

reflects the conformity of the tests results to the expected results. Therefore, data 

with less conformity would have a greater p-value, thus increasing the overall score 

value further from 0 (which indicates normal behaviour).  

The calculation of the final value for this analysis phase a is shown in equation (32). 

This combines each of the statistical tests’ results T and applies the hypothesis 

conformity penalisation weighting value p. 

𝑎 = (
∑ 𝑇𝑘

5
𝑘=1

5
) + 𝑝 (32) 

 

4.5.2.2. Outlier Analysis of Related Metrics 

The second phase of the algorithm seeks to measure the extent to which the data 

occurring at the reported time could be considered an outlier of existing data. 

During this outlier analysis, both current and historical datasets are used. This 

outlier measure is universal and can therefore be applied to any metric, allowing for 

easy comparisons. In this approach the Local Outlier Probability (LoOP) algorithm 

[167] is used to calculate the probability of each data point being an outlier of the 
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whole dataset. The LoOP algorithm is based on the concept of local density and 

identifies anomalous data points by measuring the “outlierness” with respect to k 

neighbours. 

Previous designs of SSC used a k-means clustering approach [168] to identify outliers 

and measured their extent using the Euclidean distance. However, during further 

evaluation, it was identified that this technique was causing instable misbehaviour 

quantification scores. This was due to the dynamic nature of the datasets used in the 

outlier analysis and the value of k that was used. Fortunately, one of the main 

benefits of using the LoOP algorithm is that it uses inexpensive local statistics to 

make it less sensitive to the initial k value set. 

The LoOP algorithm is used to analyse a given dataset and it assigns each data point 

a score indicating the probability that it is an outlier of the set, based on comparisons 

with k neighbours. An example of this is illustrated in Figure 20, where datum that 

are further from the majority of their neighbours are assigned higher value scores 

indicating a higher probability of being an outlier. 

 

Figure 20. Illustration of Example LoOP Results 

 

The following equations show how the method proposed in this thesis interacts with 

the LoOP algorithm [167]. The l() function shown in equation (33) is used to return a 

LoOP score that represents the outlier probability between an entire dataset Dg for a 



Chapter 4 – SSC Framework 

  113 

 

given metric g and a single entry from the dataset at time j. Here, F is the conversion 

from raw data to the required k-neighbourhood (as outlined in the following 

explanations). 

𝑙(𝐷𝑔, 𝑗) ≔ 𝐿𝑜𝑂𝑃 (𝐹(𝐷𝑔, 𝑗))  (33) 

However, before the LoOP algorithm can be used the dataset must be converted into 

a k-neighbourhood, represented by F. To do this, the Euclidean distance between the 

single entry and every other member of the dataset must be calculated and stored in 

a vector, as shown in equation (34). Here, n is the dataset size, v is a vector, y is an 

iterative value and the upper bar represents the Euclidean distance. 

∀𝑦 ∈ {0…𝑛} ∙ 𝑣𝑔[𝑦] = (𝐷𝑔,𝑗𝐷𝑔,𝑦
̅̅ ̅̅ ̅̅ ̅̅ ) (34) 

Next, the k-neighbourhood is built by selecting the closest k neighbouring data 

values based on the radius surrounding the single entry. In order to do this, all the 

members contained in vector v must be sorted in ascending order based on their 

Euclidean distance value. This is shown in equation (35), where edist() is a function 

to sort the vector members based on their Euclidean distance value and 𝑍𝑔 is the new 

sorted vector. 

𝑍𝑔 = 𝑒𝑑𝑖𝑠𝑡(𝑣𝑔) (35) 

Next, the k nearest data values are assigned from the sorted vector to a new 

container for the remainder of the LoOP calculation and the radial centre is also set. 

These processes are shown in equations (36) and (37) respectively. Here, t is an 

iterative value, k is the number of neighbours to be used in the LoOP calculation (the 

proposed solution uses 5), S is the k-neighbourhood container, c is the radial centre 

of the set (i.e. the value assigned to Dg,j), Zg is the sorted vector and q() is a function 

used to map the Euclidian distance value within the vector to an integer that 

represents its position within the original dataset, as shown in equation (38).  
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𝐹(𝐷𝑔, 𝑗) ≔ ∀𝑇 ∈ {1…𝑘 + 1} ∙ 𝑆𝑇 = 𝐷𝑔,𝑞(𝑍𝑔,𝑇 )
 (36) 

𝑆𝑐 = 𝐷𝑔,𝑞(min{𝑍𝑔})
 (37) 

𝑞:ℝ → ℤ (38) 

The LoOP [167] score calculation is shown in equation (39), which produces the 

outlier probability score, which is close to 0 for points within dense regions and close 

to 1 for density-based outliers. Here, S is the newly created k-neighbourhood, c is the 

centre of this set (i.e. the value assigned to Dg,j), λ is a normalisation factor, PLOF is 

the Probabilistic Local Outlier Factor (its calculation is shown in equation (41)), 

nPLOF is the aggregate value obtained from the computation of PLOF (its calculation 

is shown in equation (40)) and erf is the Gaussian error function. 

𝐿𝑜𝑂𝑃(𝑆) ≔ max {0, erf(
𝑃𝐿𝑂𝐹𝜆,𝑆,𝑆𝑐

𝑛𝑃𝐿𝑂𝐹∙√2
)}  (39) 

The nPLOF is used to normalise and convert the PLOF value into a probability value, 

and is shown in equation (41), where E is a container for expected values. 

𝑛𝑃𝐿𝑂𝐹 ≔ 𝜆 ∙ √𝐸[
(𝑃𝐿𝑂𝐹𝜆,𝑆,𝑆𝑐)

2
]  (40) 

PLOF is the Probabilistic Local Outlier Factor, which calculates the ratio of the 

estimation for the density around c which is based on S, and the expected value of 

the estimations for the densities around all objects in the set S. This process is shown 

in equation (41) where PSD is a function defined in equation (42).  

𝑃𝐿𝑂𝐹𝜆,𝑆,𝑆𝑐 ≔ (
𝑃𝑆𝐷(𝜆,𝑆𝑐,𝑆)

𝐸𝑠∈𝑆[𝑃𝑆𝐷(𝜆,𝑆𝑐,𝑆)]
) − 1  (41) 

The PSD function calculates the Probabilistic Set Distance that estimates the density 

around c based on set S, as shown in equation (42) where σ is a function defined in 

equation (43). 
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𝑃𝑆𝐷(𝜆, 𝑆𝑐, 𝑆) ≔ 𝜆 ∙ 𝜎(𝑆𝑐, 𝑆) (42) 

The sigma (σ) function is used to calculate the standard distance between each 

member of set S. This function is shown in equation (43) where |S| is the size of set S 

and d() is a function used to measure Euclidean distance. 

𝜎(𝑆𝑐, 𝑆) ≔
√

∑ 𝑑(𝑆𝑐, 𝑆)
2

𝑠∈𝑆

|𝑆|
 (43) 

The equation in (44) shows how the function b() is used to calculate the outlier 

analysis score for a given metric. It also shows how the value returned from the l() 

function is multiplied by the weighting value that represents the relationship 

strength between the specified metric and the problem metric (§4.5.1). Thus, the 

value is weighted according to its significance in measuring misbehaviour on the 

problem metric. In equation (44), Dg is the dataset for the given metric g, i is the 

problem metric ID, j is the time of the reported behavioural problem, 𝜏𝐶 is the 

relationship weighting value and l() is the function (defined in equation (33)) used to 

return the relevant LoOP score.  

𝑏(𝐷𝑔, 𝑖, 𝑗) ≔ 𝑙(𝐷𝑔, 𝑗) × 𝜏𝑐𝑖,𝑔 (44) 

 

4.5.2.3. Calculating the Final Score 

The final score is used to quantify the misbehaviour associated with a particular 

event. This is achieved by using the two analysis stages outlined in the previous 

subsections.  

In the outlier analysis phase (§4.5.2.2), each metric that is related to the problem 

metric is analysed and an average is taken. Related metrics are those with a 

statistically proven relationship, whose weighting value (as calculated in §4.5.1), 

whilst paired against the problem metric, is greater than 0. Behaviourally related 
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metrics exhibit some degree of similarity in their behavioural patterns. The greater 

the strength of the behavioural relationship (as calculated in §4.5.1), the greater the 

likelihood that behavioural patterns will be replicated. Disparity between the 

behaviour of a metric and that of its related metrics indicates a higher probability of 

misbehaviour. Unlike existing approaches, unrelated metrics are not used and can 

therefore not dilute the severity of the calculated misbehaviour quantification. This 

approach enables a better overall view of the system and greater accuracy in 

calculation value. 

Equation (45) shows how the final score is calculated; firstly, the outlier analysis 

function (defined in equation (44) in §4.5.2.2) is called for every potential metric and 

an average is taken. However, the use of the relationship weighting values ensures 

that the average only accounts for those metrics with a relationship score greater 

than 0 when paired with the problem metric. The value returned from the statistical 

analysis of the problem metric (defined in equation (32) in §4.5.2.1) is then added.  

It is possible that the results of some of the previously defined statistical tests can 

force the final score value outside of the scale (0 - 1) used by SSC. Hence, the max() 

function is used to cap the score value at 1, as values outside of this scale offer no 

additional benefit to either the operation of the framework or quantification of 

misbehaviour.  

As shown in equation (45), the two parts of the misbehaviour quantification process 

are weighted 40:60. This is because the values produced by the first part (§4.5.2.1) are 

noticeably larger than that of its counterpart (§4.5.2.2). Therefore, by weighting the 

values from both parts it reduces the bias when they are combined to produce the 

final score. The 40:60 weighting ratio was selected by experimenting with various 

ratios to find which offered the least average variance between the two parts. 

In equation (45), R is the final score, i is the problem metric ID, j is the time at which 

the problem occurred, g is an incremental potential metric ID value, n is the total 
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number of metrics, b() is the outlier function, 𝜏𝑐 is the relationship weighting score 

between two metrics and a is the value returned from the statistical analysis of the 

problem metric. 

𝑅𝑖 = max

(  
   
   
   
   
   
   
   
 
 

(  
   
   
   
   
   
   
 
 

(  
   
   
   
   
   
 

∑ (  
   
  
 

1

|𝜏𝑐𝑖 > 0|
(0.6 × 𝑏(𝐷𝑔, 𝑖, 𝑗)))  

   
  
 

0≤𝑔≤𝑛
𝜏𝑐𝑖,𝑔>0

)  
   
   
   
   
   
 

+ (0.4 × 𝑎)

)  
   
   
   
   
   
   
 
 

, 1

)  
   
   
   
   
   
   
   
 
 

 (45) 

In order to aid the understanding of this section, the equation shown in (46) provides 

an overall summary of the entire quantification process presented in §4.5.  

𝑅𝑖,𝑗 =  𝑚𝑎𝑥 (0.4 (𝑎𝑣𝑒 (𝑇𝑛𝑖,𝑗) + 𝑝) +

                    +0.6 (𝑎𝑣𝑒(𝑏(𝐷𝑔, 𝑚, 𝑗): 𝜏𝑐(𝑔, 𝑖) >  0)) , 1)  
(46) 

Where: 

𝑅𝑖,𝑗 is the calculated score for the problem metric ID i at time j, 

ave() is the average function, 

𝑇𝑛𝑖,𝑗 is the value for the nth statistical analysis test for metric i at time j, 

p is the p-value for the statistical analysis tests, 

g is an incremental metric ID, 

b() is the function returning the weighted LoOP value, 

Dg is the dataset for the metric g,  

𝜏𝐶(𝑔, 𝑖) is the relationship strength between metrics g and i. 

This resultant score quantifies the level of overall misbehaviour that is associated 

with the reported behavioural deviation. The score is used to categorise the severity 

and risk of the behaviour based upon its positioning on the scale, where a score less 

than 0.3 indicates normal behaviour. This score is of significant importance and is 

utilised by the remainder of the SSC framework. The combination of techniques used 
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in this approach offers a vastly superior level of accuracy than those achievable 

using existing approaches.  

 

4.6. Using Statecharts to Control Monitoring Resource 

Usage 

The lack of efficient security and trust mechanisms in a SoS environment has 

resulted in monitoring becoming increasingly relied upon as a primary form of 

security. Unfortunately, the use of host-based monitoring systems (including SSC) 

often results in both performance (e.g. time taken for computations) and resource 

costs (e.g. CPU and RAM usage). These incurred costs are highly dependent on the 

configuration and setup of the monitoring system and the capabilities of the host. 

Nevertheless, in a SoS, the contribution and availability of resources for use by 

contributed services are fundamental in establishing the desired levels of 

functionality. For example, in small and highly demandable components such as 

sensors, the high resource consumption of monitoring solutions can lead to loss of 

performance, functionality or other complications such as power drainage (in battery 

operated sensors). This can lead to complications concerning both the component 

system as a single entity and the entire SoS. It is therefore imperative to ensure that 

host-based misbehaviour monitoring is as effective, yet minimally parasitic on 

resources and performance as possible. Ensuring that monitoring does not 

significantly affect a SoS component’s level of contribution or its ability to contribute 

is essential.  

One of the main difficulties in host-based monitoring is establishing an optimal 

balance between the required level of security and the incurred system overheads. 

For each system, there are many factors to be considered when introducing a 

security monitoring system, but even more so in a dynamic and uncertain system. If 

this balance is misjudged, it can easily lead to unnecessary overheads or inadequate 
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monitoring. The majority of existing solutions are unable to meet all of the complex 

requirements of monitoring a SoS environment. These solutions often utilise a fixed 

approach to monitoring, in terms of the number of metrics needed to function and 

the rate at which these are sampled. This can have a dramatic impact on resource 

utilisation and the performance of the component. Deciding which of the component 

system’s metrics to include, and when to do so, is a difficult task especially as roles, 

system load and system behaviour can change dramatically. This is often why 

existing solutions adopt an overcautious approach, which leads to unnecessary 

performance and resource overheads. This then reduces the potential contribution a 

component system can make or is able to handle.  

In order to reduce the resource consumption, the SSC framework utilises the 

proposed statechart controlled approach to monitoring the system. The approach 

aspires to both improve the performance and reduce the resource wastage on SoS 

component systems, whilst not jeopardising its efficiency. It involves the use of 

statecharts to provide automated adjustments to the selection of metrics being 

monitored and their sampling rate, all of which occurs in accordance with the real-

time level of threat perceived by the system. This section will provide a detailed 

examination of the proposed methodology. 

Choosing which metrics to monitor on a system is a difficult process. It involves 

ensuring a balance between meaningfulness, indicative characteristics, monitoring 

efficiency and system overhead. Often solutions adopt an overcautious approach, 

which in some situations may be beneficial, but not on a SoS component. System 

metrics are generally chosen for their ability to indicate a problem or a change of 

status on a system. However, occasionally additional metrics are also monitored for 

various other reasons. Some of these include requiring a more detailed analysis 

when a particular problem occurs, ensuring the nonrepudiation of critical metric 

values or more comprehensive monitoring in a weak area of the system. Often, there 

are no added benefits to monitoring these additional metrics, until a triggering event 
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occurs on the system. In the meantime, the observation of these metrics could be 

deactivated until they were required. An example of such a scenario is the 

monitoring of system memory, which is conducted using two main metrics (total 

memory and free memory). High-level monitoring would focus exclusively on free 

memory, which is a dynamic value and provides an adequate indication of current 

memory usage. The total memory value on the other hand is highly unlikely to 

change and regularly monitoring would be of little benefit and would waste both 

resources and time. If the free memory value was to surpass its threshold due to a 

physical fault or sophisticated malware (which also affects the total memory), the 

lower-level monitoring would be activated, which would then include the total 

memory value. The monitoring of the total memory value would then allow the 

problem to be easily located. In normal system operations, there would be no 

additional benefit to using the lower-level monitoring and the additional metric 

could be deactivated until required. 

The proposed statechart based approach involves integrating a statechart engine into 

the core of the SSC framework, as illustrated earlier in this chapter in Figure 8. The 

engine uses statecharts to control the framework and automate the task of adjusting 

the selection of monitored metrics. These adjustments include the range of metrics 

being monitored for each categorical group and the rate at which these metrics are 

sampled. These adjustments are designed to change the depth of monitoring to 

reflect the real-time perceived threat level of the host system, as SoS components will 

endure many unpredictable changes. Therefore, by allowing the monitoring of 

additional metrics to be activated and deactivated, they would only be utilised when 

they are beneficial to the system. This approach ensures an effective balance between 

the required security, depth of monitoring and resource consumption is maintained. 

The proposed statechart engine uses four different states, NORM, LOW, HIGH and 

DISC (these are explained in detail later in this section), to denote the current system 

threat level. Each state is assigned a specified set of usable metrics from each 
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categorical group and a sampling rate. Behavioural feedback is constantly gathered 

from the misbehaviour quantification algorithm, when it analyses reported 

behavioural deviations. Depending on the value of the score produced, this can be 

categorised as a high risk (1.00 - 0.60), low risk (0.59 - 0.31) or ineligible (0.30 – 0.00) 

score. This scale was devised by observing the scores produced whilst simulating 

attacks of varying magnitudes and dynamic SoS interactions. The engine uses these 

scores to assess the current system threat level, and to raise or lower the threat level 

when required (as illustrated in Figures 23 and 24). The higher the threat level 

becomes, the more detailed the monitoring becomes, using a greater number of 

metrics at a higher sampling rate. 

The behavioural feedback of the system is split into various groups, whereby each 

monitored metric belongs to a particular group, based on what they are observing 

(e.g. bytes sent and bytes received belong to the bandwidth group). The success of 

this approach relies on the flexibility and accuracy of the engine configuration, 

which currently uses a highly customisable and easily updatable XML configuration 

file. An example configuration excerpt is shown in Figure 21, where the bandwidth 

group and its limits, timeout value and members are defined. Group limits (shown 

in Figure 21 as *h and *l, where * denotes each of the states) are fixed limits of how 

many low and high scores a group can possess in each state at any time. The timeout 

value specifies the length of time that a score is recorded against the group. It acts as 

a mechanism that allows some tolerance towards small behavioural deviations 

(which is to be expected in such a dynamic system) and allows the system to return 

to a lower state if such behaviour desists.  

 

 

 

 



Chapter 4 – SSC Framework 

  122 

 

<groupid=0,name=”bandwidth”,noMembers=10,NORMh=2,NORMl=3,   

    LOWh=2,LOWl=3,HIGHh=2,HIGHl=3,timeout=10> 

<metric id=0,name=”bytesSent”,activeStates=”NORM,LOW,HIGH”/> 

<metric id=1,name=”bytesRcvd”,activeStates=”NORM,LOW,HIGH”/> 

< … /> 

</group> 

Figure 21. Example XML Configuration Excerpt 

The data from the configuration file is used by the framework to generate an array, 

which details every monitored metric (as illustrated by the UML diagram in Figure 

22). Low and high scores are stored in the respective array along with their expiry 

time. A clean-up process run by the engine removes any expired scores thus 

allowing the statechart engine to keep current track of each group. 

 

Figure 22. Structure of Metric Array Entry 

Explanations of the four system states used in the proposed method are as follows: 

NORM: The system behaviour is normal, with no metrics possessing high or low 

scores (it will tolerate scores between 0.00 and 0.30). The minimum number of metric 

observations is used, and the sample rate is set to 1 second. 

LOW: The system behaviour is a low risk, with one or more metrics possessing low 

scores (between 0.31 and 0.59), but the number of scores is below the respective 

limit. An increased number of more detailed metric observations are used, and the 

sample rate is increased to 0.75 second. 

HIGH: The system behaviour is a high risk, with one or more metrics possessing a 

number of high scores (between 0.60 and 1.00) that remain below the respective 
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limit. Additionally, if the number of low scores exceeds a metric’s respective limit, it 

will be upgraded to a high risk. All available metric observations are used, and the 

sample rate is increased to 0.5 second. 

DISC: The system behaviour is a severe risk, with one or more metrics possessing a 

number of high scores that exceed the respective limit. The behaviour is considered 

too dangerous for the component to be participating in the SoS. An overall system 

snapshot is taken, so further analysis can be conducted, and the component system 

is disconnected from the SoS. The monitoring process is then suspended, pending 

further investigation, thus requiring a manual reset to re-join the SoS. 

Generally, once a group limit is reached, it causes the system state to rise to the next 

state. However, the exception to this is in the NORM state, as when the high limit is 

reached the system will move to the HIGH state (as shown in Figures 23 and 24). If 

considerable risk is detected, the system will keep raising the state until it is placed 

in the DISC state.  

A UML diagram illustrating the statechart used to control SSC’s monitoring 

configuration is shown in Figure 23. It shows how changes in system behaviour 

trigger different state changes, based on the behavioural feedback provided by the 

quantification scores of the system. When the number of scores reaches the 

respective low or high limit the state level will rise (thus increasing the system 

monitoring). However, these scores are only valid for a finite amount of time (this 

differs between metric groups) and as such, they will be removed as shown by the 

“Score Timeout” process in Figure 23. The flowchart illustrated in Figure 24 provides 

an easier to follow logical overview of the statechart engine process described in this 

section. 
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Figure 23. SSC Threat Level UML Statechart 
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Figure 24. Flow Chart of the State Engine Process 
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4.7. Collaborative Behavioural Monitoring 

Collaborative behavioural monitoring (CBM) is an approach to monitoring that is 

often used in distributed, decentralised and dynamic environments. The term 

reflects the collaboration between independent components to accomplish the goal 

of monitoring for behavioural abnormalities. In these environments, there are 

usually high levels of uncertainty and unpredictability as well as no authority or 

behavioural definitions with which to make comparisons. In this situation, the use of 

CBM is the most reliable method of either detecting or clarifying behavioural 

irregularities. 

The process of CBM involves establishing a small subgroup of component systems, 

which can collaborate by assisting each other in the identification of anomalous 

behaviour. The behaviour of each member of the subgroup is used as a reference, 

with which another component can compare its own behaviour. It is often used to 

compare experienced behaviour for the purposes of verification (e.g. ensuring that 

the encountered behaviour is similar) or validation (e.g. analysing behaviour and 

ensuring a similar decision can be reached). This therefore can provide greater 

accuracy and certainty when identifying misbehaviour or threats and can provide a 

way of sharing information in order to prevent them. It also means that there is no 

dependence on a central server, it is unaffected by scalability issues and can operate 

fully given the unknown availability of components.  

However, the main problem with this approach is ensuring that appropriate 

components are selected to form the CBM subgroup. Each component is essentially a 

self-contained entity, it does not have any knowledge regarding the entire structure 

of the SoS, nor does it have knowledge regarding the capabilities of its fellow 

components. Given the heterogeneity, geographical distribution and large scale of a 

SoS, there is potentially a myriad of components to consider when establishing a 

CBM subgroup. There are also many different factors to be taken into consideration, 
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including response time, network distance and levels of similarity. The accuracy of 

the results produced by CBM are highly dependent on the similarity of the 

behavioural characteristics, configuration, capability and roles of the component 

systems. If unsuitable CBM components are selected, then the repercussions of this 

can be detrimental. Additionally, in relatively static environments the selection of 

CBM components could be achieved as a manual process. However, in a SoS, the 

components can join, leave and modify their contribution instantly, rendering any 

manual selection process extremely inefficient. Additionally, SoS components that 

utilise SSC’s threshold adaptation algorithm will be susceptible to training based 

attacks, which the proposed approach detailed in §4.7.1 aims to resolve. 

As previously outlined, the main problem with CBM approaches is that if the initial 

component selection is incorrect, then the results produced are relatively 

meaningless. In consequence, these incorrect results can be used to incorrectly 

classify behavioural irregularities. The majority of existing approaches are based on 

either a distance value or a cost associated with particular components. 

 

Figure 25. Example CBM Scenario 
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In Figure 25, the web server (circled in red) represents the component wanting to 

form a CBM group. The rest of the systems in the diagram have varying roles (e.g. 

file server, web server and mail server) and capabilities. Using existing approaches 

such as distance based selection (selected components are circled in blue) do not 

always form the most appropriate CBM, as the nearest components are not 

necessarily the most behaviourally similar. Another technique used is a score 

function (e.g. time) (selected components are circled in purple) and it is obvious that 

given the heterogeneity and scale of the SoS, the highest scoring functions are not 

necessarily the most similar. 

If the components selected using these approaches were to be used, the CBM would 

yield highly inefficient results due to vast behavioural differences. Instead, a more 

robust method is required, whereby a comprehensive similarity check is performed. 

Traditionally this selection would be a manual process. However, given the dynamic 

nature of the SoS and that changes can occur at any time, this would be a time-

consuming process requiring constant reconfiguration.  

The following sections describe the Most Applicable Collaborative Component 

Selection (MACCS) solution used in SSC, as presented in [169]. They detail the 

proposed solution for forming CBM groups and the calculation of component 

similarity. 

 

4.7.1. MACCS Method 

This section will explain the proposed method used by SSC, called MACCS. The 

method refines the selection of components identified by a Distance Based 

Distributed Lookup Protocol (DBDLP) [161] to select the most appropriate 

components to engage in CBM. It helps to overcome the problems that arise from 

existing ineffective CBM component selection. MACCS allows users to filter and 

refine components identified based on behavioural similarity criteria. 
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Prior to the MACCS method being initiated, three key values need to be set by the 

user. These are as follows. 

Number of Collaborative Components (k): This is the minimum number of other 

components that the user stipulates to be used in collaborative monitoring. In order 

to facilitate redundancy, the minimum accepted value is 3. 

Number of components in initial DBDLP search (n): This indicates the initial 

number of components to be searched for by DBDLP and processed by MACCS. 

This is a changeable value so that is can reflect the size of the system. 

Tolerance Threshold (h): This is a value between 0 and 1 that indicates the 

minimum MACCS score that is required for a component to be considered for CBM. 

Again, this is a user defined value, so it can be changed to suit the size or diversity of 

the system. For example, in a larger system the tolerance threshold can be more 

specific as there are a greater number of potential components but in a smaller 

system the scarcity of components means the threshold needs to be more 

ambiguous. 

The MACCS method works by searching the SoS by using a DBDLP from the host 

component (illustrated as a black node in Figure 26). The DBDLP searches for the 

nearest n components, where n is the number of components set by the user in the 

initial DBDLP search. The DBDLP used by this approach is based on [161] and 

allows the identification of geographically close components. The returned 

components (illustrated as white nodes in Figure 26) are used by the MACCS 

method to calculate similarity scores. If an insufficient number of components have 

been found with similarity values above the set tolerance threshold h, then the 

DBDLP searches again but the value of n is doubled. Each search will examine 

further into the system until the stipulated number of components are found (as 

illustrated in Figure 26). On the rare occurrence that similar components cannot be 
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found, the MACCS method will issue an error, prompting users to alter either the k 

or h value. 

 

Figure 26. Illustration of MACCS Process 

The flexibility of the method allows the component selection process to be tuned to 

reflect the number and diversity of components in the SoS. Figure 27 is a flowchart 

illustrating the high-level process of the MACCS method. 
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Figure 27. MACCS Flowchart 

The similarity score used in the method is calculated by measuring the similarity of 

four measures (roles, contribution, capabilities and network cost) as outlined in 

§4.7.4. A similarity sub-score for each of these groups is calculated and these scores 

are averaged to calculate an overall similarity score for the component. This score 

indicates the level of similarity and therefore the suitability of each component to 
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engage in CBM with the host component. The score generated is on a scale from 0 to 

1, where 0 is dissimilar and 1 is identical.  

 

4.7.2. Similarity Measures 

Many factors should be considered when identifying prospective components with 

which to engage in CBM. It is a necessity that components exhibit some 

characteristic similarities; otherwise, the results obtained from monitoring will be 

meaningless. This section will outline the key characteristics that the proposed 

method uses to assess the level of similarity between components. It is important to 

understand that in such a diverse environment, it is unlikely that any two systems 

will be identical. These measures are used to assess how closely related the system 

characteristics are, e.g. a system with 4GB of RAM shares more similarity with a 

system using 6GB rather than one with 1GB. The key characteristics considered by 

the proposed method are detailed below. 

Roles 

Component systems in a SoS usually take on the responsibilities of either a single or 

multiple role(s). These roles can vary drastically in terms of their function, 

computational requirements and the load placed on the component system. 

Therefore, component behaviour is highly influenced by the roles that a component 

system performs. For example, on an identically equipped component, a highly 

desirable or reliable service would result in different behaviour than that of a 

common or unreliable service. It is imperative that behavioural comparisons drawn 

between components occur on those that share a particular role, and therefore 

theoretically endure a similar process and behavioural outcome. It is also important 

to consider that components performing multiple roles are more likely to exhibit 

differing behaviour. Hence, the similarity between both the roles performed and the 

number of roles performed is one of the most important factors when measuring 

component similarity. 
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Capabilities 

The level of heterogeneity in a SoS means that components of all sizes and 

capabilities can participate. In the context of this work, capabilities refer to both the 

physical attributes of a system, such as the processor speed and available memory as 

well as the software attributes, e.g. web server software. It is important that when 

behaviour is compared, this occurs between systems with similar capabilities. For 

example, behavioural comparison between a behavioural spike on a mainframe 

server running a full Apache Tomcat server and an Android smartphone running an 

embedded Mongoose web server, would produce relatively meaningless results. 

Promised Contribution 

Measuring promised contribution is also essential, as there is no ratio or agreement 

between a component’s capabilities and SoS contributions. This is predominantly 

due to restrictions pertaining to the involvement in other SoSs and other external 

roles. In the context of this work, promised contribution refers to the amount of 

allocated resources and the services that have been promised to the SoS. There 

cannot be any assumptions made that because system capabilities are similar, 

contribution will also be similar. This is why it is also an important factor considered 

in a similarity calculation. 

Network Cost 

The network cost is another significant factor to consider, as not only are SoSs highly 

distributed over vast geographical areas but CBM is essentially a real-time activity, 

and any potential network delays can affect the real-time response. In terms of this 

work, the network cost measures the potential waiting time for a response when 

using a particular component. There are two main parts to this network cost, the 

network distance and the response time.  

Network distance can influence the cost of using a particular component, as the 

greater the distance, the greater the potential for latency and delay. In this work, the 
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distance between component systems is measured using the number of hops (the 

number of intermediary devices the packet is handled by) required for a packet to 

reach its destination component. Distance provides an excellent indicator as to the 

potential for delay, which could be incurred by using a particular component. For 

example, a component requiring 10 hops to reach is more vulnerable to delay and 

latency than a component requiring only 2 hops. 

Response time is the second factor used in network cost; it measures in milliseconds 

the time taken from a request being sent, to a reply being received. This provides a 

measure of the responsiveness of the component and the potential waiting period 

during the CBM process. 

It is important that these two measures are used in conjunction with each other to 

form the network cost. This is because the benefits of one measure may easily 

outweigh the disadvantage of another. For example, a component with a greater 

distance value may be able to offer a vastly superior response time than that of a 

component with a lower distance value. 

Whilst searching for behaviourally similar SoS components, it is essential to account 

for those attributes that can define or influence behaviour, which is why the factors 

discussed in this section are used. Of course, there are many other factors that could 

be considered but the idea behind this approach is to provide a quick yet efficient 

means of identifying potential components to collaborate with. By focusing on these 

key characteristics, this establishes a balance between effectiveness and speed. 

 

4.7.3. MACCS Similarity Calculation Overview 

This section will outline the calculation process used by the MACCS method to 

produce the similarity score, which represents the level of similarity between two 

components. For the MACCS calculation to work efficiently, the assumption is made 

that component systems are using a SoS-wide naming convention for describing 
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roles, capabilities and contributions, and that they are measured using the same 

units on all systems. 

The following sections feature the terms host and target. To clarify these terms, host is 

the component running MACCS that is seeking components for CBM collaboration. 

The target is a prospective component in the system that has been identified for 

similarity analysis, and may be used in the future for CBM collaboration. In the 

following processes, the vector space model is used, which allows datasets to be 

represented as vectors. 

Roles: Only target components offering at least one shared role with the host 

component will be considered by the MACCS method. The roles offered by both the 

host and target components are converted into two frequency-of-occurrence vectors. 

This signifies the number and availability of roles offered by each component. The 

similarity between these two vectors is measured using cosine similarity to produce 

the sub-score. 

Capabilities: The capabilities of both the host and target component are converted 

into two frequency-of-occurrence vectors. This signifies the number and availability 

of capability attributes. The similarity between these two vectors is measured using 

the cosine similarity; this then produces the weighting value. The values for each of 

the capabilities that are shared between both the host and target components are 

assigned into two vectors. The similarity between these two vectors is calculated, 

which represents the similarity between each pair of values and then this is 

multiplied by the weighting value. Multiplying by the weighting value penalises the 

similarity value for every capability that is not shared.  

Contributions: The contributions of both the host and target components are 

converted into two frequency-of-occurrence vectors. This signifies the number and 

availability of contribution attributes. The similarity between these two vectors is 

measured using cosine similarity; this then produces the weighting value. The 
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values for each of the contributions that are shared between both the host and target 

components are assigned into two vectors. The similarity between these two vectors 

is calculated, which represents the similarity between each pair of values and then 

this is multiplied by the weighting value. Multiplying by the weighting value 

penalises the similarity value for every metric that is not shared. 

Network Score: Vectors for both the host and target components are created; the 

vectors contain the values for the network distance and response time. In the case of 

the host component, both of these values are set to 1. The reason for this is that 1 is 

the value for both the distance and response times when a component contacts itself. 

The cosine similarity between the two vectors is then calculated representing the 

similarity between the network scores. 

Cosine similarity is extensively used in the MACCS method. It provides an accurate 

method of measuring similarity between two vectors. It measures the cosine angle 

between two vectors of an inner product space (as illustrated in Figure 28). The 

similarity is 1 if the angle is 0°, and less if the angle is greater than 0°. Cosine 

similarity provides an ideal way to measure similarity whilst not inducing expensive 

computational overheads. 

 

Figure 28. Cosine of Angle between Vectors 
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4.7.4. Detailed MACCS Method Explanation 

This section will provide detailed explanations and mathematical formulae to 

describe how the MACCS similarity calculation method works.  

The cosine similarity function similarity() is used frequently in the following 

explanations, which is represented in equation (47). Here, A and B are vectors, A·B is 

the dot product of the two vectors (the inner product of two vectors) and ||x|| is the 

magnitude of the vector x (the length of a vector). 

similarity(𝐴,𝐵) =
𝐴∙𝐵

∥𝐴∥ ∥𝐵∥
  (47) 

In the MACCS method, the capabilities, contributions and roles are defined by 

component systems in the form of string arrays. The freq() function is used to convert 

these string arrays into frequency-of-occurrence (FoO) vectors, an example is shown 

in Figure 29. 

Host String Array: Attribute1, Attribute2, Attribute3  

Target String Array: Attribute1, Attribute3, Attribute4 

 

Host Frequency-of-occurrence Vector: 1, 1, 1, 0 

Target Frequency-of-occurrence Vector: 1, 0, 1, 1 

Figure 29. Example Frequency-of-occurrence Vector Conversion 

 

Capabilities 

To establish the similarity of components’ capabilities, it is necessary to ascertain 

both the number of shared capabilities and the variation in the values assigned to 

these capabilities. 

Firstly, the similarity between the number of shared capabilities (P) on the host and 

target components is calculated as shown in equation (48). This observes whether the 

target component offers the same number of capabilities and the same required 
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capabilities. Here, Hc is the capabilities FoO vector for the host, created by converting 

the host capabilities string array (𝐴ℎ𝑐
), 𝐻𝑐 = 𝑓𝑟𝑒𝑞(𝐴ℎ𝑐

). Tc is the capabilities FoO vector 

for the target, created by converting the target’s capability string array (𝐴𝑡𝑐
), 

𝑇𝑐 = 𝑓𝑟𝑒𝑞(𝐴𝑡𝑐
). 

𝑃𝑐 = similarity(𝐻𝑐, 𝑇𝑐)   (48) 

The value calculated by equation (48) is used as a weighting value used to penalise 

the target component for any additional or missing capabilities in comparison to the 

host component. 

Next, the similarity between the host’s and target’s capability values is calculated 

but only for similarities shared by both components. This is accomplished by 

calculating the absolute relative change, as this allows the difference between the 

target to be determined with respect to the value of the host, as shown in equation 

(49). Here, j is an iterative vector or array member, nc is the number of shared 

capabilities, Lc is the vector to which all of the calculated values are assigned, 𝑉𝑡𝑐𝑗
is 

the capability value array for the target and 𝑉ℎ𝑐𝑗
is the capability value array for the 

host. 

∀𝑗 {0…𝑛1} ∙ 𝐿𝑐 = 1 −
|

|(𝑉𝑡𝑐𝑗
− 𝑉ℎ𝑐𝑗

)

𝑉ℎ𝑐𝑗
|

|
 (49) 

As shown in equation (49) the relative change is deducted from 1, this is because in 

the scale used to express similarity, 1 signifies that the components are identical. 

However, in a relative change calculation, 0 would indicate no change, so this must 

be reversed by deducting the value from 1, thus ensuring the same scale is used.  

In equation (50) the capability sub-score (S1) is produced by calculating the cosine 

similarity between the Lc vector (from equation (49)) and the Dc vector. The Dc vector 

is of equal size to Lc but all the contained values are 1. This is because Dc represents 
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the host component and there will be no relative change on any of the values. The 

resultant value is multiplied by Pc, which acts as a weighting value to penalise target 

components. 

𝑆1 = similarity(𝐷𝑐, 𝐿𝑐) ∗ 𝑃𝑐 (50) 

Contribution 

This method is largely the same as that used for the capabilities. Initially, the FoO 

vectors for the host (Ho) Ho=freq(𝐴ℎ𝑜
) and the target (To) To=freq(𝐴𝑡𝑜

) are created. The 

similarity between the two vectors is then calculated in equation (51) to represent the 

similarity between the contributions of the two components (Po). Where, 𝐴ℎ𝑜
 is the 

string based host contribution array and 𝐴𝑡𝑜
 is the string based target contribution 

array. 

𝑃𝑜 = similarity(𝐻𝑜, 𝑇𝑜) (51) 

Then the relative changes between the contributions that are shared by both the host 

and target are calculated and assigned to the Po vector, as shown in equation (52). 

Here, 𝑉𝑡𝑜𝑗
 is the contribution value array for the target, 𝑉ℎ𝑜𝑗

 is the contribution value 

array for the host, n2 is the total number of shared contributions and j is an iterative 

array or vector member. 

∀𝑗{0…𝑛2} ∙ 𝐿𝑜 = 1 − |
𝑉𝑡𝑜𝑗

− 𝑉ℎ𝑜𝑗

𝑉ℎ𝑜𝑗

| (52) 

The contribution sub-score is produced as shown in equation (53) by calculating the 

cosine similarity between the host value vector Do and target value vector Lo and 

then multiplying this by Po, which acts as the penalisation value for the target 

component. As in the capabilities calculation, the Do vector is of equal size to Lo but 

again all the contained values are 1. 

𝑆2 = similarity(𝐷𝑜, 𝐿𝑜) ∗ 𝑃𝑜    (53) 
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Network Cost 

The network cost sub-score is calculated in equation (54) by determining the 

similarity between the host network vector DN and target network vector LN.  

𝑆3 = similarity(𝐷𝑁 , 𝐿𝑁) (54) 

The LN vector consists of both the network distance and response time values for the 

target component. However, the DN vector consists of two values of 1, as there is no 

additional network cost involved in communicating with the host. Therefore, 

components with smaller network distance and response time values (closer to 1) 

would have greater similarity.  

Roles 

The roles sub-score is calculated in equation (55) by determining the similarity 

between the occurrence frequency vectors for the host Hr=freq(𝐴ℎ𝑟
) and the target 

Tr=freq(𝐴𝑡𝑟
). 

𝑆4 = similarity(𝐻𝑟, 𝑇𝑟) (55) 

Final Score 

To calculate this final score C, an average of the four sub-values Si calculated in the 

previous steps is taken, as shown in equation (56). 

𝐶 =
∑ 𝑆𝑖
4
𝑖=1

4
   (56) 
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4.7.5. Integrating Collaborative Behavioural 

Monitoring into SSC 

It has been previously stated in this chapter that CBM is utilised within the SSC 

framework. This section will provide details regarding how SSC uses CBM to 

improve both its efficiency and accuracy. 

The approach used by SSC’s behavioural threshold adaptation algorithm (as 

proposed in §4.4.4) solves the problem of outdated behavioural thresholds. 

However, in doing so, it makes the system vulnerable to training based attacks. 

These are generally slow attacks that occur over a prolonged period of time. By 

occurring slowly, the adjustment process is tricked into thinking that the small 

behavioural changes are part of the evolution of the system. Therefore, this 

behaviour is then accepted as the norm and as such, any threshold adjustments will 

account for this. 

However, the use of CBM is able to combat this problem, by comparing the 

calculated adjustments against those of behaviourally similar components. Given the 

vast scale of a SoS, there is no way of knowing in advance which components will be 

selected for behavioural comparison. Additionally, there is no overall knowledge of 

the SoS structure, so any attacker would have launch simultaneous attacks against 

all of the potential CBM components, which would be extremely unlikely, if not 

impossible. 

The process works by SSC first calculating the threshold adjustment value, which is 

then compared against those of behaviourally similar components. The values are 

then used to calculate the difference. If this difference is within the user specified 

tolerance, then implementation of the adjustment is allowed to proceed but 

otherwise it is forfeited and the user will be informed. The tolerance value reflects 

the permitted level of difference between behaviourally identical systems (e.g. 2%), 
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and can be set according to how strict the system needs to be. Obviously, it can be 

very difficult to find an identical system within a SoS. This is factored into the 

process, so that the lower the similarity score produced for the component (as 

calculated by the MACCS method), the more this tolerance value is increased (the 

greater the dissimilarity, the greater the tolerance needs to be). 

CBM is also used to validate the behavioural legitimacy of frequently occurring 

events. These can sometimes turn out to be slow training based attacks but are 

mostly attributed to system changes (e.g. software updates) which have not yet been 

included in the threshold adjustment. These are commonly occurring behavioural 

events that are detected by SSC and usually manifest themselves as low risk events 

(i.e. their calculated irregularity scores are quite high but are not considered as 

misbehaviour). Their repetitive nature means they waste a vast amount of resources 

whilst conducting unnecessary behavioural analysis. 

In order to combat this problem, SSC uses CBM to pass the details of the behavioural 

event to behaviourally similar components. These components will analyse the 

reported event and return the scores they would have issued, had the event occurred 

on one of their own metrics. By comparing the differences between these scores, the 

framework will be able to ascertain whether it is being too harsh or too lenient 

regarding the event. It is then able to take action for future occurrences; using its 

discretion the framework can create an exception for the event to be ignored (thus 

preventing time and resources being wasted) or it can flag the event forcing it to be 

treated as a greater threat (e.g. to protect known weaknesses in the system). 

 

4.8. Summary 

This chapter has presented a high-level overview of the SSC framework in §4.1 and a 

detailed explanation of both the design in §4.2 and runtime operation in §4.3. These 

sections provided details and justification regarding both the structural and design 

choices of the framework. 
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This chapter presented the novel techniques developed specifically for the SSC 

framework, in order to overcome the challenges faced by the complexity, 

decentralisation and dynamics of the SoS environment. Firstly, in §4.4, the structure 

of the behavioural profiles used by SSC were presented. The algorithm used to 

calculate the initial threshold values for the behavioural profiles, and the algorithm 

used to maintain these behavioural profiles in the dynamic SoS environment were 

also presented. 

The technique used to quantify behavioural events in terms of misbehaviour was 

outlined in §4.5. The algorithm uses a comprehensive two-part analysis to represent 

the level of misbehaviour as a score. It combines the statistical analysis of key 

behavioural characteristics of the metric with a reported deviation, as well as 

undertaking comparative outlier analysis of behaviourally related metrics. This 

section also presented the approach of selecting metrics for outlier analysis based on 

the strength of their behavioural relationships. 

The integral technique used to balance resource usage, monitoring performance and 

security demands was proposed in §4.6. Using the results from the analysis of 

behavioural events occurring on the system, the statechart based technique provided 

a novel approach to assessing the overall behavioural threat. The statechart was then 

able to control the scale and frequency of the monitoring observations dependent 

upon the perceived system threat. 

In §4.7, the MACCS technique was presented, which is used to ensure the formation 

of behaviourally similar groups for the purpose of CBM collaboration. These provide 

a mechanism for creating a CBM group composed of suitably behaviourally similar 

components. It detailed the measures used in the calculation of the comprehensive 

component similarity check and the algorithm devised to accomplish this. It also 

explained how the CBM process is used within the SSC framework. 



Chapter 5 

 

Implementation 
 

In order to evaluate the success of the SSC framework proposed in this thesis, it is 

essential that a working implementation is used. This allows the validation of claims 

made and the verification that SSC meets the aims, objectives and requirements set 

out. This chapter details the implementation of the proposed SSC framework 

(Chapter 4), its constituent techniques, the evaluation tools and the evaluation test-

beds. This work requires two separate approaches for evaluation. The first is for the 

localised SSC framework and the second is for the CBM component selection. These 

two approaches are covered by the two main sections in this chapter. 

  

5.1. SSC Framework 

The requirements of SSC stipulate that it must have a small system footprint and it 

must be able to operate in real-time. Additionally, some of the monitoring data 

required by SSC is gathered from lower-level operating system functions. Given 

these requirements, the framework itself was written in C, as this provides greater 

low-level operating system integration and is able to operate at faster speeds. 

Furthermore, SSC is largely automated and requires little human intervention, so it 

has been implemented as a command-line based application (as illustrated in Figure 

30). 
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Figure 30. SSC Screenshot 

The evaluation of the framework is conducted on a Linux operating system. This is 

because of the ease of access to low-level OS data, ease of development and lack of 

licencing or proprietary complications. Due to this, the framework implementation is 

geared towards Linux usage, although it can be easily ported onto other OSs. 

The framework is split into two separate yet interdependent processes called sscd 

and sscdd, which are integrated via an IPC queue. The sscd process is the main 

monitoring process and deals with data collection, threshold comparisons, threshold 

management and state engine control. The sscdd process deals exclusively with 

misbehaviour quantification, which is fed via an event queue from sscd. There are 

two main reasons behind splitting the framework into two processes. First, the sscdd 

process can be quite intensive at times, so it was separated in order to reduce the 

threat of it affecting monitoring or data collection performance. For the remainder of 

the time if the event queue is empty, sscdd enters an idle state with negligible 

resource consumption. The second reason was as a failsafe feature, as neither process 

can run without the other. If for whatever reason either process closes unexpectedly 

or crashes, the other has the ability to suspend SoS activities as a precaution. 

 

The framework is self-contained and includes full training and threshold profile 

database. When compiled the framework measures 9.66 MB (excluding the 



Chapter 5 – Implementation 

  145 

 

databases) and only requires one software prerequisite to operate, which is the cURL 

library. This size excludes the databases, as these will vary drastically in size 

depending upon the type and scale of the system, as well as the number of 

monitored metrics. To enhance its operational performance, the SSC framework is 

compiled using the –o3 optimisation flag (under the gcc compiler).  

 

5.2. Data Collection, Monitoring and Storage 

As the SSC framework is implemented on a Linux OS, the data collection is also 

specific to this OS. The data used by SSC is gathered using the functions in its data 

collection library, which is also written in C. The library functions collect raw data 

from various sources within the OS, which are detailed in Table 5.  

Table 5. Monitoring Data Sources 

Source Source Description Purpose 

/proc A virtual filesystem that facilitates 

real-time data observations as 

supplied directly from the kernel. 

Collect the majority of 

data relating to the 

system. 

sysinfo A callable system function that 

provides overall system statistics. 

Collect data relating to 

uptime and system load. 

Jolokia A third party web application that 

converts JMX monitoring data to 

HTTP. 

Collect data from SoS 

interface (Geronimo) and 

services (Daytrader). 

/sys A memory based filesystem that 

facilitates observations of hardware, 

driver and bus statistics as supplied 

by the kernel. 

Collect hardware data. 

UTMP A file that stores the system’s login 

records. 

Collect data relating to 

active users and logins. 

auth.log Log file used to store authentication 

data. 

Collect data relating to 

root, su and sudo logins. 

 

These functions convert the raw data into a usable format and perform any 

necessary calculations or conversions. As an example, part of the function for 

gathering kernel data is shown in Figure 31. These functions allow SSC to gather 

real-time data from up to 108 system metrics, and the usage of these metrics is 
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governed by the statechart. The data collected by this process is temporarily stored 

into an in-memory struct, where it can then be used for threshold comparison. 

 

Figure 31. Code Excerpt from the Kernel Data Collection Function 

However, the data collection for the filesystem monitor (such as metadata changes or 

permission changes on key files) is handled separately by inotify. SSC requires a 

configuration file detailing a list of directories or files of interest (e.g. important 

configuration files), which is parsed and subsequent inotify instances are created (as 

illustrated in Figure 32). These instances are watched for deletion, attribution 

changes, modification and movement.  
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Figure 32. Code Excerpt Showing the inotify Setup 

Inotify is part of the Linux kernel and can observe changes to the filesystem (there 

are other alternatives for different OSs). Any observed changes from the inotify 

instances are added to an internal queue. When data collection occurs, the contents 

of this queue are parsed (and deleted from the queue) and the corresponding data 

added to the in-memory struct, ready for the threshold comparison. 

Whilst the monitoring data is collected from the system, SSC simultaneously loads 

the corresponding threshold profiles for the active metrics, from the threshold 

database and stores them into another in-memory struct. The SSC threshold profiles 

are retrieved based on the current time in the 24-hour period. The collected data is 

then compared against its corresponding threshold values to ensure its conformity. 

If any values that are outside of these thresholds, then the details of the event are 

added to the IPC queue (where it will be further analysed). By using in-memory 

structs, the process avoids any additional read-write delays and produces a faster 

and less computationally expensive monitoring operation. Once the collected data 

has been compared against the threshold profiles, it is then moved to the Historical 

Data database by SSC for potential further usage, and the collection process starts 

again. 
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The storage and manipulation of collected data is an important part of SSC, 

particularly in relation to training, threshold management and irregularity analysis. 

It is an important performance choice, as databases can often form bottlenecks. The 

two main considerations for SSC were between an embedded database (SQLite) and 

a traditional server maintained database (in this case MySQL). 

SQLite is a headless, embedded database, which is renowned for its small footprint 

and fast operating speeds. It is written in C, which facilitates easy integration with 

the SSC framework (also written in C). However, SQLite uses a single file for data 

storage, so it is more susceptible to data loss if failure occurs. 

MySQL is one of the most popular open source relational database servers and is 

renowned for its reliability and efficiency. It offers greater resilience against data loss 

during a failure and greater functionality, but the required standalone server 

application produces a larger system footprint. 

In order to ensure the efficiency of SSC, the performance of both database solutions 

being considered were evaluated. The evaluation involved measuring the time 

taken, CPU usage and RAM usage to perform tasks frequently requested by SSC. 

These were reading a metric’s threshold profile and writing collected metric data. 

Neither solution was enhanced with any performance-orientated configuration or 

allowed to use cached queries. The findings of this experiment are shown in Table 6 

and Figure 33. 

Table 6. Database Performance Statistics 

 SQLite MySQL 

Time Taken for Read (s) 0.017 0.019 

Time Taken for Write (s) 0.033 0.073 

CPU Usage for Read (%) 0.00 0.00 

CPU Usage for Write (%) 0.00 0.00 

RAM Usage for Read (%) 0.17 0.63 

RAM Usage for Write (%) 0.03 0.20 



Chapter 5 – Implementation 

  149 

 

 
Figure 33. A Chart to Compare Database Performance 

From the results, it is apparent that SQLite offers significant performance benefits; 

which when combined with its other desirable attributes, makes it the most feasible 

solution. Hence, SSC uses the SQLite 3.7.15.1 amalgamated library (written in C) for 

all of its database related activities.  
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5.3. Threshold Management 

The SSC framework has two modes of function, training mode and normal mode, 

both of which are described below.  

Training mode: SSC’s training mode is initiated by using the “-s” flag and 

deactivates the majority of the framework. It utilises a high frequency data collection 

to obtain and store the training data. Once the ten-day training period (as detailed in 

Section 4.3.1) has elapsed, the threshold calculation process begins. The training data 

is used by the threshold calculation algorithm to produce the threshold profiles for 

all monitored metrics. The XML based S3LA configuration file used during the 

threshold calculation is parsed using the ezXML library, which is also written in C. 

The resultant threshold profiles are then written to the Threshold Profile database, 

thus completing the actions in training mode. 

Normal mode: The normal mode is not usable until the training mode has been 

completed to generate the behavioural thresholds. It uses thresholds retrieved from 

the threshold database to compare against the data collected. In the normal mode, 

the threshold profiles are reviewed on a routine basis. SSC uses a counter to measure 

the time elapsed since the last review and when necessary it initiates a new 

threshold review. To enable a smooth transaction between threshold profile versions 

and to avoid concurrency issues, the SSC framework creates a temporary in-memory 

database. It copies data from the threshold profiles that it will need for monitoring in 

the short term, whilst the original profiles are being reviewed. Once the reviewing 

process is complete (this usually takes around 30 seconds), then monitoring from the 

main database resumes and the temporary database is destroyed.  
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5.4. Decision Algorithm 

As outlined earlier in this chapter, the misbehaviour quantification algorithm runs in 

a separate process (sscdd). When misbehaviour is detected, the behavioural event is 

passed to sscdd via an IPC queue, using the message structure illustrated in Figure 

34. 

 

Figure 34. Example Queue Message 

In Figure 34, A is the name of the metric, B is the threshold that has been exceeded (2 

indicates the minimum threshold and 3 indicates the maximum threshold), C is the 

collected data value and D is the SSC timestamp (number of seconds since 

midnight). After parsing the message, the metric name (A) and timestamp (D) are 

used as database keys to retrieve the relevant data from the historical data database. 

The misbehaviour quantification algorithm is implemented within the SSC 

framework and is therefore also written in C. The integral LoOP algorithm is also 

implemented in C. It uses various data from the historical data database to perform 

its analysis. If the resultant irregularity score is 0.3 or more (thus requiring some 

form of action to be taken), the decision is returned to the sscd process to be 

actioned, and the event is then logged in a text-based log file. An excerpt from the 

log file is shown in Figure 35. 

 
Figure 35. An Excerpt from the SSC Framework Detection Log 

The log file is designed to assist in the evaluation of the framework, by recording 

behavioural event data in a way that makes event correlation an easier process. In 
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Figure 35, A is the timestamp of the event, B is the risk classification level and a 

generic log message and C contains data concerning the monitoring event. It records 

which metric the behavioural deviation has occurred on, the threshold that was 

deviated from (Type 2 represents the minimum and Type 3 represents the 

maximum) and lastly it records the score calculated to quantify the associated level 

of misbehaviour. 

 

5.5. Statechart 

The statechart is implemented as a state transition table, which is a virtual table 

where each state is a column, each event is a row and each table entry defines the 

state change that occurs. By calling defined functions, the state can be moved to next 

corresponding state in the table depending on the event. An excerpt of this code is 

shown in Figure 36. 

 
Figure 36. Code Excerpt Showing the State Transition Table Structure 

SSC operates using 8 categorical groups, an array for each of which is constructed at 

runtime from a group configuration file. Here, each group is assigned a permitted 

limit of high scores, low scores, a timeout period and an initial state. The code 

excerpt in Figure 37 shows the array construction.  
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Figure 37. Code Excerpt Showing the Group State Array Setup 

Every time a behavioural analysis score of 0.31 or above is calculated, the score is 

graded into either a high threat or low threat score. This is marked in the array of the 

particular group and an expiry time is set. The function handling this determines 

whether the high or low score limit is reached and will action any necessary state 

changes. The statechart also runs a clean-up function before each data collection 

interval. This removes any expired scores that are recorded in a group’s array.  

 

5.6. SSC Evaluation 

The test-bed used to evaluate the SSC framework was implemented on a VMWare 

ESXi 5.1 bare metal hypervisor server. All the virtual machines used in the test-bed 

were implemented on a 32-bit Linux Mint 14 OS and were assigned 2GB RAM and 1 

core of an i7 2.4GHz processor. An overview of the test-bed used to evaluate SSC is 

illustrated in Figure 38. 
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Figure 38. Illustration of the Test-bed Used to Evaluate the SSC Framework 

As there are currently no SoS frameworks that can be implemented to evaluate the 

SSC framework, web services are used as an abstraction of a SoS interface. This 

allows the simulation of dynamic interaction and service usage between 

independent components and the effects this dynamic usage has on the component. 

As illustrated in Figure 38, this interface functionality was implemented on the 

component system using an Apache Geronimo 3 application server. To provide 

consumable services through this interface, the DayTrader web application was 

used. DayTrader is a load testing application that simulates a stocks and shares 

trading platform, providing multiple services. The component system was also 

equipped with the SSC framework and an Internal Misbehaviour Simulator.  

The Internal Misbehaviour Simulator (IMS) is a highly configurable python script 

used to simulate misbehaviour on the host component system, and a code excerpt is 

shown in Figure 39. It applies additional load to specified system metrics to alter 

their value, in order to simulate misbehaviour on that metric. Additionally, it 

supports multi-threaded misbehaviour simulation, enabling misbehaviour to be 

simulated on multiple metrics concurrently. The desired misbehaviour is highly 

configurable and is specified in a configuration file, allowing delays and the length 

and amount of metric load to be stipulated. An example configuration file is shown 

in Figure 40, where each line defines the exact metric misbehaviour to be simulated 
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by the along with the duration and amount (amount is only available for some 

metrics). The multi function is used to simulate several metrics simultaneously and 

the sleep function is used to delay the simulation for a specified number of seconds. 

 

Figure 39. Code Excerpt from the Internal Misbehaviour Simulator 

 

 

Figure 40. Example Misbehaviour Configuration File 

The IMS maintains a comprehensive log file, which details all undertaken activities 

and timestamps for the start of every event. This makes correlating simulated 
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misbehaviour with that detected by SSC a much easier task. As the experiments 

performed using this tool are time sensitive, the timestamps are created for both the 

initiation and completion of the event simulation.  

The other machines in the test-bed as illustrated in Figure 38 are the SoS Load 

Simulator and External Misbehaviour Simulator. The SoS Load Simulator is 

equipped with jMeter, which is a load testing application able to simulate the 

dynamic usage of hundreds of components. jMeter is configured for each 

experiment via a test plan to simulate the dynamic load of other SoS components.  

Lastly, the External Misbehaviour Simulator is used to simulate other forms of 

misbehaviour such as service failure, corruption or overuse using the hPing tool. 

hPing is a DoS tool that can be configured to orchestrate DoS attacks of varying 

magnitudes. By launching a DoS attack against both the DayTrader services and the 

SoS interface (Geronimo), it can accurately represent misbehaviour occurring within 

them. The hPing tool is also used in conjunction with a comprehensive logging 

mechanism, allowing the timings of the attacks to be easily correlated with the SSC 

framework’s findings.  

The evaluation of the SSC framework is conducted by observing the detected 

behavioural deviations whilst simulating varying degrees of misbehaviour in the 

test-bed environment. The results logged by the SSC framework are correlated 

against the logs generated by the misbehaviour simulators. This will enable 

comparisons of detection timings, accuracy and also the calculated misbehaviour 

quantification score for the event. 

Additionally, the CPU usage and RAM usage of the SSC framework are also 

analysed as part of the evaluation. These are measured by the shell script shown in 

Figure 41 and use the top command, which is a task monitoring utility found in 

many *NIX systems. Using the script shown in Figure 41, top will gather information 



Chapter 5 – Implementation 

  157 

 

on both the sscd and sscdd processes and log this data at one-second intervals until 

the requested duration has expired. 

 

Figure 41. Example of the Shell Script Used to Log Performance Data 

 

 

5.7. Collaborative Behavioural Monitoring 

The CBM refinement mechanism proposed in Chapter 4 involves selecting similar 

components from within a distributed and decentralised SoS. Therefore, a different 

approach and test-bed are required for evaluation. The proposed MACCS method is 

implemented as a Java web application, as this creates an easy to deploy solution 

that is platform-independent. The MACCS algorithm is implemented within the web 

application as a Java function, an excerpt of which is shown in Figure 42. 
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Figure 42. An Excerpt of the MACCS Algorithm Code 

The MACCS method acts as a refinement layer on top of a DBDLP (§ 4.7.1), which 

has also been implemented in Java. The DBDLP used in the evaluation was provided 

by a implementing a distributed hash table using JDHT [170] and assigning fixed 

distance values based on the structure of the test-bed, which is outlined in §5.8.  

The MACCS web service uses SOAP based communication between component 

systems, for comparing behavioural data and requesting component configuration 

files (which are implemented as XML files). An example SOAP message to compare 

behaviour is shown in Figure 43. 

 

Figure 43. Example SOAP Message for Comparing Behaviour 

Additionally, the MACCS web application uses JNI to interact with the component’s 

SSC framework. 
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5.8. Collaborative Behavioural Monitoring 

Mechanism Evaluation 

In order to evaluate the CBM mechanism, the test-bed is required to simulate a 

distributed environment with multiple heterogeneous components that have 

varying physical and software based configurations. The test-bed was implemented 

on a VMWare ESXi 5.1 bare metal hypervisor server. All the virtual machines used 

in the test-bed were implemented on a 32-bit Linux Mint 14 OS. Figure 44 provides 

an illustrative overview of the devised test-bed. 

 

Figure 44. Test-bed Used to Evaluate the CBM Method 

In the test-bed illustrated in Figure 44, HC indicates the host component, R indicates 

a router, TD indicates a traffic delay and RC indicates a remote component. The 

metrics that are used by the MACCS mechanism are easily configurable on the RC 

component systems themselves. However, two of the metrics used are network 

distance (measured by the hop count) and network response time, which are 

physically related values. Hence, these values need to be simulated by the test-bed 

architecture. By implementing Vyatta 6.1 machines as routers, the network path 

between the host component and the remote components is controlled in accordance 

with the test-bed architecture illustrated in Figure 44. By doing this, each router that 

is utilised, increases the hop count, thus increasing the network distance value. 

Traffic delays are implemented via software on the host component; they are shown 

as hardware devices in Figure 44 to aid understanding of which remote components 
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they will affect. The traffic delays are achieved using the tc qdisc command, which is 

used for traffic shaping. In this instance, it is used to delay packets by the configured 

amounts of time, dependent upon the destination IP address; this is used to replicate 

the variance in network response time. An example command is illustrated in Figure 

45. 

 

Figure 45. An Example Command Used to Delay Packets to 192.168.1.254 

Evaluation of the proposed method is achieved by applying various configurations 

to the remote components and the host component, and then comparing the 

similarity between them. The host component configuration can then be 

reconfigured and the method repeated to evaluate how the results are affected.  

 

5.9. Summary 

This chapter has detailed the implementation of the SSC framework and its 

subsequent techniques, as well as outlining how the MACCS collaborative 

behaviour monitoring mechanism is implemented. It has provided details about the 

structure and operation of the two test-beds that will be used to evaluate the 

proposed framework. It also details the tools that have been integrated into the test-

beds and those that have been developed to aid with evaluation.  



Chapter 6 

 

Evaluation of Proposed 

Framework and Methods 
 

The SSC framework proposed in this thesis has been developed specifically to 

overcome the limitations of existing techniques and provide efficient behavioural 

monitoring to SoS components. SSC utilises a number of subsequent novel 

techniques developed specifically to facilitate these capabilities. In this chapter, the 

proposed solution is evaluated against the requirements set out in Chapter 2, which 

validate its suitability to monitor behaviour in a SoS environment. The results of this 

validation will be used to discuss whether the research aims and objects from 

Chapter 1 have been fulfilled. The remainder of this section is split into subsections 

with each evaluating the proposed SSC framework against a specific group of 

characteristics. 

All the experiments detailed in this chapter were conducted on the test-bed outlined 

in §5.6. To ensure fairness, all were conducted under the same operational scenario, 

which is as follows. The machine uses a base-install (i.e. no additional packages were 

installed) of the Linux Mint 14 OS and the only additional software installed is SSC 

and Apache Geronimo with the DayTrader web application. In this scenario, the 

machine is designed to resemble a web application server that serves as a SoS 

component by contributing access to web services. The monitoring by SSC observes 

various characteristics from DayTrader, Geronimo and bandwidth to detect 

misbehaviour affecting availability. It also observes characteristics from the system’s 

CPU, file system, kernel, load, memory, HDD, ports, processes and users in order to 

detect misbehaviour relating to both resource utilisation and availability. 
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During the experiments outlined in this chapter, SSC is tasked with evaluating a 

varying amount (yet repeatable) of simulated misbehaviour under differing 

circumstances. SSC is designed to detect misbehaviour relating to the service 

contribution to the SoS, focusing on service resource utilisation (e.g. over-

consumption or buffer overflow) and service availability (e.g. DoS attack). The 

simulation of resource utilisation misbehaviour is handled by the IMS (§5.6) and 

service availability misbehaviour is handled by hPing (§5.6). 

 

6.1. Detection Performance 

One of the most important aspects of SSC that requires supporting evidence is that 

of its detection capabilities and false alarm rate. This section will evaluate its ability 

to detect misbehaviour, focusing on the following requirements: Accurate, Detection 

Speed, Dynamics, High Performance, Real-Time and Scalable. 

SSC is designed to detect misbehaviour relating to the SoS service contribution, 

focusing on service resource utilisation and service availability. In the following 

experiments, SSC’s capability to detect varying levels of misbehaviour is examined. 

By varying the type and severity of the simulated behavioural events, it allows the 

detection rate along with the false positive and false negative rates to be measured. It 

is important to note that during these experiments, all counteraction capabilities 

available to the framework have been removed (e.g. disabling services or 

disconnecting from the SoS). Details of the experiments and the results are presented 

in Table 7. 
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Table 7. SSC Detection Performance 

Number of 

Misbehaviour 

Events 

Misbehaviour Event 

Description 

Detection 

Rate (%) 

False 

Positive 

Rate (%) 

False 

Negative 

Rate (%) 

1 
Exceed metric utilisation 

threshold 
100 0 0 

2 
Exceed metric utilisation 

thresholds 
100 0 0 

3 
Exceed metric utilisation 

thresholds 
100 0 0 

5 
Exceed metric utilisation 

thresholds 
100 0 0 

10 
Reduce service availability 

 
100 0 0 

15 

Exceed metric utilisation 

thresholds & reduce 

service availability 

100 0.1 0 

20 

Exceed metric utilisation 

thresholds & reduce 

service availability 

100 0.2 0 

 

The results from these experiments show that SSC is able to offer a high detection 

rate, whilst maintaining both low false negative and false positive rates thus 

satisfying the Accurate requirement. This performance can be attributed to the 

accuracy of the thresholds used and the detailed analysis techniques used to 

investigate behaviour that deviates from these thresholds. However, the false 

positive rate does increase slightly, when there is a large amount of misbehaviour 

being simulated. The reasoning behind this is that metrics can often share similar 

behavioural relationships. If a particular metric uses multiple related metrics for 

misbehaviour quantification analysis that are currently involved in other forms of 

misbehaviour, it can potentially lead to a slight increase in misbehaviour 

quantification scores. However, this situation is purely hypothetical, as levels of 

misbehaviour would not normally be allowed to reach this high. Normally 

counteractions would have been implemented long before this stage could be 
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reached, and it has only occurred because the counteractions were removed for the 

purpose of these experiments. 

SSC’s response time (i.e. the time between misbehaviour occurring and the 

completion of the behavioural analysis) during normal SoS interaction must also be 

evaluated. In these experiments, various SoS loads are placed on the component 

using the jMeter application. The IMS then opens additional ports on the system, 

which forces the number of open ports to exceed its corresponding threshold value. 

This therefore creates a misbehaviour event, which is not linked to the SoS load 

being applied. The effect these loads have on SSC’s response times are observed by 

comparing the difference between the timestamps generated by IMS and SSC. The 

results of these experiments are shown in Table 8 and illustrated in Figure 46. 

 
Table 8. SSC Response Times 

Simulated SoS Load Response Time (sec) 

None 0.34 

10% of promised contribution 0.43 

20% of promised contribution 0.42 

40% of promised contribution 0.39 

60% of promised contribution 0.43 

80% of promised contribution 0.39 

100% of promised contribution 0.38 
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Figure 46. Illustration of How SSC Response Time is affected by SoS Load 

The results show that SSC can achieve fast response times despite the dynamic SoS 

load being applied, meaning that the requirements for Real-time and Detection Speed 

can be met. Considering the high level of analysis that is undertaken in these short 

time periods, the requirement of High Performance can also be met. Overall, the 

response times remain relatively constant despite the various levels of system load 

being applied, which supports the Dynamics requirement. The graph illustrated in 

Figure 46 shows that when the system load is applied, the response times increase 

slightly. The reasoning for this is that SSC monitors the top consuming processes in 

terms of both CPU and RAM. It produces a score based on the level of change to 

these process tables. When the system is idle, the Java process handling the 

Geronimo application server (acting as the interface and therefore the DayTrader 

application acting as the services) will be quite low in the process tables. However, 

when system load is applied, this process will rise rapidly through the process 

tables. The value representing this change will therefore trigger the state engine to 

increase the threat level, meaning a greater number of metrics will be observed and 

hence a greater number of metrics are used in the calculation of the misbehaviour 

quantification. 
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SSC is a host-based solution and does not depend on any central or hierarchical 

agent; therefore, the scale of the SoS is not an issue. However, SSC needs to be able 

to scale to handle the varying number of metrics that are being observed. The 

following experiment examines the impact that the number of metrics has on SSC’s 

performance. It also utilises two different forms of misbehaviour so that their effects 

on response times and scalability can be compared. 

Table 9. SSC Scalability Performance Results 

No. of 

Metrics 

Monitored 

Resource Utilisation Misbehaviour Availability Misbehaviour 

Data 

Collection 

Time (sec) 

Analysis 

Time 

Excluding 

D/T* (sec)  

Analysis 

Time  

Including 

D/T* (sec) 

Data 

Collection 

(sec) 

Analysis 

Time  

Excluding 

D/T* (sec) 

Analysis 

Time  

Including 

D/T* (sec) 

5 0.00012 0.0009 0.017 0.00012 0.0008 0.013 

25 0.00152 0.0043 0.085 0.00152 0.0039 0.064 

50 0.0065 0.0084 0.171 0.0065 0.0078 0.120 

100 0.049 0.019 0.342 0.049 0.024 0.271 

* D/T = Data Transfer between sscd and sscdd processes 

The results in Table 9 show that the increasing number of metric observations has a 

limited effect on monitoring performance (throughout both data collection and 

analysis), thus adhering to the Scalable requirement. These results also add 

additional support to the requirements for Real-time and Detection Speed. The results 

also show how SSC’s performance is marginally different between the two types of 

misbehaviour. This is simply due to the fact that more metrics are used in the 

analysis of resource utilisation misbehaviour than in availability misbehaviour. It is 

evident that the transfer of data between the analysis and data collection processes 

has a measurable effect on the time taken. However, given the amount of data that is 

transferred, this effect is considered acceptable. 
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6.2. Monitoring Management 

Monitoring is a never-ending process that can involve analysing vast quantities of 

data, and in complex and large-scale systems this becomes difficult to manage. This 

section will discuss the manageability and control of the SSC framework with 

particular focus on the following requirements: Adaptable, Autonomous, Self-resolving, 

Low Maintenance and Reliable. 

Given the changeability of a SoS’s behaviour, the thresholds used to detect 

abnormalities must be able account for evolution and system changes. The SSC 

framework features a threshold adaptation algorithm as outlined in §4.4.4, which 

enables it to periodically review and modify its behavioural thresholds in order to 

adapt to behavioural changes. This ability to adapt to changes in the system fulfils 

the Adaptable criteria. 

Another key aspect is the framework’s ability to operate unassisted; SSC was 

designed to operate unattended and only require human intervention if a significant 

problem or failure arises. All decisions relating to the behavioural analysis and 

required actions are handled by the framework (as outlined in §4.2). The framework 

also uses a statechart to monitor the health of the underlying system and activate or 

deactivate monitoring metrics as it deems necessary. Therefore, it is able to resolve 

the majority of issues on its own and meets both the Autonomous and Self-resolving 

criterion. Its lack of required human intervention and the core statistical methods it 

utilises means that only in exceptional circumstances will any maintenance be 

required, enabling the framework to fulfil the Low Maintenance requirement. 

Unlike some existing solutions the statistical method utilised to formulate 

behavioural decisions (§4.5) will always return a valid conclusion regarding any 

reported behaviour. Even in the highly unlikely event of the framework failure, the 

component will be disconnected from the SoS as a matter of precaution. Behavioural 

monitoring is of particular importance in a SoS, which is why potential risk for 
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failure is reduced by making the framework self-contained with the exception of one 

software pre-requisite. All of these measures are undertaken to ensure it meets the 

requirement of being Reliable. 

 

6.3. Analysis Strategy 

This section will discuss the behavioural analysis strategy of the framework, whilst 

focusing upon the following requirements: Diverse Analysis, No Prior Knowledge, 

Novel Threats, Protection Against Attacker Training and Unselfish. 

Unlike the majority of existing approaches, SSC does not require any prior 

knowledge to operate. Its statistical mode of operation (as outlined in §4.3) allows it 

to easily detect new threats without requiring any definitions regarding the structure 

of the system, expected threats or behavioural predictability. This allows it to fulfil 

both the Novel Threats and No Prior Knowledge requirements. A major flaw with 

existing solutions when applied to a SoS is the failure to consider either relevant data 

or a representative spectrum of data when formulating a decision regarding 

behaviour. SSC features a novel approach to selecting all relevant metrics for 

analysis (presented in §4.5.1), which helps to ensure the requirement of Diverse 

Analysis is met. 

A known threat posed to adaptive systems (including SSC) is their vulnerability to 

attacker training. To combat this threat and fulfil the Protection Against Attacker 

Training requirement, SSC utilises collaborative monitoring as explained in §4.7.5. 

Furthermore it uses the MACCS mechanism outlined in §4.7.1 to select the best (i.e. 

most behaviourally similar) SoS components to undertake collaborate monitoring 

with.  

This research project is focused upon the security needs of SoS compositions, so the 

concept of a SoS is at the heart of the design. Therefore, considering the needs of the 

SoS as an entity, other SoS components, as well as the host component itself was 
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fundamental. Hence, the framework ensures that any actions or decisions taken are 

Unselfish and are made for the common good, not for self-benefit. 

 

6.4. Monitoring Resource Usage 

Component contribution is essential to the success of a SoS. Therefore, by 

minimising the resource consumption of SSC, greater SoS contributions can be made. 

This section will evaluate the resource usage of the framework with particular 

emphasis on the following requirements: Efficient, Lightweight and Small System 

Footprint. To validate these requirements, a series of experiments were undertaken 

using SSC in order to assess its resource consumption. 

In order to ascertain the storage requirements for the framework, its size was 

initially measured whilst it was offline and the results are presented in Table 10. 

Table 10. Framework Offline Storage Requirements 

Description of Measurement Size (MB) 

SSC Framework Excluding Databases Contents 9.66 

SSC Framework Including Databases Contents 58.1 

 

The databases used by SSC account for the majority of the storage consumption, as 

highlighted by the results from Table 10. The sizes of these databases highly depend 

upon the number of metrics monitored and their types of value (e.g., a float value 

consumes more space than a binary value). Overall, the design of SSC ensures that 

its storage consumption is kept to a minimum, thus fulfilling the Lightweight 

requirement. Each metric monitored by SSC requires approximately 0.38 MB of 

storage space but this size depends of the type of value being observed. An 

illustrated breakdown of the storage usage is shown in Figure 47. 
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Figure 47. A Breakdown of Metric Storage Usage 

Storage is not the only resource considered in the evaluation of the system footprint, 

so the following experiments aim to determine the usage of the main system 

resources. By simulating varying levels of misbehaviour (using IMS) on the system, 

it is possible to observe the varying resource usage. The results of these experiments 

are shown in Table 11 and illustrated in Figure 48. 

Table 11. SSC Resource Utilisation 

Simulated 

Misbehaviour 

Events 

Avg. CPU 

Utilisation (%) 

Avg. RAM 

Utilisation (%) 

Avg. Storage 

Utilisation (MB) 

None 0.01 0.70 58.1 

1 7.5 0.80 58.1 

2 7.7 0.80 58.1 

3 7.6 0.80 58.1 

5 8.5 0.90 58.1 

10 8.4 0.90 58.1 

15 8.7 0.90 58.1 
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Figure 48. A Chart Illustrating the Resource Usage of SSC 

The results of these experiments show that SSC’s low resource usage enables the 

fulfilment of the Small System Footprint requirement. It is important to note that the 

measured storage requirements include both the framework and the full threshold 

profiles (which take up the vast majority of the space used). The core SSC framework 

is designed to operate on a wide variety of different systems. However, its resource 

usage is highly dependent on the scope of metrics being monitored (which depends 

on the size and type of system).  

As Figure 48 illustrates, there is an increase in CPU usage once the misbehaviour 

events start (but it does remain relatively stable). This is due to the behavioural 

analysis (which had previously remained idle) having to retrieve the large quantities 

of data required for the misbehaviour quantification calculations. The RAM usage 

also increases as the number of misbehaviour events increase; this is due to the 

additional storage requirements for the behavioural analysis, as additional 

observations are activated in response to the threat level increase. 

Efficiency is another important factor in resource utilisation; this refers to the 

wastage of the resources consumed. To improve resource availability for 
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contribution, SSC utilises an integrated statechart to enable additional resource 

savings, which would otherwise be wasted. The following experiments aim to 

highlight the extent of the resource savings and to prove that the use of the 

statechart controlled monitoring does not impact on the detection capabilities of SSC.  

To examine the increased efficiency offered by SSC’s statechart approach, the 

average resource usage was measured in each of the three main states (as there is no 

monitoring in the fourth DISC state) and without using a statechart. Whilst 

monitoring resource usage for each state, the statechart engine was prevented from 

changing states. These results are presented in Table 12 and illustrated in Figure 49. 

 
Table 12. Statechart-Controlled Resource Usage in Each State 

State Monitoring 

Avg. CPU (%) 

Monitoring Avg. 

RAM Usage (%) 

Analysis Avg. 

CPU Usage 

(%) 

Analysis Avg. 

RAM Usage 

(%) 

NORM 0.01 0.6 3.7 0.1 

LOW 0.01 0.6 7.8 0.2 

HIGH 0.01 0.6 8.9 0.3 

No 

Statechart 

0.01 0.6 8.9 0.3 

 

 

 
Figure 49. A Chart Illustrating the Resource Usage per State 
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It is also important that the system is observed under normal circumstances, to 

examine the extent of the potential resource savings by measuring the average 

amount of time spent in each state. Table 13 presents the results showing how long 

the framework spends in each state. 

Table 13. Time Spent in Each State 

State Avg. Time Spent in State (%) 

NORM 97.4 

LOW 2.6 

HIGH 0 

DISC 0 

 Overall, the results show that the majority of SSC’s operational time was spent in 

the NORM state whilst some time was spent in the LOW state. Therefore, by 

comparing the resource usage between using the statechart and no statechart it is 

possible to achieve a resource saving of 57.23% CPU and 65.8% RAM in the analysis 

part of the framework (which is the most computationally expensive), thus 

satisfying the Efficient requirement. The results show that the monitoring part of the 

framework achieved no resource savings by using the statechart. This is because the 

monitoring process gathers data for all the metrics regardless of which state they 

should be used in. Instead, it uses the statechart to determine which metrics to check 

against their corresponding threshold. The reasoning behind this is to enable the 

framework to immediately implement the increased number of observations used in 

the behavioural analysis. Consider a scenario where the most recently gathered data 

presents multiple metrics that require misbehaviour quantification analysis. During 

the analysis of these metrics, the results produced force the threat level to be 

increased, therefore increasing the number of metrics used in the analysis. This 

additional data is then available immediately, rather than having to wait for the next 

data collection, thus providing a more accurate representation of the system 

behaviour. 
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The following experiments were used to verify that the resource savings achieved by 

using the statechart control, did not sacrifice the monitoring accuracy of SSC. In 

these experiments, both service and resource misbehaviour was simulated on the 

component system. The response time and detection rate of SSC were measured, 

both with and without the statechart. These experiments were conducted without 

simulating any SoS load on the system; the results are shown in Table 14. 

Table 14. Comparing Detection Performance Whilst Using the Statechart Engine 

Type of Simulated 

Misbehaviour 

Statechart Used? Avg. Response 

Time (sec) 

Avg. Detection 

Rate (%) 

Service  0.34 100 

 0.35 100 

Resource  0.35 100 

 0.36 100 

 

As the results show, the average detection rate was unaffected by the use of the 

statechart control, whilst the effect on the response time was negligible. This 

difference in the response times can be attributed to the state change occurring, 

which causes the reconfiguration of selected metrics to be monitored and their 

sampling rates. Overall, the statechart has no negative effect; the timing difference 

between the two types of attacks can be attributed to the behavioural analysis (as 

resource analysis uses far more metrics than service analysis) and not the statechart.  

 

6.5. Summary 

This chapter has evaluated the SSC framework and its constituent techniques against 

the high-level design requirements set out in §2.5. These requirements defined the 

necessary characteristics that SSC must possess to be considered suitable for 

misbehaviour monitoring in a SoS environment. These requirements were separated 

into four sections, each focusing on different aspects of the system. A summary of 

the supporting evidence for each design requirement is shown in Table 15. 
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Table 15. Summary of Design Requirement Evidence 

Design Requirement Evidence of Fulfilment 

Accurate Experimental analysis in §6.1 

Adaptable Theoretical analysis in §6.2 and supported by experimental 

analysis in §7.3. 

Autonomous Theoretical analysis in §6.2 and supported by framework 

design in §4.2 

Detection Speed Experimental analysis in §6.1 

Diverse Analysis Theoretical analysis in §6.3, supported by algorithm design in 

§4.5.2 & data selection approach in §4.5.1  

Dynamics Experimental analysis in §6.1 

Efficient Experimental analysis in §6.4 

High Performance Experimental analysis in §6.1 

Low Maintenance Theoretical analysis in §6.2 and supported by framework 

design in §4.2 

Lightweight Experimental analysis in §6.4 

No Prior Knowledge Theoretical analysis in §6.3 and supported by framework 

design in §4.2 

Novel Threats Theoretical analysis in §6.2 and supported by framework 

design in §4.2 

Protection Against 

Attacker Training 

Theoretical analysis in §6.3 and supported by CBM usage and 

integration approach in §4.7.5 

Real-time Experimental analysis in §6.1 

Reliable Theoretical analysis in §6.2 and supported by framework 

design in §4.2 & misbehaviour quantification approach in §4.5 

Scalable Experimental analysis in §6.1 

Self-resolving Theoretical analysis in §6.2 and supported by framework 

design in §4.2 

Small System Footprint Experimental analysis in §6.4 

Unselfish Theoretical analysis in §6.4 and supported by framework 

design in §4.2 

The misbehaviour detection capabilities of the SSC framework were evaluated 

against several performance based characteristics in §6.1. The results from these 

experiments highlighted the high detection accuracy and low false alarm rates that 

SSC and its constituent techniques can achieve. The monitoring management and 

analysis strategy were discussed in §6.2 and §6.3 respectively, with regards to SSC’s 

conformity to the outlined requirements. The resource usage of the SSC framework 

was evaluated in §6.4. It identified the low resource consumption and it also 

examined the potential resource gains that can be achieved by using its statechart-
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controlled approach. It can be concluded from this chapter that SSC has met all of 

the outlined design requirements. 

Although the results in this chapter are promising, it must be noted that they only 

reflect the fixed set of simulated misbehaviour events and the specific test-bed 

configuration used in the experiments. These experiments have not been designed to 

fully stress test the framework. Therefore, the extent to which the results are specific 

to the simulated misbehaviour or the test-bed configuration is uncertain. 

The aims of the research outlined in §1.2 were to identify the problems and 

limitations of existing behavioural monitoring techniques and to develop a solution 

that can identify misbehaviour on SoS components. The SSC framework proposed in 

this thesis is a misbehaviour monitoring solution for SoS components, and can 

therefore amply satisfy these aims. 

The research objectives outlined in §1.2 summarised more specific targets that this 

research needed to fulfil. The proposed SSC framework provides a behavioural 

monitoring solution specifically designed to cope with the difficulties of the 

dynamics and uncertainty of SoS components. It is able to detect misbehaviour, 

whilst ensuring low resource usage. It has devised a method to calculate behavioural 

thresholds against which behaviour can be monitored and it proposes a technique of 

analysing and quantifying the irregularity of behavioural anomalies. Additionally, it 

proposes the integration of a CBM scheme and an algorithm to ensure the selection 

of the most applicable participating component systems. This being the case, it 

allows many of the objectives (the remaining objectives will be examined in the 

following chapter) of this research to be fulfilled. 

 



Chapter 7 

 

Comparison with Existing Work 
 

It is imperative that the improvements that SSC claims to offer over existing 

techniques can be proven. The following sections detail various experiments that 

demonstrate the ability of SSC and its subsequent algorithms and techniques, in 

comparison to those of existing techniques. Each of the following sections will 

concentrate on comparing various aspects of SSC and its constituent techniques 

against existing solutions. The experiments featured in these sections all assume the 

same operational scenario as that defined in Chapter 6.  

 

7.1. Misbehaviour Detection 

In this section, the monitoring performance of SSC is compared against that of two 

industry leading open source infrastructure monitoring solutions, Nagios [171] and 

Munin [172]. All of the solutions had an identical series of misbehaviour events 

simulated. During these experiments, random load was created but was applied 

equally in every instance using the jMeter application on a separate virtual machine. 

SSC has been designed with the complexities of a SoS in mind; hence, it is a self-

contained host-based framework. Unfortunately, there are no suitable host-based 

behavioural monitoring systems with which SSC could be compared. The two other 

solutions used in this evaluation offer a broader higher level of monitoring which 

does share several monitoring metrics with SSC. However, their breadth of utilisable 

metrics was limited when compared with SSC. So to make it a fair evaluation, 

misbehaviour was only simulated on metrics that all solutions were capable of 

monitoring. The thresholds used in both these solutions were the default values set. 
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The results of these experiments are shown in Table 16 and can be used to draw 

comparisons between the misbehaviour detection capabilities of these solutions. 

Table 16. A Comparison of Detection Performance 

Misbehaviour 

Events 

SSC Nagios Core Munin 

 D.T. 

(sec) 

F.P. 

(%) 

F.N. 

(%) 

D.T. 

(sec) 

F.P. 

(%) 

F.N. 

(%) 

D.T. 

(sec) 

F.P. 

(%) 

F.N. 

(%) 

0 N/A 0 N/A N/A 0 N/A N/A 0 N/A 

1 0.36 0 0 1.2 0 0 0.9 0 0 

2 0.35 0 0 1.8 0 50 1.0 0 0 

3 0.36 0 0 2.1 0 33.33 1.0 0 33.33 

5 0.36 0 0 2.4 0 80 1.1 0 20 

10 0.38 0.1 0 3.2 0 60 1.4 0 40 

D.T. = Average Detection Time, F.P. = False Positive Rate, F.N. = False Negative Rate 

 

 

Figure 50. A Comparison of Detection Performance against Existing Solutions 

The experiments undertaken in this section produced some unexpected results, as 

Nagios and Munin both significantly underperformed (as illustrated in Figure 50) 

when tasked with detecting misbehaviour. The main problem with these existing 

solutions is that the thresholds used to define tolerated behaviour are static. 
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Unfortunately, this results in unnecessary behavioural leniency, which is not a 

desirable characteristic in a SoS environment, hence the high false negative rates 

observed during the evaluation.  

Therefore, these results contribute towards validating the statement made, that SSC 

is able to offer improved misbehaviour detection performance over existing 

solutions. The achievable accuracy can be attributed to the more accurately 

calculated and refined thresholds, and the behaviourally related multivariate 

approach used in the comprehensive analysis of behavioural deviations. 

 

7.2. Behavioural Threshold Creation 

This section aims to support the claim that the novel threshold calculation algorithm 

can create thresholds that have a greater level of accuracy. The experiments 

undertaken compare the technique proposed in this thesis against two prominent 

techniques (Statistical Filtering [135] and Adaptive Statistical Filtering [135]) utilised 

in existing work. Each of the threshold calculation methods will be used to calculate 

separate behavioural profiles for SSC. In turn, these profiles will be used to monitor 

the component system, whilst it is placed into various operational states. The 

misbehaviour used in these experiments requires the simulation of 10 metrics 

exceeding their threshold values by varying amounts (although identical simulations 

were used throughout). The results from these experiments are shown in Table 17 

and illustrated in Figure 51. 
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Table 17. A Comparison of Threshold Calculation Techniques 

 SSC Threshold 

Calculation 

Statistical Filtering Adaptive 

Statistical Filtering 

F.P. (%) F.N. (%) F.P. (%) F.N. (%) F.P. (%) F.N. (%) 

Disconnected 0 N/A 21.02 N/A 20.29 N/A 

50% contribution 

load 

0 N/A 23.91 N/A 23.18 N/A 

50% contribution 

load and 

misbehaviour 

 

0.12 

 

0 

 

25.40 

 

2.89 

 

24.81 

 

1.45 

F.P. = False Positive, F.N. = False Negative 

 

 

Figure 51. A Comparative Illustration of Threshold Calculation Techniques 

The results show that the thresholds produced by both the existing methods, cause a 

significantly higher rate of false positives, even when monitoring the system at idle 

(which could be caused by the way the techniques interpret the training data). The 

false positive rate increases as the component is placed in progressively strenuous 

circumstances (i.e. applying SoS load and then simulating misbehaviour). This 

highlights the fact that these techniques produce thresholds that are largely 

unsuitable for use in a SoS environment. Their high false positive rates make them 

extremely inefficient to use, particularly in terms of the time and resources that 

would be unnecessarily wasted. Worryingly, the thresholds produced by both 
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existing methods also had false negatives, meaning that genuine misbehaviour 

events went undetected. The results therefore conclude that the thresholds produced 

by SSC’s threshold calculation algorithm can provide superior levels of accuracy for 

behavioural monitoring tasks. 

 

7.3. Behavioural Threshold Adaptation  

The adaptation of behavioural thresholds is imperative to ensure reliable monitoring 

amidst the continuing evolution of the system. The experiments outlined in this 

section aspire to highlight the adaptation accuracy, when compared with existing 

techniques. However, the majority of solutions previously identified for threshold 

adaptation rely on behavioural predictions. Due to the dynamic and uncertain 

behaviour of SoS components [8], drawing comparisons against these techniques 

will prove very little and will not help to validate the claims made about the 

proposed approach. Instead, this evaluation will compare the proposed statistical 

calculation technique against similar statistical techniques.  

There are several existing statistical techniques that could have been used to 

calculate the necessary threshold adaptation. The following experiments aim to 

compare the capabilities of the proposed quartile distribution normalisation 

approach against those of mean difference [144], sample standard deviation [144] 

and median absolute deviation (MAD) [173] techniques. In the following 

experiments, each of these techniques is used to analyse the recorded monitoring 

observations of one metric and determine the necessary threshold adaptation value. 

Hence, this can demonstrate which method offers the most accuracy. The metric’s 

DA threshold values have been carefully modified to alter the monitoring data 

distribution, thus creating three different evaluation scenarios: 

Experiment 1: This experiment is designed to test whether the techniques are able to 

determine that a dataset requires no adaptation.  
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Experiment 2: This experiment is designed to test whether the techniques are able to 

determine the exact amount by which the thresholds need to be lowered. The 

existing maximum DA threshold was increased by 10% and the existing minimum 

DA threshold was decreased by 10%. 

Experiment 3: This experiment is designed to test whether the techniques are able to 

determine the exact amount by which the thresholds need to be raised. The existing 

maximum DA threshold was decreased by 10% and the existing minimum DA 

threshold was increased by 10%. 

The results from these experiments are shown in Table 18 and illustrated in Figures 

52 and 53. The ‘Expected Change’ in Table 18 indicates the actual 10% change value 

that is added or deducted from the DA threshold. 

Table 18. Threshold Adaptation Technique Comparison Results 

 Experiment 

No. 

Expected 

Change 

Quartile 

Distribution 

Normalisation 

(SSC) 

Mean 

Difference 

Sample 

Standard 

Deviation 

Median 

Absolute 

Deviation 

Maximum 

Threshold 

Change 

1 0 0 +34.64 +16.15 +13.53 

2 -13 -12.75 -47.65 0 -0.44 

3 +13 +14 +21.65 0 +1.14 

Minimum 

Threshold 

Change 

1 0 0 +11.35 +4.37 +4.03 

2 +13 +13.5 +1.65 0 +1.21 

3 -13 -12.5 -24.35 0 -8.35 
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Figure 52. Illustration of Maximum Threshold Adaptation Comparison 

 

 
Figure 53. Illustration of Minimum Threshold Adaptation Comparison 
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normalisation method is able to ascertain whether a threshold requires adaptation, 

thus preventing resource wastage. SSC’s approach offers a vastly superior level of 

adjustment accuracy for both the maximum and minimum thresholds. 

 

7.4. Misbehaviour Quantification 

The misbehaviour quantification algorithm is a core component of the SSC 

framework. It is therefore necessary to evaluate whether the algorithm and approach 

proposed in this thesis are able to offer increased accuracy. The following evaluation 

focuses on the accuracy of both the quantification algorithm and the data selection 

approach. The data available to the algorithm to compute its score was carefully 

controlled, thus ensuring fairness throughout the experiments undertaken. During 

these experiments, only 15 metrics were used as the focus was on accuracy rather 

than scalability. To provide a benchmark that techniques could be compared against, 

the “Approximate Expected Scores” were calculated for both parts of the evaluation 

in the section. The control and prior knowledge of the data and misbehaviour used 

in the experiments allowed these approximation scores to be calculated, by 

measuring the simulated misbehaviour against the respective behavioural 

thresholds. 

The first part of this evaluation seeks to identify the potential accuracy that could be 

gained by using the proposed behaviourally related approach to select data for 

analysis. In these experiments, the proposed approach is compared against two 

commonly utilised statistical approaches [143], which are time-referenced univariate 

analysis and time-referenced multivariate analysis. The aim of these experiments is 

to determine which selection method enables the most accurate and reliable 

misbehaviour quantification. Using all three methods, a misbehaviour quantification 

score was calculated for the same set of the simulated misbehaviour events. These 

misbehaviour events involve increasing the observed value of various metrics by a 
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specified amount, as detailed in Table 19. The results of this experiment are shown in 

Table 20 and illustrated in Figure 54.  

Table 19. Experiment Setup 

Experiment No. No. Misbehaviour Events Threshold Exceeded By (%) 

1 1 5 

2 1 10 

3 5 25 

4 7 50 

5 9 100 

 

Table 20. Calculated Misbehaviour Scores 

Experiment No. 
Avg. Misbehaviour Score Approximate  

Expected Score BRM U M 

1 0.184 0.658 0.164 0.180 

2 0.211 0.676 0.191 0.209 

3 0.288 0.684 0.302 0.276 

4 0.407 0.697 0.381 0.400 

5 0.633 0.784 0.608 0.626 

BRM=Behaviourally Related Multivariate, U=Univariate, M=Multivariate 

 

 

Figure 54. Comparison of the Data Selection Techniques 
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The results show that the univariate method exponentially overestimates the 

severity of the misbehaviour; this is because of the limited diversity of the system 

metrics used for the calculation. It also shows that both the proposed approach and 

the multivariate closely follow the expected score. However, it is also evident that in 

the majority of the experiments, the multivariate approach underestimates the 

severity of the behaviour; this is because of its inclusion of unnecessary data. Similar 

to the effect of including a spurious value during an averaging process, the inclusion 

of unnecessary data (whose values will indicate normal behaviour) will reduce the 

severity of true behavioural anomalies. Overall, it is apparent that the proposed 

approach produces scores that are the closest to the expected scores. 

The second part of this evaluation focuses on the accuracy of the misbehaviour 

quantification technique itself. In these experiments, the results obtained using the 

proposed method are compared against those produced by two prominent 

techniques, which are Histogram [141] and KNN Prediction [174]. Misbehaviour was 

simulated as detailed for the previous experiment in Table 19, and each method was 

used to compute a misbehaviour quantification score. During these experiments, the 

value of k used in the KNN algorithm was set to 5, as this is the same number of 

neighbours used in the proposed approach. The scores produced are presented in 

Table 21 and also illustrated in Figure 55. 

 

Table 21. Comparison of Behavioural Irregularity Scores 

Experiment 

No. 

Approximate  

Expected 

Score 

Proposed 

Algorithm Score 

Histogram 

Score 

KNN Prediction 

Score 

1 0.180 0.184 0.592 0.629 

2 0.209 0.211 0.636 0.675 

3 0.276 0.288 0.746 0.783 

4 0.400 0.407 0.888 0.907 

5 0.626 0.633 1.000 1.000 
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Figure 55. Comparison of Quantification Techniques 

The results show that the scores produced by the three methods loosely follow the 

same trend during the evaluation experiments. However, when considering the 

accuracy, the results achieved by the proposed method are closest to the expected 

score. The Histogram scores proved to be marginally closer to the expected score 

than those produced by the KNN prediction method. However, both of these 

techniques significantly over-exaggerated the severity of misbehaviour events. 

Application of these techniques in SSC would ultimately yield an unacceptably high 

level of false positives. It must be remembered that not every reported behavioural 

irregularity will be misbehaviour. The results clearly indicate that the method 

proposed in §4.5 offers significant advantages over existing techniques. 
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CBM is an important aspect of the SSC framework, and the similarity of the 

components used in the process is vital to its success. The MACCS solution proposed 

in §4.7 offers a superior mechanism for selecting the most appropriate component 

systems. In this section, the accuracy of the CBM selection process and its 
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Due to the nature of these experiments, they are conducted on a separate test-bed as 

outlined in §5.8. Each of the components in the test-bed system is configured with 

various roles, characteristics, hop distances and response times. This experiment 

simulates a SoS by using the components configured in accordance with Table 22. 

The aim is for the host component (HC in Table 22) to analyse and calculate 

similarity scores for all of the remote components (RC in Table 22) and rank them 

according to their desirability. This ranking will then be compared against that 

produced by a distance based technique [161], which is a commonly used selection 

method. 
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Table 22. Component Configuration for MACCS Evaluation Test-bed 

Name No. 

Hops 

Induced 

Latency 

(sec) 

Role 

IDs 

Contributions 

 

Capabilities 

 

IDs Values IDs Values 

HC 1 0 1 R,C,B,

H,S1 

6144,1.73, 500, 

1024, 1 

R,C,B,

H,S1 

4915,1.35,400

,819,1 

RC1 1 0 2 R,C,B.

H 

4096, 

1.20,500,2048 

R,C,B,

H 

3195,0.94,390

,1597 

RC2 1 0 1,3 R,C,B,

H,S2 

26624, 2.13, 

1000, 500, 1 

R,C,B,

H,S2 

15176,0.92,57

0,285,1 

RC3 1 0.30 1 R,C,B,

H,S1,D 

8192,2.13,750,2

048,1,3000 

R,C,B,

H,S1,D 

6144,1.60,563

,1536,1,2250 

RC4 2 0 3,5 R,C,B,

H,S1 

12288,2.90,1024

, 2048,1 

R,C,B,

H,S1 

8479,2.00,707

,1413,1 

RC5 2 0 1,2,3,

4,5 

R,C,B,

H,D 

262144, 

3.30,1024, 

6144,8000 

R,C,B,

H,D 

123208,1.55,4

81,2888,3760 

RC6 2 0.30 2 R,C,B,

H,S2 

65536, 2.40,750, 

1024, 1 

R,C,B,

H 

26870,1.00,30

8,420 

RC7 3 0 1,4,5 R,C,B,

H,S4,D 

131072, 

3.30,1024,12288

,1, 4000 

R,C,B,

S4,D 

79954,2.01, 

625,7496,1,24

40 

RC8 3 0.30 1,5 R,C,B,

H,S3,S

4 

12288, 

2.26,1024,1024,

1,1 

R,C,B,

S3 

3686,0.68,307

,307,1 

RC9 5 0.30 1,4,5 R,C,B,

H,S1,S

3 

131072,3.10,102

4,2048,1,1 

R,C,B,

S1,S3 

93061,2.20,72

7,1454,1,1 

RC10 7 0 1 R,C,B,

H,S1 

71868,1.80,1024

,1024,1 

R,C,B,

H,S1 

33059, 

0.83,471,471,

1 

 
R=RAM(MB), C=CPU(GHz), B=Bandwidth(MB), H=HDD(GB), Sx=Service Number x, 

 D=Databases (Count) 

 

The configurations from this table are applied to the evaluation test-bed outlined in 

§5.8. The Name column specifies which component the configuration is applied to. 

The No. Hops indicates the number of routers that are to be used to pass packets 

between the HC and the specified component. The Induced Latency column details 

the network traffic delay to be induced on the component. The Role IDs indicates the 
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roles carried out by the component. The Contributions has IDs and Values sub-

columns; the IDs indicate each contribution metric and the Values detail the amount 

of contribution corresponding to each metric. The Capabilities has IDs and Values sub-

columns; the IDs indicate each metric the component is capable of contributing and 

the Values indicate the exact amount of contribution the component is capable of 

contributing for each metric. Using the component configuration shown in Table 22, 

the similarity scores were calculated for each component by the MACCS method and 

the results are shown in Table 23.  

 
Table 23. Calculated MACCS Score 

Component Name MACCS Score 

RC1 0.62820 

RC2 0.76213 

RC3 0.85506 

RC4 0.59236 

RC5 0.42126 

RC6 0.58444 

RC7 0.47585 

RC8 0.72500 

RC9 0.69845 

RC10 0.63142 

 

Table 24 shows the components ranked in order of their desirability by both the 

DBDLP [161] and MACCS methods. In order to identify the accuracy achieved, the 

‘Expected Component’ was determined by calculating the similarity between the 

configuration of each of the remote components (RC) and that of the host component 

(HC) as defined in Table 22.  
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Table 24. Order of Component Preference 

Similarity Rank Expected 

Component 

DBDLP Selected 

Component 

MACCS Selected 

Component 

1 RC6 RC1 RC6 

2 RC2 RC2 RC2 

3 RC1 RC5 RC1 

4 RC7 RC3 RC7 

5 RC10 RC4 RC10 

6 RC8 RC10 RC8 

7 RC9 RC6 RC9 

8 RC3 RC8 RC3 

9 RC4 RC9 RC4 

10 RC5 RC7 RC5 

 

The results show that there is a 97.8% improvement in the rankings created by the 

MACCS method, opposed to those produced by DBDLP. This improvement is 

quantified by calculating Kendall’s Tau rank correlation coefficient and converting 

this value into a percentage. Figure 56 illustrates the correlation between the two 

approaches, highlighting their dissimilarity. 

 

Figure 56. A Chart Illustrating the Produced Component Rankings 
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These results highlight the improvement that MACCS can offer to the CBM selection 

process and therefore to the end results produced. 

It is necessary to demonstrate that the MACCS method is also capable of scaling 

alongside the system. For this evaluation, performance tests were conducted using 

various network sizes as detailed in Table 22. The aim of the experiments was to 

show how long the evaluation process takes to examine all the components and then 

to create a selection of components for a CBM group. For the purposes of this 

experiment, each component used had its number of roles capped at five and the 

number of both capabilities and contributions capped at ten.  

 
Table 25. MACCS Performance Evaluation 

Simulated 

SoS Size 

Time taken to 

analyse all 

components (sec) 

CBM Size CBM 

Similarity 

Threshold 

Time taken to 

create MACCS 

CBM group (sec) 

10 0.310 5 0.6 0.307 

20 0.362 9 0.6 0.332 

30 0.406 14 0.6 0.376 

50 0.481 23 0.6 0.449 

75 0.537 34 0.6 0.498 

100 0.570 45 0.6 0.533 
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Figure 57. A Bar Chart Illustrating the Time Taken to Compute Similarity 

The results show that the MACCS evaluation process is quick, even when examining 

every component, which would ordinarily not be necessary. This means that in most 

circumstances it would be possible to achieve real-time CBM group formation. The 

illustration of the results in Figure 57 shows that the MACCS method offers potential 

speed gains in CBM group formation, particularly for larger SoSs. This is because the 

incrementing distance-based similarity search employed by the MACCS method 

offers significant performance benefits over the analysis of all the components in the 

SoS. 

The CBM group size for the experiments (as outlined in Table 25) was set to forty-

five percent of the overall SoS size (some values have been rounded up). Therefore, 

all experiments have been given the same task, with respect to the scale of the SoS.  

The results presented in this section prove that the MACCS technique is able to offer 

increased accuracy in the selection process, when compared with distanced based 

techniques (which is one of the most popular approaches). It also demonstrates that 

it is able to quickly and efficiently analyse and compute the most appropriate CBM 

components in various sized SoSs. 
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7.6. Summary 

It is important to understand how SSC and its techniques can contribute to 

continued progression of the research area. The evaluations undertaken in this 

chapter performed multiple comparisons between many different aspects of the SSC 

framework including capabilities, performance and accuracy against those of 

existing solutions from similar research areas. This section provided evidence that 

existing solutions are inefficient for use in the dynamic and uncertain environment 

of a SoS, highlighting the need for a solution such as SSC. Most importantly, it 

highlighted SSC’s significant benefits in regards to accuracy, efficiency and 

capabilities, when undertaking the same tasks as the leading solutions in the areas. 

However, as with the previous chapter, it is important to note that although the 

results are promising, they only reflect the fixed set of simulated misbehaviour 

events and the specific test-bed configuration. These experiments have not been 

designed to fully stress test the framework. Therefore, the extent to which the results 

are specific to the simulated misbehaviour or the test-bed configuration is uncertain. 

In §7.1, the detection capabilities of SSC were compared against those of industry 

leading monitoring solutions. This comparison included the detection time, false 

positive rate and false negative rate. The results obtained demonstrated the potential 

improvements in false alarm rate and response times that can be achieved by using 

SSC. 

In §7.2, the threshold calculation technique developed specifically for SSC was 

compared against existing approaches. The results highlighted the vast differences 

in the final thresholds produced, as well as the number of false positives and false 

negatives occurring as a result of using these thresholds. Ultimately, this section 

justified the decision to use a custom calculation technique and outlined the benefits 

that can be achieved. 
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In §7.3, the accuracy of the threshold refinement algorithm was demonstrated by 

comparing the devised method against other statistical techniques. The results of 

these experiments highlighted the benefits of using the proposed method in terms 

accuracy and adaptation frequency. This section also discussed the benefits of using 

the devised threshold profile structure and how it improves the threshold 

refinement process. 

In §7.4, the misbehaviour quantification calculation algorithm was evaluated by 

comparing it against other existing solutions. The experiments undertaken 

highlighted the accuracy issues of using existing approaches of metric selection for 

behavioural analysis. It also demonstrated that the comprehensive behavioural 

analysis proposed in this thesis offers superior results. Hence, this section provided 

justification as to the development of this technique and the integral role it performs 

within the SSC framework. 

In §7.5, the CBM component selection rankings of MACCS were compared to those 

produced by existing solutions. The results of these experiments demonstrated why 

MACCS and its comprehensive similarity check are vital to the success of any CBM 

group created by SSC. It also demonstrated the performance and scalability that the 

MACCS method is capable of achieving. 

 

 

 

 

 

 

 



 

Chapter 8 

 

Conclusion and Future Work 
 

The complex, large-scale, dynamic, decentralised and distributed nature of a SoS 

makes it extremely difficult to monitor behaviour accurately. Misbehaviour 

currently poses one of the most severe threats to both SoS compositions and their 

constituent components. This thesis has presented the SSC behavioural monitoring 

framework along with several of its novel constituent techniques and explained how 

these can overcome the current challenges involved in SoS behavioural monitoring.  

Unfortunately, the majority of existing monitoring techniques were not developed 

with the highly dynamic, uncertain and complex behaviour of SoS components in 

mind. For this reason, the dynamics, uncertainty, complexity and decentralisation 

encountered in a SoS (which are characteristic traits) are regarded as the main 

impediment to the application of existing monitoring techniques [8], [175]. This was 

supported by the results obtained from the experiments undertaken in §7.1, whereby 

monitoring for misbehaviour resulted in unacceptably high detection times, false 

positive and false negative rates. This shows that accurately and reliably monitoring 

for misbehaviour in such environments is beyond the capabilities of existing 

techniques. The approach demonstrated in this thesis [164] shows that it is possible 

to monitor SoS component’s behaviour for misbehaviour by combining a number of 

novel techniques to overcome the challenges posed by such environments. 

One aspect that existing techniques have difficulty with, is determining the 

boundaries between acceptable and unacceptable behaviour. Existing static 

techniques such as those used in Nagios are either impractical or produce inaccurate 

results. This can be attributed to the dynamic and evolving nature of the behaviour, 
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as well as the highly fluctuating loads. The techniques developed for SSC allow 

reliable behavioural thresholds to be calculated and maintained, which reflect the 

dynamic and changeable behaviour of the component. This allows the framework to 

maintain a low level of both false positive and false negative results, as 

demonstrated in §6.2. Alongside the statechart, the threshold accuracy ensures that 

resources are not wasted on unnecessary behavioural analysis. This is of particular 

benefit to small or embedded devices, allowing them to contribute more to the SoS. 

Quantifying misbehaviour is another area in which existing approaches struggle. 

Existing statistical analysis techniques often utilise inefficient selections of monitored 

metrics to calculate the level of misbehaviour. In such a diverse and uncertain 

environment, the use of a single metric will produce meaningless results, whereas 

the use of too many unnecessary metrics will weaken the accuracy of the result. 

These problems are demonstrated in §7.4., and it is also shown that the increased 

robustness and accuracy of the decisions are achievable by using behaviourally 

related metrics. Additionally, the tolerated dynamics in a SoS environment means 

the boundary between dynamic and misbehaviour is increasingly difficult to 

distinguish. This is why SSC uses the proposed misbehaviour quantification 

algorithm, which uses a comprehensive analysis to determine the level of 

misbehaviour that is associated with a particular event.  

Another area of difficulty stems from the isolated environment of a SoS, as there is 

no central authority that can be referred to. Therefore, forming a CBM with similar 

components is the only way to achieve any standardisation, assurance or validation. 

However, existing techniques often create CBM groups with limited levels of 

similarity. This is predominantly due to basing their similarity measure on a single 

characteristic. Ultimately, this lack of behavioural similarity between components 

reduces both the efficiency and accuracy of the results produced. To overcome this, 

the MACCS technique devised for SSC uses comprehensive behavioural similarity 
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checks to form groups that offer more reliable, stable and accurate results, as 

demonstrated in §7.5. 

It is important to note that although the results obtained from this research are 

promising, they do have limitations. The experiments undertaken in this thesis only 

consider specific test-bed configurations and specific types of misbehaviour. Further 

work is required to assess the full extent to which these results can be generalised, 

and to ascertain how reliant these results are on the evaluation setup 

The remainder of this chapter presents a summary of the thesis and an overview of 

the novel contributions made in comparison with existing techniques to demonstrate 

the benefits of the work in this thesis. It discusses some of the limitations associated 

with the proposed approach. It then highlights potential avenues that could be 

explored in future research and ways in which the techniques developed could be 

applied to different areas. Finally, the concluding remarks draw together the 

achievements and outcomes of the work contained in this thesis. 

 

8.1. Thesis Summary 

Chapter 1 of this thesis provided an introduction to the concept of SoS and the 

difficulties encountered when attempting to monitor its behaviour. It highlighted the 

challenges faced by existing techniques, which are unable to monitor behaviour 

effectively and reliably on a SoS. It summarised the aims and objectives of this thesis, 

as well as describing the motivation behind the research. Furthermore, it outlined 

the novel contributions put forward by this thesis to overcome the research 

challenges posed by monitoring for SoS component misbehaviour. 

Chapter 2 presented background information covering the main concepts involved 

in this research. This chapter presented the reader with sufficient information in 

order to understand the context of both the research and the problems it aims to 

solve. As SoS is such a core aspect of this work, the SoS concept was examined in 
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detail in this chapter. It focused on definitions, types, what the concept involves, 

future potential applications and ongoing research relating to the SoS concept. This 

chapter described the meaning of misbehaviour within computing and examined the 

types of misbehaviour. It also examined the how misbehaviour manifests on a SoS, 

potential causes and the problem of cascading misbehaviour. This chapter also 

presented some of the various points that must be considered when selecting a 

suitable monitoring solution, and its associated limitations. It provided a summary 

of the research challenges that are identifiable from the background information. 

Finally, it presented a comprehensive list of requirements that any proposed solution 

must meet, in order to overcome the existing limitations. 

Chapter 3 examined literature from existing work relating to the concepts 

introduced in this thesis. The identified existing techniques were critically analysed 

in relation to their applicability within a SoS, with particular focus on both their 

merits and shortcomings. In doing so, this chapter was able to provide motivation 

for the reasoning behind the developed methods presented in Chapter 4. Literature 

that outlined or emphasised the challenges faced, was cited in order to provide 

context to the challenges this work aspires to address.  

Chapter 4 presented the proposed novel framework and subsequent techniques 

developed to overcome the challenges previously outlined. An overall description of 

the developed SSC framework was provided along with a more detailed 

examination of its structure and operation. The subsequent sections detailed the 

novel algorithms, techniques and methods used by SSC to fulfil its aims. Each 

section provided a high-level overview, with particular reference to how it helped to 

fulfil the overall goal of the framework. This was also accompanied by a more 

advanced explanation of how each algorithm, technique or method operates. The 

SSC framework proposed in this thesis can be considered an advancement of the 

area of SoS security, in that it can prevent misbehaviour from causing damage to 

either the component or the SoS, which was an outstanding security problem. 
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However, these techniques are not constrained to either behavioural monitoring or 

SoS environments and could potentially be used to advance other areas of 

monitoring. 

Chapter 5 described how the proposed framework and its various constituent 

elements were implemented in order to evaluate both the framework and its 

constituent algorithms and methods. The chapter also describes the design, 

configurability and implementation of the tools and test-beds used in the evaluation 

of the SSC framework. 

Chapter 6 evaluated the proposed framework and its constituent parts against the 

comprehensive design requirements from Chapter 2. By undertaking this evaluation, 

the conformity of the proposed solution to the aims and objectives set out in Chapter 

1 could be discussed and validated. This chapter concludes that the proposed SSC 

framework had met the requirements and therefore fulfilled the aims, objectives set 

out in previous chapters.  

Chapter 7 presented the details and results of the many experiments undertaken in 

order to compare the proposed framework and constituent techniques against 

existing work. The results also showed that SSC was able to offer significantly 

improved levels of detection and accuracy, whilst maintaining suitably low levels of 

false positives and false negatives, in comparison to existing solutions. It can 

therefore be deduced from the results that the claims that SSC is a feasible solution 

for monitoring behaviour in a SoS environment and detecting component 

misbehaviour, have been validated. 
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8.2. Novel Contributions and Publications 

This thesis provides a number of novel contributions to the field of SoS behavioural 

monitoring: 

1. A behavioural monitoring framework that overcomes the challenges of 

monitoring in a SoS. The framework offers the ability to detect misbehaviour 

on a SoS component system, whilst ensuring limited disruption, system 

footprint and resource wastage. The SSC framework is considered novel, as 

the literature survey has not identified any monitoring solution that is capable 

of monitoring SoS component systems behaviour, particularly for identifying 

misbehaviour. Nor was it able to identify a solution that uses monitoring 

feedback and statecharts to control monitoring metrics, resource wastage and 

monitoring efficiency.  

2. Statistical techniques that overcome the challenges of producing and 

managing accurate behavioural thresholds for such a complex and evolving 

environment. The devised threshold profiles that store these thresholds offer 

increased tolerance of system dynamics and increased support for post-

calculation adaptation to account for any changes. The threshold calculation 

algorithm proposed is able to accurately calculate behavioural thresholds 

without relying on existing knowledge, whilst the adaptation algorithm 

designed is able to automatically refine the calculated thresholds based on 

current trending behaviour. The techniques are considered novel as the 

literature review has been unable to identify a threshold calculation technique 

able to facilitate the uncertain, dynamic and evolutionary behaviour typically 

involved in a SoS. Additionally, it has been unable to identify an approach 

using the proposed dual threshold based profile, which is able to make the 

process of threshold refinement easier and more reliable. 
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3. A statistical misbehaviour quantification algorithm that is able to quantify the 

level of misbehaviour associated with reported behavioural deviations, in the 

context of the individual system. The algorithm uses various techniques to 

analyse both the metric on which deviation occurred, and those of other 

selected metrics. To overcome the inaccuracies that occur as a result of using a 

univariate or an all-inclusive multivariate approach, the devised 

behaviourally related multivariate approach is used. Whereby only metrics 

with a proven statistical relationship with the metric on which the deviation 

occurred, are used. The algorithm is considered novel as the literature review 

has shown that existing techniques do not utilise such extensive analysis, nor 

do they select other metrics to analyse based upon the strength of the 

behavioural relationships. 

4. A statistical mechanism to select CBM components based on detailed 

behavioural similarity analysis. The mechanism proposed provides a platform 

agnostic method of CBM component selection for use in a distributed, large-

scale and decentralised environment. The mechanism offers in-depth 

similarity checks in order to ensure the efficiency and the validity of the 

results produced by any subsequent CBM process. The technique is 

considered novel as the literature survey has shown that no existing 

approaches offer a comparable level of behavioural similarity checking to 

ensure result validity. 

Aspects of the work and ideas contained in this thesis have been published in six 

academic conferences. A comprehensive list of these publications can be found at the 

beginning of this thesis. 
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8.3. Limitations 

There are several limitations that are associated with the proposed solution; these are 

discussed in this section.  

 CBM – Unfortunately, the trust-centric nature of the CBM process means that 

there is an inherent trust-related flaw that exists within this technique. The 

stated roles, contributions and capabilities supplied by components to the 

MACCS technique can be falsified. Therefore, it is also potentially possible to 

fabricate similar components in order to interact with a specifically targeted 

component. This established relationship can then be used to deliberately 

sabotage the CBM results supplied to the targeted component. This is an issue 

that still requires further research to resolve. 

 Statistical Thresholds –Statistical thresholds have many advantages when 

detecting misbehaviour but their level of detailed accuracy is an inherent 

limitation. This is because of their “dumb” approach used to identify 

misbehaviour. This refers to the belief that only behaviour that lies outside of 

the threshold boundaries is misbehaviour. The possibility that misbehaviour 

may fall inside of the thresholds boundaries is not considered. This limitation 

is particularly prevalent in complex environments due to the dynamic 

behaviour. Hence, there is the potential for this to lead to an increase in the 

false negative rate.  

 Failure Tolerance – As previously stated in §4.3, the design of the framework 

only considers successful operations. Despite the fact that the framework has 

built-in redundancy, there is still the potential for failure in all of the 

framework modules. Unfortunately, the scope of SSC’s design does not 

address the issue of what happens should failure occur. If SSC is to be 

deployed into real-world mission critical scenarios, this is something that 

needs to be addressed. 
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 Identifying Dynamic Behaviour – In this work, the difficulty of 

distinguishing between genuine dynamic behaviour and misbehaviour has 

been discussed. The behavioural dynamics in complex environments are 

dictated by a vast array of constantly changing variables. As such, it is 

extremely difficult for any technique to claim true accuracy. Although this 

work goes some way to helping distinguish genuine dynamic behaviour from 

misbehaviour (by building dynamic tolerances into the thresholds), there is 

still a great deal of further research required on this issue. 

 

8.4. Future Work 

The work contained in this thesis can be applied to various domains. Therefore, 

there are numerous ways in which the work could be improved, extended or used to 

address other challenges. 

 SSC could be enhanced by conducting further work into assessing how 

metric relationships change over time. SSC currently uses fixed relationship 

weighting tables that are established during training. However, like most of 

the system, these are subject to change and therefore a mechanism could be 

employed to periodically evaluate these relationships. 

 All of the experiments undertaken in this thesis have been designed to 

evaluate the success of various aspects of the framework. However, these 

experiments are specific to the test-bed configuration and misbehaviour 

simulated. Further analysis will be required in order to evaluate the true 

extent of its limitations and wider applicability. 

 SSC could be enhanced by integrating failure handling into the design of the 

framework. This would enable the framework to recover from and action any 

detected failure in any of the modules. 
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 SSC could be enhanced by integrating a method to authenticate other SoS 

components. The decentralised and dynamic environment makes it difficult 

to keep track of legitimate SoS members. The use of an authentication 

method would ensure that banned components are unable to participate in 

the SoS.   

 An enhancement could also be made to SSC by implementing a throttling 

mechanism to ensure contributions were not over-consumed. This would 

also help to prevent the potential problems that could occur as a result of 

leeching components. 

 SSC could be extended to verify the functionality and availability of fellow 

components’ promised contributions and to periodically evaluate the quality 

of the contributions. This would allow SoS compositions to maintain a high 

standard of contributions and high level of functionality and thus help to 

raise the level of trust in the SoS. 

 SSC could also be extended by evaluating which components cause the most 

misbehaviour on the host system. This information could be used to increase 

security for or restrict interactions with that particular component. 

 The MACCS method utilised by SSC could be improved by implementing a 

mechanism to authenticate requests for configuration files and comparison 

checks.  

 As more systems are moved into cloud environments, often with various IaaS 

providers, it makes them highly distributed and difficult to monitor. 

Therefore, the proposed SSC framework could be applied to these systems in 

order to monitor their behaviour and interaction with each other. 

 The concept of the Internet of Things and SoS are similar in their structure, 

scale, unpredictability and decentralisation. Therefore, it is likely to face the 
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same problem as a SoS when it comes to behavioural monitoring. Obviously, 

the metrics used during the monitoring process would be different but SSC 

could be applied. Additionally, it may struggle with issues of 

decentralisation, distribution and heterogeneity when establishing a CBM 

group, therefore the CBM similarity mechanism developed in this thesis 

could also be implemented.  

 

8.5. Concluding Remarks 

SoS still remains an infantile yet emerging concept; it has huge potential and has 

gathered a great amount of interest from a multitude of different research areas. 

Despite this, the nature of a SoS poses many significant problems when monitoring 

the behaviour of its component systems. The threat of such misbehaviour could have 

disastrous consequences for both individual components and the SoS as a whole, 

especially due to the dependency that components have on each other for 

functionality and services. 

The proposed SSC framework combats the challenges faced whilst monitoring 

behaviour on a SoS component. By using its novel behavioural threshold 

management algorithms, it can maintain an accurate set of behavioural threshold 

profiles against which the SoS component system can be monitored. Thus, it 

overcomes the problem of system dynamics and evolution affecting the validity of 

the thresholds. Additionally, its use of a novel misbehaviour quantification 

algorithm ensures the accuracy of the misbehaviour analysis. The use of CBM 

groups provides greater monitoring efficiency and misbehaviour detection. This 

success can be attributed to the novel algorithm used to construct CBM groups based 

on the in-depth behavioural similarity of the components. This helps to identify and 

prevent misbehaviour in real-time thus limiting any potential damage. It reduces 

both false positive and false negative behavioural detection rates. It also helps to 
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ensure low resource consumption, therefore allowing the majority of resources to be 

used towards SoS contribution.  

Through experimentation, the framework and the techniques it utilises have been 

validated, demonstrating that they can overcome the challenges that a SoS poses to 

behavioural monitoring. The benefits of this work are that SoS components can now 

be monitored for misbehaviour in real-time, thus preventing potentially disastrous 

consequences. It is able to ensure both the security and integrity of the component 

systems and also the security, integrity and continuity of the overall SoS 

composition. The SSC framework provides an efficient way of detecting and 

analysing potential misbehaviour, and can hopefully be used in securing future SoS 

implementations against the prevalent threat of component misbehaviour.
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