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Abstract

The Gaia hypothesis postulates that life influences Earth’s feedback mechanisms to form a self
regulating system. This provokes the question: how can global self-regulation evolve? Most
models demonstrating environmental regulation involving life have relied on alignment between
local selection and global regulation. In these models environment-improving individuals or
communities spread to outcompete environment degrading individuals / communities, leading to
global regulation, but this depends on local differences in environmental conditions. In contrast,
well-mixed components of the Earth system, such as the atmosphere, lack local environmental
differentiation. These previous models do not explain how global regulation can emerge in a
system with no well defined local environment, or where the local environment is overwhelmed
by global effects. We present a model of self-regulation by ‘microbes’ in an environment with no
spatial structure. These microbes affect an abiotic ‘temperature’ as a byproduct of metabolism.
We demonstrate that global self-regulation can arise in the absence of spatial structure in a di-
verse ecosystem without localised environmental effects. We find that systems can exhibit nu-
trient limitation and two temperature limitation regimes where the temperature is maintained at
a near constant value. During temperature regulation, the total temperature change caused by
the microbes is kept near constant by the total population expanding or contracting to absorb the
impacts of new mutants on the average affect on the temperature per microbe. Dramatic shifts
between low temperature regulation and high temperature regulation can occur when a mutant
arises that causes the sign of the temperature effect to change. This result implies that self-
regulating feedback loops can arise without the need for spatial structure, weakening criticisms
of the Gaia hypothesis that state that with just one Earth, global regulation has no mechanism for
developing because natural selection requires selection between multiple entities.
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1. Introduction

The Gaia hypothesis postulates that life on
Earth interacts with abiotic processes to form
a complex self regulating system that main-
tains habitable conditions on the planet [17]
[13] [16]. This is evolutionary ecology at the
very largest spatial and temporal scales [28].
Critics of the theory argue that any organism
acting to improve the habitability of the planet
would have to contend with “cheaters” who
do not contribute to regulation, or that a sys-
tem would be just as likely to drive itself ex-
tinct as it would to drive itself towards stabil-
ity [6] [5]. This leads to the question: how
can self-regulation evolve in a way consistent
with evolutionary theory? With only one Earth,
and thus a lack of data to analyse, this ques-
tion has been addressed using theoretical mod-
els. Hence we describe other models to put this
study into context.

The Daisyworld model [26] was the first model
to present global regulation emerging by lo-
cal selection of individual level traits that con-
tribute to global regulation. In the original
Daisyworld there are two species of daisy -
black daisies that have a low albedo and white
daisies that have a high albedo. The growth
of daisies is a function of temperature and all
daisies have the same ideal temperature for
maximum growth rate. Incoming radiation
from a ‘sun’ that evolves in the manner of a
typical main sequence star, heats Daisyworld.
Daisyworld initially starts off too cool for any
daisy growth, but as the sun evolves the incom-
ing solar radiation becomes high enough for
the surface temperature to allow daisy growth.
Black daisies are the first to appear. By absorb-
ing more solar radiation they warm their lo-
cal environment encouraging their own growth
and warming the global environment. When
the temperature increases enough, cooling high
albedo white daisies appear. The balance be-
tween the number of white cooling daisies and
the number of warming black daisies main-

tains a constant habitable temperature in Daisy-
world. As the solar luminosity increases the
white daisies take over and keep the planet
cool, until the incoming radiation is too high
and all daisies die.

The Guild model [7], also demonstrates global
regulation arising from local selection. In
the Guild Model, individuals consume and ex-
crete chemicals that appear in the system via
an inflow. Which chemicals they consume
and excrete are determined by an individual’s
genome. New ‘species’ (i.e. new genomes)
arise via mutation during reproduction events.
All individuals have maximum consumption
levels when the ratio of chemicals is at a partic-
ular value. Individuals affect their local chem-
ical ratios via their consumption and excretion
and these effects diffuse to the global envi-
ronment. As in Daisyworld, individuals that
improve their local environment will be se-
lected for, and this local selection contributes to
global regulation. The Guild model finds that
communities of individuals can exist together
to create and regulate the preferred chemical
ratios.

The Flask model [30] [29] [31] removed a lim-
iting assumption of Daisyworld and the Guild
model that traits selected for at the individ-
ual level always improve the global environ-
ment. Instead the organisms in the system af-
fect the abiotic environment as a byproduct of
their metabolism, making these effects selec-
tively neutral at the individual level. Instead
of each individual having a distinct local en-
vironment, groups of individuals share a com-
mon local environment. During reproduction
there is a small constant probability of mu-
tation per locus Pmut so that over time new
species arise via mutation. A spatial version
of the model connected multiple local environ-
ments by inflows and outflows [31] [29]. Sta-
bilising environmental regulation still emerged
and this model argues for spatial structure cre-
ating conditions where limited higher-level se-
lection can take place. In a connected envi-
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ronment, locations where local communities
improve their environment achieve larger pop-
ulations and thus can colonise and outcom-
pete communities that degrade their environ-
ment leading to the spread of environment-
improving communities and thus global regu-
lation.

For local selection to take place on
environment-related traits, local environments
must be different. However, certain environ-
ments cannot be compartmentalised in a man-
ner that seems conducive to local selection.
The obvious example is the atmosphere (with
its well mixed gases) but some aquatic environ-
ments are also potentially well mixed too. In
this case it is not obvious where the local envi-
ronments allowing for successful communities
to develop would be, leading to motivation for
a homogenous model of self-regulation.

Later versions of Daisyworld [18] and ‘Daisy-
stat’ [8] removed the local environment and
found regulation of the abiotic parameters. In
these models ‘rein-control’ [4] [9] is respon-
sible for the environmental regulation. In one
version of these models [18] two main sub-
groups dominate the system - one group that
acts to increase the abiotic parameter while
preferring this parameter to be low, and another
group that acts to lower the abiotic parame-
ter, while preferring this parameter to be high.
With these two groups pulling the system in op-
posite directions, environmental regulation is
possible for significant periods of time. The
Daisystat model [8] features the same ‘rein-
control’ in this case regulating multiple abiotic
parameters with a diverse array of species in-
stead of the system being dominated by two
main groups. In Flaskworld [31], the effect
of allowing different microbe species to pre-
fer different abiotic parameter values was ex-
plored and it was found that the system showed
periods of stability where the abiotic param-
eter stayed near constant. These stable pe-
riods were interrupted with rapid transitions
where the abiotic parameter would often then

stabilise at a different value to before. The sys-
tem was stabilised by the ‘rein-control’ mech-
anism present in the Daisystat model.

The Daisystat model provides global regulation
with a diverse population in the absence of spa-
tial heterogeneity. However this model lacks
mutation. Species begin reproducing when the
environmental parameters allow them to, and
all species are present at all times even if at
vanishingly low levels. This means that as the
environment changes, the system does not need
to evolve new species to control or adapt to
these changes, the species are already present
and ready to start reproducing as soon as con-
ditions allow. Therefore in Daisystat, the sys-
tem cannot go extinct. This does not reflect
real world biology where the existing popula-
tion must evolve to cope with a changing en-
vironment and total extinction is a possibility.
For this reason we follow the Flask model im-
plementation of microbes with selectively neu-
tral abiotic effects that reproduce and mutate
allowing new species to appear in the system.

The atmosphere taken as a single entity has a
flux of energy coming in as light from the sun,
heat from the mantle and various chemicals
spewed forth by volcanoes similar to the nu-
trient and abiotic parameter inflow in the Flask
model. For something like the Earth’s atmo-
sphere a single well mixed environment would
be a more accurate representation than local
environments interacting with a global envi-
ronment. CO2 fluxes, for example, at vari-
ous points on the Earth do not vary wildly (ig-
noring the very small scale i.e. surrounding a
currently active volcano) making a single flask
Flask model a good approximation to the sys-
tem.

The original Flask model [30] was also a sin-
gle flask environment, however the implemen-
tation of the model was quite different and the
focus of the paper was on nutrient recycling
and not abiotic regulation. In the original Flask
model [30] instead of microbes all having the
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same preferred value for a single abiotic pa-
rameter, there were two abiotic parameters and
microbes had an encoded preference for a par-
ticular ratio of these two parameters. This ra-
tio preference was not constant for all microbes
and therefore not all microbes experienced the
environment identically. When there is a uni-
versal preference for an abiotic parameter, this
sets a constant target for regulation, where the
preferences for abiotic parameter values differ,
there is no such constant target. The target will
change as the genetics within the population
change. The microbes were able to evolve to-
wards preferring the state of the current abiotic
environment and exploit all the nutrients in the
system. In this paper we instead focus on what
happens in a system where the microbes cannot
evolve towards preferring the current environ-
ment, and instead of a preferred ratio between
two abiotic parameters that differs between dif-
ferent microbe species, we have a single abi-
otic parameter with a constant preferred value
for this parameter, β that is the same for all mi-
crobes.

For our single flask Flask model we closely fol-
low the implementation detailed in [29] limit-
ing the system to a single flask. We present
a model of self-regulation of a purely global
environment arising via evolution. This single
Flask model allows for the possibility of rebel
mutants disrupting the system, due to the lack
of distinct environments and removes the issue
of “cheater” species, due to the selectively neu-
tral abiotic effects of the microbes. It is also
possible for the system to drive itself to ex-
tinction - all scenarios being criticisms of the
Gaia theory [6] [5]. The combination of as-
sumptions presented here differs to what has
been tried in previous models. The model has
a shared preference for a single abiotic param-
eter, but lacks spatial structure as in the pre-
vious Flask models [30] [29] [31]. Mutation
occurs in this model with a constant probabil-
ity per reproduction event, and the system can
suffer from total irreversible extinction, differ-
ing from to the Daisystat [8] and models by

McDonald-Gibson [18]. Finally, the model
lacks local environments, differing from the
original Daisyworld [26], and the Guild model
[7].

In Section 2 of this paper we give a brief out-
line of the model (an in depth description can
be found in Appendix A). Section 3 details the
behaviour of the model for various important
regimes. We present results both of typical in-
dividual simulations and for trends in systems
with the same parameter settings. In Section 4
we discuss the results and provide parallels to
behaviour found in the real world.

2. Model

In the Flask model [31] [29], flasks contain
an abiotic environment with parameters (that
can be thought of as temperature, pH, salin-
ity), and nutrients which are the substrates for
metabolism, with a constant inflow and out-
flow of these abiotic parameters. The flasks are
seeded with ‘microbes’ which consume the nu-
trients available and affect the abiotic parame-
ters as a side effect of their metabolism. In turn
the value of these abiotic parameters affects the
microbes’ ability to metabolise. In this paper
we limit the system to a single flask.

‘Microbes’ are characterised by a binary
genome. This genome determines what nutri-
ents a microbe will consume and what it ex-
cretes (with the limitation that nothing may
eat what it excretes). Microbes with the
same genome are considered to be the same
‘species’. As microbes consume nutrients and
convert them to biomass, they are able to repro-
duce once their biomass reaches a reproduction
threshold BR. During reproduction there is a
small constant probability of mutation per lo-
cus Pmut so that over time new species arise
via mutation. Microbes die if their biomass
drops to the starvation threshold BD and there
is also a probability of death by other causes
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PD. The maintenance cost λ for each microbe
is 1 biomass unit per timestep.

We refer to microbes with different genomes
as being different ‘species’, however our model
is essentially microbial, e.g. akin to the Earth
during the Archean. In microbes, extensive
horizontal gene transfer can make speciation a
complex matter, and in the case of this model,
it is the phenotype of the microbes that is im-
portant, rather than their genotype, which just
determines which nutrients they eat and ex-
crete. We have a rather small genome size in
this model and so minor changes usually as-
sociated with specific variation are not possi-
ble. Our model is best understood in terms
of the ‘genomes’ of the flask ‘microbes’ as
trait vectors, whereby the ‘mutation’ opera-
tor is just a simple way of introducing varia-
tion. The model mutations can represent quite
large changes in metabolism that would in re-
ality most likely involve a longer sequence of
smaller mutations. In this context it is relevant
that results from an ecology model called the
Tangled Nature model, used for investigating
stability in ecosystems, found that allowing for
gradual changes in the phenotype of the agents
in the model, rather than large scale changes
each mutation, simply lead to the same dynam-
ics slowed down [1].

As a byproduct of converting nutrients to
biomass the microbes affect the abiotic param-
eters. Per unit of biomass created, the microbes
change an abiotic parameter by a set amount
(determined by their genome) in the range [-
1, 1]. The environmental abiotic parameters
in turn affect the rate at which microbes can
consume nutrients. Each microbe, j, has a
preferred level, βi

j, for each abiotic parameter,
i. βi

env is the value of the ith abiotic parame-
ter. τ controls how sensitive the microbes are
to the abiotic parameters. If τ = 0, the mi-
crobes are not influenced by the abiotic param-
eters. For τ > 0, the abiotic environment af-
fects metabolism. The higher τ becomes the
more sensitive the microbes become to their

environment and thus for a high τ if the differ-
ence between each βi

j and βi
env is too large the

microbes will be unable to consume nutrients.
The quantity of nutrients a microbe is able to
consume per timestep, Cmax

j , depends on how
closely each βi

env matches βi
j in the following

way:

Cmax
j = ψ jCmax (1)

ψ j = e−(τp j)2
(2)

p j =

√√√ A∑
i=1

(βi
env − β

i
j)

2 (3)

where Cmax is a constant determining the max-
imum rate of consumption for any microbe in
ideal conditions, ψ j is a microbe specific mea-
sure of the microbe’s satisfaction with the cur-
rent abiotic environment. A is the total num-
ber of abiotic parameters. As the βi

env values
move away from the ideal βi

j values, Cmax
j will

become smaller meaning the microbes are able
to ingest fewer nutrients per timestep and for
unfavourable enough conditions, they will be
unable to consume anything.

The environment of the single flask is charac-
terised by a constant inflow of nutrients and
abiotic parameters, IN and IA, and a constant
outflow ON and OA. In the absence of mi-
crobial activity the environment reaches a con-
stant steady state with constant levels of nutri-
ents and constant values for the abiotic param-
eters. After a preparation period tprep to allow
the system to come to equilibrium, the flask is
seeded with 100 randomly generated individu-
als. For a single timestep the following actions
are preformed:

1. Influx / outflux of nutrients and abiotic pa-
rameters

2. Microbe selected randomly for a death
event
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3. Microbe selected randomly for a nutrient
consumption event

4. Microbe selected randomly for a biomass
creation event

5. Microbe selected randomly for a repro-
duction event

6. Repeat steps 2 - 5 n times, where n is the
total population of the system at the start
of the current timestep.

In this way, on average, each microbe in the
system will be selected for each event per
timestep. We keep steps 1 - 5 separate in the
code to introduce randomness into the model.
We also neglect to consider any situations
where particular genomes or consumption be-
haviours affect reproduction rates or death rates
as can happen in real life.

We ran simulations of this single Flask model
for various values for τ to demonstrate that
a single well mixed flask can exhibit envi-
ronmental abiotic regulation with two stable
regimes for a certain range of τ. For each sim-
ulation we had N = 4 nutrients and A = 1
abiotic parameter, denoted as β (and referred
to as ‘temperature’ throughout this paper) for
our systems. We set β j = β = 150 for each
microbe, j, and the abiotic ‘temperature’ with-
out microbe activity to βenv = 100. Through-
out this paper we will refer to the nutrients
in the system and the abiotic parameter sepa-
rately. Although the nutrients present in a sys-
tem part of the abiotic environment, we reserve
this label for the abiotic ‘temperature’.

For more details on the model presented in this
paper see Appendix A.

3. Results

For a range of values for τ, a key parameter
that controls the strength of the feedback be-
tween the environmental state and life, we ran
100 simulations, all identical apart from their

initial random seed, and recorded how many
of these 100 simulations survived (survival de-
fined as having microbes alive at the end of the
simulation) to 105 time steps. We then looked
in closer detail at these surviving simulations.

Table 1 shows the survival rate of simulations
for different values of τ. We see that the sur-
vival rate of the system quickly starts to drop
off above τ = 0.015.

Table 1 also shows the mean lifespan for var-
ious τ along with the standard deviation. For
low τ all the simulations survived to the end,
but as τ increases the survival rate decreases
and so does the average lifespan.

We find that there are three ways in which the
microbe population of the system can be lim-
ited - nutrient limited, high temperature limited
and low temperature limited. Which of these
regimes dominates the system depends on the
value of τ.

3.1. Nutrient limitation for τ = 0

In a nutrient limited regime the microbes con-
sume all the available nutrients. Once the nutri-
ents are depleted the population can no longer
grow and the microbe population will stabilise
such that the flow of incoming nutrients is
enough to support the population, i.e. the sys-
tem reaches the carrying capacity determined
by the nutrient input. This characterises a key
aspect of many real-world systems where the
tendency for biological populations to prolif-
erate if conditions are good leads to a reduc-
tion of resources which then becomes a stable
state - a process called ‘biotic plunder’ by [22],
and achieves a zero-net growth isocline (ZNGI)
[21]. In a τ = 0 system, i.e. the microbes are
indifferent to the abiotic temperature, nutrient
limitation is the only way the system becomes
limited.

Figure 1 shows a single simulation for τ = 0.
In Figure 1b the temperature has no overall
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Table 1: Survival % and average lifespan as a fraction of the total simulation length (105 timesteps) for a range of τ.

τ
Survival
%

Average lifespan /

105
Standard
deviation

0.00 100 1 0
0.005 100 1 0
0.01 100 1 0
0.015 100 1 0
0.02 50 0.75 0.32
0.025 18 0.33 0.38
0.03 9 0.20 0.33

trend but is a random walk as the microbes are
not affected by its value. The changes in tem-
perature come from the byproducts of the mi-
crobes’ metabolism. For every unit of biomass
produced each microbe will add a set value
to the temperature parameter as determined by
their genome. Genetic mutation is occurring
within the population and so new species with
different affects on the temperature regularly
appear. For τ = 0 the fitness, which we de-
fine as the rate of biomass production per mi-
crobe, per timestep, is at the maximum value
for any value of T, meaning that the tempera-
ture is selectively neutral and so the system’s
temperature is effectively an unselected ran-
dom walk, determined by the current popula-
tions genomes, and changing with genetic vari-
ation. When the system is nutrient limited, the
system is still producing mutants at the same
rate per microbe. This means that the total
abiotic effect of the microbe ecosystem will
be constantly changing as new mutants with
differing abiotic impacts appear preventing the
temperature from stabilising.

From Figures 1b and 1d we see that the popu-
lation quickly reaches a maximum value and
stays there and that the nutrient stocks are
quickly reduced to near zero and also stay at
that level. The total population possible in a
system is determined by the nutrient flow.

Figure 1d shows a cartoon plot of temperature
against fitness with respect to the abiotic tem-
perature, all else being equal. fmin represents
the minimum fitness, here defined as the num-
ber of offspring produced per individual per
timestep, required for the microbes to main-
tain a constant population, i.e. the rate of re-
production matches the rate of death. As the
value of the temperature does not affect fitness
for τ = 0, the fitness of the microbes is a con-
stant independent on T. Note that the tempera-
ture in this model is arbitrary and does not cor-
respond to real world temperatures, and so it is
the behaviour of the temperature that is impor-
tant, not the value.

3.2. Nutrient and temperature limitation for
τ > 0

For τ > 0 the microbes fitness is no longer con-
stant for all temperature, see Equation (3). In
τ > 0 systems, the system can still become
nutrient limited if the average effect per mi-
crobe on the abiotic temperature, εavg, is small
enough to allow the microbes to exhaust the
nutrient stocks. We calculate εavg by summing
up all the abiotic effects for all the microbes,
and then dividing by the total population of the
system to get the average metabolic effect per
microbe. As τ increases and the microbes be-
come more and more sensitive to their environ-
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(a) τ = 0.00 temperature plots.
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(b) τ = 0.00 population plots.
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(c) τ = 0.00 nutrient stocks plot.
(d) τ = 0 fitness diagram.

Figure 1: Example simulation of a single τ = 0 system. In a) and d) the blue line represents β and the red line represents
βenv. The temperature a) has no general trend, the total population b) quickly rises and stabilises at the carrying capacity.
The nutrient stocks c) quickly deplete and remain at near zero levels. The fitness doesn’t depend on temperature so the
fitness d) is a constant.

ment nutrient limitation becomes less likely,
and when it does happen it quickly transitions
to a temperature limited regime instead.

Figure 2 shows a τ = 0.005 simulation that
demonstrates nutrient limitation and temper-
ature limitation. There are periods in Fig-
ures 2b and 2c when the system is not nu-
trient limited as the total population falls be-
low the maximum and the nutrient stocks are
not completely exploited i.e. at t = 0 − 500
where the system is high temperature limited,
and t = 70, 000 − 95, 000 where the system
is low temperature limited. At low τ the sys-
tem is mainly nutrient limited, but as the tem-
perature goes towards the extremes at which

the microbe’s can survive, the system becomes
temperature limited, and the fitness curve falls
away from the maximum, shown in Figure 2d.
When temperature limited, the system is in a
negative feed back loop, with the stable point
at the temperature that allows the minimum
fitness required for a stable population. The
green circles in Figure 2 represent the system
at various temperatures. There are two points
on the fitness curve where the temperature is
in a semi-stable state - a state that persist for
significant time spans but are prone to sudden
transitions to another state. These semi-stable
states occur where the fitness curve intersects
the fmin line. Where these two lines cross we
find the the upper and lower temperature lim-
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(a) τ = 0.005 temperature plot.
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(b) τ = 0.005 population plot.
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(c) τ = 0.005 nutrient stocks plot.
(d) τ = 0.005 fitness diagram.

Figure 2: Temperature, population and nutrient stock plots for an individual τ = 0.005 system. In a) and d) the blue line
represents β and the red line represents βenv. We see regions of temperature limitation a) where the population b) drops
to lower than the carrying capacity, and the nutrient stock c) are higher. The fitness d) now depends on the temperature
for extreme temperatures.

its. At these points green circles are filled to
represent that the system temperature is semi-
stable for this T. At other points on the fitness
curve the system temperature is not stable, rep-
resented by non-filled circles.

The two temperature regimes, high and low,
work as follows:

• High Temperature Limited Regime
The high temperature regime supports a
population of microbes whose collective
effect on the environment is to heat it. As
the microbes consume nutrients and cre-
ate biomass the temperature increases un-
til the microbes become unable to con-

sume nutrients due to the temperature be-
ing too extreme. At this point with no mi-
crobes creating biomass, and the constant
flow creating a cooler environment, the
temperature begins to fall until it reaches
the point where microbes are able to con-
sume nutrients again and the cycle re-
peats. In this way the system can be
thought of as bouncing off an upper tem-
perature limit set by how extreme a tem-
perature the microbes can still metabolise
in. In the high temperature limited regime
εavg, is positive - i.e. on average a microbe
has a heating effect.

In a system limited by high temperature
the total population and εavg are highly
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negatively correlated. If a population has
a certain εavg and a new microbe mu-
tates into existence that causes εavg to
increase, then depending on the size of
the temperature increase the microbes’
metabolism may slow to levels too low to
maintain a constant population, in which
case random deaths will reduce the pop-
ulation, or, if the temperature increase
is extreme enough, metabolism can halt
entirely. This will lead to individuals
starving and the population will drop.
With a lower rate of metabolism or no
metabolism happening at all the temper-
ature of the system will start to drop due
to the inflow and outflow of temperature
to the system. At a certain point the tem-
perature will drop enough that the mi-
crobes will be able to start consuming nu-
trients again and the system will continue
at roughly the limiting high temperature
but supporting a lower population.

Time scales are important in these events
as if the temperature change is extreme
enough that metabolism halts entirely, the
whole population will very quickly die
and so the system can only tolerate short
lived excursions from habitable temper-
atures. For a less extreme temperature
change that still allows metabolism to take
place (albeit at a rate below the mainte-
nance level) then the system can survive
longer as it will take longer for the mi-
crobes to starve to death or, failing starva-
tion, the random death events will reduce
the population. In general, any affects that
act to push the temperature beyond habit-
able limits must be counteracted quickly
to avoid total extinction.

Conversely if the effect of the new mu-
tant was to lower εavg, the temperature
would drop and thus the microbes would
consume more nutrients, the population
would increase, raising the temperature
with it until it stabilised at around the lim-
iting high temperature, this time support-

ing a higher population than before.

• Low Temperature Limited Regime

The low temperature regime is almost
the mirror image of the high temperature
regime. In the low temperature limited
regime εavg is negative - i.e. on average a
microbe has a cooling effect. In this case
the total population of microbes and εavg

are positively correlated. If a microbe mu-
tates into existence that causes εavg to de-
crease, the population will increase, and if
the mutant acts to increase εavg the popu-
lation will decrease.

As τ increases, temperature limitation becomes
more important. For a higher τ, the microbes
are more sensitive to their abiotic temperature
and nutrient limitation is possible for a smaller
range of T. When nutrient limited, the system
has a higher total population than when temper-
ature limited, so mutants appear at a faster rate.
This combined with the smaller nutrient lim-
ited T range means that the system can quickly
random walk out of nutrient limitation and be-
come temperature limited. So as τ increases,
nutrient limitation dominates systems less, and
temperature limitation takes over. Figure 3
shows two systems, a τ = 0.01 system and a
τ = 0.015 system, and shows a higher amount
of temperature limitation for the higher τ.

Comparing Figures 3c and 3d we see that for
τ = 0.015, the periods of nutrient limitation
(seen where the nutrient stocks are close to
zero) are less frequent and of shorter duration
than they are for τ = 0.01.

3.3. Temperature limitation dominates for τ ≥
0.02

As τ increases, the span of temperature where
the microbes are nutrient limited shrinks fur-
ther, so that the system becomes dominated by
temperature limitation. The asymmetry in the
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(a) τ = 0.01 temperature plot
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(b) τ = 0.015 temperature plot
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(c) τ = 0.01 nutrient stocks plot
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(d) τ = 0.015 nutrient stocks plot

Figure 3: Plots for two individual systems, one at τ = 0.01 and the other at τ = 0.015. In a) and b) the blue line represents
β and the red line represents βenv. As τ increases, temperature limitation becomes more likely than nutrient limitation.

model set up also begins to have a noticeable
affect on the temperature limited regimes. As
βenv is cooler than the microbes’ preferred tem-
perature β the total cooling effect needed by
the microbes to become low-temperature lim-
ited is less than the total heating effect required
to become high-temperature limited. For low τ
where the temperature range in which the mi-
crobes can function in is large, this does not
have much effect, but as τ decreases and the
high and low temperature limits contract to-
wards β, this starts to have an effect.

As the cooling needed to become low-
temperature limited is less, the total popula-
tion that this low temperature limited regime
can support becomes lower and lower as the
limiting low temperature increases. If a mu-

tant then arises that causes εavg to cool more
strongly, the population has to shrink to coun-
teract this, and with an already small popula-
tion this is more likely to drive the system to
extinction than for the high temperature limit-
ing regime, which can support a higher popu-
lation. This means that as τ increases the low
temperature limiting regime becomes less sta-
ble and the non-extinct systems are far more
likely to be found in the high-temperature lim-
iting state. This behaviour is due purely to the
fact that βenv is lower than β. Were βenv higher
than β, we would see the same behaviour but
flipped - the high temperature regime becom-
ing less stable than the low temperature regime
with increasing τ.

Figure 4 shows a τ = 0.02 system that demon-

11



0 20000 40000 60000 80000 100000
t (timesteps)

50

100

150

200

250

te
m

pe
ra

tu
re

(a) τ = 0.02 temperature plot.

0 20000 40000 60000 80000 100000
t (timesteps)

0

100

200

300

400

500

to
ta

l p
op

ul
at

io
n

(b) τ = 0.02 population plot.
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(c) τ = 0.02 nutrient stocks plot.
(d) τ = 0.02 fitness diagram.

Figure 4: An individual τ = 0.02 system. In a) and d) the blue line represents β and the red line represents βenv. Note in
a) and b) when the system is limited by low temperature, the total population is very low. d) shows the nutrient limiting
range shrinking. The red arrow indicates the system moving straight from low temperature limitation to high temperature
limitation.

strates this asymmetry. We see in the popu-
lation graph, Figure 4b that the total popula-
tion is much lower when the system is low
temperature limited, than it is when the sys-
tem is high temperature limited. We also see
some very clear transitions between low tem-
perature limitation and high temperature limi-
tation without even a short a period of nutri-
ent limitation in between. The higher τ value
means there is a much smaller range of temper-
ature where the system can be nutrient limited,
so a mutant microbe acting to change εavg < 0
to εavg > 0 doesn’t have to have as strong an
effect for the system to move through nutri-
ent limitation temperature range and become
temperature limited on the other side, as Fig-

ure 4d demonstrates. From Figure 4c we see
that there are always nutrients available. None
of the stocks are ever fully depleted, the mi-
crobe ecosystem is never able to fully exploit
the nutrient resources. If β and βenv were close
enough, the microbes would be able to con-
sume all available nutrients and become nutri-
ent limited, but for τ = 0.025 the temperature
range that allows for nutrient limitation is very
narrow so the system quickly gets knocked out
due to mutants perturbing the system and push-
ing it to a temperature limited regime.

Increasing to τ = 0.03 and the asymmetry of
the system now means that the high tempera-
ture becomes the only stable limitation regime.

12



0 20000 40000 60000 80000 100000
t (timesteps)

80

100

120

140

160

180

200

220

240

260

te
m

pe
ra

tu
re

(a) τ = 0.03 temperature plot.
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(b) τ = 0.03 population plot.
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(c) τ = 0.03 nutrient stocks plot.
(d) τ = 0.03 fitness diagram.

Figure 5: Plots for an individual τ = 0.03 system that goes extinct. In a) and d) the blue line represents β and the red line
represents βenv. d) shows that the low temperature regime is now not possible.

The temperature span for the nutrient limita-
tion regime has reduced so much that the sys-
tem will very quickly random walk away from
this regime, and the lower temperature limit-
ing regime T value is now above βenv (where
the fitness curve intersects the fmin line in Fig-
ure 5d). This means there is no negative feed
back mechanism for maintaining the system for
a temperature below β. If the temperature falls
below β and the microbes act to cool, then the
temperature will decrease until the microbes
begin to die off. As βenv < β however, now
there is nothing to pull the system back towards
β, the system will be pulled towards βenv, which
is now too cool for any microbes to survive and
the system will go extinct. The only way for
the system to avoid extinction for T < β is if
εavg > 0. In this case as the microbes heat the

system, the temperature will increase towards
β, increasing the fitness, increasing the total
population and therefore accelerating the heat-
ing in a positive feedback loop, until T > β,
and the system becomes high temperature lim-
ited in a negative feedback loop.

We can see in Figure 5a one time at t = 65, 000
where the system is able to recover from T < β.
In this case a mutant acting to change εavg < 0
to εavg > 0 appears and prevents the system
from going extinct, but the system is not so
lucky a second time, and goes extinct the next
time T < β. The likelihood of producing a
mutant depends on the reproduction rate and
the population size and hence when the mi-
crobes’ metabolism is constrained by temper-
ature the reproduction rate is low. The high
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nutrient stocks present in the system however
create a potential for rapid growth if a ‘good’
mutant appears, i.e. one that moves the tem-
perature closer to β. Referring back to Table
1 we see that for τ = 0.03 the survival rate
for 105 timesteps was 9%, so systems that are
able to recover are the minority. Again, Figure
5c shows that the nutrient stocks are never de-
pleted, the microbes are unable to stay within
the very narrow nutrient limited temperature
range.

3.4. Waiting time for ‘Quakes’

We can look at waiting time statistics for
‘quakes’ - a period where the system’s tem-
perature is not stable - to get an idea of how
long the quasi-stable periods last within sys-
tems with various τ. For the purposes of the
following analysis we define a quake in the fol-
lowing way:

quake =

1, if
∣∣∣T prev

avg − T cur
avg

∣∣∣ > 5
0, otherwise

(4)

where a value of 1 means a quake took place,
and a value of 0 means the temperature is re-
maining stable - no quake. T prev

avg is the temper-
ature averaged over the previous 100 timesteps,
and T cur

avg is the temperature averaged over the
next 100 timesteps. We compare T prev

avg to T cur
avg±

5 as some small temperature fluctuation does
occur during stable periods so to compare the
two with no buffer would lead to an artificially
high number of quakes being recorded. Using
this method we can record the times at which
quakes occurred in a system. ± 5 is chosen as
it is large enough to take into account fluctu-
ations that happen within a stable period, but
small enough that quakes are noticed. Chang-
ing ± 5 to some other limit does not qualita-
tively change the results much, but quantitively
the recorded number of quakes for all systems
will increase if the limit is reduced, and will

decrease a little if increased until the limit gets
so large that quakes become unidentifiable.

The value of each waiting time bin in the his-
tograms is divided by the number of simula-
tions included.

Figure 6 shows histograms of the average fre-
quency of waiting times for quakes for 4 values
of τ = 0.00, 0.01, 0.02, 0.03. Figure 6a shows
a histogram for all simulations while Figure 6b
shows a histogram including only data from
non extinct simulations. This allows us to look
for characteristics in the ‘successful’ systems
for various τ. We want to understand what
behaviours a system needs to have in order to
avoid extinction. We are looking at the the Gaia
hypothesis from the point of view of a planet
that has successfully had uninterrupted life for
billions of years. We could be incredibly lucky,
and our planet might, if ‘reset’ and run a 100
times, usually be doomed to total extinction,
or perhaps every 100 times life would emerge
and successfully regulate the planet to maintain
habitable conditions. As we don’t know which
scenario we are in, it is useful to look for signa-
tures in ‘successful’ systems for both scenarios
(those likely to survive and those unlikely to
survive) to see how we might be able to tell
them apart. For each non extinct simulation for
a particular τ the waiting times for quakes are
measured and binned, and then these bins are
divided by the number of non-extinct simula-
tions to give an estimate of how many times
per simulation for a particular τ we can expect
to wait a certain period of time for a quake.
Note in Figure 6 that both the x and the y axis
are plotted to log scale. Also note that because
each simulation ends at t = 105 if a simula-
tion lasts in a stable period for the whole sim-
ulation, the number of quakes would be 0 and
thus in the plots in Figure 6 a lower frequency
of waiting times means a more stable system
as it indicates the stable periods of the system
have remained mostly uninterrupted.

Figure 6 shows a histogram of waiting times
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Figure 6: Histograms showing the average frequency of waiting times for quakes for different τ. The number of non-
extinct simulations in b) for each τ is given in brackets in the legend. Note that both the x and y axis are logarithmic.

for τ = 0, 0.01, 0.02, 0.03. We see that the
frequency of short waiting times for τ = 0
is high. This frequency drops until just after
103 timesteps the frequency is 0. This agrees
with previous plots showing no abiotic temper-
ature regulation for τ = 0. When τ = 0 the
microbes are not regulating the environmental
temperature, so the temperature is free to wan-
der. ‘Quakes’ in this scenario regarding the
temperature no longer make sense as the tem-
perature is never really stable but measuring for
‘quakes’ we would expect them to be frequent
and for there to be short waiting times between
them, which is what Figure 6 confirms.

For τ = 0.01 the microbes are regulating the
environmental temperature and the system can
exhibit both temperature limitation and nutri-
ent limitation. Here we see that longer wait-
ing times occur and the shorter waiting times
are less frequent than for the τ = 0 case. This
demonstrates that on average, for simulations
with τ = 0.01 we can expect longer periods of
temperature stability with fewer quakes, how-
ever frequency of quakes drops to 0 for waiting
times longer than roughly 104 timesteps.

For τ = 0.02 we see that short waiting times
for quakes happen at an even smaller frequency
than for τ = 0.01. Across almost all wait-

ing times, the frequency of quakes is lower for
τ = 0.02 than for τ = 0.01. This tells the
story of a system with longer periods of sta-
bility and fewer quakes. From Table 1 recall
that the survival rate for τ = 0.02 is low at
28%. It is not therefore that at τ = 0.02 the
microbes are far better at keeping the environ-
mental temperature from fluctuating than they
are at τ = 0.01, but that for a τ = 0.01 system
the more lenient restrictions on the microbes
means that the system is better able to recover
from a quake, but in a τ = 0.02 case, quakes
come with a larger probability of total extinc-
tion. So for τ = 0.02 simulations with a lower
level of quakes will have a greater probabil-
ity of surviving. The relationship between fre-
quency and waiting time for τ = 0.02 in Figure
6 shows a roughly linear relationship suggest-
ing that there is a power law relationship. If the
frequency of quakes goes as fq ∝ t−α where t
represents time, and α is some constant, we can
take the log of both sides to find a linear rela-
tionship in log-log space which is indicative of
a power law.

For τ = 0.03 we see that the frequency of all
waiting times for quakes is very low, and with
only 9% of the simulations avoiding extinc-
tion, this shows a more extreme version of the
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τ = 0.02 case.

Comparing Figures 6a and 6b we can see that
including only non-extinct simulation has the
effect of ‘flattening’ the frequency curve, mak-
ing it less steep and increasing the frequency
of quakes for longer waiting times. When we
include the data from simulations that went ex-
tinct, it lowers the quake frequency as an ex-
tinct system cannot quake, and it makes the
high τ systems appear less prone to quakes than
they are in reality.

3.5. Population, Temperature and εavg

To get a clearer understanding of which
regimes (nutrient limiting, high temperature
limiting or low temperature limiting) are domi-
nating the systems we plot the average microbe
effect on the temperature, εavg, vs the tempera-
ture and vs the total population of the system
for various τ. εavg, and the total population of
the system are correlated when the system is in
a temperature limiting regime - negatively cor-
related in the high temperature limiting regime
and positively correlated in the low tempera-
ture limiting regime. Thus we expect to see
(in a high temperature limiting scenario) that as
εavg increases, the total population decreases.

Figure 7 shows εavg vs total population for the
data from all non extinct simulations over a
range of τ. We see for τ = 0, the total pop-
ulation remains constant for any value of εavg

which agrees with previous results. We can
clearly see the nutrient limited regime for very
low τ start initially wide and become increas-
ingly narrower as τ increases. For τ = 0.005
we clearly see both the low and high temper-
ature regimes, the left curve showing the total
population increases for an increase in (nega-
tive) εavg and the right curve showing the total
population decreasing for increasing (positive)
εavg. These two curves are slightly asymmet-
rical and this is due to βenv being cooler than
β. This means that to become higher temper-

ature limited a higher population for any εavg

is needed than for the corresponding negative
εavg.

As τ increases and the microbes become more
sensitive to their environment the left hand side
of the curves in Figure 7 become less popu-
lated. The net cooling needed to become low
temperature regulated is smaller than the net
heating to become high temperature limited
and as τ increases the microbes need to keep a
tighter control on their abiotic temperature and
the upper and lower temperature bounds con-
tract towards their ideal temperature β. There-
fore, in order to survive, as τ increases, heat-
ing their abiotic temperature becomes a better
strategy for the microbes as the high tempera-
ture limiting regime can support a higher num-
ber of microbes increasing their ability to adapt
to new mutants making this regime more stable
than the low temperature limiting regime. Thus
we see that surviving simulations tend to have
adopted a high temperature limited regime.

Figure 8 shows similar plots this time for εavg

vs temperature. Here we see for τ = 0, there
is a linear relationship as expected - the total
population remains constant and so changing
εavg has a linear effect on the temperature. As
τ increases we see a step like function, where
for low and high εavg the temperature remains
constant, and for a region of εavg around 0,
there is a linear relationship - this is the region
where the system is nutrient limited. As τ in-
creases, this transition between the low and the
high temperature limits becomes steeper show-
ing that as τ increases, the system becomes in-
creasingly less likely to find itself nutrient lim-
ited. We also see that increasing τ leads to the
high and low temperature limits to contract to-
wards β as the microbes habitable temperature
range shrinks. Again we can see that for high
τ, the system is more likely to be in the high
temperature limited regime.
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(a) (b)

(c) (d)

Figure 7: Plots showing εavg against total population τ. Total population is constant for varying εavg when the system
is nutrient limited, however for temperature limited, the population must adjust as εavg changes to keep the total effect
constant.

3.6. Changing the environmental abiotic tem-
perature

We investigated the effect of gradually increas-
ing or decreasing the temperature for a range
of τ. We found that temperature regulation is
maintained in the face of a changing tempera-
ture, and microbes are able to keep the temper-
ature habitable after the environmental equi-
librium temperature would have become un-
inhabitable. However when quakes occurred,
the system was highly susceptible to extinc-
tion once the equilibrium temperature was no
longer habitable. Table 2 shows the survival
and lifespan statistics for cooling the system
from βenv = 100 to βenv = 50, and heating the
system from βenv = 100 to βenv = 200.

When changing βenv from 100 to 200, the en-
vironmental temperature is closer to β = 150,
the preferred temperature of the microbes, dur-
ing the experiment than when βenv = 100 for
the entire experiment. This allows the system
to become nutrient limited more often. Typi-
cally the temperature limited regime with the
largest distance to βenv will support a higher
population, as more microbes are required to
achieve the required heating / cooling for tem-
perature limitation. Recall Figure 4 where the
population supported during the low temper-
ature limited regime was significantly lower
than the population supported during the high
temperature limited regime. While βenv < β the
high temperature limiting regime can on aver-
age support a higher population, however when
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Figure 8: Plots showing εavg against the abiotic temperature τ. The blue line represents β and the red line represents βenv.
When the system is nutrient limited the temperature changes linearly with εavg, however during temperature limitation,
the temperature remains constant for changing εavg.

Table 2: Heating and cooling survival % and average lifespans as a fraction of the total simulation length (105 timesteps)
for a range of τ. Comparing with Table 1 we see that heating increases the survival % and cooling decreases it.

Heating Cooling

τ
Survival
%

Average
lifespan /

105

Standard
deviation

Survival
%

Average
lifespan /

105

Standard
deviation

0.00 100 1 0 100 1 0
0.005 100 1 0 100 1 0
0.01 100 1 0 96 1 0.01
0.015 100 1 0 13 0.60 0.26
0.02 87 0.95 0.21 9 0.32 0.30
0.025 19 0.46 0.47 9 0.20 0.32
0.03 2 0.15 0.31 4 0.01 0.22

18



0 20000 40000 60000 80000 100000
t (timesteps)

50

100

150

200

250

te
m

pe
ra

tu
re

(a) τ = 0.025 temperature plot.

0 20000 40000 60000 80000 100000
t (timesteps)

50

100

150

200

250

te
m

pe
ra

tu
re

(b) τ = 0.025 temperature plot.
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(c) τ = 0.025 population plot.
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(d) τ = 0.025 population plot.

Figure 9: Heating the system with tau = 0.025.

the environment has warmed so that βenv > β,
the low temperature regime becomes able to
support a higher population. As τ increases, the
system becomes highly susceptible to quakes.
Recall from Figure 5 that for τ = 0.03 the low
temperature limiting regime was no longer pos-
sible. When we change from βenv = β − 50 to
βenv = β + 50 we change which of the temper-
ature limiting regimes is possible. In order for
a τ = 0.03 system to survive heating, it must
transition at a correct time from high temper-
ature limitation to low temperature limitation.
τ = 0.025 and τ = 0.03 systems are already
highly susceptible to extinction during quake
events so adding a necessary quake in order to
survive further reduces the probability of sur-
vival.

Figure 9 shows two τ = 0.025 systems under-

going heating. In Figure 9a we can see that
the system transitions to the high temperature
limitation regime towards the end of the ex-
periment and the microbes lose control of the
temperature regulation, and temperature starts
to follow βenv. We can see in Figure 9c that the
system has not yet gone extinct at the end of
the experiment, however it seems likely to do
so.

When reducing βenv the system is now further
from the microbes’ preferred β = 150 than for
the βenv = 100 experiments. This has the effect
of making the low temperature limiting regime
unviable earlier than before. The survival rate
starts to drop off for lower τ.

Figure 10 shows two τ = 0.015 systems un-
dergoing cooling. One system survives the ex-
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(a) τ = 0.015 temperature plot.
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(b) τ = 0.015 temperature plot.
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(c) τ = 0.015 population plot.
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(d) τ = 0.015 population plot.

Figure 10: Cooling the system.

periment and one goes extinct. We can see
that around roughly 80, 000 timesteps, βenv be-
comes too low to support the low temperature
limiting regime. For a τ = 0.015 system to
survive therefore it must be in the high tem-
perature limiting regime and remain there. To-
wards the end of the cooling experiments we
have a similar situation to the one we had for
high τ when βenv = 100; the system must re-
main high temperature limited to survive, and
quake events carry a high probability of total
extinction, and these factors combine to reduce
the survival probability for systems. Once βenv

has fallen to below the temperature where low
temperature limiting takes place TL low tem-
perature limitation becomes impossible. From
Figures 10a and 10b we can see that TL ≈ 70.

If the system can remain in the high temper-

ature limiting regime, then as βenv drops the
microbes in the system can compensate by in-
creasing their population and thus increasing
their heating on the environment. We can see
towards the end of Figure 10d that the popula-
tion is increasing as βenv is dropping. If we de-
creased βenv enough, the microbes would reach
a limit beyond which they would be unable to
heat their environment sufficiently to reach the
high temperature limiting regime. Beyond that
point no form of temperature limitation is pos-
sible anymore and the temperature will fluc-
tuate until the system is pushed to extinction,
which given the extreme βenv would not take
long.
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3.7. Changing the strength of the microbes’
abiotic effects

The results so far have been for microbes with
byproduct affects on the abiotic parameter gen-
erated from the range [-1, 1]. To investigate
how the strength of these byproduct affects im-
pact temperature regulation in the model, for
τ = 0.015 we preformed experiments with mi-
crobes with half-strength abiotic byproducts,
i.e. taken from the range [-0.5, 0.5], de-
noted experiment S H , and microbes with dou-
ble strength abiotic byproducts, taken from the
range [-2, 2], denoted experiment S D. All 100
simulations survived for S H , and 72 survived
for S D. Both systems showed temperature lim-
itation, however S H systems show more nutri-
ent limitation than S D systems. The frequency
of waiting times for quakes was affected by
changing the abiotic byproduct strengths as
shown in Figure 11. The definition for a quake
is the same as in Equation 4.

With weaker byproduct affects, the system
can on average support a higher population of
microbes while temperature limited, and this
higher population means that there is a higher
rate of mutants appearing in the system and
thus a higher rate of destabilising mutants. We
would then expect to see a higher frequency
of quakes for S H systems. From Figure 11 it
does appear that S H do not have to wait as long
for quakes, as they have a higher frequency of
quakes at small waiting times. For S D systems
we find the opposite, at small waiting times
there is a lower frequency of quakes. With
stronger abiotic byproducts, on average there
will be a smaller population supported during
temperature limitation and thus a slower rate
of mutants appearing, thus a smaller chance
of destabilising mutants. S D systems are also
likely to become temperature limited faster
than S H systems as microbes have a stronger
affect on the environment, it is easier for them
to move the system away from nutrient limita-
tion to temperature limitation, meaning that the
system will spend less time with the tempera-

ture random walking during nutrient limitation,
causing fewer rapid changes in temperature ap-
pearing in short time spans.

Otherwise the shapes of all three curves
in Figure 11 are quite similar, demonstrat-
ing that changing the strength of the abiotic
byproducts, although affecting the frequency of
quakes for short waiting times, it does not have
a large impact on the frequency of quakes for
long waiting times.

We again have both a histogram from all ex-
periments in Figure 11a and from only non
extinct experiments Figure 11b. As S D sys-
tems are the only systems to have any exper-
iments go extinct, this is the only histogram
that differs between the two, and we can see
that for only non-extinct experiments, the fre-
quency of quakes for longer waiting times is
slightly higher than when we group extinct and
non-extinct simulations all together.

3.8. Changing Pmut

We investigated the effect of changing Pmut for
τ = 0.015 systems, and found that the qual-
itative dynamics of the system remained the
same. The survival rate for all systems was
100%. We found that a decreased rate of mu-
tation Pmut = 0.005 resulted in fewer quakes at
short waiting times, and more at longer waiting
times showing the overall dynamics of the sys-
tem to be slightly slowed down. Increasing the
mutation rate to Pmut = 0.02 did not largely af-
fect the expected waiting time for quakes. Fig-
ure 12 shows a histogram for the waiting times
of quakes for each mutation rate. Importantly,
temperature regulation was found to be present
regardless of the value of Pmut.

4. Discussion

The single Flask model demonstrates environ-
mental regulation arising from the byproducts
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Figure 11: Histograms showing the average frequency of waiting times for quakes for τ = 0.015 with different microbe
byproduct strengths. The number of non-extinct simulations in b) is given in brackets in the legend. Note that both the x
and y axis are logarithmic.

of biota consistent with evolutionary theory,
with a constant rate of mutation per reproduc-
tion event, and total extinction a possibility.
Microbes in the model share a preference for
the abiotic parameters but no spatial structure is
present. This combination of assumptions dif-
fers from previous Gaian models demonstrat-
ing environmental regulation.

This model provides a quantitative illustration
of more qualitative ideas from the late 1990s -
that the most obvious way to make Gaian ideas
compatible with evolutionary theory was for
Gaian processes to be based on byproducts of
processes that had been selected for other rea-
sons [23][27]. A criticism of the Daisyworld
model is that it is set up so that local adapta-
tions of daisies in the system are also benefi-
cial to global regulation. A black daisy is able
to survive at a lower solar output than a white
daisy due to its low albedo affect. It absorbs
more energy thus heating its local environment
and in turn the global environment pushing the
Daisyworld towards habitability. As the so-
lar output increases, white daisies start to take
over to act in the reverse, cooling the planet.
The daisies alter both the local and global tem-
perature in the same direction meaning that
what is selected for at the individual level di-

rectly impacts its global effects making Daisy-
world a special case [32]. The original multi-
Flask model addressed this criticism by hav-
ing the abiotic effects a byproduct rather than
something to be selected for, as is the case in
early Daisyworld models [26] and the Guild
model [7], allowing environment improving lo-
cal communities to develop and colonise and
outcompete environment degrading communi-
ties leading to global regulation.

We have taken a step further in the single Flask
model by having no local environment, only
global. Any abiotic effect the microbes have
acts on this global environment, and so a mi-
crobe is no more affected by the temperature
increases / decreases due to its own metabolic
processes than it is to the increases / decreases
of others. This means all microbes feel the
abiotic temperature identically at all times and
none can gain an individual advantage due to
its abiotic effects and competing communities
cannot arise. Despite this, clear temperature
regulation still appears in the system demon-
strating that no spatial environment parameters
are needed for temperature regulation to occur.

No single well adapted species emerges but the
microbe ecosystem as a whole adjusts its to-
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Figure 12: Histograms showing the average frequency of waiting times for quakes per non extinct simulation for
τ = 0.015 systems with different mutation rates. Note that both the x and y axis are logarithmic.

tal population to absorb the effects of mutants
arising so that the total impact on the envi-
ronmental parameter is kept constant. Inter-
nal perturbations arising from new mutants can
knock the system from one temperature limit-
ing regime to another and such transitions are
rapid. In this way during temperature limita-
tion we have a single negative feedback loop
regulating the system, different from previous
abiotic regulation mechanisms, such as the two
‘rein’ feedback in [18]. As all microbes share a
preference for the abiotic parameter, subgroups
that pull the environment in different directions
are not able to form. Instead, our single nega-
tive feedback mechanism can be thought of as a
single ‘rein’ pulling against the abiotic param-
eter, with the strength of rein kept constant by a
balance between εavg and the total population.
The single rein can, for suitable τ pull in ei-
ther direction to cause temperature limitation,
with occasional regime shifts. Rapid regime
shifts are a pattern also seen in nature [25]. A
real-world example of these large regime shifts
is the evolution of oxygenic photosynthesis in
the late Archean ultimately causing a transition
from a reducing to an oxidising atmosphere [3].
However as there was more than a 300 Myr de-
lay between the evolution of oxygenic photo-
synthesis and the rise in oxygen levels this real

world example is more complex than the be-
haviour portrayed in this model.

Destabilising mutants - so called ‘Ghengis
Khan’ species [10] - that greatly upset the cur-
rent status quo, do not cause the system to go
extinct for low and intermediate τ, rather they
cause the system to quake and return to its pre-
vious temperature regulation, or can cause the
system to flip from one temperature regulation
to another. Dramatic change can take place
in the system and yet the system can continue
to exist. For high τ however, these ‘Ghengis
Khan’ species can drive the system to extinc-
tion, as shown by the low survival rate for τ >
0.015. The rate of mutation in the model will
determine how often these large scale destabil-
isations occur. Each time there is a mutation,
the system will need to adjust to absorb the ef-
fects of the mutants metabolism. For a slower
rate of mutation, the system would be more sta-
ble with large transitions occurring at longer in-
tervals, and for a higher rate of mutation, the
system would be destabilised more regularly.

We can think of the “regulator” of the sys-
tem as being the total biomass production rate,
rather than genetic distribution. The increase or
decrease in the total biomass production rate,
and in consequence the expansion and contrac-
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tion of the total population is what regulates
the temperature, while the genetic variation,
determined by the reproduction and mutation
rates, acts more like a perturbation the system
must adapt to. In the event of a perturbation,
the total biomass production rate required to
maintain temperature regulation will change as
εavg will now be different, and this will cause
the actual total biomass production rate pre-
formed by the system to change. The popu-
lation will then increase or decrease until the
average biomass production rate per microbe,
reaches the replacement threshold, Rt, - the rate
at which a stable population can be maintained,
i.e. on average each microbe can reproduce
once before its death. Rt is a constant through-
out the simulation, so as the total biomass
production rate changes as mutants are intro-
duced, the population must adjust. There are
no specific ecosystem engineers [12] present
in the model. There are no individual species
that provide the regulation for other species
to benefit from; all species collectively pro-
vide the temperature regulation. Some species
may contribute towards regulation more than
others at certain times, i.e. those with the
largest population or the strongest abiotic af-
fects per microbe, however we see from pop-
ulation and nutrient stock graphs that the ge-
netic population of a ecosystem can be rapidly
changing while temperature regulation contin-
ues uninterrupted. This model demonstrates
how non-evolutionary mechanisms, i.e. feed-
backs on growth [13], can change the fitness
landscape. In the multi-Flask world models,
this mechanism would also be present, how-
ever the connected flasks allow for a higher-
level selection to reduce the harmful perturba-
tions of the ‘wrong’ kind of mutation, adding a
second layer of regulation. ‘Key-stone’ species
[19], species with a large effect on the envi-
ronment per biomass, can occur and the death
of such microbe’s can also be a trigger for
‘quakes’. If a microbe contributing strongly to
the regulation dies, the regulation might be dis-
rupted enough to allow for a transition to an-
other regime.

The single Flaskmodel presents situations in
which microbes sit in a nutrient-rich state but
are unable to exploit them. With a nutrient
rich environment we might expect the arrival
of microbes able to exploit these abundant nu-
trients, however as it is the total biomass pro-
duction that controls regulation in the temper-
ature regulation state, all microbes will have
their biomass production rates, and thus their
reproduction rates, limited to the same value.
In a shared environment, there is no way to se-
lect for a microbe that neutrally affects the cur-
rent temperature value and thus can grow to a
large population, exploiting the nutrients with-
out affecting the temperature regulation. Even
if the system could support a higher number of
certain species and maintain regulation, there is
no mechanism by which those species can re-
produce at a faster rate, while ones that would
destabilise the system do not. While it would
be advantageous for the microbes to ‘remove’
their feedback on the environment, as it would
remove extinction causing quake events, no or-
ganism can be independent of the physical en-
vironment, so the feedback will always exist.
Life must take the resources it requires from
the local environment and must dump its waste
products into the environment [28].

The first Flaskmodel [30] focused on syntro-
phy - cross-feeding or producer-consumer re-
lationships, in a single flask. Robust nutrient
recycling loops were found and we find this
in our model too; if the microbe waste is re-
moved immediately from the system after ex-
cretion, the total population of the system is re-
duced. The environment, however, in a single
well mixed flask is the same for all microbes,
and all resources are exchanged via the envi-
ronment. Hence no ‘exclusive’ syntrophic re-
lationships can emerge as any relationship is
open to exploitation or parasitism and no multi-
strain assemblages can be distinguished at a
scale smaller than the single well-mixed flask.

The same system for a different value of τ can
be nutrient limited or temperature limited. Nat-
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ural systems can switch between nutrient lim-
itation and some other abiotic environmental
limitation, i.e. nutrient runoff from farmland
into lakes leading to eutrophication - in this
case the system goes from nutrient limited to
some other limiting regime [20] [11], or poten-
tially the response of some plants in the arctic
tundra in response to warming where the plant
may go from temperature limitation to nutrient
limitation in areas of the High Arctic where nu-
trient levels are low [24]. Therefore a model
that can present both behaviours is useful al-
though these smaller real-world examples are
not thought to be regulating their environments
as strongly as this model demonstrates.

A longstanding argument against the Gaia hy-
pothesis is that with just one Earth global reg-
ulation has no mechanism for developing be-
cause natural selection requires selection be-
tween multiple entities [5]. This model shows
that an ecosystem of ‘temperature’ sensitive
microbes reacting in a simple way to changes
in a global temperature can lead to robust tem-
perature regulation. The system can be thought
of as bouncing off an upper or lower bound,
similar to oxygen levels on Earth being up-
wardly bound by fire in the Phanerozoic [14].
This result weakens this criticism of the Gaia
hypothesis. This temperature-regulation oc-
curs only when the microbes are sensitive to
the abiotic temperature. For regulation to oc-
cur there must be a feedback on the biota from
the environment, without this, i.e. for low τ,
the temperature cannot be regulated. When
the microbes are sensitive to their environ-
ment however, temperature regulation robustly
arises. For low to intermediate values of τ, sys-
tems have a high survival rate despite quakes
upsetting the system. This suggests that for a
range of τ between roughly 0 ≤ τ ≤ 0.015,
we have what is known as a ‘probable Gaia’
[15]. Systems tend towards stability with total
extinction being a rare event. For higher values
of around τ ≥ 0.02 we start to see extinctions
becoming more probable; systems are less able
to cope with quakes. The systems that survive

do so due to the low number of quakes experi-
enced during the experiment. In this scenario
surviving systems are known as ‘lucky Gaia’
systems [15]. Those that survive do so due to
the low frequency quake inducing mutants aris-
ing.

The single Flask model has a number of lim-
itations, the largest being that the abiotic ef-
fects by the microbes are a direct by-product
of microbe metabolism. For each biomass cre-
ated, a constant value determined by the mi-
crobes’ genetics is added to the temperature.
In the real world, direct heating effects from
respiration have very little effect on parameters
such as global temperatures. The effects come
from the chemicals in the system, and these
are influenced by life by what the life removes
and provides to the system. In the example of
global temperature, the concentrations of CO2
and CH4 are key in determining how insulating
the Earth’s atmosphere is. Another limitation
is that the inflow and outflow rates providing
and removing nutrients and abiotic parameters
to the flask are rather rapid. This means that
once a population of microbes slow or cease
their metabolic activity, the abiotic parameters
are quickly pulled back towards the equilib-
rium value, the value it would have in the ab-
sence of life. This means that microbes do not
have to suffer the consequences of destabilis-
ing mutants for too long and it enables the sys-
tem to recover quickly - quickly here meaning
a shorter length of time than the average lifes-
pan of a microbe. The results of destabilising
mutants are also almost immediately felt by the
system allowing for rapid adaptation as soon as
destabilising mutants arise. In many real world
systems the feedback from a perturbation can
take timescales that are much longer than the
lifespan of the organisms creating the pertur-
bation, for example the 300 Myr delay be-
tween the evolution of oxygenic photosynthe-
sis and the Great Oxidation Event [2]. There-
fore the effect of a destabilising mutant might
take many generations to be felt preventing a
rapid adjustment in the system before the mu-
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tant has left many descendants. This might pre-
vent the system from successfully adapting to
absorb perturbations of new mutants and might
weaken the regulation mechanism. Another as-
sumption the Flaskmodel makes is that types
of metabolism are not correlated with certain
effects on the environment, for example het-
erotrophy and the production of CO2, which
warms the planet. In the Flaskmodel the same
metabolism can have different affects on the
abiotic parameters depending on the genome of
the microbe with that metabolism. This is more
general than in the real world, and a limitation
of the model.

We speculate that the identified regulation
mechanism could in principle operate in nat-
ural well mixed environments, such as the
Earth’s atmosphere - i.e. regulation by fire
near the upper bound for Oxygen [14]. His-
torically, massive regime shifts have occurred
in global temperature and atmospheric compo-
sition without interrupting the existence of life
on the planet. Our model shows similar pat-
terns, and suggests a mechanism for how or-
ganisms might collectively interact via global
parameters to regulate their environment.
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Appendices

A. Model Description

A.1. The Flask Environment

We have a single well mixed environment with no spatial element - we assume that in the flask
the liquid medium is well mixed so that the composition of the flask is in a homogeneous steady
state. The flask is characterised by nutrient levels and the abiotic parameters. The nutrients
present may be consumed by microbes and converted into biomass. The abiotic parameters are
affected by and can affect the microbe activity.

The state of the flask is given by a vector V:

V = (n1, ..., nN , a1, ..., aA) = (v1, ..., vN+A) (5)

where ni is the concentration of nutrient i, βi
env, is the level of abiotic parameter i, or equivalently,

vi, is the level of the ith environmental state variable. N is the number of nutrients and A is the
number of abiotic parameters.

As we break down each timestep into a number of iterations n where n is the total population
of the system at the start of the timestep, we break down the inflow and outflow of nutrients
and other abiotic parameters to prevent sudden changes at the the start of each timestep. The
steps within a timestep would ideally all be computed in parallel but computational limitations
prevent this, and so for agent based dynamics we effectively freeze the system while the selected
microbes performs an action (being nutrient consumption / biomass production / reproduction /

death). If we simply added and deducted the flow amounts at the start of each timestep, microbes
selected at the beginning of a timestep could see a very different world to those selected at the end
of a timestep if the population is large due to the microbes effect on the environment (nutrient
consumption reducing nutrient levels and biomass creation affecting the abiotic parameters).
Although these effects would largely average out due to the random selection of microbes during
each timestep, a single large influx per timestep could be thought of as a periodic perturbation
on the system which could affect the results seen. To counter this, we calculate the net influx of
nutrients Nnet and abiotic parameters at the start of each timestep:

Nnet = IN − ON Ncurrent (6)

where IN is the number of units of nutrient inflow per timestep, ON is the percentage outflow,
and Ncurrent is the current nutrient levels in the system at the start of the timestep. We can then do
N i = Nnet/Kcurrent where Kcurrent is the total population of the system at the start of the timestep,
and then for each iteration within a timestep we increment the nutrient levels by N i. This results
in the same quantity of nutrients being added / removed from the system as if there was just one
update at the start of the timestep, but it results in a much smoother transition and means that
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microbes selected at the start and end of a timestep will see much more similar worlds. In doing
this, we treat nutrient levels as continuous but the microbes can only ever treat the nutrients as
units. So while each iteration we might be adding 10.7 nutrient units per iteration, any microbes
in the system can only act on the integer amounts of nutrients present.

We calculate the abiotic parameter changes by diluting the current abiotic parameters by a certain
percentage of fresh influx IA. So for the abiotic parameters we update each iteration by Anet:

Anet = AsourceIA − AcurrentIA (7)

where Asource is the abiotic parameters of the source, and Acurrent is the abiotic parameters of the
current environment in the flask.

A.2. Microbes

The microbes consume and excrete nutrients in fixed proportions and affect the levels of abiotic
parameters in their environment as a side effect of biomass creation. The ratios of nutrient con-
sumption / excretion and the byproduct effect on the abiotic parameters are genetically encoded
for each microbe species. All microbes share the same preferred abiotic conditions (i.e. the state
of the abiotic environment which results in the maximum growth rate). Microbes grow by con-
suming nutrients and converting them to biomass, and they reproduce asexually by splitting once
their biomass reaches a threshold. Biomass is reduced by a fixed amount per timestep to repre-
sent the cost of staying alive. Microbes die if their biomass drops to a fixed threshold, which can
happen during nutrient limitation or temperature limitation causing the microbes being unable to
consume the nutrients present.

In the code we do not record microbes of the same species individually as doing so would slow
the code considerably. Instead we group microbes of the same species together and record the
species total biomass. Thus each species can be thought of as a vector S :

S = (N, B, λ, µ, α, β) (8)

where N is the population of the species, B is the total biomass of the species, λ = (1, ...,N)
represents the ratio in which nutrients are consumed, µ = (1, ...,N) represents the ratio in which
excreta are returned to the environment as nutrients, α = (1, ..., A) represents the effect from one
microbe in the species on the abiotic parameters and β = (1, ..., A) represents the environmental
abiotic parameter levels that maximise the growth for microbes in species S .

A.3. Genotype

The genotype of a microbe is recorded as the decimal representation of an 8 bit binary string,
and this is used to group microbes into species. Microbes that share the same genome are of the
same species. We create tables for microbe nutrient / excretion rules and abiotic effects and this
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genome is used as the reference to look up the particular metabolism rules for a microbe. With
an 8 bit long binary genome there are 256 possible species (as each gene in a genome can have
the value 0 or 1).

A.4. Reproduction and Mutation

If the microbe is able to consume enough nutrients to reach the reproduction threshold TR it
will reproduce asexually, splitting in half. Half of the biomass with go to the new microbe and
the parent microbe will half its biomass. The new microbe will have the same genome as the
parent unless a mutation occurred during the reproduction. There is a small constant probability
of mutation for each locus. If a mutation occurs at a locus then the gene at that point will be
‘flipped’, turning it to 0 if it were previously 1, or to 1 if it were previously 0.

A.5. Maintenance Cost and Death

There is a fixed biomass cost of staying alive for each microbe. This reduces a microbes biomass
by a constant rate. This cost represents the energy costs of maintaining cellular machinery and
metabolic inefficiency. This cost is assumed to be lost from the flask environment as unrecov-
erable heat radiation. This ensures that the nutrients cannot be infinitely recycled and it sets the
carrying capacity of the system. This carry capacity is reached when the total heat dissipation
matches the energy supplied in the form of nutrients.

If the biomass falls to a starvation threshold TD the microbe will starve to death. There is also a
small probability of death by natural causes PD that represents death by predation, apoptosis etc.
When a microbe dies its biomass is be removed from the system, as if the dead microbe were
washed out of the flask.

A.6. Nutrient Consumption / Excretion

During a single timestep a different microbe is selected n times for a nutrient consumption event,
where n is the total population of the system at the start of the timestep. This means that on
average every microbe will be selected for nutrient consumption once per timestep. When a
microbe is selected it will attempt to eat its Cmax

j of nutrients (the value of Cmax
j depending

on how closely the abiotic parameters meet the microbes’ preferred values and the microbes’
sensitivity to its environment ), and if the nutrients are available, and in the correct ratios, the
microbe will consume them. The nutrient ratios are fixed at the start of each simulation for each
genome and remain constant.

The nutrient consumption / excretion vectors for each genome are of N length, there N is the
number of nutrients. If we assume we have 3 nutrients we would then have 2 vectors of length 3.
We populate these vectors with random numbers generated between [−1, 1] and then sum. For
example if our two vectors were [−0.3, 0.5, 0.6] and [−0.2,−0.2, 0.1] then summed we would
have: [−0.5, 0.3, 0.7]. We take negative values to mean that nutrient is excreted and positive
values that that nutrient is consumed. Therefore any case where all values in the vector are
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positive or all are negative are instantly disqualified as a microbe must eat and excrete. For
our example above we see that our microbe consumes nutrients 2 and 3 and excretes nutrient 1.
When consuming nutrients this microbe must eat 3 units of nutrient 2 with 7 nutrients of nutrient
3 (a unit of nutrient is non divisible), or the microbe cannot consume anything. This particular
metabolism is limiting the microbe to be only able to survive in ideal abiotic conditions, if we
take our Cmax = 10 (the maximum consumption rate for any microbe) as if the abiotic conditions
move away, we get Cmax

j < Cmax and so Cmax
j < 10 and with our specific nutrient ratio, if the

microbe cannot eat 10 units of nutrient, it cannot consume at all or it would violate its metabolic
nutrient ratio rules.

A.7. Effect of abiotic factor on metabolic rate

The state of the abiotic environment affects the rate at which microbes can consume nutrients
which in turn affects the rate of biomass production and thus the growth of the microbes. A
microbe will attempt to consume a maximum amount Cmax

j of nutrients each timestep with the
demand being met depending on nutrient availability. The Cmax

j is calculated for each microbe j
as a function of the match between the microbes’ genetically specified preferred conditions and
the current abiotic state of the environment. This function is has a Gaussian form and falls away
smoothly from its maximum as the distance between the optimum and the current environment
increases. Mathematically we write this as:

Cmax
j = ψ jCmax (9)

ψ j = e−(τp j)2
(10)

p j =

√√√ A∑
i=1

(βi
env − β

i
j)

2 (11)

where Cmax is a constant determining the maximum rate of consumption for any microbe, ψ j is a
microbe specific measure of the microbe’s satisfaction with the current abiotic environment, τ is a
universal constant parameter that determines how sensitive the microbes are to their environment
(τ = 0 means the microbes are not affected by the abiotic environment at all, and a higher τ
means the microbes become more sensitive to the abiotic conditions). p j is a measure of the
distance between the current environmental level for each abiotic factor βi

env and the microbe’s
preferred level βi

j.

A.8. Effect of microbial activity on environment

Microbes can affect their abiotic environment as a side effect of biomass creation. The effect
the microbe has is proportional to its rate of biomass creation and thus its growth rate, so faster
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growing species will have a larger effect than slower growing species. Through the consump-
tion of nutrients and excretion of waste products microbes also affect the nutrient levels in the
environment.

Each microbe has an effect on the abiotic parameters per unit of biomass created, and these effects
are numbers in the range [−1, 1]. These numbers are randomly generated in this range at the
beginning of each simulation for each species and remains constant throughout the simulation.
Thus each member of a species has the same effect on the abiotic environment for the duration
of the simulation.

A.9. Parameters

Parameter Value Description
N 4 Number of nutrients
A 1 Number of abiotic parameters
BR 120 Reproduction threshold (biomass units)
BD 50 Starvation threshold (biomass units)
Pmut 0.01 Probability of mutation at each locus during reproduction
PD 0.002 Probability of death by natural causes (other than starvation) at

each timestep
λ 1 Maintenance cost (biomass units / timestep)
θ 0.6 Nutrient conversion efficiency
τ [0.00, 0.005, 0.01,

0.015, 0.02, 0.025,
0.03]

Level of influence of abiotic environment on metabolism

IN 150 Rate of nutrient influx (units / timestep)
ON 0.25 Rate of nutrient outflux (percentage / timestep)
IA 0.2 Rate of abiotic factor influx (percentage / timestep)
OA 0.2 Rate of abiotic factor outflux (percentage / timestep)
KM 100 Number of individuals in flask inoculum
tprep 500 Flask equilibration time prior to seeding (timesteps)
trun 105 Duration of run (timesteps)
β 150 Abiotic environmental preference
βenv 100 Environmental ‘temperature’ in the absence of microbe activity

A.10. Method

We used agent based dynamics to run the simulation. A timestep is broken down into iterations,
the number of iterations matches n the number of microbes alive in the system at the start of the
timestep. For each iteration we perform the following steps:

• Influx / outflux of abiotic parameters and nutrients via trickle
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• An individual selected randomly for a death event

• An individual selected randomly for a nutrient consumption event

• An individual selected randomly for a biomass creation event

• An individual selected randomly for a reproduction event

We repeated this process n times for one timestep.

Each simulation in this paper was run for 105 timesteps.
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