

LJMU Research Online

Caspar, AT, Brandt, SD, Stoever, AE, Meyer, MR and Maurer, HH

Metabolic fate and detectability of the new psychoactive substances 2-(4bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethan-amine (25B-NBOMe) and 2-(4-chloro-2,5-dimethoxyphenyl)-N-[(2methoxyphenyl)methyl]ethanamine (25C-NBOMe) in human and rat urine by GC-MS, LC-MSn, and LC-HR-MS/MS approaches.

http://researchonline.ljmu.ac.uk/id/eprint/4755/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Caspar, AT, Brandt, SD, Stoever, AE, Meyer, MR and Maurer, HH (2017) Metabolic fate and detectability of the new psychoactive substances 2-(4bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethan-amine (25B-NBOMe) and 2-(4-chloro-2.5-dimethoxyphenyl)-N-[(2-

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

http://researchonline.ljmu.ac.uk/

Accepted (uncorrected) version. Journal of Pharmaceutical and Biomedical Analysis (04. Nov. 2016)

1	Metabolic fate and detectability of the new psychoactive substances 2-(4-bromo-2,5-							
2	dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25B-NBOMe) and 2-(4-chloro-2,5-							
3	dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25C-NBOMe) in human and rat urine							
4	by GC-MS, LC-MS ⁿ , and LC-HR-MS/MS approaches							
5								
6								
7	Achim T. Caspar ^a , Simon D. Brandt ^b , Andreas E. Stoever ^c , Markus R. Meyer ^a , Hans H. Maurer ^{a,*}							
8								
9								
10	^a Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical							
11	Pharmacology and Toxicology, Saarland University, D-66421 Homburg (Saar), Germany							
12	^b School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons							
13	Building, Byrom Street, Liverpool L3 3AF, UK							
14	^c Institute of Legal Medicine, University of Munich, D-80336 Munich, Germany							
15								
16								
17								
18								
19								
20								
21	*Corresponding author at Saarland University, Department of Experimental and Clinical							
22	Toxicology, Homburg (Saar), Germany							
23	E-mail address: <u>hans.maurer@uks.eu</u> (H.H. Maurer)							
24								

26 25B-NBOMe and 25C-NBOMe are potent 5-HT_{2A} receptor agonists that have been associated with 27 inducing hallucinogenic effects in drug users and severe intoxications. This paper describes the 28 identification of their metabolites in rat and human urine by liquid chromatography (LC)-high 29 resolution (HR)-MS/MS, the comparison of metabolite formation in vitro and in vivo and in different 30 species, the general involvement of human cytochrome-P450 (CYP) isoenzymes on their metabolism 31 steps, and their detectability by standard urine screening approaches (SUSAs) using GC-MS, LC-32 MSⁿ, or LC-HR-MS/MS. Both NBOMe derivatives were mainly metabolized by O-demethylation, 33 O,O-bis-demethylation, hydroxylation, and combinations as well as by glucuronidation and sulfation 34 of the main phase I metabolites. For 25B-NBOMe, 66 metabolites could be identified and 69 for 25C-35 NBOMe. After application of low doses of both substances to rats, they were detectable mainly via 36 their metabolites by both LC-based SUSAs. In case of acute intoxication, it was possible to detect 37 25B-NBOMe and its metabolites in an authentic human urine sample when using the GC-MS SUSA in addition to the LC-based SUSAs. Initial CYP activity screening revealed the involvement of 38 39 CYP1A2 and CYP3A4 in hydroxylation and CYP2C9 and CYP2C19 in O-demethylation. The 40 presented study demonstrated that 25B-NBOMe and 25C-NBOMe were extensively metabolized and 41 detectable by both LC-based SUSAs.

- 43 *Keywords*:
- 44 25B-NBOMe
- 45 25C-NBOMe
- 46 new psychoactive substance
- 47 metabolism
- 48 cytochrome-P450
- 49 LC-MSⁿ
- 50 LC-HR-MS/MS

54 According to annual drug reports published by the European Monitoring Centre for Drugs and Drug 55 Addiction (EMCDDA) and United Nations Office on Drugs and Crime (UNODC) [1-4], the 56 availability and abuse of new psychoactive substances (NPS) increased during the last few years. 57 Besides synthetic cannabinoids, cathinones, opioids, and tryptamines, the group of phenethylamines 58 gained more importance in the last years [5]. Among others, the so-called 2C-type phenethylamines 59 have been a constant feature in the detection of NPS [6]. They were first described by Alexander 60 Shulgin in his book PIHKAL [7]. Like many phenethylamines, they have powerful psychoactive and 61 stimulating effects [7,8]. Although many of them have been scheduled, new and uncontrolled 62 alternatives have emerged. Structure-activity relationship studies revealed that derivatization of the 63 primary amine of the 2C partial structure with a 2-methoxybenzyl substituent significantly increased 64 the affinity toward the serotonin 5-HT_{2A} receptor, thus, mediating potent hallucinogenic effects [9-65 12]. The resulting 2C derivatives, the so-called NBOMes (N-2-methoxybenzyl phenethylamines), 66 represent a new group of potent phenethylamine hallucinogens with high abuse potential. 2-(4-67 Bromo-2,5-dimethoxyphenyl)-N-[(2-methoxy¬phenyl)methyl]ethanamine (25B-NBOMe, 2C-B-68 2-(4-chloro-2,5-dimethoxyphenyl)-*N*-[(2-methoxy¬phenyl)methyl]ethanamine (25C-NBOMe), 69 2C-C-NBOMe), 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-NBOMe, and 70 methoxyphenyl)methyl]ethanamine, 25I-NBOMe, 2C-I-NBOMe) are among the most prevalent 71 NBOMes. They are consumed depending on desired effects in reported dosages between 200-1,000 72 µg, administered orally, sublingually, bucally or insufflated as powder or in solution as nose spray 73 [8,13-20]. In recent years, NBOMe consumption was described in the context of acute and severe 74 intoxications and fatalities [8,14-18,21,22]. In some cases, an unintentional intake of NBOMes, sold 75 as LSD or 2Cs, were found to be responsible for adverse events [8,15,19,22]. However, 25B-NBOMe 76 has also been employed in positron emission tomography (PET) in human volunteers to assess 77 binding of this ligand in distinct brain areas and at non-psychoactive dosage levels [23,24].

78 Due to high receptor affinity and functional activity as full agonists, comparatively low doses, 79 comparable to LSD, are needed to induce psychoactive effects. Consequently, the resulting low blood 80 plasma or urine concentrations can make it challenging to identify and characterize the intake of 81 NBOMes. In urine, the concentration of compounds is generally higher than in blood, but in many 82 cases, metabolites rather than the parent compounds are the targets. Therefore, metabolism studies 83 are needed for the development of urine screening approaches. The comprehensive metabolism study 84 for 25I-NBOMe revealed that it was extensively metabolized and that the parent compound was 85 found in urine only in small amounts [25].

86 Recently, Wohlfarth et al. [26] described the metabolism of 25C-NBOMe and 25I-NBOMe in mice 87 and human urine as well as in human hepatocytes, and the reported results were consistent with 88 previously published human and rat data for 25I-NBOMe [25]. For 25B-NBOMe, only limited data 89 on its biotransformation are available [27,28], and for both compounds, no comprehensive data 90 appear to be available on their detectability. Therefore, the aims of the present study were to 91 investigate the metabolism of 25B-NBOMe and 25C-NBOMe in rats and humans with LC-HR-92 MS/MS, to compare the results with in vitro and in vivo data and between different species, and to 93 investigate their detectability by the authors' standard urine screening approaches (SUSA) by GC-94 MS, LC-MSⁿ, and LC-HR-MS/MS, respectively.

95

97

98 2.1. Chemicals and reagents

99

25B-NBOMe hydrochloride and 25C-NBOMe hydrochloride were purchased by LGC Standards
(Wesel, Germany). Isolute HCX cartridges (130 mg, 3 mL) were obtained from Biotage (Uppsala,
Sweden), isocitrate and isocitrate dehydrogenase from Sigma (Taufkirchen, Germany), NADP⁺ from
Biomol (Hamburg, Germany), acetonitrile (LC-MS grade), ammonium formate (analytical grade),

^{96 2.} Experimental

104 formic acid (LC-MS grade), methanol (LC-MS grade), mixture (100,000 Fishman units/mL) of 105 glucuronidase (EC No. 3.2.1.31) and arylsulfatase (EC No. 3.1.6.1) from Helix Pomatia, and all other 106 chemicals and reagents (analytical grade) from VWR (Darmstadt, Germany). The baculovirus-107 infected insect cell microsomes (Supersomes) containing 1 nmol/mL of human cDNA-expressed 108 CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 (2 nmol/mL), 109 CYP3A4, or CYP3A5 (2 nmol/mL) were obtained from Corning (Amsterdam, The Netherlands). After delivery, the CYPs were thawed at 37°C, aliquoted, snap-frozen in liquid nitrogen, and stored at 110 111 -80°C until use.

112

113 *2.2. Urine samples*

114

115 According to an established study design [29], the investigations were performed using rat urine 116 samples from male Wistar rats (Charles River, Sulzfeld, Germany) for toxicological diagnostic 117 reasons according to German law. Both compounds were administered in an aqueous suspension by 118 gastric intubation of a single 10 mg/kg body weight (BW) dose for identification of the metabolites 119 and of 0.1 mg/kg BW for screening (dose calculated based on common single dose reported in trip 120 reports (https://www.erowid.org) and scaled by dose-by-factor approach from man to rat according to 121 Sharma and McNeill [30]), respectively. The rats were housed in metabolism cages for 24 h, having 122 water ad libitum. Urine was collected separately from feces over a 24 h period. Blank urine samples 123 were collected before drug administration to verify that the samples were free of interfering 124 compounds. The samples were directly analyzed and then stored at -20°C.

In addition, for 25B-NBOMe, an authentic ante mortem human urine sample after unintentional intake of an unknown dose of 25B-NBOMe (declared as 2C-B) submitted to the authors' laboratory for toxicological diagnostics was also analyzed.

128

129 2.3. Sample preparation

155 CYP3A4, or CYP3A5 for 30 min. Besides enzymes and substrates, the incubation mixtures (final

volume, 50 μ L) contained 90 mM phosphate buffer (pH 7.4), 5 mM Mg²⁺, 5 mM isocitrate, 1.2 mM NADP⁺, 0.5 U/mL isocitrate dehydrogenase, and 200 U/mL superoxide dismutase. For incubations with CYP2A6 and CYP2C9, phosphate buffer was replaced with 45 mM or 90 mM Tris buffer, respectively, according to the Gentest manual. Reactions were initiated by addition of the CYP enzymes and stopped with 50 μ L of ice-cold acetonitrile. The solution was centrifuged for 2 min at 14,000 rpm; 70 μ L of the supernatant phase were transferred to an autosampler vial and 5 μ L injected onto the LC-HR-MS/MS system.

163

164 2.5. LC-HR-MS/MS instrumentation for identification of phase I and II metabolites and CYP initial
165 screening

166

According to a published procedure [32], the extracts were analyzed using a ThermoFisher Scientific (TF, Dreieich, Germany) Dionex UltiMate 3000 RS pump consisting of a degasser, a quaternary pump, and an UltiMate autosampler, coupled to a TF Q-Exactive Plus system equipped with a heated electrospray ionization (HESI)-II source. The instrument was used in positive or in negative ionization mode. Mass calibration was performed prior to analysis according to the manufacturer's recommendations using external mass calibration.

Gradient elution was run on a TF Accucore PhenylHexyl column (100 mm x 2.1 mm, 2.6 μ m). The mobile phases consisted of 2 mM aqueous ammonium formate containing formic acid (0.1%, *v/v*) and acetonitrile (1%, *v/v*) (pH 3, eluent A) and 2 mM ammonium formate solution with acetonitrile:methanol (50:50, *v/v*) containing formic acid (0.1%, *v/v*) and water (1%, *v/v*) (eluent B). The gradient and flow rate were programmed as follows: 0-1 min hold 99% A, 1-16 min 95% A to 5% A, 16-18 min hold 5% A, and 18-20 min hold 99% A, constantly at 500 μ L/min. The HESI-II source conditions were as follows: sheath gas, 60 arbitrary units (AU); auxiliary gas, 10

1/9 The filesi-fi source conditions were as follows. sheath gas, of arounary units (AO), auxiliary gas, fo

180 AU; spray voltage, 3.00 (positive polarity) and -4.00 kV (negative polarity); heater temperature,

181 320°C; ion transfer capillary temperature, 320°C; and S-lens RF level, 60.0. Mass spectrometry was

182 performed in positive and negative polarity mode using full scan (FS) data and a subsequent data 183 dependent acquisition (DDA) mode with an inclusion list on the masses of interest (phase I or phase 184 II metabolites). Additionally, DDA runs without inclusion list (positive and negative mode) were 185 performed to detect unexpected metabolites. 186 The settings for FS data acquisition were as follows: resolution, 35,000; microscans, 1; automatic 187 gain control (AGC) target, 1e6; maximum injection time (IT), 120 ms; and scan range, m/z 100–700. 188 The settings for the DDA mode with and without an inclusion list were as follows: resolution, 17,500; 189 microscans 1, AGC target, 2e5; maximum IT, 250 ms; isolation window, 1.0 m/z, HCD with stepped 190 normalized collision energy (NCE), 17.5, 35, and 52.5%; spectrum data type, profile; and underfill 191 ratio, 0.5%. For the run without inclusion list, the five most intense precursor ions were transferred to 192 an exclusion list for 1 s (dynamic exclusion). 193 For analyzing the initial CYP activity screening, the MS settings and the mobile phases as well as the 194 gradient and flow rate were the same with the same inclusion list as for identification of phase I 195 metabolites. 196

```
197 2.6. Standard urine screening procedures (SUSAs)
```

198

199 The SUSAs were performed as described in the following references: GC-MS SUSA [33,34], LC-

200 MSⁿ SUSA [25,35], and LC-HR-MS/MS SUSA [25,36].

201

202 **3. Results and discussion**

203

204 3.1. Identification of metabolites

3.1.1. Identification of 25B-NBOMe and 25C-NBOMe and their phase I metabolites via HR-MS/MS
fragmentation

208 The HR-MS/MS fragmentation patterns and metabolite formation of 25B-NBOMe and 25C-209 NBOMe were similar to those described for 25I-NBOMe [25]. Briefly, and for discussion purposes, viewed 210 the molecules were as two distinct parts, i.e. the 4-halogenated 2.5-211 dimethoxyphenethylamine (2C) part and the N-(2-methoxybenzyl) (NBOMe) part. Due to the high 212 number of metabolites, the fragmentation patterns could not be discussed in detail for all metabolites 213 and only the typical fragment ions used for identification will be discussed.

214 In general, for both compounds and their metabolites, the precursor masses and the most abundant 215 fragment ions formed from unmodified or modified NBOMe parts were used to identify the 216 corresponding metabolites. As expected, the fragment ions formed by the NBOMe part were identical 217 for 25B-NBOMe and 25C-NBOMe. To confirm the predicted chemical structure of the metabolites, 218 the corresponding 2C fragment ions (Table S1 in the electronic supplementary data for 25B-NBOMe 219 and Table S2 for 25C-NBOMe) were used. For the N-dealkylated metabolites, no fragment ions of 220 the NBOMe part could be detected, but characteristic 2C fragmentation patterns for the bromo and 221 chloro analogues (Tables S1 and S2). The precursor masses (PM) are given with the calculated exact 222 masses.

223 25B-NBOMe (B1; PM at m/z 380.0856, M+H⁺) showed a fragmentation pattern characteristic also 224 for most of the detected metabolites. The most abundant fragment ion of m/z 121.0653 represented 225 the cleavage of the NBOMe moiety, followed by the loss of the methoxy group (-30.0105 u) 226 producing the tropylium ion of m/z 91.0548. The fragment ions representing the 2C part showed low 227 abundances of at least 1 % (Table S1). The fragment ion of m/z 258.0124 representing the 2C-B 228 iminium ion resulted from benzyl cleavage. A loss of NH (- 15.0109 u) formed the fragment ion of 229 m/z 243.0021 followed by a loss of a methyl radical (- 15.0235 u) of one of the two methoxy groups in 230 the 2C part resulting in fragment ion of m/z 227.9786. For the MS² spectrum of 25I-NBOMe, a 231 rearrangement was described in the literature [25]. In the parent spectrum of 25B-NBOMe, one 232 fragment ion could also be formed by the same rearrangement. The fragment ion of m/z 363.0596 233 resulted from a loss of ammonia (-17.0263 u) and appeared consistent with the postulated

rearrangement reaction. Few MS² spectra of metabolites also showed possible rearranged fragment

235 ions.

236 The fragmentation patterns of 25C-NBOMe (C1; PM at m/z 336.1361, M+H⁺) corresponded to those 237 of 25B-NBOMe and 25I-NBOMe. Similarly, the most abundant fragment ions in MS² were formed 238 by cleavage of the NBOMe moiety producing fragment ions of m/z 91.0548 and 121.0653. Also, the 239 fragment ions representing the 2C part showed a lower abundance of about 1 % (Table S2). The 240 fragment ions of m/z 214.0629, m/z 199.0526, and m/z 184.0291 represented the 2C-C iminium ion, 241 the subsequent loss of NH (- 15.0109 u), and the loss of a methyl radical (- 15.0235 u) of one of the 242 two methoxy groups, respectively. In the spectrum of 25C-NBOMe, no fragment ions indicating the 243 rearrangement were detected, possibly due to low relative abundance. However, in the MS² spectra of 244 some 25C-NBOMe metabolites (e.g. O-demethyl metabolite isomers 1 and 2, C16 and C17), some 245 rearranged fragment ions could also be detected. Overall, 35 phase I metabolites could be detected for 246 25B-NBOMe in urine and 36 for 25C-NBOMe, respectively. All phase I metabolites are listed in 247 Tables S1 and S2 in the electronic supplementary data.

For metabolite identification based on the MS² spectra, in most cases the representative fragment ion 248 249 for the NBOMe part was used. Unmodified NBOMe parts led to a fragment ion of m/z 121.0653. The 250 presence of this fragment ion led to the suggestion that the expected modification took place at the 2C 251 part based on the predicted precursor mass for the metabolite. An unchanged fragment ion of m/z252 121.0653 could be seen for the parent compounds (B1 and C1) as well as for mono- and bis-253 demethylated (B13, B14, B8 and C16, C17, C10), mono-hydroxylated (B29, B32 and C31, C32), bishydroxylated (B35), combined mono-demethylated with mono-hydroxylated (B22), dehydrogenated 254 255 (B20 and C24), dehydrogenated combined with mono-demethylated (B12 and C13), and mono-256 hydroxylated (B27 and C30) metabolites. On the other hand, the fragment ion of m/z 137.0603 257 represented mono-hydroxylation at the NBOMe part (B16, B23, B28, B30, B31 and C19, C25, C27, 258 C33, C35). At the NBOMe moiety, bis-hydroxylation led to the fragment ion of m/z 153.0552 (B33, 259 B34 and C34, C36) and O-demethylation to fragment ion of m/z 107.0497 (B7, B9, B10, B11, B15,

B19, B21 and C8, C9, C11, C12, C14, C18, C21, C23, C26). The fragment ion of m/z 107.0497 260 261 could also be found for the NBOMe mono-hydroxylated (B16, B23, B28, B31 and C19, C25, C27, C33) or NBOMe bis-hydroxylated (B34 and C34, C35, C36) metabolites, but consistently in 262 263 combination with the fragment ions of m/z 137.0603 or m/z 153.0552 as mentioned above. Therefore, 264 the absence of the fragment ions of m/z 137.0603 and 153.0552 indicated O-demethylation at the 265 NBOMe part. O-Demethylation combined with mono-hydroxylation led to fragment ion of m/z266 123.0446 (B17, B18, B24, B25 and C20, C22, C28, C29). As mentioned above, all N-267 demethoxybenzyl metabolites were identified based on the 2C part fragmentation patterns (B2-B6 268 and C2–C7).

269 In summary, the fragmentation patterns of both NBOMes corresponded to those of 25I-NBOMe. 270 Some compound-related characteristics were found for the bromo and chloro analogues as already 271 described for 25I-NBOMe. All metabolites, which were O-demethylated at the NBOMe part (m/z272 107.0497), showed higher abundances for fragment ions representing the 2C part probably due to a 273 hydrogen bond between the nitrogen and the hydroxy group resulting from O-demethylation at the 274 NBOMe part [25]. In addition, for these metabolites, the corresponding 2C fragment ion carrying the 275 nitrogen was represented by the 2C primary amine instead of the 2C iminium ion found for the parent 276 compounds or metabolites, which were not O-demethylated at the NBOMe part.

277 It was not possible in this study to identify the demethylated position of the methoxy group (2'- or 5'-278 position) or the position at which the NBOMe part was hydroxylated. Nevertheless, Wohlfarth et al. 279 [26] synthesized six potential 25C-NBOMe metabolites (2'- and 5'-O-demethyl-25C-NBOMe and 3-280 /4-/5- and 6-hydroxy-25C-NBOMe) to confirm the exact position of the metabolic reaction. They 281 observed that both in vivo samples (mouse and human urine) showed prevalence for O-demethylation 282 at the 5'-position. Furthermore, they observed that the most intense signal for a mono-hydroxylated 283 metabolite was detected for 5-hydroxy-25C-NBOMe in human urine as well as in mouse urine. In 284 general, Wohlfarth et al. described the same main metabolic steps compared to the present study and 285 25I-NBOMe [25]. In accordance, Leth-Petersen et al. [28] described that the main metabolic step
286 of 25B-NBOMe was also the 5'-O-demethylation in humans and pigs.

287

3.1.2. Identification of 25B-NBOMe and 25C-NBOMe and their phase I metabolites via HR-MS/MS
fragmentation

290

The phase II metabolite formation and fragmentation patterns were very similar for both compounds and comparable with those described for 25I-NBOMe. For both compounds, the precursor masses and the most abundant fragment ions formed from unmodified or modified NBOMe part were used to identify the corresponding phase II metabolites. 2C fragment ions were used to confirm the predicted metabolites.

Overall, 31 phase II metabolites could be identified for 25B-NBOMe and 33 for 25C-NBOMe. A list of all phase II metabolites is given in Tables S3 and S4 in the electronic supplementary data. All glucuronides eliminated glucuronic acid (- 176.0321 u) and all sulfates sulfuric acid (- 79.9568 u). Thus, the rest of the spectra of phase II conjugates was in accordance with the spectrum of the corresponding phase I metabolite. Also, for some phase II metabolites, fragment ions formed by conjugated partial structures could be used to elucidate the position of the conjugation.

302 As already described for 2C derivatives [37] and 25I-NBOMe the metabolites formed after N-303 demethoxybenzylation could further be conjugated by acetylation, glucuronidation, sulfation, or even 304 combinations of them. Furthermore, in accordance to 25I-NBOMe, an O,O-bis-demethylation of the 305 2C part led to a hydroquinone partial structure, which could further be conjugated with glutathione 306 (GSH). The degradation products of GSH conjugated metabolites could be found for both 307 compounds. Also the described conjugation catalyzed by catechol-O-methyl-transferase (COMT) 308 could be found for both NBOMes forming O-methyl metabolites (B33ME and C24ME, C36ME), 309 after bis-hydroxylation at the NBOMe part (m/z 167.0708) producing a catecholic partial structure.

313 For identification of the CYPs catalyzing the initial metabolic steps, the ten most abundant human 314 hepatic CYPs were incubated under conditions allowing a statement on the general involvement of a 315 particular CYP enzyme. It should be kept in mind that these qualitative data did not reflect a 316 quantitative contribution of a CYP to the hepatic clearance that would require the collection of 317 enzyme kinetic data [38], which was beyond the scope of this study. As summarized in Tables 1 and 318 2, CYP2C9 and CYP2C219 were involved in O-demethylation for both, 25B-NBOMe and 25C-NBOMe, respectively, CYP1A2 and CYP3A4 in hydroxylation, and CYP3A4 in N-319 320 demethoxybenzylation.

321

322 *3.3. Proposed metabolic pathways*

323

According to the 25B-NBOMe metabolites identified in human and rat urine after cleavage of conjugates and 25C-NBOMe metabolites identified in rat urine after cleavage of conjugates (Tables S1 and S2), the following metabolic pathways, depicted in Figs. 1 and 2, could be proposed.

As expected, both compounds underwent the same main metabolic steps. *O*-Demethylation led to the most abundant peaks in human and rat urine followed by *O*-bis-demethylation and /or by *O*demethylation plus hydroxylation. *N*-Demethoxybenzylation led to only small peaks in both species. However, the relative abundance of the different metabolites varied between the species, but it should also be kept in mind that the rat urines were pooled over 24 h and the human urine was collected at an unknown time after administration of an unknown dose. Finally, the relation of the metabolites may vary over the time of excretion.

For both derivatives, the following phase I pathways could be found: mono-demethylation (B13–B15 and C16–C18), bis-demethylation (B8–B10 and C10–C12), tris-demethylation (B7 and C8) of the methoxy groups, mono- and bis-hydroxylation (B29–B32, B34, B35, and C31–C33, C35, C36), *N*- 337 demethoxybenzylation (B6 and C5), and combinations of mono-hydroxylation with mono-

demethylation (B22–B25 and C26–C29), and bis-demethylation (B16–B19 and C19–C23) as well as bis-hydroxylation with mono-demethylation (B33 and C34), and *N*-demethoxybenzylation with mono-demethylation (B3, B4 and C2, C3) followed by oxidative deamination (B2) and oxidation to the corresponding carboxylic acid (B5 and C4). In addition, for 25C-NBOMe also *N*demethoxybenzylation with mono-hydroxylation (C7), and oxidation forming an amide structure (C6) could be predicted. Also, dehydro metabolites (B20 and C24) were found for both compounds. The presence of this metabolic step was already described for 25I-NBOMe [25].

345 Nielsen et al. [39] described dehydrogenation as a CYP-catalyzed reaction. The resulting double 346 bond was located at the 2C moiety and not between the nitrogen and the α-carbon of the 2C moiety as 347 confirmed with reference standard of the 25I-NBOMe imine. These compounds could further be 348 metabolized by mono-demethylation (B11, B12 and C13-C15), bis-demethylation (C9), 349 hydroxylation (B26-B28 and C30), and combination of mono-demethylation and hydroxylation 350 (B21 and C25). However, the possibility could not be excluded that the dehydro compound could 351 also be formed by artificial dehydration of the corresponding hydroxy metabolite. If hydroxylation 352 took place at the α -position to the nitrogen forming an unstable hemiaminal, then this metabolite 353 could further eliminate water under the ESI conditions described above. In summary, the metabolic 354 pathways for 25B-NBOMe and 25C-NBOMe corresponded to those described for 25I-NBOMe, i.e. 355 showing the same main phase I metabolism reactions.

The following phase II pathways could be proposed for humans and/or rats as given in Tables S3 and S4 and Figs. 1 and 2: sulfation (S) glucuronidation (G) and/or of the *O*-demethyl metabolites (B13/14S, B15S, B13G–B15G and C16/17S, C18S, C16G–C18G), of the *O*,*O*-bis-demethyl metabolites (B8S, B9/10S, B8G, B9/10G and C10S–C12S, C10G–C12G), of *O*,*O*,*O*-tris-demethyl metabolite (B7S, B7G and C8S, C8G), of the *O*-demethyl-hydroxy metabolites (B22S, B24/25S, B22G, B23, B24/25G and C22S, C27S, C28/29S), of the *O*,*O*-bis-demethyl-hydroxy metabolites (B16S, B17/18S, B16G, B19G and C20S, C19G–C22G), and of the hydroxy metabolites (B30G, 363 B31G and C31/32G, C33G). Glutathione (GSH) conjugation could be proposed for the O,O-bis-364 demethyl metabolite isomer 1 (B8-GSH-1, B8-GSH-2 and C10-GSH-1, C10-GSH-2), N-acetylation 365 (AC) for the N-demethoxybenzyl-O-demethyl metabolites (B3, B4 and C2, C3) followed by further 366 sulfation and/or glucuronidation (B3AC+S, B4AC+S, B3/4AC+G and C3/4AC+S, C2/3AC+G), and 367 O-methylation (ME) of the bis-hydroxy metabolite (C36ME) and the O-demethyl-bis-hydroxy 368 metabolites (B33ME and C34ME). In summary, all phase II pathways could be proposed for both 369 species except for glutathione conjugation, which was observed only in rats after administration of 370 the high dose.

371

372 *3.4. Comparison of metabolite formation in vitro and in vivo and in different species*

373

374 In contrast to the development of new therapeutics drug, pharmacokinetic data are not routinely 375 collected for NPS before emergence on the market. For ethical reasons, controlled human studies are 376 not possible. Therefore, animal studies under controlled conditions are common in combination with 377 human in vivo assays as described e.g. in refs. [25,26]. Both data can be confirmed by authentic 378 human samples of e.g. intoxication cases. For development of urine screening approaches, it is 379 important to know the possible target. Thus, any metabolites identified first in animal urine can 380 become the main target in human urine considering e.g. inter-species and/or genetic variations in 381 drug metabolism and transport. For this reason, Tables 3 and 4 list the phase I and II metabolites 382 identified in this study compared to those detected in human liver microsomes (HLM) incubation, 383 porcine liver microsomes (PLM) incubation, mouse urine (MU), authentic human urines (HU), or 384 human hepatocyte (HP) incubation. Differences could be explained by species differences, higher 385 doses, and/or different sampling time after administration.

386

387 *3.4.1. 25B-NBOMe*

389 Boumrah et al. [27] described 21 phase I and II metabolites of 25B-NBOMe identified only in vitro 390 after incubation with HLM and cofactors for CYPs and glucuronyl transferases. Leth-Petersen et al. 391 [28] compared formation of phase I metabolites in HLM and PLM incubations. In the present study, 392 35 phase I and 31 phase II metabolites have been identified in human and rat urine. According to 393 Table 3, in both urine samples, various metabolites could be identified not described by Boumrah et 394 al. or Leth-Petersen et al. Most of them were isomers of metabolites formed by combined metabolic 395 reactions such as mono- and bis-O-demethylation with hydroxylation or O-demethylation with N-396 dealkylation. Species differences occurred for the hydroxylation step because rats seemed to prefer 397 hydroxylation at the 2C part whereas human biotransformation might result in preferential 398 hydroxylation at the NBOMe part. Concerning phase II metabolism, Boumrah et al. investigated only 399 the glucuronide formation. In the present study, sulfation, N-acetylation, and O-methylation were 400 found in rat and human urine as further reactions. In addition, rats showed GSH conjugation and 401 combinations of N-acetylation with sulfation or glucuronidation. In contrast, the N-glucuronide of the 402 parent compound detected in HLM could not be found in the human or rat urine.

403

404 *3.4.2. 25C-NBOMe*

405

406 Table 4 summarizes the data obtained in rat urine and those in human hepatocytes and urines of 407 humans and mice [26]. Concerning phase I metabolism, most metabolites were common for all 408 species while the highest number was found in the rat urine probably due to the high dosage, urine 409 collection time, sample preparations, and/or chromatographic separation. Some metabolites were 410 only detected in rat urine such as the combined N-dealkylated and O-demethylated metabolites or 411 various isomers of O,O-bis-demethyl-hydroxy metabolites. Wohlfarth et al. [26] described N-412 oxidation and carbonylation in the hepatocyte incubation although it was not clear why this could not 413 be found in their human and mice urine. As already described for 25B-NBOMe, rats seemed to 414 preferentially hydroxylated at the 2C part and humans at the NBOMe part. Most phase II pathways

415 could be proposed for all three species with the exception of *O*-acetylation, *N*-acetylation, GSH
416 conjugation, and *O*-methylation. Again, the highest number of metabolites was identified in rat urine
417 probably due to the reasons described above.

418

419 3.5. Toxicological detection of 25B-NBOMe and 25C-NBOMe by SUSAs

420 3.5.1. GC-MS SUSA

421

Unfortunately, 25B-NBOMe and 25C-NBOMe and/or their metabolites could not be detected in rat urine after low dose administration (0.1 mg/kg BW). However, 25B-NBOMe and metabolites (Table 5) could be detected in the human urine sample by GC-MS SUSA. The compound ingested by the user was believed to be 2C-B, which typically requires a ten-fold higher dose compared to 25B-NBOMe [7]. Therefore, for acute and/or severe poisonings with NBOMes an intake could also be detected by GC-MS SUSA. 25C-NBOMe could only be detected after the high dose, enzymatic cleavage of conjugates, solid-phase extraction, and acetylation according to Welter et al. [31].

429

430 *3.5.2. LC-MSⁿ SUSA*

431

The LC-MSⁿ approach could detect 25B-NBOMe and 25C-NBOMe and/or their metabolites in rat urine after low dosage (0.1 mg/kg BW) as well as in the authentic human urine sample. A list of the detected metabolites is given in Table 6. As already mentioned above, the differences of detected analytes in the human and rat urine samples could be caused by different doses and urine collection times.

437

438 *3.5.3. LC-HR-MS/MS SUSA*

440 As expected, this approach was also able to reveal 25B-NBOMe and 25C-NBOMe and/or their 441 metabolites in rat urine after low dosage (0.1 mg/kg BW) as well as in the authentic human urine 442 sample. A list of the detected metabolites is given in Table 7. Again, the differences of detected 443 analytes in the human and rat urine samples could be caused by different doses and urine collection 444 times. Mostly due to the lethal overdose, the parent compound gave one of the most abundant signals 445 in the human urine sample. However, low dose rat urine studies showed that the parent compound 446 should not be expected in high amounts after recreational use. Therefore, it should not be used as the 447 only target for NBOMe urine screening.

448

449 **4.** Conclusions

450

Both, 25B-NBOMe and 25C-NBOMe were extensively metabolized similar to 25I-NBOMe including *O*-demethylation, *O*,*O*-bis-demethylation, and hydroxylations as predominant pathways in humans and rats. This was in accordance to published human and animal in vitro and in vivo data. Several CYP isoenzymes were involved in formation of the main metabolites. An intake could be detected mainly via their metabolites by low and high resolution LC-MS SUSAs and by GC-MS SUSA only in overdose cases.

457

458 Acknowledgements

459

The authors like to thank Julian A. Michely, Andreas G. Helfer, Sascha K. Manier, Lilian H. J.
Richter, Lea Wagmann, Dr. Jessica Welter-Lüdecke, Carsten Schröder, Gabriele Ulrich, and Armin
A. Weber for support and/or helpful discussion.

- 463 **Conflict of interest**
- 464
- 465 The authors declare that there are no conflicts of interest.

467 **References**

- 469 [1] European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), New psychoactive
 470 substances in Europe. An update from the EU Early Warning System, 2015.
- 471 [2] United Nations Office on Drugs and Crime (UNODC), World Drug Report 2014,
 472 http://www.unodc.org/documents/data-and-
- 473 analysis/WDR2014/World Drug Report 2014 web.pdf, 2014.
- 474 [3] United Nations Office on Drugs and Crime (UNODC), World Drug Report 2015,
 475 https://www.unodc.org/documents/wdr2015/World Drug Report 2015.pdf, 2015.
- 476 [4] United Nations Office on Drugs and Crime (UNODC), World Drug Report 2016,
 477 https://www.unodc.org/doc/wdr2016/WORLD DRUG REPORT 2016 web.pdf, 2016.
- 478 [5] H.H. Maurer, Chemistry, Pharmacology, and Metabolism of Emerging Drugs of Abuse
 479 [review], Ther. Drug Monit. 32 (2010) 544-549.
- 480 [6] L.A. King, New phenethylamines in Europe, Drug Test. Anal (2013) DOI 10.1002/dta.1570.
- 481 [7] A. Shulgin, Pihkal, A Chemical Love Story, Transform Press, Berkley (CA), 1991.
- 482 [8] J. Suzuki, M.A. Dekker, E.S. Valenti, F.A. Arbelo Cruz, A.M. Correa, J.L. Poklis, A. Poklis,
 483 Toxicities associated with NBOMe ingestion-a novel class of potent hallucinogens: a review
 484 of the literature, Psychosomatics 56 (2015) 129-139.
- 485 [9] M.R. Braden, J.C. Parrish, J.C. Naylor, D.E. Nichols, Molecular interaction of serotonin 5486 HT2A receptor residues Phe339(6.51) and Phe340(6.52) with superpotent N-benzyl
 487 phenethylamine agonists, Mol. Pharmacol. 70 (2006) 1956-1964.
- 488 [10] M. Hansen, K. Phonekeo, J.S. Paine, S. Leth-Petersen, M. Begtrup, H. Brauner-Osborne, J.L.
 489 Kristensen, Synthesis and structure-activity relationships of N-benzyl phenethylamines as 5-
- 490 HT2A/2C agonists, ACS Chem. Neurosci. 5 (2014) 243-249.

- 491 [11] A.L. Halberstadt, M.A. Geyer, Effects of the hallucinogen 2,5-dimethoxy-4492 iodophenethylamine (2C-I) and superpotent N-benzyl derivatives on the head twitch
 493 response, Neuropharmacology 77 (2014) 200-207.
- 494 [12] D.E. Nichols, M.F. Sassano, A.L. Halberstadt, L.M. Klein, S.D. Brandt, S.P. Elliott, W.J.
 495 Fiedler, N-Benzyl-5-methoxytryptamines as Potent Serotonin 5-HT2 Receptor Family
 496 Agonists and Comparison with a Series of Phenethylamine Analogues, ACS. Chem.
 497 Neurosci. 6 (2015) 1165-1175.
- 498 [13] W. Lawn, M. Barratt, M. Williams, A. Horne, A. Winstock, The NBOMe hallucinogenic drug
 499 series: Patterns of use, characteristics of users and self-reported effects in a large international
 500 sample, J. Psychopharmacol. 28 (2014) 780-788.
- 501 [14] D. Zuba, K. Sekula, A. Buczek, 25C-NBOMe New potent hallucinogenic substance 502 identified on the drug market, Forensic Sci. Int. 227 (2013) 7-14.
- 503 [15] S.L. Hill, T. Doris, S. Gurung, S. Katebe, A. Lomas, M. Dunn, P. Blain, S.H. Thomas, Severe
 504 clinical toxicity associated with analytically confirmed recreational use of 25I-NBOMe: case
 505 series, Clin. Toxicol. (Phila) 51 (2013) 487-492.
- J.L. Poklis, K.G. Devers, E.F. Arbefeville, J.M. Pearson, E. Houston, A. Poklis, Postmortem
 detection of 25I-NBOMe [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2methoxyphenyl)methyl]ethanamine] in fluids and tissues determined by high performance
 liquid chromatography with tandem mass spectrometry from a traumatic death, Forensic Sci.
 Int. 234 (2014) e14-e20.
- 511 [17] S.J. Stellpflug, S.E. Kealey, C.B. Hegarty, G.C. Janis, 2-(4-Iodo-2,5-dimethoxyphenyl)-N512 [(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe): clinical case with unique
 513 confirmatory testing, J. Med. Toxicol. 10 (2014) 45-50.
- 514 [18] M.H. Tang, C.K. Ching, M.S. Tsui, F.K. Chu, T.W. Mak, Two cases of severe intoxication
 515 associated with analytically confirmed use of the novel psychoactive substances 25B516 NBOMe and 25C-NBOMe, Clin. Toxicol. (Phila) 52 (2014) 561-565.

- 517 [19] J. Suzuki, J.L. Poklis, A. Poklis, "My friend said it was good LSD": a suicide attempt
 518 following analytically confirmed 25I-NBOMe ingestion, J. Psychoactive. Drugs. 46 (2014)
 519 379-382.
- 520 [20] F.S. Bersani, O. Corazza, G. Albano, G. Valeriani, R. Santacroce, P.F. Bolzan Mariotti, E.
 521 Cinosi, P. Simonato, G. Martinotti, G. Bersani, F. Schifano, 25C-NBOMe: preliminary data
 522 on pharmacology, psychoactive effects, and toxicity of a new potent and dangerous
 523 hallucinogenic drug, Biomed. Res. Int. 2014 (2014) 734749.
- J.L. Poklis, C.R. Nanco, M.M. Troendle, C.E. Wolf, A. Poklis, Determination of 4-bromo2,5-dimethoxy-N-[(2-methoxyphenyl)methyl]-benzeneethanamine (25B-NBOMe) in serum
 and urine by high performance liquid chromatography with tandem mass spectrometry in a
 case of severe intoxication, Drug Test. Anal. 6 (2014) 764-769.
- J.P. Walterscheid, G.T. Phillips, A.E. Lopez, M.L. Gonsoulin, H.H. Chen, L.A. Sanchez,
 Pathological findings in 2 cases of fatal 25I-NBOMe toxicity, Am. J. Forensic Med. Pathol.
 35 (2014) 20-25.
- A. Ettrup, S. da Cunha-Bang, B. McMahon, S. Lehel, A. Dyssegaard, A.W. Skibsted, L.M.
 Jorgensen, M. Hansen, A.O. Baandrup, S. Bache, C. Svarer, J.L. Kristensen, N. Gillings, J.
 Madsen, G.M. Knudsen, Serotonin 2A receptor agonist binding in the human brain with
 [(1)(1)C]Cimbi-36, J. Cereb. Blood. Flow. Metab. 34 (2014) 1188-1196.
- A. Ettrup, C. Svarer, B. McMahon, S. da Cunha-Bang, S. Lehel, K. Moller, A. Dyssegaard,
 M. Ganz, V. Beliveau, L.M. Jorgensen, N. Gillings, G.M. Knudsen, Serotonin 2A receptor
 agonist binding in the human brain with [(11)C]Cimbi-36: Test-retest reproducibility and
 head-to-head comparison with the antagonist [(18)F]altanserin, Neuroimage 130 (2016) 167174.
- 540 [25] A.T. Caspar, A.G. Helfer, J.A. Michely, V. Auwaerter, S.D. Brandt, M.R. Meyer, H.H.
 541 Maurer, Studies on the metabolism and toxicological detection of the new psychoactive
 542 designer drug 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine

543 (25I-NBOMe) in human and rat urine using GC-MS, LC-MSn, and LC-HR-MS/MS, Anal.
544 Bioanal. Chem. 407 (2015) 6697-6719.

545 [26] A. Wohlfarth, M. Roman, M. Andersson, F.C. Kugelberg, X. Diao, J. Carlier, C. Eriksson, X.

- 546 Wu, P. Konradsson, M. Josefsson, M.A. Huestis, R. Kronstrand, 25C-NBOMe and 25I-547 NBOMe metabolite studies in human hepatocytes, in vivo mouse and human urine with high-548 resolution mass spectrometry, Drug Test. Anal. (2016) DOI: 10.1002/dta.2044.
- 549 [27] Y. Boumrah, L. Humbert, M. Phanithavong, K. Khimeche, A. Dahmani, D. Allorge, In vitro
 550 characterization of potential CYP- and UGT-derived metabolites of the psychoactive drug
 551 25B-NBOMe using LC-high resolution MS, Drug Test. Anal. 8 (2016) 248-256.
- 552 [28] S. Leth-Petersen, C. Gabel-Jensen, N. Gillings, S. Lehel, H.D. Hansen, G.M. Knudsen, J.L.
 553 Kristensen, Metabolic fate of hallucinogenic NBOMes, Chem. Res. Toxicol. (2015) DOI:
 554 10.1021/acs.chemrestox.5b00450.
- J. Welter, P. Kavanagh, M.R. Meyer, H.H. Maurer, Benzofuran analogues of amphetamine
 and methamphetamine: studies on the metabolism and toxicological analysis of 5-APB and 5 MAPB in urine and plasma using GC-MS and LC-(HR)-MSⁿ techniques, Anal. Bioanal.
 Chem. 407 (2015) 1371-1388.
- 559 [30] V. Sharma, J.H. McNeill, To scale or not to scale: the principles of dose extrapolation, Br. J.
 560 Pharmacol. 157 (2009) 907-921.
- J. Welter, M.R. Meyer, E. Wolf, W. Weinmann, P. Kavanagh, H.H. Maurer, 2Methiopropamine, a thiophene analogue of methamphetamine: studies on its metabolism and
 detectability in the rat and human using GC-MS and LC-(HR)-MS techniques, Anal. Bioanal.
 Chem. 405 (2013) 3125-3135.
- L.H.R. Richter, Y.R. Kaminski, F. Noor, M.R. Meyer, H.H. Maurer, Metabolic fate of
 desomorphine elucidated using rat urine, pooled human liver preparations, and human
 hepatocyte cultures as well as its detectability using standard urine screening approaches,
 Anal. Bioanal. Chem. 408 (2016) 6283-6294.

- 569 [33] M.R. Meyer, C. Lindauer, J. Welter, H.H. Maurer, Dimethocaine, a synthetic cocaine
 570 derivative: Studies on its in vivo metabolism and its detectability in urine by LC-HR-MSⁿ and
 571 GC-MS using a rat model, Anal. Bioanal. Chem. 406 (2014) 1845-1854.
- 572 [34] H.H. Maurer, K. Pfleger, A.A. Weber, Mass spectral data of drugs, poisons, pesticides,
 573 pollutants and their metabolites, Wiley-VCH, Weinheim (Germany), 2016.
- 574 [35] D.K. Wissenbach, M.R. Meyer, D. Remane, A.A. Philipp, A.A. Weber, H.H. Maurer, Drugs
 575 of abuse screening in urine as part of a metabolite-based LC-MS(n) screening concept, Anal.
 576 Bioanal. Chem. 400 (2011) 3481-3489.
- 577 [36] A.G. Helfer, J.A. Michely, A.A. Weber, M.R. Meyer, H.H. Maurer, Orbitrap technology for
 578 comprehensive metabolite-based liquid chromatographic-high resolution-tandem mass
 579 spectrometric urine drug screening exemplified for cardiovascular drugs, Anal. Chim. Acta
 580 891 (2015) 221-233.
- 581 [37] D.S. Theobald, G. Fritschi, H.H. Maurer, Studies on the toxicological detection of the 582 designer drug 4-bromo-2,5-dimethoxy-beta-phenethylamine (2C-B) in rat urine using gas 583 chromatography-mass spectrometry, J. Chromatogr. B 846 (2007) 374-377.
- [38] C.S.D. Wink, G.M.J. Meyer, M.R. Meyer, H.H. Maurer, Toxicokinetics of lefetamine and
 derived diphenylethylamine designer drugs Contribution of human cytochrome P450
 isozymes to their main phase I metabolic steps, Toxicol. Lett. 238 (2015) 39-44.
- [39] L.M. Nielsen, N.B. Holm, S. Leth-Petersen, J.L. Kristensen, L. Olsen, K. Linnet,
 Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25INBOMe and 25I-NBOH, Drug Test. Anal. (2016) DOI: 10.1002/dta.2031.
- 590
- 591

Table 1 General involvement of the CYP isoenzymes on the formation of the given 25B-NBOMe

Metabolite	CYP	CYP	CYP 2P6	CYP 2C9	CYP 2C0	CYP 2C10	CYP	CYP 2E1	CYP	CYP 2A5
	IAZ	ZAO	200	200	209	2019	200	ZEI	JA4	JAJ
N-Demethoxybenzyl (B6)	+		+						+	+
<i>O</i> -Demethyl isomer 1 (B13)	+				+	+			+	
<i>O</i> -Demethyl isomer 2 (B14)	+				+	+	+		+	
<i>O</i> -Demethyl isomer 3 (B15)	+			+	+	+	+		+	
Dehydro- (B20)						+	+		+	
Hydroxy isomer 2 (B30)	+					+			+	+
Hydroxy isomer 3 (B31)	+					+			+	+
Hydroxy isomer 4 (B32)			+						+	

metabolites, numbering according to Table S1

Table 2 General involvement of the CYP isoenzymes on the formation of the given 25C-NBOMe

metabolites, numbering according to Table S2

Metabolite	СҮР	СҮР	СҮР	СҮР	СҮР	СҮР	СҮР	СҮР	СҮР	СҮР
	1A2	2A6	2B6	2C8	2C9	2C19	2D6	2E1	3A4	3A5
N-Demethoxybenzyl (C5)	+		+						+	+
<i>O</i> -Demethyl isomer 1 (C16)	+				+	+			+	
<i>O</i> -Demethyl isomer 2 (C17)	+				+	+	+		+	
<i>O</i> -Demethyl isomer 3 (C18)	+			+	+	+	+		+	
Dehydro- (C24)						+	+		+	
Hydroxy isomer 3 (C33)	+					+			+	+

Table 3 25B-NBOMe phase I and II metabolites detected in rat (RU) and human (HU) urine compared to those detected in human liver microsome (HLM) incubation published by Boumrah et al. [27] and in HLM and porcine liver microsome (PLM) incubations published by Leth-Petersen et al. [28]. Numbering according to Tables S1 and S3, * = metabolite only described in references [27,28]

No.	Metabolite	RU	HU	HLM [27]	HLM [28]	PLM [28]
B1	25B-NBOMe	+	+	+	+	+
B2	25B-NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-deamino-hydroxy-)	+	+			
B3	25B-NBOMe-M (N-demethoxybenzyl-O-demethyl-) isomer 1	+	+			
B4	25B-NBOMe-M (N-demethoxybenzyl-O-demethyl-) isomer 2	+	+			
B5	25B-NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-deamino-carboxy-)	+	+			
B6	25B-NBOMe-M (<i>N</i> -demethoxybenzyl-)	+	+	+	+	+
B7	25B-NBOMe-M (<i>O</i> , <i>O</i> , <i>O</i> -tris-demethyl-)	+	+			
B8	25B-NBOMe-M (O,O-bis-demethyl-) isomer 1	+	+	+	+	+
B9	25B-NBOMe-M (O,O-bis-demethyl-) isomer 2	+	+	+	+	
B10	25B-NBOMe-M (O,O-bis-demethyl-) isomer 3	+	+	+	+	+
B11	25B-NBOMe-M (O-demethyl-dehydro-) isomer 1	+	+			
B12	25B-NBOMe-M (O-demethyl-dehydro-) isomer 2	+				
B13	25B-NBOMe-M (O-demethyl-) isomer 1	+	+	+	+	+
B14	25B-NBOMe-M (O-demethyl-) isomer 2	+	+	+	+	+
B15	25B-NBOMe-M (O-demethyl-) isomer 3	+	+	+	+	+
B16	25B-NBOMe-M (O,O-bis-demethyl-hydroxy-) isomer 1	+				
B17	25B-NBOMe-M (O,O-bis-demethyl-hydroxy-) isomer 2	+	+			
B18	25B-NBOMe-M (O,O-bis-demethyl-hydroxy-) isomer 3	+	+			
B19	25B-NBOMe-M (O,O-bis-demethyl-hydroxy-) isomer 4	+				
B20	25B-NBOMe-M (dehydro-)	+	+			+
B21	25B-NBOMe-M (O-demethyl-dehydro-hydroxy-)	+				
B22	25B-NBOMe-M (O-demethyl-hydroxy-) isomer 1	+				+
B23	25B-NBOMe-M (O-demethyl-hydroxy-) isomer 2	+	+		+	+
B24	25B-NBOMe-M (O-demethyl-hydroxy-) isomer 3		+	+	+	+
B25	25B-NBOMe-M (O-demethyl-hydroxy-) isomer 4	+		+	+	+
B26	25B-NBOMe-M (dehydro-hydroxy-) isomer 1		+			
B27	25B-NBOMe-M (dehydro-hydroxy-) isomer 2	+				
B28	25B-NBOMe-M (dehydro-hydroxy-) isomer 3	+	+			
B29	25B-NBOMe-M (hydroxy-) isomer 1	+				
B30	25B-NBOMe-M (hydroxy-) isomer 2		+	+	+	+
B31	25B-NBOMe-M (hydroxy-) isomer 3	+	+	+		
B32	25B-NBOMe-M (hydroxy-) isomer 4		+	+	+	
B33	25B-NBOMe-M (O-demethyl-bis-hydroxy-)	+				
B34	25B-NBOMe-M (bis-hydroxy-) isomer 1		+			
B35	25B-NBOMe-M (bis-hydroxy-) isomer 2	+	+			
M11	25B-NBOMe-M (carbonyl) *					+
B3	25B-NBOMe-M					
AC	(<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-) <i>N</i> -acetyl isomer 1	+	+			
	25B-NBOMe-M					
AU	(<i>Iv-uchiculoxybelizyi-0-uchiculyi-) Iv-acetyi</i> Isoffiel 2	Ŧ	-			

B3	25B-NBOMe-M					
AC+S	(<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-) <i>N</i> -acetyl sulfate isomer 1	+				
B4	25B-NBOMe-M					
AC+S	(<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-) <i>N</i> -acetyl sulfate isomer 2	+				
B8	25B-NBOMe-M					
GSH-1	$(O O - his - demethyl_{-})$ S-methyl	+				
D22	25P NPOMe M					
ME	(O demotive high hydroxy) O motive		-			
ME D7	(O-definetiny1-bis-nydroxy-) O-metiny1		+			
B/						
S	(0,0,0-tris-demethyl-) sulfate	+				
B3/4	25B-NBOMe-M					
G	(<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-) glucuronide	+				
B8	25B-NBOMe-M					
S	(<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-) sulfate isomer 1	+	+			
B9/10	25B-NBOMe-M					
S	(<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-) sulfate isomer 2		+			
B13/14	25B-NBOMe-M					
S	(<i>O</i> -demethyl-) sulfate isomer 1	+	+			
 B15	25B-NBOMe-M					
S	(O-demethyl-) sulfate isomer 2	+				
D16	25D NDOMo M					
	23D-INDOIVIE-IVI					
5	(<i>O</i> , <i>O</i> - <i>o</i>)s-demethyl-hydroxy-) sulfate isomer 1	+				
B17/18	25B-NBOMe-M					
S	(<i>O</i> , <i>O</i> -bis-demethyl-hydroxy-) sulfate isomer 2		+			
B22	25B-NBOMe-M					
S	(O-demethyl-hydroxy-) sulfate isomer 1	+				
B24/25	25B-NBOMe-M					
S	(O-demethyl-hydroxy-) sulfate isomer 2	+	+			
B3/4	25B-NBOMe-M					
AC+G	(<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-) <i>N</i> -acetyl glucuronide	+				
B8	25B-NBOMe-M					
GSH-2	(O,O-bis-demethyl-) acetylcysteine	+				
B7	25B-NBOMe-M					
G	(O O O - tris-demethyl-) glucuronide	+				
B8	25B-NBOMe-M					
G	(0 0-bis-demethyl-) alucuronide isomer 1	+	+	+		
D0/10	25P NPOMe M		1	1		
B9/10	(0.0 his demotive) aluquitarida isamar 2					
D12	25D NDOM- M	Т	т	Т		
BIS						
G	(O-demethyl-) glucuronide isomer 1	+	+	+		
B14	25B-NBOMe-M					
G	(<i>O</i> -demethyl-) glucuronide isomer 2	+	+	+		
B15	25B-NBOMe-M					
G	(<i>O</i> -demethyl-) glucuronide isomer 3	+	+	+		
B16	25B-NBOMe-M					
G	(<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-hydroxy-) glucuronide isomer 1	+				
B19	25B-NBOMe-M					
G	(<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-hydroxy-) glucuronide isomer 2	+				
B23	25B-NBOMe-M	İ				
G	(<i>O</i> -demethyl-hydroxy-) glucuronide isomer 1	+	+			
B22	25B-NBOMe-M		-			
G	(O-demethyl-hydroxy-) glucuronide isomer?	+				
B24/25	25B NBOMa M	- '				
D24/23	(O demothyl hydroxy) alygyranida igamar?		1			
U D20	25D NDOMa M		+	+		
В30						
G	(nyaroxy-) glucuronide isomer 1		+	+		
B31	25B-NBOMe-M					
G	(hydroxy-) glucuronide isomer 2		+	+		
M21	25B-NBOMe-M					
	N-glucuronide *			+		

Table 4 25C-NBOMe phase I and II metabolites detected in rat (RU) urine compared to those in authentic human urines (HU), mouse urine (MU) and human hepatocyte (HP) incubation as published by Wohlfarth et al. [26]. Numbering according to Tables S2 and S4, * = metabolite only described in reference [26]

No.	Metabolite	RU	HU [26]	MU [26]	HP [26]
C1	25C-NBOMe	+	+	+	+
C2	25C-NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-) isomer 1	+			
C3	25C-NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-) isomer 2	+			
C4	25C-NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-deamino-carboxy-)	+			
C5	25C-NBOMe-M (<i>N</i> -demethoxybenzyl-)	+	+		+
<u>C6</u>	25C-NBOMe-M (<i>N</i> -demethoxybenzyl-oxo-)	+			
C7	25C-NBOMe-M (<i>N</i> -demethoxybenzyl-hydroxy-)	+			
<u>C8</u>	25C-NBOMe-M (<i>O.O.O.tris</i> -demethyl-)	+			
<u>C9</u>	25C-NBOMe-M (<i>O.O-bis</i> -demethyl-dehydro-)	+			
C10	25C-NBOMe-M (<i>O.O-bis</i> -demethyl-) isomer 1	+		+	
C11	25C-NBOMe-M (<i>O,O-bis</i> -demethyl-) isomer 2	+	+	+	
C12	25C-NBOMe-M (<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-) isomer 3	+	+	+	
C13	25C-NBOMe-M (<i>Q</i> -demethyl-dehydro-) isomer 1	+			
C14	25C-NBOMe-M (<i>Q</i> -demethyl-dehydro-) isomer 2	+			
C15	25C-NBOMe-M (<i>Q</i> -demethyl-dehydro-) isomer 3	+			
C16	25C-NBOMe-M (<i>Q</i> -demethyl-) isomer 1	+	+	+	+
C17	25C-NBOMe-M (<i>Q</i> -demethyl-) isomer 2	+	+	+	+
C18	25C-NBOMe-M (<i>O</i> -demethyl-) isomer 3	+	+		+
C19	25C-NBOMe-M (<i>O.Obis</i> -demethyl-hydroxy-) isomer 1	+			
C20	25C-NBOMe-M (<i>O,O-bis</i> -demethyl-hydroxy-) isomer 2	+		+	
C21	25C-NBOMe-M (<i>O.O-bis</i> -demethyl-hydroxy-) isomer 3	+			
C22	25C-NBOMe-M (<i>O,O-bis</i> -demethyl-hydroxy-) isomer 4	+			
C23	25C-NBOMe-M (<i>O.O-bis</i> -demethyl-hydroxy-) isomer 5	+			
C24	25C-NBOMe-M (dehvdro-)	+			
C25	25C-NBOMe-M (<i>O</i> -demethyl-dehydro-hydroxy-)	+			
C26	25C-NBOMe-M (<i>O</i> -demethyl-hydroxy-) isomer 1	+			
C27	25C-NBOMe-M (<i>O</i> -demethyl-hydroxy-) isomer 2	+	+	+	
C28	25C-NBOMe-M (<i>O</i> -demethyl-hydroxy-) isomer 3	+	+	+	+
C29	25C-NBOMe-M (<i>O</i> -demethyl-hydroxy-) isomer 4	+			
C30	25C-NBOMe-M (dehvdro-hvdroxy-)	+			
C31	25C-NBOMe-M (hydroxy-) isomer 1	+			
C32	25C-NBOMe-M (hydroxy-) isomer 2	+			
C33	25C-NBOMe-M (hydroxy-) isomer 3	+	+	+	+
C34	25C-NBOMe-M (<i>O</i> -demethyl- <i>bis</i> -hydroxy-)	+	+		
C35	25C-NBOMe-M (<i>bis</i> -hydroxy-) isomer 1	+			
C36	25C-NBOMe-M (<i>bis</i> -hydroxy-) isomer 2	+			
C-Hp-21	25C-NBOMe-M (<i>N</i> -oxide) *				+
C-Hp-22	25C-NBOMe-M (carbonyl) *				+
C2	25C-NBOMe-M				
AC	(<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-) <i>N</i> -acetyl isomer 1	+			
C3	25C-NBOMe-M				
AC	(<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-) <i>N</i> -acetyl isomer 2	+			
C7	25C-NBOMe-M				
AC	(<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-hydroxy-) <i>N</i> -acetyl	+			
C3/4	25C-NBOMe-M				
AC+S	(<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-) <i>N</i> -acetyl sulfate	+			
C10	25C-NBOMe-M				
GSH-1	(<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-) S-methyl	+			
C34	25C-NBOMe-M	+			

ME	(O-demethyl-bis-hydroxy-) O-methyl				
C8	25C-NBOMe-M				
S	(<i>O</i> , <i>O</i> , <i>O</i> -tris-demethyl-) sulfate	+			
C2/3	25C-NBOMe-M				
G	(<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-) glucuronide	+			
C36	25C-NBOMe-M				
ME	(bis-hydroxy-) O-methyl	+			
C10	25C-NBOMe-M				
S	(<i>O.O-bis</i> -demethyl-) sulfate isomer 1	+			
C11	25C-NBOMe-M				
S	(O O - bis-demethyl-) sulfate isomer 2	+			
C12	25C-NBOMe-M				
S	$(O O - his - demethyl_)$ sulfate isomer 3	+	+		+
C16/17	25C-NBOMe-M				
S S	(O-demethyl-) sulfate isomer 1	+	+	+	+
C18	25C NBOMe M				1
	(O demethyl) sulfate isomer 2				
	25C NDOMe M	1			1
C20	23C-NBOIME-M				
	(<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-hydroxy-) sulfate	+			
C22	25C-NBUME-M				
5	(O-demethyl-hydroxy-) suitate	+			
C2/3					
AC+G	(<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-) <i>N</i> -acetyl glucuronide	+			
	25C-NBOMe-M				
GSH-2	(<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-) acetylcysteine	+			
C8	25C-NBOMe-M				
G	(<i>O</i> , <i>O</i> , <i>O</i> - <i>tris</i> -demethyl-) glucuronide	+		+	
C10	25C-NBOMe-M				
G	(<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-) glucuronide isomer 1	+	+	+	
C11	25C-NBOMe-M				
G	(<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-) glucuronide isomer 2	+	+	+	
C12	25C-NBOMe-M				
G	(<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-) glucuronide isomer 3	+		+	
C16	25C-NBOMe-M				
G	(<i>O</i> -demethyl-) glucuronide isomer 1	+	+	+	+
C17	25C-NBOMe-M				
G	(O-demethyl-) glucuronide isomer 2	+			+
C18	25C-NBOMe-M				
G	(<i>O</i> -demethyl-) glucuronide isomer 3	+			+
C19	25C-NBOMe-M				
G	(O O - his-demethyl-hydroxy-) glucuronide isomer 1	+			
C20	25C-NBOMe-M				
G	(0 0-his-demethyl-hydroxy-) glucuronide isomer 2	+			
C21	25C-NBOMe-M				
$\begin{bmatrix} C_{21} \\ G \end{bmatrix}$	(0 0-bis-demethyl-hydroxy-) glucuronide isomer 3	+			
\bigcirc	25C-NROMe-M				
	(0 0-bis-demethyl-hydroxy-) glucuronide isomer 4	+			
C27	25C NBOMa M				
	(O demothyl hydroxy) glygyronida isomer 1				
	25C NDOMa M	+			
C28/29	23U-INBUIME-IM				
	Co-demethyl-hydroxy-) glucuronide isomer 2	+			+
C31/32	25U-INBUME-M				
G	(nyaroxy-) glucuroniae isomer 1	+			
C33	25C-NBOMe-M				
G	(hydroxy-) glucuronide isomer 2	+	+	+	+
С-Нр-6	25C-NBOMe-M				
L	(<i>O</i> -demethyl-hydroxy-) glucuronide isomer *				+
C-Hp-8	25C-NBOMe-M				
	(hydroxy-) glucuronide isomer *				+
C-Hp-10	25C-NBOMe-M				
	(<i>O</i> -demethyl-hydroxy-) glucuronide isomer *				+

C-Hp-18	25C-NBOMe-M			
_	(hydroxy-) sulfate *			+
C-Hp-19	25C-NBOMe-M			
	(hydroxy-) sulfate *			+
C-MH-21	25C-NBOMe-M			
	(O-demethyl-) O-acetyl *		+	

Table 5 25B-NBOMe and its metabolites, molecular mass, five most abundant EI-GC-MS fragment ions, retention indices (RI), and detectability in rat urine (RU) or human urine (HU) by GC-MS SUSA. The numbers correspond to those of Table S1.

No.	Target for SUSA	Molecular mass, u	GC-MS fragment ions, <i>m/z</i> and their relative intensities, %	RI	Detected in urine sample
B1	25B-NBOMe AC	421	121 (100), 150 (9), 229 (12), 242 (33), 421 (2)	2920	HU
B2	25B-NBOMe-M	330	215 (55), 228 (100), 246 (10), 288 (15), 330 (4)	2160	HU
	(N-demethoxybenzyl-deamino-O-demethyl-				
	hydroxy-) 2AC				
B3/B4	25B-NBOMe-M	329	215 (17), 228 (100), 270 (10), 287 (21), 329 (8)	2440	HU
	(N-demethoxybenzyl -O-demethyl-) isomer 1 /				
	isomer 2 2AC				
B6	25B-NBOMe-M	301	148 (39), 199 (12), 229 (31), 242 (100), 301 (15)	2180	HU
	(N-demethoxybenzyl -) AC				
B9/10	25B-NBOMe-M	477	107 (78), 178 (100), 228 (42), 270 (12), 477 (1)	3020	HU
	(<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-) isomer 2 / isomer 3 3AC				
B13/14	25B-NBOMe-M	449	121 (100), 192 (22), 228 (19), 270 (3), 449 (2)	3000	HU
	(O-demethyl-) isomer 1 / isomer 2 2AC				

Table 6 25B-NBOMe, 25C-NBOMe, and their metabolites, protonated precursor ions, characteristic MS² and MS³ fragment ions, retention time (RT), and detectability in rat urine (RU) or human urine (HU, 25B-NBOMe) by LC-MSⁿ SUSA. The numbers correspond to those of Tables S1-S4.

No.	Target for SUSA	Precursor ions, <i>m/z</i>	MS ² fragment ions, <i>m/z</i> and relative intensity, %	MS ³ fragment ions, <i>m/z</i> and relative intensity, % on the ion given in bold	RT, min	Detected in urine sample
B1	25B-NBOMe	380	121 (100), 179 (10), 243 (10), 255	121: 91 (30), 93 (100)	14.6	HU
			(18), 258 (14), 269 (10), 284 (15)	255: 148 (10), 176 (100), 225		
				(44)		
B9	25B-NBOMe-M	352	107 (1), 229 (56), 246 (100)	229: 135 (5), 150 (100)	9.7	HU
	(O,O-bis-demethyl-) isomer 2			246: 135 (3), 150 (51), 214 (100)		
B13	25B-NBOMe-M	366	121 (100), 229 (3), 241 (7), 244 (12),	121: 91 (24), 93 (100)	11.5	HU
	(O-demethyl-) isomer 1		270 (26)	270: 145 (6), 224 (7), 239 (100)		
B14	25B-NBOMe-M	366	121 (88), 241 (100), 257 (92), 258	241: 147 (5), 162 (100)	12.3	HU, RU
	(O-demethyl-) isomer 2		(37), 270 (51)	257: 149 (46), 162 (55), 225		
				(100)		
B8	25B-NBOMe-M	528	227 (8), 244 (4), 335 (7), 352 (100)	352: 121 (100), 227 (55), 244	5.9	RU
G	(O,O-bis-demethyl-)			(18), 256 (21), 273 (7)		
	glucuronide isomer 1					
B14	25B-NBOMe-M	542	244 (2), 270 (2), 349 (3), 366 (100)	349: 241 (41), 255 (22), 270	9.4	HU, RU
G	(O-demethyl-)			(100)		
	glucuronide isomer 2			366: 121 (100), 241 (4), 244 (6),		
				270 (17)		
C16	25C-NBOMe-M	322	91 (9), 121 (100), 197 (9), 200 (11),	121: 91 (22), 93 (100)	13.1	RU
	(O-demethyl-) isomer 1		214 (5)			
C10	25C-NBOMe-M	484	183 (15), 200 (4), 291 (11), 308 (100)	291: 121 (47), 183 (100), 255	6.4	RU
G	(O,O-bis-demethyl-)			(23)		
	glucuronide isomer 1			308: 121 (100), 183 (51), 200		
				(21)		
C11	25C-NBOMe-M	484	185 (38), 202 (47), 308 (100), 378	202: 150 (21), 157 (10), 170	8.2	RU
G	(O,O-bis-demethyl-)		(20)	(100)		
	glucuronide isomer 2			308: 185 (84), 202 (100)		
C17	25C-NBOMe-M	498	185 (1), 200 (2), 305 (2), 322 (100)	322: 121 (100), 197 (11), 200	9.9	RU
G	(O-demethyl-)			(10), 214 (5)		
	glucuronide isomer 2					
C28/29	25C-NBOMe-M	514	216 (2), 321 (5), 338 (100)	338: 121 (100), 198 (5), 216 (3),	8.6	RU
G	(O-demethyl-hydroxy-)			230 (1), 303 (7)		
	glucuronide isomer 2					

Table 7 25B-NBOMe, 25C-NBOMe, and their metabolites, calculated masses of their precursor ions, retention times (RT) recorded in rat urine or human urine (25B-NBOMe, 25C-NBOMe not tested, n.t.) by LC-HR-MS/MS SUSA. The numbers correspond to those of Tables S1-S4 (D = detection of the precursor ion in MS^1 , I = identification via MS^1 and MS^2).

No.	Targets in SUSA	Calculated exact masses of precursor ions, m/7	RT, min	Human urine	Rat urine 0.1 mg/kg BW
B1	25B-NBOMe	380.0856	6.0	Ι	
B5	25B-NBOMe-M	258.9606	5.3	D	D
	(N-demethoxybenzyl-O-demethyl-deamino-carboxy-)				
B8	25B-NBOMe-M	352.0543	5.0	Ι	D
	(O,O-bis-demethyl-) isomer 1				
B9	25B-NBOMe-M	352.0543	5.3	Ι	D
	(O,O-bis-demethyl-) isomer 2				
B13	25B-NBOMe-M	366.0699	5.3	I	
	(O-demethyl-) isomer 1				
B14	25B-NBOMe-M	366.0699	5.8	I	Ι
	(O-demethyl-) isomer 2				
B30	25B-NBOMe-M	396.0805	5.4	D	
	(hydroxy-) isomer 2				
B31	25B-NBOMe-M	396.0805	5.9	D	
	(hydroxy-) isomer 3				
B3	25B-NBOMe-M	288.0230	5.4		D
AC	(N-demethoxybenzyl-O-demethyl-) N-acetyl isomer 1				
B4	25B-NBOMe-M	288.0230	5.5		D
AC	(N-demethoxybenzyl-O-demethyl-) N-acetyl isomer 2				
B8	25B-NBOMe-M	432.0111	4.9	D	D
S	(O,O-bis-demethyl-) sulfate isomer 1				
B9/10	25B-NBOMe-M	432.0111	5.7	I	
S	(O,O-bis-demethyl-) sulfate isomer 2				
B13/14	25B-NBOMe-M	446.0267	5.8	Ι	
S	(O-demethyl-) sulfate isomer 1				
B24/25	25B-NBOMe-M	462.0217	5.5	D	
S	(O-demethyl-hydroxy-) sulfate isomer 2				
B7	25B-NBOMe-M	514.0707	3.8		D
G	(O,O,O-tris-demethyl-) glucuronide				
B8	25B-NBOMe-M	528.0864	4.2	I	Ι
G	(O,O-bis-demethyl-) glucuronide isomer 1				
B9/10	25B-NBOMe-M	528.0864	4.8	D	D
G	(O,O-bis-demethyl-) glucuronide isomer 2				
B13	25B-NBOMe-M	542.1020	4.6	Ι	
G	(O-demethyl-) glucuronide isomer 1				
B14	25B-NBOMe-M	542.1020	5.2	I	Ι
G	(O-demethyl-) glucuronide isomer 2				
B19	25B-NBOMe-M	544.0813	4.5		D
G	(O,O-bis-demethyl-hydroxy-) glucuronide isomer 2				
B23	25B-NBOMe-M	558.0969	4.7		D
G	(O-demethyl-hydroxy-) glucuronide isomer 1				

B22	25B-NBOMe-M	558.0969	4.8		D		
G	(O-demethyl-hydroxy-) glucuronide isomer 2						
C11	25C-NBOMe-M	308.1048	4.6	n.t.	D		
	(O,O-bis-demethyl-) isomer 2						
C12	25C-NBOMe-M	308.1048	4.8	n.t.	D		
	(O,O-bis-demethyl-) isomer 3						
C17	25C-NBOMe-M	322.1204	5.1	n.t.	D		
	(O-demethyl-) isomer 2						
C8	25C-NBOMe-M	470.1212	3.5	n.t.	Ι		
G	(O,O,O-tris-demethyl-) glucuronide						
C10	25C-NBOMe-M	484.1369	3.8	n.t.	Ι		
G	(<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-) glucuronide isomer 1						
C11	25C-NBOMe-M	484.1369	4.4	n.t.	Ι		
G	(O,O-bis-demethyl-) glucuronide isomer 2						
C16	25C-NBOMe-M	498.1525	4.3	n.t.	D		
G	(O-demethyl-) glucuronide isomer 1						
C17	25C-NBOMe-M	498.1525	4.8	n.t.	Ι		
G	(O-demethyl-) glucuronide isomer 2						
C18	25C-NBOMe-M	498.1525	5.2	n.t.	D		
G	(O-demethyl-) glucuronide isomer 3						
C21	25B-NBOMe-M	500.1318	4.1	n.t.	D		
G	(O,O-bis-demethyl-hydroxy-) glucuronide isomer 3						
C28/29	25B-NBOMe-M	514.1475	4.5	n.t.	Ι		
G	(O-demethyl-hydroxy-) glucuronide isomer 2						
C31/32	25B-NBOMe-M	528.1631	4.1	n.t.	D		
G	(hydroxy-) glucuronide isomer 1						
	1 1						

Legends to Figures

Fig. 1 Metabolic pathways of 25B-NBOMe studied in rat (R) or human (H) urine as well as in incubations with human (L) or porcine (P) liver microsomes. Phase II metabolites: glucuronides (G), sulfates (S), glutathione conjugates (GSH), acetyl conjugates (AC), O-methyl conjugates (ME), acetyl conjugates combined with glucuronidation (AC+G), acetyl conjugates combined with sulfation (AC+S). Undefined position of *O*-demethylation or hydroxylation indicated by tildes. Numbering according to Tables S1 and S3.

Fig. 2 Metabolic pathways of 25C-NBOMe studied in rat (R), mouse (M), or human (H) urine as well as in incubations with human hepatocytes (C). Phase II metabolites: glucuronides (G), sulfates (S), glutathione conjugates (GSH), acetyl conjugates (AC), *O*-methyl conjugates (ME), acetyl conjugates combined with glucuronidation (AC+G), acetyl conjugates combined with sulfation (AC+S). Undefined position of *O*-demethylation or hydroxylation indicated by tildes. Numbering according to Tables S2 and S4.

Highlights

- First detailed Orbitrap-based study on the metabolism of two New Psychoactive Substances (NPS) and on detectability in urine by GC-MS and low and high resolution LC-MS techniques.
- The analytical novelty consists of the description of the identification power of various GC-MS and LC-(HR) MS techniques.
- The corresponding reference spectra and their interpretation are basis for routine drug testing worldwide of these NPS and thus of great relevance for all toxicologists.
- First comparison of metabolism data obtained from in vivo studies with three different species and from human in cellulo and in vitro studies.

- 1 Electronic Supplementary Data
- 2
- 3
- Metabolic fate and detectability of the new psychoactive substances 2-(4-bromo-2,5dimethoxyphenyl)-*N*-[(2-methoxyphenyl)methyl]ethanamine (25B-NBOMe) and 2-(4-chloro-2,5dimethoxyphenyl)-*N*-[(2-methoxyphenyl)methyl]ethanamine (25C-NBOMe) in human and rat urine
 by GC-MS, LC-MSⁿ, and LC-HR-MS/MS approaches
 Achim T. Caspar, Simon D. Brandt, Andreas E. Stoever, Markus R. Meyer, Hans H. Maurer
- 10

Table S1 List of 25B-NBOMe and its phase I metabolites together with the precursor mass (PM)
recorded in MS¹, the corresponding characteristic fragment ions (FI) in MS², the calculated exact
masses, the corresponding elemental composition, the deviation of the measured from the calculated
masses, given as errors in parts per million (ppm), and the retention times (RT) in minutes (min). The
metabolites were sorted by mass and RT.

B1 25B-NBC MS ¹ P MS ² F F F F F B2 25B-NBC MS ² F B3 25B-NBC MS ² F F F B3 25B-NBC MS ² F F F B3 25B-NBC MS ² F F F B4 25B-NBC	DMe M at <i>m/z</i> 380.0859 (M+H) I at <i>m/z</i> 91.0549 I at <i>m/z</i> 121.0651 I at <i>m/z</i> 227.9777 I at <i>m/z</i> 243.0010	7 58	380.0856			8.8
MS1 P MS2 F F F F F B2 25B-NBC MS2 F MS2 F B3 25B-NBC MS2 F B3 25B-NBC MS2 F B3 25B-NBC B4 25B-NBC	M at <i>m/z</i> 380.0859 (M+H) I at <i>m/z</i> 91.0549 I at <i>m/z</i> 121.0651 I at <i>m/z</i> 227.9777 I at <i>m/z</i> 243.0010	7 58 100	380.0856			
MS ² F F F F F B2 25B-NBC MS ² F MS ² F B3 25B-NBC MS ² F F F B3 25B-NBC MS ² F B3 25B-NBC B4 25B-NBC	I at <i>m/z</i> 91.0549 I at <i>m/z</i> 121.0651 I at <i>m/z</i> 227.9777 I at <i>m/z</i> 243.0010	58	500.0050	C ₁₈ H ₂₃ O ₃ NBr	0.84	
B2 25B-NBC B2 25B-NBC MS ¹ P MS ² F F F B3 25B-NBC MS ² F B3 25B-NBC B4 25B-NBC	I at <i>m/z</i> 121.0651 I at <i>m/z</i> 227.9777 I at <i>m/z</i> 243.0010	100	91.0548	· C ₇ H ₇	1.37	
B2 25B-NBC B2 25B-NBC MS ¹ P MS ² F F F B3 25B-NBC MS ² F B3 25B-NBC B4 25B-NBC	I at <i>m/z</i> 227.9777 I at <i>m/z</i> 243.0010	: 100	121.0653	C ₀ H ₀ O	-1.98	
B2 25B-NBC B2 25B-NBC MS ¹ P MS ² F F F B3 25B-NBC MS ² F B3 25B-NBC B4 25B-NBC	I at <i>m/z</i> 243.0010	1	227.9786	C ₀ H ₀ O ₂ Br	-3.91	
B2 25B-NBC MS ¹ P MS ² F F F B3 25B-NBC MS ¹ P MS ² F F F F F B3 25B-NBC MS ² F F F B4 25B-NBC	L	1	243.0021	C ₁₀ H ₁₂ O ₂ Br	-4.39	
B2 25B-NBC MS ¹ P MS ² F F F B3 25B-NBC MS ¹ P MS ² F F F F F B3 25B-NBC MS ² F F F F F B4 25B-NBC	1 at m/z 258.0126	0.2	258.0124	$C_{10}H_{12}O_2NBr$	0.71	
B2 25B-NBC MS ¹ P MS ² F F F B3 25B-NBC MS ¹ P MS ² F F F F F B3 25B-NBC MS ² F F F F F B4 25B-NBC	I at <i>m/z</i> 363.0597	0.3	363.0596	$C_{18}H_{20}O_3Br$	0.33	
MS ¹ P MS ² F F F B3 25B-NBC MS ¹ P MS ² F F F B4 25B-NBC	OMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -o	lemethyl-deamino-hyd	lroxy-)	! !		6.5
MS ² F F F B3 25B-NBC MS ¹ P MS ² F F F F F F B4 25B-NBC	M at <i>m/z</i> 244.9820 (M-H)	5	244.9820	C ₉ H ₁₀ O ₃ Br	2.73	
B3 25B-NBC B3 25B-NBC MS ¹ P MS ² F F F F F B4 25B-NBC	I at <i>m/z</i> 78.9176	100	78.9183	Br	-9.33	
B3 25B-NBC MS ¹ P MS ² F F F F F B4 25B-NBC	I at <i>m/z</i> 199.9474	9	199.9473	C ₇ H ₅ O ₂ Br	0.55	
B3 25B-NBC MS ¹ P MS ² F F F F F B4 25B-NBC	I at <i>m/z</i> 211.9476	12	211.9473	C ₈ H ₅ O ₂ Br	1.46	
B3 25B-NBC MS ¹ P MS ² F F F F F B4 25B-NBC	I at <i>m/z</i> 229.9584	76	229.9584	C ₈ H ₇ O ₃ Br	2.37	
MS1 P MS2 F F F F F B4 25B-NBC	OMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -o	lemethyl-) isomer 1		:;		3.9
MS ² F F F B4 25B-NBC	M at <i>m/</i> ₇ 246 0123 (M+H)	1	246.0124	CoHuaOaNBr	-0.47	
B4 25B-NBC	Lat $m/z = 135, 0.0123, (11, 11)$	24	135 0446	$+ C_0 H_1 O_2 + C_1 H_2 O_2$	-3.00	
B4 25B-NBC	Lat m/z 150.0677	47	150.0681	$C_8H_{10}O_2$	-2.53	
B4 25B-NBC	Lat m/z 213 9626	82	213 9629	$C_0H_7O_2Br$	-1 59	
B4 25B-NBC	I at <i>m/z</i> 228.9861	100	228.9864	$C_9H_{10}O_2Br$	-1.38	
	Me-M (<i>N</i> -demethoxybenzyl- <i>O</i> -o	lemethyl-) isomer 2	1	<u>:</u> ;		4.0
MS1 P	M at $m/\pi 246.0130$ (M+H)	3	246.0124	C.H. O.NBr	2 37	
MS ² E	Let $m/2$ 125 0442		125 0446	$C \parallel O$	2.57	
N15- F	I at m/2 133.0442	40	150.0691	$C_8 \Pi_7 O_2$	-3.00	
	I at m/2 130.0070	40	213 0620	$C_9\Pi_{10}O_2$	-3.20	
	$I \text{ at } m/2 \ 213.9023$	90	215.9029	$C_8\Pi_7O_2DI$	-2.00	
Г.	1 at <i>m</i> /2 228.9801	100	228.9804	$C_9 \Pi_{10} O_2 B I$	-1.58	
B5 25B-NBC	OMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -o	lemethyl-deamino-car	boxy-)			6.3
MS ¹ P	M at <i>m/z</i> 258.9610 (M-H)	1	258.9606	C ₀ H ₈ O ₄ Br	1.56	
MS ² F	I at <i>m/z</i> 78.9176	100	78,9183	++ ' Br	-9.33	
F	I at <i>m/z</i> 199.9473	81	199.9473	C ₇ H ₅ O ₂ Br	0	
F	I at <i>m/z</i> 214.9709	5	214.9708	$C_8H_8O_2Br$	0.62	
B6 25B-NBC	Me-M (<i>N</i> -demethoxybenzyl-)	!		<u>:</u> :		5.6
MS ¹ P	M at <i>m/</i> z 260 0273 (M+H)	1	260.0281	CueHurOaNBr	-2.95	
MS ² F	Lat m/z 164 0830	22	164 0837	$+ C_{10}H_{12}O_{2}$	-4 45	
F	Lat m/z 212,9543	39	212,9551	$C_{\circ}H_{2}O_{2}Br$	-3.83	
F	I at <i>m/z</i> 227 9776	100	227,9786	$C_0H_0O_2Br$	-4 35	
F	I at <i>m/z</i> 243.0013	90	243.0021	$C_{10}H_{12}O_2Br$	-3.15	
B7 25B-NBC	OMe-M (0,0,0-tris-demethyl-)		1	<u>; </u>		5.1
MS1 p	M at m/z 338 ()392 (M+H)	9	338 0386	CuHurOaNBr	1 68	
MS ² F	Lat m/z 107 0496	100	107 0497	$+C_{2}H_{2}O$	-0.84	
1410 F	Lat m/z 136 0520	33	136 0524	C ₂ H ₂ O ₂	-3.16	
F	Lat m/z 214 9703	81	214 9708	$C_{0}H_{0}O_{0}Br$	-5.10	
F	I at <i>m/z</i> 231.9968	32	231.9968	$C_8H_{11}O_2NBr$	0	
R8 25R-NRC		1	1 I			
	JME-M ((),()-bls-demethvl_) ison	ner 1				6.0

		-,					
	MS^1	PM at <i>m/z</i> 352.0542 (M+H)	5	352.0543	C ₁₆ H ₁₉ O ₃ NBr	-0.23	
	MS ²	FL at m/z 91 0548	57	91 05/18	C-H-	0	
	1115	$11 \text{ at } m/2 \ 1.0546$	100	121 0(52		2.91	
		F1 at <i>m/z</i> 121.0630	100	121.0633	C_8H_9O	-2.81	
		FI at <i>m/z</i> 226.9700	1 1	226.9708	$C_9H_8O_2Br$	-3.37	
		FI at <i>m/z</i> 335.0267	0.5	335.0283	$C_{16}H_{16}O_3Br$	-4.72	
		1			1 10 10 5		
B9	25B-N	NBOMe-M (<i>0,0-bis-</i> demethyl-) ison	ner 2		I I		6.8
			·				
	MS^1	PM at <i>m/z</i> 352.0540 (M+H)	11	352.0543	C ₁₆ H ₁₉ O ₃ NBr	-0.80	
	MS ²	FI at <i>m/z</i> 107.0495	100	107.0497	C ₇ H ₇ O	-1.77	
		EL at $m/7$ 213 9630	31	213 9629	C-H-O-Br	0.28	
		FL -t	00	215.9029		0.20	
		F1 at <i>m/z</i> 228.9838	90	228.9804	$C_9\Pi_{10}O_2BI$	-2.09	
		F1 at m/z 246.0124	29	246.0124	$C_9H_{13}O_2NBr$	0	
B10	25B-N	NBOMe-M (<i>0,0-bis-</i> demethyl-) ison	ner 3				6.9
	MS^1	PM at <i>m/z</i> 352.0541 (M+H)	12	352.0543	$C_{16}H_{19}O_3NBr$	-0.52	
	MS ²	FI at <i>m/z</i> 107.0495	100	107.0497	C ₇ H ₇ O	-1.77	
		FL at m/z 213 9623	32	213 9629	C₀H₂O₂Br	-3.00	
		= EL at $m/2$ 219.9029	80	213.9029	C H O Pr	2.60	
		FI at <i>m/2</i> 220.9030	09	220.9004	$C_9 \Pi_{10} O_2 BI$	-2.09	
		F1 at m/z 246.0124	29	246.0124	$C_9H_{13}O_2NBr$	0	
B11	25B-N	NBOMe-M (<i>O</i> -demethyl-dehydro-) i	somer 1		i i		6.7
						·····	
	MS ¹	PM at <i>m/z</i> 364.0540 (M+H)	25	364.0543	$C_{17}H_{19}O_3NBr$	-0.77	
	MS ²	FI at <i>m/z</i> 107.0495	100	107.0497	C ₇ H ₇ O	-1.77	
		FI at <i>m/z</i> 228.9857	16	228,9864	$C_0H_{10}O_2Br$	-3.13	
		FL at m/z 258 0122	71	258 0124	CuHuQNBr	-0.84	
		1		250.0121	010113021001	0.01	
B12	25B-N	NBOMe-M (<i>O</i> -demethyl-dehydro-) i	somer 2		· · ·		7.4
	L						
	MS^1	PM at <i>m/z</i> 364.0540 (M+H)	3	364.0543	$C_{17}H_{19}O_3NBr$	-0.77	
	MS ²	FI at <i>m/z</i> 91.0548	57	91.0548	C ₇ H ₇	0	
		FL at m/π 121 0651	100	121.0653	C ₂ H ₂ O	-1.98	
		= EL at m/z 121.0051	12	227.0655		-1.90	
		F1 at m/z 227.9033	15	227.9633	$C_8\Pi_7O_2INBI$	0	
		F1 at m/z 242.9890	12	242.9890	$C_9H_{10}O_2NBr$	0	
B13	25B-N	NBOMe-M (<i>O</i> -demethyl-) isomer 1	i		i		7.6
210	-021						7.0
	MS1	PM at m/z 366 0700 (M+H)	4	366 0699	C. H. O. NBr	0.19	
	MC	FI = 4 m/2 01 0549		01.0549		0.17	
	MS ²	F1 at m/z 91.0548	58	91.0548	C_7H_7	0	
		FI at m/z 121.0650	100	121.0653	C ₈ H ₉ O	-2.81	
		FI at <i>m/z</i> 228,9861	0.5	228,9864	$C_0H_{10}O_2Br$	-1.38	
		FL at $m/7$ 257 1167	1 1	257 1178	CuHurOa	-4.16	
		= EL at $m/= 240.0422$	0.6	240.0420	C = O Pr	1.01	
		F1 at <i>m/2</i> 349.0433	0.0	549.0459	$C_{17}\Pi_{18}O_{3}D_{1}$	-1.01	
B14	25B-N	NBOMe-M (<i>O</i> -demethyl-) isomer 2	1 1				7.7
	MGI	DM at m/2266 0702 (M + H)		266.0600	C II O ND	1.01	
	NIS.	PM at m/2 500.0705 (M+H)		500.0099	$C_{17}\Pi_{21}O_{31}ND1$	1.01	
	MS ²	F1 at m/z 91.0548	59	91.0548	C_7H_7	0	
		FI at <i>m/z</i> 121.0649	100	121.0653	C ₈ H ₉ O	-3.63	
		FI at <i>m/z</i> 228.9855	0.4	228.9864	$C_{0}H_{10}O_{2}Br$	-4.00	
		FL at m/z 243 9961	0.3	243 9968	C ₀ H ₁ O ₂ NBr	-2 73	
		$11 \text{ at } m/2 \ 210.3901$		270 1256		0.72	
		11 at m/2 270.1254	0.1	270.1250	017111803	-0.72	
B15	25B-N	NBOMe-M (<i>O</i> -demethyl-) isomer 3	1 1		<u> </u>		8.0
	MC	$\mathbf{D}\mathbf{M}$ at $m/r^{2}/(0.000)$ (2.5.11)	·	277.0700			
	INIS'	Fivi at <i>m/z</i> 500.0696 (M+H)		300.0099	$C_{17}H_{21}O_3NBr$	-0.91	
	MS ²	F1 at m/z 10/.0495	100	107.0497	C_7H_7O	-1.77	
		FI at <i>m/z</i> 227.9779	50	227.9786	C ₉ H ₉ O ₂ Br	-3.03	
		FI at <i>m/z</i> 243.0014	92	243.0021	$C_{10}H_{12}O_{2}Br$	-2.74	
		FI at <i>m/z</i> 260.0280	26	260.0281	$C_{10}H_{15}O_2NBr$	-0.26	
					10 10 2		
B16	25B-N	NBOMe-M (<i>0,0-bis</i> -demethyl-hydro	oxy-) isomer 1		I		5.1
	+						
	MS^1	PM at <i>m/z</i> 368.0495 (M+H)	4	368.0492	C ₁₆ H ₁₉ O ₄ NBr	0.82	
	MS ²	FI at <i>m/z</i> 107.0496	44	107.0497	C ₇ H ₇ O	-0.84	
		FI at <i>m/z</i> 137 0598	100	137 0603	C ₈ H ₂ O ₂ Br	-3 32	
	1	EI at m/7 228 0858	1	228 0864	C-H-O Br	2.60	
		FI at m/z 220.7030	04	220.2004	$C_{110}O_{2}DI$	-2.09	
		11 at 11/2 331.0230	0.4	551.0252	C16H16O4DI	1./2	
B17	25B-1	NBOMe-M (0,0-bis-demethyl-hydro	oxy-) isomer 2				5.6
	MS ¹	PM at <i>m/z</i> 368.0481 (M+H)		368.0492	$C_{16}H_{19}O_4NBr$	-2.98	
	MS ²	FI at <i>m/z</i> 123.0441	100	123.0446	$C_7H_7O_2$	-4.10	
	1	FI at <i>m/z</i> 213.9620	26	213.9629	C ₈ H ₇ O ₂ Br	-4.40	
		FL at m/z 228 9853	96	228 9864	C _o H ₁₀ O ₂ Br	-4.87	
	+	1 1 1 at m/2 220.7033		220.700 4	· C91110O2D1		

	Τ	FI at <i>m/z</i> 246.0122	30	246.0130	C ₉ H ₁₃ O ₂ NBr	-3.11	
B18	25B-N	NBOMe-M (<i>0,0-bis-</i> demethyl-hvdrox	y-) isomer 3				6.3
	MS ¹	PM at <i>m/z</i> 368.0489 (M+H)	13	368.0492	$C_{16}H_{19}O_4NBr$	-0.91	
	M3-	F1 at m/z 123.0443 FL at m/z 213.9624	24	123.0446	C H O Br	-2.48	
		FI at $m/2$ 213.7024	72	213.9029	$C_8H_7O_2Br$	-2.55	
		FI at $m/2$ 246.0124	22	246.0130	$C_0H_{12}O_2NBr$	-2.30	
B19	25B-N	NBOMe-M (<i>0,0-bis</i> -demethyl-hydrox	y-) isomer 4				6.6
	MS ¹	PM at <i>m/z</i> 368.0495 (M+H)	10	368.0492	C ₁₆ H ₁₉ O ₄ NBr	0.82	
	MS ²	FI at <i>m/z</i> 107.0495	100	107.0497	C ₇ H ₇ O	-1.77	
		FI at <i>m/z</i> 229.9573	61	229.9579	C ₈ H ₇ O ₃ Br	-2.42	
		FI at <i>m/z</i> 244.9808	86	244.9813	$C_9H_{10}O_3Br$	-2.17	
		FI at <i>m/z</i> 262.0074	33	262.0073	C ₉ H ₁₃ O ₃ NBr	0.26	
B20	25B-N	NBOMe-M (dehydro-)	i		i		7.4
	NGI			270.0000	······································		
	MS ¹	PM at $m/z 3/8.069'/(M+H)$		578.0699	$C_{18}H_{21}O_3NBr$	-0.61	
	M8 ²	F1 at m/z 91.0548	58	91.0548	C_7H_7	2 91	
		F1 at m/z 121.0030 FL at m/z 230.0647	100	121.0033	C H O NBr	-2.81	
		FI at $m/2$ 255,9966	8	255,9968	$C_{10}H_{11}O_2NBr$	-0.65	
				200.000	- 10-211 - 27 (12)	0.00	
B21	25B-N	NBOMe-M (<i>O</i> -demethyl-dehydro-hyd	roxy-)				5.7
	MS ¹	PM at <i>m/z</i> 380.0494 (M+H)	20	380.0494	C ₁₇ H ₁₉ O ₄ NBr	0.54	
	MS ²	FI at <i>m/z</i> 107.0496	100	107.0497	C ₇ H ₇ O	-0.84	
		FI at <i>m/z</i> 244.9809	9	244.9813	C ₉ H ₁₀ O ₃ Br	-1.76	
		FI at <i>m/z</i> 274.0072	55	274.0073	C ₁₀ H ₁₃ O ₃ NBr	-0.48	
B22	25B-1	NBOMe-M (<i>O</i> -demethyl-hydroxy-) iso	mer 1		<u> </u>		6.2
							0.2
	MS ¹	PM at <i>m/z</i> 382.0665 (M+H)		382.0648	$C_{17}H_{21}O_4NBr$	4.33	
	MS ²	F1 at m/z 91.0548	53	91.0548	C_7H_7	0	
		F1 at m/z 121.0650	100	121.0653	C_8H_9O	-2.81	
		F1 at m/z 228.9839 FL at m/z 365.0403	4	228.9804	$C_9\Pi_{10}O_2BI$	-2.23	
		11 at m/2 505.0405	0.2	505.0500	C101150311D1	5.70	
B23	25B-N	NBOMe-M (<i>O</i> -demethyl-hydroxy-) iso	mer 2				6.7
	MS ¹	PM at <i>m/z</i> 382 0643 (M+H)	7	382.0648	C17H21O4NBr	-1 43	
	MS ²	FI at <i>m/z</i> 107.0494	44	107.0497	' C ₇ H ₇ O	-2.71	
		FI at <i>m/z</i> 137.0597	100	137.0603	$C_8H_9O_2$	-4.05	
		FI at <i>m/z</i> 228.9861	1	228.9864	$C_9H_{10}O_2Br$	-1.38	
		FI at <i>m/z</i> 243.9975	0.2	243.9968	C ₉ H ₁₁ O ₂ NBr	3.01	
		FI at <i>m/z</i> 365.0375	0.1	365.0388	$C_{17}H_{18}O_4Br$	-3.69	
B24	25B-N	NBOMe-M (<i>O</i> -demethyl-hydroxy-) iso	mer 3				6.8
	MGI	DM -+	11	202.0(40		1 17	
	MS ²	PM at m/z 382.0644 (M+H)	05	382.0648	$C_{17}H_{21}O_4NBr$	-1.1/	
	MIS	F1 at $m/2$ 123.0442 FL at $m/7$ 227 9780	55	227 9786	$C_7\Pi_7O_2$	-3.29	
		FI at $m/2$ 243,0014	100	243.0021	C10H12O2Br	-2.74	
		FI at <i>m/z</i> 260.0281	28	260.0281	$C_{10}H_{15}O_2NBr$	0	
B25	25B-N	NBOMe-M (<i>O</i> -demethyl-hydroyy-) iso	mer 4				7.2
	250-1						1.2
	MS ¹	PM at <i>m/z</i> 382.0646 (M+H)	8	382.0648	C ₁₇ H ₂₁ O ₄ NBr	-0.65	
	MS ²	F1 at m/z 123.0442	100	123.0446	$C_7H_7O_2$	-3.29	
		F1 at $m/z 227.9779$ FL at $m/z 243.0014$	20	227.9780	C H O Br	-3.03	
		FI at <i>m/z</i> 260.0280	28	260.0281	$C_{10}H_{15}O_2NBr$	-0.26	
B26	25B-N	NBOMe-M (dehydro-hydroxy-) isome	r I				6.5
	MS^1	PM at <i>m/z</i> 394.0652 (M+H)	30	394.0648	C ₁₈ H ₂₁ O ₄ NBr	0.90	
	MS ²	FI at <i>m/z</i> 109.0651	100	109.0653	C ₇ H ₉ O	-2.20	
		FI at <i>m/z</i> 137.0597	26	137.0603	$C_8H_9O_2$	-4.05	
		FI at <i>m/z</i> 239.9647	1	239.9655	C ₉ H ₇ O ₂ NBr	-3.19	
		F1 at <i>m/z</i> 255.9965	9	255.9968	$C_{10}H_{11}O_2NBr$	-1.04	
B27	25B-N	NBOMe-M (dehydro-hydroxy-) isome	r 2				6.6
	MOL	DM at m/c 204 0650 (M+11)	10	204.0449			
	TM2,	F IVI at <i>M/Z</i> 394.0030 (IVI+H)		394.0048	$C_{18}\Pi_{21}O_{4}NBI$	0.39	

	MS ²	FI at <i>m/z</i> 91.0548	56	91.0548	C_7H_7	0	
		FL at m/z 121 0650	100	121.0653	C ₀ H ₀ O	-2.81	
		EL at m/2 121.0000	2	256 0691	C IL O ND	0.41	
		F1 at <i>m</i> /2 230.9081	<u> </u>	230.9081	C ₉ H ₈ O ₃ NBI	-0.41	
		F1 at <i>m/z</i> 271.9916	7	271.9917	$C_{10}H_{11}O_3NBr$	-0.30	
B 28	25R_N	BOMe-M (dehydro-hydroyy-) isome	r 3		1		67
D20	230-1	(DOME-M (denyaro-nyaroxy-) isome	15				0.7
	+					,	
	MS^1	PM at <i>m/z</i> 394.0658 (M+H)	6	394.0648	$C_{18}H_{21}O_4NBr$	2.42	
	MS ²	FL at m/z 107 0495	38	107 0497	C ₂ H ₂ O	-1 77	
	1110	= 11 at m/2 = 107.0193	100	127.0602		1.05	
		F1 at <i>m/z</i> 157.0597	100	137.0003	$C_8 \Pi_9 O_2$	-4.03	
		F1 at <i>m/z</i> 239.9657	1	239.9655	$C_9H_7O_2NBr$	0.97	
		FI at <i>m/z</i> 255.9967	6	255.9968	$C_{10}H_{11}O_3NBr$	-0.26	
		1 1	1	1			
D20	25 D N	DOMo M (hudnowy) isomon 1	1	1	1	1	7.1
D29	23D-1	(BOMe-M (nyuroxy-) isomer 1					/.1
	MS^1	PM at <i>m/z</i> 396.0806 (M+H)	12	396.0805	$C_{18}H_{23}O_4NBr$	0.26	
	MS2	$FI \text{ of } m/_{7} 01 05/18$	62	01.0548	C H	1	
	1413	F1 at <i>m/2</i> 91.0348	02	91.0548	C7117		
		F1 at m/z 121.0650	100	121.0653	C_8H_9O	-2.81	
		FI at <i>m/z</i> 243.9732	4	243.9735	C ₉ H ₉ O ₃ Br	-1.25	
		FL at $m/7$ 258 9967	11	258 9970	CueHupO ₂ Br	-1.08	
		11 at m/2 200.000		200.9970	C1011203B1	1.00	
D 20			1	1	-1	1	7.2
B30	25B-N	BOME-M (hydroxy-) isomer 2					1.3
	L						
	MS1	PM at <i>m/z</i> 396.0800 (M+H)	17	396 0805	C ₁₈ H ₂₂ O ₄ NBr	-1 25	
	MC2	EL at m/z 100.0651	100	100.0652	- C H O	1.20	
	M3*	F1 at m/z 109.0651	100	109.0653	C_7H_9O	-2.20	
		FI at <i>m/z</i> 137.0596	23	137.0603	$C_8H_9O_2$	-4.78	
		FI at <i>m/z</i> 243.0015	4	243.0021	$C_{10}H_{12}O_{2}Br$	-2.33	
		FL at $m/_{7}$ 258 0123	1	258 0124	CulturOnNBr	-0.45	
		11 at m/2 250.0125	1	250.0124	C101113O211D1	-0.45	
B31	25B-N	BOMe-M (hydroxy-) isomer 3					7.8
	MS^1	PM at m/z 396 0805 (M+H)	10	396 0805	CueHarO(NBr	0	
	1.1.0	FL = 4 m/(-107.0404)	52	107.0407		1	
	MS ²	F1 at m/z 107.0494	53	107.0497	C_7H_7O	-2./1	
		FI at <i>m/z</i> 137.0597	100	137.0603	$C_8H_9O_2$	-4.05	
		FI at <i>m/z</i> 243.0010	2	243.0021	$C_{10}H_{12}O_2Br$	-4.39	
		FL at $m/_{7}$ 258 0137	1	258 0124	CulturOnNBr	4 97	
		11 at m/2 200:0107	1	200.0121	010113021101		
			1	i	i	i	
B32	25B-N	BOMe-M (hydroxy-) isomer 4					8.4
	MS^1	PM at <i>m/z</i> 396.0800 (M+H)	6	396.0805	C ₁₀ H ₂₂ O ₄ NBr	-1.25	
	MS ²	EI at m/z 01 05/8	54	01.0548	C H	0	
	1413	FI at <i>m/2</i> 91.0348	54	91.0548	C7117	1.00	
		F1 at m/z 121.0651	100	121.0653	C_8H_9O	-1.98	
		FI at <i>m/z</i> 258.0128	4	258.0124	$C_{10}H_{13}O_2NBr$	1.49	
		FI at <i>m/z</i> 378.0704	2	378.0699	$C_{18}H_{21}O_3NBr$	1.24	
		1	1	1	10 21 9	1	
D22	25D N	DOMo M (O domothyl <i>hi</i> a hydroyy	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>	1	1		6.2
D 33	23D-1	BOMe-M (O-demethyl-bis-hydroxy-)				0.2
	MS^1	PM at <i>m/z</i> 398.0590 (M+H)	1	398.0598	$C_{17}H_{21}O_5NBr$	-1.91	
	MS ²	FL at m/z 138 0312	39	138 0317	L C-H ₂ O ₂	-3 59	
	1110	FL -t	100	152.0552		2.07	
		F1 at <i>m</i> /2 155.0547	100	155.0552	C ₈ H ₉ O ₃	-5.07	
		F1 at m/z 228.9861	71	228.9864	$C_9H_{10}O_2Br$	-1.38	
		FI at <i>m/z</i> 246.0123	25	246.0124	$C_9H_{13}O_2NBr$	-0.47	
				1			
B3 4	25R_N	BOMe-M (his-bydrovy-) isomer 1		1			7.4
0.54	250-1	(DOME-M (<i>bis</i> -nyuroxy-) isomer 1					7.4
						T	
	MS^1	PM at m/z 412.0750 (M+H)	1	412.0754	$C_{18}H_{23}O_5NBr$	-1.00	
	MS ²	FI at m/z 107.0495	54	107.0497	C ₇ H ₇ O	-1.77	
		EL at m/π 153 0544	63	153 0552	CHO	5.03	
		$11 \text{ at } m/2 \ 155.0544$	03	133.0332	C ₈ 11 ₉ O ₃	-5.05	
		F1 at m/z 243.0010	100	243.0021	$C_{10}H_{12}O_2Br$	-4.39	
		FI at <i>m/z</i> 260.0282	32	260.0281	$C_{10}H_{15}O_2NBr$	0.51	
		1 1	 		i i		
B35	25B-N	BOMe-M (<i>bis</i> -hydroxy-) isomer ?					77
		2 conte na (ono-nyur oxy-) isointei 2					/./
	+					1	
	MS ¹	PM at <i>m/z</i> 412.0756 (M+H)	6	412.0754	$C_{18}H_{23}O_5NBr$	0.46	
1	MS ²	FI at <i>m/z</i> 91.0548	60	91.0548	C ₇ H ₇	0	
			100	121 0653	CHO	-2.81	
		$^{+}$ F1 at $m/_{7}$ [2] 0650		1/11/03/3			
		F1 at m/z 121.0650	100	274.0010		4.25	
		F1 at <i>m/z</i> 121.0650 F1 at <i>m/z</i> 274.9907	1	274.9919	$C_{10}H_{12}O_4Br$	-4.35	
		F1 at <i>m/z</i> 121.0650 F1 at <i>m/z</i> 274.9907 F1 at <i>m/z</i> 290.0018	100 1 0.3	274.9919 290.0022	$C_{10}H_{12}O_4Br$ $C_{10}H_{13}O_4NBr$	-2.81 -4.35 -1.54	

Table S2 List of 25C-NBOMe and its phase I metabolites together with the precursor mass (PM) recorded in MS¹, the corresponding characteristic fragment ions (FI) in MS², the calculated exact masses, the corresponding elemental composition, the deviation of the measured from the calculated masses, given as errors in parts per million (ppm), and the retention times (RT) in minutes (min). The metabolites were sorted by mass and RT.

No.	M	etabolite and characteristic ions Measured accurate mass, <i>m/z</i>	Relative intensity in MS ² , %	Calculated exact mass, <i>m/z</i>	Elemental composition	Error, ppm	RT, min
C1	25C-N	NBOMe					8.5
	MS ¹	PM at <i>m/z</i> 336.1360 (M+H)	8	336.1361	C ₁₈ H ₂₃ O ₃ NCl	-0.29	
	MS ²	FI at <i>m/z</i> 91.0548	56	91.0548	C ₇ H ₇	0	
		FI at <i>m/z</i> 121.0651	100	121.0653	C ₈ H ₉ O	-1.98	
	No. Metabolite and characteristic ions Measured accurate mass, m/z Relative intensity in MS ¹ , % Calculated exact mass, m/z Elemental composition Error, ppm R C1 25C-NBOMe 56 91.0548 -0.29 -0.29 MS ¹ F1 at m/z 10.651 100 121.0653 C ₄ H ₂ O -1.98 F1 at m/z 110.651 100 121.0653 C ₄ H ₂ O -1.92 F1 at m/z 124.0627 0.2 214.0629 C ₁₀ H ₂ O ₄ Cl -2.76 F1 at m/z 120.0632 1 199.0526 C ₁₀ H ₁ O ₄ Cl -1.92 F1 at m/z 1214.0627 0.2 214.0629 C ₁₀ H ₁ O ₄ Cl -1.92 C2 25C-NBOMe-M (N-demethoxybenzyl-O-demethyl-) isomer 1 -0 -0 -0 MS ¹ F1 at m/z 130.0476 2.3 150.0681 C ₄ H ₁ O ₄ Cl -3.20 F1 at m/z 130.0476 2.3 150.0681 C ₄ H ₁ O ₄ Cl -3.20 -3.20 F1 at m/z 130.0475 1.3 1.00 18.0369 C ₄ H ₂ O ₄ Cl -2.34 C3 25C-NBOMe-M (N-demethoxybenzyl-O-demethyl-)						
		F1 at m/z 199.0522	1	199.0526	$C_{10}H_{12}O_2CI$	-1.92	
		F1 at m/z 214.0627	0.2	214.0629	$C_{10}H_{13}O_2NCI$	-1.09	
C2	25C-N	NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -	demethyl-) isomer 1	·			3.4
	MS ¹	PM at <i>m/z</i> 202.0629 (M+H)	1	202.0629	$C_9H_{13}O_2NCl$	0	
	MS ²	FI at <i>m/z</i> 135.0441	6	135.0446	$C_8H_7O_2$	-3.74	
		FI at <i>m</i> / <i>z</i> 150.0676	23	150.0681	$C_9H_{10}O_2$	-3.20	
		FI at <i>m/z</i> 170.0129	83	170.0135	C ₈ H ₇ O ₂ Cl	-3.28	
		F1 at m/z 185.0365	100	185.0369	$C_9H_{10}O_2CI$	-2.34	
C3	25C-1	NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -	demethyl-) isomer 2	1	1	1	3.5
	MS1	PM at <i>m/z</i> 202.0628 (M+H)	1	202.0629	$C_9H_{13}O_2NCl$	-0.66	
	MS ²	FI at <i>m/z</i> 135.0441	5	135.0446	C ₈ H ₇ O ₂	-3.74	
		FI at <i>m/z</i> 150.0675	18	150.0681	$C_9H_{10}O_2$	-3.86	
		FI at <i>m/z</i> 170.0129	84	170.0135	C ₈ H ₇ O ₂ Cl	-1.84	
		FI at <i>m/z</i> 185.0364	100	185.0369	$C_9H_{10}O_2Cl$	-2.88	
C4	25C-1	NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -	demethyl-deamino-car	·boxy-)	1	1	5.9
	MS1	PM at <i>m/z</i> 215.0108 (M-H)	1	215.0111	C ₉ H ₈ O ₄ Cl	-1.46	
	MS ²	FI at <i>m/z</i> 155.9976	100	155.9978	C ₇ H ₅ O ₂ Cl	-1.33	
		FI at <i>m/z</i> 171.0210	2	171.0213	$C_8H_8O_2Cl$	-1.65	
C5	25C-N	BOMe-M (<i>N</i> -demethoxybenzyl-)	1	1	1	1	5.2
	MS1	PM at m/z 216 0781 (M+H)		216.0786	C10H15O2NCl	-2.24	
	MS ²	FL at m/z 164 0829	20	164 0837	$C_{10}H_{12}O_2$	-5.06	
		FI at m/z 169.0048	28	169.0056	C ₈ H ₆ O ₂ Cl	-4.93	
		FI at <i>m/z</i> 184.0284	100	184.0291	C ₀ H ₀ O ₂ Cl	-3.85	
		FI at <i>m/z</i> 199.0517	86	199.0526	$C_{10}H_{12}O_2Cl$	-4.44	
C6	25C-N	NBOMe-M (<i>N</i> -demethoxybenzyl-ox	0-)		1	1	6.6
	MS1	PM at $m/7$ 230 0581 (M+H)		230.0578	C.H.O.NCl	1 00	
	MS ²	FL at m/z 155 0257	42	155 0264	+ C.H.OC1	-4 31	
	1110	FL at m/z 173 0364	2	173 0369	C.H.O.Cl	-3.08	
		FI at <i>m/z</i> 185.0365	100	185.0369	$C_9H_{10}O_2Cl$	-2.34	
C7	25C-N	<u> </u> NBOMe-M (<i>N</i> -demethoxybenzyl-hy	droxy-)				3.8
	MS1	PM at $m/_7$ 232 0730 (M+H)		232 0735	C.H.O.NCI	_2 15	
	MS ²	FL at $m/2$ 185 0000	42	185 0005	$-C_{10}H_{15}O_{3}HC_{1}$	-2.13	
	1410	FL at m/z 200 0234	30	200 0240	$C_{8}H_{0}O_{3}C_{1}$	-2.90	
		FI at <i>m/z</i> 215.0469	100	215.0475	$C_{10}H_{12}O_3Cl$	-2.78	
C8	25C-N	NBOMe-M (<i>0,0,0-tris-</i> demethyl-)		<u>.</u>			5.0
	MOL	DM at m/- 204 0970 (M+11)		204 0901		4.05	
	MS ¹	Five at $m/2.294.08/9$ (M+H)	0	294.0891	$C_{15}\Pi_{17}O_{3}NCI$	-4.25	
	1015-	FI at $m/2$ 107.0494	6	136 0524	$C_7\Pi_7O$	-4./1	
		FI at $m/2$ 171.0206	80	171 0213	$C_8H_8O_2$	-3.99	
	I	1 1 M 10 1 1 1.0400	. 00	1/1.0215		-3.77	I

	FI at <i>m/z</i> 188.0472	27	188.0473	C ₈ H ₁₁ O ₂ NCl	-0.44	
<u> </u>	25C NROM: M (0.0 kits downsthad doke	1 1 1 1				6.4
C9	25C-NBOMe-M (<i>0,0-bis</i> -demethyl-dehy	dro-)				6.4
	MS ¹ PM at m/z 306.0893 (M+H)	4	306.0891	C ₁₆ H ₁₇ O ₃ NCl	0.49	
	MS² FI at <i>m/z</i> 107.0495	36	107.0497	C ₇ H ₇ O	-1.77	
	FI at <i>m</i> / <i>z</i> 184.0160	46	184.0160	C ₈ H ₇ O ₂ NCl	0	
	FI at <i>m/z</i> 199.0395	41	199.0395	$C_9H_{10}O_2NCl$	0	
	F1 at m/z 200.04/4	100	200.0473	$C_9H_{11}O_2NCI$	0.58	
C10	25C-NBOMe-M (O.O-bis-demethyl-) ison	ner 1		1 1		5.8
	MS ¹ PM at <i>m</i> / <i>z</i> 308.1046 (M+H)	6	308.1048	$C_{16}H_{19}O_{3}NCl$	-0.64	
	MS² FI at m/z 91.0547	51	91.0548	C ₇ H ₇	-0.82	
	F1 at m/z 121.0649	100	121.0653	C_8H_9O	-3.63	
	FI at <i>m/z</i> 202.0624	2	202.0629	$C_9H_{13}O_2NCl$	-2.64	
C11	25C-NBOMe-M (0,0-bis-demethyl-) ison	ner 2				6.4
	MS1 DM at m / 208 1051 (M 11)	12	200 1040		0.08	
	MS² FL at m/z 107 0496	100	107 0497	$C_{16}\Pi_{19}O_{3}NCI$	-0.84	
	FI at m/z 170.0129	13	170.0135	C ₈ H ₇ O ₂ Cl	-3.28	
	FI at <i>m/z</i> 185.0364	77	185.0369	$C_9H_{10}O_2Cl$	-2.88	
	FI at <i>m/z</i> 202.0632	22	202.0629	C ₉ H ₁₃ O ₂ NCl	1.32	
C12	25C NBOMa $M(0.0 his domethyl)$ isom					6.6
		ner 5				0.0
	MS ¹ PM at <i>m/z</i> 308.1048 (M+H)	10	308.1048	C ₁₆ H ₁₉ O ₃ NCl	0	
	MS² FI at <i>m/z</i> 107.0496	100	107.0497	C ₇ H ₇ O	-0.84	
	FI at <i>m/z</i> 170.0130	25	170.0135	C ₈ H ₇ O ₂ Cl	-2.69	
	FI at m/z 185.0365	87	185.0369	$C_9H_{10}O_2Cl$	-2.34	
	F1 at <i>m/z</i> 202.0629	22	202.0629	$C_9H_{13}O_2NCI$	0	
C13	25C-NBOMe-M (O-demethyl-dehydro-)	isomer 1				5.7
	MS ¹ PM at <i>m/z</i> 320.1047 (M+H)	17	320.1048	C ₁₇ H ₁₉ O ₃ NCl	-0.31	
	MS ² F1 at m/z 91.0548	57	91.0548	C ₇ H ₇	0	
	FI at $m/2$ 121.0051 FL at $m/2$ 198 0317	5	121.0033	C_8H_9O	-1.98	
			170.0010	0,1190,211	5.11	
C14	25C-NBOMe-M (O-demethyl-dehydro-)	isomer 2				6.4
			220 1040			
	MS ² PM at m/z 320.1049 (M+H) MS ² FL at m/z 107.0495	24	320.1048	CHO	0.32	
	FI at $m/2$ 107.0495	17	185.0369	$C_0H_{10}O_2Cl$	-2.34	
	FI at <i>m/z</i> 214.0629	73	214.0629	$C_{10}H_{13}O_2NCl$	0	
C15	25C-NBOMe-M (<i>O</i> -demethyl-dehydro-)	isomer 3				7.1
	MS ¹ PM at m/z 320.1050 (M+H)	3	320.1048	C ₁₇ H ₁₀ O ₃ NCl	0.63	
	MS ² FI at <i>m/z</i> 91.0548	49	91.0548	C ₇ H ₇	0.27	
	FI at <i>m/z</i> 121.0650	100	121.0653	C ₈ H ₉ O	-2.81	
	FI at <i>m/z</i> 184.0160	10	184.0160	$C_8H_7O_2NCl$	0	
	F1 at m/z 199.0394		199.0395	$C_9H_{10}O_2NCI$	-0.29	
C16	25C-NBOMe-M (O-demethyl-) isomer 1	i		i		7.2
	MS ¹ PM at <i>m/z</i> 322.1206 (M+H)	10	322.1204	$C_{17}H_{21}O_3NCl$	0.47	
	MS² FI at m/z 91.0548	54	91.0548	C ₇ H ₇	0	
	F1 at m/z 121.0651 FL at m/z 185.0368	100	121.0653	C_8H_9O	-1.98	
	FI at <i>m/z</i> 200.0473	1	200.0473	$C_{9}H_{11}O_{2}NCl$	-0.72	
	FI at <i>m/z</i> 305.0931	0.1	305.0944	$C_{17}H_{18}O_3Cl$	-4.42	
C17	25C-NBOMe-M (<i>O</i> -demethyl-) isomer 2					7.3
	MS ¹ PM at m/z 322,1199 (M+H)	6	322,1204	C ₁₇ H ₂₁ O ₂ NCl	-1 70	
	MS ² FI at <i>m/z</i> 91.0549	58	91.0548	C ₇ H ₇	1.37	
	FI at <i>m/z</i> 121.0651	100	121.0653	C ₈ H ₉ O	-1.98	
	FI at <i>m/z</i> 185.0364	0.3	185.0369	$C_9H_{10}O_2Cl$	-2.88	
	F1 at $m/z 200.0473$ FL at $m/z 305.0034$	0.2	200.0473	$C_9H_{11}O_2NCl$	0	
	11 at 11/2 303.0734	0.1	303.0944	U171118U3U1	-3.44	
C18	25C-NBOMe-M (O-demethyl-) isomer 3					7.7
L	+					
	MS ¹ PM at <i>m/z</i> 322.1198 (M+H)	10	322.1204	C ₁₇ H ₂₁ O ₃ NCl	-2.01	

	MS ²	FI at <i>m/z</i> 107.0494	100	107.0497	C ₇ H ₇ O	-2.71	
		$FL ot m/\pi 184.0295$	44	107.0701		2 20	
		F1 at m/z = 184.0283	44	184.0291	$C_9\Pi_9O_2CI$	-5.50	
		F1 at m/z 199.0518	90	199.0526	$C_{10}H_{12}O_2CI$	-3.93	
		FI at <i>m/z</i> 216.0784	21	216.0786	$C_{10}H_{15}O_2NCl$	-0.85	
C19	25C-N	NBOMe-M (O.O-bis-demethyl-hydro	oxy-) isomer 1		•		5.0
			,,				
	MGI	DM -+		224 0007			
	INIS.	$PNI \text{ at } m/2 \ 524.1000 \ (NI+\Pi)$	4	524.0997	$C_{16}\Pi_{19}O_{4}$ INCI	2.75	
	MS ²	F1 at m/z 107.0495	44	107.0497	C ₇ H ₇ O	-1.77	
		FI at <i>m/z</i> 137.0597	100	137.0603	$C_8H_9O_2Cl$	-4.05	
		FI at <i>m/z</i> 185.0365	4	185.0369	C ₀ H ₁₀ O ₂ Cl	-2.34	
		FL at m/z 202 0637	1 1	202 0629	C ₁₀ H ₁₀ O ₂ NCl	3 79	
		FL at $m/2 202.0037$	1	207.0727	C = O C	4.02	
		F1 at m/2 507.0722	1	507.0757	$C_{16}\Pi_{16}O_4CI$	-4.95	
~ ~ ~			<u> </u>		i i		
C20	25C-N	NBOMe-M (<i>O,O-bis</i> -demethyl-hydro	oxy-) isomer 2				5.3
	MS^1	PM at <i>m/z</i> 324.0997 (M+H)	12	324.0997	$C_{16}H_{19}O_4NCl$	0	
	MS ²	FI at <i>m/z</i> 123.0443	95	123.0446	C ₇ H ₇ O ₂	-2.48	
		FL at $m/_{7}$ 170 0129	19	170 0135	C ₂ H ₂ O ₂ Cl	-3.28	
		$1 \text{ FL}_{1} = 105.0265$	100	195.02(0		-5.20	
		$F1 \text{ at } m/z \ 185.0365$	100	185.0369	$C_9H_{10}O_2CI$	-2.34	
		F1 at m/z 202.0630	26	202.0635	$C_9H_{13}O_2NCI$	-2.39	
C21	25C-N	 NBOMe-M (<i>O O-bis-</i> demethyl-bydro	yv-) isomer 3				5.6
							5.0
	MS^1	PM at <i>m/z</i> 324.0995 (M+H)	3	324.0997	C ₁₆ H ₁₉ O ₄ NCl	-0.66	
	MS ²	FI at m/z 107.0495	100	107 0497	C ₂ H ₂ O	-1 77	
		FI at m/z 186 0078	/1	186.0094	C.H-O.C1	_3 08	
		11 at m/2 100.0070	41	201.0210		-5.00	
		F1 at <i>m/z</i> 201.0312	94	201.0318	$C_9H_{10}O_3CI$	-3.22	
		FI at <i>m</i> / <i>z</i> 218.0578	31	218.0578	C ₉ H ₁₃ O ₃ NCl	0	
C22	25C-1	NBOMe-M (<i>0,0-bis</i> -demethyl-hydro	oxy-) isomer 4				5.8
	MSI	$DM \text{ of } m/_{2} 224 0005 (M+H)$	11	224 0007	C H O NCL	0.66	
	MO	FL + (122.0442		122 0446			
	MS ²	$F1 \text{ at } m/z \ 123.0443$	100	123.0446	$C_7H_7O_2$	-2.48	
		F1 at m/z 1/0.0130	12	1/0.0135	$C_8H_7O_2CI$	-2.69	
		FI at <i>m/z</i> 185.0365	65	185.0369	$C_9H_{10}O_2Cl$	-2.34	
		FI at <i>m/z</i> 202.0628	17	202.0635	C ₉ H ₁₃ O ₂ NCl	-3.38	
					i i		
C23	25C-I	NBOMe-M (<i>O,O-bis</i> -demethyl-hydro	oxy-) isomer 5				6.2
	MS1	PM at $m/7$ 324 0990 (M+H)	1	324 0997	C.H.O.NCl	-2.20	
	MO	FL + (107.0405	+-	107.0407			
	M32	F1 at $m/z = 107.0495$	100	107.0497	C_7H_7O	-1.//	
		FI at m/z 200.0473	99	200.0473	$C_9H_{11}O_2NCI$	0	
		FI at <i>m/z</i> 218.0581	1	218.0578	C ₉ H ₁₃ O ₃ NCl	1.15	
		FI at <i>m/z</i> 306.0890	9	306.0891	C ₁₆ H ₁₇ O ₃ NCl	-0.49	
					10 17 5		
C24	25C-N	NBOMe-M (dehydro-)	· ·				7.2
	MS ¹	PIVI at <i>m/z</i> 334.1202 (M+H)	20	334.1204	$C_{18}H_{21}O_3NCI$	-0./4	
	MS ²	F1 at <i>m/z</i> 91.0548	53	91.0548	C_7H_7	0	
		FI at <i>m/z</i> 121.0651	100	121.0653	C_8H_9O	-1.98	
		FI at <i>m/z</i> 196.0160	1	196.0160	C ₉ H ₇ O ₂ NCl	0	
		FI at <i>m/z</i> 212.0472	7	212.0473	C10H11O2NC1	-0.39	
					10 11 - 2		
C25	25C-N	NBOMe-M (<i>O</i> -demethyl-dehydro-hy	droxy-)				6.0
	Mel	DM at m/2 226 0092 (M + H)		226 0007			
	IND.	FIVI at <i>m/z</i> 330.0983 (M+H)		330.0997	$C_{17}\Pi_{19}O_4NCI$	-4.21	
	MS ²	F1 at <i>m/z</i> 10/.0495	42	107.0497	C_7H_7O	-1.77	
		FI at <i>m/z</i> 137.0597	100	137.0603	$C_8H_9O_2$	-4.05	
		FI at <i>m/z</i> 184.0160	11	184.0160	C ₈ H ₇ O ₂ NCl	0	
		FI at <i>m/z</i> 199.0394	11	199.0395	C ₉ H ₁₀ O ₂ NCl	-0.29	
<u> </u>	a						
C26	25C-N	NBOMe-M (<i>O</i> -demethyl-hydroxy-) i	somer 1				6.1
	MEL	DM at $m/_{\pi}$ 220 1145 (M + 11)		220 1154			
	MS	rivi at <i>m/z</i> 538.1145 (M+H)	¥+	338.1154	$C_{17}H_{21}O_4NCI$	-2.55	
	MS ²	F1 at <i>m/z</i> 107.0495	100	107.0497	C_7H_7O	-1.77	
		FI at <i>m/z</i> 200.0235	78	200.0240	C ₉ H ₉ O ₃ Cl	-3.32	
		FI at <i>m/z</i> 215.0469	86	215.0475	$C_{10}H_{12}O_{3}Cl$	-2.78	
		FI at <i>m/z</i> 232.0733	26	232.0735	C ₁₀ H ₁₅ O ₃ NCl	-0.86	
C27	25C-N	NBOMe-M (<i>O</i> -demethyl-hydroxy-) i	somer 2				6.4
	1		۰				
	MS ¹	PM at <i>m/z</i> 338.1151 (M+H)	7	338.1154	$C_{17}H_{21}O_4NC1$	-0.78	
		FI at m/z 107 0495	41	107.0497	C ₇ H ₇ O	-1.77	
	MS ²	11 at m/2 107.0495	1				
	MS ²	FI at <i>m/z</i> 137.0598	100	137.0603	$C_8H_9O_2$	-3.32	
	MS ²	FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 185.0365	100 1	137.0603 185.0369	$\begin{array}{c} C_8H_9O_2\\ C_9H_{10}O_2Cl \end{array}$	-3.32 -2.34	
	MS ²	FI at <i>m</i> /2 137.0598 FI at <i>m</i> /2 185.0365 FI at <i>m</i> /2 200.0465	100 1 0.2	137.0603 185.0369 200.0473	$C_8H_9O_2$ $C_9H_{10}O_2Cl$ $C_9H_{10}O_3NCl$	-3.32 -2.34 -3.92	

	т			221 0004		1	
		F1 at m/z 321.08/8	0.2	321.0894	$C_{17}H_{18}O_4CI$	-4.87	
				 	1		
C28	25C-N	NBOMe-M (<i>O</i> -demethyl-hydroxy-) is	omer 3				6.5
	MS^1	PM at <i>m/z</i> 338.1146 (M+H)	10	338.1154	C ₁₇ H ₂₁ O ₄ NCl	-2.26	
	MS ²	FI at <i>m/z</i> 123.0442	100	123.0446	$C_7H_7O_2$	-3.29	
		FI at <i>m/z</i> 184.0286	47	184.0291	C ₉ H ₉ O ₂ Cl	-2.76	
		FI at <i>m/z</i> 199.0521	91	199.0526	$C_{10}H_{12}O_2Cl$	-2.43	
		FI at <i>m/z</i> 216.0788	22	216.0786	$C_{10}H_{15}O_2NCl$	1.00	
C29	25C-N	NBOMe-M (O-demethyl-hydroxy-) is	omer 4				7.1
	MS^1	PM at <i>m/z</i> 338.1164 (M+H)	5	338.1154	C ₁₇ H ₂₁ O ₄ NCl	3.07	
	MS ²	FI at <i>m/z</i> 123.0443	100	123.0446	C ₇ H ₇ O ₂	-2.48	
		FI at <i>m/z</i> 184.0287	39	184.0291	C ₉ H ₉ O ₂ Cl	-2.22	
		FI at <i>m/z</i> 199.0521	76	199.0526	$C_{10}H_{12}O_2Cl$	-2.43	
		FI at <i>m/z</i> 216.0786	15	216.0786	C ₁₀ H ₁₅ O ₂ NCl	0	
C30	25C-N	NBOMe-M (dehydro-hydroxy-)			·		6.3
	MS ¹	PM at <i>m/z</i> 350.1148 (M+H)	17	350.1154	C ₁₈ H ₂₁ O ₄ NCl	-1.61	
	MS ²	FI at <i>m/z</i> 91.0547	54	91.0548	· C ₇ H ₇	-0.82	
		FI at <i>m/z</i> 121.0649	100	121.0653	C ₈ H ₉ O	-3.63	
		FI at <i>m/z</i> 213.0185	2	213.0187	C ₀ H ₈ O ₃ NCl	-1.05	
		FI at <i>m/z</i> 228.0421	6	228.0422	C ₁₀ H ₁₁ O ₃ NCl	-0.43	
			-		10 11 - 5		
C31	25C-N	NBOMe-M (hvdroxv-) isomer 1			1		6.9
							~
	MS1	PM at <i>m/z</i> 352,1303 (M+H)	10	352,1310	C18H22O4NCl	-2.03	
	MS ²	FI at m/z 91 0546	51	91 0548	+ C ₂ H ₂	-1.92	
		FL at m/z 121 0649	100	121.0653	CHO	-3.63	
		FL at m/z 200 0231	2	200 0240	C ₀ H ₀ O ₂ Cl	-4 61	
		FL at m/z 215 0465	2	215 0475	C ₁₀ H ₁₂ O ₂ Cl	-4 64	
		1 1 1 1 1 1 1 2 1 2 1 0 1 0 0	-	1	0101120301		
C32	25C-N	NBOMe-M (hydroxy-) isomer 2		1			7.1
	MS1	PM at <i>m/z</i> 352,1304 (M+H)	13	352,1310	C18H22O4NCl	-1.74	
	MS ²	FI at m/z 91 0549	61	91 0548	+ C ₂ H ₂	1 37	
		FL at m/z 121 0651	100	121.0653	C.H.O	-1.98	
		FL at m/z 200 0236	3	200.0240	C H O C	-2 11	
		FL at m/z 215 0472	10	215 0475	C ₁₀ H ₁₂ O ₂ Cl	-1 39	
			10	1	0101120301	1.07	
C33	25C-N	NBOMe-M (hvdroxy-) isomer 3		4	1		7.6
	MS1	PM at <i>m/z</i> 352,1305 (M+H)	9	352,1310	C18H22O4NCl	-1.46	
	MS ²	FI at m/z 107 0494	43	107 0497	+ C_H_O	-2 71	
	1110	FL at m/z 137 0596	100	137 0603	CHO	-4 78	
		FL at m/z 184 0283	2	184 0291	C ₀ H ₀ O ₂ Cl	-4 39	
		FL at m/z 199 0520	5	199.0526	C ₁₀ H ₁₂ O ₂ Cl	-2.93	
		11 40 110 139.00 20		1	0101120201	1	
C34	25C-N	NBOMe-M (<i>O</i> -demethyl- <i>bis</i> -hydroxy-	-)	1			57
			,				
	MS1	PM at <i>m/z</i> 354 1090 (M+H)	2	354 1103	C17H21OcNCl	-3.61	
	MS ²	FI at m/z 107 0494	60	107 0497	+ C ₂ H ₂ O	-2.71	
		FI at m/z 153.0550	60	153.0552	C ₀ H ₀ O ₂	-1.11	
		FI at m/z 185.0362	100	185.0369	CoH10O2Cl	-3.96	
		FI at <i>m/z</i> 202.0629	23	202.0629	C ₀ H ₁₂ O ₂ NCl	0	
					1 - 7 13 - 2		
C35	25C-N	NBOMe-M (<i>bis</i> -hydroxy-) isomer 1		1			6.0
000							0.0
	MS1	PM at <i>m/z</i> 368 1241 (M+H)	6	368 1259	C10H22OcNCl	-4 97	
	MS ²	FL at m/z 107 0495	40	107 0497	+ C-H-O	-1 77	
		FL at m/z 137 0597	100	137 0603	C ₂ H ₂ O ₂	-4.05	
		FL at m/z 215 0467	1	215 0475	$C_{10}H_{12}O_{2}C_{1}$	-3 71	
		FL at m/z 230 0570	1	230.0578	$C_{10}H_{12}O_2NCl$	-3.69	
				1	010113031101		
C36	25C-N	NBOMe-M (<i>bis</i> -hydroxy-) isomer ?	1	1		·	69
2.50		2 STILL IN (015-Hydroxy-) Isoliter 2					0.7
	MS1	PM at <i>m/z</i> 368 1247 (M+H)	1	368 1259	C ₁₀ H ₂₂ O ₆ NCl	-3 34	
	MS ²	FL at m/z 107 0495	48	107 0497	+ C-H-O	+	
	1110	FL at m/z 153 0546	58	153 0552	C.H.O.	_3.72	
		FL at m/z 199 0521	100	199.0526	C ₁₀ H ₁₂ O ₂ Cl	-2 43	
		FI at m/z 216.0782	17	216 0786	$C_{10}H_{15}O_2NCl$	-1 78	
		1	1	1	1 10-113021101	1.70	

Table S3 List of all 25B-NBOMe phase II metabolites together with the precursor mass (PM) recorded in MS¹, the corresponding characteristic fragment ions (FI) in MS², the calculated exact masses, the corresponding elemental composition, the deviation of the measured from the calculated masses, given as errors in parts per million (ppm), and the retention times (RT) in minutes (min). The metabolites were sorted by mass and RT. Numbering according to Table 1 (AC = *N*-acetylation, GSH glutathione conjugation, ME = *O*-methylation, G = glucuronidation, S = sulfation, AC+G = acetylation combined with glururonidation, AC+S = acetylation combined with sulfation)

No.	M	etabolite and characteristic ions Measured accurate mass, <i>m/z</i>	Relative intensity in MS ² , %	Calculated exact mass, <i>m/z</i>	Elemental composition	Error, ppm	RT, min
B3	25B-N	NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -	demethyl-) <i>N</i> -acetyl iso	omer 1			6.6
	MS1	PM at <i>m/z</i> 288 0226 (M+H)	5	288 0230	CuHucO2NBr	-1 32	
	MS ²	FI at <i>m</i> / <i>z</i> 150.0674	58	150.0681	$C_0H_{10}O_2$	-4.53	
		FI at <i>m/z</i> 213.9621	35	213.9629	C ₈ H ₇ O ₂ Br	-3.93	
		FI at <i>m/z</i> 228.9857	100	228.9864	$C_{9}H_{10}O_{2}Br$	-3.13	
		FI at <i>m/z</i> 246.0123	13	246.0124	$C_9H_{13}O_2NBr$	-0.47	
B4	25B-N	 NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -	demethyl-) <i>N</i> -acetyl iso	bmer 2	1		6.7
AC			• / •				
	MS ¹	PM at <i>m/z</i> 288.0226 (M+H)	6	288.0230	$C_{11}H_{15}O_3NBr$	-1.32	
	MS ²	FI at <i>m/z</i> 150.0674	32	150.0681	$C_9H_{10}O_2$	-4.53	
		FI at <i>m/z</i> 213.9621	64	213.9629	C ₈ H ₇ O ₂ Br	-3.93	
		FI at <i>m/z</i> 228.9857	100	228.9864	$C_9H_{10}O_2Br$	-3.13	
		FI at <i>m/z</i> 246.0123	13	246.0124	C ₉ H ₁₃ O ₂ NBr	-0.47	
B3 AC+S	25B-N	NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -	demethyl-) <i>N</i> -acetyl su	lfate isomer 1	1		5.4
	MS1	PM at <i>m/z</i> 367.9798 (M+H)	4	367,9798	C11H15O6NBrS	0	
	MS ²	FL at m/z 228 9858	100	228 9864	$C_0H_{10}O_2Br$	-2.69	
	1110	FL at m/z 246 0125	8	246 0124	$C_0H_{10}O_2NBr$	0.34	
		FL at m/z 288 0229	7	288 0230	CuH ₁₅ O ₂ NBr	-0.28	
		FI at m/z 308.9424	24	308.9432	C ₀ H ₁₀ O ₅ BrS	-2.70	
		FI at <i>m/z</i> 325.9692	18	325.9692	$C_9H_{13}O_5NBrS$	0	
B4	25B-N	¦ NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -	demethyl-) <i>N</i> -acetyl su	lfate isomer 2			5.5
ACTS	MS1	PM at <i>m/z</i> 367 9798 (M+H)	4	367 9798	CuHueOeNBrS	0	
	MS ²	FI at $m/7$ 228 9858	100	228 9864	$+ C_0H_{10}O_0Br$	-2 69	
	1110	FL at m/z 246 0123	12	246 0124	$C_0H_{10}O_2NBr$	-0.47	
		FL at m/z 288 0226	11	288 0230	$C_{\rm u}H_{\rm c}O_{\rm s}NBr$	-1.32	
		FL at m/z 308 9425	16	308 9432	C ₀ H ₁₀ O ₆ BrS	-2.37	
		FI at <i>m/z</i> 325.9692	17	325.9692	$C_9H_{13}O_5NBrS$	0	
B8	25B-N	¦ NBOMe-M (<i>0,0-bis</i> -demethyl-) <i>S-</i> m	ethyl	1			7.7
GSH-1			- 				
	MS ¹	PM at <i>m/z</i> 398.0405 (M+H)	-+l	398.0420	$+C_{17}H_{21}O_3NBrS$	-3.78	
	MS ²	F1 at m/z 91.0548	53	91.0548	C ₇ H ₇	0	
		F1 at m/z 121.0650	100	121.0653	C_8H_9O	-2.81	
		FI at m/z 259.9503	6	259.9507	$C_9H_9O_2BrS$	-1.40	
		F1 at <i>m/z</i> 381.0149	0.4	381.0160	$C_{17}H_{18}O_3BIS$	-2.84	
B33 ME	25B-N	NBOMe-M (<i>O</i> -demethyl- <i>bis</i> -hydrox	y-) <i>O</i> -methyl				6.8
	MS ¹	PM at <i>m/z</i> 412.0760 (M+H)	1	412.0754	C ₁₈ H ₂₃ O ₅ NBr	1.43	
	MS ²	FI at <i>m/z</i> 137.0597	39	137.0603	$C_8H_9O_2$	-4.05	
		FI at <i>m/z</i> 167.0704	100	167.0708	C ₉ H ₁₁ O ₃	-2.51	
		FI at <i>m/z</i> 228.9859	18	228.9864	$C_{9}H_{10}O_{2}Br$	-2.25	
		FI at <i>m/z</i> 246.0125	6	246.0124	$C_9H_{13}O_2NBr$	0.34	
B 7	25B-N	¦ NBOMe-M (<i>0,0,0-tris</i> -demethyl-) s	ulfate	1			4.7
S	+						
	$\perp MS^{1}$	<u>PM at <i>m/z</i> 417.9959 (M+H)</u>	<u>¦ 6</u>	417.9954	$C_{15}H_{17}O_6NBrS$	1.08	

	MS ²	FI at <i>m/z</i> 107.0496	100	107.0497	C ₇ H ₇ O	-0.84	
		FL at $m/7$ 214 9702	80	214 9708	C ₀ H ₀ O ₂ Br	-2.63	
		FL at $m/2$ 204 0271	18	204 0276	CHOBrS	1.64	
		FL = t m/2 211.0529	27	211.0526		-1.04	
		F1 at m/z 311.9538	27	311.9536	$C_8H_{11}O_5NBrS$	0.69	
		FI at <i>m/z</i> 338.0387	10	338.0386	$C_{15}H_{17}O_3NBr$	0.20	
		<u> </u>					
B3/4	25B-N	IBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -de	emethyl-) glucuronide				3.0
G			η <u>-</u>				
	MS ¹	PM at <i>m/z</i> 422.0446 (M+H)	4	422.0445	$C_{15}H_{21}O_8NBr$	0.22	
	MS ²	FI at <i>m</i> / <i>z</i> 150.0674	24	150.0681	$C_9H_{10}O_2$	-3.86	
		FI at <i>m/z</i> 213.9623	43	213.9629	C ₈ H ₇ O ₂ Br	-3.00	
		FI at <i>m/z</i> 228.9858	100	228.9864	$C_9H_{10}O_2Br$	-2.69	
		FI at <i>m/z</i> 246.0126	28	246.0124	C ₉ H ₁₃ O ₂ NBr	0.75	
B8	25B-N	BOMe-M (O,O-bis-demethyl-) sulfat	te isomer 1				6.0
S	1						
	MS^1	PM at <i>m/z</i> 432.0113 (M+H)	2	432.0111	C ₁₆ H ₁₉ O ₆ NBrS	0.47	
	MS ²	FI at m/z 91.0548	61	91.0548	C ₇ H ₇	0	
		FL at m/z 121 0650	100	121.0653	C ₂ H ₂ O	-2.81	
		FL at m/z 352 0541	2	352 0543	Cuthio Os NBr	-0.52	
		11 at m/2 552.05+1	2	552.0545	016119031001	-0.52	
B9/10	25B-N	BOMe-M (O.O-bis-demethyl-) sulfa	te isomer 2				6.8
S		(-,,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-					
	MS^1	PM at <i>m/z</i> 432.0120 (M+H)	24	432.0111	C ₁₆ H ₁₉ O ₆ NBrS	2.09	
	MS ²	FI at m/z 107 0496	99	107 0497	C ₂ H ₂ O	-0.84	
		FI at m/z 228 0860	100	228 0864	C ₀ H ₁ O ₂ Br	_1 92	
	1	$=$ EL at $m/\pi 2000 0420$	24	200 0420	CHOD-C	1 40	
		F1 at m/2 508.9428	20	205.9432	$C_{9} C_{10} O_{5} D_{10} O_{5} O_{10} O_{1$	-1.40	
		F1 at <i>m/z</i> 325.9696	38	325.9692	$C_9H_{13}O_5NBFS$	1.12	
		F1 at m/z 352.0546	5	352.0543	$C_{16}H_{19}O_3NBr$	0.90	
D12/14	25D N	i IDOMa M (O damathul) aulfata iaan	<u>i i</u>		i i		76
D15/14 S	23 D- 1	(BOMe-M (O-demethyl-) surface ison					7.0
	MSI	PM at $m/\pi 446.0268$ (M+H)	2	446 0267	C H O NBrS	0.12	
	MC2	$F_{1} = t_{1} = t_{1$	ii	01.0549		1.27	
	NIS-	F1 at $m/2$ 91.0349	60	91.0348	$C_7\Pi_7$	1.57	
		F1 at m/z 121.0651	100	121.0653	C_8H_9O	-1.98	
		F1 at m/z 349.0431		349.0439	$C_{17}H_{18}O_3Br$	-2.38	
		FI at <i>m/z</i> 366.0703	4	366.0699	$C_{17}H_{21}O_3NBr$	1.01	
BIS	25B-F	BOMe-M (O-demethyl-) sulfate ison	her 2				8.5
3	MG1	DM at m/s 446.0264 (M+H)	2	146.0267	C IL O ND-C		
	NIS.	P_{IM} at $m/2$ 440.0204 (M+H)		440.0207	C17H21O6NBIS	-0.78	
	MS ²	F1 at $m/z = 107.0495$	59	107.0497	C_7H_7O	-1.//	
		FI at m/z 243.0015	100	243.0021	$C_{10}H_{12}O_2Br$	-2.33	
		FI at <i>m/z</i> 260.0282	20	260.0281	$C_{10}H_{15}O_2NBr$	0.51	
		FI at <i>m/z</i> 366.0702	30	366.0699	$C_{17}H_{21}O_3NBr$	0.73	
		1					
B16	25B-N	BOMe-M (0,0-bis-demethyl-hydrox	cy-) sulfate isomer 1				4.8
8	MG		γ -				
	MS	P[M] at m/z 448 0061 ([M+H])	~	110 00/0	C IL O MD C		
	MS^2		¦	448.0060	C ₁₆ H ₁₉ O ₇ NBrS	0.19	
	1110	FI at <i>m/z</i> 107.0496	<u>5</u> 41	<u>448.0060</u> 107.0497	C ₁₆ H ₁₉ O ₇ NBrS C ₇ H ₇ O	<u>0.19</u> -0.84	
		FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598	5 41 100	448.0060 107.0497 137.0603	$\begin{array}{c} C_{16}H_{19}O_7NBrS \\ C_7H_7O \\ C_8H_9O_2 \end{array}$	0.19 -0.84 -3.32	
		FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164	5 41 100 15	448.0060 107.0497 137.0603 217.0171	$\begin{array}{c} C_{16}H_{19}O_7NBrS \\ C_7H_7O \\ C_8H_9O_2 \\ C_8H_9O_5S \end{array}$	0.19 -0.84 -3.32 -3.10	
	1410	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491	5 41 100 15 5	448.0060 107.0497 137.0603 217.0171 368.0492	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_3S\\ C_{16}H_{19}O_4NBr\end{array}$	0.19 -0.84 -3.32 -3.10 -0.26	
		FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491	5 41 100 15 5	448.0060 107.0497 137.0603 217.0171 368.0492	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_2S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26	
B17/18	25B-N	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491	5 41 100 15 5 y-) sulfate isomer 2	448.0060 107.0497 137.0603 217.0171 368.0492	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_5S\\ C_{16}H_{19}O_4NBr\end{array}$	0.19 -0.84 -3.32 -3.10 -0.26	5.6
B17/18 S	25B-N	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 VBOMe-M (<i>O,O-bis</i> -demethyl-hydrox	5 41 100 15 5 (y-) sulfate isomer 2	448.0060 107.0497 137.0603 217.0171 368.0492	C ₁₆ H ₁₉ O ₇ NBrS C ₇ H ₇ O C ₈ H ₉ O ₂ C ₈ H ₉ O ₅ S C ₁₆ H ₁₉ O ₄ NBr	0.19 -0.84 -3.32 -3.10 -0.26	5.6
B17/18 S	25B-N MS ¹	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 BOMe-M (<i>O</i> , <i>O</i> -bis-demethyl-hydrox PM at <i>m/z</i> 448.0052 (M+H)	5 41 100 15 5 cy-) sulfate isomer 2	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_5S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26	5.6
B17/18 S	25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 BOMe-M (0,0-bis-demethyl-hydros PM at <i>m/z</i> 448.0052 (M+H) FI at <i>m/z</i> 123.0443	5 41 100 15 5 xy-) sulfate isomer 2	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 123.0246	$C_{16}H_{19}O_7NBrS$ C_7H_7O $C_8H_9O_2$ $C_8H_9O_3S$ $C_{16}H_{19}O_4NBr$ $C_{16}H_{19}O_7NBrS$ $C_7H_7O_2$ $C_7H_7O_2$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -2.48	5.6
B17/18 S	25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 VBOMe-M (<i>O,O-bis</i> -demethyl-hydrox PM at <i>m/z</i> 448.0052 (M+H) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 228.9860 FI at <i>m/z</i> 228.9860	5 41 100 15 5 (y-) sulfate isomer 2	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 228.9864	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_3S\\ C_{16}H_{19}O_4NBr\\ \hline\\ \hline\\ C_{16}H_{19}O_4NBr\\ \hline\\ C_7H_7O_2\\ C_9H_{10}O_2Br\\ \hline\\ \hline\end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82	5.6
B17/18 S	25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 BOMe-M (0,0-bis-demethyl-hydrox PM at <i>m/z</i> 448.0052 (M+H) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 308.9426	5 41 100 15 5 cy-) sulfate isomer 2 3 86 100 32	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_5S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.05	5.6
B17/18 S	25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 VBOMe-M (0,0-bis-demethyl-hydros) PM at <i>m/z</i> 448.0052 (M+H) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 325.9695	5 41 100 15 5 cy-) sulfate isomer 2 3 86 100 32 38	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432 325.9692	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_5S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.05 0.82	5.6
B17/18 S	25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 NBOMe-M (0,0-bis-demethyl-hydro: PM at <i>m/z</i> 448.0052 (M+H) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 228.9860 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 368.0499	5 41 100 15 5 cy-) sulfate isomer 2 3 86 100 32 38 5	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432 325.9692 368.0492	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_5S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.05 0.82 1.91	5.6
B17/18 S	25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 NBOMe-M (0,0-bis-demethyl-hydro: PM at <i>m/z</i> 448.0052 (M+H) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 228.9860 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 368.0499	5 41 100 15 5 cy-) sulfate isomer 2 3 86 100 32 38 5	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432 325.9692 368.0492	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_5S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.05 0.82 1.91	5.6
B17/18 S B22	25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 VBOMe-M (0,0-bis-demethyl-hydros) PM at <i>m/z</i> 448.0052 (M+H) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 228.9860 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 368.0499 VBOMe-M (0-demethyl-hydrosy-) su	5 41 100 15 5 cy-) sulfate isomer 2 3 86 100 32 38 5 lfate isomer 1	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432 325.9692 368.0492	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_5S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.05 0.82 1.91	6.2
B17/18 S B22 S	25B-N MS ¹ MS ² 25B-N	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 NBOMe-M (0,0-bis-demethyl-hydrox) PM at <i>m/z</i> 448.0052 (M+H) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 228.9860 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 368.0499 NBOMe-M (0-demethyl-hydroxy-) su	5 41 100 15 5 cy-) sulfate isomer 2 3 86 100 32 38 5 1 fate isomer 1	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432 325.9692 368.0492	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_5S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.05 0.82 1.91	6.2
B17/18 S B22 S	25B-N MS ¹ MS ² 25B-N MS ¹	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 NBOMe-M (0,0-bis-demethyl-hydros) PM at <i>m/z</i> 448.0052 (M+H) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 228.9860 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 368.0499 NBOMe-M (0-demethyl-hydroxy-) su PM at <i>m/z</i> 462.0212 (M+H)	5 41 100 15 5 cy-) sulfate isomer 2 3 86 100 32 38 5 Ifate isomer 1	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432 325.9692 368.0492 462.0217	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_3S\\ C_{16}H_{19}O_4NBr\\ \end{array}\\\\\hline\\ C_{16}H_{19}O_4NBr\\ C_{7}H_7O_2\\ C_{9}H_{10}O_2Br\\ C_{9}H_{10}O_3BrS\\ C_{9}H_{13}O_5NBrS\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.05 0.82 1.91 -1.00	6.2
B17/18 S B22 S	25B-N MS ¹ MS ² 25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 NBOMe-M (<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-hydrox) PM at <i>m/z</i> 448.0052 (M+H) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 228.9860 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 368.0499 NBOMe-M (<i>O</i> -demethyl-hydroxy-) su PM at <i>m/z</i> 462.0212 (M+H) FI at <i>m/z</i> 91.0548	5 41 100 15 5 (y-) sulfate isomer 2 3 86 100 32 38 5 1fate isomer 1 2 65	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432 325.9692 368.0492 462.0217 91.0548	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_2S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.05 0.82 1.91 -1.00 1.37	6.2
B17/18 S B22 S	25B-N MS ¹ MS ² 25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 PM at <i>m/z</i> 448.0052 (M+H) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 368.0499 VBOMe-M (<i>O</i> -demethyl-hydroxy-) su PM at <i>m/z</i> 462.0212 (M+H) FI at <i>m/z</i> 91.0548 FI at <i>m/z</i> 121.0650	$ \begin{array}{r} 5 \\ 41 \\ 100 \\ 15 \\ 5 \end{array} $ (y-) sulfate isomer 2 $ \begin{array}{r} 3 \\ 86 \\ 100 \\ 32 \\ 38 \\ 5 \end{array} $ If ate isomer 1 $ \begin{array}{r} 2 \\ -2 \\ -65 \\ 100 \end{array} $	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432 325.9692 368.0492 462.0217 91.0548 121.0653	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_3S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.48 -1.82 -2.05 0.82 1.91 -1.00 1.37 -2.81	6.2
B17/18 S B22 S	25B-N MS ¹ MS ² 25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 PM at <i>m/z</i> 448.0052 (M+H) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 228.9860 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 368.0499 VBOMe-M (O-demethyl-hydroxy-) su PM at <i>m/z</i> 462.0212 (M+H) FI at <i>m/z</i> 91.0548 FI at <i>m/z</i> 121.0650 FI at <i>m/z</i> 258.9974	$ \begin{array}{r} 5 \\ 41 \\ 100 \\ 15 \\ 5 \end{array} $ (y-) sulfate isomer 2 $ \begin{array}{r} 3 \\ 86 \\ 100 \\ 32 \\ 38 \\ 5 \end{array} $ Iffate isomer 1 $ \begin{array}{r} 2 \\ 65 \\ 100 \\ 1 \end{array} $	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432 325.9692 368.0492 462.0217 91.0548 121.0653 258.9970	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_2\\ C_8H_9O_3S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.05 0.82 1.91 -1.00 1.37 -2.81 1.62	6.2
B17/18 S B22 S	25B-N MS ¹ MS ² 25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 PM at <i>m/z</i> 448.0052 (M+H) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 228.9860 FI at <i>m/z</i> 228.9860 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 368.0499 VBOMe-M (<i>O</i> -demethyl-hydroxy-) su PM at <i>m/z</i> 462.0212 (M+H) FI at <i>m/z</i> 91.0548 FI at <i>m/z</i> 121.0650 FI at <i>m/z</i> 1258.9974 FI at <i>m/z</i> 382.0654	$ \begin{array}{r} 5 \\ 41 \\ 100 \\ 15 \\ 5 \end{array} $ cy-) sulfate isomer 2 $ \begin{array}{r} 3 \\ 86 \\ 100 \\ 32 \\ 38 \\ 5 \end{array} $ If ate isomer 1 $ \begin{array}{r} 2 \\ 65 \\ 100 \\ 1 \\ 4 \end{array} $	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432 325.9692 368.0492 462.0217 91.0548 121.0653 258.9970 382.0648	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_2\\ C_8H_9O_3S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.05 0.82 1.91 -1.00 1.37 -2.81 1.62 1.45	6.2
B17/18 S B22 S	25B-N MS ¹ MS ² 25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 VBOMe-M (<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-hydrox) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 120.0548 FI at <i>m/z</i> 91.0548 FI at <i>m/z</i> 121.0650 FI at <i>m/z</i> 1258.9974 FI at <i>m/z</i> 382.0654	5 41 100 15 5 cy-) sulfate isomer 2 3 86 100 32 38 5	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432 325.9692 368.0492 462.0217 91.0548 121.0653 258.9970 382.0648	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_2\\ C_8H_9O_5S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.05 0.82 1.91 -1.00 -1.37 -2.81 1.62 1.45	6.2
B17/18 S B22 S B24/25	25B-N MS ¹ MS ² 25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 PM at <i>m/z</i> 448.0052 (M+H) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 228.9860 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 368.0499 WBOMe-M (<i>O</i> -demethyl-hydroxy-) su FI at <i>m/z</i> 121.0650 FI at <i>m/z</i> 121.0650 FI at <i>m/z</i> 382.0654 WBOMe-M (<i>O</i> -demethyl-hydroxy-) su	5 41 100 15 5 cy-) sulfate isomer 2 3 86 100 32 38 5 lifate isomer 1	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432 325.9692 368.0492 462.0217 91.0548 121.0653 258.9970 382.0648	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_2\\ C_8H_9O_5S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.05 0.82 1.91 -1.00 1.37 -2.81 1.62 1.45	6.2
B17/18 S B22 S B24/25 S	25B-N MS ¹ MS ² 25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 VBOMe-M (<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-hydrox) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.0499 VBOMe-M (<i>O</i> -demethyl-hydroxy-) su PM at <i>m/z</i> 462.0212 (M+H) FI at <i>m/z</i> 91.0548 FI at <i>m/z</i> 121.0650 FI at <i>m/z</i> 128.9974 FI at <i>m/z</i> 382.0654	5 41 100 15 5 xy-) sulfate isomer 2 3 86 100 32 38 5 Ifate isomer 1 2 65 100 1 4 Ifate isomer 2	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432 325.9692 368.0492 462.0217 91.0548 121.0653 258.9970 382.0648	$\begin{array}{c} C_{16}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_2\\ C_8H_9O_5S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.05 0.82 1.91 -1.00 -1.37 -2.81 1.62 1.45	5.6 6.2 7.2
B17/18 S B22 S B24/25 S	25B-N MS ¹ MS ² 25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 VBOMe-M (<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-hydrox) PM at <i>m/z</i> 448.0052 (M+H) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 228.9860 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 368.0499 VBOMe-M (<i>O</i> -demethyl-hydroxy-) su PM at <i>m/z</i> 462.0212 (M+H) FI at <i>m/z</i> 121.0650 FI at <i>m/z</i> 128.9974 FI at <i>m/z</i> 382.0654 VBOMe-M (<i>O</i> -demethyl-hydroxy-) su PM at <i>m/z</i> 462.0215 (M+H)	5 41 100 15 5 xy-) sulfate isomer 2 3 86 100 32 38 5 1fate isomer 1 2 65 100 1 4 1 4 1 1 5	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432 325.9692 368.0492 462.0217 91.0548 121.0653 258.9970 382.0648 462.0217	$\begin{array}{c} C_{1q}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_3S\\ C_{16}H_{19}O_4NBr\\ \end{array}\\ \\ \hline \\ \hline \\ C_{16}H_{19}O_4NBr\\ \hline \\ C_{7}H_7O_2\\ C_9H_{10}O_2Br\\ C_9H_{10}O_3BrS\\ C_9H_{10}O_3BrS\\ C_{9}H_{13}O_3NBrS\\ C_{16}H_{19}O_4NBr\\ \hline \\ \hline \\ \hline \\ C_{17}H_{21}O_7NBrS\\ C_{10}H_{12}O_3Br\\ C_{17}H_{21}O_4NBr\\ \hline \\ \hline \\ \hline \\ C_{17}H_{21}O_4NBr\\ \hline \\ \hline \\ \hline \\ \hline \\ C_{17}H_{21}O_7NBrS\\ \hline \\ \hline$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.05 0.82 1.91 -1.00 1.37 -2.81 1.62 1.45 -0.35	<u>5.6</u> <u>6.2</u> <u>7.2</u>
B17/18 S B22 S B24/25 S	25B-N MS ¹ MS ² 25B-N MS ¹ MS ² 25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 WBOMe-M (<i>O</i> , <i>O</i> - <i>bis</i> -demethyl-hydrox) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 368.0499 WBOMe-M (<i>O</i> -demethyl-hydroxy-) su PM at <i>m/z</i> 462.0212 (M+H) FI at <i>m/z</i> 121.0650 FI at <i>m/z</i> 258.9974 FI at <i>m/z</i> 382.0654 WBOMe-M (<i>O</i> -demethyl-hydroxy-) su PM at <i>m/z</i> 462.0215 (M+H) FI at <i>m/z</i> 123.0442	$ \begin{array}{r} 5 \\ 41 \\ 100 \\ 15 \\ 5 \end{array} $ $ \begin{array}{r} 3 \\ 86 \\ 100 \\ 32 \\ 38 \\ 5 \end{array} $ If ate isomer 1 $ \begin{array}{r} 2 \\ 65 \\ 100 \\ 1 \\ 4 \end{array} $ If ate isomer 2 $ \begin{array}{r} 9 \\ 58 \end{array} $	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432 325.9692 368.0492 462.0217 91.0548 121.0653 258.9970 382.0648 462.0217 123.0446	$\begin{array}{c} C_{1q}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_2S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.48 -1.82 -2.05 0.82 1.91 -1.00 1.37 -2.81 1.62 1.45 -0.35 -3.29	5.6 6.2 7.2
B17/18 S B22 S B24/25 S	25B-N MS ¹ MS ² 25B-N MS ¹ MS ²	FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0598 FI at <i>m/z</i> 217.0164 FI at <i>m/z</i> 368.0491 PM at <i>m/z</i> 448.0052 (M+H) FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 123.0443 FI at <i>m/z</i> 228.9860 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 308.9426 FI at <i>m/z</i> 368.0499 VBOMe-M (<i>O</i> -demethyl-hydroxy-) su PM at <i>m/z</i> 462.0212 (M+H) FI at <i>m/z</i> 121.0650 FI at <i>m/z</i> 121.0650 FI at <i>m/z</i> 258.9974 FI at <i>m/z</i> 382.0654 VBOMe-M (<i>O</i> -demethyl-hydroxy-) su PM at <i>m/z</i> 462.0215 (M+H) FI at <i>m/z</i> 123.0442 FI at <i>m/z</i> 123.0442 FI at <i>m/z</i> 203.0007	5 41 100 15 5 cy-) sulfate isomer 2 3 86 100 32 38 5	448.0060 107.0497 137.0603 217.0171 368.0492 448.0060 123.0446 228.9864 308.9432 325.9692 368.0492 462.0217 91.0548 121.0653 258.9970 382.0648 462.0217 123.0446 203.0014	$\begin{array}{c} C_{14}H_{19}O_7NBrS\\ C_7H_7O\\ C_8H_9O_2\\ C_8H_9O_2\\ C_8H_9O_3S\\ C_{16}H_{19}O_4NBr\\ \end{array}$	0.19 -0.84 -3.32 -3.10 -0.26 -1.82 -2.48 -1.82 -2.05 0.82 1.91 -1.00 1.37 -2.81 1.62 1.45 -0.35 -3.29 -3.56	5.6 6.2 7.2

	Т	FI at <i>m/z</i> 260.0282 FI at <i>m/z</i> 382 0640	19 11	260.0281 382.0648	$C_{10}H_{15}O_2NBr$ $C_{17}H_{21}O_4NBr$	0.51	
		1		302.0010			
B3/4 AC+G	25B-1	NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -d	emethyl-) <i>N</i> -acetyl gluc	uronide			5.3
	MS ¹	PM at <i>m/z</i> 464.0564 (M+H)	1	464.0551	C ₁₇ H ₂₃ O ₉ NBr	2.86	
	MS ²	FI at <i>m/z</i> 150.0674	18	150.0681	$C_9H_{10}O_2$	-4.53	
		FI at <i>m/z</i> 228.9858	100	228.9864	$C_9H_{10}O_2Br$	-2.69	
		FI at <i>m/z</i> 246.0121	20	246.0124	$C_9H_{13}O_2NBr$	-1.29	
		F1 at <i>m/z</i> 288.0225	41	288.0230	$C_{11}H_{15}O_3NBr$	-1.67	
B8 GSH-2	25B-1	NBOMe-M (<i>0,0-bis</i> -demethyl-) acety	lcysteine				6.4
	MS^1	PM at <i>m/z</i> 513.0695 (M+H)	10	513.0689	$C_{21}H_{26}O_6N_2BrS$	1.08	
	MS ²	FI at <i>m/z</i> 91.0548	60	91.0548	C_7H_7	0	
		FI at <i>m/z</i> 121.0650	100	121.0653	C ₈ H ₉ O	-2.81	
		F1 at <i>m/z</i> 384.0264 FI at <i>m/z</i> 407.0273	6 1	384.0264 407.0271	$C_{16}H_{19}O_3NBrS \\ C_{14}H_{20}O_5N_2BrS$	0.53	
B 7	25B-1	NBOMe-M (<i>0,0,0-tris</i> -demethyl-) glu	ıcuronide		i		4.0
G			······································				
	MS ¹	PM at m/z 514.0/14 (M+H)	3	514.0/0/	$C_{21}H_{25}O_9NBr$	1.32	
	MS ²	F1 at m/z 107.0495	/1	107.0497	C H O Br	-1.//	
		FL at m/z 338 0383	24	338 0386	$C_{15}H_{17}O_{2}NBr$	-0.98	
		FI at <i>m/z</i> 408.0289	10	408.0289	$C_{14}H_{19}O_8NBr$	0	
B 8	25B-1	 NBOMe-M (<i>0,0-bis</i> -demethyl-) glucı	ironide isomer 1				4.8
G	MCI	DM of m/2520.0067 (M+U)		570 0061	CHOND-	0.62	
	MS ²	PM at $m/2.528.0867$ (M+H)	3	528.0804	$C_{22}H_{27}O_9NBF$	0.62	
	NIS	FI at $m/2$ 91.0548	100	121 0653	$C_{2}H_{2}O$	-2.81	
		FI at <i>m/z</i> 352.0544	16	352.0543	$C_{16}H_{19}O_3NBr$	0.34	
B 9/10	25B-1	<u>'</u> NBOMe-M (<i>0,0-bis</i> -demethyl-) glucı	ironide isomer 2		! !		5.9
G	MGI	$DM_{ot} = \frac{1}{2} (528, 0.0972, (M + 11))$		529.0964	C IL O ND	1.57	
	MS ²	FINI at $m/2$ 528.08/2 (NI+TI) FL at $m/2$ 107.0496	60	107 0497	$C_{22}\Pi_{27}O_{9}INDI$	-0.84	
		FI at $m/2$ 228,9860	100	228.9864	$C_0H_{10}O_2Br$	-1.82	
		FI at <i>m/z</i> 246.0127	32	246.0124	$C_9H_{13}O_2NBr$	1.15	
		FI at <i>m/z</i> 352.0548	26	352.0543	C ₁₆ H ₁₉ O ₃ NBr	1.47	
		FI at <i>m/z</i> 422.0448	7	422.0445	$\mathrm{C_{15}H_{21}O_8NBr}$	0.70	
B13 G	25B-1	NBOMe-M (<i>O</i> -demethyl-) glucuronid	e isomer 1				5.6
	MS ¹	PM at <i>m/z</i> 542.1024 (M+H)	9	542.1020	C ₂₃ H ₂₉ O ₉ NBr	0.70	
	MS ²	FI at <i>m/z</i> 91.0548	57	91.0548	C ₇ H ₇	0	
		FI at <i>m/z</i> 121.0650	100	121.0653	C ₈ H ₉ O	-2.81	
		FI at <i>m/z</i> 228.9858	1	228.9864	$C_9H_{10}O_2Br$	-2.69	
		F1 at m/z 366.0705	12	366.0699	$C_{17}H_{21}O_3NBr$	1.55	
B14 G	25B-1	NBOMe-M (O-demethyl-) glucuronid	e isomer 2				6.6
_	MS ¹	PM at <i>m/z</i> 542.1022 (M+H)	4	542.1020	C ₂₃ H ₂₉ O ₉ NBr	0.33	
	MS ²	FI at <i>m/z</i> 91.0549	56	91.0548	C ₇ H ₇	1.37	
		FI at <i>m</i> / <i>z</i> 121.0651	100	121.0653	C ₈ H ₉ O	-1.98	
		F1 at m/z 228.9856	21	228.9864	$C_9H_{10}O_2Br$	-3.56	
		F1 at <i>m/2</i> 500.0099	21	300.0099	$C_{17} H_{21} O_{3} N B I$	0	
B15 G	25B-1	NBOMe-M (<i>O</i> -demethyl-) glucuronid	e isomer 3				7.3
	MS^1	PM at <i>m/z</i> 542.1020 (M+H)	8	542.1020	C ₂₃ H ₂₉ O ₉ NBr	0	
	MS ²	FI at <i>m/z</i> 107.0495	100	107.0497	C ₇ H ₇ O	-1.77	
		F1 at m/z 243.0015	45	243.0021	$C_{10}H_{12}O_2Br$	-2.33	
		F1 at $m/z = 260.0282$	14	260.0281	C H O NBr	0.51	
		11 at <i>m/2</i> 500.0704	21	500.0099	C ₁₇ H ₂₁ O ₃ NBI	1.20	
B16 G	25B-1	NBOMe-M (<i>0,0-bis</i> -demethyl-hydro	xy-) glucuronide isomer	r 1		T	4.1
	MS ¹	PM at <i>m/z</i> 544.0806 (M+H)	4	544.0813	C ₂₂ H ₂₇ O ₁₀ NBr	-1.26	
	MS ²	FI at <i>m/z</i> 107.0495	36	107.0497	C ₇ H ₇ O	-1.77	
		FI at <i>m/z</i> 137.0597	100	137.0603	$C_8H_9O_2$	-4.05	
		г1 at <i>m/z 3</i> 08.0493	12	368.0492	$C_{16}H_{19}O_4NBr$	0.28	
B19 G	25B-1	NBOMe-M (<i>0,0-bis</i> -demethyl-hydro:	xy-) glucuronide isomer	r 2			5.3
	MS ¹	PM at <i>m/z</i> 544.0817 (M+H)	4	544.0813	C ₂₂ H ₂₇ O ₁₀ NBr	0.76	

	MS ²	FI at m/z 107 0495	52	107 0497	C ₂ H ₂ O	-1 77	
	1.10	FL at m/z 244 9808	100	244 9813	C ₀ H ₁₀ O ₂ Br	-2.17	
		FI at m/z 262,0074	35	262.0073	C ₀ H ₁₂ O ₂ NBr	0.26	
		FI at <i>m/z</i> 368.0493	31	368.0492	C16H10O4NBr	0.28	
		FI at <i>m/z</i> 438.0394	3	438.0394	$C_{15}H_{21}O_{0}NBr$	0	
						-	
B23	25B-N	NBOMe-M (<i>O</i> -demethyl-hydroxy-) gl	ucuronide isomer 1				5.7
6	MS ¹	PM at m/z 558 0969 (M+H)	4	558 0969	Ca2HaoO10NBr		
	MS ²	FI at m/z 107 0495	36	107 0497	C ₂ H ₂ O	-1 77	
	1.10	FL at m/z 137 0597	100	137.0603	C ₈ H ₉ O ₂	-4.05	
		FI at <i>m/z</i> 228,9856	1 1	228,9864	$C_0H_{10}O_2Br$	-2.25	
		FL at m/z 382,0645	18	382.0648	C ₁₇ H ₂₁ O ₄ NBr	-0.38	
		11 40 11/2 202.00010		202.0010	01/12/04/05/	0.00	
B22	25B-N	BOMe-M (<i>O</i> -demethyl-hydroxy-) gl	ucuronide isomer 2		·		5.9
6	MS1	PM at m/z 558 0970 (M+H)	5	558 0969	CarHaoOuoNBr	0.11	
	MS ²	FI at m/z 91 0548	48	91 0548	C-H-	0	
	1010	FL at m/z 121 0650	100	121.0653		-2.81	
		FL at m/z 382 0647	22	382 0648	CurHayOANBr	-0.38	
		1		502.0010		0.50	
B24/25	25B-N	NBOMe-M (O-demethyl-hydroxy-) gl	ucuronide isomer 3				6.0
G							
	MS^1	PM at <i>m/z</i> 558.0968 (M+H)	8	558.0969	C ₂₃ H ₂₉ O ₁₀ NBr	-0.24	
	MS ²	FI at <i>m/z</i> 123.0443	84	123.0446	$C_7H_7O_2$	-2.48	
		FI at <i>m/z</i> 243.0019	100	243.0021	$C_{10}H_{12}O_2Br$	-0.68	
		FI at <i>m/z</i> 260.0282	32	260.0281	C ₁₀ H ₁₅ O ₂ NBr	0.51	
		FI at <i>m/z</i> 299.0758	2	299.0767	$C_{13}H_{15}O_8$	-2.99	
		FI at <i>m/z</i> 382.0663	5	382.0648	C ₁₇ H ₂₁ O ₄ NBr	3.80	
D20	25D X) DOM: M (hadrones) -harrowside is	i i				((
G B30	25B-1	NBOME-M (nydroxy-) glucuronide is	omer 1				0.0
	MS ¹	PM at <i>m/z</i> 572.1151 (M+H)	7	572.1126	C ₂₄ H ₃₁ O ₁₀ NBr	4.39	
	MS ²	FI at <i>m/z</i> 109.0653	100	109.0653	C ₇ H ₉ O	-0.37	
		FI at <i>m/z</i> 137.0598	37	137.0603	C ₈ H ₉ O ₂	-3.32	
		/					
		FI at <i>m/z</i> 313.0920	30	313.0923	$1 C_{14}H_{17}O_8 = 1$	-1.10	
		FI at <i>m/z</i> 313.0920 FI at <i>m/z</i> 396.0792	30 5	313.0923 396.0805	$C_{14}H_{17}O_8$ $C_{18}H_{23}O_4NBr$	-1.10 -3.27	
		FI at <i>m/z</i> 313.0920 FI at <i>m/z</i> 396.0792	30 5	313.0923 396.0805	$C_{14}H_{17}O_8$ $C_{18}H_{23}O_4NBr$	-1.10 -3.27	
B31	25B-N	FI at <i>m/z</i> 313.0920 FI at <i>m/z</i> 396.0792 NBOMe-M (hydroxy-) glucuronide is	30 5	313.0923 396.0805	$C_{14}H_{17}O_8$ $C_{18}H_{23}O_4NBr$	-1.10 -3.27	6.9
B31 G	25B-N MS ¹	F1 at <i>m/z</i> 313.0920 FI at <i>m/z</i> 396.0792 NBOMe-M (hydroxy-) glucuronide is	30 5 omer 2	313.0923 396.0805 572.1126	$C_{14}H_{17}O_8$ $C_{18}H_{23}O_4NBr$	-1.10 -3.27	6.9
B31 G	25B-N MS ¹ MS ²	FI at <i>m/z</i> 313.0920 FI at <i>m/z</i> 396.0792 VBOMe-M (hydroxy-) glucuronide is PM at <i>m/z</i> 572.1134 (M+H) FI at <i>m/z</i> 107.0496	30 5 omer 2 24	313.0923 396.0805 572.1126 107.0497	C ₁₄ H ₁₇ O ₈ C ₁₈ H ₂₃ O ₄ NBr C ₂₄ H ₃₁ O ₁₀ NBr	-1.10 -3.27	6.9
B31 G	25B-N MS ¹ MS ²	FI at <i>m/z</i> 313.0920 FI at <i>m/z</i> 396.0792 NBOMe-M (hydroxy-) glucuronide is PM at <i>m/z</i> 572.1134 (M+H) FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0599	30 5 omer 2 4 100	313.0923 396.0805 572.1126 107.0497 137.0603	$C_{14}H_{17}O_8$ $C_{18}H_{23}O_4NBr$ $C_{24}H_{31}O_{10}NBr$ $C_{7}H_7O$ $C_{7}H_7O$	-1.10 -3.27 <u>1.42</u> -0.84 -2.59	6.9
B31 G	25B-N MS ¹ MS ²	FI at <i>m/z</i> 313.0920 FI at <i>m/z</i> 396.0792 NBOMe-M (hydroxy-) glucuronide is PM at <i>m/z</i> 572.1134 (M+H) FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0599 EI at <i>m/z</i> 313.0918	30 5 0mer 2 4 100 26	572.1126 107.0497 137.0603 313.0923	$C_{14}H_{17}O_8$ $C_{18}H_{23}O_4NBr$ $C_{24}H_{31}O_{10}NBr$ $C_{7}H_7O$ $C_8H_9O_2$ $C_{10}H_2O_2$	-1.10 -3.27 <u>1.42</u> -0.84 -2.59 -1.74	6.9
B31 G	25B-N MS ¹ MS ²	FI at <i>m/z</i> 313.0920 FI at <i>m/z</i> 396.0792 NBOMe-M (hydroxy-) glucuronide is PM at <i>m/z</i> 572.1134 (M+H) FI at <i>m/z</i> 107.0496 FI at <i>m/z</i> 137.0599 FI at <i>m/z</i> 313.0918 EI at <i>m/z</i> 396.0808	30 5 0mer 2 4 100 26 4	313.0923 396.0805 572.1126 107.0497 137.0603 313.0923 396.0805	$\begin{array}{c} C_{14}H_{17}O_8\\ C_{18}H_{23}O_4NBr\\ \hline\\ C_{24}H_{31}O_{10}NBr\\ C_7H_7O\\ C_8H_9O_2\\ C_{14}H_{17}O_8\\ C_{14}H_{17}O_8\\ C_{14}H_{17}O_8\\ C_{14}H_{10}O_{10}NBr\end{array}$	-1.10 -3.27 	6.9

Table S4 List of all 25C-NBOMe phase II metabolites together with the precursor mass (PM) recorded in MS¹, the corresponding characteristic fragment ions (FI) in MS², the calculated exact masses, the corresponding elemental composition, the deviation of the measured from the calculated masses, given as errors in parts per million (ppm), and the retention times (RT) in minutes (min). The metabolites were sorted by mass and RT. Numbering according to Table 2 (AC = *N*-acetylation, GSH = glutathione conjugation, ME = *O*-methylation, G = glucuronidation, S = sulfation, AC+G = acetylation combined with glururonidation, AC+S = acetylation combined with sulfation)

No.	M	etabolite and characteristic ions Measured accurate mass, <i>m/z</i>	Relative intensity in MS ² , %	Calculated exact mass, <i>m/z</i>	Elemental composition	Error, ppm	RT, min	
C2 AC	25C-NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-) <i>N</i> -acetyl isomer 1							
	MS ¹	PM at <i>m/z</i> 244.0736 (M+H)	3	244.0735	C11H15O2NCl	0.42		
	MS ²	FI at <i>m/z</i> 150.0676	25	150.0681	$C_{9}H_{10}O_{2}$	-3.20		
		FI at <i>m/z</i> 170.0130	30	170.0135	C ₈ H ₇ O ₂ Cl	-2.69		
		FI at <i>m/z</i> 185.0365	100	185.0369	$C_9H_{10}O_2Cl$	-2.34		
		FI at <i>m/z</i> 202.0630	9	202.0629	C ₉ H ₁₃ O ₂ NCl	0.33		
C3 AC	25C-NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-) <i>N</i> -acetyl isomer 2							
	MS ¹	PM at <i>m/z</i> 244.0732 (M+H)	4	244.0735	C ₁₁ H ₁₅ O ₂ NCl	-1.22		
	MS ²	FI at <i>m/z</i> 150.0676	12	150.0681	+ C ₀ H ₁₀ O ₂	-3.20		
		FI at <i>m/z</i> 170.0129	48	170.0135	$C_8H_7O_2Cl$	-3.28		
		FI at <i>m/z</i> 185.0365	100	185.0369	$C_9H_{10}O_2Cl$	-2.34		
		FI at <i>m/z</i> 202.0629	11	202.0629	$C_9H_{13}O_2NCl$	0		
C7 AC	25C-NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-hydroxy-) <i>N</i> -acetyl							
	MSI	PM at $m/2$ 260 0681 (M+U)		260.0684				
	MG2	FM at m/z 200.0081 (M+H)		200.0084	$C_{11}\Pi_{15}O_4NCI$	-1.21		
	MS-	F1 at m/z 166.0625	82	186.0084	$C_9H_{10}O_3$	-2.98		
		= F1 at $m/2$ 180.0078	100	201 0318	$C_{8}\Pi_{7}O_{3}C\Pi$	-3.08		
		FI at <i>m/z</i> 218.0577	14	218.0578	$C_9H_{13}O_3NCl$	-0.68		
C3/4	25C-NBOMe-M (<i>N</i> -demethoxybenzyl- <i>O</i> -demethyl-) <i>N</i> -acetyl sulfate							
AC+S	MO			224.0202				
	MS ²	PM at m/z 324.0305 (M+H)	100	324.0303	$C_{11}H_{15}O_6NCIS$	0.5/		
	INIS-	F1 at m/z 185.0505	100	202.0629	$C_9\Pi_{10}O_2CI$	-2.54		
		= F1 at $m/2 202.0028$	7	202.0029	$C_{9}\Pi_{13}O_{2}NCI$	-0.00		
		FL at m/z 264 9933	26	264 9938	C ₁ H ₁ SO ₃ RC1	-1.70		
		FI at <i>m/z</i> 282.0199	18	282.0198	C ₉ H ₁₃ O ₅ NCIS	0.53		
C10	25C-N	¦ NBOMe-M (<i>0,0-bis</i> -demethyl-) <i>S</i> -m	lethyl	1			7.5	
GSH-1	MS1	PM at m/τ 354 0922 (M+H)	6	354 0925	C.H.O.NCIS	0 01		
	MS ²	FI at $m/2$ 91 0547	55	91 05/18	+ C ₂ H ₂	-0.91		
	1115	FI at m/z 121 0650	100	121 0653	C _e H _o O	-2.81		
		FL at m/z 232 0197	0.5	232.0194	C ₀ H ₁ O ₂ NCIS	1 48		
		FI at <i>m/z</i> 337.0650	0.5	337.0665	C ₁₇ H ₁₈ O ₃ ClS	-4.51		
C34	25C-NBOMe-M (<i>O</i> -demethyl- <i>bis</i> -hydroxy-) <i>O</i> -methyl							
ME	Mel	DM at m = 269 (250 (24) H)		269 1250		0.50		
	MC2	Five at $m/2$ 508.1250 (IVI+H)	1	308.1239	CHO	-2.52		
	M5 ²	F1 at m/z 15/.059/	40	15/.0003	$C_8H_9O_2$	-4.05		
		r_1 at $m/2$ 107.0704 FI at $m/7$ 185 0362	100	107.0708	$C_{9}\Pi_{11}O_{3}$	-2.31		
		FI at <i>m/z</i> 202.0631	2	202.0629	$C_9H_{13}O_2NCl$	0.82		
C8	25C-N	NBOMe-M (<i>0,0,0-tris-</i> demethyl-) s	ulfate				4.5	
S	<u>s</u>							

	MS ¹	PM at <i>m/z</i> 374.0463 (M+H)	7	374.0460	C ₁₅ H ₁₇ O ₆ NClS	0.89	
	MS ²	FL at m/z 107 0496	100	107 0/07	C ₂ H ₂ O	-0.84	
	1415	FI at m/2 107.0490	70	171 0212		1 65	
		11 at m/2 1/1.0210	78	250.0701		-1.05	
		F1 at $m/z 250.97/8$	21	250.9781	$C_8H_8O_5CIS$	-1.20	
		F1 at m/z 268.0043	26	268.0041	$C_8H_{11}O_5NCIS$	0.74	
		F1 at <i>m/z</i> 294.0894	10	294.0891	$C_{15}H_{17}O_3NCI$	0.85	
3	25C N	BOMa M (N domothovybanzyl O do	mothyl) gluguronido				26
3 .	23 C- F	NBOWIe-Wi (N-demethoxybenzyi-O-de	metnyi-) giucuromue				2.0
	MS^1	PM at <i>m/z</i> 378.0949 (M+H)	5	378.0950	C ₁₅ H ₂₁ O ₈ NCl	-0.33	
	MS ²	FL at m/z 150 0675	9	150 0681	CoHuoO2	-3.86	
		FL at m/z 170.0130	35	170 0135	C ₂ H ₂ O ₂ Cl	-2.69	
		FI at m/z 185 0365	100	185 0369	$C_{8}H/O_{2}CI$	-2.09	
		FL at m/2 202.0505	24	202.0620	C H O NC1	0.66	
		11 at m/2 202.0020	27	202.002)	C91113O21VC1	-0.00	
5	25C-N	BOMe-M (<i>bis</i> -hydroxy-) <i>O</i> -methyl					7.6
<u> </u>	MSI	PM at $m/7$ 282 1410 (M+H)	1	382 1416	C H O NCl	1.51	
	M63	FI of m/2 302.1410 (IVI+FI)		127.0(02	CHO	-1.31	
	M3*	F1 at m/z 137.0596	39	157.0603	$C_8H_9O_2$	-4.78	
		F1 at m/z 16/.0/02	100	16/.0/08	$C_9H_{11}O_3$	-3./1	
		FI at <i>m/z</i> 199.0519	22	199.0526	$C_{10}H_{12}O_2CI$	-3.43	
		FI at <i>m/z</i> 216.0785	6	216.0786	$C_{10}H_{15}O_2NCl$	-0.39	
	25C-N	BOMe-M (<i>0,0-bis</i> -demethyl-) sulfate	e isomer 1		i i		5.8
<u> </u>	Mei	DM of m/π 289 0414 (M II)	······································	200 0414		0.56	
	INIO,	FIVI at <i>m/z</i> 368.0014 (MI+H)	<u> </u>	388.0010	CIL	-0.56	
	MS ²	F1 at <i>m/z</i> 91.0548	54	91.0548	C_7H_7	0	
		F1 at <i>m/z</i> 121.0650	100	121.0653	C_8H_9O	-2.81	
		FI at <i>m/z</i> 308.1046	2	308.1048	C ₁₆ H ₁₉ O ₃ NCl	-0.64	
	25C-N	BOMe-M (<i>0,0-bis</i> -demethyl-) sulfate	e isomer 2				6.6
		¬				L	
	MS^1	PM at <i>m/z</i> 388.0617 (M+H)	6	388.0616	C ₁₆ H ₁₉ O ₆ NClS	0.22	
[]	MS ²	FI at <i>m/z</i> 107.0496	96	107.0497	C ₇ H ₇ O	-0.84	
		FI at <i>m/z</i> 185.0366	100	185.0369	$C_9H_{10}O_2Cl$	-1.80	
		FI at <i>m/z</i> 264.9934	40	264.9938	C ₉ H ₁₀ O ₅ ClS	-1.32	
		FL at m/z 282 0200	42	282.0198	C ₀ H ₁₂ O ₅ NCIS	0.88	
		FL at m/z 308 1047	6	308 1048	C.H.:O.NCl	-0.32	
		1 1 1 1 1 1 2 500.1047		500.1040	C161190311C1	-0.52	
	25C-N	NBOMe-M (<i>0,0-bis</i> -demethyl-) sulfate	e isomer 3				7.0
	MS ¹	PM at <i>m</i> /z 388 0619 (M+H)	11	388.0616	C ₁ /H ₁₀ O ₂ NCIS	0.73	
	MS ²	FL at m/z 107.0496	100	107 0407	- CHO	0.84	
	IVIS	FI at m/2 107.0490	100	107.0497	C H O C	1.80	
		F1 at m/2 185.0500	99	105.0509	$C_9\Pi_{10}O_2CI$	-1.00	
		F1 at m/z 18/.0060	6	187.0065	$C_7H_7O_4S$	-2./1	
		F1 at m/z 202.0629	28	202.0629	$C_9H_{13}O_5NCIS$	0	
		F1 at <i>m/z</i> 308.1048	37	308.1048	$C_{16}H_{19}O_3NCI$	0	
7	25C-N	BOMe-M (<i>O</i> -demethyl-) sulfate isom	er 1				7.4
<u> </u>	MS ¹	PM at <i>m/z</i> 402.0778 (M+H)	3	402.0773	C ₁₇ H ₂₁ O ₄ NCIS	1.33	
	MS ²	FL at m/z 91 0548	61	91 05/18	- C-H-		
· · ·		FL at $m/_2$)1.00-70	100	121 0452	$C_{1}H_{0}$	1 00	
		= 11 at $m/2$ 121.0031 EL at $m/2$ 205.0029	100	121.0033		-1.90	
		F1 at <i>M/Z</i> 505.0958		202.0944	$C_{17}\Pi_{18}U_{3}U_{1}$	-2.12	
		гтаt <i>m/z 322.12</i> 03	4	322.1204	$C_{17}H_{21}O_{3}NCI$	0.16	
	25C-NBOMe-M (<i>O</i> -demethyl-) sulfate isomer 2						
<u> </u>	MOL	DM at m/2 402 0785 (M UD)		400 0772	C IL O MOIO		
	IVIS ¹	PM at <i>m/z</i> 402.0785 (M+H)	5	402.0773	$C_{17}H_{21}O_6NCIS$	3.07	
	MS ²	FI at <i>m/z</i> 107.0495	59	107.0497	C_7H_7O	-1.77	
		FI at <i>m/z</i> 199.0521	100	199.0526	$C_{10}H_{12}O_2Cl$	-2.43	
		FI at <i>m/z</i> 216.0787	19	216.0786	C ₁₀ H ₁₅ O ₂ NCl	0.54	
		FI at <i>m/z</i> 322.1205	32	322.1204	C ₁₇ H ₂₁ O ₃ NCl	0.16	
	25C-N	BOMe-M (<i>0,0-bis</i> -demethyl-hydrox	y-) sulfate				5.0
			· · · · · · · · · · · · · · · · · · ·				
	INIS ¹	PM at <i>m/z</i> 404.0569 (M+H)	<u> </u>	404.0565	C ₁₆ H ₁₉ O ₇ NCIS	0.91	
	MS ²	F1 at <i>m/z</i> 123.0443	80	123.0446	$C_7H_7O_2$	-2.48	
		FI at <i>m</i> / <i>z</i> 185.0365	100	185.0369	$C_9H_{10}O_2Cl$	-2.34	
		FI at <i>m/z</i> 264.9934	26	264.9938	C ₉ H ₁₀ O ₅ ClS	-1.32	
		FI at <i>m/z</i> 282.0200	22	282.0198	C ₉ H ₁₃ O ₅ NClS	0.88	
		FI at <i>m/z</i> 324.0998	8	324.0997	C ₁₆ H ₁₉ O ₄ NCl	0.27	
+	25C N	NROMe-M (O-demothyl hydroxy) and	fate		<u> </u>		60
	23C-1	(Domenyi-nyuroxy-) sui	1ate				0.7
	MS ¹	PM at <i>m/z</i> 418.0726 (M+H)	12	418.0722	C ₁₇ H ₂₁ O ₇ NClS	1.00	
	MS ²	FL at $m/_{7}$ 123 0443	55	123 0446	C ₂ H ₂ O ₂	-2.48	

	FI at <i>m/z</i> 199.0522	100	199.0526	$C_{10}H_{12}O_2Cl$	-1.92		
	EL at m/= 202,0008	10	202 0014	CHOS	2.06		
	FI at <i>m/2</i> 205.0008	10	203.0014	C7117055	-5.00		
	F1 at m/z 216.0/88	17	216.0786	$C_{10}H_{15}O_2NCI$	1.00		
	FI at <i>m/z</i> 338.1154	11	338.1154	$C_{17}H_{21}O_4NCl$	0		
		;					
C2/2	25C NBOMa M (N domothowyhangyl O d	mothyl) V gootyl glugy	manida	1 1		5.0	
C2/5	25C-MbOlvie-wi (w-demethoxybenzyi-O-de	emethyi-) /v-acetyi giuci	ironiae			5.0	
AC+G							
	MS ¹ PM at m/z 420.1060 (M+H)	1	420.1056	C ₁₇ H ₂₃ O ₉ NCl	0.98		
	MS^2 FL at m/z 150 0675	6	150.0681	L CoHuoOo	-3.86		
	FI + (105.0075)	100	105.0001		-5.00		
	F1 at <i>m/z</i> 185.0365	100	185.0369	$C_9H_{10}O_2CI$	-2.34		
	FI at <i>m/z</i> 202.0628	19	202.0629	$C_9H_{13}O_2NCl$	-0.66		
	FI at <i>m/z</i> 244.0736	36	244.0735	$C_{11}H_{15}O_3NCl$	0.42		
C10	25C NPOMo M (O O bis domothyl) agoty	lavetoino		1		6.2	
	25C-NBOMe-M (0,0-bis-demethyl-) acety	leysterne				0.2	
GSH-2							
	MS ¹ PM at m/z 469.1200 (M+H)	14	469.1195	$C_{21}H_{26}O_6N_2ClS$	1.14		
	MS ² FL at $m/7$ 91 0548	55	91 0548	C-H-	0		
	EL at m/= 121.0650	100	121.0652		2 01		
	FI at <i>m/2</i> 121.0050	100	121.0055		-2.81		
	F1 at m/z 340.0770	6	340.0769	$C_{16}H_{19}O_3NCIS$	0.38		
	FI at <i>m/z</i> 363.0781	0.5	363.0776	$C_{14}H_{20}O_5N_2ClS$	1.38		
C8	25C-NBOMe-M (0.0.0-tris-demethyl-) al	icuronide				3.8	
						5.0	
<u> </u>		1			· -		
	MIS ' PM at $m/z 4/0.1219 (M+H)$	8	470.1212	$C_{21}H_{25}O_9NCI$	1.41		
	MS ² FI at <i>m</i> / <i>z</i> 107.0495	69	107.0497	C ₇ H ₇ O	-1.77		
	FI at m/z 171.0208	100	171.0213	C ₈ H ₈ O ₂ Cl	-2.82		
	FI at m/7 204.0801	28	20/ 0201	C.HO.NC1			
	FI at <i>m/2</i> 254.0091	10	294.0891		0		
	F1 at m/z 364.0/96	12	364.0794	$C_{14}H_{19}O_8NCI$	0.62		
C10	25C-NBOMe-M (0.0-bis-demethyl-) glucu	ronide isomer 1				4.6	
G	(-,;,)g						
	MC1 DM -+ (- 494 1277 (M 11)	10	494 1260		1 (0		
	MS PM at $m/2$ 484.15 / (M+H)	¦¦	484.1309	$C_{22}H_{27}O_{9}NCI$	1.08		
	MS² FI at m/z 91.0548	41	91.0548	C_7H_7	0		
	FI at <i>m/z</i> 121.0651	100	121.0653	C ₈ H ₉ O	-1.98		
	EL at $m/7$ 308 1047	18	308 1048	C ₁ H ₁₀ O ₂ NCl	-0.32		
	111 at m/2 500.1047	10 1	500.1040		-0.52		
CII	25C-NBOMe-M (<i>O,O-bis-</i> demethyl-) glucu	ronide isomer 2				5.5	
G							
	MS ¹ PM at m/z 484 1375 (M+H)	23	484 1369	CapHarOoNCl	1 26		
	M62 EL -t = (-107.0405)	1	107.0407	+	1.20		
	MS^2 F1 at $m/z = 107.0495$	8/	107.0497	C_7H_7O	-1.//		
	FI at m/z 185.0365	100	185.0369	$C_9H_{10}O_2CI$	-2.34		
	FI at <i>m/z</i> 202.0629	61	202.0629	$C_9H_{13}O_2NCl$	0		
	FL at m/z 308,1046	28	308.1048	C16H10O2NCl	-0.64		
	EL at $m/7$ 378 0953	30	378 0950	C. H. O.NCI	0.73		
	11 at m/2 578.0555	1 50 1	578.0750	C1511210811C1	0.75		
	1	I I		1			
	25C-NBOMe_M (O.Q-bis-demethyl.) glucuronide isomer 3						
C12	25C-NBOMe-M (0,0-bis-demethyl-) glucu	ronide isomer 3					
C12 G	25C-NBOMe-M (<i>0,0-bis</i> -demethyl-) glucu	ronide isomer 3					
C12 G	25C-NBOMe-M (<i>0,0-bis</i> -demethyl-) glucu MS ¹ PM at <i>m/z</i> 484 1375 (M+H)	ronide isomer 3	484.1369	C22H27O0NCl	1.26		
C12 G	25C-NBOMe-M (<i>0,0-bis</i> -demethyl-) glucu MS ¹ PM at <i>m/z</i> 484.1375 (M+H) MS ² EL at <i>m/z</i> 107 0495	ronide isomer 3	484,1369	$C_{22}H_{27}O_9NCl$	1.26		
G G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 107.0495	ronide isomer 3 <u>8</u> <u>55</u> 100	484.1369 107.0497	C ₂₂ H ₂₇ O ₉ NCl C ₇ H ₇ O	-1.77		
G G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 185.0365	8 55 100	484.1369 107.0497 185.0369	$\begin{array}{c} C_{22}H_{27}O_{9}NCl\\ C_{7}H_{7}O\\ C_{9}H_{10}O_{2}Cl \end{array}$	1.26 -1.77 -2.34		
G G	25C-NBOMe-M (O,O-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 185.0365 FI at m/z 202.0628	8 55 100 30	484.1369 107.0497 185.0369 202.0629	C ₂₂ H ₂₇ O ₉ NCl C ₇ H ₇ O C ₉ H ₁₀ O ₂ Cl C ₉ H ₁₃ O ₂ NCl	1.26 -1.77 -2.34 -0.66		
G G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 185.0365 FI at m/z 1202.0628 FI at m/z 308.1047	somer 3 55 100 30 29	484.1369 107.0497 185.0369 202.0629 308.1048	C ₂₂ H ₂₇ O ₉ NCl C ₇ H ₇ O C ₉ H ₁₀ O ₂ Cl C ₉ H ₁₃ O ₂ NCl C ₁₆ H ₁₉ O ₃ NCl	1.26 -1.77 -2.34 -0.66 -0.32		
G C12 G	25C-NBOMe-M (<i>O</i> , <i>O</i> -bis-demethyl-) glucu MS ¹ PM at <i>m</i> /z 484,1375 (M+H) MS ² FI at <i>m</i> /z 107.0495 FI at <i>m</i> /z 185.0365 FI at <i>m</i> /z 202.0628 FI at <i>m</i> /z 308.1047 FI at <i>m</i> /z 378.0952	8 55 100 30 29 9	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950	$\begin{array}{c} C_{22}H_{27}O_{9}NCl\\ C_{7}H_{7}O\\ C_{9}H_{10}O_{2}Cl\\ C_{9}H_{13}O_{2}NCl\\ C_{16}H_{19}O_{3}NCl\\ C_{16}H_{19}O_{8}NCl\\ \end{array}$	<u>1.26</u> -1.77 -2.34 -0.66 -0.32 0.47		
G C12 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 185.0365 FI at m/z 185.0365 FI at m/z 185.0365 FI at m/z 308.1047 FI at m/z 378.0952 FI at m/z 378.0952	8 55 100 30 29 9	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950	$\begin{array}{c} C_{22}H_{27}O_9NCl\\ C_7H_7O\\ C_9H_{10}O_2Cl\\ C_9H_{13}O_2NCl\\ C_{16}H_{19}O_3NCl\\ C_{15}H_{21}O_8NCl \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47		
G C16	25C-NBOMe-M (<i>O</i> , <i>O</i> -bis-demethyl-) glucu MS ¹ PM at <i>m/z</i> 484,1375 (M+H) MS ² FI at <i>m/z</i> 107,0495 FI at <i>m/z</i> 185,0365 FI at <i>m/z</i> 202,0628 FI at <i>m/z</i> 308,1047 FI at <i>m/z</i> 378,0952 25C-NBOMe M (<i>O</i> domethyl) glucuscid	8 55 100 30 29 9	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950	$\begin{array}{c} C_{22}H_{27}O_{9}NCl\\ C_{7}H_{7}O\\ C_{9}H_{10}O_{2}Cl\\ C_{9}H_{13}O_{2}NCl\\ C_{16}H_{19}O_{3}NCl\\ C_{15}H_{21}O_{8}NCl \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47	5.5	
C12 G C16	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484,1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 102.0628 FI at m/z 202.0628 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (0-demethyl-) glucuronid	8 55 100 30 29 9 e isomer 1	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950	$\begin{array}{c} C_{22}H_{27}O_{9}NCl\\ C_{7}H_{7}O\\ C_{9}H_{10}O_{2}Cl\\ C_{9}H_{13}O_{2}NCl\\ C_{16}H_{19}O_{3}NCl\\ C_{15}H_{21}O_{8}NCl \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47	5.5	
C12 G C16 G	25C-NBOMe-M (<i>O,O-bis</i> -demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 102.0626 FI at m/z 202.0628 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (<i>O</i> -demethyl-) glucuronid	8 55 100 30 29 9 e isomer 1 1	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950	$\begin{array}{c} C_{22}H_{27}O_{9}NCl\\ C_{7}H_{7}O\\ C_{9}H_{10}O_{2}Cl\\ C_{9}H_{13}O_{2}NCl\\ C_{16}H_{19}O_{3}NCl\\ C_{15}H_{21}O_{8}NCl\\ \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47	5.5	
C12 G C16 G	25C-NBOMe-M (O,O-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 185.0365 FI at m/z 202.0628 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (O-demethyl-) glucuronid MS ¹ PM at m/z 498.1526 (M+H)	8 55 100 30 29 9 9 9 e isomer 1 15	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525	$\begin{array}{c} C_{22}H_{27}O_9NCl\\ C_7H_7O\\ C_9H_{10}O_2Cl\\ C_9H_{13}O_2NCl\\ C_{16}H_{19}O_3NCl\\ C_{15}H_{21}O_8NCl\\ \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47	5.5	
C12 G C16 G	25C-NBOMe-M (<i>O</i> , <i>O</i> -bis-demethyl-) glucu MS ¹ PM at m/z 484,1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 185.0365 FI at m/z 185.0365 FI at m/z 308.1047 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (<i>O</i> -demethyl-) glucuronid MS ¹ PM at m/z 498.1526 (M+H) MS ² FI at m/z 91.0548	8 55 100 30 29 9 e isomer 1 15 52	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548	$\begin{array}{c} C_{22}H_{27}O_{9}NC1\\ C_{7}H_{7}O\\ C_{9}H_{10}O_{2}C1\\ C_{9}H_{13}O_{2}NC1\\ C_{16}H_{19}O_{3}NC1\\ C_{15}H_{21}O_{8}NC1\\ \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47 0.12 0	5.5	
C12 G C16 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484,1375 (M+H) MS ² FI at m/z 107,0495 FI at m/z 107,0495 FI at m/z 102,0628 FI at m/z 202,0628 FI at m/z 308,1047 FI at m/z 308,1047 FI at m/z 378,0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ MS ¹ PM at m/z 498,1526 (M+H) MS ² FI at m/z 10,0548 FI at m/z 121,0651 FI at m/z 121,0651	somer 3 8 55 100 30 29 9 e isomer 1 15 52 100	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653	$\begin{array}{c} C_{22}H_{27}O_{9}NCl\\ C_{7}H_{7}O\\ C_{9}H_{10}O_{2}Cl\\ C_{9}H_{13}O_{2}NCl\\ C_{16}H_{19}O_{3}NCl\\ C_{15}H_{21}O_{8}NCl\\ \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47 0.47	5.5	
C12 G C16 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484,1375 (M+H) MS ² FI at m/z 107,0495 FI at m/z 107,0495 FI at m/z 102,0626 FI at m/z 038,1047 FI at m/z 308,1047 FI at m/z 378,0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498,1526 (M+H) MS ² FI at m/z 121,0651 FI at m/z 121,0651 FI at m/z 125,0265	8 55 100 30 29 9 e isomer 1 15 52 100 1 15	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0360	$\begin{array}{c} C_{22}H_{27}O_{9}NCl\\ C_{7}H_{7}O\\ C_{9}H_{10}O_{2}Cl\\ C_{9}H_{13}O_{2}NCl\\ C_{16}H_{19}O_{3}NCl\\ C_{15}H_{21}O_{8}NCl\\ \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47 0.47 0 -1.98 2.34	5.5	
C12 G C16 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 108.0365 FI at m/z 020.0628 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498.1526 (M+H) MS ² FI at m/z 121.0651 FI at m/z 185.0365 FI at m/z 185.0365	somer 3 8 55 100 30 29 9 e isomer 1 15 52 100 1	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 202.060	$\begin{array}{c} C_{22}H_{27}O_9NCl\\ C_7H_7O\\ C_9H_{10}O_2Cl\\ C_9H_{13}O_2NCl\\ C_{16}H_{19}O_3NCl\\ C_{15}H_{21}O_8NCl\\ \end{array}$	126 -1.77 -2.34 -0.66 -0.32 0.47 0.47 0 -1.98 -2.34	5.5	
C12 G C16 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 102.0628 FI at m/z 202.0628 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498.1526 (M+H) MS ² FI at m/z 121.0651 FI at m/z 121.0651 FI at m/z 185.0365 FI at m/z 322.1205 FI at m/z 322.1205	somer 3 8 55 100 30 29 9 e isomer 1 15 52 100 1 13	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204	$\begin{array}{c} C_{22}H_{27}O_9NCl\\ C_7H_7O\\ C_9H_{10}O_2Cl\\ C_9H_{13}O_2NCl\\ C_{16}H_{19}O_3NCl\\ C_{15}H_{21}O_8NCl\\ \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47 0.47 0 -1.98 -2.34 0.16	5.5	
C12 G C16 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 102.0628 FI at m/z 202.0628 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498.1526 (M+H) MS ² FI at m/z 121.0651 FI at m/z 121.0651 FI at m/z 322.1205	somer 3 8 55 100 30 29 9 e isomer 1 15 52 100 1 13	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204	$\begin{array}{c} C_{22}H_{27}O_{9}NCl\\ C_{7}H_{7}O\\ C_{9}H_{10}O_{2}Cl\\ C_{9}H_{13}O_{2}NCl\\ C_{16}H_{19}O_{3}NCl\\ C_{15}H_{21}O_{8}NCl\\ \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47 0.47 0 -1.98 -2.34 0.16	5.5	
C12 G C16 G	25C-NBOMe-M (<i>O</i> , <i>O</i> -bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 102.0628 FI at m/z 308.1047 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (<i>O</i> -demethyl-) glucuronid MS ¹ PM at m/z 498.1526 (M+H) MS ² FI at m/z 121.0651 FI at m/z 122.1205 FI at m/z 322.1205 25C-NBOMe-M (<i>O</i> -demethyl-) glucuronid	8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204	$\begin{array}{c} C_{22}H_{27}O_9NCl\\ C_7H_7O\\ C_9H_{10}O_2Cl\\ C_9H_{13}O_3NCl\\ C_{16}H_{19}O_3NCl\\ C_{15}H_{21}O_8NCl\\ \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47 0.47 0 -1.98 -2.34 0.16	5.5	
C12 G C16 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 185.0365 FI at m/z 308.1047 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498.1526 (M+H) MS ² FI at m/z 121.0651 FI at m/z 185.0365 FI at m/z 182.1205 25C-NBOMe-M (0-demethyl-) glucuronid	8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204	$\begin{array}{c} C_{22}H_{27}O_{9}NCl\\ C_{7}H_{7}O\\ C_{9}H_{10}O_{2}Cl\\ C_{9}H_{13}O_{2}NCl\\ C_{16}H_{19}O_{3}NCl\\ C_{15}H_{21}O_{8}NCl\\ C_{7}H_{7}\\ C_{8}H_{9}O\\ C_{9}H_{10}O_{2}Cl\\ C_{17}H_{21}O_{3}NCl\\ \end{array}$	126 -1.77 -2.34 -0.66 -0.32 0.47 0.47 0 -1.98 -2.34 0.16	6.4	
C12 G C16 G C16 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 102.0628 FI at m/z 202.0628 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498.1526 (M+H) MS ² FI at m/z 121.0651 FI at m/z 125.0365 FI at m/z 125.0365 FI at m/z 125.0365 FI at m/z 125.0365 FI at m/z 125.0365 FI at m/z 125.0365 MS ¹ PM ot m/z 498.1524 (M+H)	somer 3 8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204	$C_{22}H_{27}O_{9}NCI$ $C_{7}H_{7}O$ $C_{9}H_{10}O_{2}CI$ $C_{9}H_{13}O_{2}NCI$ $C_{16}H_{19}O_{3}NCI$ $C_{15}H_{21}O_{8}NCI$ $C_{7}H_{7}$ $C_{8}H_{5}O$ $C_{9}H_{10}O_{2}CI$ $C_{17}H_{21}O_{3}NCI$	1.26 -1.77 -2.34 -0.66 -0.32 0.47 0.47 0 -1.98 -2.34 0.16	6.4	
C12 G C16 G C17 G	25C-NBOMe-M (<i>O</i> , <i>O</i> -bis-demethyl-) glucu MS ¹ PM at m/z 484,1375 (M+H) MS ² FI at m/z 107,0495 FI at m/z 107,0495 FI at m/z 102,0628 FI at m/z 202,0628 FI at m/z 308,1047 FI at m/z 308,1047 FI at m/z 378,0952 25C-NBOMe-M (<i>O</i> -demethyl-) glucuronid MS ¹ MS ¹ PM at m/z 498,1526 (M+H) MS ² FI at m/z 91,0548 FI at m/z 121,0651 FI at m/z 322,1205 25C-NBOMe-M (<i>O</i> -demethyl-) glucuronid MS ¹ PM at m/z 498,1524 (M+H)	somer 3 8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204	$\begin{array}{c} C_{22}H_{27}O_{9}NCl\\ C_{7}H_{7}O\\ C_{9}H_{10}O_{2}Cl\\ C_{9}H_{13}O_{2}NCl\\ C_{16}H_{19}O_{3}NCl\\ C_{15}H_{21}O_{8}NCl\\ \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47 0 -1.98 -2.34 0.16 -0.28	6.4	
C12 G C16 G C17 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 102.0628 FI at m/z 308.1047 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498.1526 (M+H) MS ² FI at m/z 121.0651 FI at m/z 122.1205 FI at m/z 322.1205 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ MS ¹ PM at m/z 498.1524 (M+H) MS ² FI at m/z 191.0548	8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2 8 45	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 91.0548	$\begin{array}{c} C_{22}H_{27}O_9NCl\\ C_7H_7O\\ C_9H_{10}O_2Cl\\ C_9H_{13}O_2NCl\\ C_{16}H_{19}O_3NCl\\ C_{15}H_{21}O_8NCl\\ C_{7H7}\\ C_8H_9O\\ C_9H_{10}O_2Cl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47 0 -1.98 -2.34 0.16 -0.28 0	6.4	
C12 G C16 G C16 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 102.0628 FI at m/z 108.0365 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498.1526 (M+H) MS ² FI at m/z 121.0651 FI at m/z 121.0651 FI at m/z 125.0365 FI at m/z 122.1205 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498.1524 (M+H) MS ² FI at m/z 91.0548 FI at m/z 121.0650	somer 3 8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2 8 45 100	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 91.0548 121.0653	$\begin{array}{c} C_{22}H_{27}O_{9}NCl\\ C_{7}H_{7}O\\ C_{9}H_{10}O_{2}Cl\\ C_{9}H_{13}O_{2}NCl\\ C_{16}H_{19}O_{3}NCl\\ C_{15}H_{21}O_{8}NCl\\ C_{7}H_{7}\\ C_{8}H_{9}O\\ C_{9}H_{10}O_{2}Cl\\ C_{17}H_{21}O_{3}NCl\\ C_{17}H_{21}O_{3}NCl\\ C_{17}H_{21}O_{3}NCl\\ C_{17}H_{21}O_{3}NCl\\ C_{17}H_{7}\\ C_{8}H_{9}O\\ C_{9}H_{10}O_{2}Cl\\ C_{17}H_{21}O_{3}NCl\\ C_{17}H_{21}O_{3}NCl\\ C_{17}H_{10}O_{10}O_{10}\\ C_{10}H_{10}O_{10}\\ C_{10}H_{1$	1.26 -1.77 -2.34 -0.66 -0.32 0.47 0 -1.98 -2.34 0.16 -0.28 0 -2.81	6.4	
C12 G C16 G C17 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484,1375 (M+H) MS ² FI at m/z 107,0495 FI at m/z 107,0495 FI at m/z 102,0628 FI at m/z 202,0628 FI at m/z 308,1047 FI at m/z 308,1047 FI at m/z 378,0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ MS ² PM at m/z 498,1526 (M+H) MS ² FI at m/z 121,0651 FI at m/z 121,0651 FI at m/z 185,0365 FI at m/z 121,0651 FI at m/z 122,1205 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498,1524 (M+H) MS ² FI at m/z 121,0650 FI at m/z 121,0650 FI at m/z 185,0365 FI at m/z 185,0365	somer 3 8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2 8 45 100 1	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 91.0548 121.0653 185.0369	$\begin{array}{c} C_{22}H_{27}O_{9}NCl\\ C_{7}H_{7}O\\ C_{9}H_{10}O_{2}Cl\\ C_{9}H_{13}O_{2}NCl\\ C_{16}H_{19}O_{3}NCl\\ C_{15}H_{21}O_{8}NCl\\ \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47 0 -1.98 -2.34 0.16 -0.28 0 -2.81 2.34	6.4	
C12 G C16 G C17 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 102.0628 FI at m/z 202.0628 FI at m/z 308.1047 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498.1526 (M+H) MS ² FI at m/z 121.0651 FI at m/z 121.0651 FI at m/z 185.0365 FI at m/z 498.1524 (M+H) MS ² PM at m/z 498.1524 (M+H) MS ² PM at m/z 498.1524 (M+H) MS ² FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 791.0548 FI at m/z 121.0650 FI at m/z 791.0548 FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 122.1205	somer 3 8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2 8 45 100 1 25	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 91.0548 121.0653 185.0369 322.1204	$\begin{array}{c} C_{22}H_{27}O_9NCl\\ C_7H_7O\\ C_9H_{10}O_2Cl\\ C_9H_{13}O_3NCl\\ C_{16}H_{19}O_3NCl\\ C_{15}H_{21}O_8NCl\\ C_{7}H_7\\ C_8H_9O\\ C_9H_{10}O_2Cl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47 0 -1.98 -2.34 0.16 -0.28 0 -2.81 2.34 0.16	6.4	
C12 G C16 G C17 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 102.0628 FI at m/z 308.1047 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498.1526 (M+H) MS ² FI at m/z 121.0651 FI at m/z 121.0655 FI at m/z 322.1205 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498.1524 (M+H) MS ² FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 125.0365 FI at m/z 121.050 FI at m/z 125.0365 FI at m/z 125.0365 F	somer 3 8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2 8 45 100 1 25	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 91.0548 121.0653 185.0369 322.1204	$\begin{array}{c} C_{22}H_{27}O_9NCl\\ C_7H_7O\\ C_9H_{10}O_2Cl\\ C_9H_{13}O_2NCl\\ C_{16}H_{19}O_3NCl\\ C_{15}H_{21}O_8NCl\\ C_{7H_7}\\ C_8H_9O\\ C_9H_{10}O_2Cl\\ C_{17}H_{21}O_3NCl\\ C_7H_7\\ C_8H_9O\\ C_9H_{10}O_2Cl\\ C_{17}H_{21}O_3NCl\\ C_{7}H_7\\ C_8H_9O\\ C_{9}H_{10}O_2Cl\\ C_{7}H_7\\ C_8H_9O\\ C_{9}H_{10}O_2Cl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3$	1.26 -1.77 -2.34 -0.66 -0.32 0.47 0 -1.98 -2.34 0.16 -0.28 0 -2.81 2.34 0.16	6.4	
C12 G C16 G C17 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 102.0628 FI at m/z 202.0628 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498.1526 (M+H) MS ² FI at m/z 121.0651 FI at m/z 125.0365 FI at m/z 125.0365 FI at m/z 125.0365 FI at m/z 122.1205 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ MS ¹ PM at m/z 498.1524 (M+H) MS ² FI at m/z 121.0650 FI at m/z 125.0365 FI at m/z 125.0365	somer 3 8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2 8 45 100 1 25	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 91.0548 121.0653 185.0369 322.1204	$\begin{array}{c} C_{22}H_{27}O_9NCl\\ C_7H_7O\\ C_9H_{10}O_2Cl\\ C_9H_{13}O_2NCl\\ C_{16}H_{19}O_3NCl\\ C_{15}H_{21}O_8NCl\\ C_{15}H_{21}O_8NCl\\ C_{7H_7}\\ C_8H_9O\\ C_9H_{10}O_2Cl\\ C_{17}H_{21}O_3NCl\\ C_{7H_7}\\ C_8H_6O\\ C_9H_{10}O_2Cl\\ C_{17}H_{21}O_3NCl\\ C_{17}H$	1.26 -1.77 -2.34 -0.66 -0.32 0.47 0 -1.98 -2.34 0.16 0 -2.81 2.34 0.16	6.4	
C12 G C16 G C17 G C17 C17 C17 C18	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484,1375 (M+H) MS ² FI at m/z 107,0495 FI at m/z 107,0495 FI at m/z 102,0628 FI at m/z 202,0628 FI at m/z 308,1047 FI at m/z 308,1047 FI at m/z 378,0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ MS ² PM at m/z 498,1526 (M+H) MS ² FI at m/z 11,0651 FI at m/z 121,0651 FI at m/z 185,0365 FI at m/z 121,0651 FI at m/z 121,0651 FI at m/z 121,0651 FI at m/z 121,0651 FI at m/z 121,0651 FI at m/z 121,0651 FI at m/z 121,0651 FI at m/z 121,0650 FI at m/z 121,0650 FI at m/z 322,1205 25C-NBOMe-M (O-demethyl-) glucuronid	s 8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2 8 45 100 1 25 e isomer 3	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 91.0548 121.0653 185.0369 322.1204	$\begin{array}{c} C_{22}H_{27}O_{9}NCl\\ C_{7}H_{7}O\\ C_{9}H_{10}O_{2}Cl\\ C_{9}H_{13}O_{2}NCl\\ C_{16}H_{19}O_{3}NCl\\ C_{15}H_{21}O_{8}NCl\\ \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47 0 -1.98 -2.34 0.16 -0.28 0 -2.81 2.34 0.16	6.4	
C12 G C16 G C17 G C17 G C18 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 102.0628 FI at m/z 308.1047 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498.1526 (M+H) MS ² PI at m/z 121.0651 FI at m/z 121.0651 FI at m/z 185.0365 FI at m/z 121.0651 FI at m/z 122.1205 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498.1524 (M+H) MS ² FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 122.1205 FI at m/z 122.1205 25C-NBOMe-M (0-demethyl-) glucuronid FI at m/z 122.1205 25C-NBOMe-M (0-demethyl-) glucuronid FI at m/z 122.1205	8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2 8 45 100 1 25	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 91.0548 121.0653 185.0369 322.1204	$\begin{array}{c} C_{22}H_{27}O_9NCl\\ C_7H_7O\\ C_9H_{10}O_2Cl\\ C_9H_{13}O_2NCl\\ C_{16}H_{19}O_3NCl\\ C_{15}H_{21}O_8NCl\\ C_{7H7}\\ C_8H_9O\\ C_9H_{10}O_2Cl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ \end{array}$	1.26 -1.77 -2.34 -0.66 -0.32 0.47 0 -1.98 -2.34 0.16 -0.28 0 -2.81 2.34 0.16	5.5 6.4 7.0	
C12 G C16 G C17 G C17 G C17 G C18 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 102.0628 FI at m/z 108.1047 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ MS ² PM at m/z 498.1526 (M+H) MS ² FI at m/z 121.0651 FI at m/z 121.0651 FI at m/z 125.0365 FI at m/z 121.0651 FI at m/z 122.1205 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ MS ¹ PM at m/z 498.1524 (M+H) MS ² FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 122.1205 25C-NBOMe-M (0-demethyl-) glucuronid MS ² MS ¹ PM at m/z 498.1525 (M+H)	8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2 8 45 100 1 25 e isomer 3	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 91.0548 121.0653 185.0369 322.1204	$\begin{array}{c} C_{22}H_{27}O_{9}NCl\\ C_{7}H_{7}O\\ C_{9}H_{10}O_{2}Cl\\ C_{9}H_{13}O_{2}NCl\\ C_{16}H_{19}O_{3}NCl\\ C_{15}H_{21}O_{8}NCl\\ C_{7}H_{7}\\ C_{8}H_{9}O\\ C_{9}H_{10}O_{2}Cl\\ C_{17}H_{21}O_{3}NCl\\ C_{7}H_{7}\\ C_{8}H_{9}O\\ C_{9}H_{10}O_{2}Cl\\ C_{17}H_{21}O_{3}NCl\\ C_{9}H_{10}O_{2}Cl\\ C_{9}H_{10}O_{2}Cl\\ C_{17}H_{21}O_{3}NCl\\ C_{17}H_{21}O_{3}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1$	$ \begin{array}{c} 1.26\\ -1.77\\ -2.34\\ -0.66\\ -0.32\\ 0.47\\ \end{array} $ $ \begin{array}{c} 0.12\\ 0\\ -1.98\\ -2.34\\ 0.16\\ \end{array} $ $ \begin{array}{c} 0\\ -2.81\\ 2.34\\ 0.16\\ \end{array} $ $ \begin{array}{c} 0\\ -2.81\\ 2.34\\ 0.16\\ \end{array} $	5.5 6.4 7.0	
C12 G C16 G C16 G C17 G C17 G C18 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 102.0628 FI at m/z 108.0365 FI at m/z 103.047 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498.1526 (M+H) MS ² FI at m/z 121.0651 FI at m/z 121.0651 FI at m/z 122.1205 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ MS ² FI at m/z 498.1524 (M+H) MS ² FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 122.0650 SC-NBOMe-M (0-demethyl-) glucuronid MS ² MS ² PM at m/z 498.1524 (M+H) MS ² FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 122.0650 SC-NBOMe-M (0-demethyl-) glucuronid MS ² MS ² PM at m/z 498.1525 (M+H) MS ² PM at m/z 498.1525 (M+H)	8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2 8 45 100 1 25 e isomer 3	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 10.0548	$\begin{array}{c} C_{22}H_{27}O_{9}NCl\\ C_{7}H_{7}O\\ C_{9}H_{10}O_{2}Cl\\ C_{9}H_{13}O_{2}NCl\\ C_{16}H_{19}O_{3}NCl\\ C_{15}H_{21}O_{8}NCl\\ C_{15}H_{21}O_{8}NCl\\ C_{7}H_{7}\\ C_{8}H_{9}O\\ C_{9}H_{10}O_{2}Cl\\ C_{17}H_{21}O_{3}NCl\\ C_{10}H_{10}O_{2}Cl\\ C_{10}H_{10}O_$	$ \begin{array}{c} 1.26\\ -1.77\\ -2.34\\ -0.66\\ -0.32\\ 0.47\\ \hline 0.47\\ \hline 0\\ -1.98\\ -2.34\\ 0.16\\ \hline 0\\ -2.81\\ 2.34\\ 0.16\\ \hline 0\\ -0.28\\ 0\\ -2.81\\ 2.34\\ 0.16\\ \hline 0\\ -0.28\\ 0\\ 0\\ -0.28\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	5.5 6.4 7.0	
C12 G C16 G C17 G C17 G C18 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484,1375 (M+H) MS ² FI at m/z 107,0495 FI at m/z 107,0495 FI at m/z 102,0628 FI at m/z 202,0628 FI at m/z 308,1047 FI at m/z 308,1047 FI at m/z 378,0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498,1526 (M+H) MS ² FI at m/z 112,0651 FI at m/z 185,0365 FI at m/z 185,0365 FI at m/z 121,0651 FI at m/z 121,0651 FI at m/z 121,0651 FI at m/z 121,0650 FI at m/z 121,0650 FI at m/z 121,0650 FI at m/z 121,0650 FI at m/z 121,0650 FI at m/z 121,0650 FI at m/z 185,0365 FI at m/z 121,0650 FI at m/z 185,0365 FI at m/z 107,048 FI at m/z 107,0496 25C-NBOMe-M (O-demethyl-) glucuronid MS ¹ MS ¹ PM at m/z 498,1525 (M+H) MS ² FI at m/z 107,0496	8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2 8 45 100 1 25 e isomer 3 14 100 46	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 107.0497 498.1525	$\begin{array}{c} C_{22}H_{27}O_9NCl\\ C_7H_7O\\ C_9H_{10}O_2Cl\\ C_9H_{13}O_2NCl\\ C_16H_{19}O_3NCl\\ C_{15}H_{21}O_8NCl\\ C_{15}H_{21}O_8NCl\\ C_{7}H_7\\ C_8H_9O\\ C_9H_{10}O_2Cl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_{2}Cl\\ C_{17}H_{21}O_{3}NCl\\ C_{17}H_{21}O_{2}Cl\\ C_{17}H_{2}O_{2}Cl\\ C_{17}H_{2}O_{2}Cl\\ C_{$	126 -1.77 -2.34 -0.66 -0.32 0.47 0.47 0.12 0 -1.98 -2.34 0.16 0 -2.81 2.34 0.16 0 -2.81 2.34 0.16	5.5 6.4 7.0	
C12 G C16 G C17 G C17 G C18 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484,1375 (M+H) MS ² FI at m/z 107,0495 FI at m/z 107,0495 FI at m/z 102,0628 FI at m/z 308,1047 FI at m/z 308,1047 FI at m/z 308,1047 FI at m/z 378,0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498,1526 (M+H) MS ² FI at m/z 121,0651 FI at m/z 122,1205 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498,1524 (M+H) MS ² FI at m/z 121,0651 FI at m/z 121,0651 FI at m/z 121,0650 FI at m/z 121,0650 FI at m/z 122,1205 25C-NBOMe-M (0-demethyl-) glucuronid MS ² MS ¹ PM at m/z 498,1524 (M+H) MS ² FI at m/z 121,0650 FI at m/z 121,0650 FI at m/z 121,0650 FI at m/z 121,0650 FI at m/z 185,0365 FI at m/z 121,051 PM at m/z 498,1525 (M+H) MS ¹ PM at m/z 498,1525 (M+H) MS ² PM at m/z 107,0496 FI at m/z 199,0522 FI at m/z 199,0522	8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2 8 45 100 1 25 e isomer 3 14 100 46	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 91.0548 121.0653 185.0369 322.1204	$\begin{array}{c} C_{22}H_{27}O_9NCl\\ C_7H_7O\\ C_9H_{10}O_2Cl\\ C_9H_{13}O_2NCl\\ C_{16}H_{19}O_3NCl\\ C_{15}H_{21}O_8NCl\\ C_{15}H_{21}O_8NCl\\ C_7H_7\\ C_8H_9O\\ C_9H_{10}O_2Cl\\ C_{17}H_{21}O_3NCl\\ C_7H_7\\ C_8H_9O\\ C_9H_{10}O_2Cl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_{2}Cl\\ C_{17}H_{21}O_{2}Cl\\ C_{17}H_{21}O_{2}Cl\\ C_{17}H_{20}O_{2}Cl\\ C_{10}H_{10}O_{2}Cl\\ C_{10}H_{$	$ \begin{array}{r} 1.26\\ -1.77\\ -2.34\\ -0.66\\ -0.32\\ 0.47\\ \end{array} $ $ \begin{array}{r} 0\\ -1.98\\ -2.34\\ 0.16\\ \end{array} $ $ \begin{array}{r} -0.28\\ 0\\ -2.81\\ 2.34\\ 0.16\\ \end{array} $ $ \begin{array}{r} 0\\ -0.84\\ -1.92\\ \end{array} $	5.5 6.4 7.0	
C12 G C16 G C16 G C17 G C17 G C18 G	25C-NBOMe-M (0,0-bis-demethyl-) glucu MS ¹ PM at m/z 484.1375 (M+H) MS ² FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 107.0495 FI at m/z 102.0628 FI at m/z 108.0365 FI at m/z 308.1047 FI at m/z 308.1047 FI at m/z 378.0952 25C-NBOMe-M (0-demethyl-) glucuronid MS ¹ PM at m/z 498.1526 (M+H) MS ² FI at m/z 121.0651 FI at m/z 121.0651 FI at m/z 122.1205 25C-NBOMe-M (0-demethyl-) glucuronid MS ² FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 121.0650 FI at m/z 12	8 55 100 30 29 9 e isomer 1 15 52 100 1 13 e isomer 2 8 45 100 1 25 e isomer 3 14 100 46 14 100	484.1369 107.0497 185.0369 202.0629 308.1048 378.0950 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 91.0548 121.0653 185.0369 322.1204 498.1525 107.0497 199.0526 216.0786	$\begin{array}{c} C_{22}H_{27}O_9NCl\\ C_7H_7O\\ C_9H_{10}O_2Cl\\ C_9H_{13}O_2NCl\\ C_16H_{19}O_3NCl\\ C_{15}H_{21}O_8NCl\\ C_{15}H_{21}O_8NCl\\ C_7H_7\\ C_8H_9O\\ C_9H_{10}O_2Cl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_3NCl\\ C_{17}H_{21}O_{3}NCl\\ C_{17}H_{21}O_{3}NCl\\ C_{17}H_{21}O_{3}NCl\\ C_{10}H_{10}O_2Cl\\ C_{10}H_{1$	$\begin{array}{c} 1.26\\ -1.77\\ -2.34\\ -0.66\\ -0.32\\ 0.47\\ \end{array}$	5.5 6.4 7.0	

	т						
C19	25C-N	' JROMe-M (<i>O.Obis</i> -demethyl-bydro	vv_) alucuronide isome	r 1			3.0
G	250-1	GOME-M (0,0-013-demethyl-nydro	xy-) grucui oniue isome	11			5.9
	MS1	PM at m/z 500 1320 (M+H)	6	500 1318	CapHarQueNCl	0 39	
	MS ²	FL at m/z 107 0495	36	107 0497	C ₂ H ₂ O	-1 77	
	110	FL at m/z 137 0598	100	137.0603	C ₂ H ₂ O ₂	-3.32	
		FI at <i>m/z</i> 324,0998	15	324,0997	C ₁₂ H ₁₀ O ₄ NCl	0.27	
		· · · · · · · · · · · · · · · · · · ·			10-19-4-19-		
C20	25C-N	BOMe-M (0,0-bis-demethyl-hydro	xy-) glucuronide isome	r 2			4.5
G			• / 0				
	MS ¹	PM at <i>m/z</i> 500.1318 (M+H)	12	500.1318	C ₂₂ H ₂₇ O ₁₀ NCl	0	
	MS ²	FI at <i>m/z</i> 123.0442	89	123.0446	C ₇ H ₇ O ₂	-3.29	
		FI at <i>m/z</i> 185.0365	100	185.0369	$C_9H_{10}O_2Cl$	-2.34	
		FI at <i>m/z</i> 202.0628	32	202.0629	C ₉ H ₁₃ O ₂ NCl	-0.66	
		FI at <i>m/z</i> 299.0762	5	299.0767	$C_{13}H_{15}O_8$	-1.66	
		FI at <i>m/z</i> 324.0997	12	324.0997	C ₁₆ H ₁₉ O ₄ NCl	0	
C21	25C-N	BOMe-M (<i>0,0-bis</i> -demethyl-hydro	xy-) glucuronide isome	r 3			5.1
G			<u>-</u>	500 1010			
	MS ¹	PM at m/z 500.1321 (M+H)		500.1318	$C_{22}H_{27}O_{10}NCI$	0.59	
	MS ²	F1 at $m/z = 107.0495$	52	107.0497	C_7H_7O	-1.//	
		Fi at $m/z = 201.0515$	100	201.0518	$C_{9}\Pi_{10}O_{3}CI$	-2.73	
		FI at $m/2 218.0578$	30	210.0378	C H O NC1	0	
		FL at $m/2$ 324.0997	4	394.08997	$C_{16}\Pi_{19}O_4NCI$	1.68	
		11 at m/2 394.0900	т 	574.0077	0151121091101	1.00	
C22	25C-N	BOMe-M (<i>0.0-bis</i> -demethyl-hydro	xv-) glucuronide isome	r 4			5.3
G			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	MS1	PM at <i>m/z</i> 500.1315 (M+H)	7	500.1318	C ₂₂ H ₂₇ O ₁₀ NCl	-0.61	
	MS ²	FI at <i>m/z</i> 123.0443	100	123.0446	C ₇ H ₇ O ₂	-2.48	
		FI at <i>m/z</i> 185.0365	25	185.0369	$C_9H_{10}O_2Cl$	-2.34	
		FI at <i>m/z</i> 202.0628	11	202.0629	C ₉ H ₁₃ O ₂ NCl	-0.66	
		FI at <i>m/z</i> 324.0996	9	324.0997	C ₁₆ H ₁₉ O ₄ NCl	-0.35	
		FI at <i>m/z</i> 378.0945	1	378.0950	$C_{15}H_{21}O_8NCl$	-1.38	
C27	25C-P	BOMe-M (<i>O</i> -demethyl-hydroxy-) g	lucuronide isomer 1				5.5
6	MG1	DM of m/-514 1492 (M H)		514 1475		1.65	
	MS2	F IvI at m/2 514.1485 (IVI + FI)		107.0407	$C_{23}\Pi_{29}O_{10}\Pi C_{1}$	1.05	
	IVIS-	FI at $m/2$ 107.0495	100	107.0497	$C_7 \Pi_7 O$	-1.77	
		FI at m/z 185 0365	1	185 0369	$C_{8}H_{19}O_{2}$	-2.34	
		FL at m/z 313 0918	4	313 0923	$C_1H_1O_2$	-1 74	
		FI at <i>m/z</i> 338.1152	17	338.1154	$C_{17}H_{21}O_4NCl$	-0.48	
		, , ,					
C28/29	25C-N	BOMe-M (O-demethyl-hydroxy-) g	lucuronide isomer 2				6.5
G							
	MS^1	PM at <i>m/z</i> 514.1479 (M+H)	8	514.1475	C ₂₃ H ₂₉ O ₁₀ NCl	0.87	
	MS ²	FI at <i>m</i> / <i>z</i> 123.0443	100	123.0446	$C_7H_7O_2$	-2.48	
		FI at <i>m</i> / <i>z</i> 199.0521	26	199.0526	$C_{10}H_{12}O_2Cl$	-2.43	
		FI at <i>m/z</i> 216.0787	11	216.0786	$C_{10}H_{15}O_2NCl$	0.54	
		F1 at m/z 338.1152	10	338.1154	$C_{17}H_{21}O_4NCI$	-0.48	
C21/22	250 1	DOM: M(hadrone) -la constitution					5.2
C31/32	25C-F	NBOWIE-WI (IIyuroxy-) glucuronide is	omer 1				3.2
<u>u</u>	MS1	PM at $m/_{7}$ 528 1640 (M+H)	7	528 1631	C. H. O. NCl	1 70	
	MS ²	FL at $m/2$ 91 0548	46	91 0548	C ₂₄ H ₃ O ₁₀ NCI		
	1415	FL at m/z 121 0651	100	121.0653	C ₂ H ₂ O	-1.98	
		FI at m/z 352.1313	18	352.1310	C ₁₈ H ₂₃ O ₄ NCl	0.81	
		1		002.1010	1 018123041101	0.01	
C33	25C-N	BOMe-M (hydroxy-) glucuronide is	omer 2				6.3
G							
	MS^1	PM at <i>m/z</i> 528.1638 (M+H)	7	528.1631	$C_{24}H_{31}O_{10}NCl$	1.32	
	MS ²	FI at <i>m/z</i> 109.0652	73	109.0653	C ₇ H ₉ O	-1.28	
		FI at <i>m/z</i> 137.0598	100	137.0603	$C_8H_9O_2$	-3.32	
		FI at <i>m/z</i> 313.0921	17	313.0923	$C_{14}H_{17}O_8$	-0.78	
		FI at <i>m/z</i> 352.1324	3	352.1310	C ₁₈ H ₂₃ O ₄ NCl	3.94	
1	1	1	1				