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Abstract: The popular use of wearable devices and mobile phones makes the effective capture of 

lifelogging physical activity data in an Internet of Things (IoT) environment possible. The effective 

collection of measures of physical activity in the long term is beneficial to interdisciplinary healthcare 

research and collaboration from clinicians, researchers and patients. However, due to heterogeneity of 

connected devices and rapid change of diverse life patterns in an IoT environment, lifelogging physical 

activity information captured by mobile devices usually contains much uncertainty. In this paper, we 

project the distribution of irregular uncertainty by defining a walking speed related score named as Daily 

Activity in Physical Space (DAPS) and present an ellipse-fitting model-based validity improvement 

method for reducing uncertainties of life-logging physical activity measures in an IoT environment. The 

experimental results reflect that the proposed method remarkably improves the validity of physical activity 

measures in a healthcare platform.  
 

Keywords: physical activity, ellipse fitting, life-logging, internet of things 

1.  Introduction 

As a key indicator in a number of obesity, diabetes and other chronic diseases, effective 

measurement and monitoring of physical activity is critical in order to design programs for 

preventing/treating metabolic syndrome and chronic diseases (i.e., obesity, diabetes or arthritis) [1], [2]. 

Measuring physical activity and the associated estimates of instantaneous and cumulative energy 

expenditure (EE) in the long term enable clinical decision making and provides important feedback to 

caregivers in order to assess a patient’s symptoms and thus achieve a healthy lifestyle. In the last few 

decades, Radio Frequency Identification (RFID) technology [3], [4] has been proposed as a solution to 

resolve many healthcare challenges. In recent years, the concept of an “Internet of Things” (IoT) [5]–[7] 

has emerged as new tools have promoted renewed interests in healthcare areas where a number of physical 

activity sensors and monitors have been developed for capturing lifelogging physical activity information 

and providing continuous, real-time feedback to users.  

However, due to inherent commercial drivers, nearly all of the popular wearable devices and mobile 

phones in the market focus more on personal fitness and exhibit a lack of compatibility and extensibility. 

In addition, as a result of the heterogeneity of connected devices and rapid change of diverse life patterns 

in an IoT environment, lifelogging physical activity information captured by mobile devices usually 
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contains much uncertainty. Effective and efficient validation of big volume, highly dynamic and multi-

dimensional personal lifelogging physical activity data becomes an extremely challenging task. 

Traditional methods use either dedicated wearable sensors [8]–[11] or advanced machine learning 

algorithms [10]–[17] to accurately monitor lifelong physical activity and access activity patterns and 

intensity level. Most of these methods, however, process and analyse human behaviours through raw 

sensor data of a single sensor or a combination of GPS and accelerometer. In contrast, in IoT-based 

personalized healthcare systems, physical activity data is generated on a daily basis from globally 

heterogeneous third party devices. As such, physical activity validation is harder to handle by virtue of 

scattered and heterogeneous data sets. Almost no literature to date reports successful validation of 

heterogeneous physical activity from different resources in an IoT healthcare environment. 

This paper is organized as follows: section 2 reviews existing mobile and wearable devices for life-

logging physical activity measurement. Section 3 represents a brief analysis of uncertainties of life-

logging physical activity measures in an IoT environment. Section 4 proposes an ellipse-fitting uncertainty 

removal approach for improving the validity of lifelogging physical activity measures. Section 5 addresses 

a set of experimental evaluations of our proposed approach over real lifelogging physical activity datasets 

from a mobile personalized healthcare platform MHA [18] [19]. Further discussion, limitation and 

conclusion are presented in section 6 and 7, respectively.

2. Related work 

The concept of IoT based personalized healthcare systems [5] uses a set of interconnected devices 

to create an IoT network devoted to healthcare assessment, patient monitoring and automatic detection of 

defined situations. It provides personalized health information from different wearable sensing devices 

through middleware that provides interoperability and security needed in the context of IoT for healthcare. 

These wearable devices are capable of recording multiple types of health data, including physical activity, 

sleep patterns, heart rate and blood pressure. Within this data, due to the technical and functional maturity 

of MEMS accelerometer technology and GPS, physical activity is mostly well-observed. 

Recently, many commercial wearable products and mobile applications have been released that 

support long-term recording and collection of personal health information, particularly on physical activity. 

Popular mobile apps, such as Moves [20], are based on smartphone 3D accelerometer data and GPS 

information which allows tracking user movement activities including location, distance and speed. The 

wearable products, such as Fitbit Flex [21], Nike+ Fuelband [22], Withings [23] and Endomondo [24], 

are all wristband devices that record steps count, distance, and calories burnt. A brief comparison of above  



 

Table 1 Pros and Cons of existing life-logging physical activity measure devices 

 

products is listed in Table1 and explained in detail below:  

 Endomondo is a popular GPS based mobile application for tracking route, distance, duration, split 

times and calorie consumption. It offers a full history with previous workouts, statistics and a localized 

route map for each workout.  

 Moves is also based on the use of GPS to record the user’s path, speed, distance and elevation while 

they walk, run, and cycle (or do any activities) outside. 

 Google Fit can automatically detect walking, running and cycling. It also works with Android wear, 

and supports third-party devices and apps. Visual graphs are available to observe the user’s physical 

activity changes.   

 Cyclemeter can accurately assess cyclists’ activities and record bike related data, e.g. bike speed, bike 

cadence and power. It also tracks the user’s steps while walking and running. There is no valid API 

that can be accessed by third-parties.  

 Fitbit Flex records steps taken, distance travelled, and calories expended. These devices communicate 

with a host computer using Bluetooth that in turn sends data directly to a user’s account on the Fitbit 

website.  

 Product Data Pros Cons 

Mobile 

Apps 

Endomondo Route, distance, 

speed 

Community sharing, Android and 

iOS 

Short battery longevity, not 

work indoor 

Moves Route, distance, 

speed 

View data live,  application program 

interface (API) support 

Short battery longevity, not 

work indoor, step counter not 

precise.  Android only. 

 Google Fit Duration, distance, 

steps,  calorie 

Connected to the android wear, 

manually choose different types of 

activity in the list 

Heat beat value not correct 

 Cyclemeter Duration, distance, 

calorie 

Accurately records bike related data 

as well as steps 

No supported API 

 

Device 

Fitbit Flex Steps, calories, 

food 

Low cost, Android and iOS, long 

battery life 

Reasonable cost, Android and iOS 

Reasonable cost, Android and iOS 

Limited  application program 

interface (API) 

Nike+ Steps, calories, 

food 

Variations on accuracy 

Jawbone Up Steps, distance, 

calorie 

No  application program 

interface (API) 

 Misfit Steps, calories, 

distance, sleep  

Low cost, Android and iOS Variations on accuracy 



 Nike+ Fuelband is worn on the wrist and records calories, steps, distance, and Nike’s own unit of 

activity terms “Nike Fuel”. The device connects via USB to a host machine which synchronises the 

data to a user’s account on the Nike+ website.  

 Jawbone Up calculates steps, distance and calories. Currently the Jawbone up can only be used with 

a mobile device, drivers for laptop and PCs are not provided.  

 Misfit is a low cost and light wearable band. It records basic steps, sleep and calories that can be 

synchronised to a mobile app on the user’s phone.  

These wearable devices communicate with a mobile phone via Bluetooth running the relevant mobile 

application. While the above products have proven their popularity among general users, their usage is 

limited in the fitness field. This is due to a diversity of life patterns and environmental impact since 

personal physical activity data from an individual wearable device exhibits remarkable uncertainty. The 

validity of physical activity data in lifelong healthcare cases is very challenging. Also, with the rapid 

growth in the mobile healthcare market, numerous similar wearable products have been developed, which 

significantly increases the heterogeneity and diversity of devices connected in IoT-based personalized 

healthcare systems.  

3. Classification of data uncertainty in IoT healthcare systems 

In an IoT-enabled healthcare system, lifelogging healthcare data is ultra-diverse, dynamic and multi-

dimensional. Regarding physical activities, accuracy of lifelogging data is widely impacted by a variety 

of issues, including devices, ages, gender, activity subjects, etc. Thus, uncertainties of lifelogging PA data 

are distributed differently, and occur persistently according to these issues. Also, considering the 

dimension of time, the increment of lifelogging physical activity data over a given timeline results in an 

expansion of the entire data, further leading to more complex uncertainties. In this paper, we attempt to 

classify data uncertainty in IoT healthcare systems by three important factors: person, time and devices, 

as shown in Fig.1. In terms of the concept of IoT, personal health data is accumulated and measured as a 

cube in three dimensions (3D): Persons, Devices and TimeLine. The increment in any dimension results 

in an expansion of the health data grid. The products like Fitbit Flex [21] or Moves [25] occur on a 2D 

plane (Persons × TimeLine), which refer to scenarios in which a single device is used by an increasing 

population over time. Similarly, physical activity recognition with sensor fusion [26]–[28] appears on a 

2D plane (Devices × TimeLine) for classifying an individual person’s activities with historical health data. 

 



 

Fig. 1. Concept of IoT personalized healthcare systems 

 

The uncertainty of physical activity here can be categorized into two types: 

Irregular uncertainty: Irregular Uncertainty (IU) in physical activity data occurs randomly and 

accidently. The causes of these uncertainties may include device malfunctions or faults, breakdown of a 

third-party server, misuse of mobile apps, or sudden change in personal circumstance for example. The 

occurrence of irregular uncertainty in physical activity data will significantly impact the efficiency and 

accuracy of assessing personal health.  

Regular uncertainty: Regular Uncertainty (RU) in physical activity data occurs frequently and 

persistently. The causes resulting in these uncertainties are mainly from some regular influencing issues 

in a completely uncontrolled environment, i.e., divergent activity pattern due to different age, health 

condition, etc.; intrinsic sensors’ errors; transmission failure; differentiation of personal physical fitness 

and changes of environment. Thus the occurrence of regular uncertainty in physical activity data is 

inevitable.  

4. Ellipse fitting model for removing irregular uncertainty 

After classifying the above two types of uncertainties, it is important to clearly understand the 

distribution of IU and RU. Typically in an IoT environment, the level of physical activity is assessed and 

represented by the number of steps walking per day, named as Daily Steps 𝑆𝑑, or the distance walking per 

day, named as Daily Walking Distance: 𝐷𝑑𝑤 . Current wearable devices or smartphones also enable 

measuring walking speed related information, like Daily Walking Speed 𝑉𝑑𝑎𝑤. Therefore, our inspiration 

for managing the above two types of uncertainties is to build a 2D distribution of physical activity 

regarding two benchmarks: Daily Walking Steps (Steps) and Daily Walking Speed (Speed). In terms of 



the characteristic of two uncertainties, the distribution of daily physical activities with normal life pattern 

and wearable devices can be conducted to follow a condition that: a centroid point P marks by an average 

𝐷𝑊𝑆𝑠 and an average DWS. Although there are some points might fall in to normal range (e.g., 4000 

steps/ hour), here it is only taken into account estimation of the best fit of samples for individuals, and 

thus the distance from the centre to the perimeter along the x and y axis are distributed a certain range 

close to the mean. Accordingly, the daily physical activities with regular uncertainties will be regularly 

all around point P; the daily physical activities with IU will be some distance away from point P. As 

shown in Fig.3, the x axis represents walking speed and the y axis represents daily walking steps. The light 

points represent daily physical activities with regular uncertainties; and the dark point represents daily 

physical activities with IU. Regarding this assumed distribution of physical activity, we are able to use an 

ellipse shape to separate RU and IU. In Fig.3, the dark dots that fall outside of the ellipse represents the 

IU. The light dots are the regular physical activity data with RU covered by the ellipse modelling algorithm.  

 
Fig.2. Distribution of PA with IU and RU 

 

Fig.2 presents the physical activity samples distribution. In order to enclose points 

𝑃: {𝑃1, 𝑃2, … , 𝑃𝑛}  in the 2D plane, we use an ellipse 𝜀 to cover all the points with RU: 𝑃𝑛. The ellipse with 

central point (i, j) and semiaxes m and n can be defined in equation (1): 

 

              
(𝑥−𝑖)2

𝑚2
+

(𝑥−𝑗)2

𝑛2
= 1                     (1) 

 

Where:  

i: Average daily walking speed 

j: Average daily walking steps 



m: Error range of average daily walking speed 

n: Error range of average daily walking steps 

 

Additionally, the benchmark of DWS can be extended to represent a person’s physical fitness from 

completed physical activity data sources. Here a walking speed related score is defined to represent a 

person’s physical fitness, named Daily Activity in Physical Space (DAPS). This score is inspired from 

earlier work [6] that proposed a Movement and Activity in Physical Space score as a functional outcome 

measurement for encompassing both physical activity and environmental interaction. Currently, most third 

party APIs of wearable devices or mobile apps provide functions to assess the intensity of physical activity 

regarding walking speed. For instance, Fitbit [21] classifies the intensity of daily activities into Very 

Active, Moderately Active, Lightly Active and Sedentary; Moves [25] records a series of walking 

segments containing duration, distance and speed. Here, we classify the intensity of daily physical activity 

into N levels in terms of the ranges of walking speeds (𝑉1, 𝑉2, … , 𝑉𝑛). The DAPS formula is created by 

summing these different level walking speeds: 

1

N

tDAPS V
                                              (2) 

Using the data of DAPS and Daily Steps, we can calculate 𝑉𝑑𝑎𝑤 , and plot 𝑆𝑑  and 𝑉𝑑𝑎𝑤  in 2D 

diagram as in Fig.3. A noticeable issue here is that we only consider the lower limits of walking steps and 

the upper limits of walking speeds as threshold parameters. On some days users might walk distinctly 

more steps than normal, while other days might be more sedentary. The threshold parameters are 

represented in equation (3):    

 𝑇𝑦 = 𝑖 + 𝑚; 

     𝑇𝑠 = 𝑗 − 𝑛                                                 (3) 

Thus, the strategy for removing irregular uncertainty will follow the steps below:  

 To configure the information related to the IoT environment and collect certain types of raw physical 

activity (PA) data.  

 To calculate the parameters 𝑆𝑑, 𝐷𝑑𝑤, 𝑉𝑑𝑎𝑤 with raw data. 

 To plot the data of 𝑆𝑑, 𝐷𝑑𝑤, 𝑉𝑑𝑎𝑤 and calculate the value of 𝑇𝑠 and 𝑇𝑦 with an ellipse filtering equation 

to cover data with a confidence interval of 95%-99%. The confidence defines that 95%-99% of all 

samples can be drawn from the underlying Gaussian distribution. The value of confidence depends on 

the different sample distribution. For instance, when the data is scattered and disordered, the value can 



be set to be 99% so that it covers a wider range. In contrast, when the data is insensitively aggregative, 

the value can be set to be 95% to enclose the best fit.  

 To use 𝑇𝑠 and 𝑇𝑦 for removal of irregular uncertainty physical activity data. 

 To iterate the above process in another time period with updated raw data. 

The following rules are also applied: 

 Following the ellipse filtering equation, we can get the value of 𝑇𝑠 and 𝑇𝑦 .  

 For daily physical activity data, if daily walking steps is lower than 𝑇𝑠, or average daily walking speed 

is lower than 𝑇𝑦, we will abandon this data.  

5. Performance Evaluation of our Ellipse Fitting model  

In order to evaluate the performance of our proposed ellipse fitting model, we use the life-logging 

PA data collected from a research platform MHA [20]. This platform is an IoT enabled personal healthcare 

experiment platform connecting Moves, Fitbit Flex and Withings. This platform enables a user to transfer 

their physical activity data from these third party providers into the MHA server, and then to be able to 

visualize and analyse this information to gain a better understanding. The evaluation of irregular 

uncertainty distribution is based on the MHA platform. We initially collected daily physical activity (Steps, 

Distance and Calories) of seven users over one year using three types of wearable device (Withings, Fitbit 

Flex and Moves). All these users (one female and six male) are researchers in a university, and their ages 

are in the range of 30-50 years old. The methodology for evaluating the performance of our ellipse fitting 

model includes four steps: A) Evaluation of the overall physical activity distribution; B) Evaluation of an 

individual PA distribution; C) Evaluation of the group PA distribution; and D) Effect of the changed 

confidence interval.  

 

5.1. Evaluation of the overall PA distribution  
 

Firstly, we calculate 𝑉𝑑𝑎𝑤 , and plot 𝑆𝑑 and 𝑉𝑑𝑎𝑤 in a 2D diagram with the overall set of “Moves” 

and “Withings” data from randomly selected individuals.  

The features of this physical activity data are:     

 All seven people use Moves. Two of them additionally use “Withings”, and another three people use 

Flex. 

 Missing data occurs frequently in Withings and Flex because users easily forget they are wearing them. 



 Some data in Flex shows lower steps, which is because users take off their wearable devices sometime 

during the day, or the devices run out of battery power. 

 Moves data are more complete than Flex or Withings, but with relatively high errors.

Based on these PA data, the ellipse fitting method is used to cover the distribution of all data. Some facts 

are concluded:  

 Daily steps of an individual recorded by Moves are about 4000 – 7000,  

 Flex or Withings give daily steps about 6000 – 13000.  

 Moves gave a lower measurement of daily steps than Flex or Withings with the same conditions.  

 Healthy people should have daily steps in the range 1000– 20000.  

 Flex and Withings sometimes show daily steps below 1000.  

 Following equation (3), we can get 𝑇𝑠 = 68, and 𝑇𝑦 = 0.56 for Moves, and 𝑇𝑠 = 1329, and 𝑇𝑦 = 1.67 

for Flex. 

For dealing with overall PA uncertainty, the proposed ellipse-fitting model allows us to obtain two 

parameters 𝑇𝑠 and 𝑇𝑦 to effectively filter IU.  

 

5.2. Evaluation of an individual PA distribution  
 

While our ellipse-fitting model works with overall physical activity data, it is also necessary to know 

its performance on an individual activity distribution. We randomly selected four individual persons’ PA 

data and see if their distributions still work with the proposed ellipse-fitting model. Fig.3 shows four 

individuals daily steps and speed acquired from the mobile personalized healthcare platform MHA 

connecting the mobile app “Moves”. The confidence value of ellipse fitting is 0.95 for each individual, 

which means that 95% of samples fall inside the defined region based on a Gaussian distribution. The 

features of this PA data are:     

 Four persons have a different PA distribution pattern.  

 Two persons’ PA data have a dense distribution, which reflects that their life patterns and mobile 

devices are relatively stable.  

 Two persons’ PA data have a sparse distribution, which indicates that their life patterns are irregular; 

or their mobile devices have some larger intrinsic errors. 

 Subject A’s regular daily steps are significantly less than subject B and D.  



 Subject C and D have fairly sparse physical activities during the test period. On the contrary, their 

speed is relatively similar, ranging from 0.5 up to 2.2 m/s. 

 
                             a      b                                                                    

 

 
             c       d 

                                                               

Fig.3. Ellipse fitting distribution of daily steps and speed of four subjects, respectively (c=0.95) 

a Subject no.1 

b Subject no. 2 

c Subject no.5 

d Subject no.12     

 

Table 2  m, n, 𝑇𝑦, 𝑇𝑠 values of four individuals 

 m n 𝑻𝒚 𝑻𝒔 

P1 2451.2 0.6979 2967.4 0.5997 

P2 7135.2 0.4924 11333 1.0796 

P3 7225.9 0.3233 11921 0.9034 

P4 8476.8 0.4639 13676 1.0265 

 

 

Table 2 shows m, n, 𝑇𝑦, 𝑇𝑠 values of four individuals in terms of equation (1) and (3). The results of 

the first subject (P1) are relatively different from others. Most of individuals, however, have closed 

parameters from their activity patterns. In other words, diverse physical characteristics (i.e. height, weight, 

age, etc.) do not lead to a significant difference in physical behaviour measurement.    

In summary, different subjects have different physical activity distribution patterns. The ellipse-

fitting model is still able to work with these data, but the shape and axes angle of ellipse are different for 



each person. The key parameters of the ellipse will be varied in terms of an individual’s circumstance. 

Further, the parameters 𝑇𝑠 and 𝑇𝑦 for filtering IU will be also varied in terms of individuals.  

 
5.3. Evaluation of the Group PA distribution  

 

We further consider evaluating the performance of our ellipse fitting model on certain groups of 

personal PA distribution. We randomly selected three groups of personal physical activity data: 

 Group_1 (Subject 1, 2, 3) 

 Group_2 (Subject 4, 5, 6) 

 Group_3 (All subjects) 

Figures 4.a, 4.b and 4.c respectively shows the physical activity distribution for the above three 

groups. The confidence value of ellipse fitting is also 0.95 for each group, which means that 95% of 

samples fall inside the defined region based on a Gaussian distribution. The features of this data are:     

 The three groups have a similar physical activity distribution pattern.  

 The physical activity data on walking speed of each group is within a very close interval (0.5~2.5).  

 The physical activity data on daily steps of each group differs within intervals, which are (0~500), 

(0~1000) and (0~2000). 

 The physical activity data on daily steps of each group is similar within intervals, which is in the range 

of (0~20000). 

 

Table 3 a, b, 𝑇𝑦, 𝑇𝑠 values of the three groups 

 a b 𝑻𝒚 𝑻𝒔 

G1 7547.4 0.6295 10551 0.7068 

G2 7083.7 0.5378 11635 0.9416 

All 7602.4 0.6246 10900 0.7309 

 

Fig.4 shows that different groups of subjects have different physical activity distribution patterns. 

Our ellipse fitting model is still able to work with this data, but the shape and axes angle of ellipse are 

different by groups. Further, the parameters 𝑇𝑠 and 𝑇𝑦 for filtering IU will be also varied in terms of groups. 

From table 3, we can see that data in group 2 (G2) are quite scattered and most of them are distributed 

in the range of (2500-10000), compared with the range (0-8000) in group 1 (G1), leading to a bigger 

average value of daily steps (a), which is the k value defined in equation (1). And thus, although its a and 



b value are smaller than group 2’s, 𝑇𝑦 and 𝑇𝑠 are outnumbered. This also implies that some subjects in 

group 2 keep irregular uncertainties that are far more than in normal situations. Nevertheless, there is no 

great influence on the overall measurement with only a few irregular samples, which strongly 

demonstrated that our ellipse fitting model is adaptive for different occasions. 

 

     a     b            c 

Fig.4. Ellipse fitting distribution of daily steps and speed of selected subjects (c=0.95) 

a Group 1 (subjects no.1 & no.2 & no.3) 

b Group 2 (subjects no.4& no.5 & no.6)  

c All Subjects 
                                                          

5.4. Impact of Central Point 
 

Another key parameter for the proposed ellipse fitting model need to be considered: the central point 

of ellipse (i, j). Regarding the definition in equation 1, the central point represents the value of average 

daily walking steps and the value of average daily walking speed. But a number of ways are available to 

calculate the average mean in literature. Here, we choose two typical methods to measure the mean of 

distribution: geometric mean and arithmetic mean.  

 

Fig.5. different central coordinate of ellipse fitting (green: geometric mean; red: arithmetic mean) 

 

A comparison of the geometric mean and arithmetic mean set for the central points of the data 

distribution is presented in Fig.5. The red ellipse is modelling with arithmetic mean: the range of steps is 

0-10000, and the speed is between 0.7m/s-1.9m/s on average. The green ellipse is modelling with 



geometric mean: the range of steps is 0-8000, and the speed is 0.4m/s-1.8m/s. It appears that the green 

ellipse covers less samples than the red ellipse but the gap between them is not large. This means that both 

samples are distributed in balance and regular on average daily walking speed. But, daily walking steps 

differs by individual, leading to an apparent gap between geometric mean and arithmetic mean. Although 

there is only a slight difference between the two central points, the arithmetic mean covers more samples 

than the geometric one, and thus achieved a better result.  

5.5. Comparison with other fitting methods 
 

Two curve fitting methods (Smoothing Spine fitting and Gaussian fitting) are carried out in order to 

compare with our ellipse fitting model, shown as equations (3) and (4). 

𝑦 = 𝑝 ∑ 𝑤𝑖(𝑦𝑖 − 𝑠(𝑥𝑖))2 + (1 − 𝑝) ∫(
𝑑2𝑠

𝑑𝑥2)2𝑑𝑥𝑖 ;    (3) 

𝑦 = ∑ 𝑎𝑖𝑒
[−(

𝑥−𝑏𝑖
𝑐𝑖

)2]𝑛
𝑖=1 ;       (4) 

 

In equation (3), p defined in the range 0 to 1, from a least-square straight-line fitting to cubic spline 

interpolant. Equation (4) is based on the Gaussian distribution presenting the numbers of Gaussian peaks. 

In Fig.6(a), the smoothing parameter p = 0.95 is selected to produce a relatively smooth curve. 

Nevertheless, as the raw samples are abundant but aggregated, we can see an amount of data in a normal 

step and speed range are above outside of the curve. In comparison with our ellipse model presented earlier, 

the 1D fitting functions shown in Fig.6 hardly fit in our data samples. Therefore, the ellipse fitting model 

is the most suitable fitting method applying in this situation.  

 
a               b 

Fig.6. results of other fitting methods 

a Smoothing Spine fitting 

b Gaussian fitting 

 

5.6. Evaluation among devices  
 



In this section, we discuss the performance evaluation of our proposed method in a case study on 

the MHA platform [18]. The criteria for verifying our validation model will concentrate on the efficiency 

and adaptability of the method. 

 

Table 4 Removing irregular uncertainties (IU) 

  

 Moves Fitbit Flex Withings 

𝑻𝒔   Daily Steps 4303 6872 5267 

𝑻𝒚   DAPS Speed (m/s) 2.0 4.0 NA 

Total number of people 14 5 3 

Percentage of people with IU 43% 100% 100% 

Number of IU occurrence 40 17 8 

IU confirmed by user 40 15 5 

Average number of IU occurrence per person 

(User Feedback) 

6.6 5.4 2.7 

Accuracy of identifying IU (95%) 100% 88.2% 62.5% 

Accuracy of identifying IU (98%) 100% 100% 100% 

 

The dataset from the MHA platform includes year-long daily physical activity information of 14 

subjects acquired with three devices: Moves was used by 14 users for nine months; Flex was used by five 

users for 12 months; Withings was used by three users for three months. These people are healthy in the 

age range of 30-50 years. The evaluation methodology for verifying the efficiency of proposed model 

involved interviews with the participants, collection of feedback reflecting on users’ experiences on their 

physical activity uncertainties through different devices. The feedback is used as a standard benchmark to 

compare the correctness of model.  

In order to validate the accuracy of identifying IU, we follow equation (2) and (3) with a confidence 

interval of 95% to filter data from three different devices. We use the values (130, 1784, 884) of threshold 

parameter 𝑇𝑠 respectively in Moves, Flex and Withings, for filtering incorrect daily steps data. The results 

are shown in Table 4.  

Moves has much lower threshold parameters of Daily Steps and DAPS speed than Flex and Withings 

which are 130 and 0.5 m/s respectively (Table 4). This is because Moves has larger device uncertainties 

than Withings and Flex as we observed in section 4. Thus the GPS and smartphone internal sensors-based 

App is not as accurate as an accelerometer-only based wrist wearable device. In terms of percentage of 

people having IU, Moves is much lower than Withings and Flex. It is because most of uncertainties from 



Moves have been classified into regular uncertainties, so its irregular uncertainties became less than for 

other two devices. However, for average IU occurrence per subject, Moves has higher performance than 

other two devices (Table 4). The accuracy of identifying IU appears that on the condition with a confidence 

interval of 95%, the related value of threshold parameter 𝑇𝑠 can successfully filter IU in Moves. So Moves 

has the best IU identification accuracy up to 100%, which means that the incorrect daily steps detected by 

equation (3) in Moves have been all approved by users. Flex and Withings have accuracy up to 88.2% and 

62.5% respectively, which implies that some correct daily steps are eliminated by our method. The 

increase of confidence interval will have an affect on filtering accuracy of IU. If we increase the 

confidence interval up to 98%, and recalculate threshold parameters, the accuracy of identifying IU of 

three devices would increase to 100%. However, a noticeable issue here is that if we increase the 

confidence interval, some IU might be ignored and put into the procedure of dealing with RU. Similarly, 

in Moves, a high accuracy of identifying IU does not mean all the IU have been removed but more likely 

that some of the IUs are considered as regular uncertainties.  

For validating the adaptivity of the proposed ellipse fitting model, we consider the whole group of 

14 subjects as one group due to the similar professions and backgrounds. We estimate the change of daily 

steps 𝑇𝑠 and DAPS with different periods (from one to 12 months) with a confidence interval of 95%. The 

results are shown in Fig.7. 

 

a               b 

Fig.7. The function of time period duration        

a Average of daily steps as the function of time period duration 

b DAPS as the function of time period duration 

 

Fig.7 (a) shows the parameter Daily Steps as the function of time period duration. The value of this 

parameter is lower for shorter time periods than for longer time periods. The value of this parameter also 

varies with different devices. For Moves and Withings, the value of this parameter over different periods 



is slightly growing, but for Fitbit Flex, this parameter dramatically increases after six months. This effect 

may be influenced by the setting of the confidence interval.  

Fig.7 (b) shows little variation of DAPS parameter in the proposed method when the time period 

duration is changed. There are some minor fluctuations of DAPS on both Moves and Fitbit Flex but in the 

long term, the value of DAPS is quite stable, which indicates that personal physical fitness does not have 

significant differences within this group of 14 people.  

6. Discussion and Limitation 

There are several obvious concerns of the method proposed in this paper. First, the scalability of our 

proposed ellipse-fitting model-based validity improvement method for dealing with increased volume and 

types of health data has not been considered in this paper. In a practical IoT-enabled healthcare 

environment, personal health information will be a life-long collection. The practical efficiency on multi-

type health data in a long-term collection needs further evaluation. Second, the evaluation of data 

validation efficiency and regular uncertainty indicator for our proposed method is subject to a small 

number of users’ feedback. The standardized criteria of judging correctness and efficiency of the ellipse-

fitting model-based validity improvement method on removing and estimating uncertainties requires more 

user feedback. Also, for different targeted groups, the adaptability of the proposed method needs to be 

verified by more users. While this work has the above further improvements to make in this study, we 

believe that the benefit of this method outweighs its current limitations. The proposed ellipse-fitting 

model-based validity improvement method has provided a new approach to validate physical activity data 

in an IoT environment and has been verified by a rich set of personal health data in real experiments, 

including other medical data, such as ECG and blood pressure for example. The research outcome is 

extremely valuable and beneficial for effective and efficient management, analysis, visualization and 

exploration of large-scale health data in order to bring useful knowledge and intelligence for more solid 

clinical decision-making and policy formulation.     

7. Conclusion 

This paper presents an ellipse-fitting model-based validity improvement method for reducing 

uncertainties of life-logging physical activity measures in an IoT environment. The experimental result on 

an IoT enabled healthcare platform MHA [18] shows that this method can effectively improve the validity 

of physical activity measures in a small populations. While efficiency and accuracy of our method require 

further investigation by more populations and connected devices, our method demonstrates a development 



in the improvement of the validity of life-logging physical activity data in an IoT environment. Future 

work in this study will focus on extending the proposed method in a large-scale IoT environment, which 

will include more wearable devices and more subjects. It will also attempt to analyse and process the life-

logging data with machine learning techniques for improving the accuracy of the proposed validation 

method. 
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