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Abstract

Miscanthus has been identified as one of the most promising perennial grasses for renewable energy generation

in Europe and the United States [Mitigation and Adaptation Strategies for Global Change 9 (2004) 433]. However,

the decision to use Miscanthus depends to a considerable degree on its economic and environmental perfor-

mance [Soil Use and Management 24 (2008) 235; Renewable and Sustainable Energy Reviews 13 (2009) 1230]. This arti-
cle assessed the spatial distribution of the economic and greenhouse gas (GHG) costs of producing and

supplying Miscanthus in the UK. The average farm-gate production cost of Miscanthus in the UK is estimated to

be 40 £ per oven-dried tonne (£ odt�1), and the average GHG emissions from the production of Miscanthus are
1.72 kg carbon equivalent per oven-dried tonnes per year (kg CE odt�1 yr�1). The production cost of Miscanthus
varies from 35 to 55 £ odt�1 with the lowest production costs in England, Wales and Northern Ireland, and the

highest costs in Scotland. Sensitivity analysis shows that yield of Miscanthus is the most influential factor in its

production cost, with precipitation the most crucial input in determining yield. GHG emissions from the

production of Miscanthus range from 1.24 to 2.11 kg CE odt�1 yr�1. To maximize the GHG benefit, Miscanthus
should be established preferentially on croplands, though other considerations obviously arise concerning

suitability and value of the land for food production.
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Introduction

Climate change and energy security are two long-term

challenges faced by the UK (DTI, 2007). Under the

Climate Change Act 2008, the United Kingdom is com-

mitted to an emission reduction target of 80% compared

to 1990 levels by 2050. To meet this ambitious target

and improve energy security, renewable energy is

required as part of the future UK energy portfolio, and

the renewable energy share in the United Kingdom by

2020 should be 15% (Clarke et al., 2009). Perennial

grasses are among the renewable sources considered for

generating electricity and heat, because of their poten-

tial to reduce greenhouse gas (GHG) emissions relative

to fossil fuels, and to serve as carbon sinks by sequester-

ing carbon in soil (McLaughlin & Walsh, 1998; Khanna

et al., 2008). Miscanthus has been identified as one of the

most promising perennial grasses for renewable energy

generation in Europe and the United States (Heaton

et al., 2004). However, the decision to use Miscanthus

depends to a considerable degree on its economic and

environmental performance (Richter et al., 2008; Smeets

et al., 2009). It is therefore necessary to assess the pro-

duction cost and GHG emissions of supply chains of

Miscanthus in the United Kingdom. Many studies have

used life-cycle analysis to separately estimate the pro-

duction cost (Huisman et al., 1997; Bullard & Nixon,

1999; Khanna et al., 2008; Smeets et al., 2009), and GHG

emissions of the supply of Miscanthus (St. Clair S et al.,

2008; Hillier et al., 2009; Smeets et al., 2009). These stud-

ies are closely related to the specified assumptions, and

should be integrated to assess the production cost and

GHG emissions of the supply of Miscanthus, as the pro-

duction cost and GHG emissions of bioenergy will

simultaneously impact the usage of Miscanthus. Further-

more, the spatial distribution of the production cost and

GHG emissions of Miscanthus can be used to optimize

the supply strategy for a renewable energy market in

the United Kingdom. In this article, we assess the pro-

duction cost, the transportation cost and GHG emissions

of the supply chains of Miscanthus, as well as the spatial

variation in these costs in the United Kingdom. To

understand GHG emissions relative to C-efficient alter-

natives, GHG emissions are expressed in kilograms of

carbon equivalent (kg CE) (Lal, 2004).
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Materials and methods

Miscanthus is a C4 species, which is able to use sunlight and

water more effectively than C3 species (Knapp, 1993). It is

grown by planting rhizomes of about 10 cm in length. Miscan-

thus yields peak towards the end of autumn, at approximately

13 tonnes per hectare (t ha�1) in the United Kingdom (DEFRA,

2001). The crop is harvested annually so farmers have a regular

income and, to some extent, some income security (St. Clair

et al., 2008). The harvested crop has low mineral content, which

improves its fuel quality (Lewandowski et al., 1995; Lewan-

dowski & Kicherer, 1997).

The production cost and GHG emissions of the supply

chains of Miscanthus are calculated using life-cycle analysis.

The supply chain of Miscanthus encompasses establishment to

transportation to bioenergy conversion stations where Miscan-

thus is combusted. The management of Miscanthus follows

‘Planting and Growing Miscanthus: Best Practice Guidelines for

Application to DEFRA’s Energy Crops Scheme’ (DEFRA, 2001).

In this study we assume no herbicide is applied for Miscanthus

after the establishment year for weed control (on the basis of

the field experiments in Illinois, USA; Khanna et al., 2008). We

also assume no application of fertilizer to Miscanthus, following

St. Clair et al. (2008), because Miscanthus has a high nutrient-

use efficiency. The production cost at farm-gate (£ odt�1) is cal-

culated as:

P ¼
PT

t¼1
Ct

ð1þdÞt�1

PT
t¼1

Yt

ð1þdÞt�1

; ð1Þ

where T is the plantation life time, t is year, d is the discount

rate and is set to 0.06 (a 6% discount rate was chosen as it is

consistent with current farm economic modelling practice; Bau-

en et al., 2010), Y is yield (odt ha�1) and C is cost (£ ha�1).

The plantation life time for Miscanthus is assumed to be

20 years. The calculation of GHG emissions from the produc-

tion of Miscanthus includes all emissions related to field prepa-

ration, farming practices undertaken and substances applied

(herbicide) when Miscanthus is grown until it is harvested

(including bailing and loading). Tables 1 and 2 show data col-

lated for production cost and GHG emissions for growing

Miscanthus.

The transportation of Miscanthus can be performed by stan-

dard transportation vehicles. Tractors, trucks, trains and ships

can be used to transport energy crops (Borjesson & Gustavsson,

1996). The transportation cost and GHG emissions of Miscan-

thus per ton-km depend primarily upon the mode of transpor-

tation, and the roundtrip distance to be covered. For

transportation distances up to 25 km, tractor-trailer is typically

the most cost efficient method (Borjesson & Gustavsson, 1996;

Leduc et al., 2009), whereas transportation by truck is the most

cost effective option for distances of up to 100 km (Smeets

et al., 2009). For more than 100 km, train and ship are the most

cost efficient methods (Borjesson & Gustavsson, 1996). We

assume that the harvested Miscanthus is transported by truck.

Table 1 Farm-gate production cost for Miscanthus

Cost category Cost item

Cost (£ ha�1)

SourceYear 1 Year 2–19 Year 20

Establishment Rhizome costs (20,000 rhizomes ha�1) 1300 a

Herbicides (glyphosate) 96 a

Ploughing 48 b

Potato planter 300 b

Heavy roller 38 b

Postestablishment Fixed overheads 87 87 87 c

Harvest Mower conditioner 200 200 200 c

Storage Bales/plastic sheeting 38 38 38 c

Plantation removal 100 c

Grants ECS establishment grant 713 c

aWales Energy Crops Information Centre. (2011).
bEnergy Crops Calculator of NNFCC (2011) and Bauen et al. (2010).
cBauen et al. (2010).

ECS, energy crop scheme.

Table 2 Greenhouse gas emissions from the production of

Miscanthus

Operation category Operation

Emission

(kg CE ha�1)

Year 1 Years 2–20

Establishment* Broadspectrum

herbicide

6.00

Ploughing 15.20

Potato planter 6.90

Heavy roller 64.60

Postestablishment

Harvest* Cutting 10.00 10.00

Storage* Baling 3.30 3.30

*Lal (2004) and St. Clair et al. (2008).
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The transportation cost C (£ odt�1) is expressed as in Bauen

et al. (2010):

C ¼ 4:28þ 0:27d; ð2Þ

where d is the distance travelled (km).

Transportation GHG emissions are assumed to be 0.65 kg

CE (odt km)�1 [derived from Bonilla & Whittaker (2009)].

The yield map of Miscanthus in the United Kingdom is

derived from Wang et al. (2011). It was estimated by the pro-

cess-based Miscanthus model ‘Miscanfor’, developed by Has-

tings et al. (2009a,b), at a resolution of 1 km2 for the whole

United Kingdom, using mean yield for the period 1975–2002

(Fig. 1). The average dry matter yield of Miscanthus was

10.45 odt ha�1.

Results and discussion

The spatial distributions of farm-gate production costs

and GHG emissions from the production of Miscanthus

for the whole United Kingdom are depicted in Figs 2

and 3, respectively. The farm-gate production cost map

(Fig. 2) shows that the lowest production costs are

spread throughout England, Wales and Northern Ire-

land, whereas Scotland has the highest production costs.

The farm-gate production cost predominantly ranges

from 35 to 55 £ odt�1. In Fig. 3, the pattern of GHG

emissions from the production of Miscanthus is very

similar to that of production costs. Greenhouse gas

emissions from the production of Miscanthus vary from

1.24 to 2.11 kg CE odt�1 yr�1. For the average dry mat-

ter yield of Miscanthus in the United Kingdom of

10.45 odt ha�1, the average farm-gate production cost of

Miscanthus in the United Kingdom is 40 £ odt�1, and
Fig. 1 Yield map of Miscanthus in the United Kingdom (Wang

et al., 2011).

Fig. 2 Farm-gate production costs of Miscanthus.

Fig. 3 Greenhouse gas emissions from production of Miscan-

thus.

© 2011 Blackwell Publishing Ltd, GCB Bioenergy, 4, 358–363
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the average GHG emission from the production of

Miscanthus is 1.72 kg CE odt�1 yr�1. Under the assump-

tion that the average distance travelled to bioenergy

stations is 50 km in the United Kingdom, the transpor-

tation cost is 17.8 £ odt�1 and the transportation GHG

emissions are 32.5 kg CE odt�1, respectively. Therefore,

the total economic cost of supplying Miscanthus to

bioenergy stations, which is the sum of farm-gate

production cost plus transportation cost, is 58 £ odt�1,

and the total GHG emission is 34.22 kg CE odt�1.

The calculated production cost of Miscanthus does not

include the farm profit. To assess the economic benefit

of Miscanthus, we translate the production cost into the

farm-gate sale price, which considers the farm profit, as

the sale price for most energy is easily acquired, rather

than the production cost. The average farm-gate sale

price, which is the sum of farm-gate production cost

plus farm profit, is 46.12 £ odt�1, provided that the

farmer profit is 806 £ ha�1 (Cambridge & SAC, 2005).

This average farm-gate sale price of Miscanthus (46.12

£ odt�1 or 2.71 £ GJ�1) is attractive compared with the

price of gas (4.85 $ per million Btu or 2.81 £ GJ�1) and

oil (61.67 $ per barrel or 6.14 £ GJ�1) in 2009, but it is

higher than cost of coal (2.05 £ GJ�1) in 2009 (BP, 2010).

The total economic cost of supplying Miscanthus to bio-

energy stations with farmer profit (63.92 £ odt�1 or

3.76 £ GJ�1) is less expensive than oil in 2009, but it is

more expensive than using gas and coal in 2009.

Miscanthus provides a great GHG benefit compared

with fuel oil. When Miscanthus is used to displace fuel

oil, the saved oil C could be 0.44 t C odt�1 (Cannell,

2003). Even if the GHG emissions from the management

of Miscanthus are considered, the saved oil C is still con-

siderable. Therefore, Miscanthus is a more environmen-

tally friendly energy source compared to fuel oil.

The calculated farm-gate production cost of Miscan-

thus will be influenced by farming practices and yields.

Different assumptions about agronomic practices for

Miscanthus will result in different farm-gate production

costs. However, rather than analysing the detailed dif-

ferences among these assumptions, the focus here is to

determine the most influential factors on the farm-gate

production cost, as the farm-gate production cost of

Miscanthus contributes 69% of the total economic cost of

supplying Miscanthus to bioenergy stations, which

directly affects the use of Miscanthus for energy produc-

tion. A sensitivity analysis allows us to determine the

key variables and possible implications for controlling

costs. The sensitivity analysis conducted by Bauen et al.

(2010) indicated that yield was the most influential cost

factor of the farm-gate production cost of Miscanthus.

Bullard (2001) estimated that a 50% increase in the yield

of Miscanthus could reduce the per-unit cost by about

25%. Increasing the yield of Miscanthus is clearly an

effective way of reducing the production cost, which

would increase the attractiveness of Miscanthus for

energy generation.

Richter et al. (2008), using a simple model, showed

that yields of Miscanthus were affected by soil available

water capacity, air temperature and precipitation. Tuck

et al. (2006), using a bioclimatic envelope approach,

showed that the best conditions for growing Miscanthus

were within the temperature range 11–40 °C, and the

rainfall range 600–1500 mm yr�1. To determine which

factors most influence yield of Miscanthus, and thus

derive effective policy implications, a sensitivity analy-

sis was performed using the ‘Miscanfor’ model (Has-

tings et al., 2009a,b). The analysis was conducted for

sites in two major cropland areas in the UK: one in East

Anglia and the other in Scotland. Base values are pre-

sented in Table 3. Precipitation and solar radiation were

shown in the sensitivity analysis to be the most influen-

tial factors on yield of Miscanthus (Fig. 4). In East

Anglia, yield will change by 12% if there is a 10%

change in precipitation, and will change by 9% if there

is a 10% change in solar radiation. Whereas in Scotland,

yield will change by 5% if there is a 10% change in pre-

cipitation, and will change by 10% if there is a 10%

change in solar radiation. Variations in air temperature

have a relatively small influence on yield of Miscanthus

in both East Anglia and Scotland. As precipitation can

be managed through irrigation, yields of Miscanthus

could be increased by careful irrigation, and the farm-

gate production cost of Miscanthus could be decreased,

though irrigation itself carries an economic and GHG

cost. However, it has to be noted that our estimates

assume Miscanthus with sufficient nutrient supply. On

the poor soils, especially in Scotland, it may be neces-

sary to fertilize Miscanthus to maintain long-term yields

(Christian et al., 2008). Future studies should further

examine the influence of nutrient supply on yield of

Miscanthus and the consequences for GHG emissions.

The calculated production cost of Miscanthus will also

be influenced by land rent. Land rent has close relation

with the land type and the alternative use of the land

(i.e. opportunity cost of land). Nix (2008) recommend a

base case value of 150 £ ha�1 for grade 3 (i.e. good to

Table 3 Base value of parameters of ‘Miscanfor’ model in sen-

sitivity analysis

Parameter

Mean base value

East Anglia Scotland

Temperature (°C) 10.0 8.5

Precipitation (mm month�1) 64 76

Radiation (MJ m�2) 8.8 7.9

Cloud (%) 79 80

© 2011 Blackwell Publishing Ltd, GCB Bioenergy, 4, 358–363
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moderate) land in the United Kingdom. Khanna et al.

(2008) estimated that an increase in the opportunity cost

of land by $1 would increase the production cost of

Miscanthus by $0.05 tonne�1, given the alternative use of

land to corn and soybeans. Bauen et al. (2010) estimated

that the land rent, together with all fixed overheads, cul-

tivation, harvesting and storage costs, could lead to a

10% change in production cost of Miscanthus.

The greenhouse gas emissions from the production of

Miscanthus will be impacted by land use conversion. St.

Clair et al. (2008) found that conversion from cropland

to Miscanthus increased soil carbon stocks and reduced

GHG emissions relative to the former cropland, whereas

conversion of pasture or forest to Miscanthus yielded

small change to soil carbon, but potential loss of vegeta-

tion carbon (in the case of forest conversion). The size of

soil carbon emissions shows a strong relationship with

the initial soil carbon of the land (Hillier et al., 2009). In

Great Britain, the total amount of carbon in the soils is

estimated to be 9.8 ± 2.4 billion tonnes (6.9 billion ton-

nes in Scotland and 2.8 billion tonnes in England and

Wales; Dawson & Smith, 2007; Ostle et al., 2009), among

which bog habitats contain by far the largest below-

ground carbon stock (>550 million tonnes) followed by

improved grassland (274 ± 25 million tonnes) and ara-

ble-horticultural land (198 ± 19 million tonnes) (Ostle

et al., 2009). Based upon these previous studies, purely

in terms of the carbon/greenhouse gas balance, Miscan-

thus should be established preferentially on croplands,

though other considerations obviously arise concerning

suitability and value of the land for food production.

The calculated economic cost and GHG emissions of

Miscanthus are based on information described mainly

in UK sources, but will vary with location (fertilizer

applied, herbicide applied, soil type, etc.) and farming

experience as well as machinery (St. Clair et al., 2008).

The sources of uncertainty related with the calculation

of GHG emissions of the production of Miscanthus have

been identified in previous studies (Tan et al., 2002).

Given the economic and GHG benefits of Miscanthus rel-

ative to oil, it is clearly preferable for energy supply,

but is still more expensive on average than gas and coal.

The transport costs tip the balance in favour of gas com-

pared with Miscanthus, so production of energy grasses

in close proximity to power stations is likely to be most

viable. In some areas, where yield is high, Miscanthus is

more economically competitive, and it is these areas

where Miscanthus is the most viable alternative to fossil

fuels for energy generation. Our analysis suggests that

increasing yield and reducing transport distances will

make Miscanthus more competitive as a feedstock for

energy generation.

Fig. 4 Sensitivity analysis for Miscanthus yield in East Anglia (left) and Scotland (right).
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