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Abstract 
 
Crop growth models are increasingly used as part of research into areas such as climate change and 
bioenergy, so it is particularly important to understand the effects of environmental inputs on model 
results.  Rather than investigating the effects of separate input parameters, we assess results 
obtained from a crop growth model using a selection of entire meteorological and soil input 
datasets, since these define modelled conditions.  Yields are found to vary significantly only where 
the combination of inputs makes the crop vulnerable to drought, rather than being especially 
sensitive to any single input.  Results highlight the significance of soil water parameters, which are 
likely to become increasingly critical in areas affected by climate change.  Differences between 
datasets demonstrate the need to consider the dataset-dependence of parameterised model terms, 
both for model validation and predictions based on alternative datasets. 
 
Keywords: crop growth model; input data; sensitivity analysis; soil water; drought; parameterisation 
 
 
1. Introduction 
 
Crop growth models have been used in agricultural research for several decades to help understand 
and predict the behaviour of crops under different conditions (Bouman et al., 1996).  Recent interest 
in areas such as the effects of climate change on food supply (Lobell et al., 2008), potential carbon 
mitigation by agriculture (Smith et al., 2000) and the use of biomass as an energy source (Bringezu 
et al., 2009) has increased the importance of accurate crop growth modelling. 
 
Most crop growth models depend on careful fitting of parameters with experimental data (Guo et 
al., 2006).  The effect that an individual input parameter, such as air temperature, has on model 
behaviour is generally well studied as part of the modelling process (Smith and Smith, 2007), and 
previous work has investigated the relative significance of their effects (Aggarwal, 1995; Ruget et 
al., 2002; Varella et al., 2010).  However, the overall role of environmental inputs, including entire 
spatial datasets of drivers, has not been thoroughly explored, yet model conditions are generally 
defined by these datasets and thus their effects should be considered in combination and not just 
individually. 
 
Understanding sensitivity and uncertainty is central to environmental modelling (Nossent et al., 
2011; Refsgaard et al., 2007; Smith and Smith, 2007; Warmink et al., 2010), and the use of 
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meteorological and soil data is common to a range of subject areas (Moussiopolous et al., 2004; 
Post et al., 2006; Sharples et al., 2009).  The effect of different meteorological and soil inputs on 
model results is therefore of significant interest beyond crop modelling.  The use of datasets based 
on different forms of interpolation (Hijmans et al., 2005) or climate predictions (Southworth et al., 
2000) makes it particularly important to understand the sensitivity of model outputs to the choice of 
data inputs due to the potential range of input values for ostensibly the same conditions. 
 
This study explores the effects of different meteorological and soil datasets on the crop growth 
model Miscanfor (Hastings et al., 2009) over a fixed time period and land area.  The use of different 
datasets for the same reported environmental conditions should provide a guide to the possible 
range of model predictions for a given time and area range.  In addition to investigating the 
influence of different datasets on results, the study also provides an indication of the potential 
sensitivity of crops to environmental changes by analysing differences in model predictions 
resulting from changing input data.  Due to the nature of these results, the role of drought in model 
predictions is considered in particular detail. 
 
 
2. Methods 
 
2.1 The Miscanfor model 
 
Miscanfor follows the energy use efficiency approach of Monteith (Monteith, 1977; Clifton-Brown 
et al., 2000), which is a common method in crop growth modelling (Williams et al., 1989; Ewert, 
2004).  The model is calibrated for Miscanthus giganteus, a C4 rhizomatous perennial grass which 
is of interest as a bioenergy crop due to its relatively high yields under a range of conditions (Ercoli 
et al., 1999). 
 
Yield mass is calculated according to meteorological and soil data (Hastings et al., 2009).  
Meteorological inputs to the model are mean temperature, temperature range, precipitation and 
cloud cover; soil inputs are field capacity and wilt point.  Radiation is calculated from the latitude 
and time of year by the method described in the SWAT Theoretical Documentation (Neitsch et al., 
2002), including a cloud correction factor (Hastings et al., 2009).  Potential evapotranspiration is 
calculated using the Thornthwaite equation (Thornthwaite, 1948), with a Penman adjustment factor 
(Hastings et al., 2009).  Downregulation terms for evapotranspiration, radiation use efficiency and 
leaf area index are calculated according to available soil water using an Aslyng discontinuous linear 
process description (Aslyng, 1965; Hastings et al., 2009).  The modelled crop is also subject to 
drought and frost kill (Hastings et al., 2009).  Roots are assumed uniformly distributed in the whole 
soil profile.  Growth is calculated according to the product of intercepted photosynthetically active 
radiation and the empirical radiation use efficiency, which is adjusted for water stress.  The 
Miscanfor model was originally parameterised in Europe using IGBP soil data and CRU TS 2.2 
meteorological data.  Previous work has shown good agreement of the model with field data 
(Hastings et al., 2009). 
 
2.2 Spatial datasets 
 
The UK is used as the basis for investigations due to its varied climate, its range of potential 
Miscanthus yields, and the existence of multiple sources of meteorological and soil data.  The year 
range 1961-1990 is used due to the availability of multiple data sources and its importance as a base 
year range for many climate predictions. 
 
Based on these criteria, the following three different meteorological datasets are used in the 
investigation: 



�: CRU TS 3.0 provides a time series of monthly data 1901-2006 on a 0.5° grid (Mitchell and 
Jones, 2005). 
�: CRU CL 1.0 provides average monthly data 1961-1990 on a 0.5° grid (New et al. 1999). 
�: UKCP09 25km provides average monthly data 1961-1990 on a 25km grid (Perry and Hollis, 
2005). 
 
Two different soil datasets are used in the investigation: 
�: HWSD provides time-invariant data on a 30 arc-second grid (FAO, 2009). 
�: IGBP provides time-invariant data on a 5 arc-minute grid (Global Soil Data Task Group, 
2000). 
 
Notable differences between soil datasets are likely due the inherent difficulty of providing a single 
value for grid cells which includes a range of different soil types; the large difference in grid size of 
the two datasets is likely to make such discrepancies particularly apparent. 
 
2.3 Modelling procedure and analysis 
 
The study is comprised of the following stages: 
- The model is run using each combination of meteorological and soil dataset 
- Results for mean yield are compared for each combination 
- Differences in input values between datasets are compared 
 
The mean annual Miscanthus yield is calculated in the UK for the years 1961-1990 using each of 
the six combinations of meteorological and soil datasets.  The CRU TS 3.0 dataset provides data for 
each year, hence the yield for each individual year can be calculated explicitly, from which the 
mean is obtained.  However,  the CRU CL 1.0 and UKCP09 datasets provide only mean data, and 
the input data must therefore be used to calculate directly the average yield.  Available soil water is 
initialised with the CRU TS 3.0 dataset by running the model for the year 1960 prior to obtaining 
yields; soil water is initialised with the other two meteorological datasets by running the model once 
with the same input data prior to obtaining yields. 
 
Previous work has demonstrated the benefits of obtaining average yields from annual calculations 
rather than using average meteorological data, which inherently smooth out weather conditions 
(Hastings et al., 2009).  It is therefore expected that the CRU TS 3.0 dataset should provide the most 
accurate meteorological inputs for the model, as individual years are explicitly modelled.  However, 
since all datasets are intended to represent the same time period and area, the investigation should 
provide a good indication of the possible range of results obtained for ostensibly the same 
conditions. 
 
The model calculates results for each soil grid point; the corresponding meteorological grid point is 
always larger and overlaps its centre.  To compare results obtained from different datasets, all are 
put on the highest resolution grid, and locations ignored where data do not exist for one or more 
input.  Because HWSD does not directly provide data for wilt point and field capacity, values are 
derived from the bulk density and texture of the soil layers using the Campbell method (Campbell, 
1985).  The role of pedotransfer functions is considered further in Section 4.1. 
 
Comparisons are performed between model outputs, as well as between environmental inputs.  For 
simplicity, only meteorological inputs for July are presented, since this is arguably the most 
important month for both crop growth and potential drought. The years 1961, 1975 and 1990 are 
used to compare the time series dataset with the average datasets, thus giving a spread of years 
across the time range of interest.  Two main statistical measures are used to analyse the data: the 
correlation coefficient assesses overall similarity of the data, and the coefficient of variation 



(defined as the standard deviation divided by the magnitude of the mean) measures fluctuations 
between data for each grid point.  A basic sensitivity analysis of yields is also performed to help 
understand results, using a one-factor-at-a-time method.  Although this is not comprehensive 
(Saltelli and Annoni, 2010), it is straightforward to interpret and is sufficient for the purposes of the 
investigation. 
 
 
3. Results 
 
3.1 Yields 
 
Correlation coefficients between dry matter yields obtained from different combinations of input 
datasets are shown in Table 1.  Correlation is generally stronger between results obtained using the 
same soil dataset (top left and bottom right corners of table) and weaker for results from different 
soil datasets (bottom left corner of table). 
 
Table 1.  Correlation coefficients between model results for dry matter yield using different 
combinations of input datasets.  Soil data (I=IGBP, H=HWSD), meteorological data (T=CRU TS 
3.0, A=CRU CL 1.0, U=UKCP09). 
 
 I,T I,A I,U H,T H,A H,U 

I,T 1      

I,A 0.96 1     

I,U 0.9 0.93 1    

H,T 0.75 0.62 0.6 1   

H,A 0.86 0.79 0.73 0.9 1  

H,U 0.74 0.68 0.71 0.78 0.81 1 
 
As an example, the yields obtained from the CRU TS 3.0 dataset with both soil datasets are shown 
in Fig. 1.  A large difference in yield is evident in the south-east of the country between the different 
soil inputs, with high levels of drought kill apparent using HWSD.  Similar soil differences are 
found with other meteorological inputs (results not shown for simplicity). 
 
Fig. 1.  Mean annual yield (t/ha) for different input datasets: I,T (a) and H,T (b).  Grey areas show 
no growth (crop kill). 



 



 
The coefficient of variation between results is shown for each grid point in Fig. 2a.  Greatest 
variation is in the south-east, which tends to be the driest and warmest area of the UK rather than 
prone to more variable weather.  Fig. 2b shows which combination of input datasets produces the 
highest yield for each grid point.  Results from the IGBP soil dataset tend to produce the highest 
yield; locations where the HWSD soil data produce the highest yield are quite sparse, and are 
limited to the west and north of the UK, which tend to be wetter and cooler respectively.  
Differences between the best and worst dry matter yields are shown in Fig. 2c, demonstrating the 
significance of the choice of dataset inputs on results. 
 
Fig. 2.  (a) Coefficient of variation between results obtained from different combinations of input 
datasets.  Cross shows location used in Fig. 3.  (b) Combination of input data which produces the 
highest yield.  (c) Difference between best and worst dry matter yield due to different input datasets 
(t/ha). 



 



 
Fig. 3 shows the effect on yields due to varying individual input parameters for a single location in 
East Anglia (shown by a cross in Fig. 2a), 1961-1990, with results obtained using the combination 
of IGBP and CRU TS 3.0 datasets.  In the region considered, temperature range does not affect 
results, and is not plotted.  With all other parameters held constant, increasing temperature has an 
increasingly negative effect on yield in the range considered, due to the reduction of available water 
resulting from increased evapotranspiration.  The only exception to this is at the very bottom of the 
temperature range considered, where drought effects appear marginally outweighed by increased 
degree days.  Increasing cloud cover has a consistently negative effect on growth due to decreased 
incident radiation.  In contrast, increasing precipitation has a positive effect on growth, which levels 
off for low and high values, where drought and saturation occur respectively.  Increasing field 
capacity has a very similar effect on growth to precipitation, as it increases available water in a 
comparable manner.  Similarly, increasing wilt point follows a pattern resembling that of increasing 
temperature, since it also reduces available water. 
 
Fig. 3.  Sensitivity analysis showing resultant yield from varying individual input parameters.  
Dotted lines are soil parameters.  Location shown by cross in Fig. 2a.  Results obtained using IGBP 
soil data and CRU TS 3.0 meteorological data. 
 

 
 
Comparison of yields in Table 1 suggests that variation in soil inputs causes greater changes in 
results than variation in meteorological inputs.  However, Fig. 3 suggests that the model is no more 
sensitive to soil values in the parameter space considered, hence the differences apparent in Table 1 
must be due to either greater differences between soil data than between meteorological data, or a 



combination of factors that are not apparent in the sensitivity analysis, which only considers one 
parameter at a time.  An analysis of inputs is therefore performed to further understand the effect on 
results. 
 
3.2 Meteorological inputs 
 
Meteorological inputs are considered first.  For simplicity, analysis of temperature range is omitted 
due to its small effect on results.  Correlation coefficients between datasets for the month of July are 
shown in Table 2.  Correlation is generally high, with the lowest correlation being for precipitation 
between different years of the time series data.  This suggests good agreement between datasets. 
 
Coefficients of variation for precipitation are shown in Fig. 4a; only precipitation results are 
presented since they show greatest variation between datasets, and are also crucial to soil water 
levels.  Differences are generally fairly small, and are in large part due to annual variation in the 
weather for the time series data.  As an example of the expected distribution of precipitation in the 
UK, the mean precipitation for July from dataset A is shown Fig. 4b.  An east-west divide in values 
is evident, showing some similarities to the distribution of differences in results shown in Fig. 2a.  
This suggests that results are most vulnerable to fluctuation where there is less precipitation. 
 
Table 2.  Correlation coefficients for precipitation (a), temperature (b) and cloud (c) for the July of 
different datasets (T61,75,09=CRU TS 3.0 1961,75,90; A=CRU CL 1.0; U=UKCP09) 
(a) 
 T61 T75 T90 A U 

T61 1     

T75 0.84 1    

T90 0.86 0.75 1   

A 0.91 0.91 0.9 1  

U 0.83 0.8 0.85 0.89 1 
 
(b) 
 T61 T75 T90 A U 

T61 1     

T75 0.97 1    

T90 0.98 0.98 1   

A 0.99 0.99 0.99 1  

U 0.93 0.94 0.94 0.95 1 
 
(c) 
 T61 T75 T90 A U 

T61 1     

T75 0.92 1    

T90 0.96 0.94 1   

A 0.98 0.96 0.97 1  

U 0.9 0.88 0.93 0.9 1 
 



 
Fig. 4.  (a) Coefficient of variation between input datasets for precipitation in July. (b) Mean July 
precipitation 1961-1990 (mm) from dataset A (CRU CL 1.0). 
 



 



3.3 Soil inputs 
 
The correlation coefficient between soil datasets is found to be 0.25 for wilt point and 0.2 for field 
capacity; the correlation coefficient for the difference between wilt point and field capacity is also 
0.2.  Correlation is rather weak, and is far lower than for both meteorological data and yield results.  
Discrepancies are partly explained by the use of derived values from the HWSD dataset, which is 
considered further in Section 4.1. 
 
In order to simplify analysis, further results are only presented for the difference between field 
capacity and wilt point, since this is the most important value for crop growth, with higher values 
likely to favour higher yields.  Coefficients of variation are presented in Fig. 5a, showing regions of 
large differences spread across the whole of the UK.  Fig. 5b shows the difference in values 
between datasets.  It should be noted that IGBP has uniformly larger values than HWSD for the 
whole of the UK, with only a very few exceptions in the northern locations.  Differences are often 
very large, and are fairly randomly distributed.  The fact that Fig. 2b shows several location where 
results obtained using HWSD are larger is because Miscanfor does not depend only on the 
difference between field capacity and wilt point, but also their individual values, which follow 
different distributions (results not shown for simplicity). 
 
Fig. 5.  (a) Coefficient of variation between IGBP and HWSD soil data for the difference between 
field capacity and wilt point.  (b) Differences between datasets for the difference between field 
capacity and wilt point (mm).  Note that IGBP has consistently larger values than HWSD in all but 
a very few northern locations. 
 
 
 



 



 
4. Discussion 
 
4.1 Variation of inputs and outputs 
 
Results for dry matter yield are little affected by different input data in the north and west of the 
UK, but display marked variation in the south-east.  Table 1 suggests that soil data are key to this 
variation; however, investigation of both model sensitivity and the distribution of differences in 
input and output data suggest that yield variations require further explanation. 
 
Yield results follow a very distinct pattern of variation (see Fig. 2a, where there is a clear east-west 
divide) which is not evident with any of the variations in input data.  The variation in yield more 
closely matches rainfall distribution (see Fig. 4b, showing an average for July) than any variations 
in inputs.  In particular, it seems that while soil data variations are the main cause of yield 
variations, very few similarities are apparent in the distribution (see Fig 5a).  Modelled yields are 
notably higher with the IGBP dataset in the south-east of the UK, and although the IGBP dataset 
tends to favour greater yields than HWSD, the distribution and magnitude of differences is spread 
fairly randomly across the UK. 
 
From Figs. 1 and 2 it is clear that greater variation in yields coincides with areas of drought kill 
when using the HWSD dataset; although differences in the soil data are no larger in these areas than 
elsewhere, the combination with meteorological conditions means the model is closer to a kill 
threshold, at which point any differences in the input data are liable to be magnified by a step 
change in crop behaviour.  It is thus the combination of inputs which causes large changes that 
would be unpredictable when considered individually. 
 
As mentioned in Section 2.3, the field capacity and wilt point values used to represent HWSD were 
derived from the bulk density and texture of the soil layers using the Campbell method (Campbell, 
1985).  It is therefore difficult to fairly compare the soil datasets, especially given the difference in 
grid size, as noted in Section 2.2.  However, the HWSD dataset does include values for the 
difference between field capacity and wilt point (rather than separate values), which when 
compared directly against IGBP values (rather than using the separate values derived from the 
Campbell method) still show large differences.  Irrespective of the actual differences between the 
datasets, this study highlights the crucial role of soil water parameters and the combined effects of 
different inputs, as well as the need for careful use of soil data in environmental models. 
 
4.2 Environmental and modelling implications 
 
The results from different combinations of datasets raise important points about predicting crop 
growth and the potential consequences of environmental changes.  While the effect of climate 
change on crop growth is subject to considerable attention, it is clear from this study that soil water 
parameters are also fundamental to potential yields.  If climates become drier in summer, as 
predicted in areas including Europe, soil water storage will become increasingly critical.  Greater 
attention should therefore be paid to preserving soil texture by the use of soil amendments and 
avoiding soil compaction, further to the existing focus on soil carbon sequestration and atmospheric 
CO2 mitigation.  From a modelling perspective, predictions of possible changes to soil conditions 
should ideally be considered alongside potential climatic changes. 
 
While the effects of drought have been central to this study, it is likely that in some regions the 
effects of frost could play a similar role.  Such areas would be of less interest for growing 
Miscanthus, since yields would be unlikely to be high in colder areas, but it is worth noting in a 
broader context, as well as the important role of step changes to model sensitivity in general. 



 
Although the findings of this study depend primarily on differences between inputs rather than 
absolute values, the role of parameterisation should be considered (‘parameterisation’ is used here 
to refer to setting constants in the model to match field results).  If different datasets were used to 
parameterise the model, results would clearly be altered; for example, if HWSD rather than IGBP 
soil data were used, the large areas of drought kill in the south east would likely no longer be 
apparent, since this would provide a poor fit with field data.  This raises two important points about 
parameterisation.  Firstly, it is necessary to recognise that parameterised model terms are likely to 
be dataset-specific, and that alternative datasets may not reliably provide model results for the 
conditions ostensibly described; rather, the conditions should be considered relative to those of the 
original dataset used for parameterisation.  Secondly, by comparing results obtained from different 
input datasets, it is possible to assess the level of dependence on parameterisation for different 
aspects of the model, and potentially develop alternative model terms to respond to different inputs 
more accurately. 
 
As a consequence of the dataset-specific nature of results, when using climate predictions it must be 
considered the extent to which changes in model results are due to changes in the predicted climate 
rather than simply the use of a different dataset.  In order to minimise the problem, conditions 
should be considered relative to the base data rather than in absolute terms (assuming the base data 
are properly represented by the model), as described above, and results should be presented in 
relation to those obtained from the base values for the dataset, and not just in isolation. 
 
 
5. Conclusions 
 
The dependence of many environmental models on input datasets makes it particularly important to 
understand their effects on results.  By comparing modelled yields obtained from a crop growth 
model using different meteorological and soil data, it is found that the combination of inputs affects 
results in ways which are unpredictable from individual parameters alone.  While the model is 
generally relatively insensitive to changes in input datasets, it is possible in some areas to obtain 
significantly different yields using input data for ostensibly the same meteorological and soil 
conditions, particularly in areas with low levels of available soil water. 
 
Differences between meteorological datasets are found to be fairly small across most of the region 
considered, with inter-annual variation often larger than differences between average datasets.  
Differences between soil datasets are very large in many areas, and although this is partly explained 
by having to derive equivalent values from one dataset, it underlines the difficulty of obtaining 
reliable soil data, and the significant role of pedotransfer functions when processing soil data.  
Variation in yields tends to be far smaller than soil data variation, except in locations where the 
combined effects of meteorological data make the crop vulnerable to a kill event. 
 
The investigation highlights the importance of soil water parameters to modelling crop growth, and 
suggests that greater attention should be paid to soil water properties and preserving soil texture to 
avoid adverse effects on crops by increasingly dry conditions resulting from climate change.  
Differences between input datasets demonstrate the importance of considering the dataset-
dependence of parameterised model terms, both for model validation and predictions based on 
alternative datasets. 
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